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Predmluva

Workshop Doktorandské dny je kazdoro¢nim setkanim doktorandt oboru Matema-
tické inzenyrstvi zajistovaného na Fakulté jaderné a fyzikalné inzenyrské CVUT v Praze
v ramci doktorského studijniho programu Aplikace pfirodnich véd. Na vychové dokto-
randi se kromé kateder matematiky, fyziky a softwarového inzenyrstvi podileji i spiate-
lené tstavy Akademie véd CR, zejména UTIA, UL, MU, FZU a UJF.

Témata prezentovana nasimi doktorandy se tykaji predevsim matematickych modela
fyzikalnich ¢i socioekonomickych procest, ale také zakladniho vyzkumu v matematice a
teoretické informatice.

Vérime, ze i letosni ro¢nik prinese prezentujicim dutlezitou zpétnou vazbu a podpofi
jejich védecky rist. Za podporu konani workshopu dékujeme Studentské grantové soutézi,
projektu SVK 33/17/F4.
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Bayesian Source Term Determination with
Unknown Covariance of Measurements®

Alkomiet Belal

2nd year of PGS, email: belalalk@fjfi.cvut.cz
Department of Mathematics
Faculty of Nuclear Sciences and Physical Engineering, CTU in Prague

advisor: Vaclav gmidl, Department of Adaptive Systems
Institute of Information Theory and Automation, CAS

Abstract. Determination of a source term of release of a hazardous material into the atmo-
sphere is a very important task for emergency response. We are concerned with the problem of
estimation of the source term in the conventional linear inverse problem y = Mx is described
using the source-receptor-sensitivity (SRS) matrix M and the unknown source term x. Since
the system is typically ill-conditioned, the problem is recast as an optimization problem

I}I%%l(y — Mz)TR Y (y — Mz) + 2" Bz (1)
The first term minimizes the error of the measurements with covariance matrix R, and the
second term is a regularization of the source term [2|. There are different types of regularization
arising for different choices of matrices R and B, for example, Tikhonov regularization assumes
covariance matrix B as the identity matrix multiplied by scalar parameter.In this contribution,
we adopt a Bayesian approach to make inference on the unknown source term x as well as
unknown R and B.We assume prior on x to be a Gaussian with zero mean and unknown
diagonal covariance matrix B.The covariance matrix of the likelihood R is also unknown. We
consider two potential choices of the structure of the matrix R. First is the diagonal matrix
and the second is a locally correlated structure using information on topology of the measuring
network. Since the inference of the model is intractable, iterative variational Bayes algorithm
is used for simultaneous estimation of all model parameters. The practical usefulness of our
contribution is demonstrated on an application of the resulting algorithm to real data from the
European Tracer Experiment (ETEX).

Keywords: Bayesian inference, atmospheric transport model, inverse modeling

Abstrakt. Urceni zdrojového ¢lenu uniku nebezpecného materialu do atmosféry je velmi
dalezitym tkolem pro krizové Fizeni vzniklé situace. Zabyvame se problémem odhadu zdro-
jového ¢lenu v bézném linedrnim inverznim problému y = Mx, ktery je definovan pomoci matice
citlivosti (source-receptor-sensitivity, SRS) M a neznamého vektrou zdrojového ¢lenu x. Pro-
toZe soustava linedrnich rovnic je obvykle Spatné podminéna, problém je feSen jako optimaliza¢ni
tloha s regularizaci

r]gig(y — Mz)TR Y (y — Mz) + 2T Bz (2)

Prvni ¢len minimalizuje chybu méfeni pomoci kovarianéni matice R, a druhy je regularizace
zdrojového ¢lenu. Existuji rtizné typy regularizace pro rizné moznosti matic R a B, napiiklad

*This research is supported by EEA/Norwegian Financial Mechanism under project MSMT-
28477/2014 SourceTerm Determination of Radionuclide Releases by Inverse Atmospheric Dispersion
Modelling (STRADI).



2 A. Belal

Tichonovova regularizace, které predpoklada kovarianéni matici B jako jednotkovou matici vyné-
sobenou skalarnim parametrem. V tomto pfispévku, pouzivime Bayesovsky pfistup k odvozeni
jak zdrojového ¢lenu x tak nezndmych matic R a B. Pfedpokladame, Ze apriorni rozlozeni x je
Gaussovske s nulovou stfedni hodnotou a nezndmou diagonélni kovarianéni matici B. Kovari-
an¢ni matice R je také nezndma. Uvazujeme dvé moznosti vybéru struktury matice R. Prvni je
diagonélni matice a druha je lokalné korelovana struktura vyuzivajici informaci o topologii mérici
na sité. Vzhledem k tomu, Ze analytické fesen{ modelu neexistuje, pouzivime metodu variac¢ni
Bayes pro simultanni odhad vS8ech parametri modelu. Praktickd uzite¢nost naseho pristupu je
demonstrovana na datech z experimentu ETEX (European Tracer Experiment).

Klicovd slova: Bayesovska statistika, atmosféricky transportni model, inverzni modelovani

1 Introduction

The task of determination of a source term of an atmospheric pollutant is important
in many situations such as radioactive release from nuclear power plants or emission of
greenhouse gases.The source term is the vector of amounts of the pollutant released in
regularly sample time.The location of the release is assumed to be known.Uncertainty in
the source term is one of the largest source of errors in modeling and prediction of the
pollutant dispersion in the atmosphere, hence, any improvement of the reliability of the
source term estimation has significant impact The common approach for determination
of the source term is to combine the data measured in the environment (e.g., radionuclide
concentrations) with an atmospheric transport model. The quality of the estimated source
term to a given measurements can be modeled and optimized using various approaches
including the Bayesian approach|2|. Typically, the problem is formulated as a linear
regression.The vector of measurements is assumed to be a product of a computed source-
receptor-sensitivity (SRS) matrix determined using an atmospheric dispersion model and
an unknown source term vector.

2 Bayesian inference

The process of inferring data from observations can be described by using Bayesian infer-
ence, Here we formalize a Bayesian inference framework to make use of the observations
to infer the parameter values by updating our prior knowledge. This inferring process
can be formalized using the Bayes’ theorem:

~ plylx, M)p(x, B)p(R)p(B)
plx, &, Bly, M) = [ p(ylx, M)p(x)dx

(3)

where p(x) is the prior distribution, p(y|x, M) is the likelihood of the measurements. For
the choice of Gaussian models [1]

p(ylx, M) = N(Mx,R™"), p(x|B) =N(0,B7") (4)

The result of the Bayes’ theorem (2) is a Gaussian distribution N'(#, B~!), where
corresponds to the solution of the optimization problem (1).
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3 Prior Models of Covariance Matrix of Source term

We use modified Cholesky factorization of a source term x unknown covariance matrix
B = (WYWT)~! where W is a lower diagonal matrix.We assume correlation only be-
tween the time adjacent parameters, i.e

1 0 0 0

= 5 = ala Vi .
0 10 g
0 0 Wi—1 1

We define prior distribution of the model as follows:

m—1 m—1

vV~ HG(V07p0)7w ~ H N(w077—0)77— ~G H(Mo, HU)?

i=1 i=1 i=1

with selected prior constants vy, pg, 7o, Wo, ko- The system is that ill-conditioned is usu-
ally related to rapidly oscillation solutions, and using this structure for modeling the
covariance matrix of source term favors in fact the smooth solutions.

