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Abstract. Determination of a source term of release of a hazardous material into the atmo-
sphere is a very important task for emergency response. We are concerned with the problem of
estimation of the source term in the conventional linear inverse problem y = Mx is described
using the source-receptor-sensitivity (SRS) matrix M and the unknown source term x. Since
the system is typically ill-conditioned, the problem is recast as an optimization problem

min
R,B

(y −Mx)TR−1(y −Mx) + xTB−1x. (1)

The first term minimizes the error of the measurements with covariance matrix R, and the
second term is a regularization of the source term [2]. There are different types of regularization
arising for different choices of matrices R and B, for example, Tikhonov regularization assumes
covariance matrix B as the identity matrix multiplied by scalar parameter.In this contribution,
we adopt a Bayesian approach to make inference on the unknown source term x as well as
unknown R and B.We assume prior on x to be a Gaussian with zero mean and unknown
diagonal covariance matrix B.The covariance matrix of the likelihood R is also unknown. We
consider two potential choices of the structure of the matrix R. First is the diagonal matrix
and the second is a locally correlated structure using information on topology of the measuring
network. Since the inference of the model is intractable, iterative variational Bayes algorithm
is used for simultaneous estimation of all model parameters. The practical usefulness of our
contribution is demonstrated on an application of the resulting algorithm to real data from the
European Tracer Experiment (ETEX).

Keywords: Bayesian inference, atmospheric transport model, inverse modeling

Abstrakt. Určení zdrojového členu úniku nebezpečného materialu do atmosféry je velmi
důležitým úkolem pro krizové řízení vzniklé situace. Zabýváme se problémem odhadu zdro-
jového členu v běžném lineárním inverzním problému y = Mx, který je definován pomocí matice
citlivosti (source-receptor-sensitivity, SRS) M a neznámého vektrou zdrojového členu x. Pro-
tože soustava lineárních rovnic je obvykle špatně podmíněna, problém je řešen jako optimalizační
úloha s regularizací

min
R,B

(y −Mx)TR−1(y −Mx) + xTB−1x. (2)

Prvni člen minimalizuje chybu měření pomocí kovarianční matice R, a druhý je regularizace
zdrojového členu. Existují různé typy regularizace pro různé možnosti matic R a B, například

∗This research is supported by EEA/Norwegian Financial Mechanism under project MSMT-
28477/2014 SourceTerm Determination of Radionuclide Releases by Inverse Atmospheric Dispersion
Modelling (STRADI).
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2 A. Belal

Tichonovova regularizace, která předpokládá kovarianční matici B jako jednotkovou matici vyná-
sobenou skalárním parametrem. V tomto příspěvku, používáme Bayesovský přístup k odvození
jak zdrojového členu x tak neznámých matic R a B. Předpokládáme, že apriorní rozložení x je
Gaussovske s nulovou střední hodnotou a neznámou diagonální kovarianční maticí B. Kovari-
anční matice R je také neznáma. Uvažujeme dvě možnosti výběru struktury matice R. První je
diagonální matice a druhá je lokálně korelovaná struktura využívající informaci o topologii měřicí
na sítě. Vzhledem k tomu, že analytické řešení modelu neexistuje, používáme metodu variační
Bayes pro simultánní odhad všech parametrů modelu. Praktická užitečnost našeho přístupu je
demonstrována na datech z experimentu ETEX (European Tracer Experiment).

Klíčová slova: Bayesovská statistika, atmosférický transportní model, inverzní modelování

1 Introduction

The task of determination of a source term of an atmospheric pollutant is important
in many situations such as radioactive release from nuclear power plants or emission of
greenhouse gases.The source term is the vector of amounts of the pollutant released in
regularly sample time.The location of the release is assumed to be known.Uncertainty in
the source term is one of the largest source of errors in modeling and prediction of the
pollutant dispersion in the atmosphere, hence, any improvement of the reliability of the
source term estimation has significant impact The common approach for determination
of the source term is to combine the data measured in the environment (e.g., radionuclide
concentrations) with an atmospheric transport model.The quality of the estimated source
term to a given measurements can be modeled and optimized using various approaches
including the Bayesian approach[2]. Typically, the problem is formulated as a linear
regression.The vector of measurements is assumed to be a product of a computed source-
receptor-sensitivity (SRS) matrix determined using an atmospheric dispersion model and
an unknown source term vector.

2 Bayesian inference
The process of inferring data from observations can be described by using Bayesian infer-
ence, Here we formalize a Bayesian inference framework to make use of the observations
to infer the parameter values by updating our prior knowledge. This inferring process
can be formalized using the Bayes’ theorem:

p(x, R,B|y,M) =
p(y|x,M)p(x, B)p(R)p(B)∫

p(y|x,M)p(x)dx
(3)

where p(x) is the prior distribution, p(y|x,M) is the likelihood of the measurements. For
the choice of Gaussian models [1]

p(y|x,M) = N (Mx, R−1), p(x|B) = N (0, B−1) (4)

The result of the Bayes’ theorem (2) is a Gaussian distribution N (x̂, B−1), where x̂
corresponds to the solution of the optimization problem (1).
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3 Prior Models of Covariance Matrix of Source term

We use modified Cholesky factorization of a source term x unknown covariance matrix
B = (WΥW T )−1, where W is a lower diagonal matrix.We assume correlation only be-
tween the time adjacent parameters, i.e

W =


1 0 0 0
w1 1 0 0

0
. . . 1 0

0 0 wm−1 1

 ,Υ = diag(νi).

We define prior distribution of the model as follows:

ν ∼
m∏
i=1

G(ν0, ρ0), w ∼
m−1∏
i=1

N(w0, τ0), τ ∼ G

m−1∏
i=1

(ω0, κ0),

with selected prior constants ν0, ρ0, τ0, ω0, κ0. The system is that ill-conditioned is usu-
ally related to rapidly oscillation solutions, and using this structure for modeling the
covariance matrix of source term favors in fact the smooth solutions.

4 Prior Models of Covariance Matrix of residue model

The main problem is the fact that small errors in the (SRS) lead to large errors in the
source determination. The errors in this matrix are caused by inaccurate priori knowledge
of meteorological conditions such as the wind field [1]. This can cause either spacial or
temporal displacement of the model. We model spatially- and temporally-correlated
matrix of the Gaussian distribution of the error. We consider the following structure of
matrix R:

R = L>DL, L =


1 0 0 0
... 1 0 0

l1
... 1 0

... lk ln−1 1

 , D =


d1 0 0 0
0 d2 0 0

0 0
. . . 0

0 0 0 dn

 .

where the vectors of unknowns are l1, . . . , ln−1,d = [d1, . . . , dn]. The Bayesian formalism
requires to define prior distribution on all unknowns. We define prior distribution on
all unknowns vectors p(di) = G(a0, b0) and p(lj|ψj)=N (l0, ψj

−1). The spatial correlation
matrix is designed by vectors l0. For example,we assume all elements in the vector l0 to
have value (−1), if the distance between the measuring stations is less than 100 km, and
zero otherwise.
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Figure 1: Estimated correlation matrix of residue model.

Figure 2: Estimated correlation matrix of Source term model.



Bayesian Source Term Determination with Unknown Covariance of Measurements 5

5 Approximations of posterior distribution

The task is to calculate the posterior distribution of parameters and hyperparameters
based on the Bayes’ theorem (3) which gives the posterior probability of the parameters
given the data and the model p(x|y,M) where p(x) is the prior distribution, p(y|x,M)
is the likelihood of the measurements. The associated Byaes rule is

p(x|y,M) ∝ p(y|x,M)p(x), (5)

where symbol ∝ denotes equality up to a normalizing constant.
It may not be possible to evaluate the posterior probability distribution analytically.

Minimising the Kullback-Liebler divergence (KL distance), also known as the Relative
Entropy, between the solution and the hypothetical true posterior, leads to a set of
implicit equations which have to be solved iteratively and convergence to local minima
is guaranteed [3]. To avoid negative results, truncated normal of prior p(x) to positive
domain are considered, to enforce the positivity of the retrieved source term:

p(xj) = tN (0, σ−1xj
, 〈0,∞〉),

Figure 3: Example of the normal distribution N (1, 1), blue line, and the truncated normal
distribution tN (1, 1, < 0, 3 >), red line.

6 Experiment

The European tracer experiment (ETEX) were two releases of perfluorocarbon that took
place in autumn of 1994 in north-western part of France. These releases were tracked
across Europe using a network of 168 ground stations with limited airborne support. The
aim of the experiment was to simulate an emergency response situation for meteorological
modellers whose task was to create long-range dispersion prediction models in real time.
In the first one, 340kg of perfluorocarbon was released in range of 12 hours.



6 A. Belal

Figure 4: Domain of the ETEX experiment with source (red triangle) and receptors (blue
crosses).

7 Example results
We study three models:

• independent source term and residue models. R = w−1lp, B = Υ−1

• correlated source term model with independent residue model. R = w−1lp, B =
(WΥW T )−1

• correlated source term model with correlated residue model R = (LDLT )−1, B =
(WΥW T )−1
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Figure 5: Shows estiamated source term with correlated source term and residue models.

Figure 6: Shows estiamated source term with correlated source term model and independent
residue model.

Figure 7: Shows estiamated source term with correlated source term model and correlatedt
residue model.

8 Conclusions
• The models of linear regression with two prior models of covariance matrix of residue

model and source term are studied.

• If smooth solutions are preferred, a model of correlated source term could be ap-
propriate.

• The models of covariance matrix of residue source term model is estimated from
the observations.
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Abstract. We introduce several modifications of classical statistical tests applicable to weighted
data sets in order to test homogeneity of weighted and unweighted samples, e.g. Monte Carlo
simulations compared to the real data measurements. The asymptotic approximation of p-
value and power of our weighted variants of homogeneity tests are investigated by means of
simulation experiments. The simulation is performed for various probability distributions of
samples. Finally, our methods of homogeneity testing are applied to Monte Carlo samples and
real data sets measured at the particle accelerator Tevatron in Fermilab at DZero experiment
originating from top-antitop quark pair production in two decay channels (electron, muon) with
2, 3 or 4+ jets detected. Consequently, the final variable selection is carried out and the resulting
subsets chosen from 46 dimensional physical parameters are recommended for further top quark
cross section analysis.

Keywords: statistical homogeneity testing, data weighting, top quark

Abstrakt. Je představeno několik modifikací klasických statistických testů pro vážená po-
zorování za účelem testování homogenity rozdělení váženého a neváženého vzorku, tj. Monte
Carlo simulace v porovnání se skutečně naměřenými daty. Řadou simulačních experimentů je
prověřena asymptotická aproximace p-hodnoty i síla vážených variant testů homogenity. Výsled-
nými metodami jsou porovnány vzorky Monte Carlo simulace a skutečná data naměřená na
částicovém urychlovači Tevatron ve Fermilabu při experimentu DZero pocházející z produkce
páru top-antitop kvarku ve dvou rozpadových kanálech (elektron a mion) se 2, 3 nebo 4 a více
jety. Následně je provedena finální selekce vhodných fyzikálních proměnných. Tato podmnožina
ze 46 kompletních parametrů je doporučena pro další analýzu účinného průřezu top kvarku.

Klíčová slova: statistické testování homogenity, vážení dat, top kvark

1 Introduction

Homogeneity testing is an important step in many analysis techniques, particularly in ma-
chine learning (ML) applications in physics research. It is often the case that physicists
apply a field-specific data preprocessing procedure called data weighting. Via assigning
weights w1, . . . , wn > 0 to simulated observations x1, . . . , xn, they are able to fine-tune

∗This work has been supported by the grants LG15047 (MYES), LM2015068 (MYES),
SGS15/214/OHK4/3T/14 (CTU) and GA16-09848S (GACR).
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10 P. Bouř

their Monte Carlo (MC) simulation dataset so that it meets their requirements. A typ-
ical example is shifting data distribution so that the resulting distribution is positively
skewed. However, theory concerning statistical homogeneity tests does not handle any
weighting procedures, nor associates weights with observations. Therefore, the classical
homogeneity tests must be adjusted for weighted datasets. Despite relatively straightfor-
ward incorporation of weights into the classical homogeneity tests and their modification,
asymptotic properties of these tests can be no longer guaranteed. Thus, our goal is
to investigate the validity of asymptotic properties of homogeneity testing for weighted
observations.

The underlying problem the physicist might require us to solve may be a simple
signal/backgrounds binary classification task. In this typical ML application, we often
use MC simulation for both training and testing our ML classifier. We may then apply
the trained classifier to a real measured dataset (DATA). Naturally, we expect both MC
∼ F and DATA ∼ G to be identically distributed: F ≡ G. Otherwise, the classification
model will not perform well. Thus, we indeed need to test homogeneity of MC and DATA
prior to the modelling step.

2 Weighted Tests of Homogeneity
Prior to subsequent utilization of ML methods, it is vital to guarantee homogeneity of
DATA and MC distributions. For this purpose, we first define an analogy with empirical
distribution function (EDF) for weighted data set.

Definition 1. Let X = (X1, . . . , Xn) be iid random variables distributed by cumulative
distribution function (CDF) F (x) and let (w1, . . . , wn) be respective weights, where W =∑n

i=1wi. We define the weighted empirical distribution function (WEDF) to be

FW
n (x) =

1

W

n∑
i=1

wiI(−∞,x](Xi), (1)

where IA(X) is the indicator of the set A.

Remark 1. In the case of wi = 1 for all i ∈ n̂, that is the unweighted DATA, the
definition of WEDF goes over to usual EDF.

In order to avoid an investigation of an unknown parametric family, we shall pursue
our homogeneity testing only with nonparametric approaches. Thus, proceeding further
in this section, we present the Kolmogorov-Smirnov test based upon EDFs of two data sets
X1 =

(
X

(1)
1 , . . . , X

(1)
n1

)
, X2 =

(
X

(2)
1 , . . . , X

(2)
n2

)
, with respective distribution functions

F,G. Also, we provide another class of nonparametric tests based upon φ-divergences,
with the purpose of verifying precedent homogeneity results. By the homogeneity hy-
pothesis, as our null hypothesis is H0, we understand

H0 : F = G vs H1 : F 6= G at significance level α ∈ (0, 1). (2)

We require our homogeneity tests to meet the condition

P (WC |H0) ≤ α, (3)
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where WC is a critical region for the specific test statistic T , i.e. we reject hypothesis H0

if T ∈ WC .
The nature of homogeneity testing prompted us to look for the p-value, i.e., the lowest

significance level α for which we reject hypothesis H0. Thus, for every α > p-value we
may automatically reject hypothesis H0.

2.1 Two Sample Kolmogorov-Smirnov Test

Let Fn1 , Gn2 denote the EDFs of the two data samples X1,X2 with respective sample
sizes n1, n2. We consider the test statistic

Dn1,n2 = sup
x∈R
|Fn1(x)−Gn2(x)|. (4)

It is clear from the Glivenko-Cantelli lemma that under the true H0 it holds Dn1,n2

a.s.−→ 0
for n1, n2 →∞. Furthermore, due to [6] it holds for the true H0 and λ > 0 that

lim
n1,n2→∞

P

(√
n1n2

n1 + n2

Dn1,n2 ≤ λ

)
= 1− 2

∞∑
k=1

(−1)k−1e−2k
2λ2 . (5)

Therefore, we obtain the approximate p-value as 2
∑∞

k=1 (−1)k−1e−2k
2λ20 , where λ0 =√

n1n2

n1+n2
Dn1,n2 .

However, for weighted data sample we are forced to replace EDFs Fn1 , Gn2 , and the
numbers of entries n1, n2, with their respective WEDFs FW1

n1
, GW2

n2
, and the sums of weights

W1,W2 in (4) and (5). Instead of (4), we thus obtain the test statistic

DW1,W2
n1,n2

= sup
x∈R

∣∣FW1
n1

(x)−GW2
n2

(x)
∣∣. (6)

Remark 2. The Definition 1 of WEDF makes it clear that the statistic DW1,W2
n1,n2

a.s.−→ 0
for n1, n2 → ∞ and W1,W2 → ∞. Nevertheless, it is important to notice some of the
weaknesses inherent in the above approach. This modified test for the weighted data
sample does not have to obey the asymptotic property (5). Let us stress that the p-value
obtained using the statistic DW1,W2

n1,n2
can not be considered a regular approximate p-value

without subsequent detailed research. This is why we propose numerical verification of
our approach in Section 3.

2.2 Divergence Tests of Homogeneity

This particular class of tests converts the problem (2) to testing homogeneity in multi-
nomial populations. It does not utilize the EDF and therefore serves as an indepen-
dent verification. We recall our notation of two samples X1 =

(
X

(1)
1 , . . . , X

(1)
n1

)
, X2 =(

X
(2)
1 , . . . , X

(2)
n2

)
, and the pooled sample {X1,X2} with N = n1 + n2 observations. Let

{t0, . . . , tk} denote a partition of R such that for all x ∈ {X1,X2} it holds x ∈ [t0, tk].
Hereby we make binning over the populations X1,X2 consisting of k bins. For i ∈ {1, 2}
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and j ∈ k̂ we denote by pij the probability that a randomly chosen observation from X i

lies in the j-th bin [tj−1, tj]. Instead of (2) we now test equivalently the hypothesis

H0 : p1j = p2j for all j ∈ k̂ vs H1 : H0 is not true. (7)

For i ∈ {1, 2} it holds
∑k

j=1 pij = 1. This will provide us with the k − 1 free parameters
for each sampleX1,X2. Thus let us denote the free parameters by θi = (pi1, . . . , pi(k−1)).
The parametric space of the dimension 2(k− 1) for the task (7) is therefore generated by

Θ = {θ | θ = (θ1,θ2) = (p11, . . . , p1(k−1), p21, . . . , p2(k−1))}. (8)

Under the true H0 we carry out the maximum likelihood estimate (MLE)

θ̂ =

(
N1

N
, . . . ,

Nk−1

N
,
N1

N
, . . . ,

Nk−1

N

)
, (9)

where Nj stands for the number of observations x ∈ {X1,X2} lying in j-th bin. In
what follows, for i ∈ {1, 2} we write p(θi) = (pi1, . . . , pik) for the vector of probabilities
assigned to the bins. Hence for p(θi) we have MLE

p(θ̂i) =

(
Ni1

ni
, . . . ,

Nik

ni

)
, (10)

where Nij denotes the number of observations x ∈ X i belonging to the j-th bin. First,
we construct the vector of joint probabilities

p̂ =
(n1

N
p(θ̂1),

n2

N
p(θ̂2)

)
=

(
N11

N
, . . . ,

N1k

N
,
N21

N
, . . . ,

N2k

N

)
. (11)

Secondly, we consider the vector

p∗(θ) =
(n1

N
p(θ1),

n2

N
p(θ2)

)
=
(n1

N
p11, . . . ,

n1

N
p1k,

n2

N
p21, . . . ,

n2

N
p2k

)
. (12)

Furthermore, adopting the definition of φ-divergence from [4], we arrive at

Dφ(p̂,p∗(θ)) =
2∑
i=1

k∑
j=1

ni
N
pijφ

(
Nij

nipij

)
, (13)

where φ is a certain function selected from the convex family of real non-negative valued
functions on (0,∞). We now apply the previous MLE θ̂ of (9) to p∗(θ). Thereafter we
can define the statistic of the divergence test of homogeneity

Hφ(θ̂) =
2N

φ′′(1)
Dφ

(
p̂,p∗(θ̂)

)
=

2N

φ′′(1)

2∑
i=1

k∑
j=1

ni
N

Nj

N
φ

(
NijN

niNj

)
. (14)

The distribution of (14) is χ2(k − 1). Accordingly, the approximate p-value can be
computed as

p-value = 1− χ2
(k−1)(Hφ(θ̂)). (15)



Modified Homogeneity Testing for Weighted Data 13

Remark 3. An important special case of (14) is the χ2 test of homogeneity for φ(x) =
1
2
(x − 1)2. Moreover, the test (14) coincides with the likelihood ratio test for φ(x) =
x log x− x+ 1. Notwithstanding, the χ2(k − 1) distribution of (14) holds independently
on the underlying convex function φ (numerically verified in [1]). Throughout what
follows, we shall use only the case of the χ2 test of homogeneity though.

Remark 4. The statistic (14) makes it evident that the divergence test of homogeneity
is dependent of the choice of the number of bins k as well as the subsequent binning
{t0, . . . , tk}. That is why we consider histograms with robust equiprobable binning from
[1]. However, in order to carry out the construction of the test, we must make a judicious
choice of k. Because of the large number of observations in DATA (or sum of weights
W in MC, as W ≈ #DATA for each ensemble under consideration), the test would loose
its power with increasing bin number k, see [3], (numerically validated in [1]). Thus, we
choose the following wise number of bins k = d1 + log2W e, due to [2]. Finally, let us
state once more, we might want to supersede the members Nij, Nj, ni, N , in (14) with the
corresponding sums of weights at the sacrifice of losing some control on the asymptotic
property (15).

Figure 1 provides comparison of the divergence test of homogeneity (represented by
χ2 test) with the Kolmogorov-Smirnov and Anderson-Darling [5] test. Notice that the
divergence tests produce generally higher p-values compared with the tests based on the
EDF.
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0.001
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1
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Kolmogorov-Smirnov Anderson-Darling χ
2

α = 0.1 α = 0.05 α = 0.01 α = 0.001

Figure 1: Homogeneity tests of MC and DATA distributions: p-value for all m = 46
variables in MC channel Electron 4+ Jets.

3 Simulation

3.1 Ensemble Modification and p-value Validation

In Remarks 2 and 4, we have already mentioned the problem of insecure asymptotic
properties when applying weighted modifications of the standard tests. We now turn our
attention over the numerical simulation. For our purposes here, the best way would be
to validate the asymptotic properties using standard, unweighted tests. This requires us
to plug into the testing an unweighted data set (only instead of weighted MC; DATA
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is unweighted already). We shall do this by appropriate transformation of the weighted
ensemble MC into the unweighted ensemble MC†.

We make two requirements for the transformation. Firstly, we desire to preserve or
exploit information contained in weighting in MC. Since the weight of an observation
states to what extent the distribution should be present in the neighbourhood of the
observation. Secondly, we require that the sum of weights in MC corresponds to the
number of observations in the unweighted MC†. Continuing in this manner, we now
proceed as follows.

Denote by X =
(
X(1), . . . , X(n)

)
the ordered sample in MC with weights (w1, . . . , wn)

and let W =
∑n

i=1wi. Let N = bW c denote the desired number of observations in the
new transformed ensemble MC†. Given both our requirements regarding MC†, we are
constructing special weighted averages from X. For simplicity, we presume 0 ≤ wi ≤ 1
for all i ∈ n̂. Into the set intended for the first weighted average we include the smallest
possible number of observations

(
X(1), . . . , X(k1)

)
such that

1 ≤
k1∑
i=1

wi < 2. (16)

Thereby, for all l < k1
l∑

i=1

wi < 1. (17)

The portion of weight wk1 of the observation X(k1) which contributes above 1 to the sum
(16) will not be included into the first weighted average. Hence, we denote this residual
portion as

rk1 =

k1∑
i=1

wi − 1. (18)

Thereafter the first observation Y(1) in MC† can be defined as the following weighted
average

Y(1) =

∑k1
i=1X(i)wi −X(k1)rk1∑k1

i=1wi − rk1
. (19)

From (18) we arrive at

Y(1) =

k1∑
i=1

X(i)wi −X(k1)rk1 =

k1−1∑
i=1

X(i)wi +X(k1)(wk1 − rk1). (20)

The residual portion rk1 will be added to the next weighted average for Y(2). In general,
for Y(j) we write

rkj =

kj∑
i=kj−1+1

wi − rkj−1 − 1 (21)

Y(j) = X(kj−1)rkj−1
+

kj−1∑
i=kj−1+1

X(i)wi +X(kj)(wkj − rkj). (22)
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Repeating the same steps we transform the original weighted ensemble MC with X =(
X(1), . . . , X(n)

)
into the new unweighted ensemble MC† with Y =

(
Y(1), . . . , Y(ñ)

)
. We

have distributed the weights from the MC so that there is the unit weight for each
observation Y(j). Therefore, we are authorized to apply standard homogeneity tests,
which guarantees the asymptotic properties.
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Figure 2: Kolmogorov-Smirnov test: p-value for all m = 46 variables in MC/MC† channel
Electron 4+ Jets.

Now, we can finally verify the correctness of the modified tests, used to weighted data.
Indeed, the resulting p-values from the standard tests, performed over MC†, remarkably
matches with accuracy p-values from the modified tests performed over MC. This is true
even for small orders of magnitudes of p-values, as evidenced by comparison in Figure 2.

3.2 Generic Validation

As we verified eligible usage of modified weighted tests in previous section with datasets
originating from high energy physics, we aim to provide more general verification now.
Thus, we consider several different distributions for X = (X1, . . . , Xn): Beta, Cauchy,
Exponential, Laplace, Logistic, Lognormal, Normal, Uniform and Weibull. On the con-
trary, weightsW = (W1, . . . ,Wn) are taken from Beta distribution as we may easily tune
the expected value:

W ∼ Beta(α, β) =⇒ E [W ] =
α

α + β
. (23)

The appropriate number of simulation data points was determined by preliminary con-
vergence studies. Otherwise, the simulation steps proceed as follows:

1. Generate n random weighted data points (X,W ), e.g. n = 3, 500, 000.

2. Estimate weighted distribution from all the observations (X,W ) (using kernel den-
sity estimation). Repeat all the following k times, e.g. k = 1, 000:

(a) Drawmw = n
k
weighted observations from (X,W ) as your current MC sample,

e.g. mw = 3, 500.

(b) Generate mu ≈
∑mw

i=1wi unweighted observations from estimated weighted
distribution as your current DATA sample, e.g. mu = 1, 000.

(c) Apply weighted homogeneity test MC vs DATA.
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(d) Rearrange MC into unweighted sample MC† and apply standard unweighted
test.

Thus, we obtain k p-values from the weighted tests and also another k corresponding
p-values from the unweighted tests. We may now check asymptotic properties of both
weighted and unweighted tests.

For all the distributions under consideration we arrived at two main results. First,
the significance level condition (3) is uniformly satisfied as shown in Figure 3, i.e. both
EDFs are located under the diagonal in graph. Second, both weighted modifications
and unweighted tests have the same resulting p-value distribution. This can be tested via
ordinary classical homogeneity tests for unweighted data. Nevertheless, the extraordinary
correspondence is obvious from the graph already.

Figure 3: EDF of p-value for weighted and unweighted tests of homogeneity. Underlying
data are taken from the lognormal distribution.

4 Conclusion
We performed numerical validation of modified statistical homogeneity tests for weighted
data. Our simulation verifies that the approximate asymptotic properties remain the
same for both weighted and unweighted tests. In consequence, in practice, we may either
utilize modified weighted tests or we may apply the rearranging technique from Section
3.1 directly with the unweighted standard tests (where the asymptotics are proven). In
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future research, we aim to investigate the effect of various homogeneity tests and different
weights distribution on the overall significance and power. We also plan to explore the
possibility of proving the validity of weighted tests for arbitrary data distribution as well
as potentially perform multivariate testing. The former may be reached by limiting the
possibilities for the weights distribution as there exist only limited number of physical
motivations for weighting procedures in practice.
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Abstract. With use of the multivariate trigonometric functions, the Chebyshev polynomials
of the fourth kind are generalized to orthogonal polynomials of several variables. The general
form of recurrence relations is obtained. These polynomials are further investigated in dimension
three, exact form of recurrence relations is obtained and the first four polynomials are calculated
using trigonometric identities. Then the first ten multivariate Chebyshev-like polynomials of
fourth kind are generated.
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Abstrakt. Za užití trigonometrických funkcí více proměnných jsou Čebyševovy polynomy
čtvrtého druhu zobecněny na ortogonální polynomy více proměnných. Je získán obecný tvar
rekurentních relací. Pro dimenzi tři jsou tyto polynomy dále zkoumány, je získán přesný tvar
rekurentních relací a první čtyři polynomy jsou spočteny za užití trigonometrických identit.
Následně je vygenerováno prvních deset více dimenzionálních Čebyševových polynomů čtvrtého
druhu.

Klíčová slova: Čebyševovy polynomy, Trigonometrické funkce více proměnných, Ortogonální
Polynomy

1 Introduction

In mathematics and physics we often encounter special functions on n-dimensional Eu-
clidean space which are symmetric or antisymmetric with respect to permutation of
variables. Example of such functions are multivariate trigonometric functions defined
by Klimyk and Patera [10] as determinants and permanents of matrices, which entries
are one dimensional trigonometric transforms. These functions inherit many important
properties from the classical trigonometric functions and properties of determinants and
permanents and due that are extensively studied [7, 8, 9].

One of application of multivariate trigonometric functions is to use them for general-
ization of discrete trigonometric transforms [1]. For multivariate discrete sine transforms

∗This work was supported by the Grant Agency of Czech Technical University in Prague, grant No.
SGS16 /239/OHK4/3T/14
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this was done in [7] and for multivariate discrete cosine transforms in [2]. Another ap-
proach is to use the multivariate trigonometric functions as a starting point to define
multivariate orthogonal polynomials.

Orthogonal polynomials [4, 5] are appearing in many parts of mathematics and physics
and are intensively studied. Orthogonal polynomials which are connected to trigonomet-
ric functions are the Chebyshev polynomials [6, 11]. These polynomials are connected
to effective methods of numerical interpolation and approximation and thus their multi-
variate generalizations is interesting topic to study. Using the multivariate trigonometric
functions one can generalize the classical Chebyshev polynomials and obtain multivariate
Chebyshev-like polynomials. In total there exist four kinds of Chebyshev polynomials,
each of them can be generalized using symmetric or antisymmetric multivariate trigono-
metric functions. The generalization of the Chebyshev polynomials of first and third kind
was done in [7] the generalization of Chebyshev polynomials of second kind in [3]. The
generalization of Chebyshev polynomials of fourth kind is part of this paper.

2 Multivariate trigonometric functions

The multivariate generalizations of trigonometric functions are defined as determinants
and permanents of matrices with entries cos(πλixj) resp. sin(πλixj) in [10]. The antisym-
metric trigonometric functions cos−λ (x), sin

−
λ (x) and symmetric trigonometric functions

cos+λ (x), sin
+
λ (x) of variable x = (x1, . . . , xn) ∈ Rn with parameter λ = (λ1, . . . , λn) in

the form:

cos−λ (x) =
∑
σ∈Sn

sgn(σ) cos(πλσ1x1) cos(πλσ2x2) · · · cos(πλσnxn),

sin−λ (x) =
∑
σ∈Sn

sgn(σ) sin(πλσ1x1) sin(πλσ2x2) · · · sin(πλσnxn),
(1)

for the antisymmetric trigonometric functions and

cos+λ (x) =
∑
σ∈Sn

cos(πλσ1x1) cos(πλσ2x2) · · · cos(πλσnxn),

sin+
λ (x) =

∑
σ∈Sn

sin(πλσ1x1) sin(πλσ2x2) · · · sin(πλσnxn),
(2)

for the symmetric trigonometric functions.
For our applications we will only consider parameters λ in form λ = k or λ = k + ρ

where k ∈ Zn and ρ =
(
1
2
, 1
2
, . . . , 1

2

)
. Further, due (anti)symmetries, we will consider

parameters k only lexicographically ordered, i.e.,

k1 ≥ k2 ≥ . . . ≥ kn. (3)

Due to properties of determinants and permanents the functions can be considered only
on closure of the fundamental domain F (S̃aff

n ), of the form:

F (S̃aff
n ) = {(x1, x2, . . . , xn) ∈ Rn | 1 ≥ x1 ≥ x2 ≥ . . . ≥ xn ≥ 0} , (4)
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which can be further restricted by omitting boundaries in specific cases due to additional
properties discussed in [2], i.e,

• xi = xi+1, i ∈ {1, . . . , n− 1} for cos−k (x)

• xi = xi+1, i ∈ {1, . . . , n}, x1 = 1 or xn = 0 for sin−k (x)

• xi = xi+1, i ∈ {1, . . . , n− 1} or x1 = 1 for cos−k+ρ(x)

• xi = xi+1, i ∈ {1, . . . , n− 1} or xn = 0 for sin−k+ρ(x)

• x1 = 1 or xn = 0 for sin+
k (x)

• x1 = 1 for cos+k+ρ(x)

• xn = 0 for sin+
k+ρ(x)

3 Chebyshev polynomials
The classical Chebyshev polynomials of one variable are connected to effective methods of
interpolation and numerical integration and due that they are well known and extensively
used class of orthogonal polynomials [6, 11]. There exist four kinds of the Chebyshev
polynomials defined as

PIn(x) = Tn(x) = cos (nθ) , PIIIn (x) = Vn(x) =
cos
((
n+ 1

2

)
θ
)

cos
(
1
2
θ
) ,

PIIn (x) = Un(x) =
sin ((n+ 1) θ)

sin (θ)
, PIVn (x) = Wn(x) =

sin
((
n+ 1

2

)
θ
)

sin
(
1
2
θ
) ,

(5)

with variable x = cos (θ), x ∈ [−1, 1].
For further uses we will focus mainly on the Chebyshev polynomials of the fourth

kind. These polynomials are orthogonal on interval (−1, 1). i.e.,∫ 1

−1
Wn(x)Wm(x) (1− x)

1
2 (1 + x)−

1
2 dx = 0, n 6= m. (6)

The first two polynomials can be obtained using of trigonometric formulas as:

W1(x) = 1, W2(x) = 2 cos (θ) + 1 = 2x+ 1. (7)

The recurrence relations for following polynomials can be obtained using theory of or-
thogonal polynomials. However it is easier to obtain it using the following trigonometric
identity:

sin

(((
n+

1

2

)
+ 1

)
θ

)
+ sin

(((
n+

1

2

)
− 1

)
θ

)
= 2 cos (θ) sin

((
n+

1

2

)
θ

)
(8)

which in coordinates x = cos (θ) gives recurrence relations:

Wn(x) = 2xWn−1(x)−Wn−2(x), n = 2, 3, . . . . (9)

This together with knowledge of the first two polynomials generates all polynomials.
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4 Multivariate Chebyshev-like polynomials of the fourth
kind

The multivariate generalizations of trigonometric functions can be used to define mul-
tivariate Chebyshev-like polynomials. In total for any dimension there exist eight mul-
tivariate Chebyshev-like polynomials. Every classical Chebyshev polynomials can be
generalized by use of symmetric or antisymmetric multivariate trigonometric functions.
The Chebyshev polynomials of the first and the third kind were generalized in [7]. In this
paper we focus on symmetric multivariate Chebyshev-like polynomials of fourth kind.
Lets introduce variables X1, X2, . . . , Xn:

X1 = cos+(1,0,...,0), X2 = cos+(1,1,...,0), . . . , Xn = cos+(1,1,...,1) . (10)

Now the multivariate symmetric generalization of the Chebyshev polynomials of the
fourth kind can be introduced in a form:

PIV,+k (X1, X2, . . . , Xn) =
sin+

k+ρ(x)

sin+
ρ (x)

, (11)

where ρ =
(
1
2
, 1
2
, . . . , 1

2

)
. These functions are well defined for all points of interior of

fundamental domain F (S̃affn ).
We use ordering of the polynomials from [7], we say that a polynomial PIV,+k is greater

than polynomial PIV,+k′ , k 6= k′ if for all i, ki ≥ k′i and smaller if for all i, ki ≤ k′i.

4.1 Recurrence relations

To obtain recurrence relations for the generalized Chebyshev-like polynomials PIV,+k′ one
has to consider generalized trigonometric identity which can be obtained using the clas-
sical identity (8):

sin+
k (x) cos

+
l (x) =

1

2n

∑
σ∈Sn

∑
ai=±1

i=1,...,n

sin+

(k1+a1lσ(1),...,kn+anlσ(n))
(x). (12)

Specially case where l = ρ1 = (1, 1, . . . , 1), i.e,

sin+
k (x) cos

+
ρ1
(x) =

n!

2n

∑
ai=±1

i=1,...,n

sin+
(k1+a1,...,kn+an)

(x), (13)

the recurrence relations then obtain form:

sin+
k =

2n

n!
sin+

k−l1−l2−...−ln Xn −
n∑
i

sin+
k−2li −

n∑
i,j=1
i<j

sin+
k−2li−2lj − . . .− sin+

k−2l1−2l2−...−2ln .

(14)
where li is vector with 1 on i-th coordinate and 0 for the rest.

Using identity (14) each polynomial can be expressed as linear combination of lower
polynomials and combination of products of lower polynomial with variables Xi. There-
fore each polynomial can be defined recursively.
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4.2 Three-dimensional polynomials

Properties of generalized sine functions together with generalized trigonometric identity
(14) leads to the following set of recurrence relations for PIV,+(k1,k2,k3)

. The first four poly-
nomials are obtained using trigonometric identities in form:

PIV,+(0,0,0) = 1, PIV,+(1,0,0) =
1

3
X1 + 1,

PIV,+(1,1,0) =
2

3
X2 +

2

3
X1 + 1, PIV,+(1,1,1) =

4

3
X3 + 2X2 +X1 + 1.

(15)

Following polynomials are then obtained using recurrence relations:

k1 ≥ 2, k2 = k3 = 0 : PIV,+(k1,0,0)
= PIV,+(k1−1,0,0)X1 − PIV,+(k1−2,0,0) − 2PIV,+(k1−1,1,0) + 2PIV,+(k1−1,0,0)

k1 − 1 > k2 > k3 = 0 : PIV,+(k1,k2,0)
= PIV,+(k1−1,k2,0)X1 − PIV,+(k1−2,k2,0) + P

IV,+
(k1−1,k2,0)

− PIV,+(k1−1,k2+1,0) − P
IV,+
(k1−1,k2−1,0) − P

IV,+
(k1−1,k2,1)

k1 − 1 >, k2 = k3 > 0 : PIV,+(k1,k2,k2)
= PIV,+(k1−1,k2,k2)X1 − PIV,+(k1−2,k2,k2)

− 2PIV,+(k1−1,k2+1,k2)
− 2PIV,+(k1−1,k2,k2−1)

k1 − 1 >, k2 > k3 > 0 : PIV,+(k1,k2,k3)
= PIV,+(k1−1,k2,k3)X1 − PIV,+(k1−2,k2,k3) − P

IV,+
(k1−1,k2+1,k3)

− PIV,+(k1−1,k2−1,k3) − P
IV,+
(k1−1,k2,k3+1) − P

IV,+
(k1−1,k2,k3−1)

k1 − 1 = k2 > k3 = 0 : PIV,+(k1,k1−1,0) =
1

2
PIV,+(k1−1,k1−1,0)X1 − PIV,+(k1−1,k1−2,0)

− 1

2
PIV,+(k1−1,k1−1,1) +

1

2
PIV,+(k1−1,k1−1,0)

k1 − 1 = k2 > k3 > 0 : PIV,+(k1,k1−1,k3) =
1

2
PIV,+(k1−1,k1−1,k3)X1 − PIV,+(k1−1,k1−2,k3)

− 1

2
PIV,+(k1−1,k1−1,k3+1) −

1

2
PIV,+(k1−1,k1−1,k3−1)

k1 − 1 = k2 = k3 > 0 : PIV,+(k1,k1−1,k1−1) =
1

3
PIV,+(k1−1,k1−1,k1−1)X1 − PIV,+(k1−1,k1−1,k1−2)

(16)
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k1 = k2 = 2, k3 = 0 : PIV,+(2,2,0) = 2PIV,+(1,1,0)X2 − 2PIV,+(1,0,0)X1 + PIV,+(1,1,0)X1

− PIV,+(1,1,1)X1 + PIV,+(0,0,0) + 6PIV,+(1,1,0) − 4PIV,+(1,0,0)

+ PIV,+(2,1,1) − P
IV,+
(1,1,1)

k1 = k2 > 2, k3 = 0 : PIV,+(k1,k1,0)
= 2PIV,+(k1−1,k1−1,0)X2 − 2PIV,+(k1−1,k1−2,0)X1 − PIV,+(k1−1,k1−1,1)X1

+ PIV,+(k1−1,k1−1,0)X1 + PIV,+(k1−2,k1−2,0) + 4PIV,+(k1−1,k1−1,0) + 2PIV,+(k1−1,k1−2,1)

+ 2PIV,+(k1−1,k1−2,0) + 2PIV,+(k1−1,k1−3,0) + P
IV,+
(k1−1,k1−1,2) − P

IV,+
(k1−1,k1−1,1)

k1 = k2 > k3 + 2 > 2 : PIV,+(k1,k1,k3)
= 2PIV,+(k1−1,k1−1,k3)X2 − 2PIV,+(k1−1,k1−2,k3)X1

− PIV,+(k1−1,k1−1,k3+1)X1 − PIV,+(k1−1,k1−1,k3−1)X1

+ PIV,+(k1−2,k1−2,k3) + 2PIV,+(k1−1,k1−2,k3+1)

+ 2PIV,+(k1−1,k1−2,k3−1) + 4PIV,+(k1−1,k1−1,k3)

+ 2PIV,+(k1−1,k1−3,k3) + P
IV,+
(k1−1,k1−1,k3+2)

+ PIV,+(k1−1,k1−1,k3−2)

k1 = k2 = k3 + 2 = 3 : PIV,+(3,3,1) = 2PIV,+(2,2,2)X2 − 2PIV,+(2,1,1)X1 −
2

3
PIV,+(2,2,2)X1

− PIV,+(2,2,0)X1 + PIV,+(1,1,1) + 5PIV,+(2,2,1)

+ 4PIV,+(2,1,0) + P
IV,+
(2,2,0)

k1 = k2 = k3 + 2 > 3 : PIV,+(k1,k1,k1−2) = 2PIV,+(k1−1,k1−1,k1−2)X2 − 2PIV,+(k1−1,k1−2,k1−2)X1

− 2

3
PIV,+(k1−1,k1−1,k1−1)X1 − PIV,+(k1−1,k1−1,k1−3)X1

+ PIV,+(k1−2,k1−2,k1−2) + 5PIV,+(k1−1,k1−1,k1−2)

+ 4PIV,+(k1−1,k1−2,k1−3) + P
IV,+
(k1−1,k1−1,k1−4)

k1 = k2 = k3 + 1 = 2 : PIV,+(2,2,1) =
2

3
PIV,+(1,1,1)X2 − PIV,+(1,1,0)X1

+ PIV,+(1,0,0) + P
IV,+
(1,1,1) − P

IV,+
(1,1,0)

k1 = k2 = k3 + 1 > 2 : PIV,+(k1,k1,k1−1) =
2

3
PIV,+(k1−1,k1−1,k1−1)X2 − PIV,+(k1−1,k1−1,k1−2)X1

+ PIV,+(k1−1,k1−2,k1−2) + P
IV,+
(k1−1,k1−1,k1−1)

+ PIV,+(k1−1,k1−1,k1−3)

k1 = k2 = k3 = 2 : PIV,+(2,2,2) =
4

3
PIV,+(1,1,1)X3 − 6PIV,+(1,1,0)X2 + 3PIV,+(1,0,0)X1 − 3PIV,+(1,1,0)X1

+ 2PIV,+(1,1,1)X1 − PIV,+(0,0,0) − 9PIV,+(1,1,0) + 6PIV,+(1,0,0) + 3PIV,+(1,1,1)

(17)
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k1 = k2 = k3 = 3 : PIV,+(3,3,3) =
4

3
PIV,+(2,2,2)X3 − 6PIV,+(2,2,1)X2 + 3PIV,+(2,1,1)X1

+ 2PIV,+(2,2,2)X1 + 3PIV,+(2,2,0)X1 − PIV,+(1,1,1)

− 9PIV,+(2,2,1) − 6PIV,+(2,1,0) + P
IV,+
(2,2,0)

k1 = k2 = k3 > 3 : PIV,+(k1,k1,k1)
=

4

3
PIV,+(k1−1,k1−1,k1−1)X3 − 6PIV,+(k1−1,k1−1,k1−2)X2

+ 3PIV,+(k1−1,k1−2,k1−2)X1 + 2PIV,+(k1−1,k1−1,k1−1)X1

+ 3PIV,+(k1−1,k1−1,k1−3)X1 − PIV,+(k1−2,k1−2,k1−2)

− 9PIV,+(k1−1,k1−1,k1−2) − 6PIV,+(k1−1,k1−2,k1−3)

− 3PIV,+(k1−1,k1−1,k1−4),

(18)

which are obtained from the generalized trigonometric identity (14).
With the use of recurrence relations one can obtain the exact form of first ten poly-

nomials (k ≤ (2, 2, 2)) as follows:

PIV,+(0,0,0) = 1,

PIV,+(1,0,0) =
1

3
X1 + 1,

PIV,+(1,1,0) =
2

3
X2 +

2

3
X1 + 1,

PIV,+(1,1,1) =
4

3
X3 + 2X2 +X1 + 1,

PIV,+(2,0,0) =
1

3
X2

1 −
4

3
X2 +

1

3
X1 − 1,

PIV,+(2,1,0) =
1

3
X2

1 +
1

3
X2X1 −

2

3
X3 −

2

3
X2 −

2

3
X1 − 1,

PIV,+(2,1,1) =
1

3
X2

1 +
4

9
X3X1 −

2

3
X2X1 −

2

3
X2 −

1

3
X1 − 1,

PIV,+(2,2,0) = −
4

3
X2

1 +
4

3
X2

2 −
8

9
X3X1 −

4

3
X3 +

4

3
X2 −

1

3
X1 + 1,

PIV,+(2,2,1) = −
2

3
X2

1 +
4

3
X2

2 +
8

3
X3X2 +

4

3
X3 + 2X2 +

5

3
X1 + 1,

PIV,+(2,2,2) =
16

9
X2

3 − 4X2
2 +X2

1 +
8

3
X3X2 − 4X3X1 − 2X2X1 +

16

3
X3 − 12X2 +X1 − 1.

(19)
From the first ten polynomials one can see that the polynomial PIV,+(k1,k2,k3)

is of order k1
for k1 ≤ 2, which can be proven generally for any k1 using the generalized trigonometric
identity (14).
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5 Conclusion

The generalization of the Chebyshev polynomials of fourth kind was done using the sym-
metric multivariate trigonometric function. The generalization by antisymmetric function
follow similar procedure but is slightly more complicated due to the antisymmetry con-
dition. This generalizations completes the set of eight multivariate Chebyshev-like poly-
nomials. The multivariate Chebyshev-like polynomials inherited many usable properties
from the one dimensional cases, and thus are interesting topic for further study.

One of possible applications of the multivariate Chebyshev-like polynomials is to ob-
tain cubature formulas. Cubature formulas allow replacing weighted integral of poly-
nomial function with a linear combination of polynomial values at some points. This
allows faster computation and therefore can lead to effective numerical methods. For the
multivariate Chebyshev polynomials of first and third kind this was already done in [7].
The cubature formulas obtained from multivariate Chebyshev polynomials of second and
fourth kind are point of current study.
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Abstract. There are many approaches to evaluate density within pedestrian scenarios, including
point approximation, Voronoi cells or more sophisticated methods. In this project we focus on
the individual density, where each pedestrian is considered as a source of density distribution. A
cone can be considered as a reasonable shape, with its diameter as a blur parameter. Naturally,
pedestrians adapt their velocity and path selection with respect to the conditions around them
in given range. The correlation of density and velocity, respective density and exit angle was
evaluated on laboratory experiment data for all acceptable blur – range combination. Because
negative correlation corresponds to more significant response of velocity (exit angle) to the
density, the correlations seem to be a perfect tool to estimate density parameters.

Keywords: crowd dynamics, individual density, velocity response

Abstrakt. Existuje mnoho přístupů k vyhodnocování hustoty v rámci systémů chodců, jako
je bodová aproximace, Voronoiské buňky nebo další, sofistikovanější metody. V tomto projektu
se zaměřujeme na individuální hustotu, kde je každý chodec považován za zdroj distribuce hus-
toty. Za vhodný tvar může být považován kužel jednotkového objemu, jehož průměr vyjadřuje
parametr rozostření. Chodci zřejmě přizpůsobují svou rychlost a výběr cesty okolním pod-
mínkám v daném okolí. Korelace hustoty a rychlosti, popřípadě hustoty a úhlu k výstupu byla
vyhodnocována na základě údajů z laboratorních experimentů pro všechny myslitelné kombinace
parametrů rozostření a rozsahu okolí. Vzhledem k tomu, že více negativní korelace odpovídá
výraznější odezvě rychlosti (úhlu výstupu) na hustotu, zdá se, že tyto korelace jsou vhodným
nástrojem pro odhad parametrů hustoty.

Klíčová slova: dynamika davu, individuální hustota, reakce rychlosti

1 Introduction

The pedestrian movement, including egress situations, walking in corridors or in cross-
section areas has been widely studied in last twenty years [4]. This period seems long
enough to bring the answer to such fundamental question as "how pedestrians react to

∗GAČR 15-15049S & SGS15/214/OHK4/3T/14

29



30 M. Bukáček

their surrounding", but so far, there are only qualitative studies or macroscopic approxi-
mations. Moreover, the definitions of fundamental quantities are not unified [5] and the
only criteria to use some method is to bring the prettiest data.

In this paper, the study of pedestrian reaction starts with quantification of state of
his neighborhood and quantification of his reaction. The main idea has been presented
and described at the conference PED 2017 [3]. This paper partially discusses some part
of density evaluation and concludes preliminary results.

The reaction consisting of velocity and direction changes is considered to be induced
by the trend of density. There are many ways to evaluate density and even the reaction
range should be parametrized, thus the pedestrian behavior in front of the exit is analyzed
on parametric grid with respect to multiple defined densities (defined bellow). This
parametric grid is generally based on two features:

• blur, e.g. the size of area affected by one pedestrian,

• range, e.g. the size of area affecting one pedestrian.

At the end, Pearson correlation coefficient

Rt (ρωα , vα) =
Cov (ρωα , vα)√

Var (ρωα) Var (vα)
(1)

is used as a metric to select the density with the best fit to pedestrian reactions.
Numerical study is based on the egress experiment organized in the study hall of

FNSPE CTU in Prague in 2014, see [1], [2].

2 Definitions

As mentioned above, the analysis is provided on pedestrian trajectory data. The velocity
vα(t) of pedestrian α is defined as usual using central differences of space coordinates.
The exit angle ϑα(t) ∈ [0, π] is defined as angular deflection from the ideal direction of
the pedestrian α to the exit

The density is the only flexible variable in this study. Its value is integrated over the
distribution generated by each pedestrian α individually

ρ =
N

|A|
=

∫
A
p(~x) d~x

|A|
=

∫
A

∑N
α=1 pα(~x) d~x

|A|
=

N∑
α=1

∫
A
pα(~x) d~x

|A|
. (2)

There are several methods to define the individual density distribution function (ker-
nel) pα(~x):

• point approximation
pα(~x) = δ~x,~xα ,

where
∫
A
δ~x,~xα d~x =

{
1 if ~xα ∈ A,
0 otherwise,
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• stepwise function

pα(~x) =

{ 1
|Aα| if ~x ∈ Aα,
0 otherwise,

where special cases are

1. cylindrical distribution

pα(~x,R) =

{
1

R2π
if ||~x− ~xα|| < R,

0 otherwise,

2. Voronoi distribution, where Aα is a voronoi cell – the whole space is segregated
into pedestrian cells Aα according to a simple rule: each point ~x
is assigned to the nearest pedestrian ~xα,

• linear (conic) distribution

pα(~x,R) =

{
3

R3π
(R− ||~x− ~xα||) if ||~x− ~xα|| < R,

0 otherwise,

• Gaussian distribution

pα(~x,Σ) =
1

2π
√
|Σ|

e−
1
2

(~x−~xα)TΣ−1(~x−~xα)

with covariance matrix Σ = σ2 I2×2, where I2×2 represents identity matrix.

Figure 1: Example of density distribution

In this paper, linear (conic) distribution was used due to its decreasing trend with
increasing distance, limited support and independence of one pedestrian to others. An
example of density distribution generated by the method mentioned above is visualized
in Figure 1.
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3 Analysis
Basic overview is provided by of velocity – density, resp. direction – density relation of
all trajectories. For each blur and range parametric set, Pearson correlation coefficient
was evaluated over the whole trajectory, and then averaged over all trajectories of the
experiment, see Figure 2.

Figure 2: Correlation coefficient over the whole trajectory, mean over all trajectories

We can see expected zero correlation for zero range point approximation in case of
both, velocity and the exit angle as well as natural negative velocity correlation for short
range narrow approximation. On the other hand, positive velocity correlation for any
long range approximation and negative exit angle correlation for all reasonable sets of
parameters weren’t expected at all. Moreover, the absolute value of correlation is rather
small, indicating week dependency of density and pedestrian reaction.

To see the source of positive or negative correlation, we have to go to individual level
and check rolling correlation (window width 1.56 s) for segments of one trajectory, see
Figure 3.

There is strong positive correlation of velocity and long-range density in free flow
area that can be explained by competitiveness between pedestrians. Strong negative
correlation of velocity and all densities in avoiding/joining the cluster area corresponds
to adjusting velocity to higher density. And at the end, positive correlation of velocity
and all densities in the cluster area is caused by the flow conservation law – closer the
exit, lower number of participants carry the flow, the velocity at the exit is much higher
than inside the crowd, even the density is higher as well.
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Figure 3: Correlation coefficient of four density combinations and velocity

4 Conclusions

Correlation between velocity and density isn’t obviously as clear as expected on the
first sight. Expected decrease of velocity implied by increasing density is observed only
in transition phase between free flow and congested areas. Others situations produce
different behavior due to the complex dynamics.

In general, individual pedestrian density reflects phase transition changes very well,
as can be seen in Figure 4. The value of correlation of velocity and one specific density is
not stable, but differs with the traffic mode around, personal preferences and individually
selected strategy. The analysis of such complexity is a subject of further research.

Yet these preliminary results described and explained unexpected positive correlation
in the exit area by the flow conservation law. We hope that deep decomposition and
clustering of trajectories reveal more fundamental facts that increase our ability to predict
the pedestrian reactions.

Figure 4: Changes of blur (blue dotted neighborhood) and range (yellow neighborhood)
parameters according to the phase transitions.
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Abstract. This study presents a mathematical model of density profile computation for multi-
component mixtures of two commonly used phase geometries. The model unifies the description
of multicomponent systems of planar and spherical interface geometry. The mathematical model
is supplied with PC-SAFT equation of state for thermodynamic property evaluation. The fun-
damentals of the presented model lie in the gradient theory approximation used to formulate
the governing differential equation. An innovative approach to the problem formulation divides
the solution into two simple parts. The solution method applicable for arbitrary geometry was
developed and a special case for planar and spherical interfaces was solved. In addition to
the density profile and the surface tension are computed for modelled system. Binary system
CO2,C4H10 was investigated and compared with available experimental data. Surface tension
estimate was found to be in good agreement with experiment.

Keywords: phase interface, gradient theory, multicomponent system, surface tension

Abstrakt. Předmětem studie je zkoumání fázových rozhraní dvou základních typů geometrií.
Jedná se o rovinné a sférické geometrie, které jsou ve studii zkoumány jednotným modelem.
Tento model využívá poznatky gradientní teorie a je doplněn o stavovou rovnici PC-SAFT,
která vyčísluje termodynamické vlastnosti zkoumaného systému. Pomocí originálního přístupu
je model rozdělen na dva výpočetní kroky. Ve studii jsou zkoumány obě geometrie na vybrané re-
alné směsi obsahující CO2,C4H10. Vypočtené výsledky jsou následně srovnány s dostupnými ex-
perimentálními daty. Výsledky srovnání pro povrchová napětí jsou v dobré shodě s vytvořeným
modelem.

Klíčová slova: fázové rozhraní, gradientní teorie, vícesložkové systémy, povrchové napětí

1 Theoretical background

The methods for accurate modelling of phase interfaces are important for the under-
standing of natural processes and applications in technology. One such application is

∗The research has received funding from the Norwegian Financial Mechanism 2009-2014 under Project
Contract no. 7F14466
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carbon capture and storage (CCS). In particular, the prediction of non-equilibrium phase
transitions requires a detailed knowledge of the phase interfaces.

The gradient theory (GT) framework presented here was initially used for pure systems
only. The initial aim was to predict interface properties of said pure system. Through the
recent years the originally simple description of pure systems was extended into multiple
component systems for example [15, 16]. The authors derived the formulas and governing
equation system for the multi-component problems and provided comparison with avail-
able experimental data. But during the derivation authors restricted themselves to the
planar phase interface geometry. There also exist group of authors who extend the the-
ory to the more complicated spherical interface geometry [6, 17, 20]. While these authors
derived the terms for the special geometry e.g droplets, they also restricted themselves
and constructed the models for the pure systems only. Based on our observation there
is no unified framework which describes how to approach spherical phase geometry in
multi-component systems.

The presented study continues in line with mixture systems research by Vinš et. al.
[19] and combines the spherical interface geometry research by Planková et. al. [18].
The aim of this study is the prediction of multi-component systems with spherical phase
interface geometry initially outlined in [4]. The method is extended into derivation of the
generalized computational approach for two interface geometries in multiple-component
system. This study also present the comparison of investigate two-component system
with experimental data in the last section.

2 Theoretical background

2.1 Cahn-hilliard gradient theory

The main advantage of gradient theory approach is the computational speed and the
overall simplicity compared to the full density functional theory (DFT) or molecular
simulation models. But the simplicity of the approach comes at the cost of lowered
accuracy in regions with large gradients of Helmholtz energy.

