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Předmluva
Doktorandské dny jsou již tradičním setkáním studentů doktorského studia na Fakultě

jaderné a fyzikálně inženýrské ČVUT v Praze. Doktorandi studijního programu Matema-
tické inženýrství zajišťovaného katedrami matematiky, fyziky a softwarového inženýrství
na nich prezentují výsledky své vědecké práce, jejichž tematika pokrývá všechny oblasti
aplikované matematiky.

Letošní ročník je již sedmnáctým vydáním workshopu, koná se ve dnech 11. a 25.
listopadu 2022. Jsme rádi, že po předchozích letech silně poznamenaných covidem se
můžeme opět sejít na workshopu v tradiční prezenční formě.

Tento sborník přináší jak plné texty studentských příspěvků, tak i abstrakty s odkazy
na články publikované ve sbornících významných konferencí či publikované nebo alespoň
zaslané k publikaci v odborných časopisech.

Za materiální podporu děkujeme katedře matematiky FJFI a grantu Studentské vě-
decké konference SVK 32/22/F4.
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Manifold Learning Projection Quality
Quantitative Evaluation∗

Vladislav Belov
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Abstract. A large number of dimensions may cause various problems in real-world applications.
Some dimensions might be redundant and can worsen the quality of the workflow output. In the
vast majority of exercises with datasets, data are distributed along a highly nonlinear manifold
whose structure is unknown. This paper focuses on analyzing the outputs of nonlinear dimen-
sionality reduction, or Manifold Learning, techniques. We introduce three meaningful measures
that provide context behind projections onto lower-dimensional spaces. The measures will en-
able us to compare techniques with each other and assist in choosing suitable hyperparameters.
Moreover, we propose to view projections from the standpoint of simplicial complex distortion.
In connection with that, we establish the process of a dimension-agnostic graph-based data tes-
sellation technique that builds a simplicial skeleton of high-dimensional data. Alongside our new
tessellation technique, we evaluate the proposed quality measures on the Delaunay-tessellation-
based simplicial approximations of manifolds.

Keywords: dimensionality reduction, machine learning, manifold learning, noise reduction

Abstrakt. Vysoký počet dimenzí může způsobit různé problémy v reálných aplikacích: něk-
teré dimenze mohou být redundantní a navíc zhoršující kvalitu výstupů modelů, kterého jsou
součástí. Kromě toho, při práci se skutečnými daty se často setkáváme s případy, když jsou
distribuována podél nějaké nelineární variety, jejíž struktura je neznámá. Tento příspěvek je za-
měřen na analýzu technik nelineární redukce dimenzionality, tzv. Manifold Learning. Zde před-
stavujeme tři metriky, které jsou schopné extrahovat informace o prováděných projekcích vysoce
dimenzionálních variet na prostory s nižšími dimenzemi. Nadto ukazujeme, že tyto metriky jsou
užitečné při výběru jak optimálnější mapovací techniky, tak i jejích hyperparametrů. V této práci
také navrhujeme pohled na redukční projekce jako na proces distorze komplexů propojených sim-
plexů. V návaznosti na tuto myšlenku definujeme a užíváme vlastní techniky vytvoření simplexů,
která není přímo závislá na dimenzi dat a je založena na principu sestavení simplexové kostry.
Při evaluaci navržených metrik také aplikujeme aproximace variet vytvořených na základě De-
launyho teselací.

Klíčová slova: Manifold Learning, redukce dimenzionality, redukce šumu, strojové učení

Full paper: The full text of this paper is available in [1]. The work was presented at
the CIIS 2021 conference workshop CAIT 2021.

∗This work was supported by the Grant Agency of the Czech Technical University in Prague, grant
No. SGS20/183/OHK4/3T/14.
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2 V. Belov

(a) A set of projections of the S-curve, N =
500, for different values of the number of
nearest neighbors k.

(b) A set of projections of the Swiss Roll,
N = 1000, for different values of the num-
ber of nearest neighbors k.
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Figure 2: Simplex Distortion of the Swiss Roll dataset, N = 1000, DT (τDT = 3).
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Tools for Understanding Deep Blind Image
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Abstract. This paper presents tools that can be used for better understanding of blind image
deconvolution algorithms. It is focused on SelfDeblur algorithm, that is based on Deep Image
Prior, and aims to uncover some of the reasons of its efficiency using mode-connectivity landscape
and power spectral density plots.

Keywords: SelfDeblur, blind image deconvolution, solution landscape, power spectral density

Abstrakt. V tomto příspěvu jsou prezentovány dva nástroje, které lze použít pro lepší pochopení
algoritmů řešících slepou dekonvoluci obrazu. Je zaměřen na algoritmus SelfDeblur, který je
postavený na myšlence Deep Image Prior, a cílem je lépe porozumět, co stojí za jeho efektivitou,
pomocí vykreslení prostoru řešení a grafů výkonové spektrální hustoty.

Klíčová slova: SelfDeblur, slepá dekonvoluce obrazu, prostor řešení, výkonová spektrální hustota

1 Introduction
Images can be degraded in many ways, for example, by blurring, noise or low resolution.
In this paper we focus on blurring, which may be caused by a relative motion of a camera
and a scene, turbulence in atmosphere or wrong focus. Assuming a spatially invariant
blur, a blurred image d ∈ Rn×m

+,0 can be represented as a convolution of a point spread
function (PSF) k ∈ Rs×s

+,0 and an underlying sharp image x ∈ Rn×m
+,0

d = k ~ x+ n, (1)

where n ∈ Rn×m denotes a noise. The deconvolution is basically an inverse operation
to the convolution with the aim to recover the sharp image from the blurred one. The
deconvolution is called blind (BID) when not only the sharp image, but also the blur is
unknown. The task is then to minimize

‖d− k ~ x‖, (2)

with respect to both x and k. To preserve the energy, k is required to contain only
nonnegative values and sum to 1. This paper is focused on zero-shot blind image decon-
volution, which means that the sharp image is estimated without any training on a large
dataset.

∗This work has been supported by the grant GA20-27939S
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6 A. Brožová

1.1 Literature

As the problem is highly ill-posed, some prior information is a vital part of the estima-
tion. Bayesian approach recieved a lot of attention at the begging of the century, starting
with Miskin and MacKay [12], Likas and Galatsanos [11] and Molina et al. [13]. Varia-
tional Bayes [18], [7] and Maximum Aposteriori (MAP) [9], [14] approaches were mainly
discussed and various priors were proposed [20]. Although these traditional methods are
quite successful, their efficiency depends on a blur type and inverse operations often leave
the sharp images degraded by not very plausible artifacts.

Another interesting approach to the problem of blind image deconvolution is to uti-
lize deep learning [5], [21], [22]. Deep learning models usually require to be trained on
large datasets which give them more information than the traditional methods get and,
therefore, outperform them. But there are real world scenarios where large datasets are
not available, usually because of a screening method, and, for a long time, traditional
Bayesian methods were state-of-the-art for these problems. In 2018, Ulyanov et al. pro-
posed Deep Image Prior (DIP) [19] and they state that a structure of a deep neural
network is a regularizer of the problem itself and that it may prefer images with certain
characteristics. They successfully presented it on image denoising, inpainting, and super-
resolution, but not on blind image deconvolution. Ren et al. combined the DIP image
network with a fully connected network for the PSF in 2020 and proposed SelfDeblur [15].
This model deblurs image without any training dataset and outperforms the traditional
methods that are used for BID.

1.2 SelfDeblur

As described in [15], the model combines two generative neural networks, one for an
image, denoted as Gx, and one for a PSF, denoted as Gk. The estimate of the sharp
image is generated as Gx(zx) and the estimate of the PSF as Gk(zk), where zx and zk

are fixed, randomly sampled arrays from uniform distribution. The deconvolution is then
formulated as

min
Gx,Gk
‖d− Gk(zk)~ Gx(zx)‖,

s.t. 0 ≤ Gx(zx)i ≤ 1,∀i,

Gk(zk)j ≤ 0, ∀j,∧
∑
j

Gk(zk)j = 1. (3)

The requirements of nonnegativity and sum of elements of the PSF can be easily incor-
porated using softmax and sigmoid output layers. Gx is as in [19] 5-level U-net [16] with
skip connections, batch-normalization, leaky ReLU activations and bilinear upsampling.
Gk is a fully connected neural network with one hidden layer with hardtanh activation.
The two networks are optimised jointly in 5000 epochs using Adam optimiser [6] with
learning rates 10−2 for image and 10−4 for blur.

Results in this paper were obtained with a simpler blur model - it is represented
only by an array (a bias vector if it was understood as a neural network) and a softmax
output layer and it is optimised with a learning rate 10−2, because we mainly focus on
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Figure 1: This figure illustrates difference between ground-truth and no-blur solution. On the
left side, there is a convolution of ground-truth solution, on the right side, there is a convolution
of the no-blur solution. The image and PSF are taken from the Levin dataset.

image network behaviour. Apart from that, random perturbations of zx are not used and
learning rate schedulling is turned off.

2 Studied issues
The problem of BID is highly ill-posed and SelfDeblur suffers from similar problems as
traditional methods [8]. One of the main challenges is that there may be inifnitely many
solutions minimizing objective (2). Most works focus on how to avoid a so-called no-blur
solution, where the PSF is estimated as a dirac delta function and sharp image as the
blurred one as shown in Figure 1. To achieve the true sharp image, it is necessary to
restrict the solution space. One already mentioned assumption is that the solution is
required to preserve energy. Unfortunatelly, this is true for the no-blur solution as well
as for the correct one. Therefore, regularization terms, often for both x and k are added
to the loss function (2). The authors of SelfDeblur state, that it is enough to minimize
the objective without the regularization terms, because the regularization is incorporated
naturally by the structure of the image network. In [8] Kotera et al. tested the ability
of the network to learn a blurred image and showed that it is actually simpler to train a
network generating the blurred image than the sharp one and suggested that the reason of
success of SelfDeblur lies more in an optimization method than in the network structure.

Another problem is that deconvolution performed by SelfDeblur results in a different
solution every run on the same image. This is caused by the random initialization of
weights of the network as well as the input array zx.This means that the starting point has
a strong effect on a performance of the deblurring algorithm. Good choice of initialization
is an issue shared with traditional Bayesian methods, although they usually start from
completely different point than SelfDeblur – the no-blur solution.

Furthermore, good initialization may depend on characteristics of the sharp image.
Deconvolution of images in the Levin dataset [10] returns estimates that are way closer
to the true sharp ones than estimates of two images from the Kodak dataset [1]. As
mentioned by Arican et al. in [2], every sharp image may be represented the best by
a different neural network. The U-net is a reasonable choice, but the exact structure
returning the best estimate is unknown. There is a lot of decisions to be made: which
upsampling method to choose, size of convolutional kernel or number of skip channels.
It is generally accepted that the model of the sharp image has to be more accurate than
the model of the PSF, because it is assumed to be smaller than the image and, therefore,
there is enough data to estimate it well.

Questions that will be discussed in this paper: lies the ability to avoid the no-blur
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solution only in the representation of the sharp image? Is the ability of an image network
to learn a sharp image dependent on characteristics of the sharp image? What role does
initialization play in SelfDeblur?

3 Metrics

In this section, two tools for understanding blind image deconvolution will be described.

3.1 Mode connectivity

To explore the solution space of the problem, we decided to utilize a method proposed in
[3]. We search for a path between two modes (usually ground truth and no-blur solution)
and then project other solutions onto a plane defined by the found path. The path is
assumed to be a quadratic Bezier curve and its third control point is found so that an
expectation of the loss function w.r.t. uniform distribution on 〈0, 1〉 is minimized over
the path. Such a landscape is constructed in an image and PSF space together, so that
it is possible to compare models that have a different interpretation of parameters. It is
rendered as a heatmap of logarithmic values of loss for couples (x,k). Other points that
are not in this plane are orthogonally projected onto it.

3.2 Power spectral density

Fourier spectra of an image shows its frequency characteristics, which is something that
changes when an image gets blurred. To better understand differences between images
we decided to use plots of their power spectral densities (PSD). PSD plot is created as a
histogram of logarithmic frequency values in the power spectra and these histograms are
normalized so that the PSDs can be compared.

4 Experiments

Conducted experiments and their results are presented in this section. Firstly, another
model of the sharp image x is described and then compared to results of SelfDeblur with
different initial conditions. Eventually, an influence of the U-net structure is discussed.
Used images are from the Levin dataset [10] and the Kodak dataset [1], image shown in
Figure 3 is used to illustrate behaviour on one sample.

4.1 Architecture of the sharp image model

In classical MAP-based approaches, the image is represented by a matrix and it is assigned
a prior distribution that prefers the sharp image to the blurred one. The idea of DIP is
that the image prior is a structure of a deep neural network, which is trained to return the
sharp image. To test the power of the latent regularization, we decided to compare two
image models: sharp image represented only by a matrix and sharp image represented by
the U-net. The PSF was represented by an array that sums to one and has nonnegative
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values. The unknowns were jointly optimized with Adam optimiser [6], which is default
for SelfDeblur.

4.2 Initial Conditions

The image network in SelfDeblur is initialized randomly with Kaiming uniform method
(default in pytorch). The result of the deblurring is then different every run on the same
blurred image. Therefore, we decided to test different initalizations and projected the
starts and solutions onto a solution landscape to compare them.

Firstly, we explored whether another way of initialization of the U-net would change
the results. The experiment was run on a cutout from an image in Figure 1 and was
blurred by 5×5 PSF in the shape of X. We decided to compare Kaiming uniform scheme
with Glorot uniform scheme [4] which is often used as well. 35 random initializations
from both schemes are projected onto a solution landscape which is rendered in a first
row of Figure 2. It can be seen that both initializations tend to cluster closer to the
no-blur solution, but Kaiming uniform initializations are way more spread.

Next, an output of randomly initialized U-net was used as an initialization for the
matrix image model from section 4.1 to see the influence of the initialization. Optimiza-
tion was run with both models and the path from initialization to solution was projected
onto the landscape (rows 2 and 3 in Figure 2). The paths have quite similar shape and
even though the initialization is closer to the no-blur solution in orthogonal projection
onto the landscape, it does not get trapped in this minima, and in both cases it converges
closer to the ground-truth solution. The simple matrix model does not get as close to
the ground-truth solution as SelfDeblur, but converges in the correct direction. PSNR
values of images reconstructed in these four runs are in Table 1. It can be seen that the
images that are closer to the ground-truth solution in the landscape have higher PSNR
values. The difference between the two methods can be seen in Figure 3. Images recon-
structed by the simpler matrix model contain ringing artifacts while SelfDeblur is able
to avoid this problem. This may be caused by the latent regularization of SelfDeblur,
mainly by upsampling layers as will be explained in the next section. It should be noted
that the path followed by the simpler matrix model from Kaiming initialization does not
correspond with the plotted landscape, so the solution space may be much more complex
than this method can show.

On the other hand, when both methods are initialized by a point from the landscape
close to the no-blur solution, even SelfDeblur, which was pretrained to start at the point,
fails to converge to the correct solution as can be seen in Figure 4. Moreover, when
pretrained to start the optimization in a point on a grid on the landscape (only points
that contain nonnegative values and psf values sum to one are considered), there are
more cases of arriving to the no-blur solution than to the ground-truth solution. It
seems that the valley where the ground-truth solution is located is harder to reach. This
observation suggests that the random initialization of SelfDeblur is partly responsible
for its success when compared to more traditional methods that start from the no-blur
solution. Furthermore, starting from a point so different from a real image may act as
a warm-up for SelfDeblur and give it enough time to learn more complex connections
between the pixels in the sharp image.
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Figure 2: Solution landscape for a cutout from an image in Figure 1. Darker color on the
plane shows lower values of loss. Star denotes the ground-truth solution, diamond the no-blur
solution and black cross the third control point of the Bezier curve. First row: White circles
show OG projection of 35 random image network initializations. Second row: White crosses
show OG projection of path of SelfDeblur from initialization (white circle) to solution (white
square). Third row: Shows a path of the matrix image representation. Left column contains
figures of Kaiming uniform initalization, right of Glorot uniform initialization.

Table 1: PSNR of reconstructed im-
ages from the four paths shown in Fig-
ure 2.

Kaiming Glorot

SelfDeblur 25.656 dB 26.176 dB
Matrix 23.409 dB 25.239 dB

Figure 3: Reconstructed images from the four paths
shown in Figure 2. First two are results from SelfDe-
blur, the other two from the simpler matrix model.
First and third were initialized by Kaiming uniform
scheme, second and fourth by Glorot uniform scheme.
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Figure 4: Convergence from points on the solution landscape. Left graph shows the results
of SelfDeblur, right graph the results of the matrix model. Light-colored stars denote points
converging to ground-truth solution (darker star), lighter-colored diamonds points converging to
the no-blur solution (darker diamond) and circle denotes initializations that did not get close to
any of the two modes.

Apart from that, we observed that images with less lower frequency components in
Fourier spectrum are harder to deblur (two images from Kodak dataset). Their PSD is
plotted in Figure 5. To study the connection to the sharp image, we plotted power spectra
of the initializations to see, whether there is any similarity with the power spectra of the
sharp image. This hypothesis did not prove to be true. Although power spectra of images
initialized according to Glorot and Kaiming scheme are very different and Kaiming’s is
closer to the sharp images, their efficiencies are similar.

Figure 5: Power spectral densities. Left graph shows PSDs of initializations, Glorot uniform
by solid line, Kaiming uniform by dashed line. Right graph shows PSDs of images from the
Levin dataset (solid line) and two images from the Kodak dataset (dashed line).

4.3 Different U-net structures

The U-net image network is composed of convolutional layers, batch-normalization lay-
ers, activation functions, skip connections and upsampling and downsampling. Most of
these layers have parameters that can be altered so that the network slightly changes
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and it is possible to compare results produced by these altered networks. The consid-
ered parameter changes are a size of convolutional filters (3 × 3 vs. 5 × 5), variations
of a ReLU activation (LekyReLU(0.2) vs. ReLU), a number of channels of skip con-
nections (4 vs. 16 vs. 32) and a different upsampling method (bilinear vs. nearest
neighbour(NN))(parameter values in italics denote original SelfDeblur setting). All these
models were were optimised on 222 × 222 cutouts from images from Levin dataset with
randomly generated input arrays and initial weights. The deblurring was run 3 times on
Levin dataset with each image model variation and PSNR (peak signal-to-noise ratio) of
the sharp image estimates are depicted in Figure 6.

All models except for the one with 32 skip channels show slight drop in probability
of an image with PSNR around 20dB, which is a value close to PSNR of blurred images.
Images with very low PSNR around 16dB are usually images that are not plausible and
contain significant artifacts. Most recovered images have PSNR value only slightly lower
than 30dB, which is a value that is considered to be a threshold for a good reconstruction.
The model with 32 skip skip channels may be able to reconstruct the blurred image
easier than the other ones because of a higher ability to copy information throughout the
network.

Another difference between models may be visible in power spectra of the recon-
structions. Model with NN upsampling returns an image with more higher frequency
information than the one with bilinear upsampling as can be seen from an example in
Figure 6. Similar observation was also mentioned by Shi et al. in [17], who proposed a
method for controlling the amount higher frequency information in a reconstructed im-
age. This may mean that the NN upsampling leads to images that contain more artifacts,
but also that it is more suitable for a reconstruction of images with sharper edges and
a lot of changes in intensity, while the bilinear upsampling produces smoother images.
Considering PSNR, the two modes do not perform significantly different. Other U-net
modifications do not produce estimates with any distinguishable differences in power
spectra.

5 Conclusion

In this paper, two tools for studying blind image deconvolution algorithms were used to
analyze SelfDeblur algorithm. A landscape constructed by mode-connectivity method
helped to understand differences in initializations of the sharp image. It was shown that
although SelfDeblur starts optimization in a point closer to the no-blur solution than to
the ground-truth solution in L2 norm, it is able to reach the correct sharp solution. Similar
behaviour was observed for simpler matrix model of an image, although reconstructed
images contained more artifacts. On the other hand, starting optimization from points
very close to no-blur solution, it was not able to avoid the undesired minima. One
disadvantage of this method is that it is not able to depict a complex landscape, so it can
only give an intuition of what a behaviour of an algorithm looks like.

Power spectral density plots showed that there are no obvious connections of a power
spectrum of an initialization to a power spectrum of the sharp image, but that images
with more lower frequency information may be harder to deblur. Moreover, upsampling
method in the U-net influences the result of optimization, namely nearest neighbour
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Figure 6: Left: Histograms of PSNR of sharp image estimates from 3 runs on Levin dataset for
different U-net sructures. Thicker dashed line was assigned to the original setting of parameters
of SelfDeblur, solid line to the NN upsampling, dotted line to the kernel size 5 × 5, dash-and-
dotted line to the ReLU activation, dash-and-dot-and-dotted line to 4 skip channels and thinner
dashed line to 32 skip channels. Right: PSD of reconstructed images with different upsampling
modes. Solid line shows bilinear upsampling, dashed line NN upsampling, dotted line PSD of
sharp image and dash-and-dot-and-dotted line PSD of the blurred image. The deconvolution
was performed on the image from Figure 1.

upsampling returns images with more higher frequency information than bilinear upsam-
pling.
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Abstract. Graph neural networks (GNNs) present a framework for representation learning
on graphs that has been dominant for the past several years. The main strength of GNNs
lies in the fact that they can simultaneously learn both from node-related attributes as well as
relations between nodes, represented by edges. In tasks leading to large graphs, a GNN often
requires significant computational resources to achieve its superior performance. In order to
reduce this computational cost, methods allowing for a flexible balance between complexity and
performance could be useful. In this work, we propose a simple, scalable, task-aware graph
pre-processing procedure that allows us to obtain a reduced graph in such a manner that the
GNN achieves a predefined desired performance level on the downstream task in question. In
addition, the proposed pre-processing allows for fitting the reduced graph and GNN into given
memory/computational resources.

The pre-processing procedure is built on the elementary operation of graph edge contraction.
By contracting the edges of the graph one-by-one, a sequence of graphs is obtained, starting with
the original one and ending with a graph with no edges and one node per each connected com-
ponent of the original graph. For each graph in this sequence, a tuple (performance, complexity)
can be obtained, where in our work, performance is measured as the accuracy of a classifier on
the given downstream task and complexity is measured as the number of nodes in the particular
graph. Using these values, the sequence of graphs generated by the pre-processing procedure
traces a path in the performance-complexity space. The aim of our work is to study the prop-
erties of such a path, with a particular interest in finding a point with the best performance
for a given complexity budget, or, conversely, finding the point of lowest complexity for a given
required minimal performance.

The edge contraction procedure is driven by an ordering of the edges of the original graph,
which in turn defines the aforementioned sequence of graphs. In our work, we define this ordering
by measuring the similarity of the predictive posterior distribution of labels of the nodes incident
on the edge in question. The choice of a similarity measure is explored experimentally, together
with several ways of computing the predictive posterior distribution based on a simplified model
specific to the given task.

Additionally, when contracting an edge, a feature aggregation strategy must be defined, as
well as a label aggregation strategy. A simple weighted average was used, where the weights
are given for the feature aggregation strategy by the number of nodes from the original graph
that are represented by a given node. For the label aggregation strategy, similarly, a weighted
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average of the label distributions of both nodes was used, with the weights representing the
number of training nodes represented by a given node. Moreover, when an intermediary graph
is to be used for predictions on the original graph, a label refinement strategy is needed in the
cases where multiple nodes of the original graph are represented by one node in the intermediary
graph. For this strategy, a simple copying of labels was used. This choice of label refinement,
however, defines an upper bound on the performance that can be obtained on any given graph
in the sequence.

The proposed preprocessing is evaluated and compared with several reference scenarios on
conventional GNN benchmark datasets. The performance of the algorithm is compared to the
theoretical upper bound defined by the label refinement strategy and the impact of the edge
ordering procedure on the performance-complexity characteristics of the algorithm is studied.
The main result of this work is that the proposed pre-processing allows for a significant reduction
in the number of nodes of a given graph (in some cases, up to 50%) without a major impact on
the performance.

Keywords: Graph neural network, Complexity reduction, Hierarchical clustering, Big data

Abstrakt. Grafové neuronové sítě (GNN) představují v posledních letech dominantní nástroj
pro reprezentační učení na grafech. Hlavním přínosem GNN je fakt, že se dokáží učit zároveň z
příznaků vrcholů a jejich vzájemných vztahů, reprezentovaných hranami. Při řešení úloh vedou-
cích na velké grafy potřebují GNN často velké množství výpočetních zdrojů aby dosáhly svého
vysokého výkonu. Za účelem snížení těchto vysokých výpočetních nároků mohou být užitečné
metody dovolující flexibilní kompromis mezi kvalitou předpovědi a výpočetní složitostí. V této
práci navrhujeme jednoduchý, škálovatelný, na úloze závisející algoritmus pro předzpracování
grafů tak, aby výsledný graf byl zjednodušený takovým způsobem, aby neuronová síť dosáhla
požadovaného výkonu na předdefinované cílové úloze. Navrhované předzpracování navíc umož-
ňuje přizpůsobení redukovaného grafu a modelu dostupným výpočetním zdrojům a paměti.

Algoritmus pro předzpracování je postaven na základní operaci kontrakce hrany grafu. Při
kontrakci hran jedné po druhé dostáváme posloupnost grafů, počínaje originálním a konče grafem
bez hran, kde každá komponenta původního grafu je kontrahována do jednoho vrcholu. Pro
každý graf v této posloupnosti lze určit dvojici (výkonnost, složitost). V tomto díle je výkonnost
měřena jako přesnost klasifikátoru na dané, předem specifikované úloze a složitost je měřena
počtem vrcholů zjednodušeného grafu. Pomocí těchto hodnot lze posloupnost grafů generovanou
algoritmem vykreslit jako cestu v prostoru výkonnost-složitost. Cílem této práce je studium
vlastností takovéto cesty s mimořádnou pozorností na hledání bodu s nejlepším výkonem pro
dané výpočetní možnosti nebo naopak bodu s nejmenší výpočetní složitostí při dosažení daného
minimálního výkonu.

Algoritmus zjednodušování grafu je postaven na seřazení hran původního grafu, které skrze
jejich kontrakci vyústí ve výše zmíněnou posloupnost grafů. V této práci definujeme takové řa-
zení hran pomocí podobnosti prediktivního posteriorního pravděpodobnostního rozdělení tříd
vrcholů přiléhajících na danou hranu. Volba podobnostní míry je zkoumána experimentálně,
stejně tak jako několik způsobů výpočtu prediktivního posteriorního pravděpodobnostního roz-
dělení pomocí jednoduchých modelů specifických pro danou úlohu.

Při kontrakci hran musí navíc být specifikovány strategie pro agregaci příznaků a tříd vrcholů
grafu. V této práci bylo použit vážený průměr, kde pro agregaci příznaků byly váhy určeny jako
počet vrcholů původního grafu, které jsou reprezentovány daným vrcholem. Pro agregaci tříd
byl obdobně použit vážený průměr pravděpodobnostních rozdělení tříd obou vrcholů, kde váhy
byly určeny jako počet vrcholů z trénovací sady, které jsou reprezentovány daným vrcholem.
V případě, kdy je graf z posloupnosti použit pro klasifikaci na původním grafu je navíc zapotřebí



Scalable Graph Size Reduction for Efficient GNN Application 17

definovat strategii pro zjemňování tříd v situaci, kde jeden vrchol daného grafu odpovídá několika
vrcholům původního grafu, potenciálně s různými třídami. Jako tato strategie bylo použité
jednoduché kopírování tříd. Tato volba zjemňování tříd definuje horní mez výkonu, který může
být dosažený pro daný graf z posloupnosti.

Navrhované předzpracování grafu je vyhodnoceno a porovnáno s několika referenčními scé-
náři na datasetech bězně využívaných pro vyhodnocování grafových neuronových sítí. Výkon
algoritmu je srovnán s teoretickou horní mezí určenou strategií zjemňování tříd a je studován
vliv řazení hran grafu na charakteristiku výkonu a složitosti. Hlavním výsledkem této práce je,
že navrhované předzpracování grafu umožňuje výrazné snížení složitosti (v některých případech
až o 50% vrcholů) bez významnějšího dopadu na výkon.

Klíčová slova: Grafová neuronová síť, Redukce složitosti, Hierarchické shlukování, Big data

Full paper: P. Procházka, M. Mareš, and M. Dědič. Scalable Graph Size Reduction
for Efficient GNN Application. In ’Proceedings of the 22nd Conference Information
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Abstract. In the past decades, computational fluid dynamics (CFD) has begun to be incor-
porated into clinical examinations as an enhancement of previously used methods. One of the
non-invasive methods used so far is the phase-contrast magnetic resonance imaging (PC-MRI)
technique. In this case, CFD can be used to eliminate the inaccuracy of PC-MRI, such as low
spatial resolution of the acquired data or signal-to-noise ratio. Furthermore, it can be used to
provide additional information, where PC-MRI fails to provide reliable data. A typical area
where PC-MRI does not provide sufficiently accurate data is the area of turbulent flow, which
occurs, for example, in pathologically narrowed areas.

Blood is generally considered a non-Newtonian fluid. The non-Newtonian properties occur
mainly in small vessels with diameters approaching the dimensions of the individual blood com-
ponents. However, in large vessels, blood is typically considered to behave as a Newtonian fluid.
It is not yet known whether some non-Newtonian properties of blood play a significant role in
flow in pathological areas, e.g. turbulent flow in a narrowed vessel or through a stenotic valve.

One of the key features of the design of the CFDmethod for the enhancement of PC-MRI data
is the computational time, which should not be larger than the measurement time. One option
is to use the lattice Boltzmann method (LBM). The advantage of this method is the efficient
implementation on graphics cards which can speed up numerical simulations. On the other
hand, a non-Newtonian model for the simulated fluid affects the computational requirements
even when using LBM.

In this contribution, the effect of Newtonian and non-Newtonian LBM models was inves-
tigated using three different fluids and three aortic valves with different severity of stenosis.
Numerical simulations were compared with experimental data obtained by PC-MRI. A plastic
model (phantom) of the aortic valve with pathological narrowing was used for the experiment.
Three fluids were used in the experiment: water, glycerol solution with xanthan gum (GX) and
sucrose solution with xanthan gum (SX). The GX and SX fluids represent non-Newtonian fluids
with properties similar to human blood.