4 Prior Models of Covariance Matrix of residue model

The main problem is the fact that small errors in the (SRS) lead to large errors in the
source determination. The errors in this matrix are caused by inaccurate priori knowledge
of meteorological conditions such as the wind field [1]. This can cause either spacial or
temporal displacement of the model. We model spatially- and temporally-correlated
matrix of the Gaussian distribution of the error. We consider the following structure of
matrix R:

1 0 0 0 d 0 0 0
- 1 0 0 0 do 0 0
R=L'DL, L= . D=
I 1 0 0 0 0
where the vectors of unknowns are Ly, ..., 1, 1,d =[dy,...,d,]. The Bayesian formalism

requires to define prior distribution on all unknowns. We define prior distribution on
all unknowns vectors p(d;) = G (ag, bg) and p(lj|1h;)=N(lp,;~"). The spatial correlation
matrix is designed by vectors lg. For example,we assume all elements in the vector ly to
have value (—1), if the distance between the measuring stations is less than 100 km, and
zero otherwise.
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Figure 1: Estimated correlation matrix of residue model.
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Figure 2: Estimated correlation matrix of Source term model.
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5 Approximations of posterior distribution

The task is to calculate the posterior distribution of parameters and hyperparameters
based on the Bayes’ theorem (3) which gives the posterior probability of the parameters
given the data and the model p(x|y, M) where p(x) is the prior distribution, p(y|x, M)
is the likelihood of the measurements. The associated Byaes rule is

p(x[y, M) o p(y[x, M)p(x), (5)

where symbol o< denotes equality up to a normalizing constant.

It may not be possible to evaluate the posterior probability distribution analytically.
Minimising the Kullback-Liebler divergence (KL distance), also known as the Relative
Entropy, between the solution and the hypothetical true posterior, leads to a set of
implicit equations which have to be solved iteratively and convergence to local minima
is guaranteed [3]. To avoid negative results, truncated normal of prior p(z) to positive
domain are considered, to enforce the positivity of the retrieved source term:

p<xj) = tN(()?O-;jla <07 OO)),

0-5 T T T T T
—_N(0,1
0.4} 0.1
— tN(0,1,[0,00])
0.3}
0.2}
0.1}
0 L 1 1
3 =2 B 0 1 2 3

Figure 3: Example of the normal distribution N'(1, 1), blue line, and the truncated normal
distribution tA(1,1,< 0,3 >), red line.

6 Experiment

The European tracer experiment (ETEX) were two releases of perfluorocarbon that took
place in autumn of 1994 in north-western part of France. These releases were tracked
across Europe using a network of 168 ground stations with limited airborne support. The
aim of the experiment was to simulate an emergency response situation for meteorological
modellers whose task was to create long-range dispersion prediction models in real time.
In the first one, 340kg of perfluorocarbon was released in range of 12 hours.
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Figure 4: Domain of the ETEX experiment with source (red triangle) and receptors (blue
crosses).

7 Example results

We study three models:
e independent source term and residue models. R = w™'l,, B="T"!

e correlated source term model with independent residue model. R = w™'l,, B =
(wrywt)-t

e correlated source term model with correlated residue model R = (LDLY)™!, B =
(WwrwT)-!
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Figure 5: Shows
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Figure 6: Shows estiamated source term with correlated source term model and independent
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Figure 7: Shows estiamated source term with correlated source term model and correlatedt

8 Conclusions

residue model.

e The models of linear regression with two prior models of covariance matrix of residue
model and source term are studied.

e If smooth solutions are preferred, a model of correlated source term could be ap-

propriate.

e The models of covariance matrix of residue source term model is estimated from
the observations.
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Abstract. We introduce several modifications of classical statistical tests applicable to weighted
data sets in order to test homogeneity of weighted and unweighted samples, e.g. Monte Carlo
simulations compared to the real data measurements. The asymptotic approximation of p-
value and power of our weighted variants of homogeneity tests are investigated by means of
simulation experiments. The simulation is performed for various probability distributions of
samples. Finally, our methods of homogeneity testing are applied to Monte Carlo samples and
real data sets measured at the particle accelerator Tevatron in Fermilab at DZero experiment
originating from top-antitop quark pair production in two decay channels (electron, muon) with
2, 3 or 4+ jets detected. Consequently, the final variable selection is carried out and the resulting
subsets chosen from 46 dimensional physical parameters are recommended for further top quark
cross section analysis.

Keywords: statistical homogeneity testing, data weighting, top quark

Abstrakt. Je pfedstaveno nékolik modifikaci klasickych statistickych testi pro vazena po-
zorovani za tucelem testovani homogenity rozdéleni vazeného a nevazeného vzorku, tj. Monte
Carlo simulace v porovnani se skuteéné naméfenymi daty. Radou simulaénich experimentii je
provéfena asymptoticka aproximace p-hodnoty i sila vazenych variant testti homogenity. Vysled-
nymi metodami jsou porovnany vzorky Monte Carlo simulace a skutetnd data naméfend na
Casticovém urychlovaci Tevatron ve Fermilabu pii experimentu DZero pochazejici z produkce
paru top-antitop kvarku ve dvou rozpadovych kanélech (elektron a mion) se 2, 3 nebo 4 a vice
jety. Nasledné je provedena finalni selekce vhodnych fyzikalnich proménnych. Tato podmnozina
ze 46 kompletnich parametri je doporucena pro dalsi analyzu t¢inného prufezu top kvarku.

Klicovd slova: statistické testovani homogenity, vazeni dat, top kvark

1 Introduction

Homogeneity testing is an important step in many analysis techniques, particularly in ma-
chine learning (ML) applications in physics research. It is often the case that physicists
apply a field-specific data preprocessing procedure called data weighting. Via assigning
weights wq,...,w, > 0 to simulated observations xi,...,z,, they are able to fine-tune

*This work has been supported by the grants LG15047 (MYES), LM2015068 (MYES),
SGS15/214/0OHK4/3T /14 (CTU) and GA16-09848S (GACR).
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their Monte Carlo (MC) simulation dataset so that it meets their requirements. A typ-
ical example is shifting data distribution so that the resulting distribution is positively
skewed. However, theory concerning statistical homogeneity tests does not handle any
weighting procedures, nor associates weights with observations. Therefore, the classical
homogeneity tests must be adjusted for weighted datasets. Despite relatively straightfor-
ward incorporation of weights into the classical homogeneity tests and their modification,
asymptotic properties of these tests can be no longer guaranteed. Thus, our goal is
to investigate the validity of asymptotic properties of homogeneity testing for weighted
observations.

The underlying problem the physicist might require us to solve may be a simple
signal /backgrounds binary classification task. In this typical ML application, we often
use MC simulation for both training and testing our ML classifier. We may then apply
the trained classifier to a real measured dataset (DATA). Naturally, we expect both MC
~ F and DATA ~ G to be identically distributed: F' = G. Otherwise, the classification
model will not perform well. Thus, we indeed need to test homogeneity of MC and DATA
prior to the modelling step.

2  Weighted Tests of Homogeneity

Prior to subsequent utilization of ML methods, it is vital to guarantee homogeneity of
DATA and MC distributions. For this purpose, we first define an analogy with empirical
distribution function (EDF) for weighted data set.

Definition 1. Let X = (Xi,...,X,) be @id random variables distributed by cumulative
distribution function (CDF) F(z) and let (wy,...,w,) be respective weights, where W =
Yo w;. We define the weighted empirical distribution function (WEDF) to be

1
=1

where 14(X) is the indicator of the set A.

Remark 1. In the case of w; = 1 for all ¢ € n, that is the unweighted DATA, the
definition of WEDF goes over to usual EDF.