Gradient theory formulate the work of formation ∆Ω and uses it to describe the op-
timal density profile. The work of formation is defined as the difference between the
homogeneous system and the non-homogeneous system where the phase interface effects
are accounted for. Same formulation can be expressed in multiple thermodynamic po-
tentials, but for the case of multi-component mixtures the grand potential is the most
suitable:

∆Ω(ρ) = Ωinhom(ρ)− Ωhom(ρ). (1)

Grand potentials here depend on the molar density ρ which can be understood as an
universal descriptor of a system. It is also usual to search for the molar density sys-
tem description in form of density profile. In an arbitrary system such density profile
is a function of the systems coordinates for example ρ = ρ(s1, s2, s3). With this for-
mulation the solution becomes substantially complex. Therefore, it is usual to assume
that the system is non-uniform in only single coordinate s1 denoted further simply as s.
Helmholtz energy of inhomogeneous system is then expressed as Taylor expansion around
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homogeneous Helmholtz energy with higher order terms omitted as follows:

finhom = fhom(ρ) + C1 · ∇2ρ +
1

2
C2 · (∇ρ)2 . . . (2)

According to the approach used by Cahn and Hilliard [3] the Taylor expansion is utilised in
the formulation of the grand potential. With a simplified notation the following equation
for grand potential difference is obtained.

∆Ω =

∫
s

(
∆ω (ρ (s)) +

1

2
C3

(
∂ρ

∂s

)2
)
Sds, (3)

Here C3 parameters contain the Taylor expansion coefficients and ∆ω is the grand po-
tential density which can be also expressed in following form:

∆ω (ρ) = fhom (ρ)−
n∑
i=1

µG
i ρi + pG. (4)

It can be noted that formation work in eq. (3) was derived for generalized type of interface
geometry parametrized with s and S. This geometry can be specified later with the choice
of coordinate system best describing the intended interface geometry. Selecting Cartesian
coordinates the planar geometry can be described and similarly spherical coordinates can
be used for droplets.

2.1.1 Core problem derivation

When the task is transferred into grand potential formulation it can be noticed that it is
also a functional formulation for an unknown density profile function ρ. With the problem
then understood as functional problem of finding the saddle point the variational calculus
can be used with advantage. The required criterium for optimal density profile can be
formulated accordingly as:

δ∆Ω [ρ]ρ=ρ0 = 0 (5)

The extremal point of previous formulation is found by Euler-Lagrange equations.

S
∂∆ω (ρ (s))

∂ρk
+
S

2

n∑
i,j=1

∂ci,j
∂ρk

(
∂ρi
∂s

)(
∂ρj
∂s

)
− d

ds
S

n∑
i=1

ci,k

(
∂ρi
∂s

)
= 0, k ∈ 1 . . . n. (6)

In such form the set of equations is overly complex. The following three simplifications
are proposed for the iterative solution approach taken in the model.

∂∆ω (ρ (s))

∂ρk
= ∆µk (7)

Secondly the equation (6) also contains the non-diagonal influence parameter ci,ji 6=
j. This type of influence parameter is rarely tabulated and has to be inferred from
experimental data. This approach is available only for narrow substance range therefore
the approximation of parameter is usually used instead.

ci,k
.
=
√
ci,i · ck,k (8)
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Lastly the influence parameter ci,j is also assumed to be independent on molar density.
This assumption is valid for most systems exhibiting a very weak density dependence.

∂ci,j
∂ρk

= 0 (9)

By combining the (7,8,9) together with a special derivative notation ρ′i = ∂ρi/∂s the set
of equations (6) is substantially reduced into:

n∑
i=1

√
ci,i · ck,k

(
dS

ds
ρ′i + ρ′′i

)
= ∆µk, k ∈ 1 . . . n. (10)

Core problem is now formulated as the set of second order differential equations with
non-zero right hand side (RHS).

3 Model description
As stated in the previous section 2 the core problem lies within the solution of the
second order differential equation set. Moreover the RHS of equations (10) is generally
analytically non-integrable due to the fact that ∆µk is computed from the EoS. Complex
equation of state without analytically integrable chemical potential µk (such as PC-SAFT)
prohibit the analytical solution. Additionally the left hand side contains dS/ds factor
dependent on the interface geometry. To answer both problem simultaneously an unified
numerical method for the two investigated geometries is proposed here.

n∑
i=1

√
ci,i

(
dS

ds
ρ′i + ρ′′i

)
=

∆µk
ck,k

, k ∈ 1 . . . n (11)

While solution of aforementioned core problem is possible in this form. It would
require a substantial computational effort coupled with the increased error of solution
and fundamentally problematic situation for system with more than two components. It
is therefore quite favourable to modify the form of a problem. A similar approach as
[5, 13, 9, 12] was used to transform the original set into algebraic problem and simplified
differential problem. An idea similar is to restructure the set (10) in such a way that all
elements with k index are transferred to the right hand side of the set and subtract the
first equation form the rest. This creates the system of nonlinear equations and single
differential equation to solve.

According to this schema the differential equation has to be modified to preserve the
connection between sections. The connection can be expressed as a single variable X also
referred as an artificial variable.

X =
∆µ1√
c1,1

(12)

In addition to the variable X the partial densities are also treated. Introduced mod-
ification is inspired by the problem of monotonous density. It is known that multiple
component systems in gradient theory require at least one density to have a monotonous
character along the coordinate axis. The same requirement was formulated by Cahn and
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Hilliard [2] and later further investigated by Liang et. al. [10]. This requirement implies
the remaining partial densities are expressed as functions of the one selected monotonous
density.

Proposed approach inspired by [10], introduces a new modified density ρ̃. With this
modified density the problem with selection can be softened and all partial densities are
processed in same manner as a functions of ρ̃.

ρ̃ =

∑n
i=1

√
ci,iρi∑n

i=1

√
ci,i

(13)

Here n is the number of components in mixture and ci,i is influence parameter of pure i-th
component. Monotonous character is justified by the existence of monotonous component
with high influence parameter as in case of investigated system.

With modified density (13) and artificial variable (12) the differential section of prob-
lem can be written as:

dS

ds
ρ̃′ + ρ̃′′ =

X(∑n
i=1

√
ci,i
) (14)

This shape of equation is expressed for arbitrary geometry and specialized solver can be
used for individual geometries. For example, when the factor dS/ds = 1 the problem can
be numerically integrated. In other cases a numerical solution of differential equation is
searched for.

The algebraic section is also treated with notation (12,13). Consequentially one equa-
tion has to be added into a system for modified density. The linear system is then
composed of n nonlinear equations:

∆µ2√
c2,2

= −X

...
...

...
∆µn√
cn,n

= −X

n∑
i=1

√
ci,iρi = ρ̃

n∑
i=1

√
ci,i. (15)

Algebraic system here does not depend on the type of interface geometry as a trivial
result of the previous derivation. This feature of system permits the independent solution
regardless of the geometry type.

3.1 Algebraic system solution

This subsection offer a solution method for the nonlinear algebraic set of equation ob-
tained from core problem derivation. Because of the nonlinear character of problem the
Newton-Rhapson solver was selected. The numerical properties of a solver were further
improved with rearrangement of the set so that Jacobean matrix is symmetric. The fact
is straightforward consequence of the partial derivatives interchangeability also previously
shown by [10].
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∆µ2 +X
√
c2,2 = 0

...
...

...
∆µn +X

√
cn,n = 0

n∑
i=1

√
ci,iρi − ρ̃

n∑
i=1

√
ci,i = 0 (16)

The computational procedure of the algebraic solver can be therefore developed around
the Newton-Rhapson iterator with the Jacobean inversion method. The whole procedure
is in steps applied across the modified density discretization and individual solution are
found. These values are coupled into the following data structure evaluated for discrete
modified densities ρ̃1, ρ̃2, . . . ρ̃disc.

This data structure is fundament for the piecewise cubic interpolation used after-
wards. The interpolation enables to use fewer discretization points and alleviate some
computational strain without suffering much greater error. It is also useful for following
solution to hold the algebraic solver results as functions ρ1 (ρ̃) , ρ2 (ρ̃) , . . . , ρn (ρ̃) , X (ρ̃).

3.2 Differential equation solution

The initial algebraic solution is followed by the differential solver. In developed solver
an artificial variable interpolation X(ρ̃) is used and a general approach is undertaken to
produce the density profile dependence ρ̃(s)

Utilising the previous knowledge of selected interface geometry permits the specialized
differential solver to be developed. This is especially useful for planar geometry case where
solution can be found analytically. The analytical solution is presented in next section 3.3
. In this study we develop the general solution method primarily used for the spherical
geometry. Therefore, the following equation is written with dS/ds factor substituted for
spherical geometry case.

2

r
ρ̃′ + ρ̃′′ =

X(ρ̃)(∑n
i=1

√
ci,i
) (17)

From the performed analysis of the problem and through the trial and error it has
been determined that the shooting method coupled with the predictor corrector type
solver can be used. Wide range of methods were tested and deemed to be not useful
because of the widespread convergence issues.

The solution method in theory translates the originally boundary value problem into
the initial value problem. Therefore, the investigation of droplets in this case can access
an information about gas density of surroundings. Also the initial bulk liquid density
derivative is known and understood as being zero, because of the requirement of homoge-
neously distributed density in volume in the centre of droplet. The task for the shooting
method is to find initial density that yields the density profile finishing at the a priory
known gas density. For droplets the shooting parameter is the initial liquid density which
correspond with experimentally measured systems.
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The shooting method is also supplied with a decision criteria. The criteria is respon-
sible for the selection of the next shooting parameter αnext. It was found out that a
bisection method construct a reliable criteria and is able to cope with steep nature of
investigate searching task for αoptimal shooting parameter.

3.3 Density profile computation

As mentioned in the previous section the core problem can be solved analytically in
special case of planar phase interface geometry. This was well investigated [13, 8, 11] and
found out that the shape of planar phase interface density profile can be computed as
following integral:

z(ρ) = z0 +

∫ ρ

ρ0

√√√√∑n
i,j=1 ci,j

(
∂ρi
∂z

) (∂ρj
∂z

)
2∆ω

dρ (18)

Here the ρ0 and z0 stand for initial selected values for initial density of integration
as the centre of profile respectively. These two parameters determine how is the profile
oriented and where it begins. This approach also replace differential for numerical integral
computation and only the partial densities are left to be determined.

In spherical case geometry the differential solver produces result in a form of mod-
ified density function of radius ρ̃(r) further modified into ρir. The process includes
transformation of modified density and partial density computation base on algebraic set
solution. With interpolated functions ρi(ρ̃) the transformation of ρ̃(r) into ρi(r) becomes
trivial. This operation depends on the monotonousness of modified density which implies
injectivity required for transformation.

The main property of interface is surface tension. This property states the force
exerted onto the dividing surface that holds the phases separate. For the systems with
planar interface geometry the generally known [21, 12, 14] expression for surface tension
is used as:

σ =

∫ ρL

ρG

√√√√2∆ω
n∑

i,j=1

ci,j

(
∂ρi
∂z

)(
∂ρj
∂z

)
dρ (19)

Following the argument by Liang et. al. [10] the integration can be also performed
in modified density which gives a negligible boost to the accuracy, because this way the
computation does not rely on modified density backward transformation. The second case
of spherical geometry offers no such direct approach and the Young-Laplace equation
have to be used for computation. It should be noted that saturation of system plays
important role as input parameter in droplet density profile computation. This state can
be identified with the Laplace pressure ∆p. After a simple treatment the equation for
spherical surface tension is obtained.

σ =
3

√
3∆Ω∆p2

16π
(20)
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Figure 1: Planar density profiles of C4H10 −
CO2 mixture for T = 300 K, p = 1.36 MPa
and ∆p = 0 MPa
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Figure 2: Spherical density profiles of
C4H10 − CO2 mixture for T = 300 K, p =
1.85 MPa and ∆p = 5.53 MPa

4 Results

Density profiles give the information about phase interface and they are computed with
either (18) equation for planar geometry or according to the method described in section
about differential equation solution. These solutions are presented for the C4H10 − CO2

mixture depicting both investigated geometries. Distinct feature of both figures is the
substantial adsorption of carbon dioxide. The adsorption is more pronounced with in-
creased ∆p illustrated with figures for ∆p = 0 and ∆p = 5.53MPa. It can be also noted
that profiles are computed until the stop criteria evaluation which in spherical case result
in longer gaseous part of profile. Because of a direct computation of planar case geome-
try the Fig. 1. have no such feature. Additionally the planar geometry has an arbitrary
selected initial distance of computation here set to z = 0. This means it should be used
only as reference for interface width in contrary to the spherical geometry where radial
distance is directly related to the size of droplet.

For the more complete comparison we also calculated the surface tension of C4H10 −
CO2 mixture and compared it with the measurements of surface tension performed by
Brauer and Haugh [1] at Fig. 3. and Hsu, Nagarajan and Robinson [7] at Fig. 4. Both
figures depict the planar case because the experimental data for surface tension of droplets
are presently non-existent.

Figure 3. show good agreement of the experimental data with model across measured
temperatures. The model is qualitatively very well aligned to experiment with constant
over-prediction under 10% of modelled value. More troubling is problem with aborted
computation visible for lower temperatures T <= 327.59 K. These points were omitted
because the computation was terminated prematurely due to the improper equilibrium
conditions. Such problem is caused by non-compatible prediction of equilibrium state
from equation of state as compared with experimentally measured values. This issue
remain a task for future development with the aim for more robust equilibrium evaluation.
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In second comparison for C4H10 − CO2 mixture at Fig. 4 three datasets are com-
pared. System conditions were well reproduced by model with a stunning precision for
higher temperatures 344.30K and 377.30K. The prediction for temperature T = 319.30K
provides appropriate estimation for higher pressures and deviates slightly more in region
of lower pressures around 0.2 − 0.35MPa. Aforementioned precision of prediction can
be attributed to selected EoS and system combination with medium carbohydrate and
carbon dioxide. Similar behaviour is expected for larger carbohydrates where prediction
of thermodynamic properties is better.

5 Conclusions

This study presents the unified mathematical model for two types of phase interface
geometry targeted at multi-component mixtures. The model is based on gradient theory
description of interface and utilise an advanced PC-SAFT EoS for equilibrium and system
properties calculation. The study also present an overview of proposed model together
with derivation of model key points. At the end of derivation the used formulas for
density profile and surface tension results are presented.

The proposed solution utilize the special shape of the simplified problem and enables
the innovative two step solution. The presented solution also unifies the two types of
investigated geometry previously not mentioned in literature. The model was tested
on binary system of carbon dioxide and methane which falls into the category of CCS
relevant mixtures. Modelled results were compared with experimental values of surface
tension and a close correspondence of prediction and data was observed.
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Abstract. Fractal investigation of a signal often involves estimating its fractal dimension or
Hurst exponent H when considered as a sample of a fractional process. Fractional Gaussian
noise (fGn) belongs to the family of self-similar fractional processes and it is dependent on
parameter H. There are variety of traditional methods for Hurst exponent estimation. Our novel
approach is based on zero-crossing principle and signal segmentation. Thanks to the Bayesian
analysis, we present a new axiomatically based procedure of determining the expected value
of Hurst exponent together with its standard deviation and credible intervals. The statistical
characteristics are calculated at the interval level at first and then they are used for the deduction
of the aggregate estimate. The methodology is subsequently used for the EEG signal analysis of
patients suffering from Alzheimer disease.

Keywords: fractal dimension, Hurst exponent, Bayesian approach, EEG, Alzheimer disease

Abstrakt. Hurstův exponent H je užitečnou charakteristikou pro fraktální analýzu signálu,
který je zkoumán jako realizace náhodného zlomkového procesu. Zlomkový Gaussův šum (fGn)
patří do třídy soběpodobných zlomkových procesů a je závislý na stejném parametru H. V
současné době existuje řada tradičních metod, které slouží pro odhad Hurstova exponentu. Nový
přístup k odhadu je založen na charakteristice průchodů signálu nulou a využívá jeho segmentaci.
S využitím Bayesovské analýzy je představena nová axiomaticky založená procedura odhadu
H, která poskytuje jeho standardní odchylku a konfidenční interval. Statistické charakteristiky
jsou nejprve odhadovány na úrovni jednoho segmentu a následně jsou použity pro stanovení
celkového odhadu. Metoda je použita na analýzu signálu EEG pro identifikaci pacientů, kteří
trpí Alzheimerovou chorobou.

Klíčová slova: fraktální dimenze, Hurstův exponent, Bayesovský přístup, EEG, Alzheimerova
choroba

Plná verze: M. Dlask, J. Kukal, O. Vysata. Bayesian Approach to Hurst Exponent
Estimation. Methodology and Computing in Applied Probability 19 (2017), 973–983.
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Abstract. In practise we can encounter many problems where is useful (and sometimes neces-
sary) to employ small area estimation (SAE) methods to obtain reliable estimates of characteris-
tics of interest (means, totals, quantiles, etc.). The contribution deals with an area-level gamma
mixed model that can be useful in some applications involving only positive responses (e.g. in a
financial sector). To obtain estimates of regression parameters and predictors of random effects
the PQL algorithm and the ML Laplace approximation algorithm are introduced. In order to
check the behaviour of the fitting algorithms we perform simulation experiments and compare
acquired results of both of them.

Keywords: Area-level model, Generalized linear mixed model, PQL algorithm, ML Laplace
approximation algorithm

Abstrakt. V praxi lze narazit na řadu problémů, kde je užitečné (a často nezbytné), použít
metody odhadování v malých oblastech, abychom získali odhady charakteristik, které nás za-
jímají (středních hodnot, kvantilů, atd.). Tento článek pojednává o statistickém modelu na
úrovni oblastí, kde předpokládáme, že odezvy mají gamma rozdělení. Domníváme se, že by tento
model mohl být užitečný v praktických aplikacích vyžadujících pouze kladné odezvy (např. ve fi-
nančním sektoru). K odhadu regresních parametrů a predikci náhodných efektů použijeme PQL
algoritmus a ML Laplaceův aproximační algoritmus. Následně provedeme simulační experiment,
abychom ověřili kvalitu výstupů obou algoritmů.

Klíčová slova: Model na úrovni oblastí, Zobecněný lineární smíšený model, PQL algoritmus,
ML Laplaceův aproximační algoritmus.

1 Introduction
Small area estimation models can be divided into two parts: area-level models and unit-
level models. Considering area-level models, data are available (unlike unit-level models)
only at the area level. Data collected for each domain are usually used to compute the
direct estimate of investigated characteristic (e.g. mean). In unit-level models there are
some auxiliary data even at the individual level. One of the most basic area-level models
is the Fay-Herriot model that can be expressed as (see [1])

yd = xTdβ + vd + ed, d = 1, . . . , D,

∗This work was supported by the grant SGS15/214/OHK4/3T/14. This work has arisen in coopera-
tion with Domingo Morales: the author used some parts from a still not published article dealing with
this topic.
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where β is a vector of regression parameters, ed ∼ N(0, σ2
d) are independent sampling

errors and vd ∼ N(0, σ2
v) are independent random effects. It is also assumed that the

random effects are independent on the samplings errors and the variances σ2
1, . . . , σ

2
D are

known. The model has p+1 unknown parameters: β = (β1, . . . , βp)
T and σ2

v . The task is
then to estimate the quantity µd = xTdβ+ vd. In this work we suppose that the responses
have the gamma distribution and we try to estimate unknown parameters.

2 Model
We consider a set of random effects {vd : d = 1, . . . , D} such that vd

iid∼ N(0, 1). In matrix
notation we have v = (v1, . . . , vD)T ∼ ND(0, ID), i.e.

fv(v) =
1

(2π)D/2
exp

{
−1

2
vTv

}
.

The conditional distribution of the target variable yd given vd is

yd|vd ∼ Gamma

(
νd, ad =

νd
µd

)
, d = 1, . . . , D

and the density follows

f(yd|vd) =
aνdd

Γ(νd)
yνd−1d exp{−adyd}I(0,∞)(yd) =

(
νd
µd

)νd yνd−1d

Γ(νd)
exp

{
− νd
µd
yd

}
I(0,∞)(yd).

The expectation and variance of the conditional random variable yd given vd are

E[yd|vd] =
νd
ad

= µd, var[yd|vd] =
vd
a2d

=
µ2
d

νd
.

The canonical link for the gamma distribution (see [2]) is the inverse link, g(x) = 1
x
, then

we model the conditional expectation µd as

g(µd) =
1

µd
= xTdβ + φvd, d = 1, . . . , D,

where β = (β1, . . . , βp)
T and xTd = (xd1, . . . , xdp). Considering the data y = (y1, . . . , yD)T

satisfy the assumptions of GLMM the random variables yd|vd, i = 1, . . . , D, are indepen-
dent, i.e. f(y|v) =

∏D
i=1 f(yd|vd). Finally, we get

f(y) =

∫
RD

f(y|v)fv(v)dv =

∫
RD

ψ(y,v)dv, (1)

where

ψ(y,v) = (2π)−D/2 exp

{
−vTv

2

} D∏
d=1

(
νd
µd

)νd yνd−1d

Γ(νd)
exp

{
− νd
µd
yd

}

= (2π)−D/2 exp

{
−vTv

2

}( D∏
d=1

ννdd y
νd−1
d

Γ(νd)

)
exp

{
D∑
d=1

νd log(xTdβ + φvd)

}
×

× exp

{
−

p∑
k=1

(
D∑
d=1

νdydxdk

)
βk − φ

D∑
d=1

νdydvd

}
.
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The partial derivatives of µd = 1
xT
d β+φvd

are

∂µd
∂βr

= − xdr
(xTdβ + φvd)2

= −xdrµ2
d,

∂µd
∂φ

= − vd
(xTdβ + φvd)2

= −vdµ2
d.

There are p + 1 unknown parameters in this model: β = (β1, . . . , βp)
T and φ. Due to

the fact that the integral in (1) cannot be calculated explicitly we employ two different
methods to obtain estimates of these parameters: PQL algorithm and ML Laplace ap-
proximation algorithm.

Remark 1 In practise, yd is a direct estimate of a domain total or mean with estimated
design-based variance σ2

d = varπ(yd). By equating var(yd|vd) to σ2
d and substituting µd

by yd, we get σ2
d =

y2d
νd
.

3 PQL algorithm
The ML-PQL estimator of β and predictor of v (see [3]) maximizes the joint log-likelihood

l = logψ(y,v) = −D
2

log 2π − 1

2

D∑
d=1

v2d +
D∑
d=1

(νd log νd + (νd − 1) log yd − log Γ(νd))

+
D∑
d=1

νd log(xTdβ + φvd)−
p∑

k=1

(
D∑
d=1

ydνdxdk

)
βk − φ

D∑
d=1

ydνdvd.

We use the Newton-Raphson algorithm to maximize l = l(β,v). The first derivatives of
l with respect to β and v are

Ur =
∂l

∂βr
=

D∑
d=1

νdxdr
xTdβ + φvd

−
D∑
d=1

ydνdxdr, r = 1, . . . , p,

Up+d =
∂l

∂vd
= −vd +

νdφ

xTdβ + φvd
− φydνd, d = 1, . . . , D.

The second derivatives of l with respect to β and v are

Hr1r2 =
∂2l

∂βr1∂βr2
= −

D∑
d=1

νdxdr1xdr2
(xTdβ + φvd)2

, r1, r2 = 1, . . . , p,

Hr,p+d =
∂2l

∂βr∂vd
= − νdxdrφ

(xTdβ + φvd)2
, r = 1, . . . , p, d = 1, . . . , D,

Hp+d,p+d =
∂2l

∂v2d
= −1− νdφ

2

(xTdβ + φvd)2
, d = 1, . . . , D,

Hp+d1,p+d2 =
∂2l

∂vd1∂vd2
= 0, d1, d2 = 1, . . . , D, d1 6= d2.

The updating equation for the Newton-Raphson algorithm with fixed φ is

ξ(k+1) = ξ(k) −H−1(ξ(k))U(ξ(k)), (2)
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where ξ = (βT ,vT )T , U = U(ξ) = (U1, . . . , Up+D)T andH = H(ξ) = (Hrs)r,s=1,...,p+D. At
the step k of the algorithm, the penalized maximum likelihood estimation of φ maximizes
the joint likelihood of linear predictors η(k)1 , . . . , η

(k)
D where η(k)d = xTdβ

(k) + φ(k)v
(k)
d and

η
(k)
d ∼ N(xTdβ

(k), φ2), d = 1, . . . , D.

The joint log-likelihood of η(k)1 , . . . , η
(k)
D is

l(k) = −D
2

log 2π −D log φ− 1

2φ2

D∑
d=1

(η
(k)
d − xTdβ

(k))2.

By taking the first derivative of l(k) with respect to φ and equating to zero, we get

0 = U (k) =
∂l(k)

∂φ
= −D

φ
+

1

φ3

D∑
d=1

(η
(k)
d − xTdβ

(k))2,

φ2 =
1

D

D∑
d=1

(η
(k)
d − xTdβ

(k))2 = φ(k)2 1

D

D∑
d=1

v
(k)2

d .

Finally, the ML-PQL updating equation for φ is

φ(k+1)2 = φ(k)2 1

D

D∑
d=1

v
(k)2

d . (3)

3.1 Algorithm

The PQL algorithm calculates predictors of v and estimators of β and φ. Steps of the
algorithm:

1. k := 1 (k denotes iterations), set the values β(0), v(0) and φ(0).

2. Run (2). Use φ(k−1) as known value and β(k−1), v(k−1) as algorithm seeds. Let β(k)

and v(k) be the output.

3. Update φ by using the updating equation (3), i.e.

φ(k)2 = φ(k−1)2 1

D

D∑
d=1

v
(k)2

d .

4. Repeat the steps 2-3 until the convergence of β(k), v(k)d and φ(k).

4 ML Laplace approximation algorithm

4.1 Laplace approximation to the likelihood

Let h : R 7→ R be a twice continuously differentiable function with a global maximum at
x0, i.e. ḣ(x0) = 0 and ḧ(x0) < 0. Taylor’s series expansion of h(x) around x0 yields to

h(x) = h(x0) +
1

2
ḧ(x0)(x− x0)2 + o(|x− x0|2) ≈ h(x0) +

1

2
ḧ(x0)(x− x0)2.
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The univariate Laplace approximation is∫ ∞
−∞

eh(x) ≈
∫ ∞
−∞

eh(x0) exp

{
−1

2
(−ḧ(x0))(x− x0)2

}
dx

= (2π)1/2(−ḧ(x0))
−1/2eh(x0)

∫ ∞
−∞

exp

{
−1

2

(
x−x0

(−ḧ(x0))−1/2

)2}
(2π)1/2(−ḧ(x0))−1/2

dx

= (2π)1/2(−ḧ(x0))
−1/2eh(x0). (4)

Recalling assumptions, v1, . . . , vd ∼ N(0, 1) are independent and

yd|vd
ind∼ Gamma

(
νd,

νd
µd

)
, µd = µd(vd) = (xTdβ + φvd)

−1, d = 1, . . . , D.

The marginal density of yd can be expressed as

f(yd) =

∫ ∞
−∞

f(yd|vd)f(vd)dvd

=

∫ ∞
−∞

ννdd y
νd−1
d

(2π)1/2Γ(νd)
exp{νd log(xTdβ + φvd)− νdyd(xTdβ + φvd)} exp

{
−1

2
v2d

}
dvd

=
ννdd y

νd−1
d

(2π)1/2Γ(νd)

∫ ∞
−∞

exp

{
−v

2
d

2
+ νd log(xTdβ + φvd)− νdyd(xTdβ + φvd)

}
dvd

=
ννdd y

νd−1
d

(2π)1/2Γ(νd)

∫ ∞
−∞

exp{h(vd)}dvd,

where

h(vd) = −v
2
d

2
+ νd log(xTdβ + φvd)− νdyd(xTdβ + φvd), (5)

ḣ(vd) = −vd +
νdφ

xTdβ + φvd
− φνdyd = −vd + φνdµd(vd)− φνdyd,

ḧ(vd) = −
(

1 +
φ2νd

(xTdβ + φvd)2

)
= −(1 + φ2νdµ

2
d(vd)).

Let v0d denote the global maximum of h then ḣ(v0d) = 0 and ḧ(v0d) < 0. By applying
(4) in vd = v0d, we get

f(yd) ≈
ννdd y

νd−1
d

Γ(νd)
(1 + φ2νdµ

2
d(v0d))

−1/2×

× exp

{
−v

2
0d

2
+ νd log(xTdβ + φv0d)− νdyd(xTdβ + φv0d)

}
.

It holds that y1, . . . , yD are unconditionally independent and then the likelihood has the
form L(β, φ) =

∏D
i=1 f(yi). The log-likelihood is l(β, φ) =

∑D
d=1 ld, where

ld = log f(yd) ≈ l0d = log
ννdd y

νd−1
d

Γ(νd)
− 1

2
log ξ0d −

v20d
2

+ νd log(xTdβ + φv0d)

− νdyd(xTdβ + φv0d),
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where ξ0d = 1 + φ2νdµ
2
0d and µ0d = µd(v0d). The first derivatives of µ0d and ξ0d are

∂µ0d

∂βr
= −xdrµ2

0d, η0dr =
∂ξ0d
∂βr

= −2φ2νdxdrµ
3
0d,

∂µ0d

∂φ
= −v0dµ2

0d, η0d =
∂ξ0d
∂φ

= 2φνdµ
2
0d − 2φ2νdv0dµ

3
0d.

The first derivatives of l0d with respect to βr and φ are

∂l0d
∂βr

= −1

2

η0dr
ξ0d

+ νdxdrµ0d − νdxdryd,
∂l0d
∂φ

= −1

2

η0d
ξ0d

+ νdv0dµ0d − νdv0dyd.

It holds that

∂η0dr
∂βs

= 6φ2νdxdrxdsµ
4
0d,

∂η0dr
∂φ

= −4φνdxdrµ
3
0d + 6φ2νdxdrv0dµ

4
0d,

∂η0d
∂βr

= −4φνdxdrµ
3
0d + 6φ2νdv0dxdrµ

4
0d,

∂η0d
∂φ

= 2νdµ
2
0d − 8φνdv0dµ

3
0d + 6φ2νdv

2
0dµ

4
0d.

The second partial derivatives of ld are

∂2l0d
∂βs∂βr

= −1

2

∂η0dr
∂βs

ξ0d − η0drη0ds
ξ20d

− νdxdrxdsµ2
0d,

∂2l0d
∂φ∂βr

= −1

2

∂η0dr
∂φ

ξ0d − η0drη0d
ξ20d

− νdv0dxdrµ2
0d,

∂2l0d
∂φ2

= −1

2

∂η0d
∂φ
ξ0d − η20d
ξ20d

− νdv20dµ2
0d.

For r, s = 1, . . . , p+ 1, the components of the score vector and the Hessian matrix are

U0r =
D∑
d=1

∂l0d
∂βr

, U0p+1 =
D∑
d=1

∂l0d
∂φ

,

H0rs = H0sr =
D∑
d=1

∂2l0d
∂βs∂βr

,H0rp+1 = H0p+1r =
D∑
d=1

∂2l0d
∂φ∂βr

, H0p+1p+1 =
D∑
d=1

∂2l0d
∂φ2

.

In matrix form we haveU0 = U0(θ) = (U01, . . . , U0p+1)
T andH0 = H0(θ) = (H0rs)r,s=1,...,p+1,

where θ = (βT , φ)T . The Newton-Raphson algorithm maximizes l0(θ), with fixed vd =
v0d, d = 1, . . . , D. The updating equation is

θ(k+1) = θ(k) −H−10 (θ(k))U0(θ
(k)). (6)

For d = 1, . . . , D, the Newton-Raphson algorithm maximizes h(vd) = h(vd,θ), defined in
(5), with θ = θ0 fixed. The updating equation is

v
(k+1)
d = v

(k)
d −

ḣ(v
(k)
d ,θ0)

ḧ(v
(k)
d ,θ0)

. (7)
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4.2 Algorithm

The ML Laplace approximation algorithm is

1. Set the initial values k = 0, θ(0), θ(−1) = θ(0) + 1p+1, v
(0)
d = 0, v(−1)d = 1, d =

1, . . . , D.

2. Until ||θ(k) − θ(k−1)|| < ε1, |v(k)d − v
(k−1)
d | < ε2, d = 1, . . . , D, do

(a) Apply algorithm (7) with seeds v(k)d , d = 1, . . . , D, convergence tolerance ε2
and θ = θ(k) fixed. Output: v(k+1)

d , d = 1, . . . , D.

(b) Apply algorithm (6) with seed θ(k), convergence tolerance ε1 and v0d = v
(k+1)
d

fixed, d = 1, . . . , D. Output: θ(k+1).

(c) k ← k + 1

3. Output: θ̂ = θ(k), v̂d = v
(k)
d , d = 1, . . . , D.

5 Simulation experiments

The target of simulations is to check the behaviour of the fitting algorithms: PQL and
Laplace approximation algorithm. We set the true values of parameters as β0 = 0.05,
β1 = 0.1 and φ = 0.01, i.e. p = 2. Let D = 50, 100, 150, 200 be the number of domains
to be considered. For d = 1, . . . , D, we generate νd = 100, xd = d

D
, vd ∼ N(0, 1) and

yd ∼ Gamma

(
νd,

νd
µd

)
,where µd = (β0 + β1xd + φvd)

−1.

Steps of the algorithm

1. Repeat K = 1000 times (k = 1, . . . , D)

(a) Generate a sample {yd|d = 1, . . . , D}.

(b) Calculate β̂(k)
0 , β̂(k)

1 and φ̂(k).

2. For θ ∈ {β0, β1, φ}, calculate

BIAS =

∑K
k=1(θ̂

(k) − θ)
K

, MSE =

∑K
k=1(θ̂

(k) − θ)2

K
.

As can be seen from tables 1 and 2, ML Laplace approximation algorithm seems to
work well. Despite of the very small values of both BIAS and MSE for the PQL algorithm,
there is a problem with estimation of the parameter φ. We suppose that the true value
of φ is 0.01 but the output of the PQL algorithm for φ is smaller by several orders. The
estimations of the regression parameters β0 and β1 by PQL are, however, very well.
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D = 50 D = 100 D = 150 D = 200
PQL Lap PQL Lap PQL Lap PQL Lap

β̂0 -0.0019 0.0042 -0.002 0.0042 -0.0018 0.0041 -0.0018 0.0041
β̂1 0.0016 0.0013 0.0017 0.0014 0.0015 0.0016 0.0014 0.0016
φ̂ -0.01 0.0051 -0.01 0.0052 -0.01 0.0052 -0.01 0.0052

Table 1: BIAS depending on the number of the domains D.

D = 50 D = 100 D = 150 D = 200
PQL Lap PQL Lap PQL Lap PQL Lap

β̂0 1.96e-05 0.00006 1.17e-05 3.92e-05 8.39e-06 3.27e-05 7.07e-06 3.09e-05
β̂1 6.32e-05 0.00012 3.37e-05 6.98e-05 2.16e-05 4.94e-05 1.71e-05 4.24e-05
φ̂ 9.99e-05 0.00003 1e-04 2.88e-05 9.99e-05 2.80e-05 9.99e-05 2.79e-05

Table 2: MSE depending on the number of the domains D.
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Abstract. The anomaly detection is sub field of artificial intelligence the aim of which is
identifying data that are somehow different from an expected pattern. Anomaly detection is
also known as one-class classification because it is a similar task to the classification with the
only difference: The training set contains the only class. This makes the task difficult because
the character of the anomalous data is unknown when the model is trained. We give a survey of
neural network based models for anomaly detection and their noise robust modifications. The
performance is evaluated on the most advanced benchmark data for the anomaly detection

Keywords: Anomaly detection, autoencoder, replicator neural network

Abstrakt. Detekce anomálií je podoborem umělé inteligence a zabývá se nalezením anomálních
prvků. Jako anomální se dají považovat data (pozorování), která jsou rozdílná buď od vzorových
dat, nebo od očekávaného vzoru. Tato úloha se někdy nazývá jako jednotřídní klasifikace a to
proto, že pro trénování modelu jsou k dispozici pouze data z jedné konkrétní třídy. Avšak detekce
anomálií je mnohem složitější a obtížnější úkol než klasifikace, protože při detekci anomálii
není předem znám charakter anomálních dat a je nutné rozhodovat, jak velké výchylky musí
data dosáhnout, aby byla detekována jako anomální. V textu jsou popsány již známé modely
neuronových sítí pro detekci anomálií včetně těch robustních vůči šumu. V závěru je testována
přesnost těchto metod na zatím nejpokročilejších testovacích datech pro anomální detekci.

Klíčová slova: Detekce anomálií, autoencoder, neuronové sítě

1 Introduction
Representation Learning is enabler of many types of models - classifiers, anomaly detec-
tors, etc. We focus on anomaly detection as the field that is relatively least researched,
while constantly gaining on importance. The anomaly detection is identifying data, items
and observations that are different from the other data or does not conform the expected
pattern. It is widely applied in many fields such as medicine, banking and credit card
fraud detection, system health monitoring, intrusion detection and network security.

Our ultimate aim is to define models well usable in large scale data modeling in
the area of network security. This, however, will be the next step. First, we aim at
verifying our models on smaller scale benchmark data. The choice of benchmark data
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itself is a problem (see Sec. 3.4) - currently there is not available many good data sets
allowing reliable evaluation of methods [9] [12]. The existing anomaly detection models
very often fail to generalize well - some models work on some data but not on others,
with other existing models, it is the other way round. Hence our initial work focused on
1) reviewing existing models (see Sec. 2.1), 2) finding best methodology for performance
evaluation 3) researching options to utilize representation learning models to improve
anomaly detection (autoencoders have been used before but to limited extent only, while
in other fields - other than anomaly detection - they are known to provide significant
results), see Sec. 2.1.

2 Anomaly detection

Anomaly detection is a subfield of machine learning and is also known as one-class classifi-
cation and is similar to outlier detection. The goal is to detect a sample that is somehow
different from expected pattern or other observations. Contrary to the other machine
learning tasks such as classification, the anomaly detection is more difficult because the
character of the anomalous data is unknown when the model is trained. In addition to
that, the decision how much the sample must be different from others, to be detected
as anomalous, is a problem. To solve the anomaly detection problem, we need to ad-
dress the following concerns: 1) Choice of the model/ method with properties suitable
for the problem. 2) Address conceptual problems including thresholding and evaluation
(see Sec.3)

There is a number of methods for anomaly detection the survey of which is given in
[8], [21] and [25]. An example of a simple and popular method is one-class KNN [17] that
is beneficial for small scale data with an adequate structure. Next, there are methods
such as kernel PCA [23], kernel density estimation (KDE), robust KDE and one-class
support vector machine (SVM) that all have been dominated by neural network based
method proposed in [32] because deep architectures can learn and represent behaviour
and structure of the data more efficiently than shallow architectures like SVMs. Hence
the following text will be focused mainly on the neural networks. A paretical focus of the
work is on evaluation on real based data where the prior art is mostly lacking.

2.1 Neural networks in anomaly detection

Neural networks are utilized for anomaly detection, intrusion detection etc. in two differ-
ent ways. The first is that the neural network detector is learned with the only regular
data as usual in anomaly detection. The result should be an anomaly score or an another
similar metric which can be thresholded. Such networks are autoencoders (see Sec.2.1.1).
The second way is a usage of knowledge about the possible outliers thus the problem is
more related to the classification. Despite that, it is applied as an anomaly detector (see
Sec.2.1.2). The following text expects a basic knowledge of neural networks which could
be found in 1992 Neural networks and fuzzy systems [18], 2014 Neural network design
[10] and 2016 Deep learning book [15]
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2.1.1 Autoencoders

The autoencoders are applied under various conditions with more or less sufficient results.
First the autoencoder was applied on several problems in a simple way and the param-
eters of the neural network was the main issue. Then the autoencoder was extended to
deionising autoencoder which is powerful for noisy data. Finally, a few other types of
autoencoder have been introduced in last several years.

One of the earlier application was the autoencoder for credit card fraud detection [3]
introduced by Aleskerov in 1997. The paper also highlights the difficulty of discovering the
optimal setup of the autoencoder and demonstrates the developed user friendly GUI tool
box for tuning the parameters. In 2005, Han proposed a paper about the methodology
of constructing an optimal structure of the autoencoder using evolutionary algorithm
[16]. Thompson demonstrated utilizing autoencoder in novelty assessment in [29]. They
recognized simulated anomalous behavior of computer with the CPU’s load metrics.

In 2008, the deionising autoencoder was introduced in [30] and extended in [31] by
Vincent. The main point of the deionising autoencoder is that the training data are noised
and as a result, the network becomes noise robust. Salt and pepper noise is frequently used
in the literature for that purpose. Sakurada utilized autoencoder and extended denoising
autoencoder for the problem of processing the spacecrafts’ telemetry data in [27]. The
paper shows an effectiveness of dimensionality reduction with autoencoder on a noised
and correlated data from spacecrafts’ sensors. In 2014 the potential of autoencoder’s
utilizing in general on a real data is demonstrated in [9] by Dau. The paper points out
the problem of comparison among methods and tests the autoencoder on six data sets
based on a real data.

Two different types of autoencoder were developed in last years. The main difference
is the substitution of reconstruction error which forms the loss function that is minimized
while training and in addition it represents the anomaly score for each sample. The re-
construction error (see Sec. 2.2) is used standardly in all the presented papers above.
Variational Autoencoder based Anomaly Detection using Reconstruction Probability [4],
introduced in 2015, utilizes the reconstruction probability instead of reconstruction error.
Moreover the autoencoder is learned such that the training data must have a Gaussian
distribution in the hidden layer. The second method Deep Structured Energy Based
Models for Anomaly Detection[32], published in 2016, defines energy model that mini-
mizes the energy for the training set while learning. The energy has an inverse relation
to the reconstruction probability from [4]. Both methods are demonstrated as a noise
robust.

2.1.2 Other neural networks

In 1998 Cannady designed a neural network for misuse detection [7]. The neural net-
work has two output neurons that represent anomalous and legitim sample. It has nine
fixed input neurons and the number of hidden layers was determined empirically. The
disadvantage compared to the autoencoder is that the training needs samples of outliers.
Meanwhile Ryan introduced neural network for intrusion detection [26] that is trained on
computer’s logs and commands to recognize individual users. Then a log is detected as
anomalous if it is assigned to another user instead of the author. This is an example of
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a good utilizing of classification and the author obtained results with testing on random
commands , however, the network was not tested for commands and logs not seen before.
In 2005 Sarasamma proposed Hierarchical Kohonenen net for anomaly detection in net-
work security [28]. Single and multi-layer network is performed with KDD-99 based data
set. The method is designed with an expert knowledge of the data thus feature selection
is performed in advice and network is predefined according to types of anomalous data.
Each neuron of the layer except one represents a class of anomaly and the one is active
of the anomaly is represented in following layer. In other words, in the first layer the
only neuron is activated during detection and then either the neuron represents type of
anomaly or it is the only one without label that suggests to go to the next layer. In
addition to these methods there are many others which are similar such as [14], [33], and
[24].

2.2 Autoencoder principle

The autoencoder which is also known as replicator neural network or autoassociative
neural network is feed forward neural network that encodes the input to a compressed
form and then decode back to replicate the input.

Figure 1: Structure of the autoencoder as an feed forward neural network that encodes the
four-dimensional vector into two-dimensional (the hidden layer) and consequently decodes
to the original space. (Credit: https://www.researchgate.net/figure/222834127_fig1_-
Fig-1-The-structure-of-a-four-input-four-output-auto-encoder)

The autoencoder is composed of the encoder and the decoder such that the encoder
observes and performs nonlinear dimensionality reduction with minimal loss of informa-
tion and similarly the decoder performs a projection from the reduced space back to the
original one. In other words, the input vector x ∈ Rd is encoded to y ∈ Rd′ which is
projected consequently to x′ ∈ Rd.

The encoding is performed as:

y = fθ(x) = a(Wx+ b)

where f is parameterized by θ = {W,b}, a is an activation function, W is a d′ × d
weight matrix and b is a bias vector. Similarly the decoding (reconstruction) is performed
as:

x′ = gθ′(y) = a(W′x+ b′)
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The parameters of the model are optimized with a training setX = {x(1),x(2), ...,x(n)}
thus each vector x(i) ∈ X can be projected to y(i) and x′(i) such that the average recon-
struction error is minimized:

θ∗, θ′∗ = argmin
θ′,θ

1

n

n∑
i=1

L
(
x(i),x′

(i)
)
= argmin

θ′,θ

1

n

n∑
i=1

L
(
x(i), gθ′

(
fθ(x

(i))
))

where L represents a loss function which may be defined in many ways, however, the
squared error L(x, x′) = ||x− x′||2 is the most common. [30]

Since the autoencoder is trained to minimize the reconstruction error for the training
data, tested observations that do conform to the pattern of the training data will have
smaller reconstruction error than observations that do not. As a consequence, the re-
construction error could represent the anomaly score and its analyses can be applied for
determining outliers (see Sec.3.2).

2.2.1 Denoising autoencoder

The denoising autoencoder is a modification of the basic method which should be noise
robust. The only difference is that the training data are noised for each training iteration.
The already proposed methods (see Sec.2.1.1) utilize salt and pepper noise such that the
only pepper corruption is performed. However the gaussian noise was not utilized in the
searched papers.

3 Thresholding and evaluation

3.1 Sensitivity

The sensitivity is an essential issue of all anomaly detection problems. In practice, dif-
ferent setups are required according to the problem. For example, the medical tests need
to be performed high sensitively not to neglect an ill patient. On contrary, the system
health monitoring must not be too sensitive because the operator would ignore the alarm
after many false alarms. Such a widely used setup of sensitivity gives an opportunity for
a failure of the detection thus a health patient could be redundantly treated and detained
in the hospital and a system could not run optimally without an alarm. However, this is
still a better case, than a dead patient or a crashed system due to alarm ignorance.

3.2 Threshold

The threshold is a numerical representation of the sensitivity and it decides whether the
tested sample is anomalous or not according to the anomaly score. The threshold is tuned
to the optimal value for the certain application. Theoretically, if the tested subject is
simple or the test is preformed perfectly, it is possible to find a perfect threshold with
a total true rate. In other words, the informative value of the test’s result is in the
separability of the distribution of regular and anomalous samples (see Fig.2). In addition
to the method’s quality, the training set has a significant influence on the result of the
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Figure 2: Thresholding - The graph in the upper left corner shows the distribution of
anomaly score for the regular samples (left peak) and anomalous samples (right peak).
Possible threshold is demonstrated with the vertical line and the consequential clas-
sification is indicated with colors and labels (True negative, false negative, false pos-
itive, true positive). The ROC curve, which is plotted in lower part, demonstrates
all possible thresholds and their probability of true positive and false negative.(Credit:
https://en.wikipedia.org/wiki/Receiver_operating_characteristic)

thresholding. Therefore it is tuned as one of the last parameters depending on the known
and current data. Anyway, since the thresholds may be different, it is more complicated
to define a metric for anomaly detection performance. If there was the only threshold,
the percentage of success could be used. [5]

3.3 Receiver operator characteristics and AUC

The performance measuring of the anomaly detection method must take into account all
possible thresholds. Receiver operator characteristics (ROC) is utilized to analyze the
performance over all thresholds. The graphical representation, which is shown in Fig. 2,
is a parametric plot that shows proportion of true positive and false positive rate for all
possible thresholds. Note that these proportions are based on the data-set as described
in previous paragraph. The curve always starts and finishes in the corners because the
lowest threshold classify all samples as positive thus the false and true positive rate is 1.
Similarly the highest threshold hits the opposite corner. In an optimal case, the curve
is plotted near the third corner that represents high true positive and low false positive
rate. On contrary, thresholding an random variable will form the curve as an diagonal.
Which means that none method should have the curve under the diagonal. To conclude,
it has been shown that the better the method is the higher the curve is plotted which
allows us to represent the quality of the method as a scalar that is independent on a
specific threshold. This metric is called area under the ROC curve (AUC) and it is often
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used in anomaly detection. [6] [13] [22] [20]

3.4 Benchmarks

Several different benchmark sets and metrics have been used for the anomaly detection
performance evaluation thus the comparison among the anomaly detectors is difficult.
However, several benchmark sets are more frequent in the literature than others because
they are built for a specific purpose such as intrusion detection or image recognition and
are widely used by their community.

KDD-99 [1] is a data set used for The Third International Knowledge Discovery and
Data Mining Tools Competition, which was held in conjunction with KDD-99 The Fifth
International Conference on Knowledge Discovery and Data Mining. The competition
task was to build a network intrusion detector, a predictive model capable of distinguish-
ing between “bad” connections, called intrusions or attacks, and “good” normal connec-
tions. This database contains a standard set of data to be audited, which includes a wide
variety of intrusions simulated in a military network environment.

MNIST [19] is a database of handwritten digits. It has been created as a sample
of NIST database and the data have been preprocessed and formatted for easier usage.
These data are real world based and widely used for image recognition and many other
machine learning branches due to the simplification of MNIST set.

99 DARPA IDEVAL [2] is a data set for intrusion detection. It contains network
traffic and audit logs collected on a simulation network in three weeks. The first and
third week does not contain any attack contrary to the second week when the network
faced various types of attack.

The great advantage of using one of these sets is the comparability of the results
among methods. On the other hand, the data sets presented above could be declared as
obsolete for the issues in present. In addition to that, the sets are narrowly focused on a
specific problem thus they are inappropriate to create a general benchmark for anomaly
detection. As a consequence, many authors in the filed of anomaly detection rather
constructed their own artificial data because the existing data sets were too different
from their problem.

In 2014 Sakurada [27] constructed artificial data from Lorenz system for the purpose
of processing the spacecrafts’ telemetry data. In 2014 Dau [9] created the data sets by
their own from the multi-class problem in the UCI machine learning repository. In 2005
Sarasamma [28] used an expert knowledge of KDD-99 (internet security) to present his
method to operate optimal. He selected only the most representative features in advice,
predefined several classes of outliers to the model and moreover, modified the data set.
However, this could have significantly affect the performance. Such an approach prefers
the best results under given conditions (typically used in practise) rather than measure
the performance of the proposed method in general.

In 2013 Emmott probably reacted on the situation of missing general comparison
data set for anomaly detection and introduced his methodology of creating such sets with
using multi-class data set from the UCI repository in [12]. Besides creating a number of
carefully selected sets, they also measured performance of 6 popular methods for anomaly
detection and demonstrated their score. There is a large number of various multi-class
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data sets usually based on a real data in the UCI repository hence the constructed sets
for anomaly detection are real-based. The performance evaluation could be more efficient
and general due to utilizing a number of different sets. This might be a breakthrough in
anomaly detection performance measurement if other researchers start to utilize it. In
2014 Dau considered these methodology as the most advanced [9].

4 Proposed experiment
The aim of the experiment is to evaluate the selected state-of-the-art approach with the
most advanced benchmark data for anomaly detection because their evaluation is not
covered properly with a uniform and well defined data set in the literature (see Sec. 3.4).
A similar idea was implemented in [9] but the author did not manage the original set and
did not replicate the methodology from the Emmott’s work [12].

A feed forward replicator neural network is utilized with several different setups. The
number of input and output neurons is equivalent to the dimension of the data set. We
use the following approach to find out the near-optimal size of the "bottle neck (see Fig.
1)" :

1. The required variations are predefined. Exactly: 0.7, 0.8, 0.9, 0.95, 0.97 and 0.98.

2. Number of dimensions (neurons) is computed to preserve the variations in the
following way:

(a) PCA is performed and the variation of each component is the matter.

(b) The components are sorted with respect to the variation.

(c) The components are excluded consequently from the smallest one until the
variance of the rest forms the required proportion.

(d) The number of the included components is the result.

3. The experiment runs for each number of neurons in the "bottleneck" many times
and the results are averaged.

4. The best number of neurones is selected according to the results.

The algorithm above is an heuristic algorithm applicable generally. The best results
are expected for the chosen variance. However, the optimal number of neurons can only be
found with trial and error method for all possible values. Such an approach is mentioned
in the literature and is well applicable if the number of sets is low.

The utilized activation functions is ReLU (f(x) = max(0, x)) and linear (f(x) = x).
The experiment is performed with autoencoder consisting of 4 layers: Input(ReLU), bot-
tleneck(ReLU), output-hidden(ReLU), output (linear). The anomaly score is computed
as the reconstruction error in and the AUC of ROC evaluates the results (See Sec. 3.3).

The evaluation is performed with 29 data sets that were created in accordance to the
Emmott methodology proposed in [12]. The utilized datasets represent various problems
from the real world and have different properties such as dimension and number of ele-
ments. Each data set is composed of the target class (regular data) and anomalous data
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at four levels of difficulty to detect: easy, medium, hard, very hard which are tested sep-
arately and are assumed as separate data sets in the following text. Random sampling is
performed such that 75% of the regular data are included to the training and the rest to
the validation. The number of sampling iterations is eight and input data are normalized
to [0,1].

Evaluation over multiple data sets offers many sophisticated methods that are not
described in detail. However the survey is given in Statistical Comparisons of Classifiers.
over Multiple Data Sets [11].

The first experiment compares the performance of the basic autoencoder and the PCA
with kernel density estimation. Pairwise comparison over multiple data set is carried out
with scoring a point for each data set as shown in Tab.1. In other words the comparison
counts the number of sets where the method outperforms the other.

Table 1: Performance comparison of basic autoencoder and PCA with kernel density
Winning method easy medium hard very hard Sum
Basic autoencoder 14 14 13 7 48
Tie or missing data 1 1 4 8 14
PCA and kernel density estimation 14 14 12 14 54

The second experiment compares the performance among the four selected methods
(see Tab. 2). The noise "intesity" was selected from values 0.2, 0.1, 0.05 and 0.01 in order
to optimize the performence. The "intensity" represents proportion of corupted features
for the pepper noise and variance for the gaussian noise. Friedman ranking is utilized
for comparison such that lower rank means better performance. The Table 2 shows that
denoising autoencoders outperofrm the PCA and that the gaussian noise is more suitable
for the real-based data.

Table 2: Performance comparison among all methods
Method Friedman rank
Basic autoencoder 2.94
Denoising autoencoder with pepper noise 2.53
Denoising autoencoder with Gaussian noise 2.02
PCA and kernel density estimation 2.51

4.1 Discussion

The results indicate that the Gauss denoising autoencoder have better performance than
PCA and other methods on real data in general. An unexpected observation is that the
Gaussian noise has a better performance despite that the salt and pepper noise is mainly
used in the literature. Possible explanation is that the "salt and pepper" deionising
autoencoder is robust to the missing values and that could be the case of their testing
data.

The performance comparison of autoencoder over such many sets that are constructed
on more difficulty levels has never been done. The statistical significance should be proved
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to declare that any method is significantly better than other. The performance of the
methods in the first proposed experiment is not significantly different according to the
Wilcoxon signed-rank test. The same for the second experiment where the Friedman test
was performed. The obtained critical value is Q = 6.1 but the required value for α = 0.1
is Q = 7.78.

5 Conclusion

The anomaly detection topic was introduced with a focus on the neural networks and
especially the autoencoders, the principle of which is explained in Sec.2.2. The difficulties
of evaluation with respect to sensitivity and the state of the benchmark sets in present
were discussed in Sec.3.

The performance of four methods for anomaly detecion (PCA based and three types of
AE) was compared with using 116 different problems (data sets). The experiment showed
that the noise robust autoencoder could outperform PCA. However, the comparison of
these methods over multiple data sets, does not proof that any method is better for all
sets but only for more sets than any other method. In other words, there might be a
number of data sets for which the worst ranked method is the most suitable. Moreover,
the tests (Wilcoxon and Friedman) did not prove the significance of the results.

It was discovered that there an universal method has not been Discovered yet (At
least among the autoencoders) and the existing have many imperfections such as abilities
to detect difficult data, no general key to find out the optimal structure and properties
of the neural network etc... Solving that is a future challenge. Especially with respect
to the increasing importance of applications on big data with difficult properties, both
robust and sensitive methods will be required.
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Abstract. This paper presents first part of support of distributed computing systems in the
Template Numerical Library (TNL). This library is developed at Department of mathematics
at FNSPE. The TNL library uses the Message Passing Interface (MPI) for communication be-
tween compute nodes, since it is the most often communication standard on high performance
computing clusters. This paper shortly presents a domain decomposition of a regular rectan-
gular mesh and some implementation details which is used in the TNL library. A performance
measurement is presented at final section.
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Abstrakt. V této práci prezentujeme první kroky v přidání podpory distribuovaných výpočet-
ních systémů do knihovny Template Numerical Library (TNL), která je aktivně vyvíjena na
katedře matematiky na FJFI. Pro komunikaci mezi výpočetními uzly využívá knihovna TNL
standarad Message Passing Interface (MPI), protože je jedním z nejrozšířenějších způsobů ko-
munikace mezi výpočetními servery na clusterech pro vysoce výkonné počítání. V tomto článku
nejdříve představíme použití pravidelných pravoúhlých sítí v TNL a dále se zaměříme na imple-
mentaci distribuovaných sítí v knihovně TNL. Závěrem této práce představíme výsledky měření
rychlosti synchronizací distribuované sítě.

Klíčová slova: Cluster, Doménová dekompozice, MPI, TNL

1 Úvod

Meassage Passing Interface (MPI) je standard pro komunikaci na clusterech pro vysoce
výkonné počítání. Je primárně navržen pro komunikaci mezi servery, ale dá se využít i
pro meziprocesovou komunikaci bez jakéhokoli zásahu do aplikace. Tento standard má
více implementací, mezi nejznámější patří OpenMPI [2], MPICH [3], Intel MPI [1] a další.
Pro testování jsme zvolili knihovnu OpenMPI, ovšem díky standardizaci je možné přeložit
knihovnu TNL i s jinou implementací MPI. Mezi základní funkce MPI patří blokující a
neblokující zasílání zpráv, dále rozesílání hromadných zpráv a redukce.

Template Numerical Library (TNL)[4] je numerická knihovna vyvíjená na katedře
matematiky FJFI a je zaměřená na výpočty na vícejádrových procesorech (CPU) a na

∗Tato práce vznikla za podpory projektů CERIT Scientific Cloud (LM2015085) a CESNET
(LM2015042) financovaných z programu MŠMT Projekty velkých infrastruktur pro VaVaI.
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grafických kartách firmy nVidia podporujících technologii CUDA (GPU). Pomocí šab-
lon jsou implementovány základní i pokročilé objekty pro různý hardware, což umožňuje
pouhou změnou šablonového parametru změnit hardware, na kterém úloha bude počí-
tána, bez dalších zásahů do kódu. Knihovna TNL podporuje výpočty na strukturovaných
pravoúhlých sítích, tak i nestrukturovaných sítích.