Based on the severity of the pathological narrowing and the magnitude of flow, the results
show that Newtonian models provide comparable results to obtained experimental data, which

∗The work was supported by the Ministry of Health of the Czech Republic project No. NV19-08-
00071,by the Ministry of Education, Youth and Sports of the Czech Republic (MEYS) under the OP
RDE grant number CZ.02.1.01/0.0/0.0/16_019/0000765 Research Center for Informatics, and by the
project SGS20/184/OHK4/3T/14 of the Student Grant Agency of the Czech Technical University in
Prague.
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is in favour of overall less expensive Newtonian models.

Keywords: Non-Newtonian fluid, Phase-contrast magnetic resonance imaging, Lattice Boltz-
mann method, Turbulent fluid flow, Carreau-Yasuda model

Abstrakt. V posledních letech se do klinického vyšetření začala zapojovat výpočetní dyna-
mika tekutin (CFD), jakožto prvek obohacující doposud používané metody. Jednou z doposud
používaných neinvazivních metod je měření pomocí magnetické rezonance s aplikací fázového
kontrastu (PC-MRI). CFD lze v tomto případě použít k odhalení nedokonalostí této měřící
techniky, jako je odstranění nízkého rozlišení získaných dat a odsranění šumu, či k získání do-
datečných informací v místech, kde PC-MRI nedokáže poskytnout věrohodná data. Typickou
oblastí, kde PC-MRI neposkytuje dostatečně přesná data je oblast turbulentního toku, který se
například vyskytuje v patologicky zůžených oblastech.

Krev je obecně považována za nenewtonovskou tekutinu. Tato vlastnost se projevuje převážně
v malých cévách o průměrech, které se blíží rozměrům jednotlivých složek krve. Oproti tomu ve
velkých cévách se vlastnosti krve spíše podobají vlastnostem newtonovské kapaliny. Není dosud
známo, zda při proudění v patologických oblastech, např. při turbulentním proudění v zúžené
cévě nebo přes stenotickou chlopeň, nehrají roli některé nenewtonovské vlastnosti krve.

Jedno z klíčových vlastností při návrhu CFD pro doplnění PC-MRI dat je výpočetní čas,
který by něměl být příliš větší než je čas samotného měření. Jednou z možností pro CFD je použít
metodu mřížkové Boltzmannovy metody (LBM). Výhodou této metody je, že se dá efektivně
implementovat na grafických kartách což značně urychlí numerické simulace. Na druhou stranu,
použití nenewtonovského podelu pro simulovanou tekutinu ovlivní výpočetní nároky i v případě
použití LBM.

V rámci tohoto příspěvku proběhla studie vlivu použití newtonovského a nenewtonovského
modelu LBM pro tři různé tekutiny a tři různě vážné patologické zůžení aortální chlopně. Nu-
merické simulace byly srovnány s experimentálními daty získanými pomocí PC-MRI. Pro ex-
periment byl použit plastový model (phantom) aortální chlopně s patologickým zůžením. V
experimentu byly celkem použité tři tekutiny: voda, roztok glycerolu s xantanovou gumou (GX)
a roztok sacharózy s xantanovou gumou (SX). Tekutiny GX a SX představují nenewtonovské
tekutiny a svými vlastnostmi se podobají lidké krvi.

Výsledky ukazují na základě typu vážnosti patologického zůžení a velikosti průtoku, že new-
tonovské modely poskytují srovnatelné výsledky s experimentálně získanými daty, což je ve
prospěch celkově levnějších newtonovských modelů.

Klíčová slova: nenewtonovská tekutina, zobrazení pomocí magnetiské rezonance s aplikací fá-
zového konetrastu, mřížková Boltzmannova metoda, tubrbulentní proudění, Carreaův-Yasudův
model.

Full paper: This paper [1] is under review in CAMWA and summarizes results of the
research group engaged in project no. NV19-08-00071.
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Abstract. A common approach in robotics is to learn tasks by generalizing from special
cases, so-called demonstrations [3]. These are given by a demonstrator [2], for example, in
the form of a trajectory optimization method [1]. In this paper, we apply this paradigm to a
general control synthesis setting. We present an algorithm that uses such a demonstrator to
automatically synthesize a feedback controller for steering ordinary differential equations into a
goal set. The resulting control law switches between the demonstrations that it uses as reference
trajectories.

This synthesis algorithm constructs the desired controller using a loop that (1) learns a
control law, generalizing the current demonstrations to the whole statespace, (2) searches for a
counter-example to the desired properties of this control law, and (3) queries the demonstrator
for a new demonstration from this counter-example. It iterates this loop until the result is good
enough. During this process, it maintains a Lyapunov-like reachability certificate to reduce
the simulation time needed in the counter-example search. The algorithm extends construction
of control laws based on demonstrations, namely LQR-trees [4, 5], and learning certificates of
system behaviour from data/demonstrations [2].

We prove that under some mild assumptions, finitely many cycles of this loop generate a
controller that steers the system into the goal set. This is a significantly stronger result than
in [4, 5], which only describes the behaviour of the algorithm for the number of iterations
tending to infinity. Moreover, we prove that the generated controllers asymptotically reach the
performance of the demonstrator.

We also do computational experiments on several examples of dimension up to twelve
that demonstrate the practical applicability of the method. We compare our algorithm with
controller synthesis fully based on system simulations [4]. In this comparison, our synthesis al-
gorithm runs significantly faster (between 50% and 95%), while producing controllers of similar
performance.

Keywords: nonlinear systems, motion planning, learning from demonstrations

Abstrakt. Učení se z názorných příkladů, tzv. demonstrací [3], je běžným přístupem k řešení
úloh v robotice. Tyto demonstrace jsou poskytnuty demonstrátorem [2], například v podobě
řešiče optimalizace trajektorie [1]. V tomto článku použijeme tento postup pro obecnou úlohu
syntézy řízení. Představíme algoritmus, který využívá demonstrace k napočítání zpětnovazeb-
ného řízení, které řídí systém popsaný soustavou obyčejný diferenciálních rovnic do dané množiny

∗This work was supported by the project GA21-09458S of the Czech Science Foundation GA ČR and
institutional support RVO:67985807.
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cílových stavů. Toto řízení přepíná mezi demonstracemi, které používá jako referenční trajekto-
rie.

Algoritmus napočítává řízení opakováním smyčky, ve které (1) se algoritmus naučí řízení z
množiny demonstrací, (2) následně hledá protipříklady s požadovanými vlastnostmi sestavova-
ného řízení, a (3) závěrem algoritmus doplní množinu demonstrací z nalezených protipříkladů
pomocí demonstrátoru. Tato smyčka se opakuje dokud nalezené řízení není dostatečně dobré.
V průběhu běhu, algoritmus využívá Ljapunovský certifikát, který umožňuje významně zkrátit
simulační čas nutný k vyhodnocení protipříkladů. Algoritmus tak rozšiřuje konstrukci řízení z
demonstrací, jmenovitě LQR-stromy [4, 5], a učení se certifikátu z dat/demonstrací [2].

Dokážeme za mírných předpokladů, že algoritmus poskytuje řízení, co dovede systém do
množiny cílových stavů, po konečně mnoha iteracích smyčky. Toto je významně silnější výsledek
než ten uvedený v [4, 5], který pouze popisuje chování algoritmu pro počet iterací jdoucí do
nekonečna. Dále ukážeme, že vygenerované řízení dosahuje asymptoticky chování demonstrátoru.

V článku poskytneme výpočetní experimenty na úlohách až do dimenze dvanáct, které uka-
zují praktické užití naší metody. Též porovnáme náš algoritmus s algoritmem založeným čistě
na simulacích systému [4]. Ukážeme, že náš algoritmus běží znatelně rychleji (o 50% až 95%),
přičemž produkuje řízení obdobného výkonu.

Klíčová slova: nelineární systémy, plánování pohybu, učení se z demonstrací

Full paper: Jiří Fejlek and Stefan Ratschan. Computation of Feedback Control Laws
Based on Switched Tracking of Demonstrations, arXiv:2011.12639 (https://arxiv.org/
abs/2011.12639), 2022.
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Abstract. Anomaly Detection can be viewed as an open problem despite the growing plethora
of known anomaly detection techniques. The applicability of various anomaly detectors can
vary depending on the application area and problem settings. Especially in the Big Data indus-
trial setting, an important problem is inference speed, which may render even a highly accurate
anomaly detector useless. In this paper, we propose to address this problem by training a sur-
rogate neural network based on an auxiliary training set approximating the source anomaly
detector output. We show that existing anomaly detectors can be approximated with high ac-
curacy and with application-enabling inference speed. We compare our approach to a number
of state-of-the-art algorithms: one class k-nearest-neighbors (kNN), local outlier factor, isola-
tion forest, auto-encoder, and two types of generative adversarial networks. We perform this
comparison in the context of an important problem in cyber-security - the discovery of outly-
ing (and thus suspicious) events in large-scale computer network traffic. Our results show that
the proposed approach can successfully replace the most accurate but prohibitively slow kNN.
Moreover, we observe that the surrogate neural network may even improve the kNN accuracy.
Finally, we discuss various implications that the proposed approach can have while reducing the
complexity of applied anomaly detection systems.

Keywords: Anomaly Detector, Neural Network, Model Transfer, Detector Ensemble

Abstrakt. Na detekci anomálií lze pohlížet jako na otevřený problém navzdory rostoucímu
množství známých technik detekce. Použitelnost různých detektorů se může lišit v závislosti na
oblasti použití a dalších podmínkách. Zejména v průmyslovém prostředí velkých dat je důleži-
tým faktorem rychlost inference, která může způsobit, že i vysoce přesný detektor nebude dobře
aplikovatelný. V tomto článku navrhujeme vyřešit tento problém trénováním zástupné neuronové
sítě (surrogate neural network) založené na pomocné trénovací sadě aproximující výstup zdrojo-
vého detektoru. Ukázali jsme, že stávající detektory anomálií lze aproximovat s vysokou přesností
a rychlostí. Tento přístup porovnáváme s řadou nejmodernějších algoritmů jako jsou one class
k-nearest-neighbors (kNN), local outlier factor, isolation forest, auto-encoder a dva další typy
generativních neuronových sítí. Toto srovnání provádíme v kontextu kybernetické bezpečnosti –
odhalování anomálních (a tedy podezřelých) událostí v provozu počítačové sítě. Výsledky uka-
zují, že navrhovaný přístup může úspěšně nahradit nejpřesnější, ale neúměrně pomalý detektor
one-class kNN. Navíc pozorujeme, že náhradní neuronová síť může dokonce zlepšit jeho přesnost.
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Závěrem demonstrujeme různé pozitivní důsledky, které navrhovaný přístup přináší zároveň se
snižující složitostí aplikace pro systémy detekce anomálií.

Klíčová slova: Detekce anomálií, neuronové sítě, transfer modelu, spojení detektorů

Full paper: M. Flusser and P. Somol. Efficient anomaly detection through surrogate
neural networks. Neural Computing and Applications (2022), 1–15. URL: https://
rdcu.be/cQKLk
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Abstract. In this paper, we present a detailed numerical scheme for a single-phase compressible
flow without diffusion of a multi-component mixture in porous media with the higher-order
approximation in both space and time. The mathematical model consists of Darcy velocity,
transport equations for each component of a mixture, pressure equation and associated relations
for physical quantities such as viscosity or equation of state. The discrete problem is obtained
using a combination of the discontinuous Galerkin method for the transport equations and
the mixed-hybrid finite element method for the Darcy velocity and the pressure equation. In
both methods the higher-order approximation is used. The resulting nonlinear problem for
concentrations is solved with the fully mass-conservative iterative IMPECmethod. Experimental
order of convergence analysis (EOC) and some numerical experiments of a 2D flow are carried
out.

Keywords: Single-phase flow, Multi-component flow, Discontinuous Galerkin, Mixed-hybrid fi-
nite element method, Raviart-Thomas space, Higher-order approximation, IMPEC scheme

Abstrakt. Tato práce se zabývá detailním popisem numerického řešení jednofázového, stlači-
telného proudění vícesložkové směsi bez difuze v porézním prostředí pomocí metod vyššího řádu
přesnosti v prostoru i čase. Matematický model je popsán Darcyho rychlostí, rovnicí transportu
pro každou složku směsi, tlakovou rovnicí a konstitučními vztahy (např. stavová rovnice). K
řešení jsme zvolili přístup založený na kombinaci hybridní verze metody smíšených konečných
prvků pro řešení tlakového a rychlostního pole a nespojité Galerkinovy metody pro řešení trans-
portních rovnic. Uvedené metody jsou vyššího řádu přesnosti. Výsledný problém je řešen pomocí
iterovaného IMPEC schématu. Vyšší řád přesnosti metod je ověřen pomocí experimentální kon-
vergenční analýzy. Použitelnost modelu je ilustrována na několika numerických experimentech.

Klíčová slova: Jednofázové proudění, Proudění vícesložkové směsi, Nespojitá Galerkinova meto-
da, Hybridní verze metody smíšených konečných prvků, Raviartův-Thomasův prostor, Metoda
vyššího řádu přesnosti, Schéma IMPEC

Full paper: Gális P. and Mikyška J. Mathematical modeling of the multicomponent flow
in porous media using higher-order methods. Submitted to Journal of Computational
Physics (2022).

∗The work has been supported by the projects LTAUSA19021 of the Czech Ministry of Education,
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Abstract. The revision of classical methods for spectral and walk dimension estimates is the main
aim of the contribution. Being focused on the unbiased estimation of the walk and spectral
dimensions, we aim to construct the estimates with the minimal mean square error. Accom-
panied simulation experiments are performed on finite substrates, spacial structures serving
as a good model of both continuum and fractal sets. We compare the classical approach based
on the log-log transform of asymptotic models of returning probabilities and the second moments,
and we also develop a weighted approach to improve the statistical properties of dimension es-
timates. The other discussed aspect is whether to simulate diffusion using the classical graph
diffusion model with zero probability of staying in the same vertex or to prefer the physically
motivated model of diffusion over edges with the optimal value of jump probability. Finally,
we present the results of simulation experiments on two-dimensional finite substrates which ap-
proximate the continuum and selected Sierpinski gaskets and carpets. The contribution also
summarises general suggestions based on the obtained results from the simulation experiments.

Keywords: diffusion modelling, dimension estimation, fractal substrate, graph representation,
spectral dimension, walk dimension.

Abstrakt. Příspěvek si klade se cíl revizi klasických metod pro odhady spektrální dimenze a di-
menze náhodné procházky. Důraz je kladen na nestranný odhad dimenze s minimální střední
kvadratickou chybou. Doprovodné simulační experimenty jsou provedeny na konečných substrá-
tech, prostorových strukturách sloužící jako dobrý model kontinua i fraktálních množin. Je použit
klasický přístup založený na log-log transformaci asymptotických modelů návratových pravdě-
podobností a druhých momentů. Také je představen vážený přístup ke zlepšení statistických
vlastností odhadů dimenze. Dále jsou porovnány simulace difúze pomocí klasického grafového
modelu s nulovou pravděpodobností setrvání ve stejném vrcholu a fyzikálně motivovaný model
difúze s optimální hodnotou pravděpodobnosti skoku. Jsou představeny výsledky simulačních
experimentů na dvourozměrných konečných substrátech, které aproximují kontinuum a vybrané
Sierpinského množiny. Příspěvek také shrnuje obecné návrhy pro odhad dimenze na základě
získaných výsledků ze simulačních experimentů.

Klíčová slova: difúzní model, odhad dimenze, fraktální substrát, reprezentace grafy, spektrální
dimenze, dimenze náhodné procházky.
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Abstract. We investigate the phase stability of a multicomponent mixture at constant volume,
temperature and moles (VTN stability). Our work is based on the TPD criterion derived in [1]
and the branch and bound algorithm from [2]. In this contribution, we improve the algorithm
from [2] with more effective bounding strategy. This improvement is achieved using the necessary
condition of optimality. In the bounding step of the algorithm, before solving an underestimated
convex optimization, we check whether the pressure (given by the Peng-Robinson equation of
state) is feasible. If it is not the case, we can exclude the corresponding part of the feasible
set from the search. The Peng-Robinson equation of state is not convex and therefore leads
to a non convex optimization problem which is computationally expensive. We propose to use
a less precise estimate of the global maximum of the pressure. This estimate can be found
by comparing the finite number of the values of the tangent plane to a concave overestimate
of the Peng-Robinson equation of state. Another benefit of this additional step is to avoid the
optimization of the underestimated objective function. The proposed method is tested on several
specific examples.

Keywords: phase stability, global optimisation, convex-concave split, branch and bound method,
multi component mixtures

Abstrakt. Zkoumáme fázovou stabilitu vícesložkových směsí za konstantního objemu, teploty
a molární koncentrace (VTN formulace). Tato práce je založena na kritériu odvozeném v [1]
a metodě větví a mezí z [2]. V tomto příspěvku zlepšujeme algoritmus z [2] o lepší zamítaní
neperspektvních oblastí přípustné množiny. Tohoto vylepšení je dosaženo s uplatněním nutných
podmínek optimality. V kroku mezí, před řešením podhodnoceného konvexního problému, zkon-
trolujeme, zda je tlak (daný Pengovou-Robinsonovou stavovou rovnicí) přípustný. Pokud tomu
tak není, jsme oprávněni tuto část přípustné množiny vyřadit z hledání. Pengova-Robinsonova
stavová rovnice není konvexní a tedy je její globální optimalizace výpočetně náročná. Navrhujeme
použití méně přesného odhadu globálního maxima tlaku. Tento odhad může být nalezen porovná-
ním konečného počtu bodů na tečné nadroviny k nadhodnocené konkávní Pengově-Robinsonově
stavové rovnici. Další výhoda tohoto kroku je vyhnutí se optimalizace účelové funkce. Metoda
je testována na několika příkladech z literatury.

∗This work has been supported by the Ministry of Education, Youth and Sports of the Czech Republic
under the OP RDE grant number CZ.02.1.01/0.0/0.0/16 019/0000778 Centre for Advanced Applied
Sciences, and by the Czech Science Foundation project no. 21-09093S.
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Klíčová slova: dázová stabilita, globální optimalizace, konvexně-konkávní rozklad, metoda větví
a mezí, vícesložkové směsi

Full paper: M. Jex, J. Mikyška, An improved branch and bound algorithm for phase sta-
bility testing of multicomponent mixtures (2022). Manuscript submitted for publication
in Fluid Phase Equilibria.
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Abstract. Deep learning methods are capable to fit complicated structures and provide state-
of-the-art results in many domains. However, they are usually dense and over-parametrized
and can be pruned significantly with selected sparsification techniques. Moreover, they might
provide less accurate results when available training data sets cover only a part of the targeted
domain. This can be overcome through a modified model architecture, combined with suitable
sparsity technique. Example of such architecture is the so-called equation learning model that
is presented in this article. The impact of distinct sparsity techniques employed in this model is
experimentally analyzed and compared.

Keywords: Sparsity techniques, equation learning, regularization.

Abstrakt. Metody hlubokého učení dokáží řešit komplikované úlohy v mnoha oblastech. Jsou
však zpravidla přeparametrizované s hustými maticemi parametrů, které mohou být významně
prořezané za pomoci technik hledání řídkých řešení. Navíc mohou vykazovat horší výsledky, po-
kud dostupná trénovací data pokrývají pouze část oblasti jejich použití. To může být překonáno
pomocí specifické konstrukce modelu kombinované s vhodnou metodou pro hledání řídkých ře-
šení. Jedním z možných řešení je tzv. model učení rovnic, který je prezentován v tomto článku.
Hlavní pozornost je věnována vlivu různých použitých metod řídkosti na výstupy tohoto modelu
a jejich porovnání.

Klíčová slova: Metody řídkých řešení, učení rovnic, regularizace.

1 Introduction
Deep learning methods have become widely deployed in many domains within last years.
They are easily able to fit complicated functions with very large number of parameters.

Nonetheless, classical deep learning models usually suffer from the following draw-
backs. First, they are usually dense and over-parametrized and can be pruned signifi-
cantly without substantial impact on learning accuracy. This over-parametrization brings
the need for more computational power and memory, resulting in more costly methods,
hence, higher energy consumption required for calculations. Second, they are prone to
overfitting which may lead to learning noisy patterns in training data. As a results, these
models can show great performance on training data but demonstrate poor results on
testing data. Third, many of the models provide “black box” solutions with difficult in-
terpretability of models and their outcomes. All these drawbacks can be addressed by
sparsification techniques. Such methods take complex, dense models at the start with
the aim to prune such parameters that bring no or negligible additional value to their
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performance and explanatory power (hence, such models can still utilize complex and
flexible model structures as opposed to variable selection techniques which aim to prune
input data first and then to adopt simpler models). Sparsity techniques are discusssed in
Section 3.

Variety of real-world problems that can be described as regression tasks can be ex-
pressed by analytical expression (e.g., mechanical and natural systems), often modeled
by complex, non-linear functions. Although such functions may be well approximated by
neural networks, it may be beneficial to incorporate a selected set of functions into the
model architecture, based on prior knowledge. Such architecture is the key focus of this
article and is discussed in Section 2.

Throughout this article, a data set D with N independent and identically distributed
input output pairs is considered: D = {(xi, yi)}Ni=1 with regressors x = {xi}Ni=1 , xi ∈ Rm

and targets y = {yi}Ni=1 , yi ∈ Rn. The aim is to find parametrization of a function
h (·|θ) : Rm → Rn in parametrization space Θ such that

L (θ) =
1

N

(
N∑
i=1

l (h (xi|θ) , yi)

)
+R (θ)

is minimized for θ ∈ Θ. Functional forms of the regression function h, the loss function l
and the regularization term R are given as model assumptions. In this article h is either
a neural network or its enhancements.

2 Equation learning

Classical neural network-based models usually provide “black box” solutions. However, in
some domains like natural sciences, models that provide interpretable results that serve
for deeper understanding of a given problem are desired. For instance, it is beneficial to
derive a model that can be described by an explicit set of equations, with preferences
for simpler equations if possible. Such models often include distinct types of functions
including trigonometric functions (e.g., the sinus function in the longitudinal wave equa-
tion). Classical neural networks may provide good approximations to such equations;
however, they cannot provide a resulting equation unless their architecture is designed
for that purpose.

Moreover, in real world application, it may often happen that available data sets cover
only a part of the targeted domain. In other words, it is in particular interest not only the
question how a model is capable to interpolate data coming from the same distribution,
but also how can extrapolate and predict results outside the training range.

To overcome these drawbacks, the so-called “equation learning model” with specifically
designed layers was proposed. The pivotal work in this domain is [12]. The notation and
architecture in this article is primarily based on this reference. Modifications of this
architecture were proposed in [15] with focus on an architecture suitable for equations
with division, [2] with a modified architecture inducing a sparse model by construction
and [6] with further modifications and applications in a broad range of tasks.
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2.1 The model

The model is based on a multilayer feed forward neural network with fully connected lay-
ers. Additional calculation units are added to serve for the above described problematics.
Let us consider a model with L layers. The base of each layer is a classical fully con-
nected network, with l-th layer as z(l) = W (l)y(l−1) + b(l), where z(l) ∈ Rkl , W (l) ∈ Rkl,dl−1

is the weight matrix, b(l) ∈ Rkl is the bias vector and y(l−1) ∈ Rdl−1 is the output of the
previous (l − 1)-th layer. For the first layer, the inputs are the regressors y(0) = x. The
model parameters to be trained are the weight matrices W (l) and the bias vectors b(l) for
l = 1, . . . L− 1.

Instead of using common activation functions (e.g., the RELU function or the hy-
perbolic tangent function) to z(l), special transformation functions are introduced in the
model for l = 1, . . . , L − 1. The first u elements of z(l) are transformed through the so-
called “unary units” f = (f1, . . . , fu), univariate functions fi : R → R, i = 1, . . . u. That
is, the first u elements of the l-th layer output y(l) are in the form

y
(l)
i = fi

(
z
(l)
i

)
, i = 1, . . . , u

The number of unary functions u must be taken such that the number of remaining
elements kl − u is even. Selection of the functions may depend on a studied domain and
might be based on an expert judgement or a prior knowledge of studied problem. A
common selection of the unary units is f = (sin, cos, σ, I), where I denotes the identity
function and σ the sigmoid function σ (x) = 1

1+exp(−x) .
The remaining 2v elements, 2v = k − u, are subject to the so-called “binary units”

g = (g1, . . . , gv) which are bivariate functions gi : R × R → R, i = 1, . . . v resulting in v
elements in the layer output y(l)

y
(l)
u+i = gi

(
z
(l)
u+2i−1, z

(l)
u+2i

)
. The usual binary functions used in equation learners are the multiplications.

As a result, the layer output y(l) ∈ Rdl with dl = u+ v is in the form

y(l) =
(
f1

(
z
(l)
1

)
, . . . , fu

(
z(l)u
)
, g1

(
z
(l)
u+1, z

(l)
u+2

)
, . . . , gv

(
z
(l)
u+2v−1, z

(l)
u+2v

))
.

The last L-th layer is usually taken without the unary and binary functions as y =
ψ
(
W (L)y(L−1) + b(L)

)
with ψ being commonly an identity function. Hence, the model has

the trainable parameters θ =
(
W =

{
W (l)

}L
l=1

, b =
{
b(l)
}L
l=1

)
.

The model can be trained through usual gradient based techniques (e.g., Adam). The
loss function is usually enhanced with a regularization, see Section 3.2.

3 Sparsity techniques in deep learning

There is a broad range of methods and techniques which serve for compression of neural
network-based models, like parameter sharing, value quantization or neural architecture
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search (comprehensive overview of such techniques can be found in [5]). The most com-
mon techniques are based on a model pruning that tend to eliminate the weights with low
contribution to the final model performance. Substantial part of model pruning methods
is based on a regularization or a Bayesian approach (where the former can be in many
cases expressed in terms of the latter). Regularization methods are based on an addi-
tional regularization term added to the loss function that forces the model parameters to
shrink, while the probabilistic Bayesian methods lead to prune the model by introduc-
ing sparsity inducing prior distributions of the model parameters into the models (the
pivotal works in this area include among others automatic relevance determination [18],
dropout-based methods [16], [8], [13], Bayesian group sparsity [9] or prior annealing [17],
relation between dropout and shrinkage inducing priors is shown in [14]).

Most common type of a regularization methods is the Lp regularization which adds a
regularization term into the loss function L (θ) (equation 1) based on the Lp norm of the
model parameters

R (θ) = λ‖θ‖p
Parameter λ governs importance of the regularization term with respect to the error
term 1

N

(∑N
i=1 l (h (xi|θ) , yi)

)
. The Lp regularization for p > 0 tends to shrink the values

of the model parameters towards zero unless supported otherwise by the data (hence,
this approach is also known as a weight decay). Most common cases in practice are the
L1 regularization, also known as LASSO (from least absolute shrinkage and selection
operator), and the L2regularization, also known as the quadratic regularization or the
ridge regression if applied on a regression task. While the L2 regularization has a tendency
to shrink parameters to lower but non-zero values, L1 may commonly lead to sparser
solutions. More detailed discussion on the Lp regularization can be found in [1] and [4],
a combination of both was utilized in [19].

3.1 L0 regularization

Special case of the Lp regularization is for p = 0 with the L0 norm ‖θ‖0 =
∑M

i=0 χ{θi 6=0}
that returns the number of non zero elements of θ. Such norm can be a natural way how
to force sparsification of the network since the respective regularization term penalizes all
non zero weights. Unlike the Lp norm for p > 0, the L0 norm has no tendency to shrink
the actual values of the model parameters. It only tends to encourage sparser network
parametrizations.

Drawback of the L0 norm is that it is not differentiable in the parameters, hence,
cannot be used in gradient based methods. For this purpose, a way to smooth the
norm while retaining its key characteristics was proposed in [10]. This methodology is
described in this section. It is assumed the underlying model hasM trainable parameters
θi, i = 1, . . . ,M . Whenever there is a variable indexed by i in this section without a range
specification, it is assumed that i ∈ {1, . . . ,M}.

First, the so-called binary gates indicating non-zero parameters zi ∈ {0, 1} , i =
1, . . .M are introduced into the model. The model parameters can be then rewritten
as θi = θ̃izi. Hence, the i-th parameter is not used in the model if zi is zero, while θ̃i may
remain non-zero. Let us assume that the gates zi are withdrawn from a {0, 1}-valued
distribution q (zi|πi) (e.g., the Bernoulli distribution). The objective function can be
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rewritten as

L
(
θ̃, π
)

= Eq(z|π)

[
1

N

(
N∑
i=1

l
(
h
(
xi|θ̃ ◦ z

)
, yi

))]
+ λ

M∑
i=1

πi

where ◦ denotes an element-wise multiplication. The aim is to minimize the function in
θ̃ and π.

To smooth the loss function, let us consider a continuous random variable s with a
parametric distribution q (s|φ). This variable helps to smooth the gates by clipping the
variable s in the [0, 1] interval

zi = c (s) , c (·) = min (1,max (0, ·)) , s ∼ q (s|φ)

This allows the gate zi to be exactly zero where q (s|φ) < 0. Moreover, the probability of
such event can be easily described by the corresponding cumulative distribution function
Q (s). As a result, the objective function can be rewritten as

L
(
θ̃, φ
)

= Eq(s|φ)

[
1

N

(
N∑
i=1

l
(
h
(
xi|θ̃ ◦ c (s)

)
, yi

))]
+ λ

M∑
i=1

[1−Qsi (0|ψi)]

with the parameters θ̃ and φ to be minimized.
The only condition for the distribution q (s|φ) to make the task tractable is that the

reparametrization trick (proposed in [7]) can be used for the distribution, i.e., that the
distribution q (s|φ) can be expressed as a transformation of a simpler non-parametrized
distribution s = T (φ, ε) where ε follows a distribution ε ∼ p (ε) no longer depending on
φ. This transformation ensures gradient based methods can be applied since the gradient
of the objective function can be expressed as an expectation (since the gradient of the
expectation equals the expectation of the gradient if the density p (ε) is not a function of
φ) and can be thus sampled using the Monte Carlo simulation. The objective function
becomes

L
(
θ̃, φ
)

= Ep(ε)

[
1

N

(
N∑
i=1

l
(
h
(
xi|θ̃ ◦ c (T (φ, ε))

)
, yi

))]
+ λ

M∑
i=1

[1−Qsi (0|ψi)]

and is now differentiable w.r.t. θ̃ and φ; the aim remains to find θ̃∗, φ∗ = argmin
θ̃,φ

L
(
θ̃, φ
)
.