In order to avoid an investigation of an unknown parametric family, we shall pursue
our homogeneity testing only with nonparametric approaches. Thus, proceeding further
in this section, we present the Kolmogorov-Smirnov test based upon EDFs of two data sets

X, = <X1(l), e ,Xﬁ?) , Xo = (sz), e ,X7(122)>, with respective distribution functions
F,G. Also, we provide another class of nonparametric tests based upon ¢-divergences,

with the purpose of verifying precedent homogeneity results. By the homogeneity hy-
pothesis, as our null hypothesis is Hy, we understand

Hy:F=G vs Hy:F#G  atsignificance level « € (0,1). (2)
We require our homogeneity tests to meet the condition

P(WelHo) < o, (3)
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where W is a critical region for the specific test statistic 7', i.e. we reject hypothesis Hy
it T'e We.

The nature of homogeneity testing prompted us to look for the p-value, i.e., the lowest
significance level a for which we reject hypothesis Hy. Thus, for every a > p-value we
may automatically reject hypothesis H.

2.1 Two Sample Kolmogorov-Smirnov Test

Let F,,,, G, denote the EDFs of the two data samples X, X s with respective sample
sizes nq,ny. We consider the test statistic

Dy ny = sup ‘Fm ({L’) — G, (:U)’ (4)

zeR

a.s.

It is clear from the Glivenko-Cantelli lemma that under the true Hy it holds D,,, ,,, —
for ny,nyg — oco. Furthermore, due to [6] it holds for the true Hy and A > 0 that

lim P( T D im < A) —1- 22 1)k=1e=2k%3 (5)

n1,n2—>00 N1 + No

2y2
k—1,—2k2)3

Therefore, we obtain the approximate p-value as 2y ;- (—1) , Where \g =

nino D
\/ nitng T MLT2°

However, for weighted data sample we are forced to replace EDFs F,, , G,,, and the
numbers of entries n, ny, with their respective WEDFs EV1 G2 and the sums of weights

ny ng

Wi, Wy in (4) and (5). Instead of (4), we thus obtain the test statistic

D)V = sup |[F)V (x) — G2 (). (6)

ni,n2
zeR

a.s.

Remark 2. The Definition 1 of WEDF makes it clear that the statistic D"’V == 0
for ny,ny — oo and Wy, Wy — oo. Nevertheless, it is important to notice some of the
weaknesses inherent in the above approach. This modified test for the weighted data
sample does not have to obey the asymptotic property (5). Let us stress that the p-value
obtained using the statistic DWl7V2V2 can not be considered a regular approximate p-value
without subsequent detailed research. This is why we propose numerical verification of

our approach in Section 3.

2.2 Divergence Tests of Homogeneity

This particular class of tests converts the problem (2) to testing homogeneity in multi-
nomial populations. It does not utilize the EDF and therefore serves as an indepen-

dent verification. We recall our notation of two samples X = (X{l), e ,XT(LII)> , Xy =

<X1(2), . ,Xﬁ?), and the pooled sample { X, X,} with N = n; + ny observations. Let

{to,...,tr} denote a partition of R such that for all x € {X, X5} it holds x € [to, tx].
Hereby we make binning over the populations X1, X consisting of k bins. For i € {1,2}
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and j € k we denote by pz] the probability that a randomly chosen observation from X
lies in the j-th bin [t;_;,;]. Instead of (2) we now test equivalently the hypothesis

Hy : p1j = poj forall j e /15 Vs H, : Hy is not true. (7)

For i € {1,2} it holds 25:1 pij = 1. This will provide us with the k — 1 free parameters
for each sample X1, X». Thus let us denote the free parameters by 6; = (pi1, . .., Pik—1))-
The parametric space of the dimension 2(k — 1) for the task (7) is therefore generated by

©={010=(0:,02) = (p11,---,P1(k—1), P21 - - - s D2(k—1)) }- (8)
Under the true Hy we carry out the maximum likelihood estimate (MLE)

5 (N1 Ni—1 My Nkl)

0 = N,...,T,W,..., N (9)

where N; stands for the number of observations z € {X;, X,} lying in j-th bin. In
what follows, for ¢ € {1,2} we write p(6;) = (pi1, ..., pix) for the vector of probabilities
assigned to the bins. Hence for p(0;) we have MLE

p(0) = (S5 ). (10

n; n;

where N;; denotes the number of observations z € X; belonging to the j-th bin. First,
we construct the vector of joint probabilities

~ ng ,~. N ~ N Ny N N-
p:(_lp(01)7ﬁ2p(02>):(%77 ]\1]—k7 ]\3—17"'7 ]\?k)

o (1)

Secondly, we consider the vector

ny N9

p*(0) = (N (91) NP (92)> = <%P117 o Pk P2 %P%) - (12)

Furthermore, adopting the definition of ¢-divergence from [4], we arrive at

2 %pijcb ( AL >a (13)

NiPij

where ¢ is a certain function selected from the convex family of real non-negative valued
functions on (0,00). We now apply the previous MLE 0 of (9) to p*(@). Thereafter we
can define the statistic of the divergence test of homogeneity

H¢(5)=;,—]<V1)D¢(z3,p > ¢>” ii (N N) (14)

]

The distribution of (14) is x*(k — 1). Accordingly, the approximate p-value can be
computed as

p-value =1 — X?kfl)(H¢<§))' (15)



Modified Homogeneity Testing for Weighted Data 13

Remark 3. An important special case of (14) is the x? test of homogeneity for ¢(x) =
2(z — 1)%. Moreover, the test (14) coincides with the likelihood ratio test for ¢(z) =
rlogx — z + 1. Notwithstanding, the x?(k — 1) distribution of (14) holds independently
on the underlying convex function ¢ (numerically verified in [1]). Throughout what

follows, we shall use only the case of the x? test of homogeneity though.

Remark 4. The statistic (14) makes it evident that the divergence test of homogeneity
is dependent of the choice of the number of bins k£ as well as the subsequent binning
{to,...,tr}. That is why we consider histograms with robust equiprobable binning from
[1]. However, in order to carry out the construction of the test, we must make a judicious
choice of k. Because of the large number of observations in DATA (or sum of weights
W in MC, as W &~ #DATA for each ensemble under consideration), the test would loose
its power with increasing bin number k, see [3], (numerically validated in [1]). Thus, we
choose the following wise number of bins k = [1 + log, W, due to [2]. Finally, let us
state once more, we might want to supersede the members N;;, N;, n;, N, in (14) with the
corresponding sums of weights at the sacrifice of losing some control on the asymptotic

property (15).

Figure 1 provides comparison of the divergence test of homogeneity (represented by
x? test) with the Kolmogorov-Smirnov and Anderson-Darling [5] test. Notice that the
divergence tests produce generally higher p-values compared with the tests based on the
EDF.

I Kolmogorov-Smirnov Anderson-Darling [l x> a=01 —a=005 —a=001 ——a=0.001
1 T T T Tl Ty T Wiy g U T T et T g g Ty 7,0 T T T g U T g T T T T T 1

0.001

0.0001 — —

1e-05

g =

SV N0 0 N2 QNP BN B AR > 42 R Rl qPad oD ool aP ada o o P oD DY R P
Figure 1: Homogeneity tests of MC and DATA distributions: p-value for all m = 46
variables in MC channel Electron 4+ Jets.

3 Simulation

3.1 Ensemble Modification and p-value Validation

In Remarks 2 and 4, we have already mentioned the problem of insecure asymptotic
properties when applying weighted modifications of the standard tests. We now turn our
attention over the numerical simulation. For our purposes here, the best way would be
to validate the asymptotic properties using standard, unweighted tests. This requires us
to plug into the testing an unweighted data set (only instead of weighted MC; DATA
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is unweighted already). We shall do this by appropriate transformation of the weighted
ensemble MC into the unweighted ensemble MC;.