Prvním částí knihovny TNL s podporou distribuovaných systémů je podpora dekom-
pozice větších strukturovaných pravoúhlých sítí mezi více výpočetních uzlů. V tomto
článku představíme doménovou dekompozici 1D, 2D a 3D sítí. Knihovna TNL s touto
podporou bude schopná provádět například výpočty explicitních řešičů na distribuova-
ných systémech. Jako příklady budeme uvádět 2D síť, implementována byla i 1D a 3D
síť.

2 Dekompozice 2D a 3D sítě

Dekompozice sítě mezi více uzlů probíhá následujícím způsobem. Síť rozdělíme na pod-
sítě, které jsou pokud možno stejně velké, a dále tyto lokální sítě zvětšíme o překryv
se sousedním výpočetním uzlem. Velikost překryvu volíme dle úlohy. Například řešíme-li
Laplaceovu rovnici pomocí explicitního schématu konečných diferencí, pak nám stačí pře-
kryv jednoho prvku. Na obrázku 1 je dekompozice 1D sítě a na obrázku 2 je dekompozice
2D sítě. Na obrázku 3 je šipkami naznačena komunikace pro 8-mi okolí. Volba okolí také
závisí úloze. Například výše zmíněný diskretizovaný Laplaceův operátor závisí pouze na
4 okolních bodech. Pak je zbytečné v rámci dekompozice sítě uvažovat 8-mi okolí, které
bere v úvahu i rohové sousedy. Stejný způsobem lze provést i dekompozici ve 3D. Zde
se můžeme bavit o 6-ti okolí, pro sousedství přes stěny, o 18-ti okolí pro sousedství přes
hrany a stěny a plné 26 okolí.

Volba okolí také určuje počet navázaných spojení mezi výpočetními uzly, což může
mít vliv na rychlost komunikace. Druhý parametr, který má zásadní vliv na rychlost
komunikace je množství přenášených dat. Zde mají největší příspěvek hrany pro 2D a
stěny pro 3D. Množství přenášených dat závisí na velikosti sítě a na počtu výpočetních
uzlů a jejich distribuci. V následujícím příkladu uvažujme 2D síť a 4 okolí. Nechť sít má
n×m prvků a máme N výpočetních uzlů, dále nechť N lze rozložit na součin i ∗ j. Pak
počet přenášených prvků sítě S je

S = m(j − 1) + n(i− 1)

a počet navázaných spojení je

P = (i− 1)j + (j − 1)i

Pro lepší představu vlivu distribuce uzlů na tyto parametry uveďme tabulku pro různé
distribuce pro síť 100× 100 a pro 24 uzlů. Teoretické minimum přenesených dat nastává
pro i = j =

√
N , vychází-li celočíselně.

Nakonec této části uveďme, že velké výpočetní clustery mívají kruhové síťové topolo-
gie, které je pro tento typ distribuce sítě velmi vhodný. Kruhová síťová technologie má
přímé propojení sousedních uzlů. Při správném namapování naší úlohy na cluster mají
sousední uzly, ve smyslu dekomponované sítě, přímé propojení a neblokují síťový provoz
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Dekomponovaná sít

Puvodní sít

Node 1

Node 2

Node 3

Obrázek 1: Dekompozice 1D sítě s 15 prvky mezi 3 výpočetní uzly. Úhlopříčným šrafová-
ním jsou vyznačeny překryvy mezi výpočetními uzly, šipkami je naznačena komunikace
mezi nimi a svislým vlnitým šrafováním jsou vyznačeny hraniční prvky sítě.

Distribuce Počet prvků Počet spojení
1× 24 2300 23
2× 12 1200 34
3× 8 900 37
4× 6 800 38

Tabulka 1: Počet přenesených prvků sítě a počet navázaných spojení mezi výpočetními
uzly v závislosti na zvolené rozložení 24 výpočetních uzlů do dvojrozměrné mříže. De-
komponovaná síť má 100× 100 elementů.

jiné komunikaci, přenosy pak probíhají plně paralelně. Má-li cluster kruhovou síť o nižší
dimenzi, než naše síť, pak je výhodné dekomponovat síť právě v dimenzi kruhové sítě.

3 Distribuovaný Grid v TNL

Nejdříve se podíváme jak je strukturovaná pravoúhlá síť v TNL implementována. Tato
síť je reprezentována šablonovou třídou Grid. Třída gridu sama nenese data síťové funkce
vyhodnocované na této síti. Pouze popisuje prostorové uspořádání uzlů, buněk či hran, ob-
sahuje souřadnice počátku a prostorový krok. Nad tímto gridem se vytváří síťová funkce,
reprezentovaná třídou MeshFunction. Tato třída spojuje informace o gridu s pamětí alo-
kovanou pro jednotlivé hodnoty funkce. Ty se ukládají většinou do třídy Vector.

Grid poskytuje pro práci s síťovou funkcí tři základní Traversary. První z nich vy-
hodnocuje pouze vnitřní prvky sítě, druhý vyhodnocuje všechny prvky sítě a poslední
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Obrázek 2: Dekompozice 2D sítě s 12× 12 prvky mezi 9 výpočetních uzlů. Úhlopříčným
šrafováním jsou vyznačeny překryvy mezi výpočetními uzly a svislým vlnitým šrafováním
jsou vyznačeny hraniční prvky sítě.

vyhodnocuje pouze okrajové prvky sítě, kde prvky mohou být buňky, hrany nebo uzly
sítě. Tyto základní traversary jsou využívány třídami operátorů, či jinými třídami pra-
cujícími se síťovou funkcí. Použití pravidelné pravoúhlé v TNL je pak následující:

typedef MeshType Grid<2,double,Host,int>;

MeshType grid(size);
int dofsize=grid.getEntitiesCount()
Vector<double, Host, int> dof(dofsize);

MeshFunction<MeshType,2,double> meshFunction;
meshFunction.bind(grid,dof)

functionevaluator.evaluateAllEntities(meshFunction,
somefunction);

Pro implementaci dekomponované sítě jsme zavedli třídu DistributedGrid. Tento objekt
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Obrázek 3: Detail komunikace 2D dekomponované sítě. Vyznačené jsou kopírované entity
pro výpočetní uzel v levé horní části obrázku. úhlopříčně jsou vyšrafovány odesílané entity
tohoto uzlu, vlnitě jsou vyšrafovány prvky přijímané tímto výpočetním uzlem.

nenahrazuje původní grid, pouze uchovává informace o distribuci sítě mezi výpočetními
uzly, velikosti lokální sítě, velikosti přesahů a podobně. Distribuovaný grid na každém
výpočetním uzlu také předpočítá čísla sousedních výpočetních uzlů všemi směry, pokud
existují. Pokud je výpočetní uzel na kraji původní sítě, pak nemá tímto směrem souseda
a distribuovaný grid si pro tento směr uloží číslo −1. Díky tomu je snadné a rychlé
ve výpočtu určit, zda výpočetní uzel obsahuje daným směrem okrajové entity, či zda
má daným směrem přesah. Nakonec distribuovaný grid obsahuje metodu, která nastaví
parametry lokální sítě představované původním gridem tak, aby jednotlivé lokální části
na sebe navazovali. Lokální grid pak obsahuje pouze přesahy ve směrech kde má daný
výpočetní uzel souseda.

Pro správnou funkčnost traversarů přibyla gridu reference na distribuovaný grid. Po-
kud není nastavena, pak se použijí původní traversary. Pokud je nastavena, vyhodnocují
se pouze entity mimo přesahy a hranice se vyhodnocují jen na výpočetních uzlech zpraco-
vávající okraj sítě. Tyto informace získávají traversary právě z objektu distribuovaného
gridu.

Po vyčíslení síťové funkce je potřeba doplnit hodnoty síťové funkce v přesazích. K
tomuto účelu byl sestaven nástroj DistributedGridSynchronizer, který uživateli zakrývá
veškerou práci s MPI. Tato třída v konstruktoru podle distribuovaného gridu, který pře-
bírá jako parametr, předpočítá velikosti posílaných dat jednotlivými směry a vytvoří
zasílací a přijímací buffery. Po zavolání funkce synchronize, která bere jako parametr
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třídu síťové funkce, která má být synchronizována, naplní přijímací a odesílací buffery
daty z lokální síťové funkce a zajistí komunikaci, pomocí asynchronního zasílání zpráv
MPI. Funkce provede zahájení posílání všech zpráv pomocí funkce MPI Isend a zahájení
příjmu všech zpráv pomocí funkceMPI Irecv a poté počká na dokončení všech operací po-
mocí funkce MPI Waitall. Pro funkce MPI Isend a MPI Irecv byly vytvořeny šablonové ,
které automaticky doplňují parametr MPI Type, dle typu zasílaných dat. Dříve uvedený
příklad použití gridu v TNL se při rozšíření na distribuovaný systém změní následujícím
způsobem:

typedef MeshType Grid<2,double,Host,int>;

MeshType globalGrid(size);
DistributedGrid<MeshType,2> distributedGrid(globalGrid);
MeshType localGrid;
distributedGrid.SetupGrid(localGrid);

int dofsize=localgrid.getEntitiesCount()
Vector<double, Host, int> dof(dofsize);

MeshFunction<MeshType,2,double> meshFunction;
meshFunction.bind(localgrid,dof);

functionevaluator.evaluateAllEntities(meshFunction,
somefunction);

distributeGridSynchronizer.Synchronize(distributedGrid,
meshFunction);

Nakonec uveďme, že distribuovaný grid v TNL pro rozmístění výpočetních uzlů do 2D
či 3D mříže využívá funkci MPI Dims create. Tato funkce umožňuje uživateli vynutit
distribuci uzlů v nějakém směru ručně. Distribuovaný grid tento způsob ovlivnění roz-
místění výpočetních uzlů umožňuje pomocí volitelného parametru, který pracuje stejným
způsobem. Díky tomu můžeme dosáhnout jednodimenzionální dekompozice 2D sítě. Dis-
tribovaný grid i synchronizer podporují plnohodnotná okolí, tedy ve 2D 8-mi okolí, a ve
3D 26-ti okolí. Podpora volby okolí bude přidána později.

4 Měření

Pro testování naší implementace distribuovaného gridu jsme sestavili následující aplikaci.
Aplikace vytvoří 2D distribuovaný grid na kterém několikrát vyhodnotí lineární funkci.
Po každém vyhodnocení funkce provede synchronizaci síťové funkce. Měříme průměrnou
dobu synchronizace, průměrnou dobu vyhodnocení lineární funkce a celkovou dobu běhu
programu. Velikost sítě a počet opakování zápisů jsou programu předány jako parametr.
Počet výpočetních uzlů je dán parametrem předávaným spouštěcímu programu mpirun.
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Distribuce 500 1000 2000 4000 8000 16000 32000
(2,2) 0,60 0,42 0,64 0,58 0,76 1,44 2,41
(4,1) 0,40 0,45 0,52 0,83 1,62 2,32 4,48
(1,4) 0,64 0,69 0,50 0,73 0,63 1,02 1,30

Tabulka 2: průměrná doba synchronizace v milisekundách pro různá rozdělení 4 výpočet-
ních serverů pro různě velké sítě. Rozdělení je uvedeno v prvním sloupci ve tvaru uspořá-
dané dvojce počtu uzlů v ose X a v ose Y. Sítě byly čtvercové o hraně uvedené v prvním
řádku.

500 1000 2000 4000 8000 16000 32000
(3,2) 0,47 0,73 0,57 0,84 1,13 1,66 2,95
(6,1) 0,38 0,18 0,28 0,52 1,10 1,85 3,70
(1,6) 0,13 0,14 0,21 0,26 0,59 0,49 0,86

Tabulka 3: průměrná doba synchronizace v milisekundách pro různá rozdělení 6 výpočet-
ních serverů pro různě velké sítě. Rozdělení je uvedeno v prvním sloupci ve tvaru uspořá-
dané dvojce počtu uzlů v ose X a v ose Y. Sítě byly čtvercové o hraně uvedené v prvním
řádku.

Celkově byly sestaveny 3 aplikace, první volí rozložení výpočetních uzlů pomocí zmiňo-
vané funkce MPI Dims create, druhá vynucuje rozložení výpočetních uzlů pouze v ose X,
a třetí pouze v ose Y.

Důvodem pro porovnání lineárních rozložení výpočetních uzlů v osách X a Y je sku-
tečnost, že data síťové funkce jsou v paměti uloženy v jednorozměrném poli po řádcích.
Při rozdělení výpočetních uzlů v ose Y se do posílacích bufferů kopíruje první a poslední
řádek, tedy data v paměti uložená za sebou, zatímco při rozdělení výpočetních uzlů v ose
X se do posílacích bufferů kopíruje vždy první a poslední prvek každého řádku, tudíž se s
pamětí nepracuje efektivně. Jak ukázalo měření má tato skutečnost zásadní vliv na dobu
synchronizace při komunikaci po rychlém rozhraní InfiniBand.

Měření byla provedena s 20 zápisovými cykly na sítích o rozměrech 500× 500, 1000×
1000, 2000× 2000, 4000× 4000, 8000× 8000, 16000× 16000 a 32000× 32000 elementů.
Postupně byly všechny tři aplikace spouštěny na 1 až 9 výpočetních uzlech. Výpočetní
uzly byly exkluzivně vyhrazeny pouze pro toto měření, ovšem síťové prvky Infinibandu
exkluzivně vyhrazeny nebyly, což mohlo ovlivnit měření. Měření na 2 výpočetních uzlech
bylo ukončeno chybou, pravděpodobně způsobenou infrastrukturou výpočetního clusteru
na kterém byl výpočet spouštěn, proto je ve výsledcích neuvádíme.

Z naměřených dat jsme vybrali následující výsledky. V prvních třech tabulkách jsou
uvedeny průměrné časy synchronizace dat pro různá rozdělení výpočetních serverů a
různě velké sítě. V tabulce 2 jsou rozdělení čtyř uzlů, v tabulce 3 jsou rozdělení šesti
uzlů a v tabulce 4 rozdělení osmi uzlů. Z prezentovaných výsledků je vidět, že rozdělení
serverů v ose Y je v synchronizaci nejrychlejší i za cenu více přenášených dat. Z ostatních
výsledků, zde neprezentovaných je patrné že lineární rozdělení výpočetních uzlů v ose Y
je vždy výhodnější než rozdělení uzlů v ose X.

V tabulce 5 uvádíme porovnání dob synchronizace pro lineární rozdělení výpočetních
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500 1000 2000 4000 8000 16000 32000
(4,2) 0,44 0,48 0,68 0,77 0,94 1,49 2,86
(8,1) 0,66 0,50 0,83 1,07 1,54 2,35 3,78
(1,8) 0,52 0,70 0,71 1,00 0,85 0,87 1,37

Tabulka 4: průměrná doba synchronizace v milisekundách pro různá rozdělení 8 výpočet-
ních serverů pro různě velké sítě. Rozdělení je uvedeno v prvním sloupci ve tvaru uspořá-
dané dvojce počtu uzlů v ose X a v ose Y. Sítě byly čtvercové o hraně uvedené v prvním
řádku.

3 4 5 6 7 8 9
500x500 0,06 0,64 0,09 0,13 0,40 0,52 0,11

1000x1000 0,08 0,69 0,11 0,14 0,40 0,70 0,37
2000x2000 0,15 0,50 0,40 0,21 0,21 0,71 0,43
4000x4000 0,19 0,73 0,21 0,26 0,50 1,00 0,22
8000x8000 0,25 0,63 0,28 0,59 0,57 0,85 0,36

16000x16000 0,35 1,02 0,56 0,49 0,77 0,87 0,51
32000x32000 0,62 1,30 0,68 0,86 0,83 1,37 1,06

Tabulka 5: průměrná doba synchronizace v milisekundách pro různé počty výpočetních
uzlů v lineární distribuci v ose Y a různé velikosti sítě. Velikost sítě je uvedena v prvním
sloupci, a počty výpočetních uzlů v prvním řádku.

uzlů v ose Y pro různé počty výpočetních uzlů a různě velké sítě. Z výsledků je patrné,
že měření bylo ovlivněno vnějšími vlivy, protože průměrná doba synchronizace pro 8
výpočetních uzlů vychází znatelně delší než doba synchronizace pro 9 výpočetních uzlů.
Pro porovnání uvádíme také tabulku 6 s průměrnými dobami vyhodnocení lineární funkce
na synchronizované síti. Pro největší dvě testované sítě synchronizace představuje méně
než 5% celkového času.

Nakonec uveďme standardní porovnání celkové doby běhu aplikace pro různý počtech
výpočetních uzlů a různé sítě. Pro porovnání byly zvoleny časy pro lineární rozložení
uzlů v ose Y protože většinou byly nejrychlejší. Tabulka 7 uvádí dobu běhu aplikace v
závislosti na velikosti sítě a počtu výpočetních uzlů, tabulka 8 uvádí vypočtené urychlení
a tabulka 9 uvádí vypočtenou efektivitu. Z naměřených dat je vidět, že i velmi rychlá
synchronizace má negativní velký vliv na celkovou efektivitu. Proto bude dále do knihovny
TNL přidána podpora pro překrytí výpočtů a synchronizace. Uveďme také, že v celkové
době je zahrnuta také úvodní část programu, která má také na celkovou efektivitu vliv.

5 Záver

V tomto článku byla prezentována implementace dekompozice pravidelné pravoúhlé sítě v
knihovně TNL. Implementována byla dekompozice 1D, 2D i 3D sítí, princip synchronizace
dekomponované sítě byl vysvětlen na 1D a 2D síti. Pro 2D síť byla sestavena a spuštěna
testovací aplikace, která odhalila, že na rychlém rozhraní Infiniband má velký vliv na
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1 3 4 5 6 7 8 9
500x500 0,34 0,75 1,06 1,09 1,09 1,57 1,66 1,80

1000x1000 1,06 1,12 1,24 1,52 1,42 1,72 1,61 1,65
2000x2000 4,62 2,34 2,25 2,22 2,16 2,28 2,14 1,96
4000x4000 16,74 6,78 5,48 4,64 4,31 4,02 3,62 3,95
8000x8000 59,20 23,31 17,89 14,68 13,48 11,87 10,43 10,30

16000x16000 222,94 79,94 60,78 102,50 45,66 41,78 35,94 33,74
32000x32000 899,60 305,72 225,66 182,22 165,01 139,85 121,45 249,77

Tabulka 6: průměrná doba vyčíslení lineární funkce v milisekundách pro různé počty
výpočetních uzlů v lineární distribuci v ose Y a různé velikosti sítě. Velikost sítě je
uvedena v prvním sloupci, a počty výpočetních uzlů v prvním řádku.

1 3 4 5 6 7 8 9
500x500 0,008 0,017 0,035 0,024 0,025 0,040 0,044 0,039

1000x1000 0,030 0,026 0,040 0,034 0,032 0,043 0,047 0,042
2000x2000 0,113 0,058 0,061 0,057 0,051 0,053 0,060 0,052
4000x4000 0,413 0,169 0,148 0,115 0,106 0,103 0,104 0,095
8000x8000 1,471 0,570 0,456 0,365 0,340 0,302 0,272 0,260

16000x16000 5,412 1,957 1,500 1,261 1,109 1,015 0,889 0,845
32000x32000 21,237 7,332 5,476 4,453 3,983 3,391 2,977 2,847

Tabulka 7: doba běhu aplikace v sekundách pro různé počty výpočetních uzlů a různě
velké sítě.

3 4 5 6 7 8 9
500x500 0,5 0,2 0,3 0,3 0,2 0,2 0,2

1000x1000 1,1 0,7 0,9 0,9 0,7 0,6 0,7
2000x2000 2,0 1,8 2,0 2,2 2,1 1,9 2,2
4000x4000 2,4 2,8 3,6 3,9 4,0 4,0 4,3
8000x8000 2,6 3,2 4,0 4,3 4,9 5,4 5,7

16000x16000 2,8 3,6 4,3 4,9 5,3 6,1 6,4
32000x32000 2,9 3,9 4,8 5,3 6,3 7,1 7,5

Tabulka 8: urychlení aplikace v sekundách pro různé počty výpočetních uzlů a různě velké
sítě.
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3 4 5 6 7 8 9
500x500 16 6 7 6 3 2 2

1000x1000 37 18 17 15 10 8 8
2000x2000 65 46 39 37 30 23 24
4000x4000 81 70 72 65 57 50 48
8000x8000 86 81 81 72 70 68 63

16000x16000 92 90 86 81 76 76 71
32000x32000 97 97 95 89 89 89 83

Tabulka 9: efektivita paralelizace aplikace v procentech pro různé počty výpočetních uzlů
a různě velké sítě.

rychlost synchronizace uspořádání kopírovaných prvků sítě v paměti. Z naměřených dat
se nejvýhodnější jeví lineární rozdělení uzlů v ose Y. Měření bylo prozatím provedeno na
malém počtu výpočetních uzlů, do budoucna bude rozšířeno alespoň na 20 uzlů. Pro větší
testy nám prozatím není dostupná infrastruktura.

Mezi další kroky pro dokončení této části patří implementace ukládání dekompono-
vané síťové funkce do souboru, podpora překrytí výpočtu se synchronizací a podpora
synchronizace menších okolí. Následovat by měla podpora dekompozice sítě mezi více
GPU.
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Abstract. Proportional integral derivative (PID) controllers are important and widely used
tools of system control. However, tuning their gains is a laborious task, especially for complex
systems with multiple coupled controllers. To minimize the time and effort spent tuning the
gains in a simulation software, we propose to formulate the problem as a black-box optimization
problem and solve it with an appropriate method.

We introduce two applications of tuning PID controllers in simulations: combustion engines
and an AC filter. For each, a befitting objective function is derived and the resulting problem
is successfully solved by a variant of CMA-ES. For the first application, the performance of
CMA-ES, PSO and SHADE is compared and the winning method’s practical applicability is
verified on models of real production engines.

Keywords: CMA-ES, black-box optimization, PID controller

Abstrakt. PID (proporční, integrační, derivační) regulátory jsou důležitým a široce používaným
nástrojem pro řízení systémů. Ovšem naladit jejich jednotlivé složky může být složité, obzvlášť
v případě komplexních systémů s více navzájem se ovlivňujícími regulátory. Cílem této práce je
minimalizovat čas a úsilí nutné k nalezení správného naladění regulátorů v simulačním softwaru.
Problém formulujeme jako black-box optimalizační úlohu, kterou následně řešíme pomocí vhodné
metody.

Zabýváme se dvěmi konkrétními aplikacemi ladění PID regulátorů pomocí simulací: vznětové
motory a AC filtr. V obou případech odvodíme vhodné účelové funkce a výslednou úlohu řešíme
pokročilou verzí metody CMA-ES. V úloze s motory srovnáváme CMA-ES s PSO a SHADE
a užitečnost vítězné metody je ověřena na ladění regulátorů v modelech skutečně používaných
motorů.

Klíčová slova: CMA-ES, black-box optimalizace, PID regulátor

1 Introduction

In a controlled system, PID controllers ensure that given quantities remain constant or
within given range. For example, in a room with air-conditioning and/or heating and
a temperature sensor, a PID controller keeps the temperature at the pre-set 21◦C. The
principle remains the same for more complex systems such as a running combustion engine

∗This work has been supported by grant 260007 Stradi.
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or an AC filter, where multiple controllers may be present and affect each other (i.e. be
coupled).

An engineer’s task is to tune the gains of all the controllers, so that the system’s
behavior is satisfactory, i.e. all controlled quantities get to and remain at desired levels.
For financial and time reasons, this is often done first with the help of simulations before
dealing with physical equipment. This work focuses on the use of such simulations and
suggests a method that is to aid engineers in their task without the need to analyze
the given system. For combustion engine simulations, 1D dynamics simulation software
WAVE is used [18]. This part is largely based on the author’s preprint paper [10]. For
AC filter simulation, Matlab Simulink [16] and PLECS [1] software combination is used.

The need to solve both these problems arose from industrial applications. Presently,
manual work makes up a major part of the controller tuning process. This lengthy
procedure is based on trial and error and requires a knowledgeable and experienced control
engineer. For systems with a single controller (or multiple but decoupled controllers),
simple rules of thumb (e.g. Ziegler-Nichols) can be employed. Similar, already-solved
problems can also provide a guideline. However, when having a complicated or unique
system of coupled controllers, the complexity of the task makes it very difficult to solve
even for an experienced control engineer. Moreover, in our application of PID controllers
in combustion engine models, other professionals need to tune the controllers as well,
creating the need for a simple-to-use, robust tool. We aim to deliver a method that
would eliminate or significantly lower the need for manual tuning. It should find a
solution within acceptable time and with as little user interaction as possible. When
combined with simple tuning rules or educated guess, our method is to use the provided
solution approximation as a starting point and quickly find a more refined solution.

The PID tuning problem with either one controller or multiple but decoupled or sym-
metric controllers can be and has been reformulated as a black-box optimization problem
and solved with an appropriate method. Evolutionary algorithms have been used, e.g.
genetic algorithm [15], differential evolution (DE) [3, 11], particle swarm optimization
(PSO) [4, 5] and many hybrids [11, 14].

The tuning problem with multiple coupled controllers can too be formulated as an
optimization problem. However, compared to other research on controller tuning [3, 4,
5, 11, 14, 15], dealing with coupled controllers requires an extra level of complexity. Its
multiple objectives can be efficiently combined into one, enabling us to solve the problem
with usual, and faster, algorithms.

The time budget poses the greatest limitation. With simulations taking up to several
minutes each, we aim for few thousand simulation runs at most. This imposes high
expectations upon efficiency of the method used.

Considering properties of the problem and with the support of experimental evidence,
we choose to use a variant of the Covariance Matrix Adaptation Evolution Strategy
(CMA-ES) [8, 6, 9, 13], an evolutionary algorithm founded deep in probability theory. It
has proven to be very effective and robust method in the extensive testing of Black-Box
Optimization Benchmarking (e.g. [7, 2]), surpassing the above mentioned algorithms and
many others (on the relevant sort of problems). Despite its fame in the optimization
community and large number of practical applications, it has so far been little used for
tuning PID controllers [11, 12, 20] or similar problems.
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In this work, we derive fitting objective functions for both problems and show the
applicability of CMA-ES. For the combustion engine problem, we compare performance
of CMA-ES, PSO and SHADE (Success-History based Adaptative Differential Evolution
[19]).

2 Formulation of the problem

2.1 PID controllers in simulations

PID controllers are well known and powerful tools in system control [17]. Their input is
the error

e(t) = actual(t)− target(t),

i.e. the time-dependent difference between the desired target value and the actual value
of a quantity (as measured by a sensor or computed by a model). The output control
signal that defines the system’s subsequent reaction is given as

C(t) = Pe(t) + I

∫ t

0

e(τ)dτ +D
d

dt
e(t),

where P , I and D are the proportional, integral and derivative gains, respectively.
In both our applications, the controllers’ implementation is provided within the simu-

lation software. Having k controllers within a system, each determined by three constant
gains P , I and D, there are 3k gains to be tuned: x = (P1, I1, D1, . . . , Pk, Ik, Dk).
When the controllers’ gains are set and the whole simulation is run, it outputs the above-
mentioned error functions’ ei(t) = ei(x, t), i = 1, . . . , n. development over time.

It remains to process ei(x, t) so that the final function value contains all information
about the input’s quality. We do so in the next sections by defining an objective function
F (x, t) that will be minimized (without loss of generality, we always assume that that
higher quality inputs have lower function values).

Our goal is to find such vector x that the corresponding controlled quantities converge
to the target values (for constant targets) or start mirroring the target value functions
(for targets changing in time) and do so as quickly as possible. For practical purposes,
the minimizer found need not be unique.

2.2 Objective function for combustion engine simulations

In the case of combustion engine simulations, construction of the objective function is
rather straightforward. Figures 1 and 2 show how the simulation output looks like (on
a simple testing model with 3 controllers and 3 controlled quantities). The objective
function must then reflect that: 1) all controlled quantities must converge to the target
values, 2) the convergence should be as fast as possible, 3) larger error in the beginning
of the simulation is OK, 4) each controlled quantity uses different units.

Placing more emphasis on errors with greater time, we weight the error function by
time and integrate over time interval [t0, t]. Finally, we scale each objective by the inverse
of the (constant) target value, so that their numerical values are comparable and do not
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Figure 1: Unsatisfactory solutions: at least one of the controlled quantities does not
converge to the target value.

Figure 2: Good solutions: all controlled quantities converge to the target values.

depend on the units of the corresponding quantity. Note that |targeti| is the remainder
of the integral over time of the target’s (constant) function.

F (x, t) =
∑

controlled quantities

1

|targeti|

∫ t

t0

(τ + 1)|ei(x, τ)| dτ

Time t corresponds with the end of the simulation. Time t0 ≥ 0 is, however, subject
to choice. It must be selected manually as a time point just before the output starts to
follow a trend. The meaning of t0 > 0 is that it cuts out from the objective function the
information that – in this particular application – is essentially noise. Setting t0 > 0 is
not neccessary but it can significantly shorten the optimization computation time.

2.3 Objective function for AC filter simulations

For the AC filter, we must take a more general approach. Figure 3 depicts the typical
outputs and the prescribed smooth sinusoidal target value functions. The actual value
functions tend not to be smooth and overshoot significantly (large overshoot is forbidden
due to practical restrictions on not burning the equipment). Moreover, there are 6 sections
for each phase (= controlled quantity), the beginning of each being the most troublesome.
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Figure 3: Various outputs of AC filter simulation.

To derive an appropriate objective function F (x, t), the weighted sum over the ob-
jectives is used again, this time over all phases and all sections. Each objective is then
composed of two parts: scaled L1-norm of the error function (this time we do not use
time to weight the error within the integral because the error is most important in the
beginning of each section) and L1-norm of the error function’s derivative (i.e. its bounded
variation), which penalizes non-smooth outputs.

F (x, t) =
∑
phases

∑
sections

D0
1

‖target(τ)‖L1

‖e(x, τ)‖L1 +D1

∥∥∥∥de(x, τ)dτ

∥∥∥∥
L1

.

Resetting the time counter to 0 at the begining of each phase, the L1-norm is defined
as ‖f(τ)‖L1 =

∫ t
0
|f(τ)|dτ. Based on typical values of the corresponding L1-norms, the

constants were set to D0 = 10, D1 = 1e− 09.

3 The optimization method

Clearly, the objective functions will be non-convex, non-differentiable, possibly ill-condititoned,
multimodal and must be taken as a black box (since the simulations are such). Meta-
heuristic and evolutionary methods have been extremely successful when tackling this
sort of problems. Based on the results of the extensive Black-Box Optimization Bench-
marking [7, 2], the Covariance Matrix Adaptation Evolution Strategy with bi-population
restart scheme (BIPOP-CMA-ES) was the method of first choice for our application.

The Covariance Matrix Adaptation Evolution Strategy (CMA-ES) [8] is an evolu-
tionary algorithm that uses stochastic and algebraic tools to define optimally diverse
population of candidate solutions in an area that seems to be most promising. The size
of the area and its location are determined based on the algorithm’s previous experience
with the objective function. New candidate solutions are sampled from a multivariate
normal distribution, whose mean and covariance matrix are adapted in each generation
along with the general step size. For details see Algorithm 1.

There are many upgrades available for basic algorithm. In our application, supported
by numerical experiments, we use the elitist BIPOP-aCMA-ES version, i.e. Covariance
Matrix Adaptation Evolution Strategy [8] with active covariance matrix updates (includ-
ing information about detrimental directions [13]), elitist scheme of parent selection (best
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candidate solutions are parents of new generations until they are superseded [6]) and bi-
population restart strategy (method alternanates between 2 regimes with small and large
population sizes [9]).

Several important properties of CMA-ES make it so effective in our application. First
and foremost, CMA-ES does not use gradients and it does not even presume their ex-
istence. Moreover, it does not even use the actual values of the objective function once
relative ranking has been assigned to the candidate solutions (except for some stop-
ping/restart criteria). As a result, transformations of the objective function that have no
effect upon the relative ranking of individuals do not effect the method’s performance,
making it more robust. Further, the method exhibits invariance to invertible linear trans-
formations of the search space. In particular, CMA-ES is invariant to scaling of variables
(coordinate axes), which is the key property that makes it well-suited for tuning multiple
controllers: parameters of one controller are usually of roughly the same scale, but with
multiple controllers, the scaling may differ by many orders. A reference point (a vec-
tor of typical or expected magnitudes of the controllers’ gains) provided by a user then
determines how the coordinates are rescaled.

Algorithm 1: Elitist BIPOP-aCMA-ES
set λ, µ
initialize m,σ,C = I, pσ = 0, pc = 0
initialize restart_regime = 1, count1 = 0, count2 = 0

while termination criteria not met do
while restart criteria not met do

if not first generation in a restart then
for i = 1, . . . , µ do

xi+µ = xi // relabel parents of previous generation
fi+µ = fi // relabel parents’ objective function values

for i = 1, . . . , λ do
xi ∼ N (m,σ2C) // sample new population from normal distribution
fi = evaluate(xi) // evaluate xi with objective function

sort xi, i = 1, . . . , λ+ µ acc. to fi // assign relative (descending) ranking
m∗ = m
m = update_m(xi, . . . , xµ) // move the mean utilizing the parents
// the evolution paths contain information about past progress
pσ = update_pσ(pσ , σ−1C−1/2(m−m∗)) // isotropic evolution path update
pc = update_pc(pc, σ−1(m−m∗), ‖pσ‖) // anisotropic evolution path update
C = update_C(C, pc, (x1 −m∗)/σ, . . . , (xλ+µ −m∗)/σ) // covariance matrix update
σ = update_σ(σ, ‖pσ‖) // step size update

if restart_regime = 1 then
count1 = count1 + λ

else
count2 = count2 + λ

if count1 < count2 then
restart_regime = 1

else
restart_regime = 2

reinitialize parameters and variables acc. to selected restart regime
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Table 1: Results of 5 CMA-ES runs on real-world models with one (M.1.1, M1.2), two
(M2.1, M2.2, M2.3) and three (M3.1) controllers with reference points of various quality.
Minimum, maximum and average number of simulation runs is provided.

model reference p. min max aver.

PI baseline 2 68 28

101 PI b. 35 153 79

M1.1 102 PI b. 95 519 225

10−1 PI b. 20 120 66

10−2 PI b. 49 296 123

PI baseline 1 22 9

101 PI b. 4 28 11

M1.2 102 PI b. 80 225 187

10−1 PI b. 34 100 51

10−2 PI b. 57 181 94

model reference p. min max aver.

PI baseline 11 66 35

M2.1 101 PI b. 244 280 255

10−1 PI b. 4 32 21

PI baseline 8 98 29

M2.2 101 PI b. 60 770 364

10−1 PI b. 44 107 64

PI baseline 9 78 32

M2.3 101 PI b. 250 757 629

10−1 PI b. 49 1188 347

PID baseline 10 91 57

M2.3 101 PID b. 274 857 522

10−1 PID b. 82 1576 749

PID baseline 41 331 152

M3.1 101 PID b. 827 1763 1268

10−1 PID b. 179 3867 2476

4 Experiments

Extensive experiments were performed using a simplified model of a combustion engine
to determine the best setting of CMA-ES for our application and to verify its robustnes.
The method’s practical usability was tested on models of real engines (see table 1).
CMA-ES was also compared to Particle Swarm Optimization (PSO) and Success-History
based Adaptative Differential Evolution (SHADE), clearly defeating both (see table 2),
especially regarding reliability. For details see [10].

In all cases, we aimed for computation times that are acceptable for engineers using
an ordinary PC, i.e. cca 3000 objective function evaluations (= simulation runs) at most.
The methods were provided with starting reference points of various quality with “PID
baseline” and “PI baseline” (i.e. with D gains set to 0) being the easiest and the other
reference points adding orders of magnitude to each of the baseline vector’s elements.

The AC filter testing shows very promising preliminary results as well, yet more tests
must still be performed.

5 Conclusion

This paper has shown how to construct fitting objective functions for two problems of
tuning PID controllers in simulations. It was also shown that CMA-ES can solve the
corresponding numerical optimization problem. CMA-ES reaches satisfactory run times
and outperforms PSO and SHADE, especially in terms of reliability and robustness.
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Abstract. The Self-Organized Mapping (SOM) represents a traditional tool for multidimen-
sional data analysis overperforming analytical power of cluster analysis. But there are possible
difficulties when the SOM is applied to data patterns of large size. We present testing exam-
ple using iris dataset. Our approach is mainly used for macro-economical data analysis which
is based on logarithmic differences, pattern dimensionality reduction and finalization of data
analysis using Kohonen SOM learning. General methodology was applied to main economic
indicators describing the situation of thirty five countries during more than twenty years. The
used dataset comes from regularly published statistics of European Commission. The main aim
is to identify the similarities of countries. The role of SOM topology, learning strategy and
reduced pattern size can be also used to predict behaviour during crisis based on the identified
similarity and known.

Keywords: SOM, Kohonen learning, iris dataset, artificial neural network, macroeconomic indi-
cators, crisis prediction

Abstrakt. Samoorganizující se mapy (SOM) představují tradiční nástroj pro multidimen-
zionální analýzu dat, který přesahuje analytickou sílu shlukové analýzy. Pokud se SOM aplikuje
na datové vzory velkých rozměrů, vyskytují se problémy. V příspěvku nechybí detailní testovací
příklad. Náš přístup se používá hlavně pro makroekonomickou analýzu dat, která je založena na
logaritmických diferencích, snížení dimenze a učení pomocí Kohonenových map (SOM). Obecná
metodika byla aplikována na hlavní ekonomické ukazatele, které popisují situaci třiceti pěti zemí
během více než dvaceti let. Použitá datová sada pochází z pravidelně publikované statistiky
Evropské komise. Hlavním cílem je určit podobnosti zemí. Úloha topologie SOM, strategie
učení a redukci dimenze lze také použít k predikci chování v průběhu krize, a to na základě
zjištěné podobnosti.

Klíčová slova: SOM, Kohonenovo učení, úloha identifikace kosatců, neuronová síť, makroeko-
nomické ukazatele, predikce krize
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1 Introduction
In our research we deal with basic economical indicators which are published on regular
basis. The Self-Organized Mapping (SOM) represents a traditional tool for multidimen-
sional data analysis which overperforms analytical power of cluster analysis. We face
possible difficulties applying the SOM to data patterns of large size. So we have to make
data preprocessing. Our approach of macroeconomic data analysis is based on logarith-
mic differences, pattern dimensionality reduction and finalization of data analysis using
Kohonen SOM learning.
This general methodology was applied to the statistic data describing the economic situa-
tion of more than thirty countries during more than twenty years. The regularly published
data come from statistics of European Commission. The aim is to identify similar groups
of countries and characterize the similarity. The role of SOM topology, learning strategy
and reduced pattern size can be also used to crisis prediction based on similarities with
countries already suffering with crisis.

2 Kohonen Learning
Kohonen Self Organized Map (SOM) is organized as follows. Let m,n,H ∈ N be number
of patterns, pattern dimensionality and number of SOM neurons [4]. The individual
patterns are xj ∈ Rn where j = 1, ...,m and form the pattern set S = {x1, ...,xm}.
The topology of SOM [8] is described by undirected graph G of H vertices which are
connected with unit length edges. The SOM topology matrix G ∈ {0, 1}H×H generates
mutual vertex distances ∆i,j for 1 ≤ i, j ≤ H. The result of SOM learning is the system
of weights [10] wi ∈ Rn where , i = 1, ..., H. We begins with random weights setting
wi(0). The weights evolve during learning process and their values are denoted as wi(q)
where q ∈ N0.
Kohenen learning rules [7] are very simple. The weight of i-th neuron is changed in q-th
step by rule

wi(q) = wi(q − 1) + α(q) · ci,q · (xq −wi(q − 1)) (1)

for i = 1, ..., H, xq ∼ U(S) is uniformly selected pattern from S, ci,q is space factor and
α(q) > 0 is ageing function which is supposed to be non-increasing. The winner is also
selected according to Kohonen rule [7] as

ϕq ∈ arg min
k=1,...,H

‖xq −wk‖2. (2)

We recommend generate the initial weights from the multi-varietal Gaussian distribution
as

wi(0) ∼ N(EX, varX/100) (3)

for i = 1, ..., H. The space factor ci,q is calculated using mutual vertex distances as
follows. Using learning radius Rq > 0 and index of winner vertex φq, we directly evaluate

ci,q = exp

(
−

∆2
i,φq

2R2
q

)
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according to Gaussian decay. The final learning strategy consists of E ∈ N learning epoch
which we characterized by triplets (αk, Rk, Nk) for k = 1, ..., E. Here, αk is ageing factor,
Rk is learning radius, and Nk is number of learning steps in k-th epoch.

3 Quality Measures
The basic way of quality measurement design is based on measuring distances. The
Euclidean distance of points x,y in Rn is denoted d(x,y) = ‖x− y‖2.
Using the pattern xj we can investigate the distances to weights wk and define winner as

win(j) ∈ arg min
k=1,...,H

d(xj −wk) (4)

but the function win(j) is of stochastic nature due to possible distance equities. In some
cases we found the winner but one i. e. the second winner which is defined as

win2(j) ∈ arg min
k∈Mj

d(xj −wk) (5)

whereMj = {1, ..., H} \ {win(j)}.
Using distances and winners we can design traditional measures of various nature.

3.1 Distance penalization

The Quantization Error (QE) is traditionally related to all forms of vector quantization
and clustering algorithms [9]. Using linear penalisation we directly penalise the distances
between patterns and corresponding winner weights as

QE1 =
m∑
j=1

d(xj,wwin(j)). (6)

The quadratic penalisation

QE2 =
m∑
j=1

d2(xj,wwin(j)) (7)

is also frequently used but has higher sensitivity to outliers.

3.2 Topographic error

General topographic rule is: if two objects are close in reality they must be closed also
in the map. Using this principle the Topographic error (TE) [5] is defined as

TE = 1− 1

m

m∑
j=1

gwin(j),win2(j) (8)

where G ∈ {0, 1}H×H is SOM topology matrix with gu,v = I(‖pv − pv‖2 ≤ 1). The main
advantage of TE is in its robustness to outliers. Therefore we use this criterion as main
quality measure in this study.
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3.3 Correlation based measures

The correlations between mutual distances of patterns and mutual distances of winner
weights can be directly used as quality measures.
Let i, j be pattern indexes. The mutual pattern distances can be defined as
di,j = d(xi,xj). The mutual distances of corresponding weights are
δi,j = d(wwin(i),wwin(j)).
Finally, we obtain m(m − 1)/2 pairs of corresponding distances and directly calculate
Pearson correlation coefficient r, Spearmann ρ or Kendall τ coefficient as quality measure.

3.4 Time Complexity of Measures

The evaluations of QE1, QE2 and TE are very fast with time complexity O(mnH). The
evaluation of correlation measures is more complex. The Pearson r has time complexity
O(mnH +m2) due to simple statistics over m(m− 1)/2 distance pairs. The Spearmann
ρ is complicated with pair sorting and its time complexity is O(mnH +m2 log(m)). The
Kendall τ is not recommended for large pattern sets due to time complexity O(mnH+m4).

4 Testing Example

The SOM and its learning as testing example was studied for nineteen neurons placed in
2D space in hexagonal topology with unit neighborhood distances, i.e. H = 19, N = 2.
Artificial two dimensional data were generated in the first case as follows. Total number
of 5 000 patterns were generated randomly from seven classes with uniform probability.
The center of the first class was placed in the origin. The centres of remaining six classes
were placed around in unique distance in the vertices of hexagon. Individual patterns
were generated from this Gaussian mixture with standard deviation σ = 0.2.
Basic quality measures are included in table 1. Resulting weights are depicted in figure
1, meanwhile the density map figure (pattern number in given neuron) and traditional
U-map [1]are depicted in figure 2. All neurons and SOM properties were interpolated
on convex hull of SOM neurons using cubic interpolation. This convention is useful for
weight and density interpretation. As seen the algorithm is able to map the weights pro-
portionally to data coordinates and corresponding contours are approximately uniformly
placed parallel lines in figure 1. The density map shows higher central density and six
density regions in the network corners meanwhile U-map is approximately constant due
to data homogeneity.
Traditional iris flower classification task [2] was originally designed for classifier testing
but we apply them for SOM learning with final class density evaluation. Total number
of 150 patterns of three classes (Iris setosa, Iris virginica, Iris versicolor) are described by
four properties (sepal length, sepal width, petal lenght, petal width). The initial weights,
ageing factor and number of learning steps were the same as in previous case. Resulting
weight maps are depicted in figure 3 together with class densities and U-map of iris flower
problem in figure 4. The SOM learning results can be interpreted using class membership
knowledge. As seen in figure 4 the class of Iris setosa is well separated in right corner but
remaining two classes are not separable but placed in opposite part of SOM in the left
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Measure Hexagonal Test Iris Dataset
QE1 0.2389 0.3121
QE2 0.2339 0.3450
TE 0.0000 0.0000
p-value of r 0.0953 0.0120
p-value of ρ 0.1054 0.0165
p-value of τ 0.2682 0.1030

Table 1: Quality of SOM learning for hexagonal test
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Figure 1: Resulting weights w1(left) and w2(right) for hexagonal test

top corner. The remaining part of SOM is not occupied by patterns as also demonstrated
as maximal values in U-map.
The subjective evaluation was followed by quality measures evaluation. The results of
traditional Graph SOM [4] with Kohonen learning, Gaussian characteristic and H = 19
was learned for E = 9 with
α = (0.1, 0.08, 0.07, 0.06, 0.05, 0.04, 0.03, 0.02, 0.01),
R = (5, 3, 3, 1.5, 1, 0.7, 0.5, 0.3, 0.2) and Nk = 1000. The results are collected in table 1.

5 Case Study: Economical Indicators

As input data we used the main economic indicators. Data has been selected from
Statistical Annex of European Economy presented by European Commission in autumn
2016 [3]. As analysis input serve the thirty five countries from the whole world, majority
are the European countries. The indicators are observed in years 1993 to 2016. Selected
indicators are the total population, unemployment rate, gross domestic product at current
market prices, private final consumption expenditure at current prices, gross fixed capital
formation at current prices, domestic demand including stocks, exports of goods and
services, imports of goods and services and gross national saving. Nine indicators are
monitored in total. The main aim of our research is based on data for each country.
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Figure 2: Density map (left) and U-map (right) for hexagonal test
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Figure 3: Resulting weights w1(left top), w2(right top), w3(left bottom), w4(right bottom)
for iris flowers
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Figure 4: Resulting class densities – setosa (left top), versicolor (right top), virginica (left
bottom) and U-map (right bottom) for iris flowers
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As the dimensionality of input data is quite high, represented by main nine indicators
in each year, we use principal component analysis for data dimension reduction. We
prefer the standardize variant of PCA which divides the components into square roots
of adequate eigenvalues. This approach is frequently called data whitening. The main
advantage of the standardization is in identity covariance matrix which generates the
components in unified form. We studied data whitening for D = 2, 3, 4, 5. Then we
applied Kohonen SOM with hexagonal topology with node number H = 7, 19. The SOM
learning with Gaussian decay was driven by two strategies. For H = 7 we used only
E = 2 with α = (0.1, 0.05), R = (2, 1), Nk = 1000. The larger SOM with H = 19
was learned for E = 9 with α = (0.1, 0.08, 0.07, 0.06, 0.05, 0.04, 0.03, 0.02, 0.01), R =
(5, 3, 3, 1.5, 1, 0.7, 0.5, 0.3, 0.2) and Nk = 1000. Our aim was to obtain the SOM with
zero topographical error (TE) and minimum possible quadratic penalisation (QE1). The
results of QE1 are captured in table 2.

Table 2: Optimal QE1 measures

D SOM7 SOM19

2 0.002 0.001
3 0.003 0.002
4 0.010 0.007
5 0.020 0.010

6 Results

In all cases we obtained zero values of TE which means that learning was executed well.
It is evident from table 2 that SOM19 generates results with lower value of QE1 which is
rising with growing dimension. The distribution of countries is captured in figure 5. We
see the PCA with 2 components as the best solution and resulting SOM. The different
groups of countries were identified. They tell us about the similarities of the concrete
countries. The main thing what we can see is the position of Germany, which is usually in
the same group as France. In the case of Czech Republic its position depends on number
of components but we are in the same group with Poland and Slovenia in all cases. In all
cases there are relative compact group of traditional countries which slightly differs each
other. The positions of countries with extreme macro-economical behaviours differ with
whitening dimensionality. The results are also in accordance to our previous research
based on PCA and data whitening [6]. We see some countries which are complicated
to be predicted and forms separate groups in each case. This group is represented by
Bulgaria and Latvia. The country classification serves also as indicator of upcoming crisis
to the closest countries.
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Figure 5: Results for H = 19 and different number of components

7 Conclusion

Kohonen SOM learning was used to country self-organization in hexagonal SOM topol-
ogy with whitened log differentiated macroeconomic data. The best result were obtained
for H = 19 and 2 dimensional whitening with topological error 0% and minimum pos-
sible quadratic penalisation. The resulting SOM maps are in agreement with general
expectations. From the crisis prediction point of view there is a group of leading Euro-
pean countries (DE, FR, AT, DK, CY, IE), the other European countries with standard
economies (UK, ES, IT, IR, BE, NL, LU, CZ, SK, PL, HU) are in the neighbourhood
with slightly different response during crisis. The countries with extreme behaviour dur-
ing crisis (RS, BG, LV, LT, ME, RO) are placed far from the previous groups. The
Kohonen SOM is not too sensitive to dimension of data whitening and therefore, the
resulting maps only differ in details but save the country similarity property.
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Abstract. Ten types of discrete Hartley transforms of Weyl orbit functions are developed. These
functions form a generalization of the one-dimensional cas transform. Fundamental domains of
even affine and dual even affine Weyl groups, governing the argument and label symmetries of
orbit functions, are determined. The discrete orthogonality relations are formulated on finite
sets of points from the refinements of the dual weight lattices.

Keywords: Weyl-orbit functions, discrete orthogonality, discrete Fourier transform, Hartley-orbit
transform

Abstrakt. Cílem je vývoj deseti typů diskrétních Hartleyovsých transformací Weylových orbit-
ních funkcí. Tyto funkce tvoří zobecnění jednorozměrné transformace cas. Určili jsme funda-
mentální domény sudých afinních a duálních sudých afinních Weylových grup, pomocí kterých
se řídí symetrie argumentů a symetrie indexovaní orbitních funkcí. Diskrétní ortogonalita je
formulována na konečných souborech bodů na zhuštěné duální váhové mříže.

Klíčová slova: Weylové orbitní funkce, diskrétní ortogonalita, diskrétní Fourierova transformace,
Hartleyovská orbitní transformace

1 Introduction

The aim of recent research is to complete and extend the discrete Fourier analysis of
Weyl-orbit functions from [10, 8, 11]. The discrete Fourier calculus of all ten types of
orbit functions with symmetries inherited from all four types of even Weyl groups is
unified in full generality. The real-valued versions of the functions and transforms are
also developed by modifying the exponential kernels of orbit functions to their Hartley
alternatives [1].

Since introduction of the discrete version of the Hartley transform in [1], both con-
tinuous and discrete Hartley transforms form fully equivalent real-valued variants of the
standard Fourier transforms. As alternatives to complex Fourier transforms, these trans-
forms together with their 2D and 3D versions found applications in many fields includ-
ing signal processing [18], pattern recognition, geophysics [17], measurement and optics.
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In the context of Weyl-orbit functions and their corresponding transforms, the Hartley
transforms have not yet been studied. Replacing exponential kernel as in original 1D
Hartley transform yields novel families of real-valued special functions of Weyl groups,
which inherit (anti)symmetry properties as well as discrete orthogonality relations from
the original Weyl-orbit functions. The resulting generalized Hartley transforms together
with the original ten types of Weyl-orbit functions offer, especially in 2D and 3D, richer
options and application potential due to greater variability of domain shapes and bound-
ary behaviour.

2 Weyl groups and Crystallographic root systems

Consider the root system Π with its associated Lie algebra of rank n. The notation from
[10, 11] is taken. The simple system ∆ = {α1, · · · , αn} of the root system Π forms a basis
of the Euclidean space Rn, with the symbol 〈 , 〉 denoting its scalar product. Note that
the notions of the root system Π and its inherent set of simple roots ∆ are also developed
independently on Lie theory. There exist two types simple systems — the first type with
roots of only one length, denoted by An, n ≥ 1, Dn, n ≥ 4, E6, E7, E8, and the second
type with two different lengths of roots, denoted by Bn, n ≥ 3, Cn, n ≥ 2, G2 and F4.
The following notation of the standard objects [13], which are induced by the set ∆ are:

• the highest root ξ ∈ Π

• the marks m1, . . . ,mn ∈ N of the highest root ξ = m1α1 + · · ·+mnαn together with
m0 = 1,

• the Coxeter number m = m0 +m1 + · · ·+mn,

• the root lattice Q = Zα1 + · · ·+ Zαn,

• the Z-dual lattice to Q,

P∨ = {ω∨ ∈ Rn | 〈ω∨, α〉 ∈ Z, ∀α ∈ ∆} = Zω∨
1 + · · ·+ Zω∨

n ,

with
〈αi, ω∨

j 〉 = δij, (1)

• the dual root lattice Q∨ = Zα∨
1 + · · ·+ Zα∨

n , where

α∨
i =

2αi
〈αi, αi〉

, i ∈ {1, . . . , n}, (2)

• the dual marksm∨
1 , . . . ,m

∨
n of the highest dual root η = m∨

1α
∨
1 +· · ·+m∨

nα
∨
n together

with m∨
0 = 1

• the Z-dual lattice to Q∨

P = {ω ∈ Rn | 〈ω, α∨〉 ∈ Z, ∀α∨ ∈ Q∨} = Zω1 + · · ·+ Zωn,
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• the Cartan matrix C with elements

Cij = 〈αi, α∨
j 〉,

• the index of connection c of Π equal to the determinant of the Cartan matrix C,

c = detC. (3)

The properties of Weyl groups and affine Weyl groups can be found for example in
[13]. The finite Weyl groupW is generated by n reflections rα, α ∈ ∆, over the hyperplane
defined by the normal vector α.

rαia ≡ ria = a− 2〈a, αi〉
〈αi, αi〉

αi , a ∈ Rn .

The infinite affine Weyl group W aff is the semidirect product of the Abelian group of
translations Q∨ and of the Weyl group W

W aff = Q∨ oW. (4)

Let ψ denote the retraction homomorphism ψ : W aff → W of the semidirect product.
The fundamental region F ⊂ Rn of W aff can be chosen as the convex hull of the points{

0,
ω∨

1

m1
, . . . , ω

∨
n

mn

}
.

Alternatively, W aff is a Coxeter group generated by n reflections ri and an affine
reflection r0 given as

r0a = rξa+
2ξ

〈ξ, ξ〉
, rξa = a− 2〈a, ξ〉

〈ξ, ξ〉
ξ , a ∈ Rn .

The set of n reflections ri together with the affine reflection r0 is denoted by

R = {r0, r1, . . . , rn}.

2.1 Sign homomorphisms

Any homomorphism σ from W to the multiplicative group {1,−1} is called a sign ho-
momorphism [8]. Two standard choices of sign homomorphisms are the trivial homomor-
phism and the determinant denoted as

σe(w)= det(w),

1(w) =1.

The sign homomorphisms σl and σs are defined on the set of generators {rα | α ∈ ∆}
of W as

σs(rα) =

{
−1 if α ∈ ∆s,
1 otherwise,

σl(rα) =

{
−1 if α ∈ ∆l,
1 otherwise.
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The set of sign homomorphisms Σ of a root system ∆ with two different lengths of roots
contains only four elements [8], i.e.

Σ = {1, σe, σs, σl}.

The set of ’negative’ generators from R with respect to the sign homomorphism σ is
denoted by Rσ,

Rσ = {r ∈ R | σ ◦ ψ (r) = −1} . (5)

The set F σ ⊂ F is given by

F σ =
{
a ∈ F

∣∣σ ◦ ψ (StabW aff (a)) = {1}
}
. (6)

3 Affine even Weyl groups

3.1 Fundamental domains

Kernels of the non-trivial sign homomorphisms of a given Weyl group W form normal
subgroups W σ ⊂ W known as even Weyl groups [16],

W σ ≡ {w ∈ W | σ(w) = 1} .

The corresponding affine even Weyl groups are the kernels of the expanded sign homo-
morphisms σ ◦ ψ

W aff
σ ≡

{
waff ∈ W aff | σ ◦ ψ(waff) = 1

}
.

For any rσ ∈ Rσ, the set F ∪ rσF σ is a fundamental domain of W aff
σ [9].

Generalizing relation (6), the set F σ̃,σ is given as

F σ̃,σ =
{
a ∈ F ∪ rσF σ | σ̃ ◦ ψ(StabW aff

σ
(a)) = {1}

}
. (7)

Note also that for the fundamental domain F ∪ rσF σ it holds that

F ∪ rσF σ = F 1,σ. (8)

3.2 Dual affine Weyl group and its even subgroups

The dual affine Weyl group Ŵ aff is a semidirect product of the group of shifts from the
root lattice Q and the Weyl group W ,

Ŵ aff = QoW. (9)

Let ψ̂ denote the dual retraction homomorphism ψ̂ : Ŵ aff → W of the semidirect product.
Equivalently, the dual affine Weyl group Ŵ aff is generated by reflections ri and the

reflection r∨0 given by

r∨0 a = rηa+
2η

〈η, η〉
, rηa = a− 2〈a, η〉

〈η, η〉
η, a ∈ Rn.
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The set of generators of Ŵ aff is denoted by R∨,

R∨ = {r∨0 , r1, . . . , rn}.

Similarly to the fundamental domain F , the fundamental region F∨ of Ŵ aff is the convex
hull of the vertices

{
0, ω1

m∨
1
, . . . , ωn

m∨
n

}
.

The corresponding dual affine even Weyl groups are the kernels of the expanded sign
homomorphisms σ ◦ ψ̂

Ŵ aff
σ =

{
ŵaff ∈ Ŵ aff | σ ◦ ψ̂(ŵaff) = 1

}
.