As a result, a wide range of distributions can be used. A choice used commonly
in practice is the so-called concrete distribution which was introduced specifically as a
continuous relaxation of discrete random variables (see [11] for more details). It is a
random variable defined on interval (0, 1) with two parameters φ = (logα, β) defined as
a transformation of the uniform distribution

s = σ

(
log u− log (1− u) + logα

β

)
, u ∼ U (0, 1)

where σ denotes the sigmoid function. Hence, the reparametrization trick can be used for
this distribution by design. The distribution can be expanded to an interval (smin, smax)
for smin < 0, smax > 1 as s̄ = s (smax − smin) + smin. The gates zi are then obtained as
zi = min (1,max (0, s̄i)).
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3.2 Sparsity in equation learning

Since equation learning method aims to find interpretable solutions, sparsity techniques
are desired unless model pruning is forced by network architecture by design [2]. Nonethe-
less, the selection of a suitable sparsity method and comparison of different approaches
was not analyzed under scrutiny in the current literature. Most of the methods use
the Lp regularization for model pruning with LASSO being the predominant selection.
Hence, focus of this article is the comparison of several approaches, assessment if there
might be a universally recommended technique for the equation learning tasks and dis-
covery whether the outcomes based on the LASSO regularization may be outperformed
(for instance, it is known L0 regularization may achieve state-of-the-art results in some
domains with smaller data sets while performing inconsistently for largescale tasks where
comparable or better results may be achieved by simpler methods, [3]).

4 Experiment
The model was tested on the following three equations:

EQ1 (x) =
1

3
sin
(
x(1)
)

EQ2 (x) =
1

3

(
sin
(
πx(1)

)
+ sin

(
πx(2) +

π

8

)
+ x(2) + x(3)x(4)

)
EQ3 (x) =

1

3

(
sin
(
πx(1)

)
+ x(2) cos

(
2πx(3) +

π

4

)
+ x(3) +

(
x(4)
)2)

with synthetically generated data. The training data was uniformly generated in intervals
xi ∈ [−h, h], with x =

(
x(1), x(2), x(3), x(4)

)
in the multivariate cases (EQ2, EQ3), y =

EQj(x) + ε, ε ∼ N (0, σ2
dat). The following parameters were used for the experiment

(unless stated otherwise for specific comparisons): the training set of size ntrn = 10000
was generated for h = 1, and the testing sets (described below) of size ntst = 3000 with
σ2
dat = 0.01. The models are based on the equation learning architecture discussed in

Section 2, with L = {3, 5} layers, using the layers with unary functions f = (sin, cos, σ, I)
and multiplication as the binary function (i.e., u = 4 and v = 1). The last layer is always
a classical dense layer.

The model parameters were randomly initiated by the glorot distribution. Model was
trained by Adam algorithm through 50000 iterations. Sparsity techniques compared are
L2, L1 and L0 regularization. They were also compared to the case with no sparsity
technique. A default selection of the λ parameter in all regularization algorithms is λ ∈
{1e−2, 1e−3, 5e−4, 1e−4, 5e−5, 1e−5, 1e−6}, unless other values are needed for further
exploration. Parameters used in the L0 regularization are smin = −0.1, smax = 1.1
and β = 2

3
. Two testing data sets were created: the interpolation testing set and the

extrapolation testing set uniformly generated on the same interval as the training set and
on [−2h,−h] ∪ [h, 2h], respectively.

First, outcomes for the equation EQ1 are demonstrated for the model with L = 3
layers in Figure 1. For each method, a Pareto chart is presented with the mean square
test error (using the interpolation data set) on the x-axis and a percentage of non-zero pa-
rameters on the y-axis (with a tolerance level 1e−3). Curves for L1 and L2 regularization
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Figure 1: The Pareto chart of the selected techniques on EQ1 (3-layer model), x-axis: the
MSE on the interpolation data set, y-axis: the percentage of non-zero model parameters.

follow a “sparsity/accuracy” trade-off (i.e., model accuracy decreases with larger induced
sparsity, which happens for increasing λ); however, loss in accuracy for both methods is
not substantial while gaining significant sparsity of the trained models. The L1 regular-
ization prunes larger number of parameters for comparable accuracy and appears most
suitable technique for this particular model.

On the contrary, although the L0 regularization fits the model with large accuracy
for a wide range of the values of λ, it demonstrates poor results in terms of sparsity and
keeps most of the parameters in the trained model. Even for larger values of λ, there is
only a minor betterment in sparsification and it still provides much more dense results
than the L1 and L2 regularizations while the model accuracy starts to rise dramatically
(with the mean square errors outside of the range depicted on the figure).

Conclusions made on the interpolation data set hold also for the extrapolation data
set as demonstrated in Figure 2.

Next, the model outcomes were tested for the equations EQ2 and EQ3 with a more
complex model with L = 5 layers. The resulting Pareto charts are presented for the
interpolation data set in Figure 3. Same behavior as in the previous simpler case is still
observed: the L1 regularization outperforms the L2 regularization while the L0 regulariza-
tion demonstrates poor model pruning. Altogether, the equation learning model appears
sensitive to the employed sparsity technique with apparent differences between methods.

5 Conclusion and future work
Importance of model pruning for equation learning was demonstrated and several sparsity
techniques compared on selected equations with synthetically generated data. It was
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Figure 2: The Pareto chart of the selected techniques on EQ1 (3-layer model), x-axis: the
MSE on the extrapolation data set, y-axis: the percentage of non-zero model parameters.

shown that L1 regularization outperforms other tested methods and provides relatively
sparse solution with negligible loss of accuracy compared to case with no regularization.

The goal of future work is assessment of broader range of sparsity techniques on
larger number of problematics, including real-world tasks based on real data from several
domains with the aim to discover if conclusions made in this article may be generalized
to other areas. Also, deeper attention should be paid to the role of sensitivity to random
initializations and whether level of sparsity can be still enlarged under specific conditions
and utilized techniques.
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Abstract. Three-dimensional fluorescence microscopy often suffers from anisotropy, where the
resolution along the axial direction is lower than that within the lateral imaging plane. We
address this issue by presenting Dual-Cycle (Fig. 1), a new framework for joint deconvolution
and fusion of dual-view fluorescence images. Inspired by the recent Neuroclear method, Dual-
Cycle is designed as a cycle-consistent generative network trained in a self-supervised fashion by
combining a dual-view generator and prior-guided degradation model. We validate Dual-Cycle
on both synthetic and real data showing its state-of-the-art performance without any external
training data.

Keywords: Light-sheet fluorescence microscopy, Dual-view imaging, deep learning, image decon-
volution.

Abstrakt. Trojrozměrná fluorescenční mikroskopie často trpí anizotropií, v jejímž důsledku je
rozlišení v axiálním směru nižší než rozlišení ve směru laterárním. Pro řešení tohoto problému
jsme navrhli nový framework založený na hlubokém učení (Fig. 1), nazvaný Dual-Cycle, který
provádí rekonstrukci dat pomocí spojení dekonvoluce a fúze dvou fluorescenčních 3D obrazů. Náš
framework rozšiřuje nedávno publikovanou metodu Neuroclear na data z duálního mikroskopu
a přidává apriorní informace o modelu degradace. Dual-Cycle využívá generativní síť s vynu-
cením cyklické konzistence (Cycle-GAN). Trénování je založeno na principu učení bez učitele.
Architektura sítě se skládá z generátoru, na jehož vstupu jsou dva 3D obrázky reprezentující
tentýž zkoumaný vzorek, ovšem z dvou různých pohledů. Pro cyklickou konzistenci modelujeme
degradaci rekonstruovaného obrázku na základě dopředného modelu. Na reálných i synteticky
vygenerovaných datech jsme ověřili, že Dual-Cycle dosahuje rekonstrukčních výsledků moderních
metod bez využití vnějších trénovacích dat.

Klíčová slova: Light-sheet fluorescenční mikroskopie, duální mikroskop diSPIM, hluboké učení,
dekonvoluce obrazu.
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Figure 1: Schematic illustration of the Dual-Cycle framework. a) Scheme of dual-view
inverted selective plane illumination microscope (diSPIM). b) CycleGAN approach: for
two domains Y and X, CycleGAN learns two mutually-inverse generator mappings Gen
and Deg with the assistance of corresponding discriminators. c) Dual-Cycle network
architecture. d) Schematic of the generator based on U-Net. e) Degradation forms two
paths each consisting of blurring with known PSF followed by the deep linear generator.
f) PatchGAN-based [16] discriminators work on 2D slices of input 3D volumes.
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Abstract. Observations of CMB serve as one of the primary ways to study high-energy grav-
itational physics. One of the relevant observations is that power spectrum of its fluctuations
is nearly scale invariant, as ns ≈ 0.96 [1]. This fact suggests that early universe could be well
described by a theory possessing scale or conformal symmetry. However, other mundane obser-
vations force us to consider that such a symmetry would have to be broken. Natural question
is then what would be the remaining symmetry, and common wisdom would be that Poincaré
group describes the remaining symmetry.

In this article we make case for consideration of de Sitter group as the symmetry group
remaining after spontaneous breakdown of conformal symmetry, and that the appearance of
Poincaré group is merely an observational artefact. For that reason we shall discuss general
observational and theoretical arguments, supported by a mathematical argument using group
contraction.

Keywords: conformal group, de Sitter, group contraction

Abstrakt. Pozorování CMB slouží jako jeden z hlavních nástrojů pro studium gravitační fyziky
při vysokých energiích. Jedno z hlavních pozorování je že spektrum jeho fluktuací je takřka
škálově invariantní, jelikož ns ≈ 0.96 [1]. Tento fakt naznačuje že ranný vesmír je možno vhodně
popsat pomocí teorie která má škálovou nebo konformní symmetrii. Další běžná pozorování
nás ovšem vedou k závěru že tato symetrie musí být zlomena. Přirozenou otázkou pak je jaká
symetrie zůstane po tomto narušení, a přirozenou odpovědí by bylo že Poincareho grupa popisuje
tuto symetrii.

V tomto článku předkládáme ke zvážení de Sitterovu grupu jako grupu symetrií která zů-
stane po spontnáním narušení konformní symetrie, a že zdánlivá přítomnost Poincarého grupy
je pouze artefakt pozorování. Za tímto účelem budeme diskutovat obecné pozorovací a teoretické
argumenty, s podporou matematického argumentu využívajícího kontrakci grup.

Klíčová slova: de Sitter, konformní grupa, kontrakce group

1 Introduction

One of the current best tests of physics going beyond either Standard Model or General
Relativity are astronomical, or more specifically, cosmological observations. Special place
among these holds Cosmic Microwave Background, which provides us with a window to
an extremely early era in existence of the universe and also to a time of very extreme

∗This work has been supported by the grant SGS22/178/OHK4/3T/14
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physics. From this observation we can draw a wealth of data, which should provide us
with some hints on high-energy physics.

The fact that the power spectrum of CMB is nearly scale invariant [1] hints that
when considering inflationary era, it can be considered natural to start from a theory
possessing conformal symmetry. We have studied this in previous publications [2], [3],
[4], with the resulting observation that the conformal symmetry is spontaneously broken
via radiative corrections. We can then ask what is the remnant symmetry that remains
after the conformal symmetry is broken. The usual assumptions is that this would be
the Poincaré symmetry as that is typically considered as the local space-time symmetry
group, however in this article we will make case for considering instead the de Sitter
group.

2 Why DeSitter

Before investigating this in more detail, we should engage with a question, why should
we consider de Sitter group?

From an observational stand-point we can bring up that detection of ’dark energy’
can be considered as an evidence, the effect can be a result of positive cosmology constant
[5], which would be present in de Sitter cosmology. Additionally inflationary space-times
are also approximately de Sitter [1]. Combined these would suggest that de Sitter group
would be more suitable symmetry to consider when describing space-times under going
accelerating expansion.

Theoretical arguments [6] also lead us to consider potential introduction of either
observer-independent maximum energy or minimal length scales, such theories are called
doubly special relativity. Major shortcoming of such theories is that they by their very
nature require presence of Lorentz violating phenomena at high energies, beyond which
we enter a new regime. From this perspective relativistic theory based on de Sitter group
(i.e. de Sitter relativity) represents a resolution of this, as it naturally incorporates both
invariant velocity and invariant length scale and so Lorentz symmetry remains unbroken
and only smoothly transitions to a different high energy regime [7].

Final argument is couched more in an appeal to mathematical ’beauty’ and historical
precedent.

Until 1905 the prevailing symmetry group considered was the Galilean group, however,
the tensions between then new theory of electromagnetism and classical mechanics were
resolved that year by A. Einstein in his article ’On the Electrodynamics of Moving Bodies ’
[8]. In this article, Einstein overturned and superseded Newtonian mechanics and replaced
the Galilean boost with relativistic ones, effectively changing the symmetry group from
Galilean to Poincaré.

Very soon after publishing of the article it was intuitively understood that Newtonian
mechanics represents low velocity limit of the new theory (or infinite speed of light limit,
as the relevant quantity is v

c
), however despite this understanding there was no proper

mathematical method to relate these two theories. On the level of individual formulas
it was always possible to perform the expansion and then keep only the lowest relevant
order terms, however this was mathematically unsatisfying.

This changed in 1951 when I. Segal published an article ’A class of operator algebras
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which are determined by groups ’ [9] where he first proposed idea of a limiting procedure
for groups, and its application to symmetry groups of physical theories. These ideas were
developed further by E. Inönü and E. P. Wigner who two year later in 1953 published
now classical article ’On the contraction of groups and their representations ’ [10], where
they described specific mathematical method for contracting one group into another. It
was immediately clear that this mechanism can be seen as a way to link different theories
and to describe theory change.

2.1 Inönü-Wigner group contraction

In this section we quickly summarize the procedure, following similar explanations in [11],
[12] and [13].

Since the setting in which Inönü-Wigner contraction operates are continuous symme-
tries described by Lie groups Gi, the most straightforward way to approach study of this
is through investigating transformations of the associated Lie algebras gi.

To start of, we have a Lie algebra g associated with group G, where Ji is some basis
of the vector space of algebra. In this basis we can write commutation relations as

[Ji, Jk] =
n∑
k=1

fijkJk i, j = 1, · · · , n (1)

with fijk being the structure constants of the group. These must satisfy Jacobi identity

n∑
c=k

fjlkfikm + flikfjkm + fijkflkm = 0. (2)

Let us now introduce a contraction parameter ε and use it to redefine the basis ele-
ments Ji → J

(ε)
i such that the following is satisfied:

• the infinite sequence [Ji]
ε and its corresponding structure constants [fijk]

(ε) are
known

• the limit limε→0 [fijk]
ε = [fijk]

0 exists for all i, j, k and is consistent under under
Jacobi identity

If both conditions are satisfied, then the structure constants [fijk]
0 generate a new Lie

algebra g′ (and so also Lie group G′) called the contraction of g.
It turns out that there are conditions which describe when/how can the contraction

be performed for given Lie algebra. Specifically, if g has a subalgebra h such that

g = h + p (3)
[h, h] ⊂ h, [h, p] ⊂ p, [p, p] ⊂ h + p (4)

We can then explicitly re-parametrize generators from the subspace p as p′ = εp. This
does not fundamentally change the algebra, as gε is isomorphic to g, since the commutator
are
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[h, h] ⊂ h, [h, p′] ⊂ p′, [p′, p′] ⊂ ε2 (h + p) (5)

However, if we now perform the limiting procedure ε → 0, the commutators in the
singular limit become

[h, h] ⊂ h, [h, p′] ⊂ p′, [p′, p′] = 0. (6)

From this, it is clear that g0 is no longer isomorphic to g, as the subspace p′ has
become an abelian subalgebra after the limit. The algebra g0 is clearly the algebra of the
contracted group. The structure of the resulting group is that of semi-direct product, i.e.
G′ = G1 oG2 for some groups G1, G2.

It is good to notice two things about the procedure:

1. The dimension of the symmetry group is preserved under the contraction. This
means that we cannot in this way relate theories that have different number of
symmetry generators.

2. The algebra of the contracted group contains an abelian subalgebra, and hence
presence of subspace of commuting symmetry generators can be taken as a sign of
possible group contraction. On the group level this can be seen from the group
structure and presence of semi-direct product.

These observations will be important in the later discussion of symmetries of space-time.
We also note that we can assign a geometric interpretation to the contraction parameter,
typically as some (pseudo-)radius of the geometry.

Returning to the previous topic, we can note that in the Galilean group R4o(R3 o SO(3))
the boosts form an abelian subalgebra, hinting that the group can be obtained from an-
other via contraction. Indeed, when contracting the Poincaré group R3,1 o SO (3, 1) by
sending the speed of light to infinity c → ∞ (or equivalently sending the ’slowness’ pa-
rameter to zero 1/c → 0) the Lorentz subgroup transforms as SO(3, 1) → R3 o SO(3).
This then provides the firm mathematical link connecting the two theories.

Historically speaking, this relations of the groups, and hence also of Newtonian me-
chanics and special relativity was only discovered after the theory itself was. However
we can also look at it from another angle, that if the mechanism was known prior to
formulation of special relativity, we could have speculated whether there is some physical
parameter which is sufficiently large (or small), so that effective symmetry group of low
velocity mechanics is Galilean, and the full symmetry group is different. Experimentally
of course until there was observational evidence for finite invariant speed of light, there
was no reason to consider such a parameter to play role in the kinematical group of
mechanics.

Taking this second viewpoint we can now notice that Poincaré group R3,1 o SO (3, 1)
also has an abelian subgroup, in this case the translations. Consequently, we can ask
if perhaps there are also not other finite parameters that are currently outside of our
observational bounds that we are not considering (e.g. finite invariant length scale), that
would lead to Poincaré group being only effective description for large scales. This line of
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reasoning would lead us to consider de Sitter group (or anti-de Sitter, if we neglect other
arguments).

We can succinctly describe this as follows, Poincaré group represented generalization of
high-velocity kinematics of the Galilean group, and de Sitter group can in turn represents
generalization of high-energy kinematics of Poincaré group.

3 Symmetries of space-time
With the arguments of the previous section in mind, let us look at the Poincaré group in
more detail and derive its relation to de Sitter group. Poincaré group is a 10 dimensional
group, which does have the semi-direct product structure, so as stated previously it could
be a contraction of another group. It’s commutation relations are

1

i
[Mµν , Pρ] = ηµρPν − ηνρPµ (7)

1

i
[Mµν ,Mρσ] = ηµρMνσ − ηµσMνρ − ηνρMµσ + ηνσMµρ (8)

with

• Pµ - space-time translations

• Mµν - spatial rotations and boosts (spatio-temporal rotations)

The generators Mµν can be explicitly related to the generators of rotations and boosts as
Ji = 1

2
εijkMjk, Bi = M0i. From this we also see that spatial and temporal translations

form an abelian subgroup, another hint of the group being potential result of contraction
procedure. Specifically, Poincaré group can be obtain as a contraction from either de
Sitter group SO(4, 1) or anti-de Sitter group SO(3, 2), via sending their scalar curvature
Λ to zero. For the reasons elaborated on in the previous section, we will be interested in
the de Sitter case.

De Sitter group SO(4, 1) is once again 10 dimensional group, whose commutation
relations can be written succinctly as

1

i
[MAB,MCD] = ηBCMAD − ηBDMAC − ηACMBD + ηADMBC . (9)

The contraction to Poincaré group can be constructed as follows, let us define new basis

Πµ =
1

l
M5µ (10)

with the rest staying the same. Commutation relations can then be rewritten as

1

i
[Πµ,Πν ] =

1

l2
Mµν (11)

1

i
[Mµν ,Πρ] = ηµρΠν − ηνρΠµ (12)

1

i
[Mµν ,Mρσ] = ηµρMνσ − ηµσMνρ − ηνρMµσ + ηνσMµρ. (13)
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Now we can send the pseudo-radius l to infinity, and after that we obtain exactly the
commutation relations of the Poincaré group, with Πµ → Pµ becoming the translation
generators.

It is clear from the commutation relations that the de Sitter group has neither semi-
direct product structure, nor any non-trivial abelian subgroup, so we could in principle
end our discussion here.

However, we would like to propose one further step. We start by looking at trans-
formations that can naturally extend de Sitter group, these being operations that act
transitively on the de Sitter space [14].

These de Sitter ’translations’ can be written as a combination of translations and
special conformal transformations, i.e.

∂µ −
1

4l2
(
2ηµτx

τxσ − x2δσµ
)
∂σ, (14)

where l2 is the de Sitter pseudo-radius, and xµ some particular coordinates. This object
on its own is not de Sitter generator, as its action on space-time leads to conformal
rescaling of the metric, transformation which is not from de Sitter group. If we demand
the symmetry group of space-time to include transformations under which it is transitive,
we must include both the usual translations and the special conformal transformations.

Inclusion of these transformations forces us to also include dilation generator to close
the commutation relations of the group. This extensions then moves us to a group
ISO(4, 1) a 15-dimensional group of isometries of SO(4, 1). This group has again the
semi-direct product structure, and can be obtained as a contraction of the conformal
group SO(4, 2), in a similar fashion to the preceding contractions.

There are several reasons to consider conformal group when discussing symmetries of
space-time

• conformal group SO(4, 2) is the largest symmetry group preserving causality in 4D
space-times

• many theories possess scale symmetry (gauge theories, massless theories), which
can be promoted to full conformal symmetry under a broad set of conditions (see
Zamolodchikov-Polchinski theorem in d = 2 [15])

• CMB is nearly scale-invariant, suggesting scale invariant (or conformal invariant)
theories are suitable for description of very early universe [1]

We consider these arguments to be sufficiently persuasive to explore this direction, so let
us take a closer look at conformal group. It’s commutation relations can be written as

1

i
[MAB,MCD] = ηBCMAD − ηBDMAC − ηACMBD + ηADMBC (15)

in the exact same form as de Sitter ones (which should not be surprising, as both are
pseudo-rotation groups). It is more useful to consider an alternative basis that can be
related to the generators we are more familiar with

Lαβ = Mαβ, D = M56 (16)
Pα = Mα5 +Mα6, Kα = Mα5 −Mα6 (17)
α, β = 0, 1, 2, 3, α = 0 ≡ A = 4. (18)



De Sitter Group in Cosmology 53

Again, we can see from both the structure of the group, and from the commutation
relations that there is no obvious need for further extension. We could again consider
transformations acting the space as in de Sitter case, however from a physical perspective
we are interested in 3+1 dimensional space-times and any further extension would take
us away from that (as SO(4, 2) is the conformal group of 3+1 dim space-time).

Additionally, now we are left with a problem, present day universe is well described
by considering only 10 space-time symmetries (local), yet conformal group has 15. How
can we reduce this number? One answer is spontaneous symmetry breaking, and it turns
out that group contraction has a relation to it.

4 Group contraction and symmetry breaking
In this section we describe relation of group contraction to symmetry breaking patters,
as developed in [16] and [17].

Great discovery of physics in 20th century was that symmetry in system needs can be
realized not just linearly, i.e. in Wigner-Weyl realization, but also non-linearly through
so-called Nambu-Goldstone realization. This phenomenon is colloquially known as spon-
taneous symmetry breaking (SSB) [18], as a particular vacuum state is invariant only
under a certain subgroup H of the symmetry group G, i.e. it the symmetry is bro-
ken, with the rest of former symmetries now transforming different vacuum states among
themselves.

Another well known fact is that spontaneous symmetry breaking leads to appearance
of massless Goldstone modes. These fields are either scalar, spinorial or vector, depending
on whether the broken symmetry is internal, super or space-time (these can also be
composite fields in the case of dynamical symmetry breaking). In relativistic theories the
number of Goldstone modes corresponds to the number of broken generators, i.e. to the
difference between the dimensions of the symmetry group G and the symmetry group of
the vacuum state H,

#Goldstonemodes = dimG− dimH (19)

It turns out that the ’remnant’ symmetry group H combined with the abelian Gold-
stone modes (which generate field translations) must be a contraction of the original
symmetry group G [16]. This then provides us with a mechanism to determine the mass-
less Goldstone modes. Also it provides us with a mechanism to change the dimension of
the contracted group, provided we ignore the ’abelianized’ field translations.

This relation between symmetry breaking and group contraction gives us a tool to
describe the relation of space-time symmetry groups in a unified fashion. We can assume
that the conformal group is spontaneously broken (e.g. by introduction of scale, breaking
the dilatation generator) and the the left-over non-trivial part is the de Sitter group, with
the remaining 5 generators being abelianized and representing field translations.

5 Hierarchy of space-time symmetry groups
Having discussed relation of symmetry breaking and group contraction, we have all the
required ingredients ready.
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We would propose the following hierarchy of space-time symmetry groups

Conformal→ de Sitter→ Poincare→ Galilei

In pre-inflationary and early inflationary universe we propose that the symmetry
group of space-time was conformal group SO(4, 2). As present day universe is neither
conformal nor scale invariant, this part of the symmetry was then spontaneously broken
during onset of inflation. The symmetry breaking pattern is then determined by the
contraction, as per the previous sections, leading us to de Sitter group SO(4, 1)

Further we would argue that the true ’local’ symmetry of space-time is the de Sitter,
not Poincaré. The transition from de Sitter to Poincaré (and from Poincaré to Galilei)
are then not true transitions, but merely an approximation artefacts due to limited ob-
servational capabilities, of high-velocity physics in once case, and high-energy physics in
other.

As the shift to Poincaré happened when we had other theoretical signs and further
experimental evidence of finite invariant speed of light, similarly we propose that there
is a finite invariant length scale currently out of observational bounds. Existence of this
invariant scale would then lead to the symmetry group of space-time being naturally de
Sitter, not Poincaré.

Another kind of theoretical argument in support of invariant length (or energy) scale
would be that scale on which quantum gravity becomes relevant should play fundamental
role. An example could be that a photon of wavelength of Planck length should collapse
to black hole (based on classical understanding), however in different reference frames its
wavelength could be longer due to red-shift. As a result presence of a black hole would
then be observer dependent leading to contradiction within the theory. Eventual quantum
theory of gravity should be able to resolve this issue, and treating some length/energy
scale as invariant would lead to resolution.

Additionally, we could argue that the structure of Poincaré group combined with
knowledge and history of group contraction also points in the direction of further refine-
ment being necessary.

6 Summary and conclusion
In this note we have discussed arguments supporting consideration of de Sitter group
as the proper kinematical group of space-time. We have quickly discussed observational
evidence supporting consideration of de Sitter group, theoretical argument from doubly
special relativity and then moved on to a discussion from the perspective of relating
Poincaré and de Sitter groups mathematically.

Primary focus was on application of group contraction to this process, discussing its
role in Galilean to Poincaré transition, and by analogy arguing that a similar reasoning
can be applied to switch from Poincaré to de Sitter. We have further noted that as
de Sitter space time is transitive only under combination of translations and proper
conformal transitions, this naturally leads us to consider presence of de Sitter group
being the result of spontaneous breakdown of conformal symmetry. As group contraction
procedure can be related to symmetry breaking pattern, we can use it to describe that
transition also.
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We used this to propose that true symmetry group of space-time in early universe
was conformal group, which was spontaneously broken down to de Sitter group. Current
understanding of Poincaré group as the symmetry group is then an observational artefact
resulting from limited experimental and observational capabilities, similar to the way
Galilean group was considered as a symmetry of space-time until the developments of
tools and other theories caused it to be superseded by Poincaré group.

This allows us to make contact with previous works [2], [3], [4], where we propose
conformal theory of gravity for description of inflationary physics. Conformal symmetry
present in this theory is spontaneously broken via radiative corrections, with de Sitter
group being a good candidate for the resultant symmetry group, for the reasons discussed
in this note.
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Abstract. The study of complex networks is currently a rapidly developing discipline with
applications across various scientific disciplines such as neuroscience, climate research, computer
science, economics, energetics, and game theory. A key principle in this area is to view a given
system as a network of interacting subsystems (nodes). One of the central questions is to esti-
mate the pattern of their mutual or causal interactions. In this work, we first summarize (often
vaguely used) definitions of a total and direct causal effect between two or multiple variables
(subsystems) with a particular focus on systems with higher order dependencies, discuss pit-
falls of structural causal models of such systems and present a potential information-theoretical
concept for determining direct and unique causality.

Keywords: causality, higher order dependencies, mutual information, interventions, XOR func-
tion

Abstrakt. Studium komplexních sítí je v současnosti rychle se rozvíjející disciplínou s potenci-
álními aplikacemi napříč různými vědními obory jako jsou neurověda, klimatologie, informatika,
ekonomie, energetika nebo teorie her. Klíčovým principem v této oblasti je nahlížet na daný
systém jako na síť vzájemně se ovlivňujících subsystémů (uzlů). Jednou z hlavních otázek je
pak odhadnout síť vzájemných kauzálních interakcí mezi těmito uzly. V této práci nejprve shr-
neme (často vágně používané) definice totálního a přímého kauzálního efektu mezi dvěma nebo
více proměnnými (subsystémy) se zvláštním zaměřením na systémy se závislostmi vyšších řádů.
Diskutujeme možná úskalí strukturálních kauzálních modelů takových systémů a představíme
potenciální informačně-teoretický koncept pro určení přímé a unikátní kauzality.

Klíčová slova: funkce XOR, intervence, kauzalita, vzájemná informace, závislosti vyšších řádů

1 Introduction
The detection of causality is a crucial point in the description of complex systems across
scientific disciplines. In practice, we always work with a finite sample of data from
which we try to estimate the original causal structure of the system. For this purpose
several families of methods like Granger causality or information theoretical approach
were suggested but what is the original causal structure? Suppose that we have the exact
model (equations) according to which the system behaves - so called structural equation

∗This work was supported by the Grant Agency of the Czech Technical University in Prague, grant
No. SGS20/183/OHK4/3T/14 and by the Czech Science Foundation project GA21-17211S.
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model. A structural equation model (SEM) (also called a functional model) is defined as
a tuple S :=

(
S,PN

)
, where S = (S1, . . . , Sn) is a collection of n equations

Sj : Xj = fj (PAj, Nj) , j = 1, . . . , n, (1)

where PAj ⊆ {X1, ..., Xn}r{Xj} are called parents of Xj and PN = PN1,...,Nn is the joint
distribution of the noise variables, which we require to be jointly independent, i.e., PN

is a product distribution. The graph of a structural equation model is obtained simply
by drawing direct edges from each parent to its direct effects, i.e., from each variable
Xk occurring on the right-hand side of equation (1) to Xj. We also say that SEM
S :=

(
S,PN

)
is generating distribution of X = (X1, . . . , Xn) PX. But this graph does

not have to be a causal graph - an intuitive counter-example is the function X1 = 0.X2

where of course variable X2 does not have any causal effect on X1. We define causality
due to Judea Pearl [2] using so-called interventional distribution. Consider a distribution
PX that has been generated from an SEM S = (S1, . . . , Sn). We can then replace one (or
more) structural equations (without generating cycles in the graph) and obtain a new
SEM S̃. We call the distributions in the new SEM interventional distributions and say
that the variables whose structural equation we have replaced have been “intervened on”.
We denote the new distribution by

PX
S̃ = P

X|do(Xj=f̃( ˜PAj ,Ñj))
S . (2)

The set of noise variables in S̃ now contains both some “new” Ñ ’s and some “old” N ’s
and is required to be mutually independent. The causal effect is then defined as follows.
Given an SEM S, there is a (total) causal effect from X to Y if and only if there is x,

such that PY |do(X=x)
S 6= PY

S . Note that we can easily define causal effect generally from
set of variables X to Y by replacing do (X = x) by do (X = x) . As Pearl declares, in
practice, we are unable to determine causality (or the direction of causality) without
interventions. In certain situations, however, we can assume that some variables, so-
called source variables, can influence the so-called target variable but not vice versa. One
of these situations is time-ordered data, where only things in the past can affect things
in the present. Suppose source variables (X1, . . . , Xn) and target variable Y, we say that
Xi has causal effect on Y if

I (Xi, Y ) > 0. (3)

Also, we can say that there is a direct causal effect from Xi to Y if

I (Xi, Y |Xr {Xi}) > 0, (4)

however, as we show later, this definition of a direct causal effect is valid only for first-
order dependencies and collapses for higher-order ones.