We make two requirements for the transformation. Firstly, we desire to preserve or
exploit information contained in weighting in MC. Since the weight of an observation
states to what extent the distribution should be present in the neighbourhood of the
observation. Secondly, we require that the sum of weights in MC corresponds to the
number of observations in the unweighted MC;. Continuing in this manner, we now
proceed as follows.

Denote by X = (X(l), o ,X(n)) the ordered sample in MC with weights (w1, ..., w,)
and let W ="  w;. Let N = [W] denote the desired number of observations in the
new transformed ensemble MC;. Given both our requirements regarding MC;, we are
constructing special weighted averages from X . For simplicity, we presume 0 < w; < 1
for all i € n. Into the set intended for the first weighted average we include the smallest
possible number of observations (X(l), e ,X(kl)) such that

k1
1<) wi<2. (16)
=1

Thereby, for all I < ky
!
> wi< 1. (17)
i=1

The portion of weight wy, of the observation X,y which contributes above 1 to the sum
(16) will not be included into the first weighted average. Hence, we denote this residual
portion as

k1
Tk = Zwi — 1. (18)
i=1

Thereafter the first observation Y{;) in MC; can be defined as the following weighted
average

k
_ 2im Xoywi = Xk Ty

Y(l) k1 (19)
i=1 Wi = Thy
From (18) we arrive at
k1 ki1—1
Y(l) = Z X(i)wi - X(k’l)rkl = Z X(i)wi + X(kl)(wkl - Tkl). (20)
i=1 i=1

The residual portion ry, will be added to the next weighted average for Y{3). In general,
for Y(;) we write

k;
T, = Z w; — Tg—1 — 1 (21)
i:kj71+1
k-1
Yoy = Xy + Y Xaywi+ X (w, — 13- (22)
i:kj71+1
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Repeating the same steps we transform the original weighted ensemble MC with X =
(X(l), . ,X(n)) into the new unweighted ensemble MC; with ¥ = (Y(l), e ,Y(ﬁ)). We
have distributed the weights from the MC so that there is the unit weight for each
observation Y(;. Therefore, we are authorized to apply standard homogeneity tests,
which guarantees the asymptotic properties.

e MC B MC; ——a =01 ——a=005 ——a=001 —— a=0.001

0.001

0.0001

1e-05

0

Figure 2: Kolmogorov-Smirnov test: p-value for all m = 46 variables in MC/MC; channel
Electron 4+ Jets.

Now, we can finally verify the correctness of the modified tests, used to weighted data.
Indeed, the resulting p-values from the standard tests, performed over MC;, remarkably
matches with accuracy p-values from the modified tests performed over MC. This is true
even for small orders of magnitudes of p-values, as evidenced by comparison in Figure 2.

3.2 Generic Validation

As we verified eligible usage of modified weighted tests in previous section with datasets
originating from high energy physics, we aim to provide more general verification now.
Thus, we consider several different distributions for X = (X,..., X,,): Beta, Cauchy,
Exponential, Laplace, Logistic, Lognormal, Normal, Uniform and Weibull. On the con-
trary, weights W = (Wy,...,W,,) are taken from Beta distribution as we may easily tune

the expected value:
Q@

a+p’
The appropriate number of simulation data points was determined by preliminary con-
vergence studies. Otherwise, the simulation steps proceed as follows:

W ~ Beta(o, ) = E[W]=

(23)

1. Generate n random weighted data points (X, W), e.g. n = 3,500, 000.

2. Estimate weighted distribution from all the observations (X, W) (using kernel den-
sity estimation). Repeat all the following & times, e.g. k = 1,000:

(a) Draw m,, = 7 weighted observations from (X, W) as your current MC sample,
e.g. my, = 3,500.

(b) Generate m, ~ Y . w; unweighted observations from estimated weighted
distribution as your current DATA sample, e.g. m, = 1, 000.

(c¢) Apply weighted homogeneity test MC vs DATA.
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d) Rearrange MC into unweighted sample MC; and apply standard unweighted
T
test.

Thus, we obtain k£ p-values from the weighted tests and also another k corresponding
p-values from the unweighted tests. We may now check asymptotic properties of both
weighted and unweighted tests.

For all the distributions under consideration we arrived at two main results. First,
the significance level condition (3) is uniformly satisfied as shown in Figure 3, i.e. both
EDFs are located under the diagonal in graph. Second, both weighted modifications
and unweighted tests have the same resulting p-value distribution. This can be tested via
ordinary classical homogeneity tests for unweighted data. Nevertheless, the extraordinary
correspondence is obvious from the graph already:.

0.1

5 % significance level g
09 508 - i

0.06 T
0.8 - w -

0.7 -

06~

03 B
0.2 i

01| —weighted tests -

- -unweighted tests

0 L= ! ! ! ! ! ! ! !
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

p-value

Figure 3: EDF of p-value for weighted and unweighted tests of homogeneity. Underlying
data are taken from the lognormal distribution.

4 Conclusion

We performed numerical validation of modified statistical homogeneity tests for weighted
data. Our simulation verifies that the approximate asymptotic properties remain the
same for both weighted and unweighted tests. In consequence, in practice, we may either
utilize modified weighted tests or we may apply the rearranging technique from Section
3.1 directly with the unweighted standard tests (where the asymptotics are proven). In
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future research, we aim to investigate the effect of various homogeneity tests and different
weights distribution on the overall significance and power. We also plan to explore the
possibility of proving the validity of weighted tests for arbitrary data distribution as well
as potentially perform multivariate testing. The former may be reached by limiting the
possibilities for the weights distribution as there exist only limited number of physical
motivations for weighting procedures in practice.
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Abstract. With use of the multivariate trigonometric functions, the Chebyshev polynomials
of the fourth kind are generalized to orthogonal polynomials of several variables. The general
form of recurrence relations is obtained. These polynomials are further investigated in dimension
three, exact form of recurrence relations is obtained and the first four polynomials are calculated
using trigonometric identities. Then the first ten multivariate Chebyshev-like polynomials of
fourth kind are generated.

Keywords: Chebyshev Polynomials, Multivariate Trigonometric Functions, Orthogonal Polyno-
mials

Abstrakt. Za uziti trigonometrickych funkci vice proménnych jsou Cebyéevovy polynomy
¢tvrtého druhu zobecnény na ortogonalni polynomy vice proménnych. Je ziskdn obecny tvar
rekurentnich relaci. Pro dimenzi tfi jsou tyto polynomy déle zkoumény, je ziskdn pfesny tvar
rekurentnich relaci a prvni ¢tyfi polynomy jsou spocéteny za uziti trigonometrickych identit.
Nésledné je vygenerovano prvnich deset vice dimenzionalnich Cebyéevovych polynomu ¢tvrtého
druhu.

Klicovd slova: éebyéevovy polynomy, Trigonometrické funkce vice proménnych, Ortogonalni
Polynomy

1 Introduction

In mathematics and physics we often encounter special functions on n-dimensional Eu-
clidean space which are symmetric or antisymmetric with respect to permutation of
variables. Example of such functions are multivariate trigonometric functions defined
by Klimyk and Patera [10] as determinants and permanents of matrices, which entries
are one dimensional trigonometric transforms. These functions inherit many important
properties from the classical trigonometric functions and properties of determinants and
permanents and due that are extensively studied |7, 8, 9].

One of application of multivariate trigonometric functions is to use them for general-
ization of discrete trigonometric transforms [1]. For multivariate discrete sine transforms

*This work was supported by the Grant Agency of Czech Technical University in Prague, grant No.
SGS16 /239/0OHK4/3T/14
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this was done in [7| and for multivariate discrete cosine transforms in [2]. Another ap-
proach is to use the multivariate trigonometric functions as a starting point to define
multivariate orthogonal polynomials.