The set of generators of the affine Weyl group Ŵ aff with negative values of the sign
homomorphisms σ ◦ ψ̂ is denoted by R∨σ,

R∨σ =
{
r ∈ R∨ | σ ◦ ψ̂(r) = −1

}
.

Similarly to (6) the domain F∨σ is given by,

F∨σ =
{
b ∈ F∨ | σ ◦ ψ̂(StabŴ aff (b)) = {1}

}
.

The fundamental domains of the dual even affine Weyl groups Ŵ aff
σ are determined anal-

ogously. The set F∨ ∪ rσF∨σ is for any rσ ∈ R∨σ a fundamental domain of Ŵ aff
σ . The

dual analogue of F σ̃,σ is given as

F∨σ̃,σ =
{
b ∈ F∨ ∪ r∨σF∨σ | σ̃ ◦ ψ̂(StabŴ aff

σ
(b)) = {1}

}
. (10)

3.3 Orthogonality coefficients and weights

This section defines the coefficients (h∨σM ) and weights (εσ) necessary in the discrete or-
thogonality of Weyl-orbit functions and Hartley kernel orbit functions.

The isotropy subgroups of W aff
σ and their orders are for any a ∈ Rn denoted by

StabW aff
σ

(a) =
{
waff
σ ∈ W aff

σ | waff
σ a = a

}
, hσ(a) = |StabW aff

σ
(a)|.

Related functions εσ : Rn → N are defined by the relation

εσ(a) =
|W σ|
hσ(a)

. (11)

Since for any waff
σ ∈ W aff

σ are the stabilizers StabW aff
σ

(a) and StabW aff
σ

(waffa) conjugated,
it holds that

εσ(a) = εσ(waff
σ a), waff

σ ∈ W aff
σ . (12)

The calculation procedure of the coefficients h1(a) is detailed in §3.7 in [10]. Having
calculated the values of h1(a) from this procedure the remaining values hσ(a) for any
a ∈ F are calculated thusly

hσ(a) =

{
h1(a) if a ∈ F σ,
1
2
h1(a) otherwise. (13)
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The last step is to extend the values of hσ(a), a ∈ F to the entire fundamental domain
F 1,σ of W aff

σ via the following relation

hσ(rσa) = hσ(a).

Finally, the coefficients εσ(a), a ∈ F 1,σ are determined from hσ(a) by equation (11).
The dual versions are developed analogously. The isotropy subgroups of Ŵ aff

σ are for
any b ∈ Rn denoted by

StabŴ aff
σ

(b) =
{
waff
σ ∈ Ŵ aff

σ | waff
σ b = b

}
.

Consider the discretization factor M ∈ N, defining the density of the discretization pro-
cedure. The orders of the stabilizers StabŴ aff

σ
(b/M), are denoted by

h∨σM (b) =

∣∣∣∣StabŴ aff
σ

(
b

M

)∣∣∣∣ . (14)

The calculation procedure of the coefficients h∨1M (a) is detailed in §3.7 in [10]. Having cal-
culated from this procedure the values of h∨1M (b) the following relation allows to determine
h∨σM (b) for any b ∈MF∨ as

h∨σM (b) =

{
h∨1M (b) if b/M ∈ F∨σ,
1
2
h∨1M (b) otherwise.

The last step is to extend the values of h∨σM (b), b ∈ MF∨ to the entire magnified funda-
mental domain MF∨1,σ of Ŵ aff

σ via the following relation

h∨σM (rσb) = h∨σM (b).

4 Orbit functions
Consider a sign homomorphism σ ∈ Σ and the corresponding even subgroup W σ ⊂ W .
Taking another sign homomorphism σ̃ ∈ Σ and a parameter b ∈ Rn, the most general
form of Weyl-orbit functions Ψσ̃,σ

b : Rn → C is introduced as

Ψσ̃,σ
b (a) =

∑
w∈Wσ

σ̃(w)e2πi〈wb,a〉. (15)

This general definition leads to three types of orbit functions for root systems with one
root-length and to ten types of orbit functions for root systems with two root-lengths [9].

The real-valued modification of orbit functions which for a ∈ R uses the Hartley kernel

cas(a) = cos(a) + sin(a)

instead of exponential kernel. Fixing an even subgroup W σ ⊂ W , an additional sign
homomorphism σ̃ ∈ Σ and a parameter b ∈ Rn, the Hartley orbit functions ζ σ̃,σb : Rn → R
are defined via relation

ζ σ̃,σb (a) =
∑
w∈Wσ

σ̃(w) cas(2π 〈wb, a〉). (16)
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Similarly to (15), such definition leads to three types of real-valued orbit functions for
root systems with one root-length and to ten types of orbit functions for root systems
with two root-lengths. Note that the relation of exponential function to the cas function
implies

ζ σ̃,σb = Re Ψσ̃,σ
b + Im Ψσ̃,σ

b . (17)

This property immediately allows to replicate the argument-label symmetries formulated
in [8].

Let b ∈ P, then for any waff ∈ W aff
σ and any a ∈ Rn it holds that

ζ σ̃,σb (waffa) = σ̃ ◦ ψ(waff) · ζ σ̃,σb (a). (18)

Let a ∈ 1
M
P∨, then for any ŵaff ∈ Ŵ aff

σ and any b ∈ Rn it holds that

ζ σ̃,σ
Mŵaff( b

M )
(a) = σ̃ ◦ ψ̂(ŵaff) · ζ σ̃,σb (a).

5 Discretization of orbit functions
Following the standard choice in Fourier analysis, only discrete values of labels of orbit
functions b ∈ P are considered. For any resolution factor M ∈ N, the discrete Fourier
calculus of orbit functions is developed on the set of points F σ̃,σ

M defined as

F σ̃,σ
M =

1

M
P∨ ∩ F σ̃,σ.

The sets of labels Λσ̃,σ
M are defined as

Λσ̃,σ
M = P ∩MF∨σ̃,σ. (19)

For any σ̃, σ ∈ Σ and M ∈ N it holds, for the numbers of elements of the sets F σ̃,σ
M

and Λσ̃,σ
M , that ∣∣∣F σ̃,σ

M

∣∣∣ =
∣∣∣Λσ̃,σ

M

∣∣∣ . (20)

5.1 Discrete orthogonality of orbit functions

The discrete orthogonality relations of the discretized functions Ψσ̃,σ
b , b ∈ Λσ̃,σ

M on the finite
point sets F σ̃,σ

M have the following formulation [9]. For any σ, σ̃ ∈ Σ and any b, b′ ∈ Λσ̃,σ
M

it holds that 〈
Ψσ̃,σ
b ,Ψσ̃,σ

b′

〉
F σ̃,σM

= c |W σ|Mnh∨σM (b)δb,b′ , (21)

where c, h∨σM are defined by (3) and (14), respectively, and |W σ| is the order of the
subgroup W σ.

The discrete orthogonality relations of all types of functions Ψσ̃,σ are also inherited
by the related orbit functions with Hartley kernel ζ σ̃,σ i.e. For any σ, σ̃ ∈ Σ and any
b, b′ ∈ Λσ̃,σ

M it holds that 〈
ζ σ̃,σb , ζ σ̃,σb′

〉
F σ̃,σM

= c |W σ|Mnh∨σM (b)δb,b′ . (22)
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5.2 Discrete orbit function transforms

An arbitrary function f : Rn → C, sampled on the point set F σ̃,σ
M , can be interpolated

by the interpolating function I[f ]σ̃,σM . The interpolating function I[f ]σ̃,σM is required to
coincide with f at all the gridpoints of F σ̃,σ

M ,

I[f ]σ̃,σM (a) = f(a), a ∈ F σ̃,σ
M . (23)

The interpolating function I[f ]σ̃,σM is given in terms of expansion functions Ψσ̃,σ
b ,

I[f ]σ̃,σM (a) =
∑
b∈Λσ̃,σM

kσ̃,σb Ψσ̃,σ
b (a), a ∈ Rn. (24)

The frequency spectrum coefficients kσ̃,σb are uniquely determined by the standard method
of calculation of Fourier coefficients

kσ̃,σb =

〈
f,Ψσ̃,σ

b

〉
F σ̃,σM〈

Ψσ̃,σ
b ,Ψσ̃,σ

b

〉
F σ̃,σM

=
1

c |W σ|Mnh∨σM (b)

∑
a∈F σ̃,σM

εσ(a)f(a)Ψσ̃,σ
b (a). (25)

Taking into account equality (23), relations (25) and (24) constitute the forward and
backward discrete Fourier-Weyl transforms, respectively, of the discretized function f .
Furthermore, using the Parseval equality of the orthogonal basis Ψσ̃,σ

b , b ∈ Λσ̃,σ
M results in

the following relation∑
a∈F σ̃,σM

εσ(a) |f(a)|2 = c |W σ|Mn
∑
b∈Λσ̃,σM

h∨σM (b)
∣∣∣kσ̃,σb ∣∣∣2.

Similarly to the interpolation formulas and discrete transforms of the standard orbit
functions, their related real-valued versions are formulated in terms of Hartley orbit
functions. An arbitrary real-valued function g : Rn → R sampled on the point set
F σ̃,σ
M can be interpolated by the real-valued interpolating functions Ih[g]σ̃,σM . Again, the

interpolating function Ih[g]σ̃,σM coincides with g at all the gridpoints F σ̃,σ
M ,

Ih[g]σ̃,σM (a) = g(a), a ∈ F σ̃,σ
M ,

and is given in terms of expansion functions ζ σ̃,σb ,

Ih[g]σ̃,σM (a) =
∑
b∈Λσ̃,σM

lσ̃,σb ζ σ̃,σb (a), a ∈ Rn.

The frequency spectrum coefficients lσ̃,σb of the Hartley-Weyl transform are determined
by

lσ̃,σb =

〈
g, ζ σ̃,σb

〉
F σ̃,σM〈

ζ σ̃,σb , ζ σ̃,σb

〉
F σ̃,σM

=
1

c |W σ|Mnh∨σM (b)

∑
a∈F σ̃,σM

εσ(a)g(a)ζ σ̃,σb (a) (26)

and the relation between the sum of squared values of g and the sum of squared values
of its frequency spectrum is∑

a∈F σ̃,σM

εσ(a)g2(a) = c |W σ|Mn
∑
b∈Λσ̃,σM

h∨σM (b)(lσ̃,σb )2.
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6 Concluding Remarks
Discrete orthogonality relations (21) and decomposition formulas are in [4] exemplified for
six types of two-variable E−functions of algebras C2 and G2. Effectiveness of interpola-
tion formulas (24) of these two-variable E−functions is demonstrated on complex-valued
model functions in [5]. Comparable interpolating ability of real-valued functions is ex-
pected for Hartley orbit functions. Good performance of orbit functions in interpolation
tasks indicates great potential in other fields related to digital data processing. The
interpolation properties of all types of orbit functions as well as existence of general
convergence criteria of the operator sequence Iσ̃,σM : f 7→ I[f ]σ̃,σM deserve further study.

Link between the Weyl-orbit functions and the inherited discrete and continuous or-
thogonality relations of the generalized multidimensional Chebyshev polynomials is being
recently investigated in connection with the corresponding polynomial methods such as
polynomial interpolation, approximation and cubature formulas.

The discrete transforms (25) and (26) of orbit functions specialize for the case A1 to
one-variable discrete Fourier, discrete Hartley, discrete cosine and sine transforms [1].

Discrete orthogonality relations (21) and (22) are formulated on the points of the
refined dual weight lattice. This choice of the points induces in turn the dual affine Weyl
group (anti)symmetry of the orbit function labels. The labels of this discretization share
the same (anti)symmetry with the points generated by the given affine Weyl group. The
Fourier transforms constructed on the points of the refined (dual) root lattice represent
the remaining unresolved discrete transforms related to the four classical Weyl group
invariant lattices. The merit of having all four classical lattice transforms available is the
possibility of generating novel and relevant transforms on generalized lattices, including
the 2D honeycomb lattice. The open problem of detailing the root lattice transforms
is however, specifically challenging, since the symmetry groups of the labels are not in
general Coxeter groups.
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Abstract. This paper deals with the Cramér-Rao Lower Bound (CRLB) for a novel blind
source separation method called Independent Component Extraction (ICE). The Cramér-Rao
Lower Bound is used to determine the best achievable accuracy of blind source separation (BSS)
methods. Only efficient methods are able to reach the CRLB. Blind source separation focuses
on estimation of unknown source signals from observed mixtures.

The most popular method for BSS in last years is well known Independent Component
Analysis (ICA). We have recently performed a novel ICA based method: ICE. Compared to
ICA, ICE aims to extract only one independent signal from a linear mixture. The target signal
is assumed to be non-Gaussian, while the other signals, which are not separated, are modeled
as a Gaussian mixture.

The most frequently used criterion for measurement of the accuracy of a method is Interference-
to-Signal Ratio (ISR). Hence, CRLB-induced Bound (CRIB) for ISR is derived. Numerical sim-
ulations, performed in MATLAB, compare the CRIB with the performance of an ICA and an
ICE algorithm. The results show good agreement between the theory and the empirical results.

Keywords: Blind Source Separation, Cramér-Rao Lower Bound, Independent Component Anal-
ysis, Independent Vector Analysis

Abstrakt. V této práci se zabýváme odvozením Crámerovy-Raovy dolní meze pro nově před-
stavenou metodu pro slepou separaci signálu zvanou Independent Component Extraction (ICE).
Crámerova-Raova mez se využívá pro stanovení maximální dosažitelné přesnosti separace signálů
pomocí dané separační metody. Metody dosahující CRLB nazýváme eficientní. Úkolem slepé
separace je odhadnout neznámé zdrojové signály z jejich směsi.

V posledních letech je nejrozšířenější metodou pro slepou separaci analýza nezávislých kom-
ponent (ICA). Na základě modelu ICA jsme pro slepou separaci signálu vyvinuli novou metodu:
ICE. Narozdíl od ICA, se ICE zabývá separací pouze jednoho nezávislého signálu z lineární
směsi. Předpokládáme, že cílový signál není Gaussovský. Ostatní signály, které nejsou před-
mětem separace, pak modelujeme jako Gaussovskou směs.

Nejběžněji používaným kritériem pro měření přesnosti separačních metod je Interference-to-
Signal Ratio (ISR). Z tohoto důvodu dále odvodíme mez pro toto kritérium, tzv. CRLB-induced
Bound (CRIB). Pro porovnání výsledků metod ICA a ICE s odvozenou mezí CRIB jsme využili
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numerické simulace v programu MATLAB. Závěry z těchto simulací ukazují na dobrou shodu
mezi teoretickými předpoklady a empirickými výsledky.

Klíčová slova: Analýza nezávislých komponent, Analýza nezávislých vektorů, Cramérova-Raova
dolní mez, Slepá separace signálu

Full paper: This paper has been accepted for presentation at the 2017 IEEE Inter-
national Workshop on Computational Advances in Multi-Sensor Adaptive Processing
(CAMSAP 2017), which will be held in Curaçao, Dutch Antilles, December 10-13, 2017.
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Abstract. In this paper, we present an efficient GPU accelerated solver for the numerical solu-
tion of two-phase compositional flow in porous media and potentially other interesting problems.
The underlying system of partial differential equations is formulated in general coefficient form
to allow us to easily test different models and problem formulations without substantial mod-
ifications of the numerical solver. The numerical scheme is based on the mixed-hybrid finite
element and discontinuous Galerkin methods, semi-implicit time discretization, and various sta-
bilization techniques. The used numerical methods allow us to consider any spatial dimension
and use both structured and unstructured meshes. The solver is implemented in the C++ lan-
guage with the help of the TNL library, the CUDA framework and OpenMP. We also present
multiple key optimizations necessary for high-performance computations such as ordering of the
mesh entities and an improved GMRES method. We use a benchmark problem with known
semi-analytical solution to verify the convergence of the numerical scheme and present the GPU
speed-up compared to single- and multi-thread computations on CPU.

Keywords: two-phase compositional flow, mixed-hybrid finite element method, upwind, GMRES
method, parallel implementation on GPU, unstructured meshes

Abstrakt. V této práci předkládáme efektivní řešič akcelerovaný pomocí GPU pro numer-
ické řešení kompozičního dvoufázového proudění v porézním prostředí a potenciálně i dalších
zajímavých úloh. Soustava parciálních diferenciálních rovnic je formulovaná pomocí obecných
koeficientů, díky čemuž lze jednoduše testovat různé modely a formulace úloh bez zásadních změn
v numerickém řešiči. Numerické schéma je založeno na kombinaci hybridní metody smíšených
konečných prvků a nespojité Galerkinovy metody, semi-implicitní časové diskretizaci a něko-
lika stabilizačních technikách. Použité numerické metody umožňují použití strukturovaných i
nestrukturovaných sítí v prostoru libovolné dimenze. Řešič je implementován v jazyce C++ s
využitím knihovny TNL, platformy CUDA a OpenMP. Práce také popisuje několik klíčových op-
timalizací pro zlepšení efektivity výpočtu, jako např. přečíslování entit sítě a modifikace metody
GMRES. Konvergence numerického schématu je ověřena pomocí analýzy experimentálního řádu

∗This work has been supported by the Student Grant Agency of the Czech Technical University in
Prague, project No. SGS17/194/OHK4/3T/14.
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konvergence pro testovací úlohu se známým semi-analytickým řešením. Pro všechny výpočty je
provedena analýza efektivity paralelního výpočtu na GPU a vícejádrovém CPU.

Klíčová slova: dvoufázové kompoziční proudění, hybridní metoda smíšených konečných prvků,
upwind, metoda GMRES, paralelní implementace na GPU, nestrukturované sítě

1 Introduction
Numerical simulations of complex practical problems in the field of computational flow
dynamics require immense computational power. In recent years, using GPUs for general-
purpose computations has become very popular because of their massive computational
power and better power efficiency compared to traditional CPUs. However, efficient
utilization of the GPU typically requires data structures and algorithms to be designed
specifically for this architecture.

In this work, we present a numerical solver for a general system of partial differential
equations, which can be used to describe many practical problems. We describe the key
aspects of the efficient implementation of the solver for the CPU and GPU architectures.
The GPU speed-up compared to single-thread and multi-thread computations on CPU
is measured on a benchmark problem of two-phase flow in porous media.

2 General formulation
The numerical scheme is derived for the following system of n partial differential equations
in a general coefficient form

n∑
j=1

Ni,j

∂Zj

∂t
+

n∑
j=1

ui,j · ∇Zj +

∇ ·

[
mi

(
−

n∑
j=1

Di,j∇Zj + wi

)
+

n∑
j=1

Zjai,j

]
+

n∑
j=1

ri,jZj = fi

(1)

for i = 1, ..., n, where the unknown vector function Z = (Z1, ..., Zn)T depends on position
vector x ∈ Ω ⊂ Rd and time t ∈ [0, T ], d = 1, 2, 3. The system of equations (1) is
supplemented by the initial condition

Zj(x, 0) = Zini
j (x), ∀x ∈ Ω, j = 1, . . . , n, (2)

and boundary conditions for all t ∈ (0, T ),

Zj(x, t) = ZDj (x, t), ∀x ∈ ΓDj ⊂ ∂Ω, j = 1, ..., n, (3a)

vi(x, t) · n∂Ω(x) = vNi (x, t), ∀x ∈ ΓNi ⊂ ∂Ω, i = 1, ..., n, (3b)

where by vi we denote the velocity

vi = −
n∑

j=1

Di,j∇Zj + wi. (4)
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Based on the nonlinear coefficients in (1) we refer to the computational method as
NumDwarf. The choice of coefficients in (1) depends on the problem and its formulation.
The details of the choice of coefficients for the immiscible two-phase flow and two-phase
compositional flow in porous media can be found in [5, 6].

3 Numerical scheme

The numerical scheme for the solution of the system (1) is based on the combination of
the mixed-hybrid finite element and discontinuous Galerkin methods for the spatial dis-
cretization, the Euler method for temporal discretization and the semi-implicit approach
of the frozen coefficients method for the linearization in time. The scheme is stabilized
with upwind and mass-lumping techniques.

The scheme has the following features: it is locally conservative, leads to a linear
system with a positive-definite matrix, allows to use unstructured meshes, and it can be
efficiently parallelized. Last but not least, a modification of the MHFE method described
in [5] can be employed to solve problems with vanishing diffusion.

The detailed derivation of the numerical scheme can be found in [5, 6].

4 Implementation

The solver is implemented in the C++ language with the help of the TNL library, the
CUDA platform [8] for the GPU parallelization, and OpenMP [3] for the CPU paral-
lelization. The TNL library is being developed by the team around Tomáš Oberhuber at
the Department of Mathematics, FNSPE CTU in Prague, and the key novel algorithms
and data structures implemented in TNL for the NumDwarf solver are described in the
following subsections.

4.1 Data layout

In high-performance computing, data structures and algorithms have to be designed
collectively. The NumDwarf solver stores many coefficients which are naturally stored in
multidimensional arrays. An interesting problem is how to choose the orientation of
these arrays, i.e., the order of indices for accessing the elements. In [6], it is explained
that the optimal orientation depends on the computational architecture, for example in
the case of two-dimensional arrays, the optimal orientation for CPU is row-wise, but for
GPU it is column-wise. To avoid code duplication, we need to have a unified interface
independent of the architecture and a possible technical solution using multiple C++14
meta-programming techniques has been proposed in [6].

4.2 Parallelization of the numerical scheme

The computation of the numerical solution to (1) consists of initialization and a time
loop, which for each k = 0, . . . , Nk − 1 computes the approximation of the solution
Zk+1 at time tk+1 from the state Zk at current time tk. The computations in each time



114 J. Klinkovský

step involve many local computations on the mesh entities such as coefficient updates
which are independent of each other and therefore can be computed in parallel. We
also have to assemble many small matrices QK ∈ Rn,n which are local to each cell
K ∈ Kh and compute the inverses Q−1

K RK,F and Q−1
K GK for each K ∈ Kh and F ∈ EK .

The computation on local inverses on GPU can be implemented efficiently using the LU
decomposition of matrices stored in the shared memory [6].

Then we have to assemble the sparse matrix for the linear system AZk+1 = b which
has to be solved to obtain the approximation Zk+1 for the next time level. In sequential
codes, matrices arising from various PDE discretizations are traditionally constructed by
initializing all matrix entries to zero, traversing the mesh cells K ∈ Kh, and adding the
coefficients local to K to the corresponding matrix elements. However, when performed
in parallel, this simple approach leads to conflicts between multiple cells that contribute
to common matrix elements. The conflicts can be avoided by mesh coloring [2] but it still
impairs the efficiency of the solver for medium size problems. In the NumDwarf scheme,
the rows of A correspond to faces E ∈ Eh and the contributing terms originate from faces
F ∈ EK1

∪ EK2
of cells K1 and K2 adjacent to the face E. Therefore, the matrix can be

assembled row–by–row even in parallel without any conflicts. In addition, the number
of non-zero elements per row is fixed and depends only on the geometry of mesh cells.
This is advantageous for GPUs because it avoids insertion of padding zeros to the sparse
matrix storage format as well as divergent threads during the SpMV operation. For the
meshes consisting of a single type of cells, i.e., with constant number of faces per cell e,
the number of non-zero entries of A is (2e − 1)n, en, and 1 for rows corresponding to
inner, Neumann boundary, and Dirichlet boundary faces, respectively.

4.3 Linear system solver

The resolution of the linear system AZk+1 = b at each time level is the computationally
most expensive step. The matrix A ∈ RN,N is large, sparse, nonsymmetric, and its
structure can be very complex depending on the mesh ordering. Direct methods for the
solution of such systems suffer from huge memory requirements due to fill-in, therefore
iterative methods such as GMRES, BiCGstab or TFQMR are usually more efficient.

Due to highly non-linear coefficients in (1), the matrix A is extremely ill-conditioned
and methods such as TFQMR need a strong preconditioner in order to converge. The
TNL library currently provides only the Jacobi preconditioner for all architectures, there-
fore we rely on the restarted GMRES(s) method which is robust enough to converge. The
GMRES method is based on the Arnoldi’s algorithm for the construction of the orthonor-
mal basis of the Krylov subspace Ks = span{v̄1,Av̄1, . . . ,A

s−1v̄1} which traditionally
uses the MGS orthogonalization. It is commonly written as in [9]:

Algorithm 1

1. Set v̄1 ∈ RN such, that ‖v̄1‖ = 1.
2. For i = 1, . . . , s:
2.1. w̄i := Av̄i

2.2. For k = 1, . . . , i:
2.2.1. hki = w̄T

i v̄k
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2.2.2. w̄i := w̄i − hkiv̄k

2.3. hi+1,i = ‖w̄i‖. If hi+1,i = 0, stop.
2.4. v̄i+1 = 1

hi+1,i
w̄i

Algorithm 1 is inherently a sequential algorithm because the order of steps in the inner
loop ensures numerical stability. In practice, we even have to repeat the orthogonalization
step 2.2 twice to ensure convergence (MGSR). Overall, only SpMV and Level 1 BLAS
operations can be parallelized.

To improve the scalability of the Arnoldi’s algorithm, we replace the MGS part by
Householder transformations [9]:

Algorithm 2

1. Choose non-zero vector z1 ∈ RN .
2. For i = 1, . . . , s + 1:
2.1. Find Householder vector yi ∈ RN such, that (yi)j = 0 for j = 1, . . . , i− 1 and

(Pizi)j = 0 for j = i + 1, . . . , N , where Pi = I− t̄iyiy
T
i , t̄i =

2

‖yi‖2 .

2.2. hi−1 =
[
(Pizi)j

]s+1

j=1

2.3. v̄i = P1 . . .Piei

2.4. If i ≤ s, compute zi+1 = Pi . . .P1Av̄i.

Algorithm 2 is numerically more stable than the original version using MGS (Algo-
rithm 1) and its cost is comparable to MGSR. To expose more parallelism, we replace the
sequential application of the Householder transformations with the compact WY repre-
sentation (CWY) for the products P1 . . .Pi and Pi . . .P1, which was introduced in [10].
We denote Yi = [y1, . . . ,yi] ∈ RN,i, T1 = t̄1 ∈ R1,1 and recursively define an upper
triangular matrix Ti ∈ Ri,i,

Ti =

(
Ti−1 −t̄iTi−1Yi−1yi

0 t̄i

)
. (5)

Then the following relations hold:

P1 . . .Pi = I−YiTiY
T
i , (6a)

Pi . . .P1 = I−YiT
T
i Y

T
i . (6b)

Application of the compact WY representation leads to the following modification of the
Arnoldi’s algorithm:

Algorithm 3

1. Choose non-zero vector z1 ∈ RN .
2. For i = 1, . . . , s + 1:
2.1. Compute yi and t̄i for the current zi same as before.
2.2. Update Yi and Ti using t̄i, yi, Ti−1 and Yi−1.
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2.3. hi−1 =
[
(Pizi)j

]s+1

j=1

2.4. v̄i =
(
I−YiTiY

T
i

)
ei

2.5. If i ≤ s, compute zi+1 =
(
I−YiT

T
i Y

T
i

)
Av̄i.

Algorithm 3 has better numerical stability than Algorithm 1, it has less global syn-
chronizations because there is no explicit inner loop and the orthogonalization can be
implemented with Level 2 BLAS operations.

In both variants of the GMRES method, the restarting parameter s can be chosen
adaptively, which reduces the computational cost on both CPU and GPU architectures.
We use the strategy introduced in [1] and slightly improved in [6].

4.4 Unstructured meshes

As part of the TNL library, we implemented the Mesh template, which is a data structure
for working with homogeneous unstructured meshes, i.e. meshes where all cells have the
same shape (e.g. triangle, rectangle, tetrahedron or cuboid) and the number of neigh-
bouring cells of a vertex is not constant. Its purpose is to provide storage for numerical
meshes and algorithms for accessing topological properties, such as enumerating neigh-
bouring cells of a given vertex. It was designed with efficiency and flexibility in mind,
which makes it suitable for integration into complex algorithms for high-performance com-
putations. To achieve these goals, the implementation relies heavily on C++11 features
and template meta-programming techniques.

The static compile-time configuration allows to change many parameters, such as the
mesh topology determined by the cell shape, dimension of the space in which the mesh is
included, coordinate data type (e.g. float, double), global and local index types (e.g. int
and short int), dimensions of the entities stored in the mesh, and the data representing
connectivity information between neighbouring entities.

4.4.1 Optimizations for CPU and GPU

The static configuration affects the size of the mesh itself (unnecessary entities can be
omitted), as well as the size of mesh entity structures (unnecessary connections can be
omitted). Consequently, the size of a mesh entity depends on its shape, but not on
the number of its neighbours. To work with the mesh on GPU, it has to be initialized
sequentially on the CPU and then it can be transferred to the GPU. Similarly to the
handling of multidimensional arrays, the internal data layout of Mesh allows coalesced
memory accesses during parallel traversal on GPU.

On both CPU and GPU architectures, the efficiency of the solver for (1) is strongly
affected by the ordering of mesh entities. Not only direct manipulation with the mesh data
structure is affected, most important consequence is the structure of the sparse matrix
resulting from the MHFE discretization. We demonstrate this effect on a 2D benchmark
problem using two ordering strategies: the original ordering generated by the frontal
algorithm of Gmsh (see Fig. 1), and a custom ordering based on an in-order traversal of
a d-dimensional tree of the entity centres (see Fig. 2). The original ordering does not
consider the spatial position of the entities and, consequently, the corresponding sparse
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(a) Mesh ordering (polygonal chain connecting
the cell centres)

(b) Matrix structure

Figure 1: Ordering of the coarsest triangular mesh with Id. 2D41 generated by the frontal
algorithm of Gmsh and the corresponding structure of the global sparse matrix.

(a) Mesh ordering (polygonal chain connecting
the cell centres)

(b) Matrix structure

Figure 2: Ordering of the coarsest triangular mesh with Id. 2D41 generated by the 2-d
tree traversal and the corresponding structure of the global sparse matrix.

matrix “does not look sparse”, although every row contains at most 10 non-zero elements.
The alternative ordering preserves the spatial locality of neighbouring entities and the
corresponding sparsity pattern constitutes of several diagonals and small blocks. The
results in Table 1 show that computations using the alternative ordering are significantly
faster, which can be attributed to better cache efficiency in the SpMV operation.

5 Results

We use a benchmark problem with known semi-analytical solution to verify the conver-
gence of the numerical scheme by means of the experimental order of convergence. It
is a multidimensional extension of the one-dimensional McWhorter and Sunada problem
[7] for the special case of incompressible two-phase flow in homogeneous porous medium
with neglected gravity and specific initial and boundary conditions. The general semi-
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Intel Core i7-5820K Nvidia Tesla K40

1 core 6 cores

Id. Gmsh tree t/G Gmsh tree t/G Gmsh tree t/G

2D41 0,4 0,4 0,91 0,6 0,6 0,92 1,3 1,3 1,00
2D42 5,1 5,0 0,99 3,6 3,6 1,00 7,9 7,9 1,00
2D43 99,9 98,5 0,99 36,2 35,7 0,99 47,0 46,2 0,98
2D44 2 662 2 383 0,90 632,5 573,6 0,91 374,4 351,5 0,94
2D45 64 145 45 953 0,72 15 687 11 976 0,76 3 913,2 3 387,0 0,87

Table 1: Comparison of the computational times for triangular meshes ordered by differ-
ent strategies: the frontal algorithm of the Gmsh program and using 2-d tree.

analytical solution described in [4] exhibits radial symmetry due to a point injection of
one of the phases. The details of the setup for this benchmark problem as well as the
choice of parameters for the numerical solution can be found in [5, 6].

The numerical solution of the benchmark problem has been computed in 2D on struc-
tured rectangular grids and unstructured triangular meshes and in 3D on structured
cuboidal grids and unstructured tetrahedral meshes. A series of refined meshes of each
type has been used for the EOC analysis in the L1 and L2 norms. The results presented
in Table 2 for the capillarity models by Brooks and Corey and by van Genuchten indicate
that the scheme converges with the first order of accuracy in all cases.

Brooks & Corey van Genuchten
Id. ‖Eh,Sn

‖1 eocSn,1
‖Eh,Sn

‖2 eocSn,2
‖Eh,Sn

‖1 eocSn,1
‖Eh,Sn

‖2 eocSn,2

2D�
1 1,52 · 10−2

0,80
3,26 · 10−2

0,65
1,41 · 10−2

0,84
2,17 · 10−2

0,812D�
2 8,75 · 10−3

0,82
2,08 · 10−2

0,62
7,88 · 10−3

0,87
1,24 · 10−2

0,862D�
3 4,97 · 10−3

0,85
1,35 · 10−2

0,60
4,31 · 10−3

0,88
6,83 · 10−3

0,882D�
4 2,76 · 10−3

0,87
8,93 · 10−3

0,63
2,34 · 10−3

0,86
3,72 · 10−3

0,852D�
5 1,51 · 10−3 5,79 · 10−3 1,29 · 10−3 2,06 · 10−3

2D41 1,54 · 10−2

0,97
3,25 · 10−2

0,84
1,43 · 10−2

0,97
2,13 · 10−2

0,93
2D42 8,14 · 10−3

0,80
1,89 · 10−2

0,61
7,58 · 10−3

0,84
1,16 · 10−2

0,83
2D43 4,44 · 10−3

0,96
1,19 · 10−2

0,67
4,01 · 10−3

1,01
6,22 · 10−3

1,00
2D44 2,41 · 10−3

0,86
7,79 · 10−3

0,64
2,12 · 10−3

0,85
3,30 · 10−3

0,84
2D45 1,29 · 10−3 4,90 · 10−3 1,15 · 10−3 1,79 · 10−3

3D�
1 8,28 · 10−3

0,83
2,59 · 10−2

0,70
8,15 · 10−3

0,88
1,64 · 10−2

0,863D�
2 4,67 · 10−3

0,84
1,59 · 10−2

0,69
4,42 · 10−3

0,90
9,06 · 10−3

0,893D�
3 2,60 · 10−3

0,86
9,87 · 10−3

0,69
2,36 · 10−3

0,93
4,90 · 10−3

0,923D�
4 1,44 · 10−3 6,12 · 10−3 1,24 · 10−3 2,58 · 10−3

3D41 1,15 · 10−2

0,69
3,48 · 10−2

0,62
1,21 · 10−2

0,77
2,43 · 10−2

0,73
3D42 8,02 · 10−3

0,86
2,52 · 10−2

0,75
8,13 · 10−3

0,93
1,66 · 10−2

0,90
3D43 4,41 · 10−3

1,02
1,49 · 10−2

0,93
4,26 · 10−3

1,14
8,83 · 10−3

1,13
3D44 2,40 · 10−3

1,01
8,62 · 10−3

0,71
2,16 · 10−3

1,08
4,53 · 10−3

1,08
3D45 1,26 · 10−3 5,48 · 10−3 1,09 · 10−3 2,28 · 10−3

Table 2: Errors of numerical solutions and experimental orders of convergence for rect-
angular, triangular, cuboidal and tetrahedral meshes.
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For the same benchmark problem, we also present the GPU speed-up compared to
single- and multi-thread computations on CPU. The values in Tables 3 and 4 demonstrate
the advantages of massive parallelization for sufficiently large problems. Additionally, we
compare the MGSR and CWY variants of the GMRES method which were introduced in
Algorithms 1 and 3, respectively. On GPU the CWY variant is significantly faster than
the MGSR variant, but on CPU the computational times are more or less the same.

GPU CPU
1 core 2 cores 4 cores 6 cores

Id. CT CT GSp CT Eff GSp CT Eff GSp CT Eff GSp

M
G
SR

2D�
1 5,1 0,6 0,12 0,7 0,45 0,13 0,8 0,19 0,15 0,9 0,11 0,17

2D�
2 28,1 11,5 0,41 7,9 0,72 0,28 6,4 0,45 0,23 6,8 0,28 0,24

2D�
3 117,1 173,6 1,48 95,9 0,91 0,82 61,2 0,71 0,52 52,8 0,55 0,45

2D�
4 740,4 4 023,5 5,43 2 154,1 0,93 2,91 1 192,1 0,84 1,61 941,6 0,71 1,27

2D�
5 8 237,3 82 323,5 9,99 47 982,0 0,86 5,82 26 919,0 0,76 3,27 19 915,5 0,69 2,42

C
W

Y

2D�
1 1,5 0,7 0,45 0,4 0,79 0,28 0,3 0,52 0,22 0,3 0,41 0,18

2D�
2 11,0 13,2 1,20 7,6 0,87 0,69 4,8 0,68 0,44 4,0 0,55 0,37

2D�
3 46,3 197,0 4,25 107,5 0,92 2,32 65,7 0,75 1,42 52,6 0,62 1,14

2D�
4 380,0 4 325,7 11,38 2 360,6 0,92 6,21 1 448,1 0,75 3,81 1 195,8 0,60 3,15

2D�
5 4 449,9 91 166,3 20,49 49 004,3 0,93 11,01 29 182,1 0,78 6,56 24 684,0 0,62 5,55

M
G
SR

2D41 4,7 0,3 0,07 0,5 0,33 0,11 0,5 0,18 0,10 0,6 0,09 0,13
2D42 22,4 5,0 0,22 3,9 0,65 0,17 3,1 0,40 0,14 3,6 0,23 0,16
2D43 120,0 98,5 0,82 59,5 0,83 0,50 38,3 0,64 0,32 35,7 0,46 0,30
2D44 778,3 2 382,8 3,06 1 298,8 0,92 1,67 701,0 0,85 0,90 573,5 0,69 0,74
2D45 7 387,9 45 953,4 6,22 25 512,4 0,90 3,45 14 602,7 0,79 1,98 11 976,4 0,64 1,62

C
W

Y

2D41 1,5 0,4 0,27 0,3 0,60 0,22 0,2 0,45 0,15 0,2 0,32 0,14
2D42 8,9 6,2 0,70 3,7 0,84 0,42 2,3 0,66 0,26 2,0 0,52 0,23
2D43 51,1 122,0 2,39 67,7 0,90 1,32 40,3 0,76 0,79 32,5 0,63 0,64
2D44 396,1 2 695,6 6,80 1 480,7 0,91 3,74 855,2 0,79 2,16 671,7 0,67 1,70
2D45 4 008,3 57 404,2 14,32 32 100,5 0,89 8,01 18 814,1 0,76 4,69 16 414,0 0,58 4,09

Table 3: Comparison of computational times CT , parallel CPU efficiency Eff and
GPU/CPU speed-up GSp for the 2D benchmark problem.

6 Conclusion
We presented a parallel solver for a general system of PDEs based on the semi-implicit
MHFEM/DG numerical scheme. Multiple optimizations were performed to improve the
efficiency of the solver, namely a modified GMRES method using the CWY orthogo-
nalization instead of MGSR was employed and the unstructured meshes were suitably
reordered. The results of numerical simulations for a benchmark problem with known
semi-analytical solution indicate that the numerical scheme converges with the first order
of accuracy in all cases. Computations on GPU were about 20 times faster compared
to 1-threaded computations on CPU and about 6 times faster compared to 6-threaded
computations on CPU, hence, GPU acceleration can be very beneficial for large problems.
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GPU CPU
1 core 2 cores 4 cores 6 cores

Id. CT CT GSp CT Eff GSp CT Eff GSp CT Eff GSp

M
G
SR

3D�
1 5,9 13,8 2,34 7,2 0,96 1,22 4,3 0,80 0,73 3,4 0,67 0,58

3D�
2 55,7 524,6 9,42 304,7 0,86 5,47 173,7 0,76 3,12 128,2 0,68 2,30

3D�
3 1 234,3 21 128,7 17,12 12 770,7 0,83 10,35 7 317,4 0,72 5,93 6 241,6 0,56 5,06

3D�
4 44 798,3 (not computed on 1, 2 and 4 cores) 272 104,0 6,07

C
W

Y

3D�
1 2,1 15,2 7,30 8,0 0,96 3,82 4,4 0,86 2,13 3,4 0,75 1,62

3D�
2 30,8 564,3 18,33 319,5 0,88 10,38 186,7 0,76 6,07 150,3 0,63 4,88

3D�
3 828,0 20 569,5 24,84 12 406,1 0,83 14,98 7 092,6 0,73 8,57 5 533,7 0,62 6,68

3D�
4 31 805,6 (not computed on 1, 2 and 4 cores) 234 066,0 7,36

M
G
SR

3D41 3,8 1,7 0,44 1,2 0,71 0,31 0,8 0,53 0,21 0,8 0,33 0,22
3D42 6,1 7,2 1,19 4,3 0,84 0,70 2,6 0,70 0,43 2,3 0,53 0,37
3D43 45,3 274,5 6,06 152,6 0,90 3,37 87,5 0,78 1,93 72,4 0,63 1,60
3D44 873,1 11 270,0 12,91 6 228,3 0,90 7,13 3 414,9 0,83 3,91 3 187,9 0,59 3,65
3D45 55 880,2 (not computed on CPU)

C
W

Y

3D41 1,4 2,0 1,48 1,2 0,85 0,88 0,7 0,68 0,54 0,6 0,54 0,46
3D42 2,6 8,7 3,30 4,9 0,89 1,85 2,9 0,75 1,10 2,3 0,64 0,86
3D43 23,9 330,9 13,87 184,8 0,90 7,75 107,9 0,77 4,53 93,4 0,59 3,92
3D44 566,2 12 069,5 21,32 6 506,3 0,93 11,49 3 771,0 0,80 6,66 3 306,2 0,61 5,84
3D45 37 695,3 (not computed on CPU)

Table 4: Comparison of computational times CT , parallel CPU efficiency Eff and
GPU/CPU speed-up GSp for the 3D benchmark problem.
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Abstract. This work aims to provide the comprehensive interaction analysis of the spectra
of random matrices from hyperbolic damped ensembles. For that purpose, the transformation
of spectra through unfolding procedure needs to be performed. Here, it is introduced and
thoroughly investigated for general counting processes. After its application on the random
matrix spectra, the nearest-neighbor spacing of the eigenvalues is studied in the dependence of
its position in the spectra.

Keywords: Unfolding, Level Spacing, Counting Process, Random Matrices

Abstrakt. Tato práce si dává za cíl důkladně analyzovat spektra hyperbolických utlumených
náhodných matic. Pro tento účel je nezbytné použít transformaci spektra skrze zobrazení un-
folding. Zde je tento koncept představen a do detailu probírán z hlediska teorie čítacích procesů.
Po aplikaci procedury unfolding je zkoumán odstup mezi sousedními vlastními čísly daných
náhodných matic v závislosti na pozici těchto vlastních čísel ve spektru.

Klíčová slova: unfolding, hladinový odstup, čítací proces, nahodné matice

Introductory Talk
The counting process theory has been thoroughly dealt with in [1] where the classical
theory is extended by new results of which the most important ones are presented in the
paper [2]. The usefulness of those results lies in their ability to describe certain agent
systems from the interaction point of view. These agents are assumed to be characterized
through the sequence of one-dimensional random variables which often represent arrival
times of events or the locations of some objects in space.

Here, we particularly focus on the system of eigenvalues of the so called hyperbolic
damped unitary ensembles firstly mentioned in the paper [3] as the numerical implemen-
tation of the so called Calogero-Moser hyperbolic random matrices. However, the notion
damped unitary ensembles (DUE) was introduced in [4]. In that paper, a very close cor-
respondence between the matrices’ eigenvalues and the system of vehicle locations was
found. Particularly, it was shown that the nearest-neighbor spacing of the eigenvalues
very well describes that of cars located in one lane of the road.

∗This work was supported by the grant Detection of stochastic universalities in non-equilibrium states
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The first section of the work is devoted to the necessary transformation procedure
called unfolding. The concept will be established in its most general way for counting
processes. The important transition to finite version of counting processes will be dealt
with as well. In the second section, the damped unitary ensemble of random matrices will
be defined. Moreover, the origin of these matrices and mainly the guess of the theoretical
formula for the level spacing between the matrices’ eigenvalues will be provided. The
last section belongs to the confirmation and application of the gained knowledge on
the numerically generated data. Primarily, the level spacing between the eigenvalues of
matrices from hyperbolic DUE will be thoroughly examined.

1 Unfolding of Counting Process

Before we investigate nearest-neighbor spacing distribution, it is necessary to transform
the initial system via unfolding. To properly understand the procedure, we will first
introduce the basic terms and notation of the counting process theory. First of all, let us
define the general counting process itself.

Definition 1. Let (Ri)i∈N be a tight sequence of independent a.s. positive random vari-
ables where the sequence of the inversions (1/Ri)i∈N is also tight. Define the variables
Tk =

∑k−1
i=0 Ri for k ∈ N and Nt = #{k ∈ N | Tk ≤ t} for t ∈ R. Then (Nt)t∈R is said to

be a counting process.

The random variable T1 = R0 in the definition above expresses kind of an initial point
of a counting process while the elements of the sequence (Ri)i∈N represent the nearest-
neighbor spacings between the points (Tk)k∈N. Concerning the assumptions of tightness,
they ensure that the counting process has expected properties. First, thanks to the
tightness of the inversions (1/Ri)i∈N, the sequence of the partial sums (Tk)k∈N converges
to infinity a.s. Using this fact, some other fundamental results can be derived most of
which are summarized in the following proposition.

Proposition 1. Let (Nt)t∈R be a counting process. Then for t ∈ R+
0 , it holds

1) Nt <∞ a.s. ,

2) E(N r
t ) <∞ for r ∈ R+

0 ,

3) ∃p0 ∈ R so that E
(
epNt

)
<∞ for p < p0,

4) lim
t→−∞

Nt = 0 a.s. and lim
t→∞

Nt =∞ a.s.

The definition 1 is quite general and there is not actually much more to claim about the
corresponding counting process. To derive some more advanced characteristics describing
the process, additional assumptions have to be imposed on the sequence (Ri)i∈N0 . The
most natural and also simple approach is to assume an identical distribution of the
respective random variables and also R0 := 0 a.s. The resulting process then represents a
very famous renewal process. As a matter of fact, this is not an ideal type of a counting
process to use since its properties are difficult to handle not only from the theoretical
point of view. However, performing just a slight change by considering the density for
the distribution of the random variable R0 in the form

fR0 = λ(1− FR1) (1)
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with positive parameter λ = 1/E(R1), the major downsides of the corresponding counting
process disappear. The formal definition of such a process is given below.

Definition 2. Let (νt)t∈R be a counting process with the i.i.d. spacing sequence (Ri)i∈N
and the initial point R0 distributed according to (1). Then (νt)t∈R is said to be a level
counting process and Lk = R0 + Sk−1 the kth level where Sk =

∑k
i=1Ri is the so called

k-fold level spacing for k ∈ N.

The process just defined was introduced in the paper [2]. It provides an easier and
more slick way of dealing with the properties of counting processes and interacting agent
systems in general. Its crucial property is the linearity of the corresponding expected
value. Specifically, it holds E(νt) = λt for t ∈ R so the derivative of the expected value,
i.e. the density of the counting process, is constant everywhere.

In this work, we aim to present a transformation which maps a general counting
process from the definition 1 to the level counting one. The transformation is called
unfolding and its definition is provided below.

Definition 3. Let (Nt)t∈R be a counting process and U : R→ R+
0 a function satisfying

• limt→−∞ U(t) = 0 and limt→∞ U(t) =∞,

• U is continuous and increasing,

• there is a level counting process (νt)t∈R such that Nt = νU(t)

The mapping U is said to be an unfolding of the counting process (Nt)t∈R.

In real applications, it is usually very difficult, mostly rather impossible, to verify all
the assumptions so that it is eligible to apply unfolding. In fact, the most problematic
part is the last point of the definition. Particularly, there is usually not enough data to
verify that the transformed process satisfies all the properties of a level counting process.
However, here we deal with the eigenvalues of random matrices so we can afford to
generate enough of them to analyze even this condition. Some numerical tests will be
thus given on this topic in the next section. Now let us introduce the specific form of a
mapping which satisfies at least part of the assumptions required in the definition 3.

Theorem 1. Let (Nt)t∈R be a counting process such that the first member of the partial
sum sequence is a countinous random variable. The mapping defined as

U(t) := µE(Nt) (2)

where µ = 1/λ and λ > 0 then satisfies the first two conditions in the definition 3 and
for Nt = νU(t), it also holds E(νt) = λt for all t ∈ R. What is more, the mapping with
such properties is unique.

Proof: The easier part of the proof is to verify the first two conditions. The very first one
is immediately implied from the fourth claim of the proposition 1. The increasing trend
of U follows from the the fact that a counting process is a.s. increasing function.
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To proceed further, we need to express the expected value of a counting process
through the distribution functions of the corresponding partial sum sequence (Tk)k∈N. In
fact, it holds

E(Nt) = E
(
#{k ∈ N |Tk ≤ t}

)
= E

(
∞∑
k=1

I(Tk ≤ t)

)
=
∞∑
k=1

FTk(t) (3)

whereby the convergence is even uniform which follows from the monotone convergence
theorem. Now because we can write Tk+1 = T1 +

∑k
i=1Ri for all k ∈ N and T1 is

continuous, all the members of (Tk)k∈N must be continuous as well. All the reasoning put
together, the expected value of a counting process is a continuous function.

The derivation of the last condition in the claim is the most strenuous part of the proof.
First of all, let us denote the random variables transformed via U and the corresponding
counting process as

Lk := U(Tk) , νt := #{k ∈ N |Lk ≤ t} (4)

where t ∈ R and k ∈ N. Due to the increasing trend of the function U , the process (νt)t∈R
is related to the original one (Nt)t∈R through the relation

Nt = #{k ∈ N |Tk ≤ t} = #{k ∈ N | U(Tk) ≤ U(t)} = νU(t)

which is in fact the first part of the condition being proved. To show the linearity of the
expected value E(νt), it would be useful to apply the inversion of U now. However, that
does not have to necessarily exist because U might not be strictly increasing. We thus
need to deal with the areas where the function is constant. According to (3), the function
U is constant on some set if and only if FTk for all k ∈ N are on that set constant. This is
equivalent to the statement that U is strictly increasing on some set if and only if there
is k ∈ N such that FTk is strictly increasing on that set. Based on these observations,
define the set

A :=
∞⋃
k=1

supp(Tk)

where the symbol supp(Tk) denotes the support of the corresponding random variable.
From here, it holds that Tk ∈ A a.s. for all k ∈ N and as a consequence, the restriction
V := U|A then satisfies

U(Tk) = V(Tk) a.s.

Additionally, the equation V(A) = R+
0 applies which follows from the properties of U as

the expected value of a counting process. The restriction V is already strictly increasing
which allows one to write

E(νt) =
∞∑
k=1

E
(
U(Tk) ≤ t

)
=
∞∑
k=1

E
(
V(Tk) ≤ t

)
=
∞∑
k=1

E
(
Tk ≤ V−1(t)

)
= E

(
NV−1(t)

)
where the relation (4) was used. Using the definition (2) and also the fact that V−1(t) ∈ A
for all t ∈ R+

0 , we finally get the equality

E(νt) = λU
(
V−1(t)

)
= λV

(
V−1(t)

)
= λt .
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The last part of the proof is devoted to the uniqueness of the function chosen as (2)
having all the properties claimed. Let Ũ be an arbitrary function satisfying the first two
conditions in the definition 3 and also the relation Nt = νŨ(t) where E(νt) = λt for all

t ∈ R. The mapping Ũ then complies with the definition (2) as

E(Nt) = E(νU(t)) = λŨ(t) .

According to the relation (4), the function U maps the points (Tk)k∈N to the new
ones (Lk)k∈N so that they become uniformly distributed in their state space. If the state
space is for instance time, this action results in the loss of the information about the time
evolution in the system. On the other hand, if the mapping U is in addition unfolding,
the simplicity of the resulting level process allows one to unfold many useful properties
about the corresponding system as will be seen in the third section. Various counting
processes can be in this way transformed so that they are examined and consequently
compared to each other.

As a result of the theorem 1, the mapping of the form (2) is actually the only candi-
date which could satisfy even the third assumption for the unfolding of a counting process
(Nt)t∈R. That brings up a question what are the requirements to be imposed on the pro-
cess (Nt)t∈R so that the function (2) is its unfolding. The intuitive idea is that unfolding
only kind of rescales all the nearest-neighbor spacings so that their distributions become
the same as it is required in the definition for a level process. Therefore, it is believed
that the counting process, on which we intend to apply unfolding, should be formed by
the sequence of spacings (Ri)i∈N all having the same or very similar distribution up to
some scale constant. Ideally, it should thus hold

∀i, j ∈ N ∃s ∈ R : Ri
D
= sRj . (5)

Unfolding is shrouded by mysteries and it is still far from being completely understood.
Some of the insights will be given in the next sections using real data, but before that,
let us present one particular case in which the mapping (2) actually satisfies all the
requirements to be unfolding.

Theorem 2. Let (Nt)t∈R be a counting process defined through the partial sum sequence
(Tk)k∈N. Suppose that the sequence (Tk,n)nk=1 is the increasingly ordered version of the
i.i.d. random variables (Yk,n)nk=1 for all n ∈ N such that the limit limn→∞ Tk,n −→ Tk
holds for all k ∈ N. Then unfolding of the process (Nt)t∈R exists and its image results in
the homogeneous Poisson process.

Proof: The theorem will be shown by the transition from the process (Nt)t∈R to its finite
version defined as Nt,n := #{k ∈ n̂ |Tk,n ≤ t} for t ∈ R where n is the number of
elements present in the system. The corresponding finite version of unfolding for µ <∞
then satisfies

Un(t) := µE
(
Nt,n

)
= µE

(
#{k ∈ n̂ |Tk ≤ t}

)
= µ

n∑
k=1

FTk,n(t) = µnFY1,n(t) (6)
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where the distribution function of Y1,n is the mixture of all the distribution functions
(FTk,n)nk=1. Based on this kind of notation, it is clear that (Tk,n)nk=1 represents the or-
dered statistics of the i.i.d. sequence (Yk,n)nk=1 established in the claim of the theorem.
Analogically, the sequence of levels Lk,n := Un(Tk) is then the ordered version of the
variables Xk,n := Un(Yk,n). According to the relation (6), the sequence (Xk,n)nk=1 is also
i.i.d. and moreover, its elements has uniform distribution U(0, µn).

Suppose now that (νt,n)t∈R is the finite counting process defined through the partial
sum sequence (Lk,n)nk=1. As the consequence of the results obtained in the previous
paragraph, the process (νt,n)t∈R has the binomial distribution Bi(n, t/(µn)). Denoting
the limits of (Nt,n)t∈R and Un as (Nt)t∈R and U respectively, it additionally holds

Nt = lim
n→∞

Nt,n = lim
n→∞

νUn(t),n = νU(t) (7)

E(νt) = lim
n→∞

E(νt,n) = lim
n→∞

nFX1,n(t) = λt

for all t ∈ R where λ := 1/µ. Now thanks to the convergence limn→∞ Bi(n, λt/n) = Po(λ),
the resulting counting process (νt)t∈R is actually the Poisson process. Moreover, since the
Poisson process satisfies the properties of a level counting one, the mapping U is truly
unfolding.

As a matter of fact, the counting process (Nt)t≥0 described in the claim of the theorem
above is the inhomogeneous Poisson process. Indeed, the relation (7) directly implies that

P(Nt = k) = P(νU(t) = k) =
Uk(t)
k!

e−U(t)

for all k ∈ N and t ∈ R. This relation actually provide the way of generating a general
counting process with an arbitrary expected value E(Nt) = λU(t) for t ∈ R. The function
U might then represent a time or a space evolution reflecting some real application system
and the parameter λ the intensity which the elements occur in that system with.

The concept of the finite counting process discussed above is crucial while dealing
with the real application systems since they naturally always contain a finite number
of elements. That is why the results presented for the counting processes based on the
definition 1 are just asymptotically approximative ones. As was mentioned, that is also
why the tools introduced here and in the paper [2] must be used for the systems with
number of elements high enough. Their actual application will be performed on the real
data in the following sections.

2 Introduction to DUE of Hyperbolic Kind
The major system studied in this work is the set of eigenvalues of the random matri-
ces called damped unitary ensembles (DUE). Before restricting only to their hyperbolic
version, let us introduce the concept generally.

Definition 4. The random matrix D =
(
Dij,n

)n
i,j=1

for natural n is said to belong to the
damped unitary ensemble if Dij ∼ N(0, σ2) for i = j and Dij,n = ig/fn(i − j) a.s. for
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i 6= j where g and σ are positive. The function fn is required to be continuous, odd and
to satisfy | limt→∞ fn(t)| =∞.

Since the function fn is odd, the matrix defined above must be always hermitian. That
means the corresponding eigenvalues are real random variables so the concepts discussed
in the previous section apply to them as well. The word dumped was used because of the
increasing character of the function fn which makes the elements of the matrix D smaller
as they get farther from the diagonal. The simplest type the function fn is a linear one
for which the respective ensemble is called the rational. In this work, we will deal with
the hyperbolic ensemble which is obtained by setting

1

fn(t)
=

2π

n sinh(2πt/n)

for t ∈ R. This particular choice of the function fn comes from the paper [3] where the
corresponding matrix ensembles were introduced as the numerical implementation of the
so called Calogero-Moser hyperbolic matrices. These represent the Lax matrices of the
integrable models characterized by the Hamiltonian

H(p1, . . . , pn, q1, . . . , qn) =
1

2

n∑
i=1

p2
i + g2

∑
i<j

1

f4π/γ(qi − qj)
(8)

for n particles with momentum (pi)
n
i=1 and one-dimensional positions (qi)

n
i=1 where g and

γ are positive parameters. The Lax matrix L is determined by the existence of the pair
matrix M such that the Hamilton equations can be then rewritten in the form

∂L

∂t
= LM−ML . (9)

Considering the Hamiltonian (8), the condition (9) determines the elements of the matrix
L as Lij = pi for i = j and Lij = ig/f4π/γ(qi − qj) for i 6= j where i, j ∈ n̂. Using
the methods of statistical physics, one can then derive the probability density for the
momentum and positions in the form

f(p1, . . . , pn, q1, . . . , qn) = c exp

(
−a

[
n∑
i=1

p2
i + g2

∑
i 6=j

1

f 2
4π/γ(qi − qj)

]
− b

n∑
i=1

cosh(γqi)

)
.