2 Higher order dependencies
There is no single definition of synergy or second-order dependence but we show this
concept on the well-known example of XOR function whose values are defined according
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to the table 1. Simply, we consider two fair coins X1 and X2, if the result of their flips is
the same then the value of the XOR function is zero otherwise it is one.

X1, X2
iid∼ Be(0.5)

Y = XOR (X1, X2) .
(5)

This system is a model example of so-called synergy, there is no information of Y in X1

neither in X2, but we get the information about Y from tuple (X1, X2). As both variables

X1 X2 Y = XOR (X1, X2) p
0 0 0 1/4
0 1 1 1/4
1 0 1 1/4
1 1 0 1/4

Table 1: Function XOR(X1, X2)

X1 and X2 appear on right hand side of equation (5), the structure of graph of SEM is
X1 → Y ← X2 but no matter how we intervene on X1 or X2, distribution of Y remain
unchanged because as X1 and X2 can reach only value of 0 or 1, all possible intervention
are in form of Bernoulli distribution Be(p). Suppose that we intervene on X1 ∼ Be (p)
then

p(Y = 0) = p(X1 = 0, X2 = 0) + p(X1 = 1, X2 = 1)

= (1− p) ∗ 1/2 + p ∗ 1/2 = 1/2
(6)

p(Y = 1) = p(X1 = 0, X2 = 1) + p(X1 = 1, X2 = 0)

= (1− p) ∗ 1/2 + p ∗ 1/2 = 1/2,
(7)

hence

PY
S ∼ Be (0.5) = PY |do(X1=Be(p))

S = PY |do(X2=Be(p))
S . (8)

Only when intervene on tuple (X1, X2) we change distribution on Y, for example

PY
S ∼ Be (0.5) 6= Be (1) ∼ PY |do((X1,X2)=(0,1))

S . (9)

Thus, the causal structure cannot be captured by a graph, but only by a hypergraph.
Using an information theoretical approach to direct causality, we however end up with a
curious result. As we already proposed, both mutual information are equal to zero (eq.
(11)) but conditional mutual information I(X1, Y |X2) and I(X2, Y |X1) are equal to one
and therefore there is a direct causal effect from both of the variables by definition. For
this reason, we redefine information theoretical based direct causal effect in accordance
with Pearl’s definition.
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Figure 1: Scheme and causal hypergraph of XOR system

I(X1, Y ) = I(X2, Y ) = 4 ∗ 1
4
log

1/4

1/2 1/2
= 0bit (10)

I((X1, X2), Y ) = 4 ∗ 1
4
log

1/4

1/4 1/2
= 1bit (11)

I(X1, Y |X2) = I((X1, X2), Y )− I(X2, Y ) = 1bit (12)
I(X2, Y |X1) = I((X1, X2), Y )− I(X1, Y ) = 1bit. (13)

2.1 Information-theoretical approach to direct causality

First, we remind Pearl’s approach to direct causality using interventions. Given an SEM
S, there is a direct causal effect from Xi to Y if and only if there are xi, x̃i such that for
every possible values xr {xi} := (x1, . . . , xi−1, xi+1, . . . , xn)

PY |do(Xi=xi;Xr{Xi}=xr{xi})
S 6= PY |do(Xi=x̃i;Xr{Xi}=xr{xi})

S . (14)

Because of the inconsistency in the information theoretical approach described above,
we suggest a new information-theoretical definition of a direct causal effect. Let X =
(X1, . . . Xn) be a set of source variables and Y a target variable, there is a direct causal
effect from Xi to Y if and only if

I(Xi, Y |S) > 0 (15)

for all S ⊆ X r {Xi}. Note that conditioning by empty set is meant standard mutual
information

I(Xi, Y |∅) = I(Xi, Y ). (16)

Generally, we can define direct causal effect between set of variables and one target
variable as: Let X = (X1, . . . Xn) be a set of source variables and Y a target variable,
there is a direct causal effect from (Xi1 , . . . , Xik) to Y if and only if

I((Xi1 , . . . , Xik), Y |S) > 0 (17)

for all S ⊆ Xr {Xi1 , . . . , Xik}. Note that if there is direct causal effect from variable Xi

then there is also direct causal effect from any set containing this variable. For determine
the "true" unique causal direct effect we can use partial information decomposition [1].
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2.2 Example: Indirect XOR(X1, X2)

We show the consistency of our approach and Pearl’s on an example of undirect XOR
link and direct linear link given by SEM:

X1, X2
iid∼ Be(0.5)

X3 = XOR(X1, X2) + E3
Y = X3 + EY ,

(18)

where E3, EY
iid∼ Be(0.5).

X1 X2 E3 EY XOR(X1, X2) X3 Y p
0 0 0 0 0 0 0 1/16
0 0 0 1 0 0 1 1/16
0 0 1 0 0 1 1 1/16
0 0 1 1 0 1 2 1/16
0 1 0 0 1 1 1 1/16
0 1 0 1 1 1 2 1/16
0 1 1 0 1 2 2 1/16
0 1 1 1 1 2 3 1/16
1 0 0 0 1 1 1 1/16
1 0 0 1 1 1 2 1/16
1 0 1 0 1 2 2 1/16
1 0 1 1 1 2 3 1/16
1 1 0 0 0 0 0 1/16
1 1 0 1 0 0 1 1/16
1 1 1 0 0 1 1 1/16
1 1 1 1 0 1 2 1/16

Table 2: Indirect XOR(X1, X2)

Applying interventions, we would find that there is one direct link to Y and it is a
link from X3. As there is a direct link from X3, by definition there is also a direct link
from any set containing X3, significance of these hyperlinks we evaluate in the informa-
tion theoretical approach. If we further consider X3 as target variable and X1 and X2

as source variables, there is also direct link from tuple (X1, X2) to X3. If we compute all
possible mutual and conditional mutual information (see table 3), we find out that the
information-theoretical approach to direct causality is in agreement with the interven-
tional one. Furthermore, as synergies Syn(X1, X3) and Syn(X2, X3) are equal zero, these
hyperlinks are not considered to be uniquely causal. Synergy Syn(X1, X2) is greater than
zero but there is no direct link from tuple (X1, X2), therefore this hyperedge is also not
included in hypergraph. Note that at this point we are focused just on dependencies
of first or second order, otherwise we should investigate also hyperedge from all three
variables. We will describe the concept of unique causality into more detail in the next
section.
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Figure 2: Causal hypergraph of system Indirect XOR(X1, X2)

3 Partial information decomposition
As we already said, if there is a direct link from one variable there is also a direct link from
any set of variables including this variable. Therefore, in the causal hypergraph of the
previous example (fig: 2.2) two hyperedges are missing. We decided to not draw these
hyperedges because we do not consider them as unique. In this section, we introduce
the concept of unique causality - one of the possibilities of non-negative decomposition of
multivariate mutual information i.e. mutual information between a set of source variables
and one target variable, suggested by Williams and Beer in [1]. In simplified form for two
source variables, mutual information I((X1, X2), Y ) is decomposed into the sum of four
functionals - unique contributions of X1 and X2, redundancy of these two variables and
their synergy.

I((X1, X2), Y ) = Un(X1) + Un(X2) + Red(X1, X2) + Syn(X1, X2) (19)

The idea of individual functionals is as follows: X1 may provide information that X2

does not, this part of overall information we call unique information of X1 about Y
and denote as Un(X1), unique information of X2 about Y is defined analogously. Then,
X1 and X2 may provide the same or overlapping information about Y, this overlapping
part we call redundancy Red(X1, X2), for example if X1 is a copy of X2, they both
provide same information about Y and thus I((X1, X2), Y ) = Red(X1, X2) in this case.
The last component is the so-called synergy, as we have seen in the XOR example, in
some systems individual variables do not give us any information but as a tuple they
do, Syn(X1, X2) should quantify this part of information about target Y. Since mutual
information I(X1, Y ) is equal to sum of Un(X1) and Red(X1, X2), we also have

I((X1, X2), Y ) = I(X1, Y ) + I(X2, Y )− Red(X1, X2) + Syn(X1, X2). (20)

First, mutual information between set of source variables X = (X1, . . . , Xn) and target
variable Y can be express as

I(X, Y ) =
∑
y∈Y

p(y)I(X, Y = y), (21)

where I(X, Y = y) we call specific information of X about Y and it is defined as

I(X, Y = y) =
∑
x∈Xn

p(x|y) log p(y|x)
p(y)

. (22)
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Information bits
I(X1, Y ) 0.0000
I(X2, Y ) 0.0000
I(X3, Y ) 0.8113

I(X1, Y |X2) 0.3113
I(X1, Y |X3) 0.0000
I(X2, Y |X1) 0.3113
I(X2, Y |X3) 0.0000
I(X3, Y |X1) 0.8113
I(X3, Y |X2) 0.8113

I(X1, Y |X2, X3) 0.0000
I(X2, Y |X1, X3) 0.0000
I(X3, Y |X1, X2) 0.5000
I((X1, X2), Y ) 0.3113
I((X1, X3), Y ) 0.8113
I((X2, X3), Y ) 0.8113

I((X1, X2), Y |X3) 0.0000
I((X1, X3), Y |X2) 0.8113
I((X2, X3), Y |X1) 0.8113
I((X1, X2, X3), Y ) 0.8113

Syn(X1, X2) 0.3113
Syn(X1, X3) 0.0000
Syn(X2, X3) 0.0000

Table 3: Indirect XOR(X1X2) - Information table

Idea how to define redundancy is then, that it is the expected value of the minimum
information that any source variable provides about each outcome of Y. For two source
variable X1 and X2 we get

Red(X1, X2) = Imin(Y, {X1}{X2}) =
∑
y

p(y)min
i

I(Y = y,Xi). (23)

Unique contributions are then defined as

Un(X1) = I(X1, Y )− Red(X1, X2) (24)
Un(X2) = I(X2, Y )− Red(X1, X2) (25)

and finally synergy of X1 and X2

Syn(X1, X2) = I((X1, X2)− Un(X1)− Un(X2)− Red(X1, X2). (26)

As the synergies Syn(X1, X3) and Syn(X2, X3) are equal to zero we do not consider these
hyperedges as valid.

4 Conclusion
In this work, we presented a general definition of the concept of causality designed by
Judea Pearl and in practice often used information-theoretical approach. We discussed
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the problems with the information theoretical approach and definition of direct causality
in systems with higher-order dependencies and came up with a new definition that seems
consistent with the original definition, what we showed on selected examples. We also
outline following algorithm for estimating causal hypergraphs of complex system from
time series (or from data where we can sufficiently define target variable and source
variables) which preserve directness and uniqueness of the hyperlinks: To detect parental
hyperedges for individual target Y, we first find all variables with causal effect on Y
using mutual information. For variables which did not have a causal effect on their own,
we also compute multivariate mutual information between tuples of theese varaibles and
the target variable, to find out if they have an effect as a pair (those that had an effect
themselves force the effect as a tuple with any variable). Potentially continue with triplets
and so on. Then determine the direct causality of each surviving variable and tuple. For
each direct hyperedge, we then divide the causal effect to individual variable and tuple
using partial information decomposition to get direct unique causal hypergraph. The
algorithm in this form is however very inefficient, therefore, the next step of our research
will be make this algorithm more efficient at least under some assumptions of the system.
Also Beer and Williams approach to partial information decomposition can be replaced
by another one.
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Abstract. Convolutional neural networks are not invariant under basic image transformations
like scaling, rotation or blur. Consequently, their performance falls drastically under influence
of these transformations if they did not occur in the training set. The problem is usually tackled
by augmenting the training set by these transformations. This, however, increases size of the
training set multiple times and consequently the learning process is multiple times longer and in
the case of massive datasets also much more expensive. We adjust architectures of CNNs to make
their performance more robust to rotation. For that purpose, we make use of traditional and
competitive approach to neural networks in image classification, so called handcrafted features.
In particular, we use a handcrafted feature called Bispectrum which is invariant under rotation.
The rotation was chosen as an easy case to work with. However, all the procedures are supposed
to be generalized to other transformations in later research.

Keywords: Augmentation, Bispectrum, convolutional neural networks, invariants, rotation

Abstrakt. Konvoluční neuronové sítě nejsou invariantní na základní obrázkové transformace
jako škálování, rotace nebo rozmazání obrázku. Jejich úspěšnost se proto velmi významně snižuje
pod vlivem těchto transformací, pokud nefigurovaly v trénovací množině. Obvykle se tento prob-
lém řeší tzv. augmentováním trénovací množiny, což ale mnohonásobně zvyšuje její velikost, a
tudíž i čas potřebný k trénování. V případě obrovských datasetů to i výrazně zvyšuje cenu
trénování. V této práci přicházíme s novými architekturami konvolučních sítí, které jsou více ro-
bustní na rotaci obrázků. Využíváme k tomu tradičního a konkurenčního přístupu k neuronovým
sítím v obrázkové klasifikaci, tzv. handcrafted příznaků. Konkrétně využíváme handcrafted příz-
nak, který se nazývá Bispektrum a je invariantní na rotaci. Rotace byla zvolena jako jednoduchý
případ deformace, ale v budoucím výzkumu se zaměříme na zobecnění všech postupů na jiné
deformace.

Klíčová slova: Augmentace, Bispektrum, invarianty, konvoluční neuronové sítě, rotace

1 Introduction

Since early 1960’s, researchers have been developing automatic image recognition and
classification techniques. The traditional approach relies mainly on object description
by means of features, which are measurable quantities that are able to uniquely charac-
terize object classes. These kinds of features, currently denoted as “handcrafted”, have
been mostly designed either as results of local differential operators (such as SIFT and

65
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SURF [11]) or as projections of the image function on a carefully selected functional basis
(typical examples are harmonic basis leading to Fourier transform, various polynomial
bases yielding image moments, wavelet basis and many others). These “projections” were
used to define various sophisticated functionals, exhibiting the invariance with respect to
intra-class variations and the ability to discriminate objects belonging to different classes.
These functionals, called invariants, were then used as an input to a traditional classifier
such as minimum-distance, SVM or Bayesian one [4]. For a comprehensive survey of
handcrafted techniques see [5], Chapter 2, and further references therein.

Handcrafted features perform well in image recognition if there exist a (sufficiently
simple) mathematical model of intra-class variations (typically if these variations com-
prise basic geometric transformations such as scaling, rotation, or global affine/projective
transform for instance). In the case of generic classes with a wide intra-class variability,
designing invariant and discriminative handcrafted features is usually very difficult or
even impossible.

As an alternative to the handcrafted features, deep learning approach and convolu-
tional neural networks (CNN) appeared in early 1980’s [6]. They were inspired by the
visual perception in the human brain and went beyond the conventional framework which
separates feature design from classifier training. However, during the first 30 years of
their existence, they represented just a marginal research direction. They have attracted
a noticeable attention of image processing community only since 2012, when a CNN
named AlexNet won the ImageNet Large Scale Visual Recognition Challenge [17]. Soon
the recognition rate have surpassed the human performance [8] thanks to a substantial
increase of the computer performance at that time.

Instead of working with features "manufactured" beforehand, CNNs generate features
by a cascade of convolutions and downsampling. Parameters of each convolution kernel
are learned by a backpropagation algorithm. There are many convolution kernels in each
layer, and each kernel is replicated over the entire image with the same parameters. The
function of the convolution operators is to extract various features of the input. The
network capacity depends on the number of layers. The first convolution layers obtain
low-level features, such as edges, lines and corners. The more layers the network has,
the higher-level features it produces. CNNs virtually skip the feature extraction step
and require only basic preprocessing, which makes them, if enough training data and
computing capacity are available, very powerful [2].

After a dynamic development in 2012-20, when many successful applications were
reported, CNNs seem to have reached their limits. Further CNN’s development just
by “evolution” is unlikely. Based on a comprehensive literature search and on our own
experience, we have identified the following major drawbacks of current CNNs applied to
image recognition.

• Low-level image representation. CNNs take a pixel-wise representation of images
as an input, they do not perform any preprocessing, salient feature extraction, and
other steps common in traditional image recognition. On the one hand, the pixel-
level representation is highly redundant while on the other hand it is unable to
capture even very simple intra-class variabilities.

• Limited invariance. Even if we have a model of intra-class variations, it is very dif-



Non-augmented Neural Networks Robust to Rotation 67

ficult to incorporate the model into a CNN to achieve better efficiency. If the intra-
class variability comprises rotation, scaling, and/or other simple-to-model trans-
formations, the pixel-wise representation is not invariant to them. Current CNNs
handle this by the augmentation of the training set, which is in fact a brute-force
approach where we first artificially generate all possible transformations of training
samples and the CNN is trained on this augmented set. Clearly, this is an extremely
time and memory consuming process.

• Massive training. To achieve a good performance, CNNs should be trained on very
large databases. This is partially implied by their limited invariance (see above)
but even without the augmentation, the training set should be mostly much larger
than in traditional approaches. Considering that the training set must be selected
and annotated by domain experts, this is an expensive and time-consuming step.

• The problem scale versus the computer performance. In 2012-16, when CNNs exhib-
ited a quick development and penetrated into many application areas, we witnessed
a dynamic increase of computer performance. Powerful computers helped to resolve
many large-scale problems, namely in image retrieval, despite the necessity of data
augmentation and time-consuming training. However, nowadays the development
seems to level out. Image databases collected by Google, Facebook and by many
other commercial, research, and governmental organizations are so huge, that we
need to make a qualitative step towards an efficient search and recognition. To rely
just on continuous computer performance growth in a combination with current
CNNs is not enough, because the problem scale increases faster than the computer
performance.

CNNs have no true invariance hard coded by design. We have identified three ap-
proaches proposed in the literature that introduce invariance. The first one is similar
to image normalization, e.g. in spatial transform networks [9], where a geometric trans-
formation module is trained to put inputs/features into some predefined position while
minimizing the network loss. Another approach is to transform inputs/features [10, 12]
such that the intra-class variations appear as translations. The last approach transforms
the convolution filters as e.g. in [15], Group Equivariant Convolution Networks [3] and
Harmonic Networks [18]. All the methods can handle simple geometric transformations
only. Generalization to more complex intra-class variations using these approaches is in
most of the cases theoretically unfeasible.

The proposed methods of fusing handcrafted features with features learned by CNNs
range from simple concatenation of features before classification or fusion at the score
level [14, 13] to more advanced approaches such as learning features with handcrafted
features as CNN’s inputs [16, 1] or calculating handcrafted features from learned features
[7]. However, none of the studies considered the possibility to harness invariant properties
of handcrafted features.

In this paper, we incorporate a rotation invariant called Bispectrum to a CNN so it
is more robust to a rotation transformation. Even very successful CNNs perform heavily
worse on rotated images if the transformation was not included in the training set. This is
usually handled by augmentation of the training set where each image is repeated several
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times with distinct rotations which increases the training set many times. Consequently,
the training process is much longer. We are not able to make a CNN fully invariant
to rotation without a bigger drop of performance on non-rotated images yet. However,
the experiments show that we are at least able to significantly mitigate the degradation
caused by this transformation without changing the training set at all. In our research,
we will try to generalize all the results to other types of transformations (like scaling or
blur) as well.

2 Bispectrum
A rotation in Cartesian coordinates is a shift in polar coordinates. Therefore, the idea
of defining an invariant under rotation is to transform the image to polar coordinates
because it is easier to get rid of a shift than a rotation. Let I ∈ Rm,n be an image
function in polar coordinates with rows referring to L2-distance and columns referring to
the angle of the image in Cartesian coordinates. If the original image is rotated by an
angle α, the image in polar coordinates assigned to that rotated image is

I(r, ϕ+ α). (1)

Bispectrum eliminates α in (1) and it does so for every row separately. Let F denote
the Fourier transform. Then Bispectrum B ∈ Rm,n of an image I ∈ Rm,n in polar
coordinates is defined as

B(k, ξ) = F(I(k, ·))2(ξ) · F∗(I(k, ·))(2ξ mod n) for every k ∈ {1, 2, . . . ,m}

where ξ ∈ {1, 2, . . . , n}, all multiplication is element-wise and ∗ denotes complex conju-
gate.

Then k-th row of Bispectrum BR of a rotated image I(r, ϕ+ α) in polar coordinates
is

BR(k, ξ) = F(I(k, ·+ α))2(ξ) · F∗(I(k, ·+ α))(2ξ mod n) =

= F(I(k, ·))2(ξ) · F∗(I(k, ·))(2ξ mod n)e−2πiξ2αe2πi2ξα =

= B(k, ξ).

Therefore, Bispectrum is clearly invariant under rotation.

3 Methodology

3.1 Pixel model

First, we used a classic CNN with pixels of an image as an input. As we exhibited all the
experiments on the MNIST dataset, we used a very simple architecture depicted on Fig.
1, i.e. two convolution layers (first one with 32 feature maps, the second one with 64)
with max pooling, followed by a fully-connected layer. The second convolution layer was
trained with 0.5 dropout regularization. The activation function is hyperbolic tangent
on the convolution layers and softmax on the output layer which contains 10 nodes, each
one corresponds to a class.
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Figure 1: Architecture of the pixel model

3.2 Bispectral model

Second, we replaced the pixel-wise representation of an image by Bispectrum and used it
as an input to a neural network. Such an architecture is obviously rotationally invariant.
Moreover, Bispectrum contains full information of an image except for its rotation, i.e.
there is an (computationally expensive) inversion of Bispectrum back to the image. The
architecture remained the same as in the previous case, only the input was changed.

Bispectrum
Conv + max
pooling

Conv + max
pooling

FC layer
(classifier)

Figure 2: Architecture of the bispectral model

3.3 Parallel model

Third, we combined the first two approaches into one neural network, see Fig. 3. The
network has two branches, the first branch takes pixels as an input, the second takes
Bispectrum. Both branches have two convolutional layers with max pooling, the branches
are connected together by a fully connected layer.

It turns out that if the network is learned like that, it considers almost only the
pixel branch and assigns almost zero weights to the bispectral branch. We verified many
times that the network has almost identical performance to the pixel model including the
degradation when images are rotated. The reason is that automatic learning adjusts the
weights only to the images which are in the training set. The optimization algorithm does
not consider that the network will maybe once deal with rotated images where Bispectrum
would be more relevant and important for better performance. The optimization is
performed only for non-rotated images where pixels are more relevant and they can
achieve excellent results on their own. Hence, the learning process basically switches off
the second branch.

Therefore, the architecture must be adjusted to deal with this issue. We do that by
pretraining the pixel and bispectral branch separately, i.e. by loading the convolutional
weights from the first two models and freezing them in training. Hence, only the fully-
connected layer is learned. Moreover, we change the loss function so that it penalizes the
network for prioritizing the first branch over the second branch. Let W1 denote the sum
of all weights in absolute value going to the fully connected layer in the first branch. Let
W2 denote the same for the second branch. Then we adjust the classic sparse categorical
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Figure 3: Architecture of the parallel model

crossentropy (which is used in all our other experiments) in the following way

loss = sparse categorical crossentropy +K · W1

W2

(2)

where K is a constant. Therefore, if the network prioritizes the pixel branch over the
bispectral branch, W1 is greater than W2 and the loss function grows.

3.4 Ensemble model

In the case of non-rotated images, the pixel model performs excellently. The output of
the network are ten numbers, summed to 1, each signifies the probability that the image
is certain digit. If the network accepts non-rotated image, one of these ten numbers is
usually almost 1 while the others are almost zero because the network performs very
good on MNIST. However, if we rotate an image at the beginning, the network is not
that certain at all. Therefore, the principle of the ensemble is to let the pixel model
compute and if the maximum of the ten numbers exceeds certain threshold, we believe
that we deal with a non-rotated image and we let the pixel model decide. However, if
the maximum is below that threshold, we expect it to be a rotated image and bispectral
model decides. The threshold was set to 0.995.

4 Experiments
All experiments were performed on MNIST dataset of handwritten digits. The images
are black and white with 28 rows and 28 columns. All models were trained on 60 000
samples without any augmentation, i.e. none of the images was rotated. We made three
types of test set. The first one contains 10 000 non-rotated images, it is an original part
of MNIST dataset. The second one contains the same images, but each one was randomly
rotated by 30–90 degrees. The third set is union of the first and second one. Therefore,
accuracy of the third set is arithmetic mean of the first two.

The K constant from the Equation (2) was chosen as 20. The optimization was
performed by Adam algorithm with learning rate 0.001 in all cases. The batch size was
set to 10.

To get Bispectrum, the image has to be first transformed to polar coordinates. It
was done so by using incircle in the image. The images in polar coordinates are then of
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size (14, 56) where the rows relate to L2 distance and columns to the angle. We chose
56 columns to keep the number of pixels the same. The linear interpolation was used.
Bispectrum is then of size (14, 56).

The results are summed in Table 1, the numbers represent accuracy. On the set
of non-rotated images, the pixel model is the best with 99.28 % which is no surprise,
even very simple CNNs perform excellently on MNIST dataset. However, we can see
that the performance dropped drastically if we rotate the images. The bispectral model
classified 82.63 % of images correctly. The little drop of performance in case of rotated
images is probably caused by using incircle instead of excircle in the transformation to
polar coordinates, so a bit of information can be lost. However, the model is almost
invariant and performs much better in the case of rotated images. Next, parallel model
and ensemble model are worse by only 2 % on non-rotated set then the pixel model,
but both perform significantly better on rotated images, however worse then bispectral
model. If both rotated and non-rotated images are equally presented, these two models
outperform the others.

Set 1 Set 2 Set 3
Pixel model 0.9928 0.4429 0.7179
Bispectral model 0.8263 0.8175 0.8219
Parallel model 0.9724 0.7691 0.8708
Ensemble model 0.9735 0.7981 0.8858

Table 1: Accuracies of our models on test sets of MNIST dataset. Set 1 is the original
test set of MNIST containing non-rotated images. Set 2 contains the same images as Set
1 but randomly rotated by 30-90 degrees. Set 3 is union of Set 1 and Set 2.

In Table 2, we present the same results, but on images from the training set. These
numbers are not so much different from the test sets.

Set 1 Set 2 Set 3
Pixel model 0.9977 0.4526 0.7251
Bispectral model 0.8342 0.8282 0.8312
Parallel model 0.9766 0.7738 0.8752
Ensemble model 0.9775 0.8106 0.8941

Table 2: Accuracies of our models on training sets of MNIST dataset. Set 1 is the original
training set of MNIST containing non-rotated images. Set 2 contains the same images as
Set 1 but randomly rotated by 30-90 degrees. Set 3 is union of Set 1 and Set 2.

5 Discussion
We showed that the classic CNN performs very poorly on rotated images if the training
set was not augmented by this rotation. That was an expected behaviour. If we replace
the input by Bispectrum, we get a network invariant under rotation, but the accuracy
drops to 83 %. The parallel and ensemble models have significantly smaller drop on
non-rotated images and degrade much less on rotated images.



72 V. Košík

Although the ensemble gives the best results on the third set, its usage in other
datasets might be questionable. MNIST dataset is very simple and even a CNN with
only three layers can achieve almost perfect results. Therefore, we rely on the fact that
the CNN classifies with very high certainty which does not have to be true in more
complicated datasets.

Since Bispectrum contains full information about an image, it could theoretically get
to the same numbers as the pixel-wise representation on non-rotated images. Theoretical
justification for convolutions on pixels does not hold for Bispectrum which is in spectral
domain. This could be a reason for the worse numbers, probably a different architecture
would be more suitable. Moreover, if we make a small change in the pixel-wise represen-
tation, it can change Bispectrum significantly. This could be another reason for worse
performance.

The rotation is only an example of a transformation which degrades CNN’s perfor-
mance if it is not included in the training set. We consider it as rather a simple example
that helps us researching new architectures of neural networks. Then we want to ex-
plore more complicated transformations like blur and others and utilize the results and
experience gained with rotation and invariants in general.
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advisor: Václav Klika, Department of Mathematics
Faculty of Nuclear Sciences and Physical Engineering, CTU in Prague

Abstract. Multiple generalizations and modifications have been made to the Turing model
for pattern formation in order to obtain a more faithful portrayal of the biological or ecological
reality, most of which present the underlying reaction-diffusion (RD) equations with additional
complexity. Among these generalizations is the concept of spatial heterogeneity which, mathe-
matically speaking, turns the autonomous linearized RD system of ODEs into a non-autonomous
one, making the search for an analytic solution all but futile. However, approximate methods
can be used to investigate qualitative and even quantitative properties of the (usually) unknown
exact solution, as has been the case with the WKBJ analysis presented by Krause et al.[1] In our
present paper, we focus on building the general mathematical fundaments of such an analysis,
providing approximation theorems for the Liouville-Green approximation (ı.e. WKBJ approxi-
mation in the absence of turning points) of the solution to linear systems of ODEs in one spatial
dimension, including upper bounds of the error of such an approximation. We proceed by clas-
sifying systems by their spectral properties, carefully distinguishing between the exponential
and the oscillatory cases, before merging the results into a single approximation theorem. It is
worth noting, however, that our approach does not explicitly employ the usual WKBJ modes
but rather exploits the well-known properties of the Airy functions, which display identical
asymptotic behaviour, a fact readily used in the proof. Subsequently, we focus specifically on
the RD equations, demonstrating the spectral properties utilized in the approximation theorems
for a typical Turing system, hence arguing that the deployment of this asymptotic analysis is
reasonable in the context of RD equations and Turing instability. As noted in the discussion,
the arguably biggest shortcoming of our analysis is the exclusion of turning points and the
resulting absence of connection formulae.