Orthogonal polynomials [4, 5| are appearing in many parts of mathematics and physics
and are intensively studied. Orthogonal polynomials which are connected to trigonomet-
ric functions are the Chebyshev polynomials |6, 11]. These polynomials are connected
to effective methods of numerical interpolation and approximation and thus their multi-
variate generalizations is interesting topic to study. Using the multivariate trigonometric
functions one can generalize the classical Chebyshev polynomials and obtain multivariate
Chebyshev-like polynomials. In total there exist four kinds of Chebyshev polynomials,
each of them can be generalized using symmetric or antisymmetric multivariate trigono-
metric functions. The generalization of the Chebyshev polynomials of first and third kind
was done in [7]| the generalization of Chebyshev polynomials of second kind in [3]. The
generalization of Chebyshev polynomials of fourth kind is part of this paper.

2 Multivariate trigonometric functions

The multivariate generalizations of trigonometric functions are defined as determinants
and permanents of matrices with entries cos(m;z;) resp. sin(mA;z;) in [10]. The antisym-
metric trigonometric functions cos, (x), sin, () and symmetric trigonometric functions
cosy (z), sin} (z) of variable z = (z1,...,7,) € R™ with parameter A\ = (\1,...,\,) in
the form:

cos, (x) = Z sgn (o) cos(mAy, 1) coS(TAy,x2) - - - COS(TA,, T ),

ocESH (1)
sin, (z Z sgn(o) sin(mA,, x1) sin(mwA,, o) - - - sin(wA,, ),
O'GSTL

for the antisymmetric trigonometric functions and

cosy (z) = Z coS(T Ay, 1) COS(T A5, T2) - - - COS(T Ay, X, ),
o€ESy (2)
sin} (z) = Z Sin(m\,, 1) sin(m Ay, 22) - - - sin(mw A, 2, ),

O’GSn

for the symmetric trigonometric functions.

For our applications we will only consider parameters A in form A=k or A =k+p
where k € Z™ and p = (%, %, ce %) Further, due (anti)symmetries, we will consider
parameters k only lexicographically ordered, i.e.,

ki > ko> .. > k. (3)

Due to properties of determinants and permanents the functions can be considered only
on closure of the fundamental domain F(S2f), of the form:

(Saﬁ) {(x1,29,...,2,) ER" |1 > 29y > 29 > ... > 2, >0}, (4)
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which can be further restricted by omitting boundaries in specific cases due to additional
properties discussed in [2], i.e,

o z; =wx;1,1 € {1l,...,n— 1} for cos, ()

o v; =z, €{l,...,n}, z1 =1 or z, = 0 for sin (z)
o v, =x;41,1€{1l,...,n—1} or x; =1 for cos,;rp(x)
e z;=m;1,i €{1,...,n—1} or z, = 0 for sin;, (z)

e ;=1 or z, =0 for sin] (z)

o 1y =1 for cosy, ()

e 1, =0 for sin;, (z)

3 Chebyshev polynomials

The classical Chebyshev polynomials of one variable are connected to effective methods of
interpolation and numerical integration and due that they are well known and extensively
used class of orthogonal polynomials [6, 11]. There exist four kinds of the Chebyshev
polynomials defined as

cos ((n + 1) )

Pl(x) = T,(x) = cos (nb), PUI(3) =V, (z) = (T
Pl(a) = V(o) = LD PIV(2) = W (2) = 2 ((n v 5)0) )
" " sin () " " sin (16) 7

with variable = = cos (0), x € [-1, 1].
For further uses we will focus mainly on the Chebyshev polynomials of the fourth
kind. These polynomials are orthogonal on interval (—1,1). i.e.,

1

1
/ W)Wy () (1 —2)2 (14+2) 2dx =0, n#m. (6)
-1
The first two polynomials can be obtained using of trigonometric formulas as:
Wi(x) =1, Wa(x) =2cos (0) + 1 =2x + 1. (7)

The recurrence relations for following polynomials can be obtained using theory of or-
thogonal polynomials. However it is easier to obtain it using the following trigonometric
identity:

1 1 1
sin <(<n + 5) + 1) 0) + sin (<<n+ 5) — 1) 9) = 2cos (6) sin ((n—I— 5) 9) (8)
which in coordinates x = cos (f) gives recurrence relations:

W (x) = 22W,_1(z) — Wy_a(z), n=23,.... 9)

This together with knowledge of the first two polynomials generates all polynomials.
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4 Multivariate Chebyshev-like polynomials of the fourth
kind

The multivariate generalizations of trigonometric functions can be used to define mul-
tivariate Chebyshev-like polynomials. In total for any dimension there exist eight mul-
tivariate Chebyshev-like polynomials. Every classical Chebyshev polynomials can be
generalized by use of symmetric or antisymmetric multivariate trigonometric functions.
The Chebyshev polynomials of the first and the third kind were generalized in [7]. In this
paper we focus on symmetric multivariate Chebyshev-like polynomials of fourth kind.
Lets introduce variables X7, Xo, ..., X,:

X, = COSEL

— et
1,0,...,0)’ Xy = COS

1,1,..,0)0 o

X, = COSZLl,l,..‘,l) . (10)

Now the multivariate symmetric generalization of the Chebyshev polynomials of the
fourth kind can be introduced in a form:

ot
W sing, ()
(X, X, X)) = — 11
Pk ( 1,22, 3 ) sm;“(x) ( )
where p = (%, %, ceey %) These functions are well defined for all points of interior of

fundamental domain F(S%//).
We use ordering of the polynomials from [7], we say that a polynomial 7;;\/# is greater
than polynomial PLV", k # K if for all i, k; > k! and smaller if for all 4, k; < k.

4.1 Recurrence relations
To obtain recurrence relations for the generalized Chebyshev-like polynomials P.* one
has to consider generalized trigonometric identity which can be obtained using the clas-

sical identity (8):

: 1 ,
sinf (z) cos) (z) = o Z Z 31nzrk1+allo<1)7_“7kn+anlg(n))(:U). (12)

0ESy a;j=%1
1=1,....,n

Specially case where [ = p; = (1,1,...,1), i.e,

. n! .
sin! () cosy () = oT) Z Slna1+aly-4~7kn+an)(x)7 (13)
=+1

i:i,...,n
the recurrence relations then obtain form:

2n .
. + _ = . + _ . + _ . + _ _ . _l’_
Sy = Ty Sty —tp =1, Xn E :Slnkf% E :Smkﬂzilej s TS o) oty 21,
’ i Q=1
i<j

n

(14)
where [; is vector with 1 on i-th coordinate and 0 for the rest.
Using identity (14) each polynomial can be expressed as linear combination of lower
polynomials and combination of products of lower polynomial with variables X;. There-
fore each polynomial can be defined recursively.
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4.2 Three-dimensional polynomials

Properties of generalized sine functions together with generalized trigonometric identity
(14) leads to the following set of recurrence relations for PIkV Z ks)- Lhe first four poly-

nomials are obtained using trigonometric identities in form:

1
IV,+ v+
Pooo =1L Pioo) = §X1 +1,

15
PV 2%, 12X, 11, PV = g pax, x4+ 1 .

Following polynomials are then obtained using recurrence relations:

. VA4  pIV+ IV,+ IV,+ IV,+
ki > 2,k =ks =0: P(kl,O,O) Pkl 100)X1 P(k1—2,00 2P (k1—1,1,0) + 2P (k1—1,0,0)

oIVt v+ v+ IVt
]{il —1> k’g > k?3 =0: P(Iﬂ,kg,O) P (k1—1 k270)X1 - P(kl 2,k2,0) + 7)(761—171%10)