(10)
where the second term in the exponent represents the confinement potential holding the
repulsing particles together. The density above seems to be very cumbersome to work
with. That is also why its approximation for the implementation purposes was proposed.
Particularly, instead of considering positions to be random, they were chosen to take the
values qi = i a.s. Using this adjusted distribution and setting γ := 4π/n, the matrix L
then matches the one from hyperbolic DUE established in the definition 4.

In the paper [3], the authors also derive the joint distribution of the eigenvalues of the
random matrix L. Thanks to the integrability of the underlying system, it is possible to
perform the canonical transformation of the momentum and the positions of the particles
to the corresponding action-angle variables. As a matter of fact, the action ones turns
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out to be the eigenvalues of the Lax matrix L. After the transformation of the density
(10) and integration over the angle variables, we get the joint density for the eigenvalues
in the form

f(λ1, . . . , λn) = c exp

(
−a

n∑
i=1

λ2
i

)
n∏
i=1

K0

(
b
∏
i 6=j

∣∣∣∣1 +
igγ

λi − λj

∣∣∣∣
)

(11)

where K0 stands for the Macdonald’s function of the zeroth order.
From the density above, it is possible to deduce the estimate of the level spacing

distribution for the respective eigenvalues. First, let us investigate the character of the
distribution for the high values of spacings. In that case the function (11) is mainly deter-
mined by its exponential part which corresponds to the distribution of the independent
Gaussian random variables. Based on the theorem 2, the spacing after unfolding is of an
exponential character. To deduce the behavior of the level spacing density around zero,
it is necessary to use the approximation K0(t) ∼

√
π/(2t) exp(−t) as t → ∞. Plugging

this into the expression (11) and combining it with the estimate for the high values of
level spacing, we obtain

fS1(t) = ctαe−β/t+dt (12)

for t > 0. The constant c normalizes the density and d is often determined by the condition
E(S1) = µ applied for the purpose of comparing differently scaled spacings. As a matter
of fact, this density determines the generalized inverse Gaussian (GIG) distribution. How
well it fits to the data generated from the matrix in the definition (4) will be tested in
the following section.

3 Level Spacing for Eigenvalues of DUEh

In this section, we will thoroughly look at the repulsive interaction kind of dependencies
governing in the spectra of the matrices established in the definition (4). Specifically, we
are aiming to study the distribution of the spacings between two nearest eigenvalues. We
will do so after the application of the rescaling transformation introduced in the theorem
(1) and compare individual spacings throughout the whole spectra. For that purpose,
the expected value

E(Nt,n) =
n∑
k=1

FΛk,n
(t) (13)

for t ∈ R is required. The sequence (Λk,n)nk=1 represents the ordered version of the spectra
of the matrix from DUEh(n, g).

The intensity function as the derivative of the expected value (13) becomes the density
mixture of all the ordered eigenvalues. This mixture is sometimes also denoted as the
eigenvalue density. It is well known that the eigenvalue density of the Wigner matrices
is a semiellipse according to the famous Wigner semicircular law. In the case of damped
matrices, the distribution certainly does not follow this behavior as can be seen in the
figure 1. Instead, it gradually changes from the Gaussian distribution to almost uniform
one as the parameter g increases. This trend was attempted to be captured in the paper
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Figure 1: The eigenvalue densities of DUEh matrices for various values of the param-
eter g.

[3] by the formula

f(t) =
c(ϑ)

ε
exp

(
ϑ2ε2

ε2 − t2

)
(14)

for |t| < ε and f(t) = 0 otherwise. The function c(ϑ) plays the role of a normalization
factor while ε, ϑ > 0 are the parameters of the distribution. The distribution function of
(14) can be used as the decent approximation of the rescaling transformation µE(Nt, n).
If no such a theoretical formula is available, a polynomial regression is usually performed
to estimate the distribution function of eigenvalue density. Nevertheless, non of these
strenuous approximative approaches will be needed in our case. Since we deal with
random matrices, we can generate enough of them to precisely normalize the scale of all
the spacings manually. By normalization, it is meant here to convert all the respective
means to one. Note that this method might not be able to be used in the real systems as
only one realization of the finite counting process is usually available. It is also sufficient
only when dealing with nearest-neigbor spacing distributions. If one wants to study
more advanced characteristics like multi-fold spacing or rigidity, the transformation (2)
is necessary to be applied.

Let us now try to fit the spacing distributions by the guessed formula (12) in which the
parameter d is determined the scaling condition E(S1,n) = 1. The fits for various positions
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of the spacings in the spectra are presented in the figure 2. Apparently, the distribution
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Figure 2: Histograms and fits of spacing densities between two nearest eigenvalues
from DUEh located in various parts of spectra.

changes significantly determined by the weak repulsion character on the edge of the
spectra to quite strong one in the bulk. It is surprisingly different behavior than in the
case of the well-known Gaussian random matrices whose eigenvalue spacing distributions
appear to be identical no matter the position of the spacing in the spectra. As a result,
the finite counting process formed by the eigenvalues of the matrices from DUEh does
not have an unfolding. Indeed, the application of the mapping (2) to the process would
not result in a level counting one since the corresponding spacing distributions would not
be the same.

Let us now have a look at the dependence of the spacing distribution on the position
in the spectra more in detail. The figure 3 shows the estimates of the parameters α and
β of the distribution (12) for all the nearest-neighbor spacings between the eigenvalues of
the matrices from DUEh(128, g) for various values of g. As expected from the symmetry
of the graphs in figure 1, the change in the parameters α and β going from the edges of
spectra to its bulk is symmetric as well. The trend of the change seems to be parabolic in
the case of the parameter α. Despite the high variability in the estimates of the parameter
β, their trend indicates to have a semicircular behavior.

The spectra of the matrices from DUEh thus truly cannot be unfolded as a whole.
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Figure 3: The estimates of the parameters α and β of the density (12) for the spacings
of the nearest eigenvalues from DUEh with various values of the parameter g.
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Figure 4: The estimates of the parameters α and β of the density (12) for the spacings
of the nearest eigenvalues from DUEh located in various parts of spectra.
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Nevertheless, the estimates of the parameter α in roughly the middle quarter of the spec-
tra appear to have a steady trend. Considering only those eigenvalues, the unfolding
could be performed on corresponding counting process. However, the theoretical predic-
tion (14) does not fit very well this time and the mentioned polynomial regression method
has to be used instead.

As a matter of fact, it is again possible to bypass the method using polynomial re-
gression. Setting a threshold h and taking only those eigenvalues (Λi)

128
i=1 from the middle

quarter of the spectra (i ∈ {48, . . . , 80}) satisfying |Λi| < h performs the approximate
unfolding1 as well. The threshold h is chosen with respect to the estimates of the expected
values E(Λ48) and E(Λ80).

So far, we have investigated the spacing distribution in the dependence of the loca-
tion in the spectra of the matrices from DUEh(128, g). Let us now have a look at the
dependence of the distribution on the parameter g more thoroughly.

In the figure 4, the respective estimates α̂(g) and β̂(g) are plotted for various locations
of the spacings in the spectra. In the case of parameter α, its estimates seem to have
a quadratically increasing trend while those of the parameter β indicate possible linear
trend.
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Abstract. Object recognition is a process for identifying objects in images or video sequences.
One of the powerful tools in object recognition is an invariant description of objects. The
descriptors ought to be computationally stable and have high discriminative power. Hence,
invariants constructed from orthogonal Gaussian–Hermite moments can be used advantageously.
Gaussian–Hermite (GH) moments play a special role among various orthogonal moments [1, 2,
3, 5, 6, 8, 10]. They were proved to be very robust w.r.t. additive noise comparing to other
common moments [4, 7]. The GH moments are the only moments orthogonal on a rectangle
which offer a possibility of an easy and efficient design of rotation invariants. This is guaranteed
by the Yang’s Theorem [9]. However, the construction of invariants w.r.t. scaling cannot be
accomplished easily and a novel approach is needed.

The first paper is concerned with invariants with respect to scaling constructed from Gaussian–
Hermite moments. The invariance is achieved owing to modulation of Gaussian–Hermite poly-
nomials using variable parameter σ that depends on the input image. The scale invariance can
be easily coupled with the rotation invariance. This approach can be effortlessly applied in 2D
and 3D with high numerical stability as demonstrated in experiments on real data.

The second paper is dealing with rotation invariants of vector fields. Vector field images
are a new type of data appearing in many engineering areas in the last few years. A 2D
vector field f(x) can be mathematically described as a pair of scalar fields (images) f(x) =
(f1(x), f2(x)). At each point x = (x, y), the value of f(x) show the orientation and the magnitude
of a certain vector. Hence, it is necessary to develop new methods and algorithms for dealing
with this type of data. In this paper, we propose a method for the description and matching
of 2D vector field patterns under an unknown rotation of the field. The considered rotation
of a vector field is so-called total rotation, where the action is applied not only on the spatial
coordinates but also on the field values. Invariants of vector fields with respect to total rotation
constructed from Gaussian–Hermite moments orthogonal on a square and Zernike moments
orthogonal on a disk are introduced. Their numerical stability is shown to be better than that
of the geometric/complex moment invariants. We demonstrate their usefulness in a real world
template matching application of rotated vector fields – a vortex detection in a fluid flow.

Keywords: Scale invariants, Variable modulation, Normalization, Vector field, Total rotation,
Invariants, Gaussian-Hermite moments, Zernike moments, Numerical stability.

Abstrakt. Rozpoznávání objektů je proces identifikace objektů v obraze či videu. Jedním
z přístupů je použití deskriptorů objektů, které jsou invariantní vůči jistým typům transformací

∗This work has been supported by grants No. GA15–16928S and SGS15/214/OHK4/3T/14.
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v obraze. Výpočet těchto deskriptorů by měl být numericky stabilní a měly by mít vysokou
diskriminabilitu. S výhodou lze proto pro jejich konstrukci využít ortogonálních Gaussových–
Hermitových (GH) momentů. Tyto momenty hrají důležitou roli mezi ortogonálními momenty
[1, 2, 3, 5, 6, 8, 10]. Bylo dokázáno, že GH momenty jsou velmi robustní vůči aditivnímu šumu
ve srovnání s jinými běžně používanými momenty [4, 7]. GH momenty jsou jediné momenty
ortogonální na obdélníku, ze kterých lze snadno zkonstruovat rotační invarianty. Což je možné
díky Yangově větě [9]. Bohužel rozšíření na invarianty vůči škálování je netriviální a je třeba
zvolit nový přístup.

První z uvedených článků pojednává o invariantech vůči škálování konstruovaných pomocí
Gaussových–Hermitových momentů. Invariance je dosaženo díky modulaci Gaussových–Hermi-
tových polynomů proměnným parametrem σ, který závisí na vstupním obrázku. Invariance vůči
škálování může být snadno kombinována s invariancí vůči rotaci. Tento přístup lze jednoduše
použít jak pro dvourozměrná tak i pro třírozměrná data. Numerická stabilita výpočtů je demon-
strována na experimentech s reálnými daty.

Druhý článek se zabývá rotačními invarianty pro vektorová pole. V posledních letech se díky
novým způsobům měření a novým typům měřících zařízení setkáváme stále častěji s multidimen-
zionálními vektorovými poli. 2D vektorové pole f(x) lze matematicky popsat jako uspořádanou
dvojici skalárníích obrázků f(x) = (f1(x), f2(x)). V každém bodě x = (x, y), popisuje hod-
nota f(x) velikost a směr daného vektoru. Je proto potřeba k jejich analýze vyvíjet speciální
metody a algoritmy či významně modifikovat stávající postupy z tradiční oblasti zpracování
obrazu. V tomto článku navrhujeme metodu pro popis a vyhledávání vzorů ve 2D vektorových
polích při neznámé rotaci pole. Uvažovaná rotace je tzv. totální rotace, kdy transformace nepů-
sobí pouze na prostorové souřadnice, ale také na hodnoty pole. Dále představujeme invarianty
vektorových polí vzhledem k totální rotaci zkonstruované pomocí Gaussových–Hermitových mo-
mentů ortogonálních na čtverci a Zernikeových momentů ortogonálních na kruhu. Ukážeme, že
numerická stabilita těchto invariantů je vyšší než stabilita invariantů založených na geometrick-
ých/komplexních momentech. Užitečnost těchto invariantů demonstrujeme na reálné problému
– detekci vírů v proudění kapalin.

Klíčová slova: Invarianty vůči škálování, proměnná modulace, normalizace, vektorové pole,
totální rotace, invarianty, Gaussovy–Hermitovy momenty, Zernikeovy momenty, numerická sta-
bilita.
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Abstract. Random walk is a very well studied object. Since its first introduction by Pearson in
1905 a number of alternative models have been developed. This paper presents a novel approach
to a random walk with memory. This memory is introduced by a varying transition probability.
Asymptotic properties of such a random walk are described and possible real life applications of
such model are introduced.

Keywords: Random walk, memory, varying transition probability

Abstrakt. Náhodná procházka je objekt studovaný více než sto let. Od roku 1905, kdy Pear-
son poprvé koncept náhodné procházky představil, byla vyvinuta celá řada alternativ k původ-
nímu modelu. Tento článek se věnuje náhodné procházce s pamětí, jež se projevuje proměn-
livou přechodovou pravděpodobností. Jsou zkoumány asymptotické vlastnosti takovéto náhodné
procházky a naznačena možná použití modelu v praxi.

Klíčová slova: Náhodná procházka, paměť, proměnlivá pravděpodobnost

1 Introduction

Random walks has been subject to extensive study for over a hundred years since they
were first introduced in by Pearson in 1905 [1]. Since then, many different variations of
a random walk have been introduced. Those variations usually involve different supports
(i.e. a random walk on a lattice, graph, finite set) and time properties (discrete or
continuous) [3]. Many variations also involve a memory factor added into the random
walk, such as self-avoiding walk or reinforced random walk [2]. Introducing a long term
memory factor into a random walk leads to a very different asymptotic behavior.

In this paper one-dimensional random walk is considered, in which the position of the
walker is controlled by a varying transition probabilities. After each step, the probability
that the next step will be in the same direction as the previous one is lowered and the
probability that the walker will move in opposite direction is increased accordingly. The
transition probabilities evolve in time in a random way and the actual values of the
transition probability depend on the entire history, making the walk a non-Markovian
stochastic process.

The model is described in the next section and section 3 indicates possible evolution
of this theory and concludes this paper.
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2 Model

2.1 Previous work

Similar problem has been studied by Turban in [4]. In the paper, the discrete time one-
dimensional random walk with the following properties is studied. The step size l+t of the
t− th step to the right and step size l−t of the t− th step to the left satisfy the condition

l+t + l−t = 2 ∀t

and the size of the step is evolving according to the following rules for t > 1

σt−1 = +1→

{
l+t = λl+t−1
l−t = 2− λl+t−1

σt−1 = −1→

{
l+t = 2− λl−t−1
l−t = λl−t−1

where the Ising variable σi = ±1 with equal probability p = 1
2
, l+1 = l−1 = 1 and 0 ≤ λ ≤ 1.

The limit λ = 1 corresponds with the Bernoulli random walk, the limit λ = 0 corresponds
to a situation when the walker does not move for some time. Turban shows that such a
random walk is well controlled and that it is non-diffusive (with Hurst exponent of the
mean square displacement α = 0) even for λ close to 1.

2.2 The Model

In this paper slightly different approach is considered. Let’s take a random walk on
integers, with step size lt ∈ {−1, 1}. The probability that in time t the step will be
positive is

P (lt = 1) = p+t

and the probability that the step will be negative is

P (lt = −1) = p−t = 1− p+t .

The transition probabilities vary in time such that the probability of moving in the same
direction as in previous step is lowered by a coefficient λ ∈ (0, 1)

p+t =

{
λp+t−1 lt−1 = 1

1− λp−t−1 lt−1 = −1
(1)

p−t =

{
1− λp+t−1 lt−1 = 1

λp−t−1 lt−1 = −1
(2)

As there always holds that p−t = 1 − p+t , it is sufficient to further only consider p+t . Let
pt = p+t . From equations 1 and 2 follows for t > 1 that

pt =

{
λpt−1 lt−1 = 1

1− λ+ λpt−1 lt−1 = −1
(3)
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pt = λpt−1 +
1

2
(1− λ)(1− lt−1) (4)

Let’s calculate the expression for pt using induction. First let’s assume p1 = 1
2
. For t = 2

expression 4 gives

p2 =
1

2
λ+

1

2
(1− λ)(1− l1). (5)

For any t let’s assume that

pt =
1

2
λt−1 +

1

2
(1− λ)

t−1∑
i=1

λt−1−i(1− li) (6)

This holds for t = 2 (5). For t = t+ 1 we get

pt+1 = λ(
1

2
λt−1 +

1

2
(1− λ)

t−1∑
i=1

λt−1−i(1− li)) +
1

2
(1− λ)(1− lt)

pt+1 =
1

2
λt +

1

2
(1− λ)

t−1∑
i=1

λt−i(1− li) +
1

2
(1− λ)(1− lt)

pt+1 =
1

2
λt +

1

2
(1− λ)

t∑
i=1

λt−i(1− li)

which is in accordance with 6 and thus 6 holds for any t > 1. Since

(1− λ)
t−1∑
i=1

λt−1−i = (1− λ)
t−2∑
i=0

λi = (1− λ)1− λ
t−1

1− λ
= 1− λt−1

expression 6 can be reduced to

pt =
1

2
λt−1 +

1

2
(1− λt−1)− 1

2
(1− λ)

t−1∑
i=1

λt−1−ili (7)

pt =
1

2
(1− (1− λ)

t−1∑
i=1

λt−1−ili). (8)

Proposition 1. For p1 = p̃, ∀t ≥ 1 it holds

pt = p̃λt−1 +
1

2
(1− λ)

t−1∑
i=1

λt−1−i(1− li),

which can be expressed as

pt = (p̃− 1

2
)λt−1 +

1

2
(1− (1− λ)

t−1∑
i=1

λt−1−ili).

Proof. Follows directly from 4, 5 and 7.

Examples of the random walk with memory in probability as well as the model intro-
duced in [4] and the standard random walk can be seen in Figures 1 and 2. It can be
seen that the memory coeficient on probability does not limit the position of the walker
as much as the step length memory coeficient, but it still significantly affects the random
walk development.
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Figure 1: Comparison of random walks generated by the same random numbers for
starting probability p̃ = 0.5 and varying memory factor λ. Red dashes are the standard
random walk, blue dots are random walks with memory introduced by Turban and green
dash-dot lines represent random walks generated by the model introduced in this paper.

2.3 Mean values of the process

Let Xt be the position of the walker at time t. It holds that

Xt = Xt−1 + lt

To calculate the expected value EXt it holds that

EXt = EXt−1 + Elt (9)

with
Elt = 2Ept − 1. (10)

The expected transition probability Ept at time t can be calculated as

Ept = (Ept−1)
2λ+ (1− Ept−1)(1− (1− Ept−1)λ)

Ept = 2Ept−1λ− λ− Ept−1 + 1. (11)

Proposition 2. For ∀t ≥ 1, it holds that

Ept = (2λ− 1)t−1p̃+
1− (2λ− 1)t−1

2
. (12)
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Proof. For t = 1, equation 12 yields

Ep1 = p̃ (13)

and for t = 2

Ep2 = (2λ− 1)p̃+
1− 2λ+ 1

2
= 2p̃λ− λ− p̃+ 1, (14)

which is in accordance with 11. For t = t+ 1 we get from 11

Ept+1 = 2[(2λ− 1)t−1p̃+
1− (2λ− 1)t−1

2
]λ− λ− [(2λ− 1)t−1p̃+

1− (2λ− 1)t−1

2
] + 1

Ept+1 = 2λ(2λ− 1)t−1p̃− λ(2λ− 1)t−1 − (2λ− 1)t−1p̃− 1− (2λ− 1)t−1

2
+ 1

Ept+1 = (2λ− 1)t−1p̃(2λ− 1) +
−2λ(2λ− 1)t−1 − 1 + (2λ− 1)t−1 + 2

2

Ept+1 = (2λ− 1)tp̃+
1− (2λ− 1)t

2
and thus 12 holds for all t ≥ 1.

Proposition 3. For ∀t ≥ 1, it holds that

EXt = (2p̃− 1)
1− (2λ− 1)t

2(1− λ)
. (15)

Proof. For t = 1 equations 9, 10 and 13 yield (given X0 = 0, i.e. the walker starts at the
beginning)

EX1 = 2p̃− 1

and for t = 2 (using 14)

EX2 = 2p̃− 1 + 2(2p̃λ− λ− p̃+ 1)− 1

EX2 = 2λ(2p̃− 1),

which is the same as the result when using 15. Assuming 15 holds for t we get for t = t+1
from 9, 10 and 12

EXt+1 = EXt + 2Ept+1 − 1

EXt+1 = (2p̃− 1)
1− (2λ− 1)t

2(1− λ)
+ 2[(2λ− 1)tp̃+

1− (2λ− 1)t

2
]− 1

EXt+1 = (2p̃− 1)(
1− (2λ− 1)t

2(1− λ)
+ (2λ− 1)t)

EXt+1 = (2p̃− 1)(
t−1∑
i=0

(2λ− 1)i + (2λ− 1)t)

EXt+1 = (2p̃− 1)
1− (2λ− 1)t+1

2(1− λ)
.
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Figure 2: Comparison of random walks generated by the same random numbers for
different starting probability p̃ = 0.8 and varying memory factor λ.

2.4 Asymptotic behavior

Now let’s examine the situation for t→∞. From Proposition 2 follows that

Ept =
t→∞

1

2

and from Proposition 3 that

EXt =
t→∞

2p̃− 1

2(1− λ)
.

In other words the memory introduced by the coefficient λ will in long term eliminate
the effect of the starting probability p̃ and drag the transition probability to the value of
1
2
. In a similar manner, the expected position of the walker will remain constant in the

long run, at the position given by
2p̃− 1

2(1− λ)
.

2.5 Monte Carlo simulations

Monte Carlo simulations have been used to explore the asymptotic properties of the
random walk with variable transition probability and to compare it to the standard
random walk and to the random walk with memory introduced by Turban [4]. Figure
3 shows the expected position of the walker for the different types of random walk1

1The case when p̃ = 0.5 is trivial, as all three types converge to 0. The standard random walk diverges
for ∀p̃ 6= 0.5 and is thus not showed.
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Figure 3: Comparison of the expected position of the walker for different starting proba-
bilities p̃ and memory factor λ. Blue dots are random walks with memory introduced by
Turban, green dash-dot lines represent random walks generated by the model introduced
in this paper and red line is the computed value of EXt given by Proposition 3.

and different values of starting probability p̃ and memory factor λ together with the
expected position of the walker given by Proposition 3. The expected values of transition
probabilities for different p̃ and λ, both theoretical and observed, can be seen in Figure
4.

Finally, Figures 5 and 6 show the observed variance of the walker position and the
transition probabilities V ar(Xt) and V ar(pt). These observations suggest that the vari-
ance of transition probability converges and does not depend on the initial probability
p̃ and the variance of the position of the walker diverges linearly with respect to both p̃
and λ.

3 Conclusion

In this paper, a novel approach to a random walk with memory was introduced and
the basic properties of such random walk were derived. Asymptotic properties were
also demonstrated using Monte Carlo simulations. It seems that there are many real
life application of such a model. The evolution of the score in some sports seems to
follow the rules introduced in this paper. The (out)performance of a new worker in a
company or the reliability of a machine could be another examples of real life applications
of the introduced model. However, further research has to be conducted to prove these
assumptions.
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Figure 4: The expected values of transition probabilities. The dot-dashed lines are ob-
served probabilities, the thin black lines their respective theoretical values.
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Figure 5: Variance of the transition probabilities.
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Figure 6: Variance of the position of the walker.
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Abstract. Latest works show that quantum physics allows for new type of chaotic behaviour
without analogy in classical physics. This chaos is connected to quantum description of physical
state which is subject to nonlinear operation. The chaos has been analytically described in
particular set of pure two-qubit states subject to a particular protocol. We aim on investigating
chaotic evolution of mixed states which is beyond contemporary knowledge. We work with single-
qubit version of protocol originally designed to purify quantum entanglement. We reveal a new
phenomenon, half-attractiveness of quantum physical states. Our main result lies in concept of
box-counting dimension which is used to characterise structures of chaotic mixed states. We
show that the structure undergoes a phase transition where the purity of states plays the role
of temperature. These sudden qualitative changes of the structures are very surprising. Finally,
we also give quantitative characteristics of basins of attraction which indicate that number of
states that can be purified by the protocol explodes exponentially with growing purity.

Keywords: qubit, quantum entanglement, chaos

Abstrakt. V nedávných článcích byla objevena existence nového typu chaotického chování
kvantových systémů, který nemá analogii v klasické fyzice. Příčinou chaosu je samotný kvantový
popis stavu, na který je aplikován nelineární operátor. Analyticky byl chaos popsán pro speciální
třídu dvouqubitových stavů při aplikaci speciálního protokolu. Naším cílem je popsat evoluci
smíšených stavů, což jde za hranice současného poznání. Pracujeme s jednoqubitovou verzí
purifikačního protokolu. Odhalili jsme nový jev, poloatraktivitu kvantových stavů. Hlavní
výsledek naší práce spočívá ve využití tzv. box-counting dimenze k charakterizování struktur
stavů s chaotickou evolucí. Tyto struktury podléhají fázovému přechodu, přičemž roli teploty
hraje čistota stavů. Tyto náhlé kvalitatvní změny zmíněných struktur jsou velmi překvapující.
Rovněž prezentujeme kvantitativní charakteristiku oblastí přitažlivosti atraktorů, která značí,
že počet stavů, které purifikační protokol umí ’vyčistit’ roste exponenciálně s čistotou stavu.
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1 Introduction

Quantum information and computation offer great improvements to classical tasks. Quan-
tum entanglement is one of phenomena that is widely exploited in newly proposed al-
gorithms. However, it suffers form decoherence that cannot be in principle eliminated.
Processes aiming on repairing the entanglement are called purification protocols. One of
them proposed [2] and generalised [1] lately sacrifices a copy of a piece of information to
repair another copy. These exponential costs have to be taken into account for multiple
iterations and they are the reason to seek improvements to the protocol. The particular
protocol has been shown to induce chaotic behaviour in a special set of pure states.

This type of chaos in the sense of the sensitiveness of the state’s evolution to initial
conditions has no analogy in classical physics. It is also different from so called quantum
chaology (which studies quantum systems corresponding to classically chaotic systems)
because the chaos is rooted deeply in the mathematical description of the quantum reality.
The reason for this chaotic feature lies in nonlinear maps which can be generally found
in physics of open quantum systems but these have not been yet studied. We now aim
on showing that the dynamical regimes can be very interesting, rich and surprising.

Because of the complex and intricate nature of the topic we study single-qubit version
of the protocol acting on general mixed states. The single-qubit states can be isomorphi-
cally mapped onto a particular set of two-qubit states. This allows for reinterpretation
of our results to protocol capabilities regarding entanglement purification. We propose a
new method to characterise chaotic dynamics inside the Bloch sphere based on study of
states that are sensitive to initial conditions. These states form an interesting structure
which we characterise in the parameter space of the physical system using concept of box-
counting dimension. After explaining the method and we present our main observation.
We find that the structure of chaotic states undergoes a phase transition with respect to
purity of the initial states.

Additionally, we show that the relative amount of states of given initial purity that
converge to the mixed attractor increases with lowering purity. This finding can be
interpreted in terms of purification capabilities of the protocol; this purification is meant
as increasing the purity of the state here but in two-qubit reinterpretation it manifests
in entanglement purification capabilities.

2 Chaos and quantum systems

The nonlinear map acting on mathematical representation of a physical system is the
crucial point of our research. General nonlinear maps in quantum physics can be studied
only in open systems, because closed system evolve unitarily. In this mode it is impossible
to implement expanding or contracting maps. And it is exactly the expanding property
that is responsible for the sensitivity to initial conditions, i.e. chaos.

If we would like to examine general nonlinear operator acting on two qubits we would
need theory for 15 functions of 15 real variables. Therefore, we choose single-qubit pro-
tocol version where three real variables are dealt with. Nevertheless, we remain beyond
scope of mathematical books. In this setting we will find many phenomena familiar to
classical nonlinear dynamics [6] and theory of complex functions [5]. Amongst these are
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fractal structures and attractiveness/repulsiveness in certain directions.
The nonlinearity in our protocol is result of interaction of two qubits mediated by

measurement-based modification. This is experimentally implemented via CNOT gate
which determines computational base of a qubit (|0〉, |1〉), whole this paper is set into this
basis. The CNOT gate is also responsible for the nonlinearity of the protocol. For the
detail discussion of the protocol, its construction and physical realisation see [1, 2, 3, 4];
in following text we only present crucial shards of information.

2.1 Protocol iteration

The original purification protocol is constructed to act on two-qubit states but it can
be generalised to act an other systems. We choose single-qubit system because of two
reasons. The system is simpler but it still goes beyond accessible knowledge as already
mentioned. And we can show that the single-qubit states can be mapped to a class
of two-qubit states in a way that preserves all physical characteristic and the evolution
function. Our examination of single-qubit mixed states than can be easily reinterpreted
for that particular set of mixed entangled states.

Let us take the most general single-qubit state and we shall parameterise it in following
way with respect to computational basis:

ρ =
1

2

(
1 + a b− ic
b+ ic 1− a

)
; a, b, c ∈ R : a2 + b2 + c2 ≤ 1 (1)

where the conditions ensure that the state is physical. The protocol action on the state
given by triplet (a, b, c) yields state with (a′, b′, c′):

(a′, b′, c′) = F(a, b, c) =

(
b2 − c2

1 + a2
,

2a

1 + a2
,
−2bc

1 + a2

)
(2)

The evolution function stirs the states wildly inside the interior of Bloch ball while the
surface, the Bloch sphere is invariant. Pure state can be characterised with a complex
number |ψ〉 = (1 + |z|2)−1(|0〉 + z|1〉) and its evolution is expressed via function f(z) =
1−z2
1+z2

, for details see [4, 3]. Asymptotic dynamics of a pure state has only two possibilities:

• state belongs to the Fatou set of evolution function f , therefore it is attracted to
superattractive cycle |0〉 ↔ 1/

√
2(|0〉+ |1〉);

• state belongs to the Julia set of f , which means it evolves chaotically. The set is a
fractal formed by border of the basins of attraction that belong to different parts
of the pure cycle. This regime also contains fixed unstable states.

For mixed states we find following new additional possibilities of asymptotic evolution:

• state converges to new attaractor ρ0 = 1
2

(
1 0
0 1

)
, the maximally mixed state;

• state converges to half-attractive mixed cycle (0.295598, 0, 0)
.
= (a0, 0, 0) ≡ ρa ↔

ρb ≡ (0, b0, 0)
.
= (0, 0.543689, 0) or half-attractive pure state ρ2 ≡ (a2, b2, 0) =
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(b0,
√

1− b20, 0); the numbers a0, b0 can be determined analytically by solving equa-
tions ρ′′ = ρ. States in this regime are sensitive to initial conditions, perturbation
can deflect them to either of attractors. State ρ2 is even guaranteed to be chaotic in
the pure states dynamics. Now we also (numerically) find it is attractive for certain
set of mixed states.

The last possibility is very interesting because it suggests that the state can be re-
sistant to certain types of perturbation (and sensitive to others). Generally, this effect
can have relevant impact on experimental usability of some general nonlinear protocols.
These finding were obtained from numerical computations, now we give analytical clues
that state ρ0 is indeed an attractor and cycle ρa ↔ ρb is half-attractive. To do this we
evaluate two protocol iterations.

a′′ = 4
a2 − b2c2

(1 + a2)2 + (b2 − c2)2
, b′′ = 2

(1 + a2)(b2 − c2)
(1 + a2)2 + (b2 − c2)2

, c′′ = 8
abc

(1 + a2)2 + (b2 − c2)2
(3)

and consider regime of small perturbations to state ρ0 by setting |a|, |b|, |c| < 1/8.
Within this regime each state is forced to converge to ρ0 in sense of converging se-
quences a(n), b(n), c(n). Their convergence is not necessarilly monotonic but it is mono-
tonic when the protocol is applied pairwise. To give clues to half-attractiveness of
ρa ↔ ρb we consider also two iterations of the protocol and regime of small pertur-
bations a .

= a0, b
.
= 0, c = 0. Using Taylor series we find a′′|a=a0,b=ε = a0(1−b4 +O(b8))

.
=

a0, |b′′||a=a0,b=ε =
∣∣∣ 2b2

1+a20
−O(b6)

∣∣∣ < |b| whenever |b| < 1/2. The cycle is therefore resistant
to perturbation satisfying particular relations in a, b. This relation basically determines
a curve in plane c = 0, we see in figure 3 that this curve runs through c = 0 plane
and separates attractor basins of the mixed and the pure attractors. The relation is
very complicated and we have not succeeded in expressing it. Repulsiveness of the cycle
can be viewed when considering states (t, 0, 0) or (0, t, 0); t ∈ 〈0, 1〉 subject to two itera-
tions. In these invariant sets of states repulsiveness is proven analytically via derivative
of evolution function t→ t′′.

Particular plane of states c = 0 is important for several reasons. It captures all
asymptotic features of mixed states because all states (up to negligible set not capturable
by numerical calculations) approach this plane; inside this plane they are evolved to the
positive-positive quadrant because of the squaring in 2. All critical states are found in
this quarterdisc and the attractiveness inside this disc is clearly presented in 3.

2.2 Box-counting method and chaos description

We remind the chaotic behaviour can be described analytically on the Bloch sphere which
can be identified with the Riemann sphere which is conformal to complex plane, state and
its evolution are then described by single number z ∈ C and function z → z′ = 1−z2

1+z2
. This

function can be examined using theory [5]. The main feature is that the chaotic states are
confined to a peculiar fractal structure with deterministically chaotic evolution. Such tool
is not available for mixed states. However, we develop a new method of characterising
the chaotic evolution in mixed states based on the pure states analysis. We notice that
the states 1 with the same purity P are spheres. We identify these states with a plane
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using stereographical projection

P =
1 + a2 + b2 + c2

2
, x =

b

1 + a
, y =

c

1 + a
(4)

Identification with a complex plane does not yield evolution function which can be anal-
ysed using theory [5] unless P = 1. We stay with the two-dimensional real plane and
calculate evolution numerically. After determining asymptotic evolution of the states in
the plane, we assign them a colour based on attractor they converge to. In this way we
obtain an image we will refer to as attractor map. We stress that one such map is created
for chosen purity value P and illustrate asymptotic evolution of states that initially have
purity P . The evolution typically brings states away from their initial sphere but in this
way we can analyse what asymptotic regimes are and are not available depending on the
mixedness of the state.

In the attractor maps we find areas of the same colour which are cuts of basins of
attraction of attractors. In other words, the islands are states with regular behaviour.
On contrary, states forming the borders of these islands are necessarily chaotic because
perturbations can deflect them to one or another attractor meaning the states are sensitive
to initial conditions. We state that we are going to study the particular structure of
borders of attractor islands in attractor maps. This structure in pure state case collapses
to fractal structure shown in [4] (the existence and properties are guaranteed by theory).
There is a measure capable of characterising the fractalness of the structure, it is the
fractal dimension, also known as Hausdorff dimension:

Statement 1. Dimension D of an object Y ⊂ X in metric space (X , ρ) is

D = lim
ε→0

min
logNε

log 1
ε

, (5)

where Nε is number of open sets covering the object Y, the minimum is taken over all
possible coverings with open sets of diameter < ε.

This quantity captures how finer the structure gets when we study it in finer and finer
scales. Nonetheless, it is impossible to determine it for general objects. Therefore, we
use following concept of box-counting dimension which relieves the definition to estimate
the dimension numerically. The method is described in many similar but not same ways,
e.g. like in [6] and for its fundamentally simple approach we develop it on our own in
MATLAB interface as described later. The crucial idea of the box-counting concept lies in
taking boxes instead of challenging all possible coverings. Bypassing the minimum across
all possible coverings increases the dimension estimate but allows to easily numerically
determine number of covering boxes. We use pictures of fractals which we cover with
rigid grid of m ×m squares which is in contrast with [6] where floating boxes are used.
Second idea simulates the limit ε → 0 by taking boxes of smaller and smaller size, in
other words m increasing to the resolution of the picture n pixels. Although we can
reach only ε = n/m ≥ 1 the dimension estimate remains reliable when pictures of high
resolution are used. It is because we use another idea: from the 1 we can see that the
dimension is a slope of line formed by points [logm, logNm] in limit m → ∞. As this
limit is simulated we conclude that the method is implemented in following steps: We
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choose purity of initial states P . We create attractor map (as described earlier) of the
states. This map of resolution n × n is then cut into m ×m boxes for all possible m|n
and number of covering boxes Nm is determined. The dimension is gained as the slope
of line fitted by least squares method through points [logm, logNm].

This approach naturally has several pitfalls. If the box structure coincides with the
structure of our interest, it cannot capture the structural character properly, especially
when the structure is curve, in pathological case like the model of Sierpinski carpet in
figure 1 the method fails. The setting of the object in the picture (and in consequence
its setting in the box grid) has important influence on the resulting value, see figure
1. Last important caveat lies in the finite resolution of used pictures. These inherently
cannot capture infinitely recurring fractal structure but can only approximate it. That
is the reason to use images with high resolution. However, when the number of boxes is
large m ∼ n each box captures only few pixels which do not contain proper structural
information. In consequence, we cannot use high values of m to fit the dimension because
they underestimate the value. Also, for low values of m a single box contains large pieces
of object and does not capture fine details. Aware of these issues we suggest to use
various pictures of the object and decide image from image proper values of m to fit the
dimension of the structure. We ’calibrated’ the method on basic structures to be more
reliable but still the method can yield value precisely only to first, maximally second
decimal digits. Avoiding pathological objects we conclude the dimension of the structure
can give indicative estimate of its fractalness but not precise value. Besides, no other
method of characterising the structural features exists.

Figure 1: Simplified
model of the Sierpinski
carpet simulates finite
resolution of pictures
and also demonstrates
position dependence of
the box grid. A level
finer grid cannot capture
border of grey-white.

3 Chaotic dynamics in single-qubit mixed states

3.1 Phase transition in the structure of chaotic states

In figure 2 we illustrate the structure of chaotic states on a sphere within mixed states.
From the numerical calculations we immediately make following conclusion. For purity
P = 1− ε; ε > 0 arbitrary, there are states converging to the mixed attractor. However,
visually the structure is very similar to structure of pure states. In order to qualify the
structure we use the box-counting method to find the dimension of the borders of the
coloured island in these images.



Phase Transition of Chaotic Dynamics in Quantum Purification 157

Figure 2: Example of attractor map for ini-
tial purity P = 0.9. Colour coding of at-
tractors is same in both figures 2,3: white
colour marks states converging to |0〉 af-
ter even number of protocol iterations and
bright grey states converging to |0〉 after
odd number of iterations; grey colour marks
states converging to the mixed attractor;
dark colour stand for nonphysical states.
Only positive-positive quadrants are shown
because of central symmetries.

Figure 3: Evolution in quarterdisc of c = 0
plane. The arrows symbolise ’the attrac-
tive forces’ - how fast does a state converge
to its attractor when two(!) protocol itera-
tions are used. When the attractive forces
of the attractors compensate on the bor-
ders of the grey-scaled regions, the states
can be attracted to the saddle states marked
with half-filled circles. The attractive states
are marked with filled circles, the repulsive
state with an empty circle.

Results confirm that the fractal structure can be preserved in the mixed states. This
is surprising result because mixedness means statistical uncertainty of the physical state.
Presence of this uncertainty does not necessarily change the evolution to some trivial
regime. Even more surprising is the fact that the dimension remains constant in regime
P = 1− ε which means that the fractal structure is the same.

The most important result is obvious when we plot the dimension of the structure of
chaotic states of chosen initial purity P with respect to this purity. From 4 we can see
that the dependence is essentially a phase transition. The structure is the phase and it
is in mode fractal when the purity of states is in range P ∈ (P1, 1〉. Value P1 numerically
coincides with purity of state

ρ1 =
1

2

(
1 + a1 1− a1
1− a1 1− a1

)
; a1

.
= 0.3611 → P1

.
= 0.769292 (6)

which is a repulsive fixed state also shown in figure 3. The value a1 can be determined
analytically solving ρ′ = ρ. It seems that this state is the least pure source from which
the fractal structure grows. For lower purity, the structure of states that initially have the
chosen purity and exhibit sensitivity to perturbations has dimension 1, i.e. is nonfractal.
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Figure 4:
The fractal
structure of
chaotic states
is a phase,
its dimension
transits sud-
den changes
when the
temperature
(the purity)
changes.

This means that the structure is formed by union of ’common’ curves. Another transition
in structure happens at the purity P0 of ρa defined earlier as a part of half-attractive cycle.
This value is equal to P0 = 1+a0

2
= b0

.
= 0.543689. The state ρa is the least pure state

which does not converge to the maximally mixed state ρ0. This implies that for P < P0

there is no structure of chaotic states.
We interpret the sudden change of the fractal dimension when the purity of the initial

states is changed as phase transition. The reason is that the structure of chaotic states
is not some abstract mathematical construction but truly a phase with its own physical
properties, namely exponential sensitiveness to initial conditions, i.e. chaos.

3.2 Quantitative characteristics of attractor basins

The dimension of the structure is its qualitative characteristic and the phase transition
expresses that there is single fractal structure changing to nonfractal and than disap-
pearing suddenly. The fact that the fractal structure has its dimension D .

= 1.56 means
that the structure has zero area but infinite length. The dimension expresses the self-
similarity and complexness of the structure. In contrast, the nonfractal structure after
the transition has finite length. While in preceding subsection we have demonstrated the
qualitative properties of the structure of chaotic states, now we have discussed also its
quantitative properties.

However, we also present certain quantitative properties of the attractor basins. This
structure is formed by points of regular behaviour and in the attractor maps it is formed
by coloured islands themselves (not their borders like before). We now want to determine
relative amount of states drawn to each attractor. To do this we express the sphere of
states as a matrix of elemental areas in spherical coordinates and we assign to an attractor
all elemental areas sinϑ∆ϑ∆ϕ for each state ∼ ϕ, ϑ that converges to it. By omitting
the radius of the sphere we obtain percentage of states of chosen initial purity converging
to this and that attractor.

The dependence of relative areas is shown in figure 5. Numerically fitted, it is piecewise
composed of exponential functions A = exp(αiP + βi) + γi. The parameters undergo
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Figure 5: Parti-
tion of states with
chosen initial pu-
rity that converge
to the mixed
attractors. Curve
is formed by
piecewise expo-
nential functions
eαiP+βi + γi.

sudden changes, not only in points of phase transition studied before but also other purity
values which numerically match with appearance of other sources of fractal structure, i.e.
points where the fractal visually emerges from. The quantitative description of attractive
basins (more precisely their cuts with hyperplanes of states if constant initial purity) is
more complex in purity than the quality of structure of chaotic states. We can interpret
the exponential dependence in following sense: Relative amount of states that are not
purified by the protocol exponentially explodes as the purity is lowered. This time we use
term purification for making a state less mixed, in two-qubit protocol version this leads
to analogous statement about purification of entanglement.

4 Conclusion and outlook
When we step outside the unitary dynamics of quantum system we can come across
irregular dynamics exhibiting sensitivity to initial conditions. This type of chaos goes
far beyond classical physics. As a result of quantum description of physical system it
can manifest in interferences or have no analogy at all. The physics of quantum open
systems is at its very beginning concerning the chaos in quantum states. Although the
theoretical tools demonstrated its presence in pure states subject to particular protocol,
it was not clear whether same chaos is present in mixed states which contain uncertainty.
Our study shows that this uncertainty is not necessarily amplified during the evolution
and even mixed states can be purified and they can be chaotic.

The phase transition presented in our work is not only some abstract mathematical
construction but has its physical meaning and properties. The phase is the structure
of chaotic states which is understood via its dimension. The temperature is the purity
of the initial states which is capable of measuring statistical uncertainty of the physical
state. The transition of phase vs. temperature then means sudden dramatic change
of the structure of chaotic states of given initial purity. This transition can hardly be
experimentally measured because the dimension of the states is still D < 2. Therefore,
the experimental chance to prepare such state is also negligible. In contrast to this jump
from fractal to nonfractal structure, the jump from nonfractal to no structure means that
no state can experimentally exhibit sensitivity to initial conditions. All states with purity
P < P0 are doomed to converge to the maximally mixed state under our protocol.
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While the dimension gives qualitative description of the structure, we also presented
certain quantitative characteristic of the evolution of the mixed states by means of areas of
attractor basins captured by attractors within states of chosen purity. We demonstrated
that the relative number of purifiable states is reduced exponentially with decreasing pu-
rity. Nevertheless, the exponential function changes its parameters with the temperature
yielding more complex dependence behaviour than the qualitative characteristics.

The presented results describe dynamics within mixed single-qubit states. There
is an isomorphism between the single-qubit mixed states and a particular set of two-
qubit states that preserves evolution and all physically relevant properties of the state.
In consequence, these results are also valid for these particular two-qubit states when
properly interpreted.

The fact that the structure of chaotic state undergoes a transition ’fractal↔ nonfractal
↔ none’ means that the amount of chaotic states is qualitatively and also quantitatively
different. The exact nature of the evolution of these states remains unclear because
numerical simulations show half-attractive behaviour of certain states (we remark in pure
states the theory guarantees deterministic chaos in Julia set of the evolution function).
This newly-found property could possibly manifest in experiments. The question we settle
now is: What type of chaos can quantum physics allow? What regimes are forbidden by
quantum description of the world? The fractal shapes can be possibly change when the
protocol is modified. When the Hadamard gate is replaced by another protocol, we can
encounter different chaotic patterns and different attractors. We suggest detailed study
of the protocol modification. We believe the nonlinear dynamics in quantum physics is
unusually rich and exotic and has many to offer.
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Abstract. Quantum walk is a simple abstract model of an excitation spreading in some envi-
ronment represented by an undirected graph, where the state and the evolution of the system
are described by quantum physics. Therefore, quantum walks can be used for simulation of
various quantum systems. In this work, we investigate a percolated version of a quantum walk,
where the graph undergoes a continuous change during the evolution.

We use our previous general results to determine asymptotic transfer probabilities of an
excitation from some given initial vertex to a sink vertex for several examples of 3-regular graphs.
First we demonstrate our methods on one of the simplest graph representing a spatial structure
- the cube graph. Further we investigate tree graphs and present a closed-form expression for
the transfer probability on a class of "snowflake" graphs of arbitrary size.

Keywords: quantum walks, percolation, transfer, asymptotic behaviour

Abstrakt. Kvantová procházka je jednoduchý model šíření excitace v prostředí reprezento-
vaném neorientovaným grafem, kde je stav a vývoj systému popsán pomocí kvantové mechaniky.
Kvantové procházky tedy mohou složit k simulaci kvantových systémů. V této práci se zabýváme
kvantovými procházkami s perkolací, kde podkladový graf podléhá nepřetržité změně při časovém
vývoji systému.

Používáme zde naše předchozí výsledky ke stanovení asymptotické pravděpodobnosti přenosu
excitace z daného počátečního vrcholu do koncového vrcholu pro několik příkladů 3-regulárních
grafů. Nejprve demonstrujeme naše metody na jednom z nejjednodušších grafů představujících
prostorové těleso - na grafu krychle. Dále zkoumáme stromové grafy a docházíme k výrazu pro
pravděpodobnost přenosu na třídě grafů "sněhových vloček" libovolných velikostí.

Klíčová slova: kvantové procházky, perkolace, přenos, asymptotické chování

1 Introduction
Even without quantum computers capable of outperforming the classical ones, there is a
need for understanding quantum effects in various systems. Since the number of classical
bits needed to simulate a certain number of qubits grows exponentially, it is intrinsically
difficult to simulate a quantum system on a classical computer. Fortunately, one does
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not need a universal quantum computer to deal with this problem. We may just use
some other quantum system, which we are able to controll and measure, and use it as a
quantum simulator [1] to gain insights about another system of interest. The model of
quantum walk can be used just for this purpose. An example of this can be the realised
simulation of two-particle dynamics by a 1-walker quantum walk in a 2-dimensional lattice
[2].

In our previous work [3], we have presented some general solutions of the asymptotic
behaviour of percolated coined quantum walks on general and in particular 3-regular
graphs. Now we apply these findings in the study of an asymptotic transfer of an exci-
tation in chosen graphs and classes of graphs. In the whole work we use our modified
framework for defining coined quantum walks. We shortly introduce this framework and
recapitulate the previous results (without derivations) so that we can use them further.

2 Coined Quantum Walk Definition
The quantum walk is defined on an undirected graph G(V,E), where V is the set of
vertices and E is the set of edges. We call G the structure graph of the quantum walk.

The Hilbert Space

The walker is described as standing in some vertex facing towards some other vertex. We
associate with the structure graph G a directed graph G(d)(V,E(d)) called the state graph.
Every undirected edge in the structure graph corresponds to two directed edges of the
state graph and these directed edges correspond to base states of the walker. The Hilbert
space H is, therefore, spanned by states |e(d)〉, where e(d) ∈ E(d) is some directed edge.
Apart from edges going from one vertex to another, the state graph may also contain
added loops. (Those may be used to assure regularity of the state graph.)

We will denote subspaces spanned by states corresponding to edges originating in
some vertex v ∈ V as Hv. The Hilbert space H of a quantum walk can than be written
as a direct sum of vertex subspaces: H =

⊕
v∈V Hv.

The Time Evolution

The time evolution proceeds in discrete steps and is governed by a unitary evolution
operator U :

|ψ(t+ 1)〉 = U |ψ(t)〉 = U t+1 |ψ(0)〉 .

The operator U can be further decomposed into applications of three unitary operators:

U = CPR.

Here R is what we call a reflecting shift operators and it moves the walker among vertices
- every state is mapped to the other one on the same undirected edge (the initial and
the terminal vertex are swapped) or it is left unchanged in the case of loops. Further,
the local permutation operator P is applied. It is a permutation operator that only acts
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locally in vertex subspaces and determines the final direction of the walker in the new
vertex. The combined action of R and P represents a so called shift operator. Finally,
there is the coin operator, which is an arbitrary vertex-local unitary operation.

Percolated Quantum Walk

By percolation we understand a random disturbance of the underlying structure graph
resulting in some broken edges that can not be traversed by the walker. In particular, we
will study dynamical percolation, where a new percolated graph (graph obtained from
the original structure graph by closing some edges) is generated in every step of the walk.
(An edge can, therefore, be closed in one step and open in the following step.)

The Hilbert space is not affected by the percolation, but directed edges corresponding
to a closed undirected edge are replaced by loop. Consequently, the reflecting operator
RK (corresponding to some configuration of open edges K ⊂ E) does not move the walker
over a broken edge.

The coin operator C and the local permutation P are not affected by percolation.

3 Asymptotic Evolution of Percolated Quantum Walks

The process of percolation brings classical randomness into the system and we now use
a density matrix to describe the state of the walk. The time evolution is now governed
by a random unitary operation:

ρ(t+ 1) =
∑
K⊂E

πKUKρ(t)U
†
K ,

where UK is the evolution operator with the modified reflecting shift operator RK cor-
responding to the particular percolated structure graph GK(V,K) for K ⊂ E and πK is
the probability of the occurrence of this configuration.

The asymptotic behaviour of a system with such time evolution is studied in [4]. The
asymptotic state is determined by so called attractors – solutions of the set of equations:

UKXλU
†
K = λXλ , for all K ∈ 2E, (1)

for some given λ fulfilling |λ| = 1.
The asymptotic state (the limit for infinitely many steps) of a percolated quantum

walk is than given as [4]:

ρt→∞(t) =
∑
λ,i

λtTr
(
ρ(0)X†λ,i

)
Xλ,i,

where i distinguishes different attractors for the eigenvalue λ in the orthonormal basis of
the solutions of (1) and ρ(0) is the initial state of the quantum walk.
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Pure Eigenstates Ansatz

In many cases it is possible to use a simpler approach [6] for finding the set of attractors
using common eigenstates of all unitary operators UK :

UK |φα,i〉 = α |φα,i〉 , for all K ⊂ 2E, (2)

with a corresponding eigenvalue α (i distinguishes different common eigenstates corre-
sponding to α). Then the operator:

Yλ =
∑
αβ∗=λ

Aα,iβ,j |φα,i〉 〈φβ,j|

is an attractor corresponding to the superoperator eigenvalue λ = αβ∗. It is common
that the whole set of attractors can be constructed from these so called p-attractors
and a single non-p-attractor resulting from the identity operator. We have shown in
the previous work that this is the case for a percolated quantum walk with the grover
coin on a 3-regular graph with the reflecting shift operator (the local permutation P is
the identity) or cycling shift operators (in every vertex, P can act as a clock-wise or
counter-clock-wise permutation).

4 Percolated Grover QWs on 3-regular Graphs
Here we will consider both true 3-regular undirected structure graphs (leading immedi-
ately to 3-regular state graphs) and structure graphs with some vertices of lower degree,
where we add some loops in the state graph to assure 3-regularity.

We use the 3-dimensional Grover coin in every vertex:

G3 =
1

3

 −1 2 2
2 −1 2
2 2 −1

 .
We have dealt with the asymptotic behaviour of such walks in the previous contri-

bution. Here we restrict ourselves to uantum walks with the reflecting shift operator
(the local permutation P is the identity), which exhibit an interesting phenomenon of
trapping.

Common Eigenstates

Since there are only p-attractors and the identity attractor for this percolated quantum
walk, the task of finding the asymptotic state reduces to finding the set of common
eigenstates of all evolution operators. There is always one p-attractor corresponding to
the eigenvalue 1, which has all the matrix elements the same. The interesting part are
the attractors corresponding to -1, where the condition (2) ultimately leads to two rules
for the common eigenstates:

1. The sum of vector elements in one vertex must be equal to 0.
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2. Vector elements corresponding to directed edges on one undirected edge must be
the same.

It can be shown that the equations are independent except from the case of a bipartite
structure graph. Then there are N = 2#V −#E common eigenstates corresponding to
the eigenvalue -1. If the graph is bipartite, one of the equations can be obtained from
the others and the number of independent common eigenstates is N = 2#V −#E + 1.

It is possible to construct a non-orthogonal basis of the subspace of common eigen-
states in such a way that all the matrix elements are 1, -1 or 0. (This is no longer true
after orthogonalization.) Then the common eigenstates can be represented as paths of
non-zero elements in the graph, which are either closed or start and end in loop states.
(Due to the zero-sum condition, only two elements in every vertex can be non-zero, so
there is no branching.) As a result, the common eigenstates are typically restricted to
some subset of vertices and the walker can be trapped in some part of the graph.

Asymptotic Transport

We study a scenario where the walker starts in some given vertex and there is a sink in
some other vertex. Whenever the walker enters the sink vertex, he is lost in the sing.
This means that the state of the system is projected to a subspace of non-sink states
after every step of the walk.

We ask, what is the probability of the walker moving from the initial vertex to the
sink (excitation transfer) versus the case of the walker staying trapped in the non-sink
vertices of the graph.

If we have the common eigenstates of the percolated walk and we orthogonalize them
in such a way that we first use the sates with no sink overlap (preserving this property in
the maximal number of states after orthogonalization), we can determine the asymptotic
transfer probability easily. We just exclude the common eigenstates with sink overlap and
the probability of trapping is given by the overlap of the initial state with the remaining
common eigenstates.

5 Example: Percolated Grover QW on a Cube

One of the simplest examples of 3-regular graphs is the cube. Let us position the cube
in a coordinate system as shown in figure 1. Every vertex has one edge in the direction
of every axis and we use this to denote states of the walk - the computational basis is
chosen in the order ex, ey, ez in every vertex.

The graph is bipartite and has 8 vertices and 12 edges. Therefore, we must find
N = 16 − 12 + 1 = 5 common eigenstates corresponding to the eigenvalue -1. The
cube has 6 faces with even number of edges and we simply choose 5 of those and use
common eigenstates corresponding to cycles on these faces (denoted as "down", "left",
"back", "right", "front"). For example the eigenstate on the left edge will be:|ψ(−1)

l 〉 =
[−1, 0, 1,−1, 0, 1, 0, 0, 0, 0, 0, 0,−1, 0, 1,−1, 0, 1, 0, . . . , 0]T . The only common eigenvector
for the eigenvalue 1 has all elements equal: |ψ(+1)〉 = 1√

24
[1, 1, 1, . . . , 1]T .
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Figure 1: Coordinates on the cube graph. The vertex numbers are chosen so that they
correspond to binary numbers given by coordinates zyx. We denote faces by their position
so for example the left face has vertices v0, v1, v5 and v4.

Further calculations are performed using Wolfram Mathematica software, which al-
lows for symbolic solutions. Overall, we obtain a complete set of 37 attractors, 10 cor-
responding to the eigenvalue -1 and 27 corresponding to +1 allowing us to calculate the
asymptotic regime when an initial state is given.

The sink is located in the vertex v7 and the initial state is always localised in the vertex
v0. The common eigenstates with no sink overlap correspond to the "down", "left", and
"back" faces. Depending on the initial state, the transfer probability ranges from 70 % to
100 %. The full transfer occurs exclusively for the initial state |ψ0〉 = 1√

3
[1, 1, 1, 0, . . . , 0],

because it is orthogonal to all trapped common eigenstates with no overlap with the sink:
|ψ(−1)
d 〉 , |ψ(−1)

l 〉 and |ψ(−1)
b 〉. States with the minimum transfer are linear combinations of

the states:  −10
1

 ,
 −11

0

 . (3)

Obviously, if the walker begins for example in the state |ψ(−1)
d 〉, he will stay trapped in

that state and the transfer probability will be 0, but this state is not localised in the
vertex v0 at the beginning.