Keywords: Liouville-Green approximation, WKBJ, reaction-diffusion systems, Airy functions

Abstrakt. V snahe o verneǰśı popis biologickej či ekologickej reality sa Turingov model stal
objektom viacerých modifikácíı a zovšeobecneńı, ktoré spravidla d’alej pridajú pŕıslušnému
systému reakčno-difúznych (RD) rovńıc na komplexnosti. Medzi tieto zovšeobecnenia patŕı aj
koncept priestorovej heterogenity, ktorý - v reči matematiky - zmeńı linearizovaný RD systém
ODR z autonómneho na neautonómny, č́ım sa nájdenie analytického riešenia (i linearizovanej
sústavy) stáva prakticky nemožným. Použitie aproximat́ıvnych metód však umožňuje skúmat’

nielen kvalitat́ıvne, ale aj kvantitat́ıvne vlastnosti tohto spravidla neznámeho presného riešenia,
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ako to ukázala analýza v podańı Krauseho et al. [1] Náš text sa sústred́ı na položenie matema-
tických základov takejto asymptotickej analýzy prostredńıctvom aproximačných teorémov pre
Liouville-Greenovu aproximáciu (t.j. WKBJ aproximáciu bez bodov obratu) riešenia lineárnych
systémov ODR v jednej priestorovej dimenzii, vrátane odhadov chyby takejto aproximácie. Náš
postup klasifikuje systémy podl’a spektrálnych vlastnost́ı, čo nám umožňuje dôsledne rozlǐsovat’

pŕıpad exponenciálneho a oscilujúceho riešenia, aby sme oba výsledky následne zhrnuli do
spoločného aproximačného teorému. Za zmienku azda stoj́ı, že pri tom nevyuž́ıvame WKBJ
módy v klasickom tvare, ale miesto toho už́ıvame známych vlastnost́ı Airyho funkcíı, ktoré vy-
kazujú identické asymptotické chovanie, čo sa odzrkadl’uje aj v pŕıslušnom dôkaze. Následne
svoju pozornost’ obraciame priamo k RD rovniciam, u ktorých za ’turingovských’ predpokladov
nachádzame práve tie spektrálne vlastnosti, na ktorých je postavený dôkaz predchádzajúcich
aproximačných teorémov. Tým demonštrujeme oprávnenost’ využitia týchto asymptotických
nástrojov na skúmanie RD rovńıc a turingovskej nestability. Ako upozorňujeme v sekcii veno-
vanej diskusii, najvýznamneǰśım nedostatkom našej analýzy je neuvažovanie bodov obratu a s
tým súvisiaca absencia spojovaćıch formúl.

Kl’́učové slová: Liouville-Greenova aproximácia, WKBJ, reakčno-difúzne systémy, Airyho funkcie

Full paper: J. Kováč and V. Klika. Liouville-Green approximation for linearly coupled
systems: Asymptotic analysis with applications to reaction-diffusion systems. Discrete
and Continuous Dynamical Systems – S 15 (2022), 2553–2579.
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Abstract. We study integrable and superintegrable systems with magnetic field possessing
quadratic integrals of motion on the three-dimensional Euclidean space. In contrast with the case
without vector potential, the corresponding integrals may no longer be connected to separation
of variables in the Hamilton–Jacobi equation and can therefore have more general leading order
terms.

We focus on two cases extending the physically relevant cylindrical– and spherical–type
integrals. We find three new integrable systems in the generalized cylindrical case but none in
the spherical one. We conjecture that this is related to the presence, respectively absence, of
maximal abelian Lie subalgebra of the three-dimensional Euclidean algebra generated by first
order integrals in the limit of vanishing magnetic fields.

We find only one (minimally) superintegrable system among the integrable ones. It is the
first system with a magnetic field which does not separate in any coordinate system. The results
can be applied to the relativistic case as well due to vanishing scalar potential. This is crucial
for the potential applications: Our system models an electron injected into a helical undulator
inside an infinite solenoid, a key component of free electron lasers producing powerful pulses of
circularly polarized radiation.

Keywords: integrability, superintegrability, magnetic field, generalized cylindrical and spherical
cases, classical mechanics

Abstrakt. V této práci se zabýváme integrabilními a superintegrabilními systémy s magne-
tickým pole ve třídimenzionálním Euklidovském prostoru, které mají kvadratické integrály po-
hybu. Protože tyto integrály v případě s magnetickým polem nesouvisí se separací proměnných
Hamilton-Jacobiho rovnice, mohou mít jejich členy nejvyššího řádu obecnější tvar.

Zaměřujeme se na dva fyzikálně relevantní případy, konkrétně rozšířený cylindrický a sférický.
V rozšířeném cylindrickém případě nacházíme tři integrabilní systémy, v rozřířeném sférickém
však žádný. Domníváme se, že by to mohlo souviset s maximální abelovskou Lieovou podalge-
brou třídimenzionální Euklidovské algebry generovanou integrály prvního řádu, která v limitě

∗This work was supported by the Grant Agency of the Czech Technical University in Prague, grant
No. SGS22/178/OHK4/3T/14
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nulového magnetického pole buď je, nebo není přítomna.
Mezi těmito integrabilními systémy nacházime pouze jeden (minimálně) superintegrabilní

systém. Jedná se o první systém s magnetickým polem, který není separabilní v žádné sou-
řadné soustavě. Protože má tento systém nulový skalární potenciál, platí tyto výsledky i pro
relativistický případ. To je zásadní pro potenciální aplikace, neboť náš systém popisuje elektron
prolétavající šroubovicovým undulátorem, který je vnořen do solenoidu. Ten je klíčovou kom-
ponentou laseru na volných elektronech, který produkuje silné pulsy kruhově polarizovaného
záření.

Klíčová slova: integrabilita, superintegrabilita, magnetické pole, zobecněný cylindrický a sférický
případ, klasická mechanika

Full paper: O. Kubů, A. Marchesiello, L. Šnobl. New classes of quadratically integrable
systems in magnetic fields: the generalized cylindrical and spherical cases. arXiv preprint,
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A Fibonacci’s Complement Numeration
System

Jana Lepšová

3rd year of PGS, email: lepsojan@fjfi.cvut.cz
Department of Mathematics
Faculty of Nuclear Sciences and Physical Engineering, CTU in Prague

advisors:
Ľubomíra Dvořáková, Department of Mathematics
Faculty of Nuclear Sciences and Physical Engineering, CTU in Prague
Sébastien Labbé, Laboratoire Bordelais de Recherche en Informatique
Université de Bordeaux & CNRS

Abstract. With the two’s complement notation of signed integers, the fundamental arithmetic
operations of addition, subtraction, and multiplication are identical to those for unsigned binary
numbers. In this work, we consider a Fibonacci-equivalent of the two’s complement notation. A
transducer provided by Berstel computes the sum of the Zeckendorf binary representation of two
nonnegative integers. In this work, we consider a numeration system also based on Fibonacci
numbers but representing all integers. As for the two’s complement notation, we show that
addition of integers represented in this numeration system can be computed with the Berstel
transducer with three additional transitions. Whether this can be done more generally is an
open question raised by the current work.

Keywords: two’s complement, numeration system, transducer, Fibonacci

Abstrakt. Two’s complement (komplementární do dvou) reprezentace celých čísel mají vlast-
nost, že základní aritmetické operace sčítání, odečítání a násobení jsou stejné jako u klasických
binárních reprezentací přirozených čísel. V tomto příspěvku představujeme analogii komplemen-
tárních reprezentací k Fibonacciho reprezentacím. Berstelův transducer z roku 1986 provádí
sčítání Fibonacciho reprezentací dvou přirozených čísel. V tomto příspěvku zkoumáme nume-
rační systém, který má jako bázi také Fibonacciho čísla, ale reprezentuje všechna celá čísla.
Dokážeme, že sčítání dvou reprezentací celých čísel v tomto numeračním systému lze provést
Berstelovým transducerem se třemi přidanými hranami. Součástí dalšího výzkumu je otázka,
pro jaké další numerační systémy lze tento postup zobecnit.

Klíčová slova: two’s complement, numerační systém, transducer, Fibonacci

1 Introduction

A nonnegative integer can be written as a sum of powers of 2 which gives rise to its
binary expansion over alphabet Σ = {0, 1}. Binary representations can be added with a
standard algorithm - starting from the least significant digit and transferring a carry at
each step. In the case that one of the representations is shorter in length, it is padded
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with the prefix of leading zeroes, as in the following example.

11 01011
+17 10001

28 11100

(sum of binary representations)

Among all the ways to generalize this approach to all integers including negative ones
is the two’s complement notation, see [11, §4.1]. In the two’s complement representation
of integers, the value of a binary word w = wkwk−1 · · ·w1w0 ∈ Σk+1 is

val2c(w) =
k−1∑
i=0

wi2
i − wk2k. (1)

It can be seen that for every w ∈ Σ∗, val2c(00w) = val2c(0w) and val2c(11w) = val2c(1w)
and for every n ∈ Z there exists a unique word w ∈ Σ+ \ (00Σ∗ ∪ 11Σ∗) such that
n = val2c(w). The word w is called the two’s complement representation of the integer
n, and we denote it by rep2c(n).

The main interest with the two’s complement notation is that the fundamental arith-
metic operations of addition, subtraction, and multiplication are identical to those for
unsigned binary numbers. For example, we perform below the addition of the represen-
tations seen previously, this time interpreting them in the two’s complement notation.
The first word has the same value val2c(01011) = 23 + 21 + 20 = 11 but this time
val2c(10001) = −24 + 20 = −15.

11 01011
−15 10001

−4 11100

(sum of two’s complement representations)

The value of the resulting word is val2c(11100) = −24 + 23 + 22 = −4 which confirms
the computation is correct. Notice that the negative integer −4 has a shorter two’s
complement representation and in particular rep2c(−4) = 100.

Integers can also be expressed in other numeration systems [9, 8]. A typical example
uses the Fibonacci numbers instead of the powers of 2. Let (Fn)n≥0 be the Fibonacci
sequence defined with the recurrence relation Fn = Fn−1 + Fn−2, for all n ≥ 2, and the
initial conditions F0 = 1, F1 = 2, following a convention for the Fibonacci numeration
system [5]. A result attributed to Zeckendorf [13, 4, 3] and published by Zeckendorf much
later [20] (see also [10, Exercise 1.2.8.34]) says that every nonnegative integer n can be
represented as a unique sum n =

∑k
i=0wiFi of nonconsecutive distinct Fibonacci numbers

where k = max {i ∈ N : Fi ≤ n} and w = wk · · ·w0 ∈ Σ∗ \ Σ∗11Σ∗. We refer to this
numeration system on N as the Zeckendorf numeration system, we denote valZ : Σ∗ → N
its numerical value function and repZ : N→ Σ∗ \ Σ∗11Σ∗ its representation function.

In [1], an algorithm is given to compute the addition of nonnegative integers repre-
sented in the Zeckendorf numeration system. The representations v, w ∈ Σk (of which
the shorter in length is padded with leading zeros) are added digit by digit to obtain a
word u ∈ {0, 1, 2}k of the same length u = (vk−1 + wk−1) . . . (v0 + w0). The word u is
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given as input to a 10-state transducer TZ [1, p. 22] called the adder by Berstel reading
from left to right. The word TZ(u) ∈ Σk+3 is a binary word written only with 0 and 1

with the correct Zeckendorf value valZ(TZ(u)) = valZ(v) + valZ(w).

18 0101000
+28 1001010

46 1102010→ Berstel adder→ 0010010101

(sum of Zeckendorf representations)

However, it is not necessarily in the normal form, that is, the outputted word TZ(u)
of the Berstel adder may contain consecutive 1’s. It is known [1, 17, 6] that no single
right-to-left and no single left-to-right transducer can normalize the word u ∈ {0, 1, 2}k.

Motivated by the study of aperiodic tiling of the plane by Wang tiles, a numeration
system F representing all integers in Z in a unique way based on Fibonacci numbers was
introduced recently [12]. The goal of this contribution is to prove that it is the Fibonacci-
equivalent of the two’s complement notation. More precisely, we prove herein that the
numeration system F is such that addition is performed using Berstel’s adder (with three
additional transitions) regardless of the sign of the entries. The numeration system F
is based on a value map valF : Σ(ΣΣ)∗ → Z defined for every odd-length binary words
w = w2kw2k−1 · · ·w0 ∈ Σ2k+1 as

valF(w) =
2k−1∑
i=0

wiFi − w2kF2k−1 (2)

which is an analog of (1) using Fibonacci numbers instead of powers of 2.
The numeration system F extends naturally to Z2 and, in [12], it was used together

with a certain automaton A to describe a particular aperiodic Wang shift Ω.
In this contribution we prove the following result which extends the two’s complement

arithmetical properties with respect to addition to the numeration system F . We refer
the reader to Definition 2.7 for the formal definition of the sum of two representations
repF(n) + repF(m) which involves the padding of the eventual shorter word with an
appropriate neutral prefix.

Theorem 1.1. Let TF be the Berstel adder TZ to which three transitions S
0|ε−→ 000.0,

S
1|ε−→ 101.7 and S

2|ε−→ 100.6 were added from a new initial state S replacing the original
initial state. The transducer TF is a map {0, 1, 2}∗ → {0, 1}∗ such that

valF(TF(repF(n) + repF(m))) = n+m

for every n,m ∈ Z.

For example, using the numeration system F , we compute

18 0101000
+(−6) 1001010

12 1102010→ modified Berstel adder→ 110010101 ≡ 10101
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Our main result is based on the Berstel adder TZ introduced in [1] for the addition of
nonnegative integers in N. A proof that Berstel adder works was provided in [7, Corollary
4] based on the numeration system in the real base τ = 1+

√
5

2
, see also [5, 6]. Another

proof follows from [2, §2.3.2.3] where it is proved that normalization in the real base β
can be done with a finite automaton when β is a Pisot number. Pisot numbers are Parry
numbers. We extend numeration systems associated to a subset of Parry numbers called
simple Parry numbers to Z in the hope that in the ongoing work we will prove that they
all have the property of addition on N and Z being performed by the same algorithm.

2 A Fibonacci Numeration System for Z
In this section, we recall the numeration system F introduced in [12] which is defined by
the value map valF : Σ(ΣΣ)∗ → Z given in Equation (2) where Σ = {0, 1}. The first
observation to make on this value map is given in the next lemma.

Lemma 2.1. For every word w ∈ Σ∗ of even length, we have

valF(000w) = valF(0w) and valF(101w) = valF(1w).

Proof. Let w = w2k−1 · · ·w0 ∈ Σ∗ be of even length. We have

valF(101w) =
2k−1∑
i=0

wiFi + F2k − F2k+1 =
2k−1∑
i=0

wiFi − F2k−1 = valF(1w).

Thus 00 or 10 can be used to pad words without changing their value.

Definition 2.2 (Neutral prefix). Let w ∈ Σ∗ be of odd length. We say that 00 (10 resp.)
is the neutral prefix of w if w ∈ 0Σ∗ (if w ∈ 1Σ∗ resp.). We denote it by pw.

The following Lemma is an easy exercise on Fibonacci recurrence. It allows to deter-
mine the sign of valF(w) based only on the first digit of w.

Lemma 2.3. For every word w ∈ Σ∗ \ Σ∗11Σ∗ of even length we have

1. 0 ≤ valF(0w) < F2k,

2. −F2k+1 ≤ valF(100w) < 0.

The following Proposition was proved in [12].

Proposition 2.4. For every n ∈ Z there exists a unique odd-length word

w ∈ Σ(ΣΣ)∗ \ (Σ∗11Σ∗ ∪ 000Σ∗ ∪ 101Σ∗)

such that n = valF(w).

Definition 2.5 (Numeration system F for Z). For each n ∈ Z, we denote by repF(n)
the unique word satisfying the proposition.
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The neutral prefix can be used to pad words so that they all have the same length.

Definition 2.6 (Pad function). Let u, v ∈ Σ(ΣΣ)∗. We define

pad

(
u
v

)
=

(
padk(u)
padk(v)

)
where k = max{|u|, |v|} and padk(w) = pw

1
2
(k−|w|)w for every w ∈ {u, v} where pw is the

neutral prefix of the word w.

The padding allows us to define the sum of words or to represent coordinates in Zd
in dimension d ≥ 1. Here we consider the case d = 2.

Definition 2.7 (Sum of two words). Let Σ = {0, 1} and u, v ∈ Σ∗. Then we define
sum : Σ∗ × Σ∗ → {0, 1, 2}∗ as

sum(u, v) = (uk−1 + vk−1) · · · · · (u0 + v0) where
(
uk−1 . . . u0
vk−1 . . . v0

)
= pad

(
u
v

)
.

Definition 2.8 (Numeration system F for Z2). Let n = (n1, n2) ∈ Z2. We define

repF(n) = pad

(
repF(n1)
repF(n2)

)
.

In what follows, we need the following relation between the numeration system F and
the usual Zeckendorf numeration system.

Lemma 2.9. Let u ∈ Σ2k+1 for some k ≥ 0. Then valF(u) = valZ(u)− u2kF2k+1.

Proof. The observation follows from

valZ(u) = u2kF2k +
2k−1∑
i=0

uiFi = u2kF2k+1− u2kF2k−1 +
2k−1∑
i=0

uiFi = u2kF2k+1 + valF(u).

3 Addition of Zeckendorf representations on N
A sequential transducer T as defined in [18] is a septuple T = (Q,A,B∗, δ, η, i, φ) where
(Q,A, δ, i, φ) is a deterministic automaton over A∗ with the partial function δ : Q×A→
Q, the output function η : Q × A → B∗ and the final function φ : Q → B∗. We
restrict ourselves to letter-to-letter transducers, i.e. η : Q × A → B. Reading a word
u = u` . . . u0 ∈ A∗, the transducer T moves between states qk ∈ Q, with q0 = i and
qk+1 = δ(qk, uk), outputting sequentially one letter wk = η(qk, uk) ∈ B for each input
letter uk ∈ A. After reading the whole word u the deterministic automaton is in a state
q`+1 ∈ Q and the value φ(q`+1) is concatenated at the end of the output word w` . . . w0,
see also [7]. We write T (u) = w` . . . w0φ(q`+1). By writing T (q, u) we mean that the
transducer starts in an initial state q ∈ Q, i.e. T (i, u) = T (u).

The main result of this article is based on a transducer proposed by Berstel in [1,
p. 22] which we call the Berstel adder, reproduced in Figure 1.

Theorem 3.1. The Berstel adder TZ fulfills that for every input u ∈ {0, 1, 2}∗, it outputs
a word TZ(u) ∈ {0, 1}∗ with same value for the Zeckendorf numeration system:

valZ(u) = valZ(TZ(u)).
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Figure 1: The solid edges represent the directed labeled graph G which which can be
folded (after merging equivalent states) into the sequential transducer TZ known as the
Berstel adder. A vertex reached from a path u has an ellipse shape if and only if u
is minimal with respect to the radix order within the equivalence class [u]≡ and has a
rectangle shape if it u ≡ v for some word v <rad u. The solid and dashed edges with
the additional initial state S represent the sequential transducer TF which deals with
representations of negative integers as well.

4 Addition of representations in F on Z
The algorithm for addition on Z takes two integers n1, n2 ∈ Z as input. The vector
n = (n1, n2) ∈ Z2 is represented in the numeration system F . Then the coordinates
of repF(n1, n2) are are added digit by digit, giving rise to a word u = sum(n) on the
alphabet {0, 1, 2}. In this section, we prove Theorem 1.1.

We derive a transducer TF from TZ as TF = (Q∪{S}, {0, 1, 2}, {0, 1}, δF , ηF , S, φ) by
adding a new initial state S and extending δZ and ηZ of TZ in the following way

• for every q ∈ Q and every u0 ∈ {0, 1, 2}, δF(q, u0) = δZ(q, u0) and ηF(q, u0) =
ηZ(q, u0),

• δF(S, 0) = 000.0, δF(S, 1) = 101.7, δF(S, 2) = 100.6,

• ηF(S, u0) = ε for every u0 ∈ {0, 1, 2}.

Obviously starting from every state q ∈ Q different than S, the transducers TZ and TF
have the same output for every u ∈ {0, 1, 2}∗, i.e. TZ(q, u) = TF(q, u).

Proof of Theorem 1.1. I. Let u = 0u′ ∈ 0{0, 1, 2}2k. We observe that from the definition
of the transducers TF and TZ that TF(0u′) = TZ(u′) and TF(u) ∈ 0Σ2k+2. Then using
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these observations, Lemma 2.9 and Theorem 3.1 we derive

valF(TF(u)) = valZ(TF(u)) = valZ(TZ(u′)) = valZ(u′) = valZ(u) = valF(u).

II. Let u ∈ 1{0, 1, 2}2k. Then either u = 10u′ or u = 11u′ for some u′ ∈ Σ2k−1. From
the definition of the transducers TF and TZ we observe that δF(S, 10) = δZ(000.0, 10)
and δF(S, 11) = δZ(000.0, 11). Moreover,

TF(10u′) = 1TF(010.3, u′), TZ(10u′) = 00TZ(010.3, u′) = 00TF(010.3, u′),

TF(11u′) = 1TF(100.5, u′), TZ(11u′) = 00TZ(100.5, u′) = 00TF(100.5, u′).

Thus we can summarize that for u ∈ 1{0, 1, 2}2k there exists a unique w ∈ Σ2k+2 such
that TF(u) = 1w and TZ(u) = 00w. Using the previous observation, Lemma 2.9 and
Theorem 3.1, we derive the statement

valF(u) + F2k+1 = valZ(u) = valZ(TZ(u)) = valZ(w)

= valZ(1w)− F2k+2 = valF(1w) + F2k+3 − F2k+2 = valF(TF(u)) + F2k+1.

III. Let u ∈ 2{0, 1, 2}2k. Then either u = 200u′ or u = 201u′ for some u′ ∈
Σ2k−2. From the definition of the transducers TF and TZ we observe that δF(S, 200) =
δZ(000.0, 200) and δF(S, 201) = δZ(000.0, 201). Moreover,

TF(200u′) = 10TF(001.2, u′), TZ(200u′) = 001TZ(001.2, u′) = 001TF(001.2, u′),

TF(201u′) = 10TF(010.4, u′), TZ(201u′) = 001TZ(010.4, u′) = 001TF(010.4, u′).

Thus we can summarize that for u ∈ 2{0, 1, 2}2k there exists a unique w ∈ Σ2k+1 such
that TF(u) = 10w and TZ(u) = 001w. Using the previous observation, Lemma 2.9 and
Theorem 3.1, we derive the statement

valF(u) + 2F2k+1 = valZ(u) = valZ(TZ(u)) = valZ(1w) = valZ(10w) + F2k+1 − F2k+2

= valZ(10w)− F2k = valF(10w) + F2k+3 − F2k = valF(TF(u)) + 2F2k+1,

where we used the property that for every ` ≥ 0, 2F2`+1 = F2`+3 − F2`.

5 Complement version of Simple Parry numeration sys-
tem

In this section, we explore an extension of the numeration system F to numeration
systems based on simple Parry numbers, see [8]. Fibonacci numbers are closely related
to the golden mean τ = 1+

√
5

2
which is a simple Parry number.

Parry numbers are real numbers β > 1 with Rényi expansion of unity dβ(1) = (ti)i≥1
which is eventually periodic. The Parry numbers whose Rényi expansion of unity dβ(1)
is finite are called simple Parry numbers. The Rényi expansion of unity in the base β
which is finite is such that dβ(1) = t1 . . . tm implies 1 =

∑m
i=1

ti
βi (see [16] for the formal

definition). The infinite Rényi expansion of unity d∗β(1) of a simple Parry number is then
defined as d∗β(1) = limx→1− dβ(x) = (t1 . . . tm−1(tm − 1))ω.
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For all real β > 1, if we denote d∗β(1) = (ti)i≥1, there is a numeration system Uβ
canonically associated with β defined be

Un = t1Un−1 + · · ·+ tnU0 + 1, for all n ≥ 0. (3)

We denote Σβ the alphabet Σβ = {0, 1, . . . , CU − 1} where CU := supn≥0dUn+1/Une <
+∞. The following steps may be done more generally for all Parry numbers but for
simplicity we restrict ourselves to simple Parry numbers. For the canonical systems Uβ
associated to β > 1 simple Parry numbers with dβ(1) = t1 . . . tm, we can derive a linear
recurrence relation

Un =
m∑
i=1

tiUn−i for every n ≥ m. (4)

The golden mean τ fulfills that dτ (1) = 11 and we observe that 1 = 1
τ

+ 1
τ2
. Thus the

golden mean is indeed a simple Parry number and d∗τ (1) = (10)ω. The linear recurrence
relation of the associated numeration system Uτ is exactly the Fibonacci recurrence.

For β > 1 a simple Parry number, the greedy representations repβ(n) of nonnegative
integers n ∈ N possibly preceded by leading zeroes form a regular language accepted by
a deterministic finite automaton (DFA) denoted Aβ,q1 (see [15]), in other words

L(Aβ,q1) = 0∗ repβ(N). (5)

The DFA Aβ,q1 has the set of states Qβ = {q1, . . . , qm}, all of which are final. The initial
state is q1. For all j ∈ {1, . . . ,m} there are tj edges from qj to q1 labeled 0, . . . , tj − 1
and for all j ∈ {1, . . . ,m − 1} there is one edge from qj to qj+1 labeled tj. We denote
Ln(Aβ,q1) = L(Aβ,q1) ∩ Σn

β.

Lemma 5.1. The automaton Aβ,q1 fulfils that #Ln(Aβ,q1) = Un for every n ∈ N.

Let us denote Aβ,qk the DFA which arises from Aβ,q1 by changing its initial state to
qk for k ∈ {1, . . . ,m}. With Lemma 5.1 in mind, we define Vn,k = #Ln(Aβ,qk) for every
n ∈ Z. As a consequence of Lemma 5.1, Vn,1 = Un for every n ∈ N. Naturally, Vn,k = 0
for all n < 0. For every word w = wNwN−1 . . . w0 ∈ ΣN+1

β for some N ∈ N, we define

valkβ(w) =
∑N−1

i=0 wiUi − wNVN,k. (6)

We extend the automaton Aβ,qk to an automaton Akβ by creating a new initial state S
and adding two new edges S 0−→ q1 and S 1−→ qk so that L(Aβ) = 0L(Aβ,q1) ∪ 1L(Aβ,qk).

Proposition 5.2. Let k ∈ {1, . . . ,m}. For every n ∈ Z there exists a unique word
u ∈ L(Akβ)∩Σβ(Σm

β )∗\(00mΣ∗β∪1pkΣ
∗
β) such that valkβ(u) = n, where pk = tk . . . tm−1(tm−

1)t1 . . . tk−1 is the associated neutral padding word.

Note that in the numeration system F , the padding by neutral prefix pw = 10 of a
word w = 1w′ ∈ 1Σ∗ can be seen in this more general setup as putting a neutral padding
word pk = 01 after the initial letter 1, i.e. p∗w1w′ = (10)∗1w′ = 1(01)∗w′ = 1p∗kw

′.

Definition 5.3 (Numeration system Vβ,k). Let k ∈ {1, . . . ,m}. For n ∈ Z we denote by
repkβ(n) the unique word u from Proposition 5.2.
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If Uβ is a numeration system associated to β a Pisot number (Pisot numbers are
Parry numbers, see [19]) such that the characteristic polynomial of Uβ is the minimal
polynomial of the number β, then addition of nonnegative integers in the numeration
system Uβ can be performed by a finite transducer, see [14, § 7].

Question 5.4. Let β > 1 be a simple Parry number with its associated transducer for ad-
dition on N. Can we extend this transducer to handle addition on Z using the complement
version of the numeration system Vβ,k?

To achieve this, it is needed to extend Theorem 3.1.

6 Proofs of results in Section 5
Proof of Lemma 5.1. From Equation (5) we have Ln(Aβ,q1) =

⊔n
i=0{0i repβ(j) : | repβ(j)| =

n−i}. From the greediness of the representations repβ we have that for any integer n ∈ N,
#{i ∈ N : | repβ(i)| = n} = Un − Un−1 (where we consider U−1 = 0). Together,

#Ln(Aβ,q1) =
n∑
i=0

(Ui − Ui−1) = Un for every n ∈ N.

We state the following observation without proof.

Remark 6.1. For any word w ∈ Σ∗β, if w ∈ L(Aβ,qk) then w ∈ L(Aβ,q1).

Lemma 6.2. Vn,k =
∑m

d=k tdUn−(d−k+1) for any n ≥ m− k + 1.

Proof. The paths starting at qk of length n ∈ N reach the state q1 after at most m−k+1
edges. Let d denote the smallest number of edges after which a path of length n ∈ N in
the DFA Aβ,qk reaches the state q1. Then

Ln(Aβ,qk) =
m−k+1⊔
d=1

Ln−d(Aβ,q1) =
m⊔
d=k

Ln−(d−k+1)(Aβ,q1).

For any i ∈ {1, . . . , k}, the amount of different paths from qi to q1 of minimal non-zero
length is ti. The result is a consequence of Lemma 5.1.

We omit in this material the technical proof of the following Lemma which is based
on the reccurence formulas (3), (4) and Lemma 6.2.

Lemma 6.3. Let k ∈ {0, . . . ,m} and ` ∈ N. Then for any w ∈ Lm`(Aβ,qk) we have

valkβ(1w) = valkβ(1tktk+1 . . . tm−1(tm − 1)t1 . . . tk−1w).

We denote pk = tk . . . tm−1(tm − 1)t1 . . . tk−1 the neutral padding word for a certain
k ∈ {1, . . . ,m}. We observe that pk is a cyclic permutation of the smallest period of
d∗β(1) and at the same time a cycle in the automaton Aβ,qk following the maximal edges.

Lemma 6.4. Let k ∈ {1, . . . ,m} and ` ∈ N. The map w 7→ valkβ(1w) is a bijection from
the set Lm`(Aβ,qk) \ pkΣ∗β to the interval of integers {n ∈ Z | −Vm`,k ≤ n < −Vm`−m,k}.
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Proof. We see that if |w| = 0 then −V0,k = valkβ(1) − 1 < 0 = −V−m,k. Let us assume
that |w| = m` for ` ≥ 1. Then

valkβ(1w) ≥ valkβ(10m`) = −Vm`,k.