IV, + IV,+ _ plV+
- P(k1—1,k2+1,0) - P(lcl—Lkg—l,O) P(kl—l,k2,1)

_ . IvV,+ IV IV, +
ki —=1>ky =k >0: P(kl,kz,kz) - P(krl,kz,kz)Xl o P(krz,kz,kz)

IV,+ IV,+
- 273 k)l 1 k2+1,k2) - 2P(k1*1>k27k271)

. IV,+ _ IV + IV,+ . IV,+
k= 1>k > ks > 00 Pl k) = Pl 1) X1~ Pla=2,k0,k) ~ Pl kot 1,k5)
_PIV-‘r o 1V,+ _PIV,+
(k’l—l,kg—l,k‘;g) (kl—l,kz,kg-i-l) (k‘l—].,k‘27k3—1)

1
) IV+ IV,+ IV,+
ki —1=ky>ky=0: P(kl,kl 1,0) = P(klfl,qu,o)Xl - /P(klfl,klfzo)

I vy 1 vy
- _P(k1—1,k1—1,1) + 57)(1@1—1,k1—1,0)

1
. IV,+ IV,+ IV,+
kl - 1 = k2 > kg > 0 : P(Iﬂ k1—1 k:3) 273(]6171,]{171,]63))(1 o P(k171,]€172,k3)
1 vt T vy
- §P(k1—1,k1—1,k3+1) o §P(k1—1,k1—1,k3—1)

1
. IV,+ _ IV, + IV, +
kl - 1 = kQ = kg > 0 : ,P(khklfl,k:lfl) - g/P(]ﬂfl,klfl,]ﬂfl)Xl - ,P(k:171,k:171,k‘172)
(16)
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k1:k2:2,k‘3:01

k1:k2>2,]€3:01

ki="ky>ks+2>2:

ki =k =ks+2=3:

k1:k2:k3+2>31

k1:k2:k3+1:22

k1:k2:k3+1>21

1vV,+ _ IV,+
73(2,2,0) - 273(1,1,0)X2 - 277(1 0,0) X1+ 77 1, 1 0
IV, + IV,+ IV+ IV+
—Phin X+ Pooy + 6P — 473(1’070)
IV, + IV, +
+ 73(2,1,1) - 73(1,1,1)

1V,
7) +

IV+
(k1 k1,0) X1 =P Xy

(k1—1,k1—1,1)
1V,+

_ 1V,+ 1V, +
2Pk1 1,k — 10) 2Pk1 1,k1—2,0)

IVt IVt v+ ,
T Py~ 1k—1,0051 T P o k—2.0) T 4P 0“1k —1.0) T 2P0 210 —2,1)

IV, + IV,+ IV,+ IV,+
+ 2P (k1—1,k1—2,0) + ZP(kl—l,k1—3,0) + P(k1—1,k1—1,2) - P(kl—l,kl—l,l)

IV,+ _ IV,+ IV, +
P(kl,kl,ki’) 2P (k1—1,k1—1 k3) QP(klkarzks)Xl

73(I/Lc‘jﬂ k1—1 k3+1) P(IkV:Lklkagq)Xl
+ P(IIX—"_Q ki—2ks) T QPIIXJH k1—2,ks+1)
+ 2Plk‘i+1 ki—2,ks—1) T 473{13/1:@171,163)
+ QPIIX +1 k-3ks) T PIIX +1 k1 —1,k3+2)
+ P{lXi,erkrm
Pl = 2Pl % — 2P % — P
- P(I2V;B X1+ 7311‘/i+1) + 57)(12‘,/;)
+ 473]2‘/;5 + PlzszB)
IV,+
(k1,k1,k1—2)

2
IV, + IV, +
- §P(k1—1,k1—1,k1—1)X1 = Pl =101 -1,00-3) %1

— oplVt X,

oIVt
=2P (k1—1,k1—2,k1—2)

(k1—1,k1—1,k1 — 2)

IV,+ IV+
+P(k1 2,k1—2,k1—2) + 5P (k1—1,k1—1,k1—2)

IV,+ IV,+
+ 4P (k1 —1,k1—2,k1—3) T P (k1—1,k1—1,k1—4)

1V,
P +

IV,+ IV,+
(2,2,1) — 73(111)X2 73(1,1,0)X1

IV+ v+ v+
+Puoo t Puin — Puio
v+ 2 v IVt
P(kl,kl,kl—l) - gp(kl—l,kl—l,kl—nX? P(kl—l,kl—l,k1—2)X1
v+ IV
T P 1 —20-2) T Pl 1 j1—1.51-1)

IV,+
+ P(k1_17k1_17k1_3)

IV,+ IVt y V4 i -
Plaaz = P(111) — 6P 10y X2 + 3P o0 X1 — 3P 10X
IV+ IV + IV+ IV+ 1v+

(17)
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4
IV,+ Vit IV, +
+ 27)(222 Xl + 37)220) 7)(1,1,1)

IV,+ IV,+ IV,+
- 9P(2,2,1 6P(2 1,0) +P (2,2,0)

4
IV IV+ IVt
ky =ky=ks > 3: P(kl Fikn) = 3P(k1 L1k 1) — 6P (bt 11— 1 o1 — 2)X (18)

IV,+ IV,+
+ 3P(k1 1,k1—2,k1— )Xl + 2P (k1—1 kl—l,k1—l)X1

IV, + IV 4
+3Pk1 1k1—17k1—3)X _P(kl 2,k1—2,k1—2)

IV,+ IV, +
_9Pk1 1,k1—1,k1—2) 67D(k1 1,k1—2,k1—3)

IV,+
o SP(kl—l,kl—l,k1—4)7
which are obtained from the generalized trigonometric identity (14).

With the use of recurrence relations one can obtain the exact form of first ten poly-
nomials (k < (2,2,2)) as follows:

Posoy =L

oo = %Xl +1,

Py = 2Xa 2%+ 1,

AT %Xg +2X, + X + 1,
1 4 1

IV,+ 2
P(?,O,O) = §X1 — §X2 + §X1 — 1,

P{z‘jﬂ)) = %X% + ;XZXl - ;Xs - §X2 — §X1 1,

P(IQYiﬁ) = %Xf + 3X3X1 - §X2X1 - ng - %Xl —1,

7’&3 = —ng + %Xr? §X3X1 - %Xg + ;lXQ — %Xl +1,

Plony = %Xf + %XS + §X3X2 + §X3 +2X, + gXl +1,

Pl = ?Xy? —4X2 4+ X2 4 §X3X2 CAX X — 2Xo X 4 ?Xg 12X, + X, — 1.

(19)

From the first ten polynomials one can see that the polynomial P([k‘f; ks) is of order £

for k; < 2, which can be proven generally for any k; using the generalized trigonometric
identity (14).
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5 Conclusion

The generalization of the Chebyshev polynomials of fourth kind was done using the sym-
metric multivariate trigonometric function. The generalization by antisymmetric function
follow similar procedure but is slightly more complicated due to the antisymmetry con-
dition. This generalizations completes the set of eight multivariate Chebyshev-like poly-
nomials. The multivariate Chebyshev-like polynomials inherited many usable properties
from the one dimensional cases, and thus are interesting topic for further study.