This kind of asymptotic trapping has already been shown in [7] for a quantum walk
on a line with a coin state corresponding to no movement of the walker ("lazy quantum
walk"). Our result demonstrates that the trapping is not associated with the presence o
these no-movement states, but rather with the presence of vertices of the degree higher
than two.

We also investigate (numerically) the transfer probability in the non-percolated version
of the reflecting quantum walk on a cube graph. Obviously, the common eigenvectors
present in the percolated version are also eigenvectors for the non-percolated walk, so
the trapping is again present for most of the initial states. Nevertheless, more trapped
eigenvectors can be identified. There are eigenstates corresponding to the eigenvalue -1
similar to

{
|ψ(−1)
i 〉

}
i∈{d,l,b,r,f}

. The difference is that the values 1 and -1 of the elements

oscillate on the level of directed edges. (There is no condition requiring the elements
corresponding to the same undirected edge to be the same.) For example the eigenvector
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Figure 2: Numerical simulation of Grover quantum walk on a cube graph with a reflecting
shift operator: without percolation, initial states |ψ0〉 = 1√

3
[1, 1, 1, 0, . . . , 0] (blue circles)

and |ψ0〉 = 1√
2
[1,−1, 0, 0, . . . , 0] (purple squares) and with percolation , initial states

|ψ0〉 = 1√
3
[1, 1, 1, 0, . . . , 0] (yellow diamonds) and |ψ0〉 = 1√

2
[1,−1, 0, 0, . . . , 0] (green tri-

angles). The horizontal axis shows the step of the walk and the vertical axis cumulative
transfer probability.

corresponding to the left face is:

|χ(−1)
l 〉 = [−1, 0, 1, 1, 0,−1, 0, 0, 0, 0, 0, 0, 1, 0,−1,−1, 0, 1, 0, . . . , 0]T .

The vector |ψ0〉 = 1√
3
[1, 1, 1, 0, . . . , 0] is again orthogonal to all the trapped eigenstates

and therefore is fully transferred. The minimum transfer probability is again for linear
combinations of the states (3). Nevertheless, the transfer probability is only 40 %, so the
chance of trapping is doubled compared to the percolated walk. This is associated with
the presence of the other set of localised eigenvectors.

Results of a numerical simulation are shown in figure 2. We can see that the per-
colated walk converges to higher asymptotic transfer probability for the initial state
|ψ0〉 = 1√

2
[1,−1, 0, 0, . . . , 0].

6 Example: Percolated Grover QW on Tree graphs

A class o graphs with some interesting properties are tree graphs - graphs with no cycles.
Let us now consider 3-regular tree graphs. In fact, an undirected structure graph can not
be a 3-regular tree graph, but we add loops in the state graph to achieve the 3-regularity.

The tree structure makes the construction of the set of p-attractors easy. The common
eigenstate corresponding to the eigenvalue 1 is trivial (all vector elements are the same).
For the eigenvalue -1 we need to find N = 2#V −#E common eigenstates. A tree graph
with #V vertices has exactly #E = #V − 1 undirected edges and therefore 2#E paired
directed edges and finally the remainder of 3#V −#2E = 2#V −#E + 1 loops.

We can just choose one loop as a starting one and construct independent common
eigenstates as paths from this loop to all other loops. Nevertheless, the common eigen-
states have to be orthogonalized while keeping in mind that the eigenstates with no sink
overlap have to be used first in the Gram-Schmidt process.
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Figure 3: Snowflake graphs of the order 1, 2 and 3. The walker starts in the middle
vertex and the sink vertex is not filled. The common eigenstates correspond to paths in
the graph depicted by lines. The dotted-line states have an overlap with the sink and
therefore will be removed from the asymptotics. The dashed-line states are crucial since
those have no overlap with the sink and have an overlap with the initial vertex. In the
orthogonalisation, we start with the solid-line states (no overlap with the sink or the
origin), then we use the dashed-line states and the dotted-line states must be added last.

"Snowflake" Graphs

Let us consider a class of tree graphs recursively generated in the following way: The
graph of the order 0 is just one vertex with three loops. The next order is obtained by
replacing every loop by an edge leading to a new vertex with two loops.

Let us now investigate trapping in these graphs with the walker starting in the middle
vertex and with a sink in one of the border vertices. The asymptotic transfer is given
by the presence of trapped common eigenstates of the eigenvalue -1. A possible choice of
those (before orthogonalisation) is shown in figure 3.

After orthogonalisation, we have only two common eigenstates with an overlap with
the original vertex and no overlap with the sink (only one for the order 1). Let us denote
them as |T1〉 (spanning only the two branches without the sink) and |T2〉 spanning the
whole graph without the sink vertex. Those are the only ones contributing to the trapping.
The amount of trapping is given by an overlap of the initial state with these two states.

The state |T1〉 is very symmetrical and we will describe it as |t1〉√
N1

, where |t1〉 is the
state scaled to natural numbers. The state |t1〉 has elements 2k and −2k in the initial
vertex and the values are halved in every branching with also gaining the -1 phase.

Let us also denote |T2〉 = |t2〉√
N2

. The state |t2〉 has elements 2k, 2k and −2k+1 (on the
sink branch) in the initial vertex. On the non-sink branches it is similar to |t1〉, but the
corresponding elements in the two branches have equal signs. The sink branch is more
complicated, because the presence of the sink introduces asymmetry. Nevertheless, in
the end we only need some information about the normalisation constant, in particular
that N2 ≥ 3N1. To prove this, let us first note that the squares of the elements on the
non-sink branches contribute N1 to the sum. Now we can consider every element on the
sink branch with two corresponding elements on the non-sink branches. If the non-sink
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branch was symmetrical, the values on the sink branch would be double the values on
the non-sink branches. Then since (2a)2 = 4a2 = 2(a2 + a2), the normalisation constant
would be N2 = 3N1. The sum of the elements in every vertex must be the same and since
uneven splitting will always generate larger sum of squares, it will in fact be N2 > 3N1

for arbitrary order k.
We note that not only 〈T1|T2〉 = 0, but also the restrictions of these states to the initial

vertex are orthogonal. Therefore, the trapping will be maximal, if the initial state is only

a scaled version of the restriction with the greater magnitude. Since |[−2
k+1,2k,2k]T |
|[0,2k,−2k]T | =

|[−2,1,1]T |
|[0,1,−1]T | =

√
3 and

√
N2 ≥

√
3N1, the trapping will be always maximal for the initial

state 1√
2
[0, 1,−1, 0, . . . , 0]T having an overlap with |T1〉.

Thanks to a simple structure of |T1〉, we can explicitly calculate the normalisation
constant N1 as:

N1(k) = 2k+1 +
k−1∑
i=0

22+i(2k−i)2 = 2k+1(2k+2 − 3).

This allows us to express the maximal trapping probability on a snowflake graph for an
arbitrary order k as:

Ptrap(k) =
2 · (2k)2

N1(k)
=

2k

2k+2 − 3
.

The values for the smallest graphs are Ptrap(1) = 2
5
= 0.4 for the order 1, Ptrap(2) = 4

13
=

0.307692 for the order 2 and Ptrap(3) = 8
29

= 0.275862 for the order 3. The maximal
trapping probability decreases with k, approaching the value 1/4.

We have also investigated a "disabled" version of the graphs where one of the non-sink
branches is missing. Here the asymmetry prevented us from finding nice simple results for
a general order of the graph. Nevertheless, our procedure allows for finding trapping rates
for some small orders. Using Wolfram Mathematica, the maximal trapping probabilities
were found to be Pdis(1)

.
= 0.571 for the order 1, Pdis(2)

.
= 0.528 for the order 2 and

Pdis(3)
.
= 0.522. While for the order k = 1 the state with maximal trapping is the same

as for the non-disabled version, for other orders the states with maximal trapping differ
(from the one for k = 1 and also among themselves).

We can see, that in the disabled version the trapping is stronger, which is due to
a very high weight on the loop in place of the missing branch, which is now a part of
the initial vertex. The trapping also decreases slower with increasing order of the graph.
Since the first trapped state |T̃1〉 is analogous to the one for non-disabled graph |T1〉,
where the missing elements are just cut off, we can estimate the the maximal trapping
probability by the one for a state 1√

2
[0, 1,−1, 0, . . . , 0]T having a maximal overlap with

|T̃1〉. (The true maximal trapping state is different and has a non-zero overlap with |T̃2〉.)
The normalisation constant is:

Ñ1(k) =
N1(k)

2
+ 22k
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and the maximal trapping probability

Pdis(k) ≥
2 · 22k

Ñ1(k)
=

2k+1

2k+2 − 3 + 2k
=

2

5− 3 · 2−k
≥ 2

5
.

Therefore, the maximal trapping probability will not decrease under 2
5
for an arbitrary

order of the graph. Nevertheless, it can stay higher and the limit may be different.

7 Conclusion
In this work we apply general results presented in the previous contribution. Certainly, it
is advantageous to make some modifications of the procedure suited for particular graph
of interest, but it is demonstrated that our methods are applicable for quantum walks on
various graphs.

As seen mainly in the example of the cube graph, percolation can enhance the transfer
probability on the studied graph by excluding some trapped states from the asymptotic
regime. This result also transfers to other 3-regular graphs, since analogous trapped
states will be present. Note also, that the analytical solution of the percolated quantum
walk brings a significant insight into transfer properties of the unpercolated walk.

On the example of snowflake graphs we demonstrate that the results may be rather
counter-intuitive. By removing a non-sink branch, where the walker could be trapped,
we increase the maximal trapping probability. Nevertheless, thanks to the analytical
solution, this can be understood mathematically.
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Abstract. A synchronizing delay is a constant related to circularity of morphism. It is well-
known that knowledge of the value of the synchronizing delay is very helpful when analysing the
structure of bispecial factors of a given morphism. As shown in this paper, it is also possible
to use this connection in the opposite direction: if the structure of bispecial factors is known, a
good upper bound on the value of the synchronizing delay can be found. Using this method, a
linear upper bound on the minimal value of the synchronizing delay of any primitive Sturmian
morphisms is given.
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Abstrakt. Synchronizační zpoždění je konstanta svázaná s cirkularitou morfismů. Je známo, že
znalost hodnoty synchronizačního zpoždění může být s výhodou využita při analýze struktury
bispeciálních faktorů daného morfismu. V tomto článku ukazujeme, že tento vztah lze využít také
opačným směrem: pokud je struktura bispeciálních faktorů známá, lze toho využít ke stanovení
dobrých horních odhadů hodnoty synchronizačního zpoždění. S využitím této metody je nalezen
lineární horní odhad hodnoty synchronizačního zpoždění pro všechny primitivní sturmovské
morfismy.

Klíčová slova: cirkularita, sturmovský morfismus, synchronizační zpoždění

1 Introduction

The notion of circularity originally comes from theory of codes, where circular codes are
well-known. A set X of finite words is a code if each word in X+ (the set of all finite
concatenations of words from X ) has a unique decomposition into words from X . If we
slightly modify the requirement of uniqueness, we get the definition of a circular code: X
is a circular code if each word in X+ written in a circle has a unique decomposition into
words from X .

In combinatorics on words, an analogue to codes are morphisms which are injective
on their languages. Circularity is defined as slightly relaxed injectivity: a morphism is
circular if all long enough factors of its language have a unique preimage in its language
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except for some prefix and suffix bounded in length by some constant. This constant is
called a synchronizing delay and it is studied in this paper.

As explained by Cassaigne in [1], knowledge of the value of the synchronizing delay
can be very helpful when analysing the structure of bispecial factors in languages of
fixed point of morphisms. This idea was further developed by one of the authors in [3],
where an algorithm for generating all bispecial factors is given. This algorithm works
for a large family of morphisms and its computational complexity depends on the value
of the synchronizing delay. Moreover, as shown in this paper, this link between the
synchronizing delay and the structure of bispecial factors can be used also in the opposite
direction: if the bispecial factors are known, it is possible to find a good bound on the
value of the synchronizing delay.

Mossé in [9] proved that every injective primitive morphism is circular. In fact, circu-
larity is closely related to repetitiveness [8, 6]. Because of this connection, the circularity
is decidable by an efficient algorithm [5]. However, if the morphism is circular, the al-
gorithm does not provide any information about the value of the synchronizing delay
(except for finiteness). Recently, a theoretical upper bound on this constant for all prim-
itive morphisms was given in [2], but this bound is unreasonably huge and clearly is very
far from being optimal. No other general upper bounds are known.

Therefore, we focus on some restricted cases in order to find some more reasonable
bounds on the synchronizing delay. We have already studied the case of binary k-uniform
morphisms in [4], where we found a polynomial (in k) upper bound. In this paper we
focus on primitive Sturmian morphisms, which are well-known and widely studied objects
in combinatorics on words [7].

The main result of this work is a linear (in the length of images of letters) upper
bound on the synchronizing delay of primitive Sturmian morphisms. In particular, we
prove the following result. The details of the proof are given in Section 3.

Theorem 1. Let ψ be a primitive Strumian morphism. Then its minimal synchronizing
delay Zmin is bounded as follows:

Zmin ≤ 3|ψ(0)|+ 2|ψ(1)| − 3 .

Moreover, it seems this bound is not far from being optimal. In fact, we suppose
that methods similar to those used in [4] will allow us to find the exact value of the
synchronizing delay for a given primitive Sturmian morphism.

2 Preliminaries
A finite set of symbols is an alphabet A. A finite word of length n over A is a string
u = u0u1 · · ·un−1, where ui ∈ A for all i = 0, 1, . . . , n− 1. The length of u is denoted by
|u| = n. The set of all finite words over A is denoted by A∗, the empty word is ε and
A+ = A∗ \{ε}. An infinite word over A is a sequence u = u0u1u2 · · · = (ui)i∈N ∈ AN with
ui ∈ A for all i ∈ N = 0, 1, 2, . . .

If a word u ∈ A∗ is a concatenation of three (possibly empty) words x, y and z from
A∗, i.e. u = xyz, the word x is a prefix of u, z is a suffix of u and z is a factor of u.
A factor is denoted by y @ u. We put x−1u = yz and uz−1 = xy. Similarly, w ∈ A∗
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is a factor of u = u0u1u2 · · · , denoted by r @ u, if there are indices i ≤ j such that
r = uiui+1 . . . uj. The index i is called the occurrence of r in u.

The language L(u) of an infinite word u is the set of all its factors. The mapping
Cu : N 7→ N defined by Cu(n) = #{w ∈ L(u) : |w| = n} is called the factor complexity
of the word u. An infinite word u is eventually periodic if u = wvvvvv . . . for some
v, w ∈ A∗. Otherwise, u is aperiodic. It is easy to prove that an infinite word u is
eventually periodic if and only if its factor complexity Cu is bounded. Moreover, the
factor complexity of any aperiodic word satisfies Cu(n) ≥ n + 1 for every n ∈ N. An
infinite word u with Cu(n) = n+ 1 for every n ∈ N is called Sturmian word.

A word w @ u is called right special factor if there are at least two letters a, b ∈ A
such that both wa and wb belong to the language L(u). Similarly, a word w @ u is called
left special factor if there are at least two letters a, b ∈ A such that aw, bw belong to
L(u). If a factor w is both left and right special then it is called bispecial factor.

A morphism over A∗ is a mapping ψ : A∗ 7→ A∗ such that ψ(vw) = ψ(v)ψ(w) for all
v, w ∈ A∗. The domain of the morphism ψ can be naturally extended to AN by

ψ(u0u1u2 · · · ) = ψ(u0)ψ(u1)ψ(u2) · · · .

A fixed point of the morphism ψ is an infinite word u such that ψ(u) = u.
A morphism ψ is non-erasing if ψ(a) 6= ε for all a ∈ A. A morphism ψ is primitive if

there exists a positive integer k such that the letter a occurs in the word ψk(b) for each
pair of letters a, b ∈ A. And a morphism ψ is injective if for every u, v ∈ A∗: ψ(u) = ψ(v)
implies that u = v.

2.1 Circularity

In [1] circularity is defined using the notion of synchronizing point (see Section 3.2 in [1]
for details). We give here an equivalent definition employing the notion of interpretation.

Definition 2. Let ψ be a non-erasing morphism over A∗ with fixed point u and u @ u.
A triplet (p, v, s), where p, s ∈ A∗ and v @ u, is an interpretation of the word u if
ψ(v) = pus.

Definition 3. Let ψ be a morphism over A∗ with fixed point u. We say that two interpre-
tations (p, v, s) and (p′, v′, s′) of a word u @ u are synchronized at position k, 0 ≤ k ≤ |u|,
if there exist indices i, j such that

ϕ(v1 . . . vi) = pu1 . . . uk and ϕ(v′1 · · · v′j) = p′u1 · · ·uk ,

where v = v1 · · · vn ∈ An, v′ = v′1 · · · v′m ∈ Am and u = u1 · · ·u` ∈ A`. (If k = 0, we put
u1 · · ·uk = ε.) Two interpretations that are not synchronized at any position are called
non-synchronized. We say that a word u @ u has a synchronizing point at position k if
all its interpretations are pairwise synchronized at position k.

Definition 4. Let ψ be a injective morphism over A∗ with fixed point u. We say that ψ
is circular (on L(u)) if there is a positive integer Z, called a synchronizing delay, such
that any u @ u longer than Z has a synchronizing point. The minimal constant Z with
this property is denoted by Zmin.
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Example 5. The word u = 010010100100101001010 · · · is the fixed point of the morphism
ψ : 0→ 010, 1→ 01. For example, the factor 10 is non-synchronized, however, the factor
01 has a synchronizing point at position 0 (before letter 0): |01. In fact, it is easy to
see that every factor of length 3 has its synchronizing point: 0|01, |010, 10|0, 1|01. Since
the minimal value of the synchronizing delay represents the length of the longest factor
without synchronizing point, the minimal value of the synchronizing delay it this case
is 2.

2.2 Sturmian words and morphisms

Sturmian words appear in many various mathematical concepts and so there is a lot of
equivalent definitions. For example, any Sturmian word u can be identified with an upper
or lower mechanical word. A mechanical word is described by two parameters: slope and
intercept. The slope is an irrational number α ∈ (0, 1) and the intercept is a real number
ρ ∈ [0, 1). To define the lower mechanical word sα,ρ = (sn) we put I0 = [0, 1 − α). The
nth letter of sα,ρ is as follows:

sn =

{
0 if the number αn+ ρ mod 1 belongs to I0 ,
1 otherwise .

The definition of the upper mechanical word s′α,ρ = (s′n) is analogous, it just uses the
interval I0 = (0, 1−α]. Let us stress that sn 6= s′n for at most one index n ∈ N. All upper
and lower mechanical words are Sturmian and any Sturmian word equals to a lower or
to an upper mechanical word. Language of a mechanical word depends only on α. Many
further properties of Sturmian words can be found in [7].

A morphism ψ is called Sturmian if ψ(u) is Sturmian word for any Sturmian word u.
It is easy to prove that every Sturmian morphism is injective. As mentioned in Introduc-
tion, Mossé [9] proved the following theorem: Every injective and primitive morphism is
circular. Since we study only primitive Sturmian morphisms, these morphisms are always
circular.

We will work with these four Sturmian morphisms:

ϕa :

{
0→ 0

1→ 10
ϕb :

{
0→ 0

1→ 01
ϕα :

{
0→ 01

1→ 1
ϕβ :

{
0→ 10

1→ 1

and with the monoidM generated by them, i.e. M = 〈ϕa, ϕb, ϕα, ϕβ〉. For a non-empty
word u = u0 · · ·un−1 over the alphabet {a, b, α, β} we put

ϕu = ϕu0 ◦ ϕu1 ◦ · · · ◦ ϕun−1 .

Note that the monoidM is not free. It is easy to show that for any k ∈ N we have

ϕαakβ = ϕβbkα and ϕaαkb = ϕbβka .

Moreover, Theorem 2.3.14 in [7] says that these two relations are the only relations
on the monoidM.
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Remark 6. The morphism E : 0 → 1, 1 → 0 cannot change the factor complexity of
an infinite word and so E is clearly Sturmian morphism. But E does not belong to
the monoidM, in fact, E is the only missing morphism. More precisely, any Sturmian
morphism ψ either belongs to M or ψ = η ◦ E, where η ∈ M. To generate the whole
monoid of Sturmian morphisms, usually denoted by St, one needs only three morphisms,
say E, ϕa and ϕb. We have

ϕα = EϕaE and ϕβ = EϕbE. (1)

Our aim is to study the fixed points of Sturmian morphisms. If u is a fixed point of ψ,
it is also a fixed point of ψ2. Due to (1), the square ψ2 always belongs toM. Therefore
we may restrict ourselves to fixed points of morphisms fromM.

Example 7. The Fibonacci word is the fixed point of the morphism τ : 0 → 01, 1 → 0.
Morphism τ is Sturmian, but τ /∈ M. We see that τ = ϕb ◦ E and by the relations (1)
we have τ 2 = ϕbϕβ.

It is easy to prove that a Sturmian morphism ϕw from the monoidM is primitive if
and only if w contains at least one letter from both sets {a, b} and {α, β}.

2.3 Conjugate morphisms

We say that a morphism ϕ : 0 → w1, 1 → w2 over {0, 1}∗ has 1-conjugate, denoted by
conj1(ϕ), if the last letters of the words w1 and w2 are equal. If we denote this letter by
x, we put

conj1(ϕ) :

{
0→ xw1x

−1

1→ xw2x
−1

or equivalently, ψ = conj1(ϕ) if there exists a letter x ∈ {0, 1} such that

xϕ(v) = ψ(v)x for each v ∈ {0, 1}∗ .

Example 8. In this notation, ϕb = conj1(ϕa) and ϕβ = conj1(ϕα) as

0ϕa(v) = ϕb(v)0 and 1ϕα(v) = ϕβ(v)1 for each v ∈ {0, 1}∗ .

We say that non-erasing morphisms ϕ and ψ are conjugate if one can be reached from
the other one by applying the mapping conj1 repetitively.

Let ψ be a non-erasing morphism. Denote by Jψ the set of all morphism which
are conjugate with ψ. Obviously, we get for any ϕ, ϕ′ ∈ Jψ that |ϕ(0)| = |ϕ′(0)| and
|ϕ(1)| = |ϕ′(1)|. Let us put |ϕ(1)| + |ϕ(0)| = L. If the morphism ψ is Sturmian, then,
by Proposition 2.3.21 in [7], the cardinality of Jψ is L − 1. Therefore, there are L − 1
morphisms in J and they are all mutually conjugate.

Finally, let us notice that conjugacy could be analogously done also in the opposite
direction, in that case the common letter goes from the beginning of images to the end
of images. Indeed, the set Jψ remains the same.
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Example 9. Consider the Sturmian morphism ψ = ϕbβ: 0 → 010, 1 → 01. Since L = 5,
the set Jψ contains four distinct morphisms: ϕbβ: 0 → 010, 1 → 01, ϕaβ: 0 → 100,
1 → 10, ϕbα: 0 → 001, 1 → 01 and ϕaα: 0 → 010, 1 → 10. We can also see all these
conjugates from the following notation:

ψ(0)u

ψ(1)u
=

010 010

01 010
=

0 100 10

0 10 10
=

01 001 0

01 01 0
=

010 010
010 10

, (2)

where u is a sequence of letters which one by one moves from the beginning of images to
the end of images. Clearly, it is: |u| = L− 2.

3 Upper bound on synchronozing delay

To bound the value of the synchronizing delay, we use knowledge of the structure of
bispecial factors in fixed points of Sturmian morphisms. There are several concepts
which enable us to describe the structure of bispecial factors in Sturmian words. We use
the method similar to the basic ideas from [3].

Let ψ be a primitive Sturmian morphism with a fixed point u. First, we study
how bispecial factors change under the application of one of the following morphisms:
ϕa, ϕb, ϕα, ϕβ. In particular, we show that every bispecial factor longer than 1 has at
least one synchronizing point under any of these morphisms. By repeating this process,
we can show that every long enough bispecial factor has at least one synchronizing point
under the morphism ψ too. Then, we find some suitable bispecial factor r and we bound
its length. Finally, we determine how often the bispecial factor r has to appear in u. As
a consequence, we are capable to find a length K such that every factor longer than K
contains at least one occurrence of a bispecial factor r and so at least one synchronizing
point. But it means that we have a upper bound on the value of the synchronizing delay
of ψ: Zmin ≤ K.

3.1 Preimages of bispecial factors

Because of (1), the role of ϕa and ϕα and, analogously, the role of ϕb and ϕβ are symmetric,
so we focus only on images under the morphisms ϕa and ϕb. We use results from [7],
more precisely, a small modification of Proposition 2.3.2:

Proposition 10 ([7]). Let x be an infinite word.

• If ϕb(x) is Sturmian, then x is Sturmian.

• If ϕa(x) is Sturmian and x starts with the letter 1, then x is Sturmian.

Lemma 11. Let u and u′ be Sturmian words such that u = ϕb(u
′). Let w be a bispecial

factor of u with |w| > 1. Then there is a w′ @ u′ such that w = ϕb(w
′)0. Moreover,

this factor w′ is unique, it is a bispecial factor of u′ and all the interpretations of w are
synchronized both at the beginning and at the end of the factor ϕb(w′).
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Proof. Take a Sturmian word u,u′ such that u = ϕb(u
′). By the form of morphism ϕb,

u can be written as u = 0k010k110k21 · · · , where ki > 0 for all i ∈ N. Take a bispecial
factor w of u with |w| > 1. Then the word w must both begin and end with 0. So we
can easily find a word w′ such that w = ϕb(w

′)0, it suffices to cut w into blocks 0 and 01
(we omit the last letter 0) and desubstitute 0 and 01 for 0 and 1 respectively. It remains
to show that this w′ is unique. Indeed, it follows from the fact that the morphism ϕb is
injective. The factor w′ is obviously a bispecial factor, because of the form of ϕb and the
fact that w is a bispecial factor. Since there is a synchronizing point before every letter 0,
all the interpretations of w are synchronized both at the beginning and at the end of the
factor ϕb(w′). In other words, the occurrences of bispecial factor w in u are one-to-one
to occurrences of bispecial factor w′ in u′.

Lemma 12. Let u and u′ be Sturmian words such that u = ϕa(u
′) and u starts with

the letter 1. Let w be a bispecial factor of u with |w| > 1. Then there is a w′ @ u′ such
that w = 0ϕa(w

′). Moreover, this factor w′ is unique, it is bispecial factor of u′ and all
the interpretations of w are synchronized both at the beginning and at the end of factor
ϕa(w

′).

Proof. Take a Sturmian words u,u′ such that u = ϕa(u
′). By the form of morphism ϕa,

u can be written as u = 10k010k110k21 · · · , where ki > 0 for all i ∈ N. Take a bispecial
factor w of u with |w| > 1. Then the word w must both begin and end with 0. So we
can easily find a word w′ such that w = 0ϕa(w

′), it suffices to cut w into blocks 0 and
10 (we omit the first letter 0) and desubstitute 0 and 10 for 0 and 1 respectively. This
w′ is unique, since the morphism ϕa is injective. The factor w′ is obviously bispecial
factor, because of the form of ϕa and the fact that w is a bispecial factor. Since there is
a synchronizing point after every letter 0, all the interpretations of w are synchronized
both at the beginning and at the end of factor ϕa(w′). In other words, the occurrences
of bispecial factor w in u are one-to-one to occurrences of bispecial factor w′ in u′.

The only case which is not covered by Lemmas 11 and 12, namely the case that
u = ϕa(u

′) and u begins with 0, can be transformed to one of the previous cases.

Lemma 13. Let u be a Sturmian word such that u starts with the letter 0 and u = ϕa(u
′)

for some word u′. Then there exists a Sturmian word v such that u′ = 0v and u = ϕb(v).

Proof. By using the following easy observation ϕa(0w) = ϕb(w0) for every w ∈ {0, 1}∗,
we have u = ϕa(u

′) = ϕa(0v) = ϕb(v).
Prove the observation by induction on |w|. The first step w = ε is trivial since

ϕa(0) = ϕb(0). Suppose that ϕa(0w) = ϕb(w0) for every w ∈ {0, 1}∗. Then

ϕa(0w1) = ϕa(0w)ϕa(1) = ϕa(0w)10 = ϕb(w0)10 = ϕb(w)010 = ϕb(w10) ,

ϕa(0w0) = ϕa(0w)ϕa(0) = ϕb(w0)0 = ϕb(w00) .
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In accordance with Lemma 13, in this case we will use the Sturmian word v instead
of the word u′, since we need to maintain the Sturmian property. Indeed, in this case
the occurrences of bispecial factor w′ in v are not exactly one-to-one to occurrences of
bispecial factor w in ϕa(v), the first occurrence of w′ in v (in this case w′ is a prefix of
v) does not have its complete corresponding occurrence of w in ϕa(v) – the first letter
0 is missing. However, this exception is not substantial and we can omit it without
lose of correctness: there are infinitely many occurrences of any bispecial factor in every
Sturmian word and the new uncomplete bispecial factor is not important at all.

3.2 Suitable bispecial factor

Let ψ = ϕw be a primitive Sturmian morphism, w = w0 · · ·wk and u be a fixed point of
ψ. Without lose of generality, we can suppose that letter 0 is more frequent in u, since
the exchange of letters 0 ↔ 1 cannot change the value of the synchronizing delay. It
means that 0 is a bispecial factor in u. The aim of this section is to find the shortest
bispecial factor r in u containing ψ(0), prove that r has at least one synchronizing point
and bound its length.

First, we apply the morphisms ϕwk
∈ {ϕa, ϕb, ϕα, ϕβ} on the infinite word u, the

choice of the morphism depends on the last letter of the word w. Because of Lemma
11 or 12 (or their analoques for ϕβ, ϕα), the infinite word ϕwk

(u) is Strumian and we
obtain a new bispecial factor r1 = s1ϕwk

(0)p1, where s1, p1 ∈ {ε, 0}, from the bispecial
factor 0. Moreover, the bispecial factor r1 has a synchronizing point under ϕwk

and the
occurrences of 0 in u and r1 in ϕwk

(u) are one-to-one. Clearly, we can continue in the
same way: application of the morphism ϕwk−1

leads to the new infinite word ϕwk−1wk
(u)

and the bispecial factor r2 = s2ϕwk−1
(r1)p2 = s2ϕwk−1

(s1)ϕwk−1wk
(0)ϕwk−1

(p1)p2, which
has a synchroninizing point under ϕwk−1

and its occurrences in ϕwk−1wk
(u) are one-to-one

to occurrences of 0 in u.
After repeating this process k-times, we obtain the original infinite word u again and

the bispecial factor rk = skϕw1pk = · · · = sψ(0)p. This bispecial factor rk has some
synchronizing point under ϕw1 and its occurrences in u are one-to-one to occurrences of 0
in u. But it means that rk must have at least one synchronizing point under the morphism
ψ too. One can also realize that rk is the shortest bispecial factor of u containing ψ(0).

It remains to bound the length of words s and p on the length of ψ(0) and ψ(1). As
follows from the notation (2) in Example 9, the number |s| + |p| has to be equal to the
length of the word u (from Example 9): |u| = L−2 = ψ(0)+ψ(1)−2. Now we summarize
all these result in the following observation.

Observation 14. Let ψ be a primitive Sturmian morphism with a fixed point u such
that 0 is more frequent letter in u. Then the shortest bispecial factor r in u containing
ψ(0) has at least one synchronizing point under ψ and its length is bounded by |r| ≤
2|ψ(0)|+ |ψ(1)| − 2.
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3.3 Occurrences of suitable bispecial factor

Finally, we have to determine how often the bispecial factor r appears in u, more precisely,
we have to determine the length of the longest factor of u which does not have to contain
the whole factor r as its factor.

Let us denote by v the longest factor of u which does not contain any occurrence
of r (the beginning of the factor r). Since the word u is Sturmian and the letter 0 is
more frequent in u, the word 11 is not a factor of u. We also know the occurrences
of 0 and r always coincide in u. Based on this two observations one can realize that
|v| ≤ |ψ(0)|+ |ψ(1)| − 1. Therefore, we can bound as follows:

L ≤ |v|+ |r| = |ψ(0)|+ |ψ(1)| − 1 + 2|ψ(0)|+ |ψ(1)| − 2 = 3|ψ(0)|+ 2|ψ(1)| − 3 .

In other words, every word longer that L has to contain the word r as its factor and so
has to contain at least one synchronizing point under ψ. This concludes the proof since
now he have

Zmin ≤ L ≤ 3|ψ(0)|+ 2|ψ(1)| − 3 ,

which is the statement of Theorem 1.
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Abstract. The effect of unilateral sources on the existence of patterns in reaction-diffusion
equations has been studied in a vast number of papers. There was proved that this type of
sources leads to an emergence of patterns for diffusion rates, for which this cannot happen in
systems without sources. In this paper, basic regularity theorems and Hopf lemma are used
to prove the existence of bifurcation points in a system with two unilateral condition and the
existence of a new class of non-homogeneous solutions (i.e. patterns). The explicit formula for
such bifurcation points is derived as well as the form of the solutions.

Keywords: reaction-diffusion equations, bifurcation, unilateral sources

Abstrakt. Vliv jednostranných zdrojů na existenci vzorů v systémech reakce-diffuze byl studová
n v mnoha článcích. Ukazuje se, že tento typ zdrojů vede k existenci vzorů i v systémech s
hodnotami difúzních parametrů, pro které by bez přítomnosti zdrojů k formování vzorů nedošlo.
V tomto článku je pomocí základních vět o regularitě parciálních diferenciálních rovnic a Hopfova
lemmatu dokázána existence bifurkačních bodů v množině takových parametrů. Dále je zde
odvozen explicitní vzorec pro výpočet těchto bodů a popsána konstrukce příslušných řešení.

Klíčová slova: rovnice reakce-difuze, bifurkace, jednostranné zdroje

1 Introduction

The aim of this paper is to study bifurcation from zero of stationary solutions of the
reaction-diffusion system

d14u+ b11u+ b12v + n1(u, v) = 0 in Ω\ΩU ,

d24v + b21u+ b22v + n2(u, v) = 0 in Ω\ΩU ,
(1)

∗This work has been supported by the grant SGS16/239/OHK4/3T/14
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u ≥ 0, d14u+ b11u+ b12v + n1(u, v) ≤ 0 in ΩU ,

u · (d14u+ b11u+ b12v + n1(u, v)) = 0 in ΩU ,

v ≥ 0, d24v + b21u+ b22v + n2(u, v) ≤ 0 in ΩU ,

v · (d24v + b21u+ b22v + n2(u, v)) = 0 in ΩU ,

u = v = 0 on ∂Ω,

(2)

in a bounded domain Ω ⊂ R with Lipschitz boundary and with unilateral obstacles in
the set ΩU ⊂ R. This is a system containing a mechanism which prohibits the decrease
of concentrations of u an v below zero in the area ΩU .

Let d1 > 0 be fixed, d2 ∈ R be a bifurcation parameter and n1, n2 ≡ 0. If the obstacle
is not present, i.e. ΩU = ∅, then under the assumption

b11 > 0 > b22, b21 > 0 > b12, Tr B = b11 + b22 < 0, detB = b11b22 − b12b21 > 0, (3)

the set of all positive critical points can visualized as a system of hyperbolas in the
space R2 with the asymptotes xi, see Fig. 1. More precisely, for any fixed positive

Figure 1: Sketch of hyperbolas.

d1 ∈ (0, x1)\{x2, x3, · · · } it is possible to find a value d2 for which there exists a nontrivial
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solution of the system without obstacles. The sets DS, DU are called the domain of
stability and instability respectively. In the domain of stability, the trivial solution of the
system (1) with ΩU = ∅ and with the Dirichlet b.c. is stable and hence, there cannot
appear any non-homogeneous solutions. On the other hand, in the domain of instability
the trivial solution of this system is unstable, and there are nontrivial non-homogeneous
stationary solutions, i.e. patterns.

In a general system with n1, n2 6= 0, (4) and (3), these critical points can be under
additional assumptions also bifurcation points. For particular systems there can exists
non-homogeneous solutions (patterns) even in DS, but there is no guarantee that it will
happen for an arbitrary system. Let us note that the assumptions (4) guarantee that the
system has a trivial solution.

However, if the unilateral sources are active and (3) is true, there exist a branch
of critical points, which interfere into DS, and therefore there are nontrivial solutions.
Under some additional assumptions these critical points can be also bifurcation points of
the problem (1), (2); see Theorem 1. This shows that the addition of unilateral sources
leads to an occurrence of non-homogeneous stationary solutions, i.e. patterns, for the
diffusion parameters, for which it is impossible in the system without these unilateral
sources. In addition to the previously published result [1], the new bifurcation branch
will be described by an exact formula, depending only on parameters bij, d1 of the system
and eigenvalues of Laplacian on the set Ω\ΩU with Dirichlet boundary conditions. The
analytic results will be demonstrated on particular examples.

This paper is a natural generalization of the results proved in [3] for the case of Laplace
equation. Although the generalization to the system of two partial differential equations
is straightforward, there are several technical problems which have to be treated.

1.1 Abstract formulation

Let Ω ⊂ R2 and ΩU ⊂ R2 be bounded domains with a Lipschitz and C2 boundary
respectively. Let ΩU ⊂ Ω. The nonlinear functions n1, n2 ∈ C1(R2) are supposed to
satisfy

n1(0, 0) = n2(0, 0) = 0, n′1(0, 0) = n′2(0, 0) = 0, (4)

where prime denotes the total derivative, and the growth conditions

|n1(ξ, χ)|+ |n2(ξ, χ)| ≤ C(1 + |ξ|p−1 + |χ|p−1) for all χ, ξ ∈ R∣∣∣∣∂ni

∂ξ
(ξ, χ)

∣∣∣∣+

∣∣∣∣∂ni

∂χ
(ξ, χ)

∣∣∣∣ ≤ C(1 + |ξ|p−2 + |χ|p−2) for i = 1, 2 for all χ, ξ ∈ R,
(5)

with 2 < p < ∞. The Sobolev space W 1,2
0 (Ω) and a convex cone K will be defined in a

standard way as

W 1,2
0 (Ω) := {u ∈ W 1,2(Ω)

∣∣ u|∂Ω = 0 in the sense of traces}, (6)

K := {u ∈ W 1,2
0 (Ω)| u ≥ 0 on ΩU}. (7)

The scalar product and norm on this space will be defined by

〈u, v〉 =

∫
Ω

∇u · ∇v dx, ‖u‖ =

(∫
Ω

|∇u|2 dx
) 1

2

for all u, v ∈ W 1,2
0 (Ω).
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The weak formulation of the system (1) is

Find u, v ∈ K :∫
Ω

d1∇u · ∇(ϕ− u)− b11u(ϕ− u)− b12v(ϕ− u)− n1(u, v)(ϕ− u) ≥ 0,∫
Ω

d2∇v · ∇(ψ − v)− b21u(ψ − v)− b22v(ψ − v)− n2(u, v)(ψ − v) ≥ 0,

for all ϕ, ψ ∈ K.

(8)

The linearization of this system is a problem

Find u, v ∈ K :

∫
Ω

d1∇u · ∇(ϕ− u)− b11(ϕ− u)− b12(ϕ− u) ≥ 0 for all ϕ ∈ K,∫
Ω

d2∇v · ∇(ψ − v)− b21(ψ − v)− b22(ψ − v) ≥ 0 for all ψ ∈ K.

(9)

Let d1 ∈ (0, y1) be fixed. A significant role will play here two Laplace eigenvalue
problems. The first one is

∆u+ κ̂u = 0 in Ω\ΩU ,

u = 0 on ∂Ω ∪ ∂ΩU ,
(10)

and the second one is
4u+ κu = 0 in Ω,

u = 0 on ∂Ω.
(11)

Remark 1. If is well known, that the first (smallest) eigenvalue κ̂1 of the problem (10)
is simple, and the respective eigenfunction does not change its sign in the set Ω\ΩU . The
second smallest eigenvalue of (10) will be denoted as κ̂2.

The first eigenvalue and the respective eigenfunction of (11) have the same properties.
Because the eigenvalues of Laplacian with Dirichlet b.c. are monotone w.r.t. domain,
there is κ̂1 < κ1.

Remark 2. Let ΩU = ∅, i.e. the obstacle is not present. It can be proved that the k-th
hyperbola from the Fig. 1 is described by the formulas

d2,k(d1) =
1

κk

(
b12b21

d1κk − b11

+ b22

)
,

see e.g. [2]. If d1 ∈ (b11/κ2, b11/κ1), then d2,1 is positive and d2,k is negative for any
k ≥ 2. And in general, if d1 ∈ (b11/κi+1, b11/κi), then d2,j > 0 for all j ≤ i and d2,j < 0
for all j > i. The envelope of these hyperbolas is denoted by DE. The set which is to the
right from the envelope is called the domain of stability, DS and the set to the left from
the envelope is called the domain of instability, DU .

Definition 1. The point d2 > 0 is a critical point of the system (9) with fixed d1 > 0 if
and only if there exists a solution u, v ∈ K, (u, v) 6= 0 of this system.

Definition 2. The point d2 > 0 is a bifurcation point of the system (8) with fixed d1 > 0
if and only if in any neighborhood of (d2, 0, 0) in R×K2 there exists (d̃2, u, v) ∈ R×K2

with (u, v) 6= 0 solving this system.
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2 Main Theorem

Theorem 1. Let d1 ∈ (b11/κ̂2, b11/κ̂1). Under the assumptions (3) – (5) the number

dK2 :=
b12b21

κ̂1(d1κ̂1 − b11)
+
b22

κ̂1

(12)

is a bifurcation point of (8) with fixed d1.
Let κ2 < κ̂1. There exists d1,m, d1,M ∈ (b11/κ̂2, b11/κ̂1) such that if d1 ∈ (d1,m, d1,M),

then dK2 ∈ DS.

Proof. First step is to prove that the point dK2 is a critical point of the system (9) with
fixed d1 ∈ (0, b11/κ̂1). For further purposes we will define the space W 1,2

0 (Ω\ΩU) in the
same way as W 1,2

0 (Ω) in (6) and consider an auxiliary problem

d14u+ b11u+ b12v = 0 in Ω\ΩU ,

d24v + b21u+ b22v = 0 in Ω\ΩU ,
(13)

and with the Dirichlet b.c. on ∂Ω∪ ∂ΩU . It can be by a direct computation verified that
for (d1, d

K
2 ) there exists a nontrivial solution of (13), with the respective eigenfunction

(u0, v0) =

(
b12

d1κ̂1 − b11

e1, e1

)
,

where e1 is the eigenfunction respective to κ̂1 with unit norm, and because e1 does not
change its sign in Ω\ΩU , see Remark 1, it can be chosen either positive or negative a.e.
in Ω. Even though the sign does not play role for such linear system, it will play a crucial
role for variational inequality. For further purposes e0 will be chosen negative a.e. Since
also b12 < 0 and d1κ1 − b11 < 0, the functions u0, v0 have the same constant sign a.e. in
Ω. Since d1 ∈ (κ̂2/b11, κ̂1/b11) is fixed, and because κ̂1 is simple, there exists only one
couple (u0, v0) (up to multiples) solving (13) with the parameters (d1, d

K
2 ).

To get the bifurcation, the Dancer Theorem will be employed.

Theorem 2 (Dancer Theorem). Let L : H → H be a compact linear operator, N :
R × H → H be a nonlinear compact operator, λ0 be a simple characteristic value of the
operator L, u0 be the eigenfunction corresponding to the characteristic value λ0. Moreover
let for any bounded setM⊂ R the operator N satisfy a condition

lim
‖u‖→0

N(λ, u)

‖u‖
= 0 uniformly for all λ ∈M. (14)

Denote S the closure of all solutions of the equation

λu− Lu+N(λ, u) = 0 (15)

with u 6= 0, i.e.
S = {(λ, u) | u 6= 0, u is a solution of (15)}.
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Then (λ0, 0) ∈ S, i.e. λ0 is a bifurcation point of the equation (15). Denote C the com-
ponent of S which contains (λ0, 0). Then C consists of two connected sets C+, C−, C =
C+ ∪ C− such that

C+ ∩ C− ∩B((λ0, 0); ρ) = {(λ0, 0)} and C± ∩ ∂B((λ0, 0); ρ) 6= 0,

where B((λ0, 0); ρ) is a ball with sufficiently small radius ρ. The sets C+ and C− are
either both unbounded or

C+ ∩ C− 6= {(λ0, 0)}.

By use of (5) and Theorem about Nemyckii operator there can be defined the operators
A : W 1,2

0 (Ω\ΩU) :→ W 1,2
0 (Ω\ΩU) , N1, N2 :

(
W 1,2

0 (Ω\ΩU)
)2 → W 1,2

0 (Ω) as

〈Au,w〉 =

∫
Ω

uw dx, for all u,w ∈ W 1,2
0 (Ω\ΩU),

〈Ni(u, v), w〉 =

∫
Ω

ni(u, v)w dx for all u, v, w ∈ W 1,2
0 (Ω\ΩU), i = 1, 2.

Due to the compact embedding W 1,2
0 (Ω\ΩU) ↪→c Lp(Ω) the operators A,N1, N2 are com-

pact. The weak formulation of the system

d14u+ b11u+ b12v + n1(u, v) = 0 in Ω\ΩU ,

d24v + b21u+ b22v + n2(u, v) = 0 in Ω\ΩU ,
(16)

is equivalent to a system of two operator equations

d1u− b11Au− b12Av −N1(u, v) = 0,

d2v − b21Au− b22Av −N2(u, v) = 0,

and this system can be written in a form[
1 0
0 1

] [
u
v

]
−
[
d−1

1 0
0 d−1

2

]([
b11A b12A
b21A b22A

] [
u
v

]
−
[
N1(u, v)
N2(u, v)

])
= 0. (17)

The linearization of this equation is[
1 0
0 1

] [
u
v

]
−
[
d−1

1 0
0 d−1

2

]([
b11A b12A
b21A b22A

] [
u
v

])
= 0,

and as d1 is fixed, it is a characteristic value problem

w − λ(d2)Lw = 0,

where w = (u, v) ∈ W 1,2
0 (Ω\ΩU)2, L is a linear compact operator (due to compactness of

A), and λ(d2) is an characteristic value, depending on the parameter d2. This problem is
equivalent to a weak formulation of (13). Since κ̂1 is simple and d1 ∈ (b11κ̂2, b11/κ̂1) the
characteristic value dK2 is simple. The vector formulation of 17 is

w − λ(d2)Lw +N(λ(d2),w) = 0,
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which is suitable for Dancer Theorem. The operator N(u, v) := (N1(u, v), N2(u, v)) is
compact and due to (4) it satisfies (14). Hence, the assumptions of the Dancer Theorem
are fulfilled and the point λ(dK2 ) is according to this theorem a (global) bifurcation point
of the equation (17) and therefore also of the equation (16) with Dirichlet b.c. and fixed
d1. Moreover, there exists two branches of solutions bifurcating in the directions ±(u0, v0)
from (dK2 , 0) ∈ R×W 1,2

0 (Ω\ΩU). More precisely, there exists two sequences {d2,n, u
+
n , v

+
n }

{d2,n, u
−
n , v

−
n } of weak solutions of (16) with Dirichlet b.c. such that

lim
n→∞

d2,n = dK2 , lim
n→∞

u−n√
‖u−n ‖2 + ‖v−n ‖2

= u0,
v−n√

‖u−n ‖2 + ‖v−n ‖2
= v0 (18)

lim
n→∞

u+
n√

‖u+
n ‖2 + ‖v+

n ‖2
= −u0,

v+
n√

‖u+
n ‖2 + ‖v+

n ‖2
= −v0, (19)

lim
n→∞

u+
n = lim

n→∞
u−n = lim

n→∞
v+
n = lim

n→∞
v−n = 0, (20)

the limits of u±n , v±n are w.r.t. W 1,2
0 (Ω\ΩU). Let us remind here that u0, v0 were chosen

to be negative a.e. in Ω. For the purposes of this proof the branch {d2,n, u
+
n , v

+
n } will be

discarded, and the sequence {d2,n, u
−
n , v

−
n } will be relabeled as {d2,n, un, vn}. The next

step is to prove the regularity of solutions in a neighborhood of the set ∂ΩU .
Let ΩV be a domain with C2 boundary satisfying

Ω\(ΩU ∪ ΩV ) ⊂ Ω\ΩU , ∂ΩV ∩ ∂ΩU = ∂ΩU . (21)

The growth conditions (5) and standard regularity arguments can be used to prove that
that un|ΩV

, vn|ΩV
∈ W 3,2(ΩV ) and moreover

lim
n→∞

∥∥∥∥∥u0 −
un√

‖un‖2 + ‖vn‖2

∥∥∥∥∥
W 3,2(ΩV )

= lim
n→∞

∥∥∥∥∥v0 −
vn√

‖un‖2 + ‖vn‖2

∥∥∥∥∥
W 3,2(ΩV )

= 0, (22)

the step-by-step procedure for a case of Laplacian is described in [3].
Since u0, v0 ∈ W 3,2(ΩV ), it is possible to use the Hopf Lemma together with negative-

ness of u0, v0 the get a result

∂u0

∂~n
(x) > 0 for a.a. x ∈ ∂ΩU ,

∂v0

∂~n
(x) =

b12

d1κk − b11

∂u0

∂~n
> 0 for a.a. x ∈ ∂ΩU . (23)

Now we define the function u0 by

ũ0(x) =

{
0 if x ∈ ΩU

u0(x) if x ∈ Ω\ΩU

and v0 similarly. Substituting ũ0, ṽ0 in (9) and using that ũ0(x) = 0 for a.a. x ∈ ∂ΩU

leads to∫
Ω

d1∇ũ0 · ∇(ϕ− ũ0)− (b11u0 + b12v0)(ϕ− ũ0) =

=d1

∫
Ω\ΩU

−∆ũ0 − (b11u0 − b12v0)(ϕ− ũ0) dx +

∫
∂ΩU

∂ũ0

∂~n
(ϕ− ũ0) =

∫
∂ΩU

∂ũ0

∂~n
ϕ ≥ 0,
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because ϕ ≥ 0 a.e. in ∂ΩU . Similarly the second equation gives∫
Ω

d2∇ṽ0 · ∇(ψ − ṽ0)− (b21u0 + b22v0)(ψ − ṽ0) =

=

∫
Ω\ΩU

−d2∆ũ0 − (b21u0 + b22v0)(ψ − ṽ0) dx +

∫
∂ΩU

∂ṽ0

∂~n
(ψ − ṽ0) =

∫
∂ΩU

∂ṽ0

∂~n
ψ ≥ 0.

Therefore u0, v0 are nontrivial solution of (9) and dK2 is a critical point of this system.
We construct the functions

ũn(x) =

{
0 if x ∈ ΩU

un(x) if x ∈ Ω\ΩU

ṽn(x) =

{
0 if x ∈ ΩU

vn(x) if x ∈ Ω\ΩU

Due to (22), (23) there exists n0 such that for any n > n0 the normal derivatives of
un and vn on ∂ΩU satisfy

∂un
∂~n

(x) > 0 for a.a. x ∈ ∂ΩU ,
∂vn
∂~n

(x) > 0 for a.a. x ∈ ∂ΩU .

Similar procedure as for linear case gives

d1

∫
Ω

∇ũn · ∇(ϕ− ũn)−(b11un + b12vn − n1(ũn, ṽn))(ϕ− ũn) dx =

= d1

∫
Ω\ΩU

−∆ũn−(b11un − b12vn − n1(ũn, ṽn)(ϕ− ũn) dx+

+

∫
∂ΩU

∂ũn
∂~n

(ϕ− ũn) dS =

∫
∂ΩU

∂ũn
∂~n

ϕ dS ≥ 0,

d2,n

∫
Ω

∇ṽn · ∇(ψ − ṽn)−(b21un + b22vn − n2(ũn, ṽn))(ψ − ṽn) dx =

= d2,n

∫
Ω\ΩU

−∆ṽn−(b21un − b22vn − n2(ũn, ṽn)(ψ − ṽn) dx+

+

∫
∂ΩU

∂ṽn
∂~n

(ψ − ṽn) dS =

∫
∂ΩU

∂ṽn
∂~n

ψ dS ≥ 0,

i.e. the functions ũn, ṽn are solutions of (8). Therefore dK2 is a bifurcation point of (8).
The key to the proof of the last statement is in Proposition 3.1 in [2]. Let

d2(κ̂, d1) :=
1

κ̂

(
b12b21

d1κ̂− b11

+ b22

)
.

For d1 ∈ (b11/κ̂2, b11/κ̂1) there is dK2 = d2(κ̂1, d1), as follows from the definition of dK2 . If
κ̂i < κ̂j are different positive numbers, then there exists exactly one positive d1 < b11κ̂i
such that d2(κ̂i, d1) = d2(κ̂j, d1). In simple terms, the hyperbolas intersects exactly at
one point. The points of intersection satisfy

κ̂iκ̂jb22d
2
1 − (κ̂i + κ̂j)d1

detB

b11

+
b11 detB

b22

= 0.
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Let κ2 < κ̂1 < κ1. The intersection points are

κ̂1κ1b22d
2
1,M − (κ̂1 + κ1)d1,M

detB

b11

= −b11 detB

b22

,

κ̂1κ2b22d
2
1,m − (κ̂1 + κ2)d1,m

detB

b11

= −b11 detB

b22

.

Dividing these equations gives

κ̂1κ1b22d
2
1,M − (κ̂1 + κ1)detB

b11

κ̂1κ2b22d2
1,m − (κ̂1 + κ2)detB

b11

= 1.

Since κ̂2 < κ1 < κ̂1 this can be true only if d1,m < d1,M . Since d2(κ2, d1) is negative
for all d1 ∈ (b11/κ2, b11/κ1), cf. Remark 2, and because d2(κ̂, d1) < d2(κ1, d1) for any
d1 ∈ (d1,m, d1,M) it must be (d1, d

K
2 ) ∈ DS.

3 Applications
The set of all positive critical points (d1, d2) ∈ R2

+ of the problem (1) with Dirichlet b.c.
on ∂Ω, i.e. of the problem without unilateral terms, is

C :=
∞⋃
i=1

{
(d1, d2) ∈

(
0,

b11

κ1

)
× R+

∣∣ d2 :=
1

κi

(
b12b21

d1κi − b11

+ b22

)}
.

It is easy to verify that there are no positive critical points if d1 > b11/κ1. The set of
bifurcation points of (1), (2) is described by the exact formula (12), and it only suffices
to (numerically) compute the eigenvalues κ̂k. To demonstrate the results Thomas model
from [4] in the set Ω = [−1, 1]2 and ΩU = B0.05(0, 0) was chosen. In particular,

ut = d1∆u+ γ(a− u− h(u, v)),

vt = d2∆u+ γ(αb− αv − h(u, v)),

with a = 150, b = 100, α = 1.5, γ = 252, K = 0.05, ρ = 13 and with Dirichlet
boundary condition and small random initial condition. This system has a stationary
solution (ū, v̄) = (37.738, 25.1588). The system has to be shifted by u ≡ u− ū, v ≡ v− v̄,
in order to this stationary solution be equal to zero and (4) be true. The stationary
system with unilateral sources is then as follows:

d1∆u+ 226.7u− 1124.5v + n1(u, v) = 0 in [−1, 1]2,

d2∆v + 478.7u− 1502.5v + n2(u, v) = 0 in [−1, 1]2,
(24)

u ≥ 0, d14u+ 226.7u− 1124.5v + n1(u, v) ≤ 0 in B0.05(0, 0),

u · (d14u+ 226.7u− 1124.5v + n1(u, v)) = 0 in B0.05(0, 0),

v ≥ 0, d24v + 478.7u− 1502.5v + n2(u, v) ≤ 0 in B0.05(0, 0),

v · (d24v + 478.7u− 1502.5v + n2(u, v)) = 0 in B0.05(0, 0),

u = v = 0 on ∂Ω,

(25)



190 J. Navrátil

where n1, n2 satisfy (4). The eigenvalues of the Laplace operator on Ω are known to be

κk =
(kπ)2

4
.

The first eigenvalue κ1 = π2/4, the second one is κ2 = π2 = 9.9. The first eigenvalue of
the Laplacian (10) was numerically computed as κ̂1 = 9.1±0.1. The situation is sketched
in the Fig. 2. The red curve represents the set of bifurcation points of the problem (24),
(25) partially interfering into DS, which is impossible for a system without sources, whose
critical points generates the hyperbolas in this figure (cf. the Fig. 1). Although there is
infinitely many hyperbolas, there are plotted only five of them in the Fig. 2.

Figure 2: Hyperbolas for Thomas system

The further research will focus on numerical solution of this particular problem and
other systems, and on a study of resulting patterns.
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Abstract. In this work we study the Kramers-Fokker-Planck equation with a potential whose
gradient tends polynomially fast to zero at the infinity. For this class of short-range potentials
in one position variable, we show that complex eigenvalues do not accumulate at low-energies.
The first threshold zero is always a resonance and the corresponding resonant state is uniquely
determined. This allows us to obtain the low-energy resolvent asymptotics, which, in combina-
tion with more general high energy pseudospectral estimates, gives the large-time asymptotics
of solutions to the KFP equation in appropriate spaces. These are expressed in terms of the
equilibrium state, the Maxwellian.

Keywords: return to equilibrium, threshold spectral analysis, pseudo-spectral estimates, Kramers-
Fokker-Planck equation.

Abstrakt. V tomto článku studujeme Kramers-Fokker-Planckovu rovnici s potenciálem, jehož
gradient v nekonečnu klesá polynomiálně rychle k nule. Pro tuto třídu krátkodosahových po-
tenciálů v jedné proměnné polohy ukazujeme, že komplexní vlastní hodnoty neakumulují poblíž
nízkých energií. První prahová hodnota nula je vždy rezonancí a odpovídající rezonantní stav
je jednoznačně určen. To nám umožňuje získat asymptotiky rezolventy pro nízké energie, jež,
společně s více obecnými vysokoenergetickými pseudospektrálními odhady, nám dává ve vhod-
ných prostorech aysmptotiky řešení KFP rovnice pro velké časy. Tyto jsou vyjádřeny pomocí
rovnovážného stavu, Maxwelliánu.