The lexicographically largest word w ∈ Lm`(Aβ,qk) \ pkΣ∗β is

wmax = tk . . . tm−1(tm − 1)t1 . . . tk−2(tk−1 − 1)(t1 . . . tm−1(tm − 1))`−1.

Then we see that

valkβ(1w) ≤ valkβ(1wmax) = valkβ(1pk0
(`−1)m)− U(`−1)m + valβ((t1 . . . tm−1(tm − 1))`−1)

= valkβ(1pk0
(`−1)m)− U(`−1)m + U(`−1)m − 1 = −Vm`−m − 1 < −Vm`−m

Therefore the codomain of the map w 7→ valkβ(1w) is indeed the interval of integers
{n ∈ Z | −Vm`,k ≤ n < −Vm`−m,k}.

Next we show that the domain and the codomain of the map w 7→ valkβ(1w) have
the same cardinality. Indeed, Lm`(Aβ,qk) \ pkΣ∗β = Lm`(Aβ,qk) \ pkLm`−m(Aβ,qk) and thus
#Lm`(Aβ,qk) \ pkΣ∗β = Vm`,k − Vm`−m,k = #{n ∈ Z | −Vm`,k ≤ n < −Vm`−m,k}.

It suffices to show that the map w 7→ valkβ(1w) is injective. We assume by contradiction
the existence of w,w′ ∈ Lm`(Aβ,qk)\pkΣ∗β such that valkβ(1w) = valkβ(1w′). Consequently,
valβ(w) = valβ(w′). Let i, i′ ∈ N be the maximal exponents so that w = 0iv and
w′ = 0i

′
v′ for some words v, v′ ∈ Σ∗β. By Remark 6.1, v, v′ ∈ L(Aβ,q1) and v, v′ are greedy

representations in the numeration system Uβ fulfilling valβ(v) = valβ(v′). It follows that
v = v′ and thus w = w′.

Lemma 6.5. Let k ∈ {1, . . . ,m} and ` ∈ N. The map w 7→ valkβ(0w) is a bijection from
the set Lm`(Aβ,q1) \ 0mΣ∗β to the interval of integers {n ∈ N | Um(`−1) ≤ n < Um`}.

Proof. We see that if |w| = 0 then U−1 = valkβ(0)0 < 1 = U0. Let us assume that |w| = m`
for ` ≥ 1. Then

valkβ(0w) ≥ valkβ(00m−110m(`−1)) = Um(`−1).

On the other hand, the word w is a greedy representation possibly preceeded by leading
zeroes and therefore

valkβ(0w) = valβ w < Um`.

Therefore the codomain of the map w 7→ valkβ(0w) is indeed the interval of integers
{n ∈ N | Um(`−1) ≤ n < Um`}.

Next we show that the domain and the codomain of the map w 7→ valkβ(0w) have
the same cardinality. Indeed, Lm`(Aβ,q1) \ 0mΣ∗β = Lm`(Aβ,q1) \ 0mLm(`−1)(Aβ,q1) and
therefore #Lm`(Aβ,q1) \ 0mΣ∗β = Vm`,1 − Vm(`−1),1 = Um` − Um(`−1).

It suffices to show that the map w 7→ valkβ(0w) is injective. We assume by contradiction
the existence of w,w′ ∈ Lm`(Aβ,q1)\0mΣ∗β such that valkβ(0w) = valkβ(0w′). Consequently,
valβ(w) = valβ(w′). To conclude we proceed as in the proof of Lemma 6.4 for k = 1.
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Proof of Proposition 5.2. We denote L = L(Akβ) ∩ Σβ(Σm
β )∗ \ (00mΣ∗β ∪ 1pkΣ

∗
β).

(Existence): If n ≥ 0 then there exists a unique integer ` ∈ N such that Um(`−1) ≤ n <

Um`. From Lemma 6.5 we obtain a word w ∈ Lm`(Aβ,q1) \ 0mΣ∗β such that valkβ(0w) = n
and we set u = 0w ∈ L. If n < 0 then there exists a unique integer ` ∈ N such that
−Vm`,k ≤ n < −Vm(`−1),k. From Lemma 6.4 we obtain a word w ∈ Lm`(Aβ,qk)\pkΣ∗β such
that valkβ(1w) = n and we set u = 1w ∈ L.

(Unicity): Let us assume by contradiction the existence of u, u′ ∈ L such that
valkβ(u) = valkβ(u′). If u ∈ 0Σ∗β then by Lemma 6.5, valkβ(u) ≥ 0 and therefore valkβ(u′) ≥ 0.
This implies u′ ∈ 0Σ∗β by Lemma 6.4. Then by Lemma 6.5, u = u′. If u ∈ 1Σ∗β then
by Lemma 6.4, valkβ(u) < 0. Therefore valkβ(u′) < 0 and by Lemma 6.5, u′ ∈ 1Σ∗β.
Consequently, by Lemma 6.4, u = u′.
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Abstract. The contribution deals with the model of an oligopolistic market evolving over
several time stages, where the companies adapt to changing input parameters while considering
the cost of change of production. The Cournot-Nash equilibrium can be established and the
algorithm for computing the corresponding vector of production strategies for each company is
described.

Keywords: Cournot-Nash equilibrium, evolution, cost of change

Abstrakt. Tento příspěvek se zabývá modelem oligopolistického trhu, který se vyvíjí v prů-
běhu několika období, v nichž se společnosti přizpůsobují proměnlivým vstupním parametrům
a přitom berou v úvahu náklady na změnu produkce. Zde můžeme určit Cournotovo-Nashovo
ekvilibrium a popsat algoritmus pro výpočet odpovídajícího vektoru produkcí pro každou spo-
lečnost.

Klíčová slova: Cournotovo-Nashovo equilibrium, evoluce, náklady na změnu produkce

1 Introduction

The aim of this contribution is to describe a certain evolving oligopolistic market viewed
by the optics of game theory and variational analysis. The game theory considers the
encounters of agents, called players, and the sets of their possible behaviour, each instance
called a strategy, leading to possible outcomes. As a result of an outcome, each player
receives a (possibly negative) price. The aim of the players is to choose a strategy which
minimizes their loss functions.

The theory is due to John von Neumann, who proposed the general framework between
1928 and 1941, leading to the joint work with Oskar Morgenstern in the book Theory of
Games and Economic Behaviour [7].

In 1950, John Nash developed the concept of what is now known as Nash equilibrium,
a state in which it does not pay off to unilaterally change the strategy.

The notion of equilibrium is much older, however. In 1838 Auguste Cournot used it
for the market with two competing producers. The said market is called duopoly, later
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generalized for more players into oligopoly. The Nash equilibrium in such a market is
known as Cournot-Nash equilibrium.

One of the many models the Cournot-Nash equilibria can be sought for is due to Sjur
Didrik Flåm, [5], who proposes to repeat the game in discrete time steps and consider
the cost related to each change of production, leading to a finite sequence of equilibria.
Jiří Outrata suggests considering this game not in each time step separately, but as an
evolutionary equilibria over the planning horizon of several time stages. This contribu-
tion describes the case when the players know what the parameters will be and plan
accordingly.

The paper is structured as follows. Section 2 describes the model of the market,
followed by Section 3 with the necessary background from the modern variational analy-
sis. Section 4 briefly explains the splitting methods and the forward-backward splitting
method that is used in the computation. Section 5 describes the computatition itself and
contains the algorithm. Finally, Section 6 gives the parameters and concrete functions to
the model. These were taken from [9], where the equilibria are computed separately for
each time step.

Throughout the text, the following notation is employed. F : Rn ⇒ Rm is a set-valued
mapping, domF is its domain, R = R ∪∞ is the extended real line, for a cone K, K◦
signifies its (negative) polar cone and −→

A
denotes the convergence within a set A.

2 Model
In this section, we properly define the above-mentioned notion of Cournot-Nash equi-
librium and apply it to a specific model of oligopolistic market respecting the cost of
change.

Definition 2.1. A (non-cooperative) Cournot-Nash equilibrium of an oligopolistic market
with l players is a vector

(x̄1, . . . , x̄l) ∈ A1 × · · · × Al such that x̄i ∈ argmin
xi∈Ai

gi(xi, x̄−i) for all i,

where xi is the production level of the ith player from his set of feasible strategies Ai, and
x−i = (x1, . . . , xi−1, xi+1, . . . xl) those of his rivals; gi(x1, . . . , xl) is the objective function
of the ith player.

The ith player then aims to minimize the function of s variables

minimize
s∑
t=1

(
cti(p

t
1, x

t
i)− 〈xti, πt(pt2, T t)〉+ βti‖xti − xt−1

i ‖
)

subject to
xti,∈ Ati, t = 1, . . . , s,

(1)

where x0
i is the initial production of the ith player and each production level xti is chosen

from the set Ati ⊂ Rn of feasible strategies of the player, n is the number of commodities in
the portfolio. Further, cti : Rm1×Rn → R represent production costs, T t =

∑l
i=1 x

t
i is the
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total production vector of commodities, the inverse demand function πt : Rm2×Rn → Rn

assigns to each value of parameter pt2 and the vector T t the vector of prices at which the
consumers are willing to demand. In addition, βti‖xti − xt−1

i ‖ is the cost of change from
production xt−1

i to xti, where ‖ · ‖ is an arbitrary norm and βti are non-negative constants,
all at time t.

Furthermore, we impose the following assumptions:

(S1) There exist open sets Bt1 ⊂ Rm1 and open sets Dti ⊃ Ati for all i = 1, . . . , l, t =
1, . . . , s, such that

• cti are twice continuously differentiable on Bt1 ×Dti ;
• cti(p

t
1, ·) are convex for all pt1 ∈ Bt1.

(S2) There exist open sets Bt2 ⊂ Rm2 for all t = 1, . . . , s, such that

• πt is twice continously differentiable on Bt2 × intR+ and πt(pt2, ·) is strictly
convex on intR+ for all pt2 ∈ Bt2;

• ϑπt(p2, ϑ) is a concave function of ϑ for all p2 ∈ B2.

(S3) Sets Ati, i = 1, . . . , l, t = 1, . . . , s are closed bounded intervals and at least one of
them belongs to intR+.

Under these assumptions, it is the last term of the function that is responsible for
the nonsmoothness of the objective function. Fortunately, this nonsmooth term does not
depend on the production of the other players, only on the previous productions of the
player in question.

The assumptions further ensure that the famous Nash theorem for the existence of
an equilibrium can be applied:

Theorem 2.1 (Nash). Suppose that the sets of feasible strategies Ai are convex and
compact and that for each i = 1, . . . , l the objective functions gi are continuous and the
functions xi → gi(xi, x−i) are convex. Then there exists a Nash equilibrium.

By means of variational analysis, the uniqueness of the solution to the problem (1)
can be shown and the said solution computed.

3 Background from variational analysis
For readers’ convenience, we review some basic notions of modern variational analysis.

Definition 3.1. Let A be a closed set in Rn and x̄ ∈ A. Then

TA(x̄) = Limsup
t↘0

A− x̄
t

= {d ∈ Rn | ∃ dk → d, tk ↘ 0 : x̄+ dktk ∈ A ∀ k ∈ N}

is the tangent (contingent, Bouligand) cone to A at x̄,

N̂A(x̄) = (TA(x̄))◦
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is the regular (Fréchet) normal cone to A at x̄, and

NA(x̄) = Limsup
x−→
A
x̄
N̂A(x) = {v ∈ Rn | ∃xk −→

A
x̄, vk ∈ N̂A(xk) such that vk → v}

is the limiting (Mordukhovich) normal cone to A at x̄,
where the ‘Limsup’ stands for the outer set limit in a sense of Painlevé and Kuratowski.

If the set A is convex, the normal cones coincide.

To state the optimality conditions, we need the subdifferential. The notion of sub-
differentials is much broader, though for a convex function it can be simply stated as
follows.

Definition 3.2. Consider a (single-valued) convex function f : Rn → R and a point x̄
with f(x̄) finite. Then

∂f(x̄) = {v | f(x) ≥ f(x̄) + 〈v, x− x̄〉, for all x ∈ Rn}

is the (convex) subdifferential of a function f at x̄.

The problem of minimizing the convex function g over the set A is equivalent to
solving the generalized equation (GE)

0 ∈ ∂g(x) +NA(x).

For a monotone mapping T , its resolvent JcT = (I+ cT )−1 with constant c is a single-
valued nonexpansive function. If T is, in addition, maximal monotone, the domain of its
resolvent is Rn.

Further, for every positive λ the set of fixed points of the resolvent is equal to the set
of zeros of the mapping, i.e. x = JλT (x) if and only if 0 ∈ T (x).

4 Splitting methods
Splitting methods are used for seeking solutions to a generalized equation 0 ∈ T (x),
where T : Rn ⇒ Rn is a monotone mapping which can be written as the sum of two other
mappings T = A + B. We apply these methods in the situation when it is possible to
find the resolvent of at least one of the mappings A and B, even though the resolvent of
T might be difficult to obtain.

The forward-backward (FB) splitting method can be used for the case when A is
maximal monotone and B single-valued. The solution to the GE 0 ∈ T (x) can be found
via the following iteration: with xk ∈ domA,

xk+1 = JckA((I − ckB)(xk)). (2)

It is easy to see that 0 ∈ T (x) is equivalent to −cB(x) ∈ cA(x) and again to x =
JcA((I − cB)(x)). Thus the formula (2) is just a fixed point iteration with a varying
multiplier ck at each step.

The method got its name because in each iteration it performs the ‘forward step’,
computing the value (I − ckB)(xk) and the ‘backward step’, computing the resolvent of
A.
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5 Computation of optimal strategies of the players

The problem of minimizing the cost function of each player is equivalent to finding the
zero of a generalized equation representing the subdifferential of the cost function. As
the sum of smooth and nonsmooth terms, the GE can be written as the sum of the
single-valued and the set-valued part

0 ∈ Fi(p, x) +Qi(xi),

where the set-valued term for the ith player amounts to

Qi(x
1
i , . . . , x

s
i ) =

s∑
t=1

(
Λt
i(x

t
i − xt−1

i ) +NAti
(xti)

)
,

with

Λt
i(ξ − a) =


βti , ξ > a,
−βti , ξ < a,

[−βti , βti ], ξ = a.

Furthermore, it can be shown that the terms Qi are maximal monotone, therefore the
FB splitting method is applicable to the problem.

It can be seen that, given some c > 0, the resolvent JcQi of Qi at an argument
(z1, . . . , zs) has the value

JcQi(z
1, . . . , zs) = (y1, . . . , ys),

where the vector (y1, . . . , ys) is the unique solution to the optimization problem

minimize
s∑
t=1

(
1

2
(yt)2 − ztyt + cβti‖yt − yt−1‖

)
subject to

yt,∈ Ati, t = 1, . . . , s,

(3)

The algorithm then can be stated as follows:
1: initialization: ε > 0, c > 0, k = 0, x0 = (x0

1, x
0
2, . . . x

0
l ) ∈ (A1)× (A2)× · · · × (Al),

2: if dist(−Fi((x1
i , . . . x

s
i )
k), Qi((x

1
i , . . . , x

s
i )
k)) ≤ ε for all i = 1, 2, . . . , l then

3: stop
4: end if
5: compute zk = xk − cFi(xk) (forward)
6: for i = 1, 2, . . . , l do
7: solve problem (3), arriving at the solution yi = (y1

i , . . . , y
s
i ) (backward)

8: end for
9: set xk+1 = y, k = k + 1 and go to 2.
For the solution to the problem (3) the implementation uses the built-in Matlab

function fmincon.
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6 Example
Let us now consider an example from [9], the market with one product (n=1), five compa-
nies (l=5) and three periods (s=3). The feasible sets are the following intervals constant
in time At1 = [1, 150], At2 = · · · = At5 = [0, 150], t = 1, 2, 3, and the cost functions are of
the form

cti(b
t
i, x

t
i) = btix

t
i +

δi
δi + 1

K
− 1
δi

i (xti)
1+δi
δi ,

where the parameters δi and Ki are constant in time and taken from [8, Table 12.1], listed
in Table 1, and only parameters bti change in time t. The values of bti are listed in Table 2.

Table 1: Values of constant production parameters for companies.
Firm 1 Firm 2 Firm 3 Firm 4 Firm 5

Ki 5 5 5 5 5
δi 1.2 1.1 1.0 0.9 0.8

Table 2: Values of parameters bti changing in time.
bti i = 1 i = 2 i = 3 i = 4 i = 5
t = 1 9 7 3 4 2
t = 2 10 8 5 4 2
t = 3 11 9 8 4 2

The cost of change βti‖xti − xt−1
i ‖ will appear only at production of companies 1, 2

and 3 with different time invariant constants

β1 = 0.5, β2 = 1, β3 = 2.

Further, the market is characterized by the inverse demand function

πt(γ, T t) = 5000
1
γ (T t)−

1
γ , (4)

where γ is a positive parameter termed demand elasticity and T t =
∑5

i=1 x
t
i is the total

supply of the commodity at time t.
The numerical computations in Matlab are in progress.

7 Conclusion
In this contribution, we study a model of a certain oligopolistic market during several
stages, leading to evolutionary equilibria, the existence of which is given by Nash theorem,
the uniqueness can be proved by methods of second-order calculus of variational analysis.
This is one of the results in the article in preparation [3].

This is work in progress and when the computations are finished, the results will be
compared to those of [9], where the authors compute equilibria for each stage separately
for the same market and data.

The FB splitting method used in this paper, though suitable for low dimensions such
as in our example, will have to be replaced with other methods in case of more complex
models.
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Abstract. This paper presents latest result about fractal structures formed by quantum purifi-
cation protocols of higher order evolution functions. Such protocols are important for maintain-
ing quantum information and communication practically realisable. Several interesting conjec-
tures are proposed based on calculations of the fractal dimensions.

Keywords: fractal, dimension, quantum information and communication

Abstrakt. Tento článek prezentuje poslední výsledky o fraktálních strukturách generovaných
purifikačními protkoly s evolučními funkcemi vyšších řádů. Takové protkoly jsou nezbytné pro
udržení kvantové informace a komunikace v spolehlivém režimu praktického užití. Na základě
numerických výpočtů fraktálních dimenzí formulujeme několik zajímavých hypotéz.

Klíčová slova: fraktál, dimenze, kvantová informace a komunikace

1 Introduction

Quantum information and communication represent modern technological branches of
science with a promise to change the world. Still, much remains to be done before
quantum computers would a become common part of our lives. One of the biggest problem
of quantum states to be successfully kept and manipulated is the decoherence. The
inescapable interaction with the environment and the quantum nature of the physics cause
the pieces of information, qubits, to be damaged. Few algorithms have been proposed, e.g.
analogues to error correcting codes to keep the quantum information and communication
realisable.The algorithms may rely on multiple copies sent with a control mechanism that
can detect the state disruption.

Our focus will lie in a different type of algorithm which was in its fundamental form
proposed in [1], formally transferred to arbitrary dimensions in [2] and further investi-
gated in [3]. In the last paper it was shown that the nonlinear character of the protocol
application causes emergence of the chaos in its pure form, easily understood via sensitive
dependence to initial conditions. One of the typical features of the chaos is revelation
of fractal shaped structures. We have previously [4] proposed single qubit version of
the protocol and have studied the fractal structure properties when applied to general

∗This work has been supported by project CAAS with registration number
CZ.02.1.01/0.0/0.0/16_019/0000778.
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mixed states. Later, we have introduced [5] modifications to the original protocol by so
called twirling gates. This enhancement gave rise to wide new sets of fractals showing
the chaos evolution can have many of theoretically possible regimes in an actual physical
implementation. Now, we show another generalisation of the protocol that naturally fol-
lows previous studies. After defining the protocol and its action we briefly review basic
knowledge, then we propose new generalisations and focus on the features that remain
same as well as those that do differ from previously known state of art. In the end, we
briefly introduce concept of Mandelbrot set and generalise it to our case; the main result
being the pictures of Mandelbrot sets and their comparisons based on the parameters of
our generalised protocols.

2 Chaotic protocol
We would like to introduce the chaotic protocol now but we essentially need to formalise
the concept of qubit first. It can be realised by any two-level physical system, e.g.
photons with two possible states of polarisation (horizontal, vertical). State of such a
system can be in its most general conditions described via density operator; given the so
called computational basis marking qubit states |0〉, |1〉 we can express the operator with
the matrix in the computational basis:

ρ =
1

2

(
1 + w u+ iv
u− iv 1− w

)
;u, v, w ∈ R, u2 + v2 + w2 ≤ 1 (1)

This form suggests geometrical interpretation of the qubit as a point in a three-dimensional
ball. The protocol of our consideration manifests as formula containing elementwise prod-
uct=:

ρ→ ρ′ ≡ U(ρ� · · · � ρ)U †

Tr(U(ρ� · · · � ρ)U †)
(2)

The matrix U is called twirling gate and it allows us to modificate the protocol action.

The original protocol used the Hadamard gate U = H = 1√
2

(
1 1
1 −1

)
but we consider

all possible twirling gates and suggest to parameterise them in following way: U = TR
where

Tτ =

(
1 0
0 eiτ

)
, Rx,ψ =

(
cosx sinxeiψ

− sinxe−iψ cosx

)
(3)

with angles x, ψ, τ ∈ [0, 2π). Of course, in the most general case such matrix can be
multiplied by any complex unit eiω but such global phase has no meaning for the physical
state, therefore we omit it. Earlier, in [5], we have derived evolution equations in terms of
w, u, v and we have shown that the asymptotic dynamics is equivalent for two protocols
with x1, ψ1, τ1 and x2, ψ2, τ2 when they satisfy:

x1 = x2 ∧ ψ1 − 2τ1 = ψ2 − 2τ2 (4)

The meaning of the equivalence lies in the fractal structure which is the same for such
operators and we gave unique relationship among the attractors of the equivalent proto-
cols. This fact reduced the set of all possible twirling operators (generally depending on
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three angles) to only two effective angles. Other symmetries have also been detected and
discussed in [5].

Now, we introduce further generalisation of the protocol. The original protocol used
one copy of the qubit to modify another copy. We suggest to use more copies, the scheme
of the new protocol is in figure 1. The key element is the cluster of CNOT operator which
are quantum version of the classical CNOT gates; such gate flips (or not) the value of
the target bit when the control bit is in state 1 (or 0). In quantum version, the states of
computational basis |0〉, |1〉 are flipped in the qubit expressed as a superposition of the
basis states. More about the quantum gates and their action can be found in [6] or other
books dedicated to quantum information. The projections noted in the scheme perform

Figure 1: Scheme of the generalised purification protocol. n−1 copies of qubit ρ are used
to repair the n-th copy via CNOT operators followed by measurement. The nonlinear
(even chaotic) behaviour arises from this measurement-based selection.

the flip and in this way they represent measuremenet-based selection. The projection
can be generally performed onto both basal states |0〉, |1〉 but the projection on the
latter states induces dull evolution where all states are mapped to a single state. Such
degenerated protocol has no relevant practical use (except for some possible reset of the
quantum state) and so we use projections of all states onto |0〉 in the rest of this paper.
The evolution equations of the general qubit follow but first we introduce factors

Nn =
n∑

k even from 0

(
n
k

)
wk , Wn =

n∑
k odd from 1

(
n
k

)
wk , (5)

Un =Re (u+ iv)n , Vn = Im (u+ iv)n (6)

that describe the nonlinear mapping imposed by the CNOT gates. The twirling operators
responsible for the geometrical modification remain in the same way as in the original
protocol and for that reason the evolution equations are
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u′ =



−Wn

Nn

sin 2x cos(ψ−τ)+

+
Un
Nn

[ sinψ sin(ψ−τ) + cos 2x cosψ cos(ψ−τ)] +

+
Vn
Nn

[− cosψ sin(ψ−τ) + cos 2x sinψ cos(ψ−τ)]

v′ =



−Wn

Nn

sin 2x sin(ψ−τ)+

+
Un
Nn

[− sinψ cos(ψ−τ) + cos 2x cosψ sin(ψ−τ)] +

+
Vn
Nn

[ cosψ cos(ψ−τ) + cos 2x sinψ sin(ψ−τ)]

w′ =



Wn

Nn

cos 2x+

+
Un
Nn

cosψ sin 2x+

+
Vn
Nn

sinψ sin 2x

(7)

There is a key observation that the twirling gates responsible for the geometrical
factors manifest the same way regardless of n. For this reason we can straightforwardly
adopt the proposition of the asymptotic equivalence and omit the parameter τ that can
be included into ψ via relation ψ2 = ψ1 − 2(τ2 − τ1).

In this paper we restrict ourselves to study the evolution of the pure states so we can
implement the theory of complex functions and discuss the analogy of the Mandelbrot set.
For that reason we now remind that pure states form the Bloch sphere u2 + v2 +w2 = 1.
Such sphere can be identified with the Riemann sphere of complex numbers. One of the
easy ways to do so lies in the geometrical intuition again. Performing stereographical
projection with respect to the south pole of the Bloch sphere, i.e. state |1〉: z = u+iv

1+w
. In

this way the pure state qubit can be described as a two-dimensional complex vector
(
1
z

)
,

more precisely a ray of projective space CP 1, therefore depending only on one complex
parameter z. The evolution of the pure state than manifests as evolution map

z′ = fn,x,ψ(z) =
zn cosx− e−iψ sinx
cosx+ zneiψ sinx

(8)

which is rational polynomial function for all considered twirling operators and the num-
ber of the qubit copies used. The number of the copies determines the degree of the
polynomials, the degree of the rational polynomial function.

We conclude we have families of protocols that depend in general on two parameters
- angles - of the twirling gate and the number n marking the degree of the function and
determined by the number of n − 1 qubit copies used to modify the n-th one. All the
protocols manifest as rational polynomial functions of a single complex variable. For such
we can exploit the accessible theory sketched in next section.
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3 Mandelbrot set
The theory of complex functions of a single complex variable grew to a wide field in the
last century thanks to names of Fatou, Julia and Mandelbrot. For the spatial reasons we
cannot give many of the fundamental theorems and refer to books like [7, 8].

The main conclusion drawn from the literature for our functions defined on the domain
equal to the Riemann sphere follows: all the complex numbers are divided into two disjoint
sets of, vaguely spoken, regular points called the Fatou set of the function and the points
exhibiting chaotic behaviour called the Julia set of the function. The union of these two
sets forms the whole Riemann sphere. The shape of the Julia set is often fractal but of
course, it can be also a common set like circle. For the exact definitions and overview of
the properties of the Julia and Fatou set, please refer to [7].

We determine the Julia set structure numerically as the analytical approach is im-
possible. After calculating the evolution of a grid of points we detect borders among
regions of states with the same asymptotical regime, these regions are called basins of
attraction. The states forming borders among the basins then belong to the s/et of our
interest. Being often a fractal we calculate its dimension d using so called box-counting
method [9]. For each family of the function of order n depending on parameters x, ψ we
obtain a single number, dimension of the borders of the basins of attractions. In this
way we obtained a map for each n: (x, ψ) → d. The reason to exclude the parameter n
lies in its physical and fundamentally important meaning. The order n (intuitively) has
marcant influence on the speed of convergence. Yet it is unclear how it modulates the
fractal shapes.

Now we introduce the Mandelbrot set. It can be defined in two equivalent forms.
Consider all complex functions of form fc(z) = z2 + c where c is a complex parameter.
Each such function creates so called filled Julia set which consists of points not diverging
to infinity which is critical attractive point for all such functions. It can be proven that
the filled Julia set of such functions is either path-connected or totally disconnected with
the Julia set being its border. We define Mandelbrot set

Mf =
{
c ∈ C|fc(z) = z2 + c has connected Julia set

}
(9)

The connected case automatically means that the Julia set has dimension equal at
least to 1. Unfortunately, there can be totally disconnected sets constructed in a way to
have arbitrary dimension. For example set of rational numbers is totally disconnected
but has dimension 1 in the standard topology of R. For this reason we cannot set up the
Mandelbrot set equivalently with the definition based on dichotomy of the dimension of
Julia set but generally for more general families of functions

M′
f = {c ∈ C|fc has Julia set with dimension ≥ 1} (10)

However, the set M′(f) possesses one crucial property: it can be numerically approxi-
mated by calculating dimensions of the corresponding fractals via box-counting method.
We are also interested in the actual value of the dimension because it meaures (in its
way) the complexity of the chaotic behaviour. Functions with the Julia set of dimension
2 are important for that reason that each point (state) belongs to the Julia set and thus
is sensitive to the smallest perturbations.
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Alternative definition of the Mandelbrot set is available thanks to Mandelbrot himself
as Mf = {c ∈ C|{f ◦n(0)|n ∈ N} is bounded}}. Alternatively saying the iterations of
critical point 0 do not converge to infinity. However, this approach is not viable for
rational polynomial functions of our consideration as there is no such pair of points with
the same properties guaranteed. Also the theorem linking the evolution of the critical
points with the connectedness of the Julia set is no more valid. The formal approach to
handle the Julia sets of rational polynomial functions lies in their definition as a closure
of all repelling periodic points. Such definition does not admit any easy classification
neither with respect to connectedness nor to orbits of critical points. For these facts we
restrict to the dimension as a sufficeint, available and useful characteristic of the function.

To make tise context of the Mandelbrot set generalisation more reliable despite the
mentioned problems mentioned, we remark that our evolution functions 8 depend on two
real variables that can be composed into a single complex constant C = eiψ tanx ∈ C
though value of x = pi

2
must be discussed separately then. For this reason we deal with

a single-parametric family of functions just like the Mandelbrot set.

4 Fractal dimension for generalised protocols
The analysis of pure states evolution clearly has following properties: the Julia set has
dimension equal at most to 2. Such case means that each qubit belongs to the Julia set
meaning it is sensitive to initial conditions. The protocol than loses its practical use for
entanglement distillation, where entangled states can be repaired after its perturbance.
However, one can efficiently use the protocol to create a random qubit. The evolution of a
generic state belonging to the Julia set runs densely through the Julia set - all states. Of
course, many iterations should be used to allow two initially closed states to be separated.

The calculation of the fractal dimension is performed by a selfmade script in Matlab
environment. The box-counting dimension [9] is computer-friendly simplified version of
the original Hausdorff dimension expressed in terms of optimal coverings. The covering is
instead performed by a grid of frames (pixels or group of pixels) to count the sets covering
the object.