One of possible applications of the multivariate Chebyshev-like polynomials is to ob-
tain cubature formulas. Cubature formulas allow replacing weighted integral of poly-
nomial function with a linear combination of polynomial values at some points. This
allows faster computation and therefore can lead to effective numerical methods. For the
multivariate Chebyshev polynomials of first and third kind this was already done in [7].
The cubature formulas obtained from multivariate Chebyshev polynomials of second and
fourth kind are point of current study.
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Abstract. There are many approaches to evaluate density within pedestrian scenarios, including
point approximation, Voronoi cells or more sophisticated methods. In this project we focus on
the individual density, where each pedestrian is considered as a source of density distribution. A
cone can be considered as a reasonable shape, with its diameter as a blur parameter. Naturally,
pedestrians adapt their velocity and path selection with respect to the conditions around them
in given range. The correlation of density and velocity, respective density and exit angle was
evaluated on laboratory experiment data for all acceptable blur — range combination. Because
negative correlation corresponds to more significant response of velocity (exit angle) to the
density, the correlations seem to be a perfect tool to estimate density parameters.

Keywords: crowd dynamics, individual density, velocity response

Abstrakt. Existuje mnoho pfistupi k vyhodnocovani hustoty v ramci systémi chodcti, jako
je bodova aproximace, Voronoiské bunky nebo dalsi, sofistikovanéjsi metody. V tomto projektu
se zamérujeme na individudlni hustotu, kde je kazdy chodec povazovan za zdroj distribuce hus-
toty. Za vhodny tvar muze byt povazovan kuzel jednotkového objemu, jehoZ prumér vyjadiuje
parametr rozostfeni. Chodci zfejmé prizpusobuji svou rychlost a vybér cesty okolnim pod-
minkdm v daném okoli. Korelace hustoty a rychlosti, popfipadé hustoty a thlu k vystupu byla
vyhodnocovana na zakladé udaji z laboratornich experimentt pro vSechny myslitelné kombinace
parametri rozostieni a rozsahu okoli. Vzhledem k tomu, Ze vice negativni korelace odpovida
vyrazn&jsi odezvé rychlosti (tthlu vystupu) na hustotu, zda se, Ze tyto korelace jsou vhodnym
nastrojem pro odhad parametru hustoty.

Klicovd slova: dynamika davu, individuédlni hustota, reakce rychlosti

1 Introduction

The pedestrian movement, including egress situations, walking in corridors or in cross-
section areas has been widely studied in last twenty years [4]. This period seems long
enough to bring the answer to such fundamental question as "how pedestrians react to

*GACR 15-15049S & SGS15/214/OHK4/3T /14
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their surrounding", but so far, there are only qualitative studies or macroscopic approxi-
mations. Moreover, the definitions of fundamental quantities are not unified [5] and the
only criteria to use some method is to bring the prettiest data.

In this paper, the study of pedestrian reaction starts with quantification of state of
his neighborhood and quantification of his reaction. The main idea has been presented
and described at the conference PED 2017 [3]. This paper partially discusses some part
of density evaluation and concludes preliminary results.

The reaction consisting of velocity and direction changes is considered to be induced
by the trend of density. There are many ways to evaluate density and even the reaction
range should be parametrized, thus the pedestrian behavior in front of the exit is analyzed
on parametric grid with respect to multiple defined densities (defined bellow). This
parametric grid is generally based on two features:

e blur, e.g. the size of area affected by one pedestrian,
e range, e.g. the size of area affecting one pedestrian.

At the end, Pearson correlation coefficient

CoV (P s Va)
v/ Var (p,,) Var (v,) @

is used as a metric to select the density with the best fit to pedestrian reactions.
Numerical study is based on the egress experiment organized in the study hall of
FNSPE CTU in Prague in 2014, see [1], [2].

Rt (pwaa Ua) -

2 Definitions

As mentioned above, the analysis is provided on pedestrian trajectory data. The velocity
U (t) of pedestrian « is defined as usual using central differences of space coordinates.
The exit angle 9, (t) € [0,7] is defined as angular deflection from the ideal direction of
the pedestrian « to the exit

The density is the only flexible variable in this study. Its value is integrated over the
distribution generated by each pedestrian « individually

A A |A]

_ N _pr(f)df Ju2 e 1pa T) dx ZIAP|A| . (2)

There are several methods to define the individual density distribution function (ker-
nel) po(7):

e point approximation
yu (f) - 5f,fo¢7

L1 i #, €A,
where f 4073, AT = { 0 otherwise,
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e stepwise function

otherwise,

{ L if Fc A,

where special cases are

1. cylindrical distribution
1 . — —
ooy s i T T <R,
Pa(7, ) { 0 otherwise,

2. Voronoi distribution, where A, is a voronoi cell — the whole space is segregated
into pedestrian cells A, according to a simple rule: each point ¥
is assigned to the nearest pedestrian 7,
e linear (conic) distribution
3 — — . — —
ooy | mmRT-TL]) i 7T <R,
Pa(T, ) { 0 otherwise,

e Gaussian distribution

) 1
pa(l‘a E) =

214/ |2

with covariance matrix ¥ = 02 Iy, where Iyo represents identity matrix.

o 3(@-Fa) 7T (F—Fa)

blur = 0.5 m
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Figure 1: Example of density distribution

In this paper, linear (conic) distribution was used due to its decreasing trend with
increasing distance, limited support and independence of one pedestrian to others. An
example of density distribution generated by the method mentioned above is visualized
in Figure 1.
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3 Analysis

Basic overview is provided by of velocity — density, resp. direction — density relation of
all trajectories. For each blur and range parametric set, Pearson correlation coefficient
was evaluated over the whole trajectory, and then averaged over all trajectories of the
experiment, see Figure 2.

velocity response exit angle response
0.2 0.15 0.05 0

R (P> Va)
R (P Va)

blur [m] 1 0 05 1 1.5 2 - blur [m] 1 0.5 1 15
range [m] range [m]

Figure 2: Correlation coefficient over the whole trajectory, mean over all trajectories

We can see expected zero correlation for zero range point approximation in case of
both, velocity and the exit angle as well as natural negative velocity correlation for short
range narrow approximation. On the other hand, positive velocity correlation for any
long range approximation and negative exit angle correlation for all reasonable sets of
parameters weren’t expected at all. Moreover, the absolute value of correlation is rather
small, indicating week dependency of density and pedestrian reaction.

To see the source of positive or negative correlation, we have to go to individual level
and check rolling correlation (window width 1.56 s) for segments of one trajectory, see
Figure 3.

There is strong positive correlation of velocity and long-range density in free flow
area that can be explained by competitiveness between pedestrians. Strong negative
correlation of velocity and all densities in avoiding/joining the cluster area corresponds
to adjusting velocity to higher density. And at the end, positive correlation of velocity
and all densities in the cluster area is caused by the flow conservation law — closer the
exit, lower number of participants carry the flow, the velocity at the exit is much higher
than inside the crowd, even the density is higher as well.
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Figure 3: Correlation coefficient of four density combinations and velocity

4 Conclusions

Correlation between velocity and density isn’t obviously as clear as expected on the
first sight. Expected decrease of velocity implied by increasing density is observed only
in transition phase between free flow and congested areas. Others situations produce
different behavior due to the complex dynamics.

In general, individual pedestrian density reflects phase transition changes very well,
as can be seen in Figure 4. The value of correlation of velocity and one specific density is
not stable, but differs with the traffic mode around, personal preferences and individually
selected strategy. The analysis of such complexity is a subject of further research.

Yet these preliminary results described and explained unexpected positive correlation
in the exit area by the flow conservation law. We hope that deep decomposition and
clustering of trajectories reveal more fundamental facts that increase our ability to predict
the pedestrian reactions.

o * . o,
(X
. ®e 4 o

o o
o)
N o
. . ° o

Figure 4: Changes of blur (blue dotted neighborhood) and range (yellow neighborhood)
parameters according to the phase transitions.
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Abstract. This study presents a mathematical model of density profile computation for multi-
component mixtures of two commonly used phase geometries. The model unifies the description
of multicomponent systems of planar and spherical interface geometry. The mathematical model
is supplied with PC-SAFT equation of state for thermodynamic property evaluation. The fun-
damentals of the presented model lie in the gradient theory approximation used to formulate
the governing differential equation. An innovative approach to the problem formulation divides
the solution into two simple parts. The solution method applicable for arbitrary geometry was
developed and a special case for planar and spherical interfaces was solved. In addition to
the density profile and the surface tension are computed for modelled system. Binary system
CO,, C4H1g was investigated and compared with available experimental data. Surface tension
estimate was found to be in good agreement with experiment.