Klíčová slova: návrat do rovnováhy, prahová spektrální analýza, pseudospektrální odhady,
Kramers-Fokker-Planckova rovnice
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Abstract. We give the classification of T-duals of the flat background in four dimensions with
respect to one-, two-, and three-dimensional subgroups of the Poincaré group using non-Abelian
T-duality with spectators. As duals, we find backgrounds for sigma models in the form of
plane-parallel waves or diagonalizable curved metrics often with torsion. Among others, we find
exactly solvable time-dependent isotropic pp-wave, singular pp-waves, or generalized plane wave
(K-model).

Keywords: sigma model, pp-wave background, string duality, non-Abelian T-duality, isometry
group, spectator

Abstrakt. Předkládáme klasifikaci T-duálů plochého pozadí ve čtyřech rozměrech vzhledem
k jednorozměrným, dvourozměrným a trojrozměrným podgrupám Poincarého grupy s využitím
neabelovské T-duality s přihlížeči. Jako duály nalézáme pozadí pro sigma modely ve tvaru pp-vln
nebo diagonalizovatelných křivých metrik často s torzí. Mimo jiné nalézáme exaktně řešitelnou
časově závislou izotropní pp-vlnu, singulární pp-vlny nebo zobecněnou rovinnou vlnu (K-model).

Klíčová slova: sigma model, pp-vlna, strunová dualita, neabelovská T-dualita, grupa isometrií,
přihlížeč

Full paper: F. Petrásek, L. Hlavatý, and I. Petr. Plane-parallel waves as duals of the
flat background II: T-duality with spectators. Class. Quantum Grav. 34 (2017) 155003.
arXiv:1612.08015 [hep-th].
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Abstract. An area of increasingly frequent applications of evolutionary optimization to real-
world problems is continuous black-box optimization. However, evaluating real-world black-box
fitness functions is sometimes very time-consuming or expensive, which interferes with the need
of evolutionary algorithms for many fitness evaluations. Therefore, surrogate regression mod-
els replacing the original expensive fitness in some of the evaluated points have been in use
since the early 2000s [3]. The Surrogate Covariance Matrix Adaptation Evolution Strategy (S-
CMA-ES) [1] and its successor the Doubly Trained S-CMA-ES (DTS-CMA-ES) [4] represent
two surrogate-assisted versions of the state-of-the-art algorithm for continuous black-box opti-
mization CMA-ES [2]. In [5] and [9], we have investigated extensions of S- and DTS-CMA-ES
that control the usage of the model according to the model’s error. In [6] and [7], we have com-
pared the ordinal and metric Gaussian process regression model using in combination with the
DTS-CMA-ES. Moreover, we have presented an overview of several algorithms using surrogate
models to speed up the original CMA-ES [8].

Keywords: benchmarking, black-box optimization, surrogate model, Gaussian process

Abstrakt. Oblastí se stále se zvyšujícím množstvím aplikací evoluční optimalizace na prob-
lémy z praxe je spojitá black-box optimalizace. Vyhodnocení takovéto skutečné black-box fit-
ness funkce ale bývá velice časově nebo výpočetně náročné, což koliduje s faktem, že evoluční
algoritmy vyžadují mnoho vyhodnocení fitness funkce. Proto se již téměř od roku 2000 využí-
vají náhradní regresní modely namísto skutečné fitness funkce pro některé z vyhodnocovaných
bodů [3]. Algoritmy Surrogate Covariance Matrix Adaptation Evolution Strategy (S-CMA-
ES) [1] a jeho následník Doubly Trained S-CMA-ES (DTS-CMA-ES) [4] představují dvě vari-
anty v současnosti nejlepšího algoritmu na spojitou black-box optimalizaci jménem CMA-ES [2],
které používají náhradní modely. V článcích [5] a [9], jsme představili rozšíření S- a DTS-CMA-
ESu, která řídí používání modelu v závislosti na jeho chybě. Porovnání ordinálních a metrických
modelů založených na gaussovských procesech v kombinaci s DTS-CMA-ESem jsme provedli v
[6] a [7]. Dále jsme také vypracovali porovnání několika algoritmů používajících náhradní modely
k urychlení původního CMA-ESu [8].

Klíčová slova: benchmarking, black-box optimalizace, náhradní modelování, gaussovské procesy
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Abstract. Artificial intelligence is present in many modern computer science applications.
The question of effectively learning parameters of such models even with small data samples is
still very active. It turns out that restricting conditional probabilities of a probabilistic model
by monotonicity conditions might be useful in certain situations. Moreover, in some cases,
the modeled reality requires these conditions to hold. In this article we focus on monotonicity
conditions in Bayesian Network models. We present an algorithm for learning model parameters,
which satisfy monotonicity conditions, based on gradient descent optimization. We test the
proposed method on two data sets. One set is synthetic and the other is formed by real data
collected for computerized adaptive testing. We compare obtained results with the isotonic
regression EM method by Masegosa et al. which also learns BN model parameters satisfying
monotonicity. A comparison is performed also with the standard unrestricted EM algorithm
for BN learning. Obtained experimental results in our experiments clearly justify monotonicity
restrictions. As a consequence of monotonicity requirements, resulting models better predict
data.

Keywords: computerized adaptive testing, monotonicity, isotonic regression EM, gradient method,
parameters learning

Abstrakt. V dnešní době se umělá inteligece využívá v mnoha oblastech lidské činnosti a to s
pomocí rozličných modelů. Otázka možnosti efektivního učení takových modelů je proto stále
velmi aktuální. Ukazuje se, že, v případě omezení modelu dodatečnými podmínkami monotonic-
ity, je v určitých podmínkách přínosné. V mnoha aplikacích je dokonce nezbytné, aby byly tyto
podmínky splněny, protože vychází z modelované reality. Tento článek se zaměřuje na podmínky
monotonicity uplatněné v modelech bayesovských sítí. Představujeme algoritmus založený na
gradientním sestupu k učení parametrů modelů splňujících podmínky monotonicity. Tyto algo-
ritmy testujeme na dvou datových sadách. První sada je tvořena syntetickými daty, zatímco
druhá se skládá z reálných dat sesbíraných pro tento účel. Získané výsledky porovnáváme s
EM isotoní regresí vytvořeným autory Masegosa et al., který také učí model bayesovské sítě
splňující podmínky monotonicity. Srovnání je též provedeno s neomezeným EM algoritmem pro
učení bayesovských sítí. Získané výsledky z našich experimentů jasně potvrzují užitečnost pod-
mínek monotonicity. Jako důsledek jejich vynucení při učení parametrů, výsledné model lépe
předpovídají data.

∗This work was supported by the Czech Science Foundation (project No. 16-12010S) and by the
Grant Agency of the Czech Technical University in Prague, grant No. SGS17/198/OHK4/3T/14.
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Abstrakt. Nelineární Schrödingerovou rovnicí se v principu rozumí jakákoli z obecné třídy rov-
nic −iψt(x, t) = ∆ψ(x, t)+F [ψ(x, t), ψ∗(x, t)]ψ(x, t), kde F je libovolný nekonstantní funkcionál.
Pro různé volby F se následně objevují různé možnosti fenomenologického uplatnění této rovnice.
V praxi se setkáváme zejména s případem kvadratické nelinearity F [ψ(x, t)] = ψ∗(x, t)ψ(x, t)
v teorii supravodivosti a při studiu Bose-Einsteinova kondenzátu. Z nepolynomiálních funkcio-
nálů se lze (v podobných aplikacích) v literatuře nejčastěji setkat s logaritmickou nelinearitou
F [ψ(x, t)] = ln[ψ∗(x, t)ψ(x, t)].

Nelineární Schrödingerova rovnice je pro libovolnou volbu F rovnicí lokální, což je také nutná
podmínka většiny současných fyzikálních teorií. V nedávné době se ale objevilo několik možných
aplikací tzv. PT -symetrických Hamiltoniánů (jak v klasické, tak v kvantové mechanice), které
mohou v některých případech vést na nelokální (efektivní) teorie. To bylo také popudem k
nedávnému studiu modifikované NLSE s (nelokálním) funkcionálem F = ψ∗(−x, t)ψ(x, t) (cit.
no. 43, 44).

V tomto článku se zabýváme dalším logických krokem v této úvaze: srovnáním logaritmické
NLSE a její nelokální analogie F [ψ(x, t)] = ln[ψ∗(−x, t)ψ(x, t)]. Jelikož nelokální “hustota prav-
děpodobnosti” ψ∗(−x, t)ψ(x, t) je obecně komplexní funkcí pro x ∈ R, studujeme tuto rovnici
(inspirováni cit. no. 42) na modifikovaném definičním oboru, který tvoří správně zvolený kontur
v komplexní rovině. Nakonec diskutujeme několik explicitně zkonstruovaných referenčních řešení
lokální i nelokální logaritmické NLSE, a to jak pro případ jednočásticové vlnové funkce, tak pro
její vektorovou (vícečásticovou) formu.

Klíčová slova: nelineární Schrödingerova rovnice, logaritmická Schrödingerova rovnice, PT -
symetrie

Abstract. In its most general meaning, the nonlinear Schrödinger equation is understood to be
any of the family of equations −iψt(x, t) = ∆ψ(x, t)+F [ψ(x, t), ψ∗(x, t)]ψ(x, t), with F being an
arbitrary nonconstant functional. For varying F we may encounter vastly different possibilities
of phenomenogical appllications of the equation. The most often discussed case is probably the
quadratic nonlinearity F [ψ(x, t)] = ψ∗(x, t)ψ(x, t) relevant e.g. when studying superconductivity
and Bose-Einstein condensates. Among non-polynomial functionals, one may encounter also the
F [ψ(x, t)] = ln[ψ∗(x, t)ψ(x, t)].

The NLSE is a local equation for any choice of F , which is also a strict requirement of the
vast majority of current physics theories. However, a number of possible applications of PT -
symmetric Hamiltonians (in both classical and quantum mechanics) emerged recently, which
could sometimes lead to nonlocal (effective) theories. This was also the principal motivation for
studying a modified NLSE with a nonlocal functional F = ψ∗(−x, t)ψ(x, t) in cit. no. 43, 44.
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In the present paper, we take another step in this direction and provide a comparison of
the logarithmic NLSE and its nonlocal analogue F [ψ(x, t)] = ln[ψ∗(−x, t)ψ(x, t)]. Since the
nonlocal “probability density” ψ∗(−x, t)ψ(x, t) is in general complex-valued for x ∈ R, we study
the equation (iinspired by cit. no. 42) on a modified domain, consisting of a carefully selected
contour in the complex plane. We finally construct several reference solutions to these equations,
both for the case of single-particle wavefunction and its many-body matrix counterpart.

Keywords: nonlinear Schrödinger equation, logarithmic Schrödinger equation, PT -symmety

Plná verze: M. Znojil, F. Růžička and K. G. Zloshchastiev, Schrödinger Equations with
Logarithmic Self-Interactions: From Antilinear PT-Symmetry to the Nonlinear Coupling
of Channels, Symmetry 9 (2017), 165.
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Abstract. Our research reported in this paper is twofold. In the first part of the paper we
use standard statistical methods to analyze medical records of patients suffering myocardial
infarction from the third world Syria and a developed country - the Czech Republic. One of our
goals is to find whether there are statistically significant differences between the two countries.
In the second part of the paper we present an idea how to deal with incomplete and imbalanced
data for tree-augmented naive Bayesian (TAN). All results presented in this paper are based on
a real data about 603 patients from a hospital in the Czech Republic and about 184 patients
from two hospitals in Syria.

Keywords: Machine Learning, Data analysis, Bayesian networks, Missing data, Imbalanced data,
Acute Myocardial Infarction.

Abstrakt. Náš výzkum, kterým se zabýváme v tomto článku, má dvě části. V první části
používáme standardní statistické metody k analýze lékařských záznamů pacientů, kteří prodělali
infarkt a pocházeli buď ze země třetího světa (Sýrie) nebo z rozvinuté země (Česká republika).
Jedním z našich cílů je zjistit, zda mezi oběma zeměmi existují statisticky významné rozdíly.
V druhé části článku předkládáme myšlenku zabývat se neúplnými a nevyrovnanými daty pro
klasifikátor Tree-Augmented Naive Bayes (TAN). Všechny naše výsledky jsou prezentovány v
tomto článku a vycházejí z reálných údajů o 603 pacientech z nemocnice v České republice a
přibližně 184 pacientů ze dvou nemocnic v Sýrii.

Klíčová slova: strojové učení, analýza dat, bayesovské sítě, neúplná data, nevyrovnaná data,
akutní infarkt myokardu

1 Introduction

Acute myocardial infarction (AMI) is commonly known as a heart attack. A heart attack
occurs when an artery leading to the heart becomes completely blocked and the heart
doesn’t get enough blood or oxygen. Without oxygen, cells in that area of the heart
die. AMI is responsible for more than a half of deaths in most countries worldwide. Its
treatment has a significant socioeconomic impact.

One of the main objectives of our research is to design, analyze, and verify a predictive
model of hospital mortality based on clinical data about patients. A model that predicts

∗This work has been supported by the SGS grant CTU SGS16/253/OHK3/3T/14.
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well the mortality can be used, for example, for the evaluation of the medical care in
different hospitals. The evaluation based on mere mortality would not be fair to hospitals
that treat often complicated cases. It seems better to measure the quality of the health
care using the difference between predicted and observed mortality.

A related work was published by [1]. The authors analyze the mortality data in U.S.
hospitals using the logistic regression model. Other work was published by [2]. The
authors compare different machine learning methods using a real medical data from a
hospital.

2 Data

Our dataset contains data about 787 patients characterized by 24 variables. 603 patients
of them are from the Czech Republic [2] and 184 are from Syria. The attributes are listed
in the Table 1. Most of the attributes are real valued, four attributes are nominal. Only a
subset of attributes was measured for the Syrian patients. Most records contain missing
values, i.e., for most patients only some attribute values are available. The thirty days
mortality is recorded for all patients. In the Czech Republic the results of blood tests are
reported in millimoles per liter of blood. In Syria some of the measurements are reported
in milligrams per liter and some in millimoles per liter. We standartize all measurements
to the millimoles per liter scale.

We will note U = {X1, X2, . . . , Xm} for a discrete domain, where Xi, i ∈ {1, 2, . . . ,m}
is a discrete attribute and take on values from a finite set, denoted by V al(Xi). We
use capital letters such as X, Y , Z for attribute names, and lower-case letters such as
x,y,z to denote specific values taken by those variables. Sets of variables are denoted
by boldface capital letters such as X,Y,Z and assignments of values to the variables in
these sets are denoted by boldface lowercase letters x,y,z. A classified discrete domain
is a discrete domain where one of the attributes is distinguished as “class”. We will use
UC = {A1, A2, . . . , An, C} for a classified discrete domain. A dataset D = {u1, . . . ,uN}
of instances of UC , where each ui, i ∈ {1, . . . , N} is a tuple of the form (a1

i , . . . , a
n
i , ci)

where a1
i ∈ V al(A1), . . . , ani ∈ V al(An) and ci ∈ V al(C). Also we note that the class is

always known, and a missing value in the dataset is denoted by NA.

3 Preliminary Statistical Analysis

For a preliminary statistical analysis [3] we selected a subset of attributes that are highly
correlated with the class [5] and present in both groups, namely, we considered these
variables: age, nationality, gender, STEMI location, and the class mortality. The STEMI
location encoded by 1 denotes a STEMI.inf, 2 denotes a STEMI.ant, and 3 denotes a
STEMI.lat. The nationality is encoded by a binary variable, where 0 means Czech and 1
means Syrian. The Gender is encoded by a binary variable where 0 denotes a man, while
1 stands for a female. The mortality is also encoded as a binary variable, where 0 means
that the patient survived 30 days, while 1 means that he/she did not.

Already from Figure 1, where the histogram of the age values is presented, we can see
that from patients that didn’t survive a high percentage are young patients from Syria.



A Machine Learning Method for Incomplete and Imbalanced Medical Data 203

Table 1: Attributes

Attribute Code type value range in data Country
Age AGE real [23, 94] SYR, CZ
Height HT real [145, 205] CZ
Weight WT real [35, 150] CZ
Body Mass Index BMI real [16.65, 48.98] CZ
Gender SEX nominal {male, female} SYR, CZ
Nationality NAT nominal {Czech, Syrian} SYR, CZ
STEMI Location STEMI nominal {inferior, anterior, lateral} SYR, CZ
Hospital Hospital nominal {CZ, SYR1, SYR2} SYR, CZ
Kalium K real [2.25, 7.07] CZ
Urea UR real [1.6, 61] SYR, CZ
Kreatinin KREA real [17, 525] SYR, CZ
Uric acid KM real [97, 935] SYR, CZ
Albumin ALB real [16, 60] SYR, CZ
HDL Cholesterol HDLC real [0.38, 2.92] SYR, CZ
Cholesterol CH real [1.8, 9.9] SYR, CZ
Triacylglycerol TAG real [0.31, 11.9] SYR, CZ
LDL Cholesterol LDLC real [0.261, 7.79] SYR, CZ
Glucose GLU real [2.77, 25.7] SYR, CZ
C-reactive protein CRP real [0.3, 359] SYR, CZ
Cystatin C CYSC real [0.2, 5.22] SYR, CZ
N-terminal prohormone of
brain natriuretic peptide NTBNP real [22.2, 35000] CZ

Troponin TRPT real [0, 25] CZ
Glomerular filtration rate
(based on MDRD) GFMD real [0.13, 7.31] CZ

Glomerular filtration rate
(based on Cystatin C) GFCD real [0.09, 7.17] CZ

The standard chi-square test of conditional independence between two variables re-
veals (see Table 2) that there is a significant dependence (at the level 0.05) between
the mortality and nationality, the gender and nationality, also there are a significant de-
pendencies between the gender and age, the mortality and gender – the patients from
Syria have the lowest probability to survive, also they are younger and there is higher
percentage of woman.

Finally, we learned the logistic regression model, that describes the relationship be-
tween the considered independent variables and the mortality as the dependent variable.
We have got:

logit P (C = 1|A = a) = β0 + β1a1 + . . .+ β4a4

= −0.034 + 0.001 · a1 + 0.027 · a2 − 0.007 · a3 + 0.065 · a4

where a1: age, a2: gender, a3: STEMI loc, and a4: nationality. Variables age and
nationality appeared to be statistically significant for mortality prediction.
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Figure 1: Histogram of the age values

From the preliminary statistical analysis we can conclude that:

• In Syria the mortality from AIM is significantly higher than in the Czech Republic
– 87.3% Syrian patients survive, while 94.7% patients from the Czech Republic
survive.

• The age of patients in Syria is lower in average (the average difference is 13 years)
and there is a higher prevalence of women among the patients with AIM in Syria
than in the Czech Republic.

• The STEMI location is related to the mortality.

Table 2: The Chi-Square Test of conditional independence

gender STEMI loc. mortality nationality
age value .174 -.010 .048 -.381

sign. .0001 .775 .181 .0001
gender value .022 .068 .92

sign. .53 .057 .01
STEMI loc. value -.026 -.036

sign. 0.46 .312
mortality value .089

sign. 0.013
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4 Machine Learning Methods

The preliminary statistical analysis studied mostly the pairwise relations only. Since the
explanatory variables may combine their influence and the influence of a variable may be
mediated by another variable it is worth of studying the relations of variables alltogether.
Our data are incomplete and imbalanced. We will present an idea for dealing with that
type of data using tree-augmented naive Bayesian (TAN).

4.1 Bayesian networks

A Bayesian network [6] is an annotated directed acyclic graph that encodes a mass prob-
ability distribution over a set of random variables U. Formally, a Bayesian network for U
is a pair B = 〈G,Θ〉. The first component, G, is a directed acyclic graph whose vertices
correspond to the random variables U = {X1, X2, . . . , Xm}, and whose edges represent
direct dependencies between the variables. The graph G encodes independence assump-
tions: each variable Xi is independent of its non-descendants given its parents in G. The
second component of the pair, namely Θ, represents the set of parameters that quantifies
the network. It contains the parameter θxi|Πxi

= f(xi|Πxi) for each possible value xi of Xi

and Πxi of ΠXi
, where ΠXi

denotes the set of parents of Xi in G. Accordingly, a Bayesian
network B defines a unique joint probability distribution over U given by:

f(X1 = x1, . . . , Xm = xm) =
m∏
i=1

f(Xi = xi|ΠXi = Πxi) =
m∏
i=1

θxi|Πxi

for each ΠXi which is a parent of Xi.

4.2 Learning with Trees

A directed acyclic graph on {X1, X2, . . . , Xn} is a tree if ΠXi contains exactly one parent for
all Xi, except for one variable that has no parents (this variable is referred to as the root).
A tree network can be described by identifying the parent of each variable [7]. A function
π : {1, . . . , n} → {0, . . . , n} is said to define a tree over X1, X2, . . . , Xn if there is exactly one i
such that π(i) = 0 (namely the root of the tree), and there is no sequence i1, . . . , ik such that
π(ij) = ij+1 for i ≤ j < k and π(ik) = i1 (i.e., no cycles). Such a function defines a tree network
where ΠXi = {Xπ(i)} if π(i) > 0 and ΠXi = ∅ if π(i) = 0.

4.3 Learning Maximum Likelihood TAN

Let {A1, A2, . . . , An} be a set of attribute variables and C be the class variable. We say that
B (Bayesian network) is a TAN model if ΠC = ∅ and there is a function π that defines a tree
over {A1, A2, . . . , An} . The optimization problem consists on finding a tree defining function π
over {A1, A2, . . . , An} such that the log likelihood is maximized [8] LL(BT |D) =

∑
u∈D log f(u).

To learn the maximum likelihood TAN we should use the following equation to compute the
parameters [8], θai,Πai

=
Nai,Πai

(ai,Πai )

NΠai
(Πai )

where Nai,Πai
(ai,Πai) stands for the number of times

that attribute i has value ai and its parents have values Πai in the dataset. Similarly, NΠai
(Πai)

is the number of times that the parents of attribute Ai have values Πai in the dataset.
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5 Learning TAN from incomplete data
Missing data are a very common problem which is important to consider in a many data mining
applications, and machine learning or pattern recognition applications. Some variables may
not be observable (i.e. hidden) even for training instances. Now more and more datasets
are available, and most of them are incomplete. Therefore, we want to find a way to build
a new model from an incomplete dataset. Normally, to learn the maximum likelihood TAN
structure [8], we need a complete data, such that all instances ui, i ∈ {1, . . . , N} from UC are
complete and don’t have any missing value. In case the data are incomplete and there is an
instance which has a missing value, we will not use the whole instance in TAN structure learning
i.e. not use the other known values from that instance in TAN structure learning. Note that the
class is always known, and a missing value in the dataset is denoted by NA. Our goal is to learn
a tree-augmented naive Bayesian (TAN) from incomplete data. Some previous work by [13]
propose maximizing conditional likelihood for BN parameter learning. They apply their method
to MCAR (Missing Completely At Random) incomplete data by using available case analysis in
order to find the best TAN classifier. In other work by [9] also deals with TAN classifiers and
expectation-maximization (EM) principle for partially unlabeled data. In their work, only the
variable corresponding to the class can have missing. Also, other work by [10] deals with TAN
based on the EM principle, where they have proposed an adaptation of the learning process of
Tree Augmented Naive Bayes classifier from incomplete data. In their work, any variable can
have missing values in the dataset. The TAN algorithm can be adapted to learn from incomplete
datasets, such that most available data will be used in TAN structure learning. The procedure
is shown in Algorithm 1, where the Conditional Mutual Information "CMI" is defined as:

I(X,Y |Z) =
∑
x,y,z

f(x,y,z) log
f(z)f(x,y,z)

f(x,z)f(y,z)

where the sum is only over x,y,z such that f(x,z) > 0 and f(y,z) > 0. In Algorithm 1, on line
25 we build a complete undirected graph in which the vertices are the attributes A1, . . . , An.
Annotate the weight of an edge connecting Ai to Aj , i 6= j by Ipij = I(Ai, Aj |C) One line 26
we build a subgraph from G, without any cycles and with the maximum possible total edge
weight. On line 27 we transform the resulting undirected tree to a directed one by choosing a
root variable and setting the direction of all edges to be outward from it. On line 28 we add the
class C to the graph as a node and add edges from C to all other nodes in the graph

The idea behind Algorithm 1 is that we believe if we use more data then the estimates of
conditional mutual information are more reliable.

6 Imbalanced Data
In case of imbalanced data the classifiers are more sensitive to detecting the majority class and
less sensitive to the minority class. Thus, if we don’t take care of the issue, the classification
output will be biased, in many cases resulting in always predicting the majority class. Many
methods have been proposed in the past few years to deal with imbalanced data. In our research
the mortality rate of patients with myocardial infarction refers to the percentage of patients who
have not survived more than 30 days, where the results are 89% of patients survive and 11%
of patients do not survive, therefore the data are quite imbalanced. One of the most common
and simplest strategies to handle imbalanced data is to under-sample the majority class [11, 12].
While different techniques have been proposed in the past, they did not bring any improvement
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Algorithm 1 TAN For Incomplete Data
1: procedure CMI(Ai, Aj, C}) . // Conditional Mutual Information
2: D = {u1, . . . ,uN},um = (ai, aj, c),m ∈ {1, . . . , N}, such that um =

(a1, . . . , an, c) ∈ D
3: Foreach um ∈ D
4: If(ai == NA|aj == NA)
5: Delete um from D
6: endfor
7: Compute Ip = I(Ai, Aj|C) from D
8: return Ip
9: Endprocedure

10: Read D = {u1, . . . ,uN},um = (a1, . . . , an, c),m ∈ {1, . . . , N}
11: var:
12: n the number of attribute variables A;
13: Ip[n][n] the WeightMatrix;
14: UG the UndirectedGraph;
15: UT the UndirectedTree;
16: T the DirectedTree;
17: TAN the DirectedGraph;
18: Foreach Ai, i ∈ {1, . . . , n− 1}
19: Foreach Aj, j ∈ {2, . . . , n}
20: Ipij = CMI(Ai, Aj, C)
21: Ip[i][j] = Ipij
22: Ip[j][i] = Ipij
23: EndForeach
24: EndForeach
25: G = ConstructUndirectedGraph(Ip[i][j])
26: UT = MaximumWeightedSpanningTree(G);
27: T = MakeDirected(UT );
28: TAN = AddClass(T );

with respect to simply selecting samples at random. So, for this analysis we propose the following
steps:

• Let M be the number of samples for the majority class, and N be the number of samples
for the minority class, and M be L times greater than N.

• Divide the instances which have majority class into L distinct clusters.

• Train L predictors, where each predictor is trained on only one of the distinct clusters,
but on all of the data from the rare class. To be clear, the data from the minority class
are used in the training of all L predictors.

• Use model averaging for the L learned predictors as your final predictor. i.e (in our
case we will compute a conditional mutual information between each pair of attributes
(Ai, Aj), i, j ∈ 1, 2, . . . , n, i 6= j given the class L times for each pair, in each time will use
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only one of the distinct clusters and all data from the minority class, then we will use the
average of conditional mutual information for each pair to compute a weight matrix).

After integrating this step into the Algorithm 1, we will have a TAN algorithm which deals with
an incomplete and imbalance data 2:

Algorithm 2 TAN for incomplete and imbalance data
1: var
2: M The number of samples for the majority class
3: N The number of samples for the minority class
4: DT All instances of the majority class, DT ⊂ D
5: DF All instances of the minority class, DF ⊂ D
6: integer division L = M/N
7: Divide DT to L parts, DTk , k ∈ {1, . . . , L}
8: Foreach DTk

9: Dk = DTk ∪DF

10: EndForeach
11: Compute WeightMatrix Ipk [n][n] foreach Dk

12: Îp[n][n] = the average of Ipk [n][n], k ∈ 1, . . . , L . // Îp is the WeightMatrix which
wwill be used in Algorithm 1

13: Continue from line 26 in Algorithm 1 using Îp

7 Results
For each data record classified by a classifier there are four possible classification results. Either
the classifier got a positive example labeled as positive (in our data the positive example is
the patient survived) or it made a mistake and marked it as negative. Conversely, a negative
example may have been mislabeled as a positive one, or correctly marked as negative. Our
results are summarized in Figure 2 using the ROC curves. We use the 10 fold cross validation
as the model evaluation method. The ROC curve shows how the classifier can sacrifice the
true positive rate (TP rate: number of positive examples, labeled as such over total positives)
for the false positive rate(FP rate: number of negative examples, labeled as positive over total
negatives) (1-specificity) by plotting the TP rate to the FP rate. In other words, it shows how
many correct positive classifications can be gained as you allow for more and more false positives
by changing the threshold.

In Figure 2 we compare our results with normal TAN ([8]) and SMOTE algorithm ([4]) for
TAN. Algorithm 2 has achieved the highest area under the ROC curve (AUC) with 0.82. The
results of Algorithm 1 (ROC = 0.77) is better than the normal TAN algorithm (ROC = 0.62).
But SMOTE algorithm with TAN (ROC = 0.802) is better than Algorithm 1.

8 Conclusions
First, we used medical data on patients with AIM for preliminary statistical analysis. We
found a significant difference between Syrian patients and Czech patients. Second, Bayesian
networks are a tool of choice for reasoning in uncertainty, with incomplete data. However, often,
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Bayesian network structural learning only deals with complete data. We have proposed here an
adaptation of the learning process of the Tree Augmented Naive Bayes classifier from incomplete
and imbalanced datasets. This methods have been successfully tested on our dataset. We have
seen that our Algorithm 2 performed better than normal TAN and TAN-SOMTE.
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Abstract. During the recent developments of quantum theory it has been clarified that the
observable quantities (like energy or position) may be represented by operators Λ (with real
spectra) which are manifestly non-Hermitian in a preselected “friendly” Hilbert space H(F ).
The consistency of these models is known to require an upgrade of the inner product, i.e.,
mathematically speaking, a transition H(F ) → H(S) to another, “standard” Hilbert space. We
prove that whenever we are given more than one candidate for an observable (i.e., say, two
operators Λ0 and Λ1) in advance, such an upgrade need not exist in general.

Keywords: non-Hermitian operator, two observables, PT -symmetry, metric operator

Abstrakt. Během nedávného rozvoje kvantové teorie bylo vyjasněno, že pozorovatelné veličiny
(jako energie či poloha) mohou být reprezentovány operátory Λ (s reálným spektrem), které
jsou zřejmě nehermitovské v předvybraném ”přátelském“ Hilbertově prostoru H(F ). Konzistence
takovýchto modelů vyžaduje změnu skalárního součinu, to jest, matematicky řečeno, přechod
H(F ) → H(S) do jiného, ”standardního“ Hilbertova prostoru. Ukazujeme, že kdykoliv máme více
než jednoho kandidáta na pozorovatelnou (to jest například dva operátory Λ0 a Λ1), takovýto
přechod nemusí obecně vůbec existovat.

Klíčová slova: nehermitovský operátor, dvě pozorovatelné, PT -symetrie, metrický operátor
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Abstract. This work deals with testing of a numerical method for solving two phase flow
problems in porous media. We briefly describe the numerical method, it’s implementation, and
benchmark problems. First, the method is verified using test problem in homogeneous porous
media in 2D and 3D. Results show that the method is convergent and the experimental order
of convergence is slightly less than one. On the problem in heterogeneous porous media, the
method produces oscillations at the interface between different porous media and we demon-
strate that these oscillations are not caused by the coarseness of the grid. To overcome the
oscillations, we use the mass lumping technique which eliminates the oscillations at the inter-
face. Tests on the problems in homogeneous porous media show that although the mass lumping
technique slightly decreases the accuracy of the method, the experimental order of convergence
remains the same.

Keywords: two phase flow, heterogeneity, mixed hybrid finite element method, mass lumping,
porous media, upwind

Abstrakt. Článek se věnuje testování numerické metody pro řešení úloh dvoufázového proudění
v porézním prostředí. Na začátku je stručně popsána numerická metoda, její implementace
a testovací úlohy. Metoda je nejprve testována na úloze v homogenním prostředí ve 2D i
3D. Ukazuje se, že numerické schéma je konvergentní s experimentálním řádem konvergence
o něco menším než jedna. Při řešení úlohy v heterogenním prostředí se na rozhraní mezi
různými prostředími objevují oscilace, u kterých ukážeme, že nejsou způsobeny použitou sítí.
Pro odstranění oscilací použijeme techniku mass lumping, která oscilace na rozhraní výrazně
omezí. Na testech v homogenním prostředí se pak ukazuje, že ačkoli použití mass lumpingu
nepatrně zhorší přesnost numerické metody, experimentální řád konvergence zůstává stejný.

Klíčová slova: dvoufázové proudění, heterogenity, hybridní metoda smíšených konečných prvků,
mass lumping, porézní prostředí, upwind

1 Introduction

Mathematical modeling of two phase flow in porous media can be used in many appli-
cations. For instance prediction of contaminant transport can be used for protection of

∗The work was supported by the Czech Science Foundation project no. 17-06759S: Investigation of
shallow subsurface flow with phase transitions and by grant No. SGS17/194/OHK4/3T/14 of the Grant
Agency of the Czech Technical University in Prague.
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water resources or for sanitation of dangerous substances leakage. Except for special
cases, there is no known way how to solve these problems exactly but with numerical
methods, we can find at least a good approximation of the solution.

This paper focuses on the verification of the proposed numerical method. The method
is implemented in parallel using MPI [12, 13]. Firstly, we test the method on two phase flow
problems in homogeneous porous media in 2D and 3D. We further proceed with a problem
in heterogeneous porous media which shows limitations of the method. Therefore, we
propose a modification using mass lumping technique which helps to solve problems in
heterogeneous porous media correctly. Finally, we compare both approaches on problems
with known exact solution.

2 Numerical method

Here, we briefly describe the numerical method. A detailed description of the method
together with a different approach to parallelism, using CUDA, is described in [7]. The
method can be used for solving a system of n partial differential equations in the following
coefficient form:

n∑
j=1

Ni,j
∂Zj
∂t

+∇ ·
[
mi

(
−

n∑
j=1

Di,j∇Zj + wi

)]
= fi, (1)

where Zj = Zj(x, t), j = 1, . . . , n, are unknown functions (∀t > 0, ∀x ∈ Ω) , Ω ⊂ Rd is
the computational domain, and d is the spatial dimension, d ∈ {1, 2, 3}. Ni,j, fi, and
mi are scalar coefficients, wi are vector coefficients and Di,j are symmetric, second order
tensors. The coefficients can be functions of time t and spatial coordinates x, but also of
the unknown functions Zj.

The method was implemented in C++ and for the parallel implementation, MPI was
used. Serial implementation of the method is described in detail in [7], parallel imple-
mentation in 2D, using MPI, is described in [13]. The parallelism in 3D which is used in
this paper is a direct extension of the 2D case.

Triangular and tetrahedral meshes used in this paper were generated by Gmsh [8].

2.1 Coefficients in general formulation

All benchmark problems presented here are represented by the following choice of coeffi-
cients in the general formulation of the method given by Eq. (1):

N =

(
−Φρw

dSw
dpc

0

−Φρn
dSw
dpc

ΦSn
dρn
dpn

)
, m =

(
ρw

λw
λt

ρn
λn
λt

)
,

D =

(
λtK −λtK

0 λtK

)
, w =

(
−λtρwKg
λtρnKg

)
, f =

(
−fw
fn

)
,
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where:
Φ [−] is the porosity,
Sα [−] is the α-phase saturation,
ρα [kg ·m−3] is the α-phase density,
fα [kg ·m−3 · s−1] are the sinks/sources,
g [m · s−2] is the gravity vector,
K [m2] is the permeability tensor,
krα [−] is relative permeability (Burdine [2] or Mualem [11]

model),
µα [kg ·m−1 · s−1] is dynamic viscosity of the phase α,
λα = krα

µα
[kg−1 ·m · s] is the α-phase mobility (λt = λw + λn),

pα [Pa] is the α-phase pressure,
α ∈ {w, n} denotes the wetting or non–wetting phase.

These coefficients represent mass conservation law and Darcy’s law for both phases, refer
to [6] for details .

3 Homogeneous porous media

In this section, we verify the numerical method on benchmark problems in 2D and 3D
in homogeneous porous media. For these problems, the exact solution can be found and,
therefore, we can compute the errors of the numerical solution and experimental order of
convergence.

3.1 Benchmark problems

The benchmark problem used in this section is the extension of the McWhorter and
Sunada problem into an arbitrary dimension. We only briefly describe the configuration
of the problem, a more detailed description together with the method to find the exact
solution can be found in [5, 10]. We assume a radially symmetric domain with the
prescribed initial saturation Si and the inflow at the origin in the form:

Q0(t) = At
d−2
2 . (2)

The problem configuration in 2D is illustrated in Fig. 1. This setting together with the
neglected gravity and the assumption of incompressible phases allow us to find the exact
semi-analytical solution of the problem [5, 10].

The problem is defined in the whole R2 or R3 but due to the assumed radial symmetry,
we restrict ourselves only to one quadrant in 2D or one octant in 3D, respectively. We
also have to restrict ourselves to a domain of finite length and compare the results at
a certain time when the head of the solution does not reach the boundary representing
infinity.

In this paper, the computational domains are a square with 1 m long side and a cube
with 1 m long edge in 2D and 3D, respectively. In both cases, we compare the solutions
at time t = 20 000 s.

The exact solution requires prescribing a flux at the origin (point-wise). Numerical
method used in this paper cannot handle to prescribe a flux in one point, therefore, we



216 J. Solovský

0

~u
~u
~u
~u

~u~u~u
~u
~u
~u

~u ~u

Si

S0 = 1
point source

Figure 1: Benchmark problem configuration in 2D.

approximate the point inflow condition via a boundary condition by prescribing the flux
through all element boundaries (edges, faces) that are adjacent to the origin as illustrated
in Fig. 2. The corresponding value of the Neumann boundary condition is computed so
that the total volume injected through the boundary is the same as the volume given by
Eq. (2).

We set coefficients A = 10−5 m2 · s−1 for the 2D case and A = 10−7 m3 · s− 3
2 for the

3D case. Initial saturation in the domain is Si = 0.95 for both cases.

x

y

O
inNAPL injection

(b) Triangles

inNAPL injection area y
x

z

O

(a) Tetrahedra

Figure 2: Approximation of the point injection flux at the origin in 2D and 3D.

3.2 Numerical analysis

In this paper, Brooks–Corey [1] and van Genuchten [14] models for capillary pressure
together with Burdine [2] and Mualem [11] models for relative permeability, respectively,
are used.

Numerical solutions in 2D (contours) and 3D (isosurfaces) together with the compar-
ison with the exact solution in radial coordinates are shown in Fig. 3.

With the known exact solution, we can compute errors of the numerical solution and
the experimental order of convergence. Results for 2D and 3D are shown in Table 2 and 3,
respectively. Properties of the used meshes are given in Table 1, the following notation
is used:
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Mesh ID h Elements Degrees of freedom

2D41 6.71 · 10−2 242 766

2D42 3.49 · 10−2 944 2 912

2D43 1.64 · 10−2 3 714 11 302

2D44 8.73 · 10−3 14 788 44 684

2D45 4.23 · 10−3 59 336 178 648

3D41 2.13 · 10−1 1 312 5 874

3D42 1.27 · 10−1 3 697 15 546

3D43 6.29 · 10−2 29 673 121 678

3D44 3.48 · 10−2 240 372 973 750

3D45 1.84 · 10−2 1 939 413 7 807 218

Table 1: Properties of the meshes used in the benchmarks described in Section 3.1.

Brooks & Corey van Genuchten
Id. ‖Eh,Sn

‖1 eocSn,1 ‖Eh,Sn
‖2 eocSn,2 ‖Eh,Sn

‖1 eocSn,1 ‖Eh,Sn
‖2 eocSn,2

2D41 1,45 · 10
−2

0,92
3,17 · 10−2

0,78
1,42 · 10−2

0,98
2,12 · 10−2

0,94
2D42 7,94 · 10

−3
0,78

1,91 · 10−2
0,60

7,51 · 10−3
0,86

1,15 · 10−2
0,84

2D43 4,40 · 10
−3

0,95
1,21 · 10−2

0,69
3,93 · 10−3

1,05
6,11 · 10−3

1,03
2D44 2,41 · 10

−3
0,85

7,84 · 10−3
0,66

2,03 · 10−3
0,90

3,19 · 10−3
0,89

2D45 1,30 · 10
−3 4,85 · 10−3 1,06 · 10−3 1,68 · 10−3

Table 2: Errors of the numerical solution and experimental orders of convergence in 2D
for the benchmark problem described in Section 3.1.

h mesh element size. To compute h, we circumscribe a circle (ball) to each triangle
(tetrahedron) of the mesh and take h as the radius of the largest such circle (ball).

‖Eh,Sn‖p is the Lp norm of the difference between the exact and numerical solution of the
saturation Sn on mesh with element size h.

eocSn,p is the experimental order of convergence in Lp norm, see [7] for details.
Different results for the Brooks–Corey and van Genuchten models are caused by dif-

ferent capillary pressure - saturation relationships for the near-water-saturated state.
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Brooks & Corey van Genuchten
Id. ‖Eh,Sn

‖1 eocSn,1 ‖Eh,Sn
‖2 eocSn,2 ‖Eh,Sn

‖1 eocSn,1 ‖Eh,Sn
‖2 eocSn,2

3D41 1,12 · 10
−2

0,69
3,38 · 10−2

0,60
1,21 · 10−2

0,77
2,43 · 10−2

0,73
3D42 7,82 · 10

−3
0,84

2,47 · 10−2
0,72

8,13 · 10−3
0,93

1,66 · 10−2
0,90

3D43 4,35 · 10
−3

1,03
1,49 · 10−2

0,92
4,25 · 10−3

1,14
8,84 · 10−3

1,12
3D44 2,37 · 10

−3
0,82

8,63 · 10−3
0,79

2,17 · 10−3
1,04

4,56 · 10−3
1,02

3D45 1,41 · 10
−3 5,23 · 10−3 1,12 · 10−3 2,39 · 10−3

Table 3: Errors of the numerical solution and experimental orders of convergence in 3D
for the benchmark problem described in Section 3.1.

(a) 2D - contours of saturation Sn.
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(b) 2D - comparison with the exact solution.

(c) 3D - isosurfaces of saturation Sn.
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(d) 3D - comparison with the exact solution.

Figure 3: Numerical results and comparison with the exact solution. In radial coordinates,
ρ denotes the distance from the origin (injection point).
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4 Heterogeneous porous media

In this section, we focus on problems in heterogeneous porous media. As was shown
in [12], the numerical method cannot correctly capture the effects at the interface between
two different porous media. Oscillations appear in the solution and are more apparent in
the case of flow from finer to coarser sand.

To demonstrate the oscillations in this work, we use the same benchmark problem as
in [12] which was originally proposed in [9]. The problem setup is shown in Fig. 4. We
consider three layers of sand, the middle one finer than the remaining two, initially fully
saturated with water. NAPL is injected through the upper boundary with a given flux.

Fine

Coarse

Coarse

0,5 m

0,155 m

0,2 m

0,145 m

Figure 4: Heterogeneous problem setup based on [9, 12].

We use the numerical solution obtained using the vertex centered finite volume method
in 1D on a very fine mesh as a reference solution to which we compare our numerical
results. The 1D solution taken from [4] is in a good match with results provided in [9].
We want to compare our 2D results with this 1D solution. We do not use only the values
over single crossection through the center of the domain, but we plot superposed values
from all the elements of the mesh using their y position of the center.

Numerical results for the original variant of the method are shown in Figs. 5a, 5c,
and 5e. We can see the oscillations that are present for several mesh refinements and,
therefore, are not caused by the coarseness of the mesh.

4.1 Mass Lumping

To overcome the oscillations at the material interface we use the mass lumping technique.
One of the steps of the MHFEM method used in this paper is to discretize numerical fluxes
between elements. This is done by computing matrices Bi,j,K , with elements defined by
the following integral [12]:

Bi,j,K,E,F =

∫
K

ωT
K,FD

−1
i,j ωK,E, (3)

where K is the element, ωK,F and ωK,E are the basis functions of the lowest order Raviart-
Thomas-Nédelec space. Element K is a simplex (line segment, triangle or tetrahedron
depending on the dimension of the problem) and integrated functions are polynomials
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Brooks & Corey van Genuchten
Id. ‖Eh,Sn

‖1 eocSn,1 ‖Eh,Sn
‖2 eocSn,2 ‖Eh,Sn

‖1 eocSn,1 ‖Eh,Sn
‖2 eocSn,2

2D41 1,48 · 10
−2

0,91
3,22 · 10−2

0,76
1,44 · 10−2

0,98
2,16 · 10−2

0,95
2D42 8,17 · 10

−3
0,77

1,96 · 10−2
0,59

7,59 · 10−3
0,86

1,17 · 10−2
0,85

2D43 4,56 · 10
−3

0,96
1,25 · 10−2

0,69
3,95 · 10−3

1,04
6,15 · 10−3

1,04
2D44 2,49 · 10

−3
0,86

8,10 · 10−3
0,68

2,04 · 10−3
0,90

3,20 · 10−3
0,89

2D45 1,33 · 10
−3 4,96 · 10−3 1,06 · 10−3 1,68 · 10−3

Table 4: Errors of the numerical solution and experimental orders of convergence in 2D
for the mass lumping variant of the method.

of the second order and, therefore, the integral in Eq. (3) can be computed exactly
(in the following using notation exact integration). The value of this integral can be
also approximated using a quadrature rule [3]. We use the following quadrature rule to
approximate the integral of arbitrary function over simplex K.∫

K

f ≈ |K|1
k

k∑
i=1

f(xi), (4)

where k is the number of vertices of the simplex (line segment k = 2, triangle k = 3,
tetrahedron k = 4) and xi are the positions of the vertices. In our case, the function f is
the integrated function on the right hand side of Eq. (3).

Numerical solutions using mass lumping technique are shown in Figs. 5b, 5d, and
5f. In the comparison with the basic variant of the method using exact integration, it
can be seen that the use of the mass lumping technique eliminates the oscillations at the
material interface.

5 Mass Lumping in homogeneous porous media

In the previous section, we showed that use of mass lumping eliminates the oscillations
at the material interface. In this section, we show how the mass lumping technique
affects the accuracy of the method in the case of homogeneous porous media where we
can compare the results with exact solutions. We use the benchmark problem described
in Section 3.1, solve it with the mass lumping variant of the method, and compare the
results with those given in Section 3.2.

Errors of the solution and experimental orders of convergence in the 2D and 3D cases
are shown in Table 4 and 5, respectively.

Results show that in both 2D and 3D cases, the errors of the mass lumping variant
of the method are slightly worse than without mass lumping but the method is still
convergent with the same experimental order of convergence.
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(a) 1 506 elements, exact integration.
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(c) 5 886 elements, exact integration.
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 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.1  0.2  0.3  0.4  0.5

S
n
 [

−
]

y [m]

1D reference solution
Exact integration

(e) 23 308 elements, exact integration.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.1  0.2  0.3  0.4  0.5

S
n
 [

−
]

y [m]

1D reference solution
Mass lumping

(f) 23 308 elements, mass lumping.

Figure 5: Comparison between the exact integration and the mass lumping technique on
various meshes for the solution in a heterogeneous porous medium.

Brooks & Corey van Genuchten
Id. ‖Eh,Sn

‖1 eocSn,1 ‖Eh,Sn
‖2 eocSn,2 ‖Eh,Sn

‖1 eocSn,1 ‖Eh,Sn
‖2 eocSn,2

3D41 1,13 · 10
−2

0,67
3,46 · 10−2

0,61
1,22 · 10−2

0,77
2,49 · 10−2

0,74
3D42 7,96 · 10

−3
0,82

2,52 · 10−2
0,72

8,22 · 10−3
0,93

1,70 · 10−2
0,91

3D43 4,50 · 10
−3

1,01
1,53 · 10−2

0,92
4,30 · 10−3

1,13
8,97 · 10−3

1,12
3D44 2,47 · 10

−3
0,83

8,64 · 10−3
0,79

2,20 · 10−3
1,04

4,63 · 10−3
1,02

3D45 1,44 · 10
−3 5,26 · 10−3 1,15 · 10−3 2,41 · 10−3

Table 5: Errors of the numerical solution and experimental orders of convergence in 3D
for the mass lumping variant of the method.
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6 Conclusion

In this work, we tested the numerical method for solving two phase flow problems in
porous media. We showed that for homogeneous porous media, the method is convergent
for both 2D and 3D cases with the experimental order of convergence slightly less than
one. In the case of heterogeneous porous media, the method produces oscillations at
the interface between different porous media when exact evaluation of the integrals in
matrix B is used. To overcome the difficulties, we used the mass lumping technique which
eliminates the oscillations and only very slightly affects the accuracy of the method as
was shown in the comparison of the solutions using the benchmark problems in 2D and
3D with known exact solutions.
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Abstract. The concept of continuous time fractional Levy processes and its discrete time coun-
terpart ARFIMA model are introduced. This class contains wide range of processes exhibiting
so called fractional behaviour. Methods for computationally simple estimation of key ARFIMA
parameters are presented.
The theory of fractional Levy processes is then applied to financial time series data. Key
ARFIMA parameters are estimated on rolling window basis for S&P 500 daily data and transmu-
tations of statistics are detected in the original data based on time evolution of these parameters.
This transmutation reminds phase transitions in statistical physics.
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Abstrakt. Představíme frakční Levyho procesy a jejich diskrétní verzi ARFIMA model. Tato
třída obsahuje širokou škálu procesů vyznačující se takzvaným frakčním chováním. Efektivní
metody pro odhad ARFIMA parametrů jsou představeny.
Tato teorii je poté aplikována na finanční data. ARFIMA parametry jsou odhadnuty na posou-
vající se podmnožině uvažovaných dat a transmutace statistika je detekována na základě jejich
časového vývoje.

1 Introduction

Fractional processes have been successfully applied to number of problems in physics,
biology or economy [1,12]. They are closely related to anomalous (non-Brownian) diffu-
sion and they lead to non- standard scaling relations between temporal and positional
coordinates, i.e. standard Brownian scaling

〈x2(t)〉 ∼ σt (1)

is no longer valid. For self similar processes this can be caused by two mechanisms - by
correlations between increments of the process or by infinite variance of underlying pro-
cess [2]. We will see that fractional Levy processes can compass both of these mechanism
in unified framework.

∗This work was supported by the Grant Agency of the Czech Technical University in Prague, grant
No. SGS16/239/OHK4/3T/14 and by Czech Science Foundation Grant No. 17-33812L.
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There is a number of ways which may give a rise to fractional dynamics. Trapping or
long range memory effects may for example lead to this behaviour. However probably the
most illustrative way to derive fractional processes is from continuous time random walk.
It is well known result that continuous time random walk with finite average waiting
time between jumps and finite jump size variance leads to Brownian motion in the limit.
However if one of these assumptions fails to be satisfied the resulting process exhibits
fractional behaviour. The infinite average waiting time leads to processes with various
memory effects, fractional Brownian motion being the most prominent example, while
infinite jump variance leads to stable processes. These are the two already mention mech-
anism leading to fractional behaviour.
Fractional processes can be well described using fractional differential equations [3].
Changing the order of temporal and spatial derivative in Fokker-Planck equation to non-
integer order leads to desired distortion of standard Brownian scaling. However there is
a number of different non-equivalent definitions of fractional differentiation and unified
framework for fractional processes defined as solutions of fractional differential equations
is still missing.
That is why we will not pursue the approach based on fractional differential equations
in this paper. Instead we will start from definition of so called Levy fractional pro-
cesses [4]. This class of processes directly combines fractional behaviour observed for
fractional Brownian motion with behaviour of heavy tailed stable processes. This means
that fractional behaviour of these processes is caused simultaneously by both correlations
between increments and infinite variance of underlying process. While these processes
cover incredibly wide range of processes and they likely provide general enough framework
to model any type of fractional behaviour their analytical tractability is a major issue.
Even simulation of such processes is a complicated issue with no satisfying solution am
aware of.
However in the limit fractional Levy processes can be written as normalized sums of so
called ARFIMA processes [5]. ARFIMA is discrete time stochastic model which directly
generalizes well known ARMA linear model. Broadly speaking ARFIMA model describes
(in the limit) behaviour of increments of Levy fractional processes.
Fitting ARFIMA model is complicated but tractable process [6]. However for our pur-
poses we will only need to fit two main parameters of ARFIMA process - parameters
effecting deformation of scaling of temporal and positional coordinate. Discontinuities
and local extremes in time evolution of these parameters may be regarded as points of
transmutation of underlying statistics. Furthermore in analogy to truncated Levy flights
another so called damping coefficient is introduced which essentially cuts off extreme val-
ues produced by stable noise which lead to unrealisticly high fourth moments which are
not observed in financial time series.
The class of fractional Levy processes contains essentially all self-similar processes with
stationary increments. Financial data have typically fractal nature [11] i.e. are self-similar
and the assumption of stationary increments is also in most of the cases reasonable. That
is why we believe that fractional Levy processes provide appropriate and sufficient frame-
work for financial time series modelling.
The paper is organized as follows - in the first part theoretical background behind frac-
tional Levy processes is presented. Basic properties of these processes are discussed and
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in particular two cases are mentioned - fractional Brownian motion and Levy stable pro-
cesses. Then discrete time counterpart of Levy fractional processes - ARFIMA model
- is introduced. The basic properties of this model are presented and connection with
fractional Levy processes is established.
The second part of this paper will focus mostly on numerical methods used to estimate
ARFIMA parameters and their application to real data. Computationally tractable
method is introduced which allows for effective estimation of these parameters. The
method is applied to daily data observed on financial markets during last sixty years.
Analysis of evolution of these parameters on rolling window data is then used for detec-
tion of transmutation of statistics.

2 Fractional Levy processes and ARFIMA model
General Levy fractional process can be define in analogical way as fractional Brownian
motion as an integral [7]

LαH(t) =

∫
R

(
(t− x)d+ − (−x)d+

)
dLα(x) (2)

where Lα is α-stable symmetric process, d = H − 1/α with H ∈ (0, 1) and 0 < α ≤ 2
and (x)+ = max(x, 0). In what follows we will always also consider α > 1 because Levy
processes with α < 1 have number of undesirable properties.
Parameter α is called stability index and H is famous Hurst self similarity index. Hurst
index is connected with fractal dimension of graph of the process which is equal to 2−H
[8].
Fractional Levy processes are H-self similar processes with stationary increments. They
can be described via their characteristic function [4]

ϕH,αt (z) = e−(ctH |z|)α (3)

The density of fractional Levy processes is not available in closed form in the general
case.
The alternative to describe very similar class of processes exhibiting this type of fractional
behaviour is through fractional Fokker-Planck equation. One of possible forms of this
equation is [1]

∂W

∂t
= 0D

1−γ
t Kα

∂2

∂x2
W (x, t) (4)

where 0D
1−γ
t is Riemann-Liouville derivative. Riemann-Liouville operator is integral op-

erator and therefore this equation is non-local and resulting process exhibits non-trivial
memory effects. Parameter γ effects scaling - it holds 〈x2(t)〉 ∼ tγ which means that case
γ > 1 corresponds to super-diffusion and γ < 1 to sub-diffusion.
There are two special of fractional Levy processes we should mention.

Levy stable processes: The case d = 0 i.e. H = 1/α leads obviously to Levy stable
processes [2]. Levy stable processes are H-self similar processes with stationary and in-
dependent increments. The general form of characteristic function of Levy stable process
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is
lnϕt(k) = itγk − σt|k|α(1 + iβ

|k|
k
ω(k, α)) (5)

where

ω(k, α) =

{
−tan(πα/2) for α 6= 1
(2/π)ln|k| for α = 1

However in this paper we will focus only on symmetric case i.e. β = 0.
The stability index α determines the tail behaviour of density of stable process (if α < 2)

pα(x) ∼ 1

|x|α+1
|x| → ∞ (6)

The closed form density for Levy processes is available only in several cases - most
important being case α = 2 which leads to Brownian motion. All Levy processes other
than Brownian motion have infinite variance.
The theoretical importance of stable distributions follows from generalized central limit
theorem - stable distributions are attractors for normalized sums of iid variables with
infinite variance [10].
Stable processes with α < 2 have qualitatively different behaviour than Brownian motion,
one of important differences is the fact that fractional dimension of a trail of a stable pro-
cess is equal to max(α, 1) [8]. This means that Brownian motion can fill two dimensional
space while any other stable process cannot. This behaviour is due to the fact that heavy
tailed stable processes move by very small jumps with occasional large jump - this means
that they form clusters instead of filling the whole space.

Fractional Brownian motion: The case α = 2 leads to integration with respect to
Brownian motion which yields fractional Brownian motion [8].
Fractional BM is H-self similar Gaussian process with stationary but not with indepen-
dent increments. The increments of fractional BM are positively correlated in the case
H > 1/2 and negatively for H < 1/2. This means that the case H > 1/2 leads to super-
diffusion and long range dependence of increments, if H < 1/2 increments are negatively
correlated and process is sub-diffusive. The case H = 1/2 is just Brownian motion.

2.1 ARFIMA model

Autoregressive fractionally integrated moving average model (ARFIMA) [5,13] generalizes
the standard linear ARMA model in two ways, naturally these two generalizations repre-
sent the two mechanisms leading to fractional behaviour. The general form of ARFIMA
model is

Ap(B)Xt = Bq(B)(1−B)−dZt (7)

where B is a lag operator, A,B are polynomials of order p respectively q and Zt are iid
α-stable variables representing random noise.
The term (1−B)−d is defined via Taylor expansion as

(1−B)−dZt =
∞∑
i=0

Γ(i+ d)

Γ(i)Γ(d+ 1)
Zt−i (8)
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We denote the above defined model as ARFIMA(p, d, q, α), for it to be correctly specified
(converge a.s.) the following must hold [6]

H = d+ 1/α < 1 (9)

Furthermore if roots of polynomial Ap lie outside of unit circle the ARFIMA process is
stationary.
Stationary ARFIMA process is asymptotically H self-similar with H = d + 1/α. The
most important result for us is the following limiting relation, let X be ARFIMA process
then

N−H
bNtc∑
i=1

Xi
D→ LαH(t) N →∞ (10)

So ARFIMAmodel can be considered as discrete time version of Levy fractional processes.
The case d = 0 leads to ARMA processes (with α-stable noise) and exponentially decaying
autocorrelation functions. The case d > 0 is similar to the case of fractional Brownian
motion and leads to long range dependence

∞∑
k=0

E[X(0)X(k)] =∞ (11)

The case d < 0 is analogical to the case of fractional Brownian motion with H < 1/2 and
leads to short and negative correlations.
Even though ARFIMA is discrete time model it is quite complicated and even simulation
of ARFIMA is quite tricky. However it is much more tractable than fractional Levy
processes and at the same time it exhibits fractional dynamics caused by both non-trivial
correlation structure and by infinite variance of its noise process.