First we make few notes on the case of n = 2, where the original protocol [1] takes
place with x = π

4
, ψ = 0. The fractal induced by corresponding fx,ψ has dimension .

= 1.55
and this dimension changes only slightly and continuously in the parameter neighbour-
hood.The modulation of f also changes the attractor cycles yet for practical (i.e. experi-
mental) application the sufficiently small perturbance to the protocol execution does not
yield drastic change of the result as could be expected from the chaotic nature of the
protocols. The exact description of this type of stability is not in the scope of this work
and we move on to the topic of Mandelbrot set.

The reason to take only parameters ∈ [0, π
2
] is in the inner symmetries, e.g. x and

x+ π give the same function which can be seen easily from 7.
The result of calculated relationship x, ψ → d for n = 2 is shown in figure 2. While

there seem to be regions where the dimension changes only slightly and smoothly, like
large regions of x close to 0 or π

2
where the fractal is formed by a closed curve with

d
.
= 1, region near x = pi

4
, ψ

.
= 0 where the dimension evaluates to d .

= 1.55, or large
region at x = π

4
, ψ

.
= π

2
where the dimension reaches values close to 2. These regions
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Figure 2: Overview of the dimension depending on the twirling angles x (horizontally),
ψ (vertically from top to bottom). The dimension is represented by the colour coded in
the scheme to the right. The generalised Mandelbrot set M(fn,x,ψ) is the complement of
the black region which marks parameters for which the box-counting method finds only
a set of points (dimension 0 < d < 1), typically signalling totally disconnected Julia set.

seem to be bordered by thin layers, possibly curves of sudden changes. We have to
be aware of the fact that the box-counting is a numerical method burdened with error
that can cast a bias to the results. Such bias is obvious for x .

= 0 where the function
is f(z) .

= z2 and the unit circle is distorted to a fuzzy shape. The fuzziness causes
effect where neghbouring pixels are aslo counted to the covering while they would not
be when working in higher resolution. The resolution and computational demands are
the natural drawback of this method, therefore we didn’t choose higher resolution of the
image 2. Still, the benefits of the method are far more valuable at this moment where
we check qualitative characteristics. And being aware of the complications we can avoid
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misinterpretation of the results. One of the misinterpretation would be that the black
region of seemingly dimension zero means that the Julia set is empty. From the theory
[7] the Julia set for any rational function is nonempty. However, the region capture the
Julia sets that are totally disconnected. The set of points cannot be well captured by the
boxes of the box-counting method yielding number < 1 that does not have to match the
true dimension and typically is much lower, close to 0. Yet our purpose was to show the
generalised Mandelbrot set and the black region is the complement of M ′(f2,x,ψ). The
impairment of the box-counting method actually turns out useful in this case of Julia sets
with d < 1.

For the higher orders n we present an overview in figure 3. There are three crucial
findings. First, there appears to be an additional symmetry in terms of ψ depending on
the value of n. E.g. the shape found for n = 3 seems only slightly modified and copied
three times in the image for n. Generally, our conjecture suggests there are n− 1 copies
of n = 2 similar shape to n odd case, n − 2 copies of n = 3 similar shape for protocols
of order n odd. To prove this metasymmetry in the function of dimension dn = dn(x, ψ)
is probably formidable task because no theoretical prescripton for the dimension can be
given and the nummerical methods can never give a result precise enough. At the moment
we cannot give any advice how to penetrate into the hard task of this conjecture.

The second finding is that the cases of odd n yield qualitatively different generalised
Mandelbrot sets than those of even n. The box-counting method has not detected Julia
sets with d < 1 for odd n. Such result would imply the Mandelbrot set is equal to
the whole parameter space, still there is the uncertainty of the nummerical error as
totally disconnected sets of dimension close to one can be assigned dimension 1 by the
box-counting just as it could happen for the set of rational numbers in the line of real
numbers.

Third crucial finding is that with increasing n the values of x which yield fractal
shaped Julia sets concentrate near value x = π

4
. The numerical value of the dimension

for x = π
4
, ψ = 0 has been determined to be very near (within the precision of the box-

counting) to the value 1.55 (obtained for n = 2) for other values of n up to 8 too. We
propose a conjecture that the dimension of the Julia set of the corresponding functions
fn,π/4,0(z) = zn−1

zn+1
is the same regardless of n. Again, without any analytic clue to the

dimension value this task is uncrackable.
Last point of our results is that for n = 2, x = pi

4
, ψ = π

2
the corresponding function

f(z) = z2+i
1+iz2

can be shown to have Julia set equal to the whole Riemann sphere C.
Each state undergoes deterministic chaos. Such feature might repeat for even values of
n though not for the odd values. This conjecture can be possibly grasped using tools of
geometrical transformation and multiple covering of a thorus that are used to argument
the proof for the n = 2 case, see [10].

5 Conclusion
The fact that the dimension of the Julia sets reflects the even-odd order is very inter-
esting and definitely deserves further, hopefully analytical work though the task seems
impossible to be grasped at the moment. The symmetry in terms of ψ when the order
n is changed is also very interesting and can be possibly used in experimental applica-
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tions when some angles (e.g. in terms of optical components or ion manipulation) are
difficult to implement. Possibly only one of our conjectures can be actually proved with
contemporary state of art. Still, a better numerical support for the conjectures would
mean an important step in the field. The resources to fulfill such numerical work increase
drastically with the precision, though.

One of the most interesting results is the sudden change of the dimension of the
functions’ Julia sets with small changes to the function parameters. This metachaotic
(possibly exponentially sensitive behaviour of functions fn,x,ψ that induce exponentially
sensitive response of the input variable z) behaviour of the chaotic functions has been
already noted for the mentioned functions f(z) = z2 + c where the concept of J-stability
has been proposed. We find it interesting now to try to reproduce or generalise the
knowledge of J-stability to the context of rational polynomial functions of our interest.

We also support the experimental execution of the protocol to verify the results. The
technology level of today’s state of art is probably sufficent to perform sufficent number
of iterations of the protocol.
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Figure 3: Overview of the generalised setsM(fn,x,ψ) (in black) for higher orders n. Setting
of the axes and the colormap are the same as in figure 2. Numerical bias near x = 0, x = π

2
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Abstract. This contribution addresses the problems associated with formulations of geometric
flows which depend on the existence of the Frenet frame. In order to better understand the
limitations of such motion laws and to predict their long-term behavior, we introduce new
quantity which is invariant to nondegenerate homotopies and use it to classify the space on
which these motion laws operate.
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Abstrakt. Tento příspěvek řeší problémy spojené s formulací geometrických toků křivek za-
loženou na existenci Frenetova repéru. Abychom byli schopni lépe pochopit omezení těchto
pohybových zákonů a uměli predikovat jejich dlouhodobý vývoj, zavedeme novou veličinu, která
je invariantní vůči nedegenerované homotopii. Její hodnota nám poslouží ke klasifikaci prostorů,
na nichž tyto pohybové zákony operují.

Klíčová slova: geometrický tok, lokálně konvexní křivky, Frenetův repér, nedegenerovaná homo-
topie
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Abstract. Successful and widely known works such as DQN or AlphaGo made deep reinforce-
ment learning widely popular field. They achieved super-human performance in solving complex
tasks some of which were thought impossible to solve due to e.g. number of possible states. One
of the biggest downsides, however, is still their inability to generalize across related tasks, which
for humans is very natural. The generalizing and reusing knowledge from the past is a crucial
part of a generally intelligent agent.

This work formalizes the problem of knowledge transfer in reinforcement learning and offer
a novel method for one-to-one task knowledge transfer. The method makes use of GAN model
which is tailored here specifically for reinforcement learning tasks. The method assumes unpaired
data records from source and target reinforcement learning tasks containing current state, action
and future state. Thus, the method learns how to transfer knowledge in an unsupervised way.

The work offers couple of experiments with Atari game Pong, where it demonstrates the
potential of the proposed method as well as the difficulties that arise even when used on simple
environments.

Keywords: deep reinforcement learning, transfer learning, Markov decision process

Abstrakt. Úspěšné a obecně známé práce jako DQN nebo AlphaGo se zasloužili o to, že
hluboké zpětnovazební učení je aktuálně velmi populární vědní disciplína. Zmíněné metody se
naučili řešit komplexní úlohy lépe než lidé a dokázali se dokonce naučit řešit úlohy, kde se to
považovalo za nemožné například kvůli obrovského počtu možných stavů. Jednou z hlavních
nevýhod těchto metod ale pořád zůstava jejich neschopnost zobecňovat naučené znalosti na
podobné úlohy. Zobecňování a znovupoužití již naučených znalostí je nezbytná součást obecně
inteligentních agentů.

Tato práce formalizuje problém přenosů znalostí ve zpětnovazebném učení a přináší novou
metodu na přenos mezi 2 úlohami. Metoda používá model GAN, který je v práci modifikovaný
pro použití pro zpětnovazební úlohy. Metoda přepodkládá dvě nespárované množiny datových
záznamů ze zdrojové a cílové úlohy obsahující aktuální stav, akci a budoucí stav. Z toho plyne,
že metoda se učí jak přenést znalosti mezi úlohami "bez učitele"(unsupervised learning).

Práce obsahuje vícero experimentů s Atari hrou Pong, kde se demonstruje potenciál přinášené
metody a také problémy se kterými je možno se setkat i v tomto relativně jednoduchém prostředí.
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Full paper: Ruman, M., & Guy, T.V. (2022). Learning state correspondence of rein-
forcement learning tasks for knowledge transfer. Under review in International Journal
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Abstract. In this work we study the problem of periodicity of multidimensional continued
fractions (MCFs) using the matrix properties of these algorithms.

Using this approach, we show that there exist a class of vectors which can not have a purely
periodic expansion in any unimodular weakly convergent MCF algorithm. We also discuss some
possible reasons why most of the well-known MCF algorithms seems to fail to have periodic
expansion for every base of a cubic number field.

Keywords: multidimensional continued fractions, periodicity, matrices of linear transformation

Abstrakt. V tomto textu se věnujeme algoritmům vícerozměrných řetězových zlomků a zejména
otázce periodicity těchto algoritmů. Algoritmy prezentujeme v jejich maticové podobě a ukazu-
jeme, že matice repetendu rozvojů v těchto algoritmech jsou rovny maticím jistých lineárních
transformací.

Dále ukazujeme, že existuje třída vektorů, jež nemohou mít čistě periodický rozvoj v žádném
unimodulárním slabě konvergentním algoritmu vícerozměrných řetězových zlomků. Diskutujeme
také možné příčiny toho, proč se zdá, že u většiny klasických algoritmů vícerozměrných řetězo-
vých zlomků existuje báze kubického tělesa, která nemá periodický rozvoj.

Klíčová slova: vícerozměrné řetězové zlomky, periodicita, matice lineárních transformací

1 Introduction

In 1839 [6] Hermite asked Jacobi if there is an algorithm that would detect the algebraic
degree of any algebraic number (for definitions of these terms se Preliminaries). For the
rational numbers (numbers of degree 1) is such an algorithm the decimal expansion of a
number. In the case of quadratic numbers (the numbers of degree 2) is such a system
also well-known. Namely, it is the regular continued fraction representation. However,
we still do not have a satisfactory answer for numbers of degree three and higher.

In order to solve this question, there were introduced many multidimensional contin-
ued fraction (or MCF for short) algorithms. We will focus only on the vectorial algo-
rithms. That are the algorithms that can be written as a matrix multiplication. For more
information about the other type of MCF algorithms, the geometric algorithms, see [7].

∗The work was supported by the Grant Agency of the Czech Technical University in Prague, grant
No. SGS20/183/OHK4/3T/14.
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The first and the most often studied MCF algorithm is the Jacobi-Perron algorithm,
introduced by Jacobi (1868, [5]) and later generalised by Perron (1935, [9]). Other well-
known algorithms are Poincaré algorithm (1884, [10]), Brun algorithm (1920, [3]), Selmer
algorithm (1961, [13]) and Fully subtractive algorithm (1995, [11]). There exist also
many modifications of this algorithms, for example the Algebraic Jacobi-Perron algorithm
(AJPA) by Tamura and Yasutomi (2009 [14]). For a detail description of the well-know
MCF algorithms and their properties see the books [2] and [12]. A good overview of these
MCF algorithms is also in [8].

In this work we present another approach to this problem. We study the algorithms
in their matrix form. In the main theorem (Theorem 9) we state, that every matrix of
repetend of a MCF expansion is equal to a matrix of some linear transformation. More-
over, in the third section of this text, we present a theorem, which gives us instructions,
how to find these matrices.

Using these two main results, we show, that there exists a class of vectors which
can not have a purely periodic expansion in any unimodular weakly convergent MCF
algorithm. Moreover, we show (using an example), the reason, why we believe that most
of the well-known MCF algorithms seems to fail to answer the Hermite question.

2 Preliminaries
A number α ∈ C is algebraic (over Q) if it is a root of some polynomial f ∈ Q[α]. The
set of algebraic numbers (over Q) is denoted by A. Let α and α′ be roots of the same
irreducible polynomial f . We say that α′ is a conjugate of α.

The degree of α is the least number n such that α is a root of a polynomial of degree
n. Algebraic numbers of degree two are called quadratic and algebraic numbers of degree
three are called cubic (they are roots of quadratic respectively cubic polynomial with
rational coefficients).

Let α ∈ A. The number field Q(α) is defined by

Q(α) :=
⋂
{T |T is a subfield of C, α ∈ T}.

The degree of the number field Q(α) is the dimension of Q(α) as a vector space over Q.
If α is an algebraic number of degree n, then

Q(α) = {a0 + a1α + · · ·+ an−1α
n−1|ai ∈ Q}.

Similarly, we define the number fieldQ(α1, . . . , αn) for α1, . . . , αn ∈ A asQ(α1, . . . , αn) :=⋂
{T |T is a subfield of C, α1, . . . , αn ∈ T}. It holds that for every α1, . . . , αn ∈ A, there

exists γ ∈ A such that Q(α1, . . . , αn) = Q(γ).
A number β ∈ C is called an algebraic integer if there is a monic polynomial f ∈ Z[x]

such that f(β) = 0. The set of all algebraic integers is denoted by B. The ring of integers
of the number field Q(α) is the set OQ(α) := Q(α) ∩ B.

Let s : Q(α) → Q(α) be a linear transformation. Moreover, let SB ∈ Qn,n be the
matrix of the transformation s in a basis B. It holds that if SB1 and SB2 are two matrices
of the same transformations but in different bases, then SB1 is similar to SB2 (i.e., there
exists an invertible matrix U such that SB1 = USB2U−1). Especially, they have the same
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determinant. This means that we can define the determinant of the transformation s as
det(s) = det(S), where S is an arbitrary matrix of the transformation s.

We associate to each element δ ∈ Q(α) a linear transformation tδ : Q(α) → Q(α)
which is defined by

tδ(x) = δx (1)
for every x ∈ Q(α).

The matrix of this transformation is denoted Tδ.
Let β ∈ A and γ ∈ Q(β). Then the norm NQ(β)|Q(γ) (or simply N(γ) if it is clear

in which number field γ lies) of γ is the determinant of the matrix representation of the
linear transformation tγ. In other words

NQ(β)|Q(γ) = det(Tγ) ∈ Q.
A unit in a ring R with identity 1R is an invertible element u of R, i.e., there exists an

element v ∈ R such that uv = vu = 1R. The units of a ring R form a group with respect
to multiplication, we call it the group of units U(R) of R. In the ring of integers OQ(α)

of a number field Q(α), we can characterize the group of units in the following way. Let
β ∈ OQ(α). Then β ∈ U(OQ(α)) if and only if N(β) = ±1. Due to the Dirichlet’s unit
theorem, we can also determine the rank (the number of multiplicatively independent
generators) of the group of units U(OQ(α)).

Theorem 1 (Dirichlet’s unit theorem). Let K = Q(α) be a number field. The group of
units of OK is finitely generated and its rank is equal to

r = r1 + r2 − 1,

where r1 is the number of real conjugates of α and 2r2 is the number of nonreal complex
conjugates of α.

For example, if α is a cubic number, then the group of units U(OK) has rank either
2 or 1.

Let r be the rank of U(OK). The set of units u1, . . . , ur is called the set of fundamental
units if it is multiplicatively independent and it generates (modulo roots of unity) the
group U(OK), i.e. if every unit u can be written uniquely in the form

u = ζum1
1 . . . umr

r , (2)

where mi ∈ Z for all i ∈ {1, . . . , r} and ζ is some root of unity (i.e. there exists p ∈ N+

such that ζp = 1).
If K = Q(α) is an algebraic number field of odd degree, then the roots of unity have

the following simple form.

Theorem 2 (Theorem 13.5.2 in [1]). Let K = Q(α) be an algebraic number field of odd
degree. The roots of unity in OK are ±1.

A number ring with an additive group which is finitely generated is called an order in
its field of fractions. Let α1, . . . , αn be a basis of the number field Q(α1). Z[α1, . . . , αn] =
{a1α1 + a2α2 + · · ·+ anαn : ai ∈ Z} ⊂ Q(α) is an order of rank n. By [4], the Dirichlet’s
unit theorem holds also for orders. This means that the group of units of Z[α1, . . . , αn]
is finitely generated by r = r1 + r2 − 1 generators, where r1 and r2 are as in Theorem 1.
Moreover, every unit β in Z[α1, . . . , αn] is also a unit in OQ(α) which means that we can
find β using the fundamental units of OQ(α) and the fact that N(β) = ±1.
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2.1 Vectorial MCFs

Let n be a positive integer. A vectorial MCF acts on Rn
+ and it is specified by two sets,

I and A. The first set is a countable set of subsets of Rn
+:

I = {I1, I2, . . . },

while the second set is a set of invertible matrices from Rn,n:

A = {A1, A2, . . . }

having the same cardinality as I. Given these two sets, a representation of a vector
~v ∈ Rn

+ is obtained by the following algorithm.

Algorithm 3 (Multidimensional continued fraction algorithm). Let ~v ∈ Rn
+.

Set ~v(0) := ~v, i := 0.
Repeat:
Let j be some index such that ~v(i) ∈ Ij. If there is no such j, the algorithm stops.

Otherwise set
~v(i+1) := A−1j ~v

(i)

and A(i) := Aj. Set i := i+ 1.

Definition 4. The sequence (A(i))∞i=0 from Algorithm 3 is called an (I,A) (n − 1)-
dimensional continued fraction expansion of the vector ~v.

If not ambiguous, we will often say only expansion of ~v. Moreover, we identify the
expansion of ~v with ~v, i.e., we write ~v = (A(0), A(1), . . . ).

A MCF algorithm is unimodular if the matrices from A are unimodular, that is, they
have determinant equal to ±1 and integer entries.

An expansion of a vector ~v = (A(0), A(1), . . . ) is eventually periodic if there exists N
and positive p such that A(i) = A(i+p) for all i ≥ N . We write also

~v =
(
A(0), A(1), . . . , A(N−1), A(N), A(N+1), . . . , A(N+p−1)

)
.

If N = 0, then the expansion is purely periodic.
The sequence

(
A(0), A(1), . . . , A(N−1)) is called a preperiodic part and the sequence(

A(N), A(N+1), . . . , A(N+p−1)) is called a repetend. The number N is called a preperiod
and the number p is called a period.

It follows from Algorithm 3 that

A(0) · · ·A(i−2)A(i−1)~v(i) = ~v(0),

we shall consider the preperiodic part and the repetend as matrices, i.e., R = A(0)A(1) · · ·A(N−1)

and M = A(N)A(N+1) · · ·A(N+p−1). As a shorthand, we shall use the following notation
~v = RM .

Below, when we mention a MCF algorithm, we mean an MCF algorithm for some
given (I,A) and n.
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2.2 Properties of MCFs

One of the key properties of an MCF algorithm is its convergence, which we will describe
next.

2.2.1 Weak convergence

Definition 5. Let
(
M (s)

)+∞
s=0

be a sequence of matrices from Rn,n. Moreover, let j ∈
{1, . . . , n}. We say it weakly converges to ~v ∈ Rn with respect to j-th column if the
following two conditions are fulfilled:

1. there exists P̃ such that M (P ) is positive for all P > P̃ ;

2. the sequence (
M

(s)
i,j

M
(s)
k,j

)+∞

s=P

converges to ~vi
~vk

for all i ∈ {1, . . . , n} and some k ∈ {1, . . . , n}.

Remark 6. All elements of all matrices M (s) for s ≥ P̃ are positive and therefore we can
choose k arbitrarily.

The (I,A) (n−1)-dimensional MCF algorithm is weakly convergent if for every vector
~v ∈ Rn

+ whose expansion is
(
A(0), A(1), . . .

)
with M (s) = A(0)A(1) . . . A(s) we have that the

sequence M (s) weakly converges to ~v with respect to the j-th column for every j.

2.2.2 Periodicity of MCFs

The importance of periodicity can be seen from the following theorem.

Theorem 7 ([2], Theorem 3.1.). Let ~v =

v1...
vn

 ∈ Rn
+, ~v = M in a given unimodular

MCF algorithm and M a be matrix of a repetend of ~v. We have

~v = λM~v,

where λ ∈ R and:

• λ is an algebraic unit of degree at most n.

• If the degree of λ equals n, then the numbers v1
vn
, . . . , vn−1

vn
, vn
vn

constitute a basis (as
a vector space over Q) of the number field Q(λ).

The proof of this theorem is based on the fact that ~y is an eigenvector of M and λ−1
is the corresponding eigenvalue.

We cannot omit the condition on the degree of λ since deg(λ) ≤ n − 1 would allow
vj
vn
6∈ Q(λ). For an example of such a vector and algorithm see Remark (1) in [2].
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3 Weakly convergent sequences
For now, we focus on weakly convergent sequences converging to a basis of a number
field Q(α) (as a vector space over Q) of degree n. In the next theorem we show that if
these matrices are matrices of multiplication by an element of the field, any matrix of the
sequence can be reconstructed from one of its columns.

Theorem 8. Let ~v =

v1...
vn

 be a basis (of a finite field extension of degree n as a

vector space over Q), ` ∈ {1, . . . , n} and λs ∈ Q(v1, . . . , vn). There exists a mapping
Q`,~v : Rn 7→ Rn,n such that for all sequences

(
M (s)

)+∞
s=0

satisfying

1. for all s, M (s) = T ~vλs
T , i.e., M (s) equals the transposed matrix of the linear trans-

formation tλs in the basis ~v with λs ∈ Q(v1, . . . , vn);

2.
(
M (s)

)+∞
s=0

weakly converges to ~v with respect to `-th column;

we have
M (s) = Q`,~v

(
M

(s)
•,`

)
for any s.

Moreover, there exists an n-tuple Q`,~v of matrices from Qn,n such that its i-th compo-
nent satisfies

(Q`,~v)iM
(s)
•,` =

(
Q`,~v

(
M

(s)
•,`

))
•,i
.

In what follows, we keep the same notation as in Theorem 8, i.e., we associate with
the mapping Q`,~v the n-tuple of matrices Q`,~v.

4 Periodic MCF expansions
In this section, we will use the results on weakly convergent sequences of matrices from
the previous section to investigate periodic MCF expansions. While considering a pe-
riodic expansion of ~v, i.e., while having ~v = RM , where the periodic part is already
represented as a product M of the matrices of the periodic part of the expansion, we
will not distinguish between purely and eventually periodic sequences by considering the
matrix RMR−1, called the matrix of repetend, and the equality RM = RMR−1. Doing
that, we transform the question of finding (if possible) the matrices R and M to finding
the decomposition of a candidate matrix Q into the form RMR−1, where R = R1 . . . Rk,
M =M1 . . .M` and (R1, . . . , Rk,M1, . . . ,M`) is a MCF expansion of ~v.

The following theorem states that the matrix of repetend always equals to a matrix
of multiplication by some unit.

Theorem 9. Let ~v =

y1...
yn

 be a basis of Q(y1) (as a vector space over Q), where ~v has

a periodic expansion in a unimodular MCF algorithm. Moreover, let M be a matrix of
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repetend of this MCF expansion of ~v. We have

M = T ~vε
T
,

where ε ∈ U(Z[βy1, . . . , βyn]), β ∈ Z, β 6= 0 is such that βy1, . . . , βyn are algebraic
integers, and T ~vε is a matrix of linear transformation tε (defined by (1)) in the basis ~v.

Remark 10. Let ~v =

v1...
vn

 be a basis of a number field of degree n (as a vector

space over Q), β ∈ Z, β 6= 0 be such that βy1, . . . , βyn are algebraic integers, ε, ε̂ ∈
U(Z[βv1, . . . , βvn]) and m ∈ Z. Then

T ~vε T
~v
ε̂ = T ~vε̂ T

~v
ε and T ~vεm =

(
T ~vε
)m

. (3)

this implies that

M,N ∈ {T ~vε
T |ε ∈ U(Z[βv1, . . . , βvn])} =⇒ MN = NM.

Corollary 11. Let y be an algebraic number of degree n with minimal polynomial equal
to

n−1∑
j=0

αjy
j + yn = 0,

where αj ∈ Q and α0 > 0.

The vector ~v =


yn−1

...
y
1

 does not have a purely periodic expansion in any weakly-

convergent (n− 1)-dimensional continued fraction algorithm for which A ⊂ SL(n,N).

4.1 Finding candidates on the matrix of repetend

Lemma 12. Let ~v =

v1...
vn

 be a basis of Q(v1) as a vector space over Q. We can

determine the n-tuples Qk,~v (for k ∈ {1, . . . , n}) directly from the first n powers of the
matrix M of the repetend of the vector ~v (in some unimodular wakly-convergent MCF
algorithm).

Based on this idea from the last lemma, we show in this section how to find matrices
that could potentially be the matrices of repetend of an MCF expansion of ~v in a given
weakly convergent MCF algorithm. We call such a matrix a candidate on the matrix of
repetend.

For the sake of simplicity, we do this explicitly for n = 3. We start with a lemma
which is an explicit version of ??.
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Lemma 13. Let y be a cubic number with minimal polynomial equal to α0+α1y+α2y
2+

y3 = 0, where α0, α1, α2 ∈ Q, x = γ0 + γ1y + γ2y
2, where γ0, γ1, γ2 ∈ Q and ~v =

xy
1

.

We have Q1,~v =

1 0 0
0 1 0
0 0 1

 ,

0 b1 c1
1 b2 c2
0 b3 c3

 ,

0 c1 c4
0 c2 c5
1 c3 c6

, where

b3 = γ2, c3−b2 = γ1, c2 = −γ0, α2 =
2c3 − b2
b3

, α1 =
c23 − b1 − b3c2 − b2c3

b23
, α0 =

−c1 − c3c2
b23

.

(4)
and

c4 =
c1c3 − c1b2 + c2b1

b3
, c5 =

c3c2 + c1
b3

and c6 =
c23 + b3c2 − b1 − b2c3

b3
. (5)

Or equivalently
b1 = γ2γ0 + γ1α2γ2 − γ21 − α1γ

2
2

b2 = α2γ2 − 2γ1

b3 = γ2

c1 = γ0α2γ2 − γ0γ1 − α0γ
2
2

c2 = −γ0
c3 = α2γ2 − γ1
c4 = γ0α1γ2 − γ20 − α0γ2γ1

c5 = −α0γ2

c6 = α1γ2 − 2γ0.

(6)

Remark 14. Let ŷ be a cubic number with minimal polynomial equal to α0+α1ŷ+α2ŷ
2+

ŷ3 = 0, where α0, α1, α2 ∈ Q, x̂ = γ0 + γ1ŷ + γ2ŷ
2, where γ0, γ1, γ2 ∈ Q and ~v =

x̂ŷ
1

 be

a basis of some cubic number field (as a vector space over Q). We find all the candidates
on the matrix of repetend of the MCF expansion of the vector ~v.

Let β ∈ Z be such that βx̂, βŷ are algebraic integers. Firstly, we have to realise that
the number βŷ is a cubic number, and therefore, by Dirichlet’s theorem, there are either
one or two fundamental units in Z[βŷ, βx̂].

Let ε1 = β1 + β2ŷ + β3x̂ (resp. ε1 = β1 + β2ŷ + β3x̂, ε2 = β̂1 + β̂2ŷ + β̂3x̂) be the
fundamental unit (resp. units) of Z[βŷ, βx̂]. (It follows that β is a divisor of β2, β3, β̂2, β̂3.)

It follows from Theorem 9 and Remark 10 that every candidate M on the matrix of

repetend of the MCF expansion of

x̂ŷ
1

 can be written as

M = ±
(
T ~vε1

T
)m1

(7)
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for m1 ∈ Z (respectively
M = ±

((
T ~vε1

T
)m1

(
T ~vε2

T
)m2

)
(8)

for m1,m2 ∈ Z).

We can easily verify by direct computation that
(
T ~vε1

T
)
•,1

=

x1y1
z1

, where x1 = β1 +

β2

(
γ1
γ2
− α2

)
+ β3

(
γ21
γ2
− 2γ1α2 + α2

2γ2 + 2γ0 − α1γ2

)
, y1 = β2

γ2
+ β3

(
γ1
γ2
− α2

)
, z1 = β3,

and eventually
(
T ~vε2

T
)
•,1

=

x2y2
z2

 where

x2 = β̂1 + β̂2

(
γ1
γ2
− α2

)
+ β̂3

(
γ21
γ2
− 2γ1α2 + α2

2γ2 + 2γ0 − α1γ2

)
,

y2 =
β̂2
γ2

+ β̂3

(
γ1
γ2
− α2

)
, z2 = β̂3.

Now, we can use Theorem 8 and Lemma 13 to compute the matrices T ~vε1
T (resp. T ~vε2

T ).
We use the notation from Lemma 13. We get that

T ~vε1
T
=

(Q1,~v)1

x1y1
z1

 (Q1,~v)2

x1y1
z1

 (Q1,~v)3

x1y1
z1


and similarly for the matrix T ~vε2

T .
For simplicity, we do the explicit calculation only for the case x̂ = ŷ2. In this case we

get a simpler form and that is x1 = β1− β3α1− β2α2 + β3α
2
2, y1 = β2− β3α2, z1 = β3 and

eventually x2 = β̂1 − β̂3α1 − β̂2α2 + β̂3α
2
2, y2 = β̂2 − β̂3α2, z2 = β̂3.

For i ∈ {1, 2}, we get that

T ~vεi
T
=

xi −α1yi − α0zi −α0yi
yi xi + α2yi −α0zi
zi yi + α2zi xi + α2yi + α1zi

 .