Keywords: phase interface, gradient theory, multicomponent system, surface tension

Abstrakt. Predmétem studie je zkoumani fazovych rozhrani dvou zakladnich typa geometrii.
Jedn4 se o rovinné a sférické geometrie, které jsou ve studii zkoumany jednotnym modelem.
Tento model vyuziva poznatky gradientni teorie a je doplnén o stavovou rovnici PC-SAFT,
ktera vycisluje termodynamické vlastnosti zkoumaného systému. Pomoci originalntho pfistupu
je model rozdélen na dva vypocetni kroky. Ve studii jsou zkoumény obé geometrie na vybrané re-
alné smési obsahujici CO4, C4H1g. Vypoctené vysledky jsou nasledné srovnéany s dostupnymi ex-
perimentalnimi daty. Vysledky srovnéni pro povrchovéi napéti jsou v dobré shodé s vytvofenym
modelem.

Klicovd slova: fazové rozhrani, gradientni teorie, viceslozkové systémy, povrchové napéti

1 Theoretical background

The methods for accurate modelling of phase interfaces are important for the under-
standing of natural processes and applications in technology. One such application is

*The research has received funding from the Norwegian Financial Mechanism 2009-2014 under Project
Contract no. 7F14466
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carbon capture and storage (CCS). In particular, the prediction of non-equilibrium phase
transitions requires a detailed knowledge of the phase interfaces.

The gradient theory (GT) framework presented here was initially used for pure systems
only. The initial aim was to predict interface properties of said pure system. Through the
recent years the originally simple description of pure systems was extended into multiple
component systems for example [15, 16]. The authors derived the formulas and governing
equation system for the multi-component problems and provided comparison with avail-
able experimental data. But during the derivation authors restricted themselves to the
planar phase interface geometry. There also exist group of authors who extend the the-
ory to the more complicated spherical interface geometry [6, 17, 20|. While these authors
derived the terms for the special geometry e.g droplets, they also restricted themselves
and constructed the models for the pure systems only. Based on our observation there
is no unified framework which describes how to approach spherical phase geometry in
multi-component systems.

The presented study continues in line with mixture systems research by Vins et. al.
[19] and combines the spherical interface geometry research by Plankova et. al. [18].
The aim of this study is the prediction of multi-component systems with spherical phase
interface geometry initially outlined in [4]. The method is extended into derivation of the
generalized computational approach for two interface geometries in multiple-component
system. This study also present the comparison of investigate two-component system
with experimental data in the last section.

2 Theoretical background

2.1 Cahn-hilliard gradient theory

The main advantage of gradient theory approach is the computational speed and the
overall simplicity compared to the full density functional theory (DFT) or molecular
simulation models. But the simplicity of the approach comes at the cost of lowered
accuracy in regions with large gradients of Helmholtz energy.

Gradient theory formulate the work of formation A2 and uses it to describe the op-
timal density profile. The work of formation is defined as the difference between the
homogeneous system and the non-homogeneous system where the phase interface effects
are accounted for. Same formulation can be expressed in multiple thermodynamic po-
tentials, but for the case of multi-component mixtures the grand potential is the most
suitable:

AQ(p) = Qinbom (£) — Qnom (p)- (1)

Grand potentials here depend on the molar density p which can be understood as an
universal descriptor of a system. It is also usual to search for the molar density sys-
tem description in form of density profile. In an arbitrary system such density profile
is a function of the systems coordinates for example p = p(s1, s9,s3). With this for-
mulation the solution becomes substantially complex. Therefore, it is usual to assume
that the system is non-uniform in only single coordinate s; denoted further simply as s.
Helmholtz energy of inhomogeneous system is then expressed as Taylor expansion around
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homogeneous Helmholtz energy with higher order terms omitted as follows:

1
finhom - fhom(p) + Cl . Vzp + 502 . (Vp)2 Ce (2)

According to the approach used by Cahn and Hilliard [3] the Taylor expansion is utilised in
the formulation of the grand potential. With a simplified notation the following equation
for grand potential difference is obtained.

AQ = / (Aw ) + 03 (‘ZZ ) )Sds, (3)

Here C3 parameters contain the Taylor expansion coefficients and Aw is the grand po-
tential density which can be also expressed in following form:

w (p) = from (P) — Z 1 p; + pC. (4)

It can be noted that formation work in eq. (3) was derived for generalized type of interface
geometry parametrized with s and S. This geometry can be specified later with the choice
of coordinate system best describing the intended interface geometry. Selecting Cartesian
coordinates the planar geometry can be described and similarly spherical coordinates can
be used for droplets.

2.1.1 Core problem derivation

When the task is transferred into grand potential formulation it can be noticed that it is
also a functional formulation for an unknown density profile function p. With the problem
then understood as functional problem of finding the saddle point the variational calculus
can be used with advantage. The required criterium for optimal density profile can be
formulated accordingly as:

SAQ[p],_0 =0 (5)
The extremal point of previous formulation is found by Euler-Lagrange equations.

Aw (p(s)) | S = Ociy (0pi\ (Op; opi\
S——’—E; D5 s S;Czk =0, kel...n. (6)

Opk v Ipr,

In such form the set of equations is overly complex. The following three simplifications
are proposed for the iterative solution approach taken in the model.

9Aw (p (s))

B Hi (7)

Secondly the equation (6) also contains the non-diagonal influence parameter ¢; ;i #
j. This type of influence parameter is rarely tabulated and has to be inferred from
experimental data. This approach is available only for narrow substance range therefore
the approximation of parameter is usually used instead.

Cik = +\/Ciji" Ckk (8)
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Lastly the influence parameter c; ; is also assumed to be independent on molar density.
This assumption is valid for most systems exhibiting a very weak density dependence.

8Ci,j

Ipk =0 ©)

By combining the (7,8,9) together with a special derivative notation p; = dp;/ds the set
of equations (6) is substantially reduced into:

- s
Z V/Cii * Ck ke (@d + ,0;') =Aug, kel...n. (10)
i=1

Core problem is now formulated as the set of second order differential equations with
non-zero right hand side (RHS).

3 Model description

As stated in the previous section 2 the core problem lies within the solution of the
second order differential equation set. Moreover the RHS of equations (10) is generally
analytically non-integrable due to the fact that Ay, is computed from the EoS. Complex
equation of state without analytically integrable chemical potential y (such as PC-SAFT)
prohibit the analytical solution. Additionally the left hand side contains dS/ds factor
dependent on the interface geometry. To answer both problem simultaneously an unified
numerical method for the two investigated geometries is proposed here.

Z@(ﬁp;—l—pg’):%,kel...n (11)
im1 ds Ck.k

While solution of aforementioned core problem is possible in this form. It would
require a substantial computational effort coupled with the increased error of solution
and fundamentally problematic situation for system with more than two components. It
is therefore quite favourable to modify the form of a problem. A similar approach as
[5, 13, 9, 12] was used to transform the original set into algebraic problem and simplified
differential problem. An idea similar is to restructure the set (10) in such a way that all
elements with k& index are transferred to the right hand side of the set and subtract the
first equation form the rest. This creates the system of nonlinear equations and single
differential equation to solve.

According to this schema the differential equation has to be modified to preserve