3 Parameter estimation and transmutation of statistics

The methods for estimating parameters α and d of ARFIMA model are presented in this
section and applied to S&P 500 daily data.

3.1 Numerical estimation of ARFIMA parameters

ARFIMA model is defined by four parameters d, α, p, q and by p+ q coefficients of poly-
nomials A and B. Due to large complexity of ARFIMA model parameters p, q are often
assumed to be equal to one at most which still gives the ARFIMA model sufficient gen-
erality. The estimation of coefficient of polynomials A,B can then be formulated as well
defined optimization problem and solved numerically [6].
However the most important parameters of ARFIMA model are the two parameters defin-
ing the fractional nature of the model d and α. We will introduce computationally simple
methods to estimate these parameters in the following paragraphs.
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Estimation of anomalous diffusion parameter
The parameter d effects the memory effects of the underlying process, it is sometimes

called memory or long range dependence parameter.
Most common way to estimate this parameter is so called rescaled range (R/S) method
[11]. It estimates Hurst exponent as

E[
R(t)

σ(t)
] ∼ CtH t→∞ (12)

where R(t) is a range of the cumulative sum of the underlying stationary (noise) process
and σ(t) denotes standard deviation of the noise process.
However this method returns the true parameter H only in Gaussian case, it generally
gives value d + 1/2 which is equal to the true Hurst exponent only in the case α = 2.
In other words this method assumes that the fractional behaviour of the underlying self-
similar process is caused solely by the correlations between increments (i.e. the underlying
process is fractional BM) and therefore fails in the general case of fractional Levy pro-
cesses.
Similarly there are methods assuming that fractional behaviour of self-similar process is
caused solely by infinite variance of the underlying noise process. Mantegna and Stanley
for example proposed the following test [9]:
For process with stationary increments self-similarity implies the following relation pt(0) =
1
tH
p1(0). First we estimate an empirical density at zero p̂t(0). This can be done from the

histogram for example. Then we get the following relation

ln p̂t(0) ' H ln
∆

t
+ ln p̂∆(0) (13)

Mantegna and Stanley applied this to SP 500 and obtained H ' 0, 55. They concluded
the α-stable model with α ' 1, 8. However this test implicitly assumes that the other
source of fractional behaviour is not present (i.e. that process has independent incre-
ments).
We instead propose the following simple method which seems to provide accurate esti-
mated of parameter d. We define mean sample displacement as follows

MN(t) =
1

N − t− 1

N−t∑
i=0

(Xi+t −Xi)
2 (14)

The key result is that if the process Xt is cumulative sum process of stationary ARFIMA
process (with α > 1) then the following asymptotic relation holds (for large N) [6]

MN(t) ∼ t2d+1 (15)

So clearly the case d = H − 1/α > 0 corresponds to super diffusion and d = H − 1/α < 0
leads to sub diffusion. Interesting is the case d < 0 with non-Gaussian noise, in this case
the large jumps produced by stable noise are compensated by large jumps of opposite
sign and on average the diffusion of the process is slower that in the standard Brownian
case.
The proposed method of estimation of parameter d is the following:
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1. Estimate MN(t) for t = 1, 2, .., 10

2. Run regression lnMN(t) ∼ ln t

3. Take the calculated slope δ and calculate d = δ−1
2

The proposed estimator is consistent, it has been tested and seems to produce reliable
results. However in some case it is required to calculateMN(t) for more values of t before
running the regression.

Estimation of stability index
There is number of ways in which parameters of stable distribution can be fitted. The

most common ones are maximum likelihood method (using approximate likelihood func-
tion), methods based and tabulated quantile values and methods based on regression of
empirical characteristic function. The regression methods seems to be most reliable [14].
However we are interested only in stability parameter α, so we will follow different ap-
proach. We present method for calculation of Hurst index H applicable for general class
of fractional Levy processes. Combined with previous method to estimate d we then
obtain stability index as α = 1

H−d .
We will apply concept of p-variation for this analysis, we define sample p-variation of
process Xi∈{1..N} of lag m as [16]

V p
m =

N/m−1∑
i=0

|X(i+1)m −Xim|p (16)

Let us assume that X is cumulative sum process of stationary ARFIMA process, then
for sufficiently large N/m it holds [6]

1. if α = 2 or if 1 < α < 2 and d ≥ 0

V p
m ∼ mHp−1 (17)

2. if 1 < α < 2 and d < 0
V p
m ∼ mHp−p/α (18)

It worth noticing that in the first case variation increases with growing p but it decreases
in the second case.
In the first case the following estimation technique can be applied.

1. Estimate V p
m for p = 1/{0.01, 0.02..1}

2. For fixed m find p that minimizes (
V pm−V p1
V p1

)2

3. estimate H = 1/p

The appropriate choice of m has to done based on sample size, generally it is better to
choose larger m as long as N/m remains sufficiently large.
The second case can be transformed into the first case by using concept of surrogate
data, which means essentially reshuffling the (stationary increment) data. That should
break the correlation structure within the data and essentially set d = 0, then the same
approach can be applied.
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3.2 Transmutation of statistics in financial time series

We will apply the methods presented above to detect the transmutation of statistics in
S&P 500 daily data observed between years 1950 to 2007. There is approximately 14500
data points in analysed time series.
Proposed approach assumes that logarithms of observed prices follow fractional Levy pro-
cess. This is quite standard approach, in fact famous Black-Scholes theory assumes that
logarithms of asset prices follow particular case of fractional Levy processes - Brownian
motion. We checked stationarity of increments of the process using unit root test and
self-similarity of log-levels using rescaled range approach, both these assumptions seems
to be satisfied.
We applied methods for estimation of α and d parameters of fractional Levy process to
rolling window sample of original S&P 500 daily data. The evolution of these parameters
determining the fractional nature of process will allow us to detect transmutations of
statistics in original data.
Some parameters of the approach were determined purely by numerical analysis, after
testing different specifications we chose

1. the length of rolling window sample to be 3000 data points

2. to replace 600 data points of the rolling window sample in every iteration

3. we chose parameter m used in estimation of Hurst index to be equal to 3

We first applied the above approach to the whole dataset, we obtained

H ' 0.56, d ' 0.01⇒ α ' 1.81 (19)

Notice that this is exactly the same result that Mantegna and Stanley obtained for similar
dataset using different approach based on self similarity, they ignored the fractionality
causes by parameter d however in this case we can see that its effect is negligible.
Application of the above described approach on rolling window sub-sample of size 3000
data points and replacing 600 data points in every iteration yielded time evolution of
Hurst index H = d + 1/α depicted in Figure 1. The dates in the graph are always the
end dates of the corresponding rolling window sample.
The red lines denotes points where derivative of H changes sign, these will be regarded
as point of transmutation of statistics. The blue line denoted point where d changes
sign from positive to negative, i.e. point of transmutation from super-diffusion to sub-
diffusion. The discontinuity of H in this point is caused by this transmutation, due to
nature of rolling window approach this discontinuity can be seen twice, however only the
first one interests us.
When we plot the original log-prices we can see that the located points of transmutation of
statistics are clearly significant For the first two "red lines" the transmutation of statistics
can be seen very clearly, the other two are less clear mainly due to smaller sample size in
these windows. This can be also seen from the following table summarizing the different
windows (separated by red lines in Figure2)
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Figure 1: Hurst index evolution

Figure 2: Hurst index evolution
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H d α kurtosis skewness damping coefficient
1st 0.55 0.02 1.89 9 -0.7 0.06%
2nd 0.65 0.07 1.72 2.5 0.23 0.16%
3rd 0.53 0 1.89 5.8 -0.42 0.08%
4th 0.52 -0.06 1.72 3.8 -0.31 0.1%
5th 0.48 -0.04 1.9 2.9 0.13 0.14%

where damping coefficient is introduced because kurtosis of simulated values from stable
distributions are much higher than observed kurtosis. The damping coefficient determines
how many extreme values simulated from given stable distribution we have to exclude for
simulated and observed kurtosis to match. We used simulation approach to determine
these values. This idea is known from theory of truncated Levy flights [12] and damping
is there introduced through cut-off of density function, for fractional processes this is
more complicated however.
The transition from super-diffusive regime to sub-diffusive regime can be clearly seen. It
also seems that there are two well defined regimes of stability index α, in addition the
stability index of whole dataset lies approximately in the middle of these. Interesting is the
third transition where H does not change much because the change in α is compensated
by change of d .
Based on our analysis of this and few similar samples we can state few empirical rules
that seem typically to hold

1. The point of transmutation is typically either point where d or derivative of d
changes sign, in this case first and last transition are related to change of sign of
derivative of d and middle transitions to sign of d

2. transitions seem often to be followed by change of sign of skewness

3. transitions caused by change of sign of d seem to behave less regularly

4. transition from super diffusive to sub diffusive regime causes discontinuities in
rolling window graph of H

Conclusion
We used formalism of fractional Levy processes and ARFIMA model to detect transmu-
tations of statistics in daily S&P 500 data observed on financial markets. The method
seems very promising and we can conclude that the underlying dynamics of the observed
data clearly changes in located points of transmutation. Proposed parameter estimation
technique seems to be quite reliable and on the whole dataset it gave similar results as
other methods typically used.
While the initial results are promising the method must be tested for much broader range
of datasets. That should also give us better understanding of underlying transitions. We
would also like to develop analytical framework for estimation of size of rolling window
sample and for number of points that are replaced in every iteration.
The main objective would be to classify transitions observed on financial markets in uni-
fied framework, the idea we have in mind at the moment is to build in this framework
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in analogy with phase transitions in statistical physics. For example the key diffusion
parameter d could play similar role as thermodynamic potentials, because the statistic
transmutation is typically related to discontinuity of d or of its derivative.
We also plan to apply this method to higher frequency data in the future, the results
there might be quite different due to much higher volatility of diffusion parameter d.
The understanding of these transition could also allow us to forecast future volatility of
underlying financial time series.
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Abstract. Multiple-instance learning (MIL) is a subset of supervised binary classification. In
MIL, multiple instances (feature vectors) belonging to a single individual are collected in bags
which are then labeled as positive or negative. Usually, no indication is given whether the label is
given by a number of positive/negative observations in a bag or if the bags differ with their entire
structure. In this contribution we research the possibility of representing the internal structure
of bags by a set of base vectors and selection matrices which are unique for each bag. This
leads to an ill-posed matrix factorization problem which we solve by employing the Bayesian
framework. Performance of the resulting algorithm is validated on a testing MIL dataset. Also,
motivation is given by describing a real-world MIL problem of detection of malware infected
computers.

Keywords: multiple-instance learning, supervised learning, variational Bayes, matrix factoriza-
tion

Abstrakt. Multiple-instance learning (MIL) je druhem binární klasifikace s učitelem. MIL prob-
lémy se vyznačují tím, že ke každému jedinci existuje několik vektorů příznaků sdružených do jed-
iné matice - tzv. bagu. Každému bagu jako celku je pak přiřazeno označení pozitivní/negativní.
Není přitom dáno, zda je např. pozitivní označení způsobeno několika pozitivními vektory mezi
zbytkem negativních nebo zda se liší celková struktura bagů. V tomto příspěvku se zabýváme
reprezentací vnitřní struktury bagů pomocí množiny základních vektorů a výběrových matic,
unikátních pro každý bag. Řešení této špatně podmíněné úlohy je navrženo ve tvaru maticové
faktorizace a je hledáno pomocí bayesovského hierarchického modelu. Odvozený algoritmus
je otestován na vzorovém MIL datasetu. V textu je také popsána motivace daná problémem
vyvstávajícím v detekci malwarem napadených počítačů.

Klíčová slova: multiple-instance learning, učení s učitelem, variační Bayes, maticová faktorizace

1 Introduction

In multiple-instance learning (MIL), the problem of supervised binary classification is
made more difficult for the learner due to a number of reasons. Firstly, instead of having
a set of instances (feature vectors) labeled as negative or positive, a number of bags of
instances is received, where the whole bags are labeled as positive or negative. Every
bag consists of a (possibly different) number of instances whose individual labels are not
known. The common conception is that a bag is labeled negative if all instances in it
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are negative, but if even a single instance is positive, then the label of the bag is also
positive [6]. Secondly, the ratio of negative to positive instances in a bag can be arbitrarily
high. In real-world problems however, this presumption can be violated and positive and
negative bags may be generated from entirely different sources. In [4], the MIL model
was formalized for the first time and a solution using axis-parallel rectangles constructed
by the conjunction of the features was proposed.

A number of different MIL problems were solved using different approaches. Decision
trees were used [3] for the drug activity prediction problem. Boosting algorithm was
proposed to be used for face detection in [2]. The kNN nearest algorithm with Hausdorff
distance [11], a variant of the support vector machine algorithm [1] or various set distances
[10] were compared on a common MIL dataset.

The problem of malware detection in computers connected to a network whose activity
we supervise is of particular interest to us. In such a case, the communication of every
computer with the outside world (using a HTTP protocol) goes through a common hub.
The observer, for a limited time frame, collects all HTTP requests of the computers in
the network. From each request, we substract a number of features (e.g. bytes sent
and received, request lenght in ms). A collection of such instances for one computer
creates a bag. Additionaly, some computers are known to be infected with malware that
communicates with the Internet. Their bags are then labeled as positive and together with
bags of some uninfected computers compose a training dataset. Presumably, positive bags
should contain a number of positive instances - requests created by the malware. This
poses an interesting MIL problem, as the ratio of positively labeled bags to negatively
labeled ones is small (∼2%) and it is possible that not all positively labelled bags actually
contain a malware-originated request. Decision trees [8] and neural networks [9] were used
to tackle this problem.

In the following text, the MIL problem will be formalized. Also, an approach leading
to matrix factorization will be outlined. The solution will be sought after using Bayesian
formalism. The performance of the resulting algorithm will be presented on a well-known
MIL dataset. Finally, some comments will be made about the method and the future
outlook

2 MIL and matrix factorization

Let the structure of the training MIL dataset be following: there are N bags - matrices
Yn ∈ RL×Mn , n ∈ N̂ . The columns of each bag are instances ynm ∈ RL,m ∈ M̂n. Labels
of the bags are stored in the vector x ∈ {0, 1}N . Now, let Y ∈ RL×M be a single bag.
Consider the following factorization

Y = BAT + E, (1)

where B ∈ RL×H is a matrix consisting of a few base, general instances. A ∈ RM×H can
be thought of as a selector matrix that chooses the base instances for a given Y . Matrix
E ∈ RL×M is the noise. This model can very well represent a true MIL problem as it
can be expected that there is a number H of universal instances that repeat across and
inside bags. Some of these can be positive and some negative.
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Computation of this factorization is an ill-posed problem and has infinitely many
solutions. To achieve the properties described above, we must impose some further re-
strictions on the simple model (1). This will be discussed in the next section.

Now, suppose that we concatenate all the positive and negative bags together in two
general matrices

T0 ∈ RL×M0 ,M0 =
N∑
n=1
xn=0

Mn, (2)

T1 ∈ RL×M1 ,M1 =
N∑
n=1
xn=1

Mn. (3)

By computing the factorization (1) for T0 and T1, we obtain two base matrices B0 and B1.
If we computed them in accordance with the properties stated above, then they should
differ by a number of base positive instances. When deciding on the label of an unknown
bag YN+1, we compute matrices A0 and A1 from (1) with YN+1 on the right side and with
a fixed B0 and B1, respectively. Then the label is given by the decomposition where the
reconstruction has smaller error, i.e.

xN+1 = argmin{||YN+1 −BiA
T
i ||2 : i ∈ {0, 1}}, (4)

where ||.||2 is the matrix L2-norm. The classification is based on the assumption that
decomposing with respect to a correct base should be more precise than the using the
wrong one. However this might not be true for all MIL datasets.

3 Variational Bayes matrix factorization
In this section, we build a bayesian hierarchical model around the simple model (1) with
the proposed factorization properties in mind, i.e. B is a matrix of base instances and A
is a selector matrix. To achieve this, we want the matrix A to be sparse. In an ideal case,
A would only consist of ones and zeros as it selected the apropriate instances encoded in
B. In a Bayesian context, the property of achieving sparsity is called ARD (automatic
relevance determination, see [12]).

3.1 The hierarchical model

We will start by choosing the data likelihood and prior for B in accordance with [7],
where ARD is implied on the columns of B and A in order to reduce the inner dimension
H. However, to achieve the proposed sparsity, we will impose the ARD property on every
single element of A by choosing a normal distribution of vectorized matrix A instead of
the the original matrix normal distribution. The data likelihood and priors on A,B are
chosen as

p(Y |B,A, σ) =MN (Y |BAT , σ−1IL, IM), (5)
p(vec(AT )|CA) = N (vec(AT )|0, C−1

A ), (6)
p(B|CB) =MN (B|0, IL, C−1

B ). (7)
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Here, NM(.) is the matrix normal distribution and N (.) is the normal distribution, Id
is identity matrix of size d. Prior distributions for covariances are following:

p(CA) =

H,M∏
h,m=1

G(CAmh|α0, β0), (8)

CA = diag(CA11, CA12, . . . , CAMH), (9)

p(CB) =
H∏
h=1

G(CBh|γ0, δ0) (10)

CB = diag(CB1, . . . , CBH), (11)
p(σ) = G(σ|η0, ζ0), (12)

where G(.) denotes the gamma distribution. It is actually through the estimation of the
precisions (inverse variances) that the ARD property is achieved.

3.2 The Variational Bayes method

The joint probability distribution of the data and the parameters is now

p(Y,Θ) = p(Y,A,B,CA, CB, σ) = p(Y |B,A, σ)p(A|CA)p(B|CB)p(CA)p(CB)p(σ), (13)

where the simplification Θ = (A,B,CA, CB, σ) is used. The structure of the model
does not permit a direct evaluation of the true posterior p(A,B,CA, CB, σ|Y ) = p(Θ|Y ).
Instead of resorting to MCMC methods, we use the computationally less expensive Vari-
ational Bayes (VB) framework. Using some approximations, VB will enable us to come
to an analytic expression for an equilibrium state that describes the parameters of the
posterior.

VB approximates the true posterior distribution with a product of mutually indepen-
dent posteriors

p(Θ|Y ) ≈ q(Θ|Y ) = q(A|Y )q(B|Y )q(CA|Y )q(CB|Y )q(σ|Y ). (14)

The fixed log marginal probability of Y can be expressed as

ln p(Y ) =

∫
q(Θ|Y ) ln

(
p(Y,Θ)

q(Θ|Y )

)
dΘ (15)

+

∫
q(Θ|Y ) ln

(
q(Θ|Y )

p(Θ|Y )

)
dΘ (16)

=F(q) + KL (q(Θ|Y )||p(Θ|Y )) . (17)

Here, F(q) is the free energy and KL(.) is the Kullback-Leibler divergence between the
true and the approximate posterior. It is an integral probability measure and is equal
to zero if the two arguments are equal. Because KL divergence is always non-negative,
we can minimize it by choosing the right forms of approximate posteriors in q(Θ|Y ) that
maximize the negative free energy F(q), thus bringing the approximate posterior closer
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to the true one. From the VB theory, the posteriors that maximize the free energy have
the form

ln q(Θi|Y ) = Eq(Θj |Y ),j 6=i [ln p(Y,Θ)] , (18)

where the expectation is taken over all other approximate posteriors q(Θj|Y ) but the
i-th. For details see Chapter 3 in [13]. Using conjugate priors, the posterior distributions
have known forms and analytical expressions of their parameters.

3.3 The approximate posterior

In this place, we will analytically derive the posterior distribution for variance of the data
σ using prescription (18). It is a simple and straightforward computation compared to
other posteriors but it ilustrates the principle of the VB method. Recollecting the form
of the likelihood, the priors (5) - (12) and using (18) we have

ln q(σ|Y ) = (η0−1) lnσ− ζ0σ−σ
1

2
tr
(
E
[(
Y −BAT

)T (
Y −BAT

)])
+
ML

2
lnσ+ const.

(19)
Here, const. stands for terms that are not dependent on σ and that are considered to be
part of the integration constant of the posterior distribution. Expectation is computed
with respect to the other posteriors. By collecting the terms for σ and lnσ, we see that
the posterior of σ is again a Gamma distribution of the following form

q(σ|Y ) = G(σ|η, ζ), (20)

η = η0 +
ML

2
, (21)

ζ = ζ0 +
1

2
tr
(
E
[(
Y −BAT

)T (
Y −BAT

)])
. (22)

Clearly, the posterior balances the influence of the prior and the data. Usually, the prior
parameters η0, ζ0 are set to small values (e.g. 10−10) to keep the estimates unbiased.

Following the procedure outlined above for the rest of the estimated parameters, we
arrive at the following posterior distributions

q(vec(AT )|Y ) = N (vec(AT )|µA,ΣA), (23)
q(B|Y ) =MN (B|MB, IL,ΣB), (24)

q(CAmh|Y ) = G(CAmh|αmh, βmh), (25)
q(CBh|Y ) = G(CBh|γh, δh), (26)

with their shaping parameters given by this set of equations:

µA = σ̂ΣAvec(B̂TY ), ΣA = (ĈA + σ̂IM ⊗ B̂TB)−1, (27)

MB = σ̂Y ÂΣB, ΣB = (σ̂ÂTA+ ĈB)−1, (28)

αmh = α0 +
1

2
, βmh = β0 +

1

2
Â2
mh, (29)

γh = γ0 +
L

2
, δh = δ0 +

1

2
B̂T
hBh. (30)
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Here, the notation .̂ is used for expectation over posterior distribtutions and ⊗ is used
for Kronecker product. The equations contain a number of lower and higher moments
that can be expresed using the shaping parameters and well known properties of used
distributions. They have the following form

Â = devec(µA)T , ÂTA = ÂT Â+
M∑
m=1

sub(ΣA,m,H), (31)

B̂ = MB B̂TB = B̂T B̂ + LΣB, (32)

ĈA = diag
(
α11

β11

, . . . ,
αMH

βMH

)
, ĈB = diag

(
γ11

δ11

, . . . ,
γMH

δMH

)
, (33)

σ̂ =
η

ζ
, (34)

tr
(
E
[(
Y −BAT

)T (
Y −BAT

)])
= tr

(
Y TY + B̂TBÂTA− 2Y ÂB̂T

)
. (35)

The notation devec(.) is used for the operation of devectorization a vector into a
matrix of the original size, sub(ΣA,m,H) is the m-th diagonal submatrix of ΣA of size
H ×H.

To compute the solution of the system of equations, we use an iterative algorithm. It
starts with some initial values for the shaping parameters. Then, the shaping parameters
of each posterior are updated using the equations (21), (22), (27) - (30) and keeping
the shaping parameters of other posteriors fixed. This way, it is guaranteed that a local
minimum of KL divergence is found [5]. The algorithm is described in Algorithm 1.

Algorithm 1: VBMF - Variational Bayes Matrix Factorization
input : bag Y ∈ RL×M , inner dimension H, stopping conditions

maxIter ∈ N, ε ∈ R
output: shaping parameters of posterior distrubution q(Θ|Y )
initialization: initialize the values of shaping parameters, set
nIter = 0, Bδ = MB, δ = ε+ 1;

while niter < maxIter ∧ δ > ε do
update shaping parameters of q(vec(AT )|Y ) using (27) ;
update shaping parameters of q(B|Y ) using (28) ;
update shaping parameters of q(CA|Y ) using (29) ∀m ∈ M̂, h ∈ Ĥ ;
update shaping parameters of q(CB|Y ) using (30) ∀h ∈ Ĥ ;
update shaping parameters of q(σ|Y ) using (21), (22) ;
set δ = ||Bδ−MB ||

||MB ||
;

set Bδ = MB;
set niter = niter + 1;

report B = MB, A = devec(µA)T and the rest of estimated shaping parameters;
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3.4 The classification algorithm

This section compiles the whole procedure of training the classification algorithm and
then using it to classify a new sample bag. The basic idea of classification was already
described in section 2.

Algorithm 2: MIL classification using VBMF
input : training dataset {T0, T1}, testing dataset {Y1, . . . , YD}
output: estimated labels {x1, . . . , xD}
using Algorithm 1 on the matrix T0, compute negative basis B0 and its
covariance ΣB0;
using Algorithm 1 on the matrix T1, compute positive basis B1 and its covariance
ΣB1;

for d = 1, . . . , D do
Compute the backward factorization with fixed B0;

• initalize Algorithm 1 for Yd with MB = B0,ΣB = ΣB0

• compute the rest of Algorithm 1, ommiting updates for q(B|Y ) ;

• report estimates and set Ad0 = A

Compute the backward factorization with fixed B1;

• initalize Algorithm 1 for Yd with MB = B1,ΣB = ΣB1

• compute the rest of Algorithm 1, ommiting updates for q(B|Y ) ;

• report estimates and set Ad1 = A

set the estimate of label as xd = argmin{||Yd −BiA
T
di||2 : i ∈ {0, 1}},

4 Validation
The classification algorithm was tested on set of well-known datasets of MIL problems.
While on some it did not perform well, on a few particular datasets the classification
procedure did achieve some success. This is the case for other MIL algorithms, that
are sometimes tuned with a particular dataset in mind. An overview of the size of the
datasets is in table 4. In these datasets, the labels of all bags are known.

dataset number of bags N instance length L average bag size M
BrownCreeper 548 38 19

Musk1 166 92 5
WinterWren 548 38 19

On these datasets, the classification algorithm was tested in the following manner:
a) a subset of bags was randomly chosen and used as traning data b) for every bag in
the remaining (testing) subset, the classification was computed. This was repeated more
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times. Each time, an error metric called equal error rate (EER) was computed. We define
it as

EER =

(∑
false negatives∑
positive labels

+

∑
false positives∑
negative labels

)
/2 (36)

It is used here because of the unbalanced number of negative and positive samples in
some datasets.

The matrix ΣA has a total of M2H2 elements. For some datasets, this slows down
the computation due to memory allocation and a very difficult inversion of the term in
(27). A compromise between precision and speed has been done so that for MH > 200
only the diagonal of the matrix is estimated and kept in memory. When compared to the
computation of the whole matrix, this does not lead to significantly deteriorated results.

For the 3 datasets, the histograms of EER for different ratio of training and testing
data for 100 tries is in Figure 1. Missing entries for smaller percentage of known labels
are caused by numerical difficulties when inverting ill-conditioned matrices. Clearly, for
larger percentage of known labels the mean error is smaller and is in the range of 10-20%.
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Figure 1: Equal error rate histograms for the classification experiment on available
datasets. Internal factorization dimension H = 5, 100 retries for each known label per-
centage.

5 Discussion

In this article, an introduction to multiple-instance learning was given with the motivation
for the work given by malware datection in a network of computers. Unfortunately, real-
world data from this field are not yet available, so all experiments were only made on a set
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of well-known MIL problems. In the rest of the paper, basic idea behind the method was
described and further elaborated using Bayesian formalism. The proposed hierarchical
model was detailed together with the resulting algorithms for matrix factorization and
classification of MIL datasets.

In comparison to other MIL algorithms, the classification error of our method is still
high, as the cutting-edge approaches achieve EER in the range of 5-10%. Clearly, further
work is required to be able to compete. The direction in which to improve is certainly
the classification rule, which is now based on a very simple error criterion.
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Abstract. The article addresses an approach to decision making when a decision maker (human
or artificial) uses incomplete knowledge of environment and faces high computational limitations.
It considers a closed decision-making (DM) loop consisting of agent-environment pair described
by agent’s actions and environment states (possibly partially observable). Agent’s DM problem
(estimation, filtering, prediction, classification) is to influence the environment behavior in a
desired way by choosing and applying a tailored DM policy generating optional actions with
respect to environment.
In general LL is an approach that searches and uses relevant information from the past data
and use solutions already invented (analogical modelling, memory-based prediction, transfer
learning, ...). Particularly, the lazy FPD uses currently observed data to find and employ past
closed-loop similar to the actual ideal represents preferences.

Keywords: decision making, lazy learning, fully probabilistic design

Abstrakt. Článek se zabývá přístupem k rozhodování při neúplné znalosti prostředí a vysokým
výpočetním omezením. Uvažujeme uzavřenou smyčku složenou z páru agent a prostředí pop-
saného pomocí akcí agenta a stavů prostředí (částečně pozorovatelných). Cíl agenta je ovlivnit
chování prostředí výběrem a uplatněním rozhodovací strategie. Lazy learning je obecný přístup,
který vyhledává a používá relevantní informace z pozorovaných dat a používá již vyvinutá řešení.
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Abstract. Modern experiments in high energy physics impose great demands on the reliability,
the efficiency, and the data rate of Data Acquisition Systems (DAQ). This contribution focuses on
the development and deployment of the new communication library DIALOG for the intelligent,
FPGA-based Data Acquisition System (iFDAQ) of the COMPASS experiment at CERN. The
iFDAQ utilizing a hardware event builder is designed to be able to readout data at the maximum
rate of the experiment. The DIALOG library is a communication system both for distributed and
mixed environments, it provides a network transparent inter-process communication layer. Using
the high-performance and modern C++ framework Qt and its Qt Network API, the DIALOG
library presents an alternative to the previously used DIM library. The DIALOG library was fully
incorporated to all processes in the iFDAQ during the run 2016. From the software point of view,
it might be considered as a significant improvement of iFDAQ in comparison with the previous
run. To extend the possibilities of debugging, the online monitoring of communication among
processes via DIALOG GUI is a desirable feature. In the paper, we present the DIALOG library
from several insights and discuss it in a detailed way. Moreover, the efficiency measurement and
comparison with the DIM library with respect to the iFDAQ requirements is provided.

Keywords: Data acquisition system, DIALOG library, DIM library, FPGA, Qt framework,
TCP/IP

Abstrakt. Moderní experimenty ve fyzice vysokých energií kladou veliké nároky na spolehlivost,
efektivitu a rychlost přenosu dat systémů pro sběr dat (DAQ). Tento článek se zaměřuje na vývoj
a nasazení nové komunikační knihovny DIALOG pro inteligentní systém pro sběr dat založeného
na FPGA (iFDAQ) experimentu COMPASS v CERNu. iFDAQ čerpá události vytvořené na
úrovni hardwaru a je navržen tak, aby umožňoval čtení dat při maximální rychlosti přenosu
dat z experimentu. Knihovna DIALOG je komunikační systém jak pro distribuované tak pro
smíšené architektury a poskytuje síťovou transparentní meziprocesovou komunikační vrstvu. Po-
mocí vysoce výkonného a moderního C++ frameworku Qt a jeho Qt Network API představuje
knihovna DIALOG alternativu k dříve používané knihovně DIM. Knihovna DIALOG byla plně
integrována do všech procesů v iFDAQ během sběru dat v roce 2016. Tato integrace z hlediska
softwaru může být považována za významné vylepšení iFDAQ ve srovnání se sběrem dat v
předchozím roce. Pro rozšíření možností ladění je DIALOG GUI vítaným nástrojem pro on-
line sledování komunikace mezi procesy. V článku prezentujeme knihovnu DIALOG z několika
pohledů a detailně ji diskutujeme. Kromě toho je k dispozici výkonnostní měření a porovnání s
knihovnou DIM s ohledem na požadavky iFDAQ.

Klíčová slova: Systém pro sběr dat, knihovna DIALOG, knihovna DIM, FPGA, Qt framework,
TCP/IP
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Abstract. The structure and function of human brain is quite complex. Various brain regions
communicate with each other. Observing external potentials via EEG electrodes, we can study
these communications as dependencies of multichannel EEG signal. The hypothesis presented
here is that Alzheimer’s diseased and normal control participants can be distinguished due to
different distributions of scalp EEG-based causality measurements. The theory of Vector Auto-
Regressive model and Granger causality is used to obtain the Causality Index as a novel criterion
of brain activity. The general methodology is applied to real 21-channel EEG data obtained from
normal control and Alzheimer’s diseased groups of patients. The developed method is applicable
to the localization of pathophysiological changes of Alzheimer’s disease.

Keywords: VAR model, Granger causality, EEG, Alzheimer’s disease, multiple-testing

Abstrakt. Struktura a funkčnost lidského mozku jsou velmi složité. Různé oblasti mozku
spolu navzájem komunikují. Při sledování externích potenciálů skrz elektrody EEG můžeme
studovat tuto komunikaci jako závislosti vícekanálového EEG signálu. Prezentovaná hypotéza
předpokládá, že pacienti s Alzheimerovou chorobou a kontrolní účastníci mohou být od sebe
odlišeni díky rozdílnému rozložení míry kauzality v naměřeném EEG. Je zde použit vektorový
autoregresní model a Grangerova kauzalita k tomu, aby byl určen nový Kauzální index, který
popisuje mozkovou aktivitu. Obecná metodologie je aplikována na reálná 21kanálová EEG data
od zdravých pacientů a pacientů s Alzheimerovou chorobou. Vyvinutá metoda se dá použít k
lokalizaci patofyziologických změn při Alzheimerově chorobě.

Klíčová slova: VAR model, Grangerova kauzalita, EEG, Alzheimerova choroba, mnohonásobné
testování

1 Introduction
Alzheimer’s disease (AD), the most common form of a neurodegenerative disease, causes
brain cells atrophy in parallel with a decline in memory, language and everyday activities.
EEG records electrical activity of the neural tissue. Thus, any pathological changes affect
the resulting EEG signal [3], [1], [5]. Lower mean levels of channel-to-channel synchro-
nization [11], [17] and greater uniformity in alpha and gamma band activity [14] have
been shown in AD patients’ EEG data. The dynamic relations between EEG channels,
the direction of interactions, and their strength can be studied via Granger causality [8],
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[10], [4]. An alternative approach to causality investigation was used by McBride et al.
[13]. In this research, the Vector Auto-Regressive (VAR) model of optimum length is
directly applied to channel pairs followed by Granger causality testing to obtain novel
criterion called Causality Index. Channel pairs with maximum significance of differences
are localized and interpreted.

2 VAR model of multichannel EEG

The multichannel EEG data are proceeded by VAR model [16] to obtain both an opti-
mum model order [9] and Granger causalities [7]. I suppose time series of length M in
k-dimensional space and VAR(p) model of order p in the form [12]

xn = c +

p∑
m=1

Amxn−m + en (1)

for n = p+1, . . . ,M where xn, c, en ∈ Rk for n = 1, . . . ,M , Am ∈ Rk×k for m = 1, . . . , p,
and en ∼ N(0,Σ) as independent vectors. Unknown matrices Am and bias vector c
are estimated by the least squares method. The covariance matrix Σ is estimated from
residues rn as

C =
1

T

M∑
n=p+1

rnr
T
n , (2)

where T =M − p is constrain number.
The quality of VAR(p) model varies with its order p. Schwarz criterion BIC(p) (Bayesian
Information Criterion) [6] is frequently used to find the optimum model order as popt ∈
argminBIC(p), where

BIC(p) = ln |C|+ pk2 lnT

T
. (3)

The optimum value of model order varies segment by segment, but the most frequent
value of popt (over all patients and their segments of length M) is postulated as the best
choice for following Granger causality analysis [7].

3 Granger causality in investigation of multichannel
EEG interactions

The k-dimensional VAR model of order p is used to investigate EEG signal dependences.
Granger causality is focused on EEG channel pairs investigations. We study channels chi,
chj for i, j ∈ 1, . . . , k, i 6= j. The complete model is studied first as a two-dimensional
VAR(p) model with xn = (xn,i, xn,j)

T ∈ R2 and 2p+1 unknown parameters as producing
residual sum SSQc.
The reduced one-dimensional case produces residual sum SSQr using also VAR(p) model
of p+1 unknown parameters but only for channel chi, where xn = xn,i ∈ R. Therefore, in
this submodel p parameters were constrained to zero values to eliminate the influence of
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channel chj. The standard F-test of variance equity hypothesis H0 is based on criterion

F =
SSQr − SSQc

SSQc

· T − 2p− 1

p
, (4)

which has Fisher-Snedecor distribution F of p and T − 2p − 1 degrees of freedom for
independent channels. Applying this test to all segments of all patients, we obtain various
p-values, but it is a case of multiple-testing. Therefore, False Discovery Rate (FDR) [2]
correction has to be performed to obtain decreased critical value αFDR as follows.
Let H ∈ N be the number of independently tested hypotheses on critical level α > 0. The
corresponding p-values are pk for k = 1, . . . , H. Comparing the sorted p(k) values with
diminished critical levels kα/H, we find k∗ = max(k : p(k) ≤ α) if it exists. The decreased
critical value is defined as αFDR = p(k∗) or αFDR = 0 in the case of k∗ non-existence.
Finally, all hypotheses satisfying pk ≤ αFDR are rejected, which is statistically correct as
proven in [18].

The FDR technique is employed in this novel approach as a very sensitive tool to
localize significant segment dependencies. This approach is used for the design of novel
Causality Index of relative channel synchronization.
Let u be patient index, AD, CN be sets of diseased and control patients, and let us denote
Nu, N∗

i,j,u as the number of all segments of u-th patient and the number of significant
segment dependences of chi on chj of u-th patient.
The Causality Index can be defined as the relative frequency of synchronized events

Si,j,u = N∗
i,j,u/Nu. (5)

Variable Si,j,u ∈ [0, 1] is a measure of synchronization from j-th to i-th channel for a
given patient. The final hypothesis is focused on the Causality Index differences between
AD and CN groups. For the fixed pair of channels chi, chj I test the hypothesis H0 if
the median of Causality Index differs, using Wilcoxon-Mann-Whitney (WMW) rank-sum
test, again with FDR correction.

4 Data description
General approach was applied to the group of 26 patients with Alzheimer’s disease (AD)
and 139 control patients (CN). All subjects were recorded under the same resting protocol,
i.e. eyes closed, lying on a bed. The standard 10-20 EEG system of electrode placement
was used to obtain 21-channel digital EEG via TruScan 32. The sampling frequency was
200 Hz with 22 bit AD converter. Due to quasistationarity, the EEG signal was segmented
to two-second segments of 400 samples for separate analysis. The total number of 24 742
segments from all patients were used for statistical investigation.

5 Results
The statistical analysis had three aims. The optimum order of VAR(p) model was in-
vestigated first. Then inter-channel causalities in individual segments were tested and
segments with statistical significant causalities were localized. In the final step, the main
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Figure 1: Significant increasing (grey) and decreasing (black) of Causality Index in
Alzheimer’s disease: consequent channels chi as rows, antecedent channels chj as columns.

issue, i.e. whether the Causality Index is affected by Alzheimer’s disease, was the subject
of multiple-testing.

5.1 Optimum length of VAR model

The first aim of separate segment processing was to estimate the optimum model order
popt of VAR(p) model of dimension k = 19. Using non-overlapping 24 742 segments of all
patients I minimized BIC(p) for p ≤ 100. The optimum order varied from 11 to 48, and
the most frequent value was popt = 26 as experimental modus. This value was postulated
as the recommended model order for the consequent Granger causality investigations.

5.2 Significant channel dependencies

The total number of 19 × 18 = 342 channel pairs can potentially significantly interact
in the case of 19-channel EEG. The F-test of hypothesis H0: σ2

complete = σ2
reduced was used

for all pairs and 24 742 segments with p = 26 on critical level α = 0.05. The resulting
p-values were corrected by FDR to obtain decreased value αFDR = 0.0023. Significant
combinations of channels and segments were labelled and counted to obtain Causality
Indexes Si,j,u.

5.3 Causality Index changes

Being focused on channel pair chi, chj, The H0: Si,j(AD) = Si,j(CN) hypothesis was
tested, where Si,j(AD) is a median of Si,j,u for u ∈ AD and Si,j(CN) is a median of
Si,j,u for u ∈ CN. The non-parametric WMW test of critical level α = 0.05 was applied.
The p-values resulting from 342 independent tests were corrected by FDR technique
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with αFDR = 7.3074 × 10−4. Significant channel pairs with increasing or decreasing
Causality Indexes in Alzheimer’s disease are collected in Tab. 1. The dependencies
between antecedent (rows) and consequent (columns) channels are depicted in Fig. 1.
For better biomedical interpretation, the traditional EEG 10-20 scheme is used to show
channel pairs with significant dependencies in Figs 2, 3.

Table 1: Significant changes of Causality Index

i j S̃AD S̃CN p-value
7 10 0.9677 0.7097 3.01×10−5

11 10 0.6882 0.4301 6.35×10−5

3 15 0.9839 0.8495 2.73×10−6

4 15 0.9462 0.7742 2.34×10−5

5 15 0.8763 0.7097 2.73×10−4

6 15 0.9140 0.7312 8.43×10−6

7 15 0.9839 0.7957 7.49×10−7

9 15 0.9194 0.6882 9.14×10−5

11 15 0.8172 0.5806 1.48×10−6

7 16 0.9785 0.8495 2.58×10−4

14 3 0.5000 0.7312 5.48×10−4

15 3 0.5376 0.7849 2.83×10−5

14 7 0.6828 0.8710 4.61×10−4

15 7 0.6344 0.8602 2.08×10−4

16 7 0.6183 0.8065 1.99×10−4

16 9 0.5108 0.6667 8.25×10−5

5.4 Biomedical interpretation

As seen in Tab. 1, there are many significant changes in the Causality Index. The lowest
p-value was observed for the pair of 7th and 15th channels. This pair can be used for
distinguish between AD and CN. Using rule S7,15,u > 0.92 for the diagnosis of AD in the
case of uth participant, the sensitivity and specificity were 73 % and 77 % respectively.
Similar behaviour was also observed on the other significant channel pairs.

During Alzheimer’s disease, the Causality Index exhibits very interesting changes. The
significant increase in the Causality Index (Fig. 2) points from parietal to frontal regions
of the brain. In AD, it means that neural activity in the frontal lobes is highly activated
from the parietal zone. The opposite significant dependencies (Fig. 3) come from the
left and right frontal lobes to the parietal zone. This behaviour can be interpreted as a
decreasing Causality Index between the inspiring frontal neurons and receiving parietal
zone. This interpretation is consistent with the concept of the dynamics of changes in
the course of a developing Alzheimer’s disease [15].
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Figure 2: Causality increasing in the case of Alzheimer’s disease: arrows from antecedent
to consequent channels.

Figure 3: Causality decreasing in the case of Alzheimer’s disease: arrows from antecedent
to consequent channels
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6 Conclusions

The theory of VAR model was applied to multichannel EEG. The optimal order was 26
as an experimental modus value. Significant interchannel causalities were obtained over
segments of patients. The False Discovery Rate correction was used as an efficient tool
for selecting significant EEG events. The event counting forms a novel Causality Index
as a criterion able to distinguish between AD and CN. 10 significant electrode pairs were
observed with decreasing Causality Index and 6 electrode pair with increasing Causality
Index in AD. The difference in Causality Indexes can help in diagnosing Alzheimer’s
dementia. Interchannel dependencies observed exhibiting statistically significant changes
in the Causality Index have direct biomedical interpretation. In AD, there is a significant
increase in the Causality Index between the parietal and frontal domains of the brain.
The complementary effect of decreasing Causality Index was also localized, however the
direction was opposite.
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Abstract. Iterative reconstruction techniques find their used in many optimization problems,
such as matrix completion in computer vision or reconstruction in image processing. Brief intro-
duction to iterative algorithm based on proximal gradient method will be presented together with
connection to the image reconstruction problem. Furthermore, reconstruction of the subsam-
pled (compressed) medical data will be formulated as a variational problem using total variation
regularization, ready to be solved using presented method. Finally, we will demonstrate and
compare selected methods on real data acquired from MRI scanner at ISI of the CAS in Brno
and propose further extension of current model.

Keywords: image reconstruction, TV regularization, proximal algorithms

Abstrakt. Iterativní rekonstrukční metody jsou často využívány v mnoha optimalizačních
úlohách jako například doplnění dat ve strojovém učení nebo rekonstrukci obrazu. Provedeme
krátké shrnutí iterativního algoritmu založeném na vyhodnocení proximálního operátoru a ukážeme
jeho vazbu na úlohu rekonstrukce obrazu. Dále formulujeme rekonstrukci podsamplovaných
zdravotnických dat jakožto úlohu variačního počtu s regularizací ve tvaru totální variace v
takovém tvaru, aby byla řešitelná uvedenou metodou. Nakonec vybrané algoritmy předvedeme
a srovnáme na datech ze skeneru využívající magnetickou rezonanci umístěného na ÚPT AV ČR
v Brně a navrhneme další rozšíření modelu.

Klíčová slova: rekonstrukce obrazu, TV regularizace, proximální algorithmy

1 Introduction

Many inverse imaging problems such as image denoising, image deconvolution or image
signal reconstrucion can be conveniently formulated as a variational problem

min
x∈R2

{
λ

∫
Ω

|K(x)|+ 1

2
‖y − Ax‖2

2

}
, (1)
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where Ω ⊂ R2 is image domain, x ∈ L1 (Ω) is the desired solution and y ∈ L1 (Ω) is
the original data which are to be reconstructed. Parameter λ ∈ R+

0 scales the trade-off
between "data" term and regularization term. Data term ensures closeness of the solution
and the input, whereas regularization represents effort to improve visual features of an
image. Operator A represent transformation of output to comparable domain in which y
is acquired. In basic case of medical imaging, A typically denotes Fourier transformation.
Modern imaging techniques relies on methods of compressed sensing (CS), where only
selected samples of Fourier domain are taken into account, rather than sampling at the
full (i.e. Nyquist) rate. Usually, matrix A also models trajectory of given samples and
multi-coil sensitivites for more realistic models. If K is assumed to be gradient of input
image, proposed model (1) becames so-called Total Variation (TV) regularization model
(or ROF model) introduced in [1]. Major advantage of incorporating TV regularization
is allowing appearance of sharp discontinuities in the solution. This fact is often sought
after in image processing, since edges represent important features such as boundaries of
objects. However this formulation of cost functional (1) leads to difficult minimization,
given the non-smooth property of the total variation. We will introduce used algorithm
based on proximal operators, which can be successfully used to tackle such problems with
application to MRI data reconstruction.

2 Iterative Reconstruction Technique

Algorithms based on evaluating proximal operator can be percieved as a generalization
of standard gradient descent. We will briefly introduce main idea of this technique and
present its use in iterative method to solve optimization problem (1).

2.1 Proximal Operator

Let us suppose, that we want to solve

min
x∈Rn

f(x) = min
x∈Rn

g(x) + h(x) (2)

where g : Rn 7→ Rn is convex and differentiable while h : Rn 7→ Rn is only convex but
not necessarily differentiable. Instead of making quadratic approximation of f around x
with step size t ∈ R+ to get gradient descent update for the case of g and h both convex
and differentiable, it is possible to approximate only g while h stays in its original form.
We obtain following

x+ =argmin
z

{
g(x) +∇g(x)T (z − x) +

1

2t
‖z − x‖2

2 + h(z)

}
=argmin

z

{
1

2t

(
‖z − x‖2

2 + 2t∇g(x)T (z − x) + t2‖∇g(x)‖2
2

)
+ g(x)− 2

t
‖∇g(x)‖2

2 + h(z)

}
=argmin

z

{
1

2t
‖z − (x− t∇g(x))‖2

2 + h(z)

}
=proxt,h((x− t∇g(x))),
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where we denoted minimizing term by the symbol prox. Components in prox forces
update to be as close to gradient step of g as possible and keeps values of h small. Using
this intuitive derivation, we can formally define proximal operator proxt,h : Rn 7→ Rn by

proxt,h(x) = argmin
z

{
1

2t
‖z − x‖2

2 + h(z)

}
.

Combining proximal operator with gradient descent, leads to writing minimizing algo-
rithm of (2) as

Algorithm 1 General proximal operator minimization

1. Initialize x0 ∈ Rn.

2. Let x+ = (xk−1 − t∇g(xk−1)).

3. Define xk = proxtk,h(x
+).

The last step of Algorithm 1 can be also written in the gradient descent manner as

xk = xk−1 − tkGtk(xk−1), Gt(x) =
x− proxt,h(x− t∇g(x))

t
,

where Gt(x) is so-called generalized gradient. Notice that the evaluation of proximal
operator depends only on the gradient of g and h itself, thus it can be conveniently used
when proximal operator of h is known. Especially, this is the case of h = λ‖ · ‖1, where
respective proximal operator is of form

proxt,λ‖·‖1(x) = argmin
z

{
1

2t
‖z − x‖2

2 + λ‖z‖1

}
. (3)

The solution to this equation can be written as a soft thresholding operator Sλt(x) where

Sλt(x) = sgn(x)(|x| − λt)+.

It can be easily shown, that Sλt(x) minimizes term in (3) and is easily numerically com-
puted.

2.2 Alternating Direction Method of Multipliers

Following algorithm employs alternating minimization of objective functions to tackle
variational problems with non-smooth regularization. Such method is called Alternating
Direction Method of Mutlipliers (ADMM) and is built on minimizing each function from

min
x∈Rn

g(x) + h(x)

separately. This technique is known as dual minimization or Douglas-Racheford splitting
and its main advantage is when evaluating proximal operator of f + g is more numeri-
cally demanding, than computing each proximal operator separately. We will now derive
solution to (1) using this method.
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Formal steps of ADMM algorithm originates from minimizing augmented Lagrangian
[2]. Firstly, rewrite original problem (1) as a constrain optimization

min
x

1

2
‖y − Ax‖2

2 + λ‖z‖1 s.t. Kx− z = 0.

Furthermore, we write augmented Lagrangian of such problem as

L%(x, z, u) =
1

2
‖y − Ax‖2

2 + λ‖z‖1 + ρuT (Kx− z) +
ρ

2
‖Kx− z‖2

2, (4)

where constant % > 0 is called penalty parameter. Notice, that additional terms equal to
zero at optimal point by definiton of constraint Kx − z = 0. Minimizing of augmented
Lagrangian (4) is treated separately over its primal variables x and z, therefore we can
write ADMM algorithm in following manner

Algorithm 2 ADMM
1. Initialize x0, u0, z0 ∈ Rn, ρ ∈ R+.

2. Let xk = argmin
x

L%(x
k, uk, zk) = argmin

x

{
1
2
‖y − Axk‖2 + %uk

T
Kxk + %

2
‖Kxk − zk‖2

}
.

3. Let zk = argmin
z

L%(x
k, uk, zk) = argmin

z

{
λ‖zk‖1 − %uk

T
zk + %

2
‖Kxk − zk‖2

}
4. Update uk = uk + %(xk − zk).

Finding optimal value x? in step 2 of Algorithm 2 can be easily attained using
partial derivative of L% over x in closed-form solution

x? = (ATA+ %KTK)−1(ATy + %KT (z − u)).

To find optimal z? one can successfully use evaluation of proximal algorithm, namely soft
thresholding operator defined in previous section. We can write

z? = Sλ/ρ(u
k +Kxk).

Finally, dual variable u is updated by gained values of constrain to conclude current
iteration. Notable feature of ADMM is, that it converges fast at early stage, but requires
fair number of iterations for high precision results.

3 MRI Data Reconstruction

Let us now closely describe acquired data that were used in reconstruction and exactly
formulate model to simulate measurement and reconstruction.
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3.1 Data Description

Data originate from in-vivo experiment with a standard Sprague-Dawley rat at the Bruker
9.4T MRI Small Animal Scanner stationed at the Institute of Scientific Instruments of
the CAS. MRI scanner collects signal in k-space (i.e. Fourier domain) and due to the
physical constraints of the scanner, data are sampled alongside the radial trajectories.
Radials are rotated through the space using golden angle technique allowing relatively
dense sampling of important regions of k-space [5]. MRI machine compound aquisition
from 4 coils and returns 128 complex coefficients of k-space for each coil and radial.
During the experiment time of 14 minutes 50 000 projections of 128 coefficients were
sampled. In all formulations, coil sensitivities were estimated using ESPIRiT algorithm
proposed in [7].

3.2 Formulation of Reconstruction Problem

Firstly, we will omit the element of time for simpler notation and write formulation of
reconstruction of static data as

min
x∈C2

{
4∑
i=1

1

2
‖yi −MFSix‖2

2 + λ‖Kx‖1

}
, (5)

where Si maps sensitivity of coil i, F corresponds to the 2D Fourier transform and M
interpolates cartesian grid to the sampled radial space. Matrix M together with F can
be replaced with non-uniform Fourier transformation. Regularization term is in form of
Total Variation, therefore K computes gradient of the image.

This formulation can be extended to reconstruct dynamical data as

min
xt∈C2

{
T−1∑
t=0

4∑
i=1

1

2
‖yt,i −MtFSixt‖2

2 + λ‖Kxt‖1

}
. (6)

It is worth noting, that instead of estimating output image for each time-frame sep-
arately (as can be achieved iterating static case through all data), this formulation opti-
mizes coefficients of given basis. Let us elaborate more explicitly for the case of modeling
dynamics as a polynomial of 2nd degree

p(t) = a+ bt+ ct2.

If plugged into the (6) for xt we get

min
a,b,c,∈C2

{
T−1∑
t=0

4∑
i=1

1

2
‖yt,i −MtFSi(a+ bt+ ct2)‖2

2 + λ‖K(a+ bt+ ct2)‖1

}
.

and reformulated to more compact and tidy matrix notation

min
x∈C2

{
T−1∑
t=0

4∑
i=1

1

2
‖yt,i −MtFSiBtx

T‖2
2 + λ‖KBtx

T‖1

}
,
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where Bt = [I It It2] and x = [a b c]. It is clear, that we can choose various forms of
prescribed basis Bt with coefficients x and we will present results of different options in
following sections.

Finally, let us briefly note the formulation of Low Rank + Sparse model (L+S) which
will be also evaluated in results section. L+S model can be written as

min
L,S∈C2

{
1

2
‖y −MFS(L+ S)‖2

2 + λL‖L‖∗ + λS‖KS‖1

}
, (7)

and estimates output image as a sum of two components: low-rank regularized by nu-
clear norm and sparse regularized by TV norm. Used implementation of L+S model uses
non-uniform Fourier transformation together with density compensation technique (cou-
pled in matrix MF ) rather than radial interpolation M with uniform Fourier transform
F developed in ADMM formulation. For further detail see for example [8].

4 Results Comparison
We will now present reconstructed data and several different approaches to attain the
most realistic outcome. All ADMM results share the same parameters λ = 1 and % = 0.1,
L+S algorithm was used with setting λL = 0.025 and λS = 0.5.

4.1 Regridding and Reconstruction

Simple method how to transform measured signal into image domain is called regridding
and it is direct, non-iterative approach. Regridding is one-off application of operator A,
i.e. matrices M , F and S in our formulation, to the input data. No regularization is
employed and it can be easily seen (Figure 1), that this operation suffers from artifacts
when compared to the results of the ADMM algorithm on static formulation (5). Namely,
notice the streak-like artifacts that originate from radial sampling. Both results were
obtained using 200 projections per one frame. Decreasing number of used projections
increases temporal-resolution of outcome image (as 60 projections takes roughly 1 second
of measurement) but brings significant degradation of image quality (at least in static
formulation), as is shown on Figure 2.

4.2 Perfusion Curves

The measured data are not the same during the whole experiment, intensity of signal
varies on time and body tissue. One of the main objectives of reconstruction is to get
this function of intensity on time (so called perfusion curve) as detailed and realistic as
possible. Typical perfusion curve has sharp increase at the beginning of the measurement
(corresponding to the increased activity of contrast agent) followed by slow decline. Per-
fusion curves of static reconstruction (i.e. separately reconstructed image through whole
data) together with several selected outcomes of dynamic formulation (6) is shown on Fig-
ure 3. Selected pixel is marked by red dot in Figure 1 b). Prescribed basis for dynamical
formulation was estimated orthogonal basis using singular-value decomposition method
on various perfusion curves from static case. In presented case, first 3 singular curves
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(a) Regridding. (b) Static reconstruction.

Figure 1: Comparison of regridding and iterative reconstruction.

Figure 2: Iterative reconstruction using 28 projections.
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Figure 3: Comparison on static reconstruction using 200 samples and dynamic from 50,
or 28 samples.

were used. It can be seen, that prescribing basis for dynamic reconstruction can lead to
improved stability of perfusion curve and possibility to further reduce used samples, thus
increase temporal resolution.

4.3 Comparison with L+S

Measured data were also processed by different formulation of reconstruction problem,
the Low Rank +Sparse model (7). L+S model assumes, that perfusion curve consists
of one component with low rank and other, that is sparse in Fourier domain. Figure 4
shows comparison of perfusion curve reconstructed from 28 projections per one frame and
relative improvement of cost functional in each iteration. Convergence comparison agrees
with standard ADMM feature of high convergence speed, namely in the first iterations.
Perfusion curves were rescaled by maximum of each curve and prompt to say, that L+S
model estimates somewhat more stable decline after the growth phase. It is worth noting,
that final rank of L+S model was one, whereas ADMM was the most stable at basis of
rank 2 and 3. Nevertheless, these differences are up to more detailed research.

5 Conclusion

We have introduced main idea of proximal operator and demonstrated its application on
iterative recontruction of MRI data. Two different formulation of reconstruction problem
were shown and results on real data we demonstrated. Further work lies in modeling
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(a) Perfusion curves. (b) Relative improvement of cost.

Figure 4: Comparison of perfusion curve and convergence of ADMM and L+S model

acquisition process in greater detail and developing faster reconstruction techniques to
increase both temporal and spatial resolution of outcoming images. This should lead to
more reliable perfusion analysis of outcoming data and to improve diagnostics of vascular
diseases affecting myocardium, brain and other organs, as well as cancer diseases in the
long-term.
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