Not all of these matrices are the candidates on the matrix of repetend. In fact, only
half of them have the determinant equal to 1 (the other half has the determinant equal
to −1). We always have to check the determinant of Mx1,y1,z1 and Mx2,y2,z2 and choose
the sign in correspondence with this determinant. It can also happen that some of these
matrices are not integer matrices, and therefore they are not candidates on the matrix of
repetend. On the other hand, if ŷ is an algebraic integer, then this problem cannot occur,
and therefore we know that every such matrix (with the correct sign of the determinant)
is a candidate on the matrix of repetend.

This means that the problem of determining the candidates on the matrix of repetend

of the MCF expansion of

x̂ŷ
1

 can be solved by determining units in Z[βŷ, βx̂].
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We illustrate Remark 14 on an example. In this example, we also show the reason,
why we beleive that most of the well-known MCF algorithms seems to fail in solving the
Hermites question.
Example 15. Let y1, y2, y3 be the three positive real roots of the polynomial y3 − 6y2 +

9y − 3 = 0. We investigate the MCF expansion of the vectors ~v1 =

y12y1
1

, ~v1 =

y22y2
1


and ~v3 =

y32y3
1

. The numbers y1, y2, y3 are three real conjugates and therefore there are

two fundamental units in Z[y1, y21], Z[y2, y22] and Z[y3, y23]. The couples of fundamental
units are εi = y2i − 5yi + 5, ε̃i = y2i − 5yi + 4 for all i ∈ {1, 2, 3}.

Using Lemma 13, we get that

Q1,~vi =

1 0 0
0 1 0
0 0 1

 ,

0 −9 3
1 −6 0
0 1 −6

 ,

0 3 0
0 0 3
1 −6 9


for every i ∈ {1, 2, 3}.

Using the computation in Remark 14, we obtain that every candidateM on the matrix
of repetend of the vector ~v1, ~v2 and also ~v3 is defined by

M = ±(Mm1
1 Mm2

2 )

where m1,m2 ∈ Z,

M1 =

2 −6 3
1 −4 3
1 −5 5

 and M2 =

1 −6 3
1 −5 3
1 −5 4

 .

This mean, that the candidates on the matrix of repetend are identical for the three
vectors. In fact, if we work only with the matrices of repetend and the triplets Q•,~v, we
can not distinquish, with which of the three vectors we work. On the other hand (as we
will se bellow), the MCF expansions in the well-known algorithms (for example the Brun
algorithm) of these three vectors differ. This means, that these well-known algorithms
use some information, that is not included in the matrices of repetend. We suppose, that
this is the reason, why these algorithms seem to fail to answer the Hermite’s question.

We compare it with the expansion of ~v1, ~v2 and ~v3 in the Brun and in the Selmer
algorithm.

In the Brun algorithm, the vector ~v1, ~v2, ~v3 have the following periodic expansions.
The vector ~v1 = T32, T32T 2

21T
3
13T

2
32T21T

6
13 =MB,1 where

MB,1 =

 7 −39 45
15 −83 96
32 −177 205

 =M4
1M2.

The vector ~v2 = T12T21T13T32, T23T 2
32T23T31T13T31T13T32T

2
23T32T21T12T21T12 =MB,2 where

MB,2 =

−590 2565 −1071
−357 1552 −648
−216 939 −392

 =M−6
1 M6

2 .
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And finally the vector ~v3 = T 3
12, T21T

3
13T

2
32T21T

6
13T32T21 =MB,3 where

MB,3 = −

256 −543 198
66 −140 51
17 −36 13

 =M1M
−5
2 .

In the Selmer algorithm, we did not find a periodicpart for the vectors ~v1, ~v2, ~v3 in the
first 10000 steps.

5 Conclusion

In this text we showed a new approach to the problem of periodicity of MCF algorithms.
In Theorem 9, we proved that ever matrix of repetend of an expansion in a MCF algorithm
is equal to a matrix of some linear transformation. Moreover, we provided tools, how to
find these matrices.

Putting these informations together, we showed that there exist some vectors that
can not have a purely periodic expansion in any unimodular weakly convergent MCF
algorithm. We also provided an example which shows a problem which could be the
cause why most of the well-known MCF algorithms seems to fail to answer the Hermite
quesiton.
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Abstract. We examine search algorithm and state transfer algorithm based on discrete-time
quantum walks with coins and how they perform on graphs with fully connected vertices which
are vertices connected to all other vertices in the graph. We show that search algorithm does
not always find marked fully connected vertex with probability close to one. But we prove that
the state transfer algorithm achieves to move walker between two fully connected vertices with
probability close to one for all graphs. We also prove that search for fully connected vertex can
be improved by changing the initial state of the algorithm.

Keywords: quantum walk, search algorithm, state transfer algorithm

Abstrakt. Zkoumáme vyhledávací algoritmus a algoritmus pro přenos stavu založených na
kvantové procházce v diskrétním čase s mincí a jak fungují na grafu s plně napojenými vrcholy,
což jsou vrcholy, které jsou připojeny ke všem ostatním vrcholům grafu. Ukážeme, že vyhledá-
vací algoritmus nenajde vždy s pravděpodobností blízkou jedné plně napojený označený vrchol.
Ale dokážeme, že algoritmus pro přenos stavu přenese chodce mezi dvěma plně napojenými vr-
choly s pravděpodobností blízkou jedné pro všechny grafy. Také dokážeme, že vyhledávání plně
napojeného vrcholu může být vylepšeno změnou počátečního stavu algoritmu.

Klíčová slova: kvantová procházka, vyhledávací algoritmus, algoritmus na přesnos stavu

1 Introduction

Quantum algorithms based on quantum walks are important part of quantum computer
science. In this article we examine the search and state transfer algorithm based on
discrete-time quantum walks with coins on graphs that contains fully connected vertices
which are vertices connected to all other vertices in the graph.

We follow the work of [9] where they prove that using Laplacian matrix as a Hamilto-
nian on graph with fully connected vertex leads to finding such a vertex with probability
close to one. Laplacian matrix is defined as L = D−A where A is adjacency matrix and
D is diagonal matrix with degree of vertices dv as a diagonal elements, i.e. Dv,v = dv. In
this work we examine the same graphs using model of discrete-time quantum walks with
coins.

∗This work was supported from Student Grant Competition of Czech Technical University in Prague
under Grant SGS19/186/OHK4/3T/14 and project CAAS.
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In the first part we introduce general search and state transfer algorithm based on
discrete-time quantum walks and in second part we examine those algorithms on the
graphs with fully connected vertices.

2 General search and state transfer algorithm
In this section we present model of discrete time-quantum walks with coins and search
and state transfer algorithm which are based on them. The search algorithm (SA) was
introduce in following articles [2] and [3] and state transfer algorithm (STA) is based on
work in [4].

Starting with the concept of discrete-time quantum walks let us have a graph G =
(V,E), then we assign to every vertex v subspace Hv. Hv is known as coin-space cor-
responding to vertex v and it reads Hv = Span {|v, w〉 , w ∈ V : {v, w} ∈ E}, where the
first index v describe the position of the walker and the second index describe w describes
the direction of the walker. The Hilbert space of the graph G is a direct sum of all coin
spaces HG =

⊕
vHv. Movement of the walker is achieved by application of shift operator

Ŝ which is defined in following way

Ŝ|v, w〉 = |w, v〉. (1)

Using only the shift operator in the evolution of the walk is too simple since Ŝ2 = Î.
Hence, the so-called coin operator Ĉ is additionally applied at every step. The coin
operator acts locally at each subspace Hv. So the coin operator has a form Ĉ =

⊕
v Ĉ

(l)
v ,

where Ĉ(l)
v is local unitary coin operator. Hence, the evolution operator Û of one step of

the walk consist of application of the coin operator followed by application of the shift
operator, i.e. Û = ŜĈ.

Now that we introduce basic notation and concept of the discrete time quantum walk
we move to introduction of SA and STA, starting with SA. The main idea of SA is applying
one local coin operator to marked vertices and different local coin operator to other non-
marked vertices of the graph. The local coin operator that we use at non-marked vertices
is known as Grover operator [5]

Ĝl
v = −Î + 2|Ωv〉〈Ωv| (2)

where |Ωv〉 is equal superposition of all direction of the coin space at vertex v. Ĝl
v operator

acts locally at Hv. At the marked vertices often used coins are simple phase shift by π
or the Grover operator followed by phase shift by π. In this article we use modified
Grover coin with additional weight on the state corresponding to the loop at marked
vertex followed by phase shift by π. In [6] and [7] Wong showed that adding additional
loop at each vertex and properly tuning the weight of the loop the improves probability
of finding the marked vertex at d-regular graph. To add this weighted loop we modified
the Grover operator by replacing state |Ωv〉 with state given by

|Ωv(l)〉 =
1√
dv + l

 ∑
w,{v,w}∈E

|v, w〉+
√
l|v, v〉

 (3)
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where dv is number of neighbours of vertex v, state |v, v〉 corresponds to loop and l is
real number corresponding to the weight of the loop. Using state |Ωv(l)〉 we get modified
Grover operator Ĝ(l)

v (l) = −Î + 2|Ωv(l)〉〈Ωv(l)|. We label the choice of marked coin as
Ĉ

(l)
m for marked vertex m. Then the global coin operator of the search algorithm reads

Ĉm =
⊕
v

Ĝ(l)
v ⊕ Ĉ(l)

m (4)

Using coins operator (4) we get the evolution operator the search algorithm Ûm. We can
finally introduce the steps of the search algorithms as follows:

1. Initialize the system in the superposition of all basis states

|Ω〉 =
1√
2|E|

∑
v∈V

∑
w

{v,w}∈E

|v, w〉. (5)

2. Apply the evolution operator Ûm = ŜĈm T -times, i.e |φ(T )〉 = ÛT
m|Ω〉

3. Measure the system.

The probability of success is given by

pm(T ) =
∑
w

{m,w}∈E

|〈m,n|φ (T )〉|2. (6)

i.e. the probability that the walker is located at marked vertex at the end of the algorithm.
The success probability and number of steps T depends on the structure and the size of
the graph G.

Having introduced the SA we move to the STA. In the case of STA, we have now two
marked vertices between which we want to transfer the walker. Let us called them the
sender and the receiver and we label corresponding vertices by s and r, respectively. The
coin of STA is now given by

Ĉs,r =
⊕
v∈V
v 6=s,r

Ĝ(l)
v ⊕ Ĉ(l)

s ⊕ Ĉ(l)
r , (7)

which we use in the construction of evolution operator as follows Ûs,r = ŜĈs,r. There is
also a change of initial state of the walk. The initial state of STA is always localized at
sender vertex, equal superposition of all direction at sender vertex |Ωs〉 or state corre-
sponding to loop |s, s〉 are often chosen as initial state of the algorithm. Success of STA
depends on the choice of initial state, so the proper choice has to be done before the run
of the algorithm. In this work we use loop state as a initial state of STA. Steps of STA
are following:

1. Initialize the system in the state corresponding to a loop at sender vertex |s, s〉.

2. Apply the evolution operator Ûs,r T -times.
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3. Measure the system. The particle moves from the sender to the receiver with fidelity
F(T ) given by

F(T ) =
∑
w

{r,w}∈E

|〈r, w|ψ (T )〉|2. (8)

The number of steps T and the fidelity F(T ) depend again on the structure and the size
of the graph. We say that the algorithm achieves perfect state transfer if the fidelity is
close to 1, i.e. the particle moves from the sender to the receiver with probability close
to one.

3 Fully connected vertices in random graph

In this section we examine search algorithm and state transfer algorithm on fully con-
nected vertices. In the case of SA we use model of Erdös-Rényi graph G(N − 1, q), which
is a graph with N − 1 vertices, where each edge has probability q to be in the graph,
then we add one vertex m to the graph G and we connect it to all other vertices. In
the case of STA we use G(N − 2, q) and we add vertices of sender and receiver in the
same manner. Moreover, we use as non-marked coin modified Grover coin Ĝl

v(l) where
we tuned the weight at each vertex lv = N − dv, i.e. we get Ĝl

v(N − dv). This choice is
done so it corresponds with [9], where they have the weight of the loop of dv. However
if we subtract N times identity operator NÎ from their Hamiltonian we get the weight
of the loop dv −N and evolution of the continuous walk would not change. On marked
vertices we use −Ĝl

v(1) as the local coin operator.
Starting from the search for fully connected vertex numerical simulation showed that

algorithm finds the marked vertex but not always with probability close to one depending
on probability q in G(N − 1, q), probability of success sinks with lowering of probability
q. For illustration of this effect see Fig. 1 and 2. Decline of success probability holds
to certain point of q, because for very small q most of the edges in the graph are edges
connected to marked vertex and the initial state has a large overlap with marked vertex.
For very small q probability of success starts to rise again up to 0.5.

Graphs where SA finds marked vertex with probability close to one are good very
often graphs where STA achieves perfect state transfer [8]. Also when the SA does not
find marked vertex with probability STA usually likewise fail to perform perfect state
transfer. But numerical simulation suggests that STA achieves perfect state transfer
independent of q using the model of 2 fully connected vertices adjacent to G(N − 2, q)
with Ĝl

v(N − dv) as non-marked coins. Moreover we proves this analytically. We find the
invariant subspace of the walk I which reads

|ν1〉 = |s, s〉 |ν2〉 = |r, r〉
|ν3〉 = |s, r〉 |ν4〉 = |r, s〉

|ν5〉 = 1√
N−2

N∑
v=3

|s, v〉 |ν6〉 = 1√
N−2

N∑
v=3

|r, v〉

|ν7〉 = 1√
N−2

N∑
v=3

|v, s〉 |ν8〉 = 1√
N−2

N∑
v=3

|v, r〉
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|ν9〉 = 1
N−2

N∑
v=3

(√
N |Ωv(N − dv)〉 − |v, r〉 − |v, s〉

)
.

I is invariant with to evolution operator Ûs,r and it contains the initial and target state
of the STA. Initial state corresponding to a loop at sender is |ν1〉 and fidelity of state
transfer reads

F(t) =
∑
w

{r,w}∈E

|〈r, w|ψ (t)〉|2 = |〈ν2|psi(T )〉|2 + |〈ν4|ψ(T )〉|2 + |〈ν6|ψ(T )〉|2. (9)

We introduce the effective evolution operator Ûeff which is evolution operator Ûs,r acting
in subspace I as follows

Ûeff |ν1〉 =
1

N

(
(N − 2) |ν1〉 − 2 |ν4〉 − 2

√
N − 2 |ν7〉

)
Ûeff |ν2〉 =

1

N

(
(N − 2) |ν2〉 − 2 |ν3〉 − 2

√
N − 2 |ν8〉

)
Ûeff |ν3〉 =

1

N

(
−2 |ν1〉+ (N − 2) |ν4〉 − 2

√
N − 2 |ν7〉

)
Ûeff |ν4〉 =

1

N

(
−2 |ν2〉+ (N − 2) |ν3〉 − 2

√
N − 2 |ν8〉

)
Ûeff |ν5〉 =

1

N

(
−2
√
N − 2 |ν1〉 − 2

√
N − 2 |ν4〉+ (4−N) |ν7〉

)
Ûeff |ν6〉 =

1

N

(
−2
√
N − 2 |ν2〉 − 2

√
N − 2 |ν3〉+ (4−N) |ν8〉

)
Ûeff |ν7〉 =

1

N

(
(2−N) |ν5〉+ 2 |ν6〉+ 2

√
N − 2 |ν9〉

)
Ûeff |ν8〉 =

1

N

(
2 |ν5〉+ (2−N) |ν6〉+ 2

√
N − 2 |ν9〉

)
Ûeff |ν9〉 =

1

N

(
2
√
N − 2 |ν5〉+ 2

√
N − 2 |ν6〉+ (N − 4) |ν9〉

)
This reduction of dimension where the Ûeff is does not depend on q allow us to calculate
the evolution of fidelity of STA which reads in the limit of large graph

F(t) = sin4

(
ωt

2

)
(10)

where ω is eigenphase of pair of conjugate eigenvalues which has eigenvectors with large
overlap with initial state. The ω is given by

ω = arccos

(√
N − 2

N

)
. (11)

From (14) we see that STA achieves perfect state transfer after number of steps which is
the closet integer to

T ≈ π

ω
=

π

arccos
(√

N−2
N

) ≈ π
√
N√
2

+O

(
1√
N

)
(12)
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For comparison of analytical and numerical results see Fig. 3.
Let us now return to SA where we did no found any invariant subspace. The reason

for that is that initial state of SA does not have same overlap with each vertex of the
graph. The overlap depends on the degree of vertex dv. We find that if we change the
initial state of SA to

|Ω〉 =
1√
N

∑
v∈V

|Ωv(N − dv)〉 , (13)

which has the same overlap with all vertices 1√
N
, there is invariant subspace I of the walk

which is spanned by following states

|ν1〉 = |m,m〉

|ν2〉 =
1√

N − 1

N∑
v=2

|m, v〉

|ν3〉 =
1√

N − 1

N∑
v=2

|v,m〉

|ν4〉 =
1

N − 1

N∑
v=2

(√
N |Ωv(N − dv)〉 − |v,m〉

)
.

We again introduce the effective evolution operator of the SA as evolution operator acting
in I which is given by following matrix

Ueff =


N−2
N

−2
√
N−1
N

0 0

0 0 2−N
N

2
√
N−1
N

−2
√
N−1
N

2−N
N

0 0

0 0 2
√
N−1
N

N−2
N

 .

After some calculation we get evolution of success probability which reads

F(t) = sin2

(
ωt

2

)
(14)

where ω is again the eigenphase of pair of conjugate eigenvalues with eigenvectors with
largest overlap with initial state and it reads

ω = arccos

(
N − 2

N

)
. (15)

The number of steps is closest integer to number

T ≈ π

ω
=

π

arccos
(
N−2
N

) ≈ π
√
N

2
+O

(
1√
N

)
(16)

It is easy to see that success probability for SA with new initial state (13) goes to one for
graphs independent of q.
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4 Conclusion
We show that the SA with original initial state does not finds marked fully connected
vertex with probability close to one independent of q which is probability of edge being
in Erdös-Rényi graph G(N − 1, q). Nevertheless the STA performs perfect state trans-
fer between two fully connected vertices with properly tuned weights of the loops at
non-marked vertices. Also we showed that change of initial state is SA leads to succes
probability close to one for all graphs.
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Figure 1: Evolution of success probability during the run of search algorithm on graph
with fully connected vertex connected to graph G(79, 0.7)
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Figure 2: Evolution of success probability during the run of search algorithm on graph
with fully connected vertex connected to graph G(79, 0.3)
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Figure 3: Evolution of fidelity during the run of STA on graph between 2 connected
vertices on a graph with 200 vertices. Line is analytical result (14), dots are numerical
simulation. Difference between analytical and numerical result at odd steps is due to the
limit of large graph for analytical result.





Combining Machine Learning and
Mathematical Modeling in Estimation of T1

Relaxation Time from Cardiac Magnetic
Resonance Imaging Data∗

Kateřina Škardová

5th year of PGS, email: katerina.skradova@fjfi.cvut.cz
Department of Mathematics
Faculty of Nuclear Sciences and Physical Engineering, CTU in Prague

advisor: Tomáš Oberhuber, Department of Mathematics
Faculty of Nuclear Sciences and Physical Engineering, CTU in Prague

Abstract. In this contribution, a method for estimating tissue parameters using cardiac mag-
netic resonance imaging (MRI) and a biophysical model by combining neural network (NN) and
numerical optimization (NO) is presented. The method is used on the problem of T1 relaxation
time estimation from the Modified Look-Locker Inversion recovery (MOLLI) image series. The
of MRI used in this work is based on Bloch equation.

MOLLI data were acquired for eight phantoms (with varying T1 relaxation time) on 1.5
and 3T MRI systems; twelve patients on 1.5T system and three patients on 3T system (native
and after administering MRI contrast agent reducing T1). In the phantom study, additionally,
inversion recovery turbo spin echo (IR-TSE) data were acquired and provided a pseudo-ground
truth of the T1 relaxation time (T pGT

1 ).
T1 from MOLLI images was obtained by the scanner (T scanner

1 ) and by the proposed method,
which consists of two stages: the first-stage estimate TNN

1 is given by the NN trained on synthetic
data generated by the Bloch simulator, the final estimate TNN,NO

1 by numerical optimization
(NO). After the validation on the phantom data, the T1 maps were created from routine cardiac
MRI MOLLI data by the proposed two-stage method and compared with the T1 map provided
directly by the scanner.

The proposed two-stage method provided results comparable to the scanner in phantoms
study on 1.5T and results closer to pseudo-ground truth in 7 out of 8 phantoms on 3T. The NO
stage improved the accuracy and decreased the variation of T1 obtained by the NN stage.

For the in vivo data, the reference values computed based on IR-TSE were not avaliable.
The pre-contrast TNN,NO

1 in blood and myocardium was higher than T scanner
1 in most subjects

measured on 1.5T and 3T system. The post-contrast TNN,NO
1 was higher than T scanner

1 in blood
for subject measured on both systems. In the case of post-contrast myocardium, T scanner

1 was
higher than TNN,NO

1 in most subjects measured, which is in line with the phantom experiment
and expected due to known underestimation of T1 from MOLLI data.

∗This work was supported by the Ministry of Education, Youth and Sports of the Czech Republic
under the OP RDE grants number CZ2.11/0/0/16_019/0000778 “Centre for Advanced Applied Sciences”,
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Republic project No. NV19-08-00071 and by Institutional Support MHCZ-DRO (“Institute for Clinical
and Experimental Medicine – IKEM, IN 00023001”). This work was also supported by the Inria France-
UT Southwestern Medical Center Dallas Associated Team TOFMOD.
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NO initialized by the NN, which can be trained using simulated data, has the potential to
increase the efficiency and robustness of tissue parameter estimation from image data.

Keywords: T1 relaxation time, Magnetic Resonance Imaging (MRI), Modified Look-Locker In-
version recovery (MOLLI), Parameter estimation, Bloch simulator

Abstrakt. V tomto příspěvku je představena metoda pro odhad parametrů tkáně na základě dat
z magnetické rezonance (MRI) a biofyzikálního modelu MRI, za použití kombinace neuronové sítě
(NN) a numerické optimalizace (NO). Metoda je aplikována na problém odhadu T1 relaxačního
času z MOLLI (Modified Look-Locker Inversion Recovery) obrazových dat. Použitý model MRI
je založený na Blochových rovnicích.

MOLLI data byla naměřena pro osm fantomů (s různým T1 relaxačním časem) na přístrojích
o síle pole 1.5 a 3T; dvanáct pacientů na přístroji o síle pole 1.5T a tři pacienti na přístroji
o síle pole 3T (nativně a po podání kontrastní látky snižující T1). Ve fantomové studii byla
navíc naměřena data pomocí Inversion Recovery Turbo Spin Echo (IR-TSE) sekvence. Data
naměřená pomocí IR-TSE sekvence byla použita pro výpočet referenční hodnoty T1 relaxačního
času (T pGT

1 ).
Při použití navržené metody je T1 relaxační čas z MOLLI dat získán ve dvou krocích: první

odhad TNN
1 je získán pomocí NN trénované na syntetických datech generovaných Blochovým si-

mulátorem, finální odhad TNN,NO
1 je získán pomocí numerické optimalizace (NO). Při validaci na

fantomech byly výsledky navržené dvou krokové metody porovnány s hodnotami odhadnutými
na základě MOLLI dat přímo MR skenerem (T scanner

1 ) a s referenčními hodnotami určenými na
základně IR-TSE sekvence.

Navržená metoda poskytla výsledky srovnatelné se skenerem ve studii na fantomech měře-
ných na stoji o síle pole 1.5T a výsledky bližší referenční hodnotě pro 7 z 8 fantomů v případě
mření na stroji o síle pole 3T. Srovnání ukázalo že druhý krok (NO) zlepšil přesnost a snížil
rozptyl T1 získaných v prvním kroku navržené metody (NN).

U in vivo měření nebyla k dispozici referenční hodnota T1. Předkontrastní hodnota TNN,NO
1

v krvi a myokardu byla vyšší než T scanner
1 u většiny subjektů měřených na obou MR strojích.

Postkontrastní hodnota TNN,NO
1 v krvi byla vyšší než T scanner

1 u všech subjektů měřených na
obou strojích. V případě postkontrastní hodnoty v myokardu byla T scanner

1 u většiny měřených
subjektů vyšší než TNN,NO

1 , což je v souladu s fantomovým experimentem.
Inicializace druhého kroku numerické optimalizace pomocí odhadu získaného neuronovou

sítí, kterou lze trénovat pomocí generovaných dat, má potenciál zvýšit účinnost a robustnost
odhadu parametrů tkáně z obrazových dat.

Klíčová slova: T1 relaxační čas, Magnetická rezonance, Modified Look-Locker Inversion recovery
(MOLLI), Odhad parametrů, Blochův simulátor

Full paper: Kateřina Škardová, Radek Galabov, Kateřina Fricková, Tomáš Pevný,
Jaroslav Tintěra, Tomáš Oberhuber, Radomír Chabiniok Combining machine learning
and mathematical modeling in estimation of T1 relaxation time from cardiac magnetic
resonance imaging data. The paper is currently under review in Magnetic Resonance
Imaging.
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Abstract. We deal with pure substance solidification of a supercooled melt using the phase
field model. This model is composed of the heat equation and the phase field equation coupled
with suitable initial and boundary conditions, one of which is controlled. As opposed to the
distributed control of parabolic PDE’s, very few contributions currently exist pertaining to the
Dirichlet boundary condition control for parabolic PDE’s. This motivates our interest in the
Dirichlet boundary condition control for the phase field model describing the solidification of a
pure substance from a supercooled melt. In particular, our aim is to control the time evolution
of the temperature field on the boundary of the computational domain in order to achieve the
prescribed shape of the crystal at the given time. To obtain efficient means of computing the
gradient of the cost functional, we derive the adjoint problem formally. The gradient is then used
to perform gradient descent. The viability of the proposed optimization method is supported
by several numerical experiments performed in one and two spatial dimensions. Among other
things, these experiments show that a linear reaction term in the phase field equation proves to
be insufficient in certain scenarios and so an alternative reaction term is considered to improve
the models behavior.

Keywords: phase field, anisotropic crystal growth, optimization, Dirichlet boundary condition

Abstrakt. Za užití modelu fázového pole simulujeme solidifikaci čisté směsi. Použitý model se
skládá z rovnice vedení tepla a rovnice fázového pole a je doplněn vhodnými okrajovými a počá-
tečními podmínkami, jedna z nich je řízena. Na rozdíl od distribuovaného řízení parabolických
rovnic, jež je hojně studováno, jen malé množství příspěvků se věnuje řízení pomocí Dirichle-
tovy okrajové podmínky. Toto motivuje náš zájem o řízení rovnic fázového pole, popisujících
tuhnutí čisté směsi, s pomocí Dirichletovy okrajové podmínky. Cílem tohoto optimálního řízení
je nalezení Dirichletovy okrajové podmínky pro rovnici vedení tepla, která vede k předepsanému
tvaru fázového pole v konečném (předem daném) čase. Abychom zajistili efektivní výpočet gra-
dientu využijeme formálního odvození adjugovaných rovnic. Gradient je potom využit abychom
provedli gradientní sestup. Validita této techniky je ověřena s pomocí numerických experimentů

∗Tato práce byla podpořena grantem grantové agentury ČVUT v Prague, grant No.
SGS17/194/OHK4/3T/14. . .
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v jedné a dvou dimenzích. Mimo jiné je v těchto experimentech studován vliv různých reakč-
ních členů. Při těchto experimentech se ukazuje, že existují řízení, při nichž je potřeba užít
pokročilejších reakčních členů, aby byla zajištěna realističnost výsledného řízení.

Klíčová slova: rovnice fázového pole, anisotropický růst krystalů, optimalizace, Dirichletova
okrajová podmínka

Plná verze: A. Wodecki, P. Strachota, T. Oberhuber, K. Škardová, M. Balázsová. Nu-
merical Optimization of the Dirichlet Boundary Condition in the Phase Field Model with
an Application to Pure Substance Solidification. https://arxiv.org/abs/2208.13910
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Abstract. Materials with grain contacts or partially closed cracks exhibit anomalous elastic
behavior: hysteresis in quasi-static experiments and slow dynamics in fast dynamic ones. When
a slowly varying strain is applied, the wave velocity increases with incresing loading and hys-
teresis is observed. In the dynamic range, a forcing which varies rapidly in time is applied and
non-equilibrium phenomena are observed. The system recovers its initial state when the con-
ditioning is removed. Albeit the behavior in the two cases (which correspond to very different
strain ranges) looks different, it should stem from the same physics and thus could be modelled
by the same equation of state. Here, we propose a modification of the standard acoustoelastic
theory, introducing the concept of conditioning induced non-equilibrium strain, which is de-
fined correctly for each experiment and results in hysteris and slow dynamics. The resulting
model allows to predict the behavior in both quasi-static and dynamic ranges, including velocity
anisotropy induced by nonlinearity.

Keywords: nonlinear elasticity, consolidated granular materials, locked-in stress, acoustoelastic
testing

Abstrakt. Materiály obsahující kontakty zrn nebo částečně uzavřené defekty vykazují ano-
mální elastické chování: hysterezi v kvazistatických experimentech a slow dynamics v dyna-
mických experimentech. Při aplikaci pomalu se měnící deformace se rychlost vlnění zvyšuje s
rostoucím zatížením a je pozorována hystereze. V dynamickém testování se aplikuje síla, která se
rychle mění v čase, a jsou pozorovány nerovnovážné jevy. Po odstranění conditioningu se systém
vrací do původního stavu. Přestože chování v obou případech – které odpovídají velmi rozdíl-
ným rozsahům deformace – vypadá odlišně, mělo by vycházet ze stejného fyzikálního principu, a
proto by mělo být modelováno stejnou stavovou rovnicí. Zde navrhujeme modifikaci standardní
akustoelastické teorie, která zavádí koncept nerovnovážné deformace vyvolané conditioningem,
která je správně definována pro každý experiment a způsobuje hysterezi a slow dynamics. Vý-
sledný model umožňuje předpovídat chování v kvazistatickém i dynamickém rozsahu, včetně
anizotropie v rychlostech vln vyvolané nelinearitou.
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Klíčová slova: nelineární elasticita, konsolidované granulované materiály, locked-in napětí, akus-
toelastické testování

Full paper: J. Kober, M. Scalerandi, R. Zeman, Non-equilibrium strain induces hystere-
sis and anisotropy in the quasi-static and dynamic elastic behavior of sandstones: Theory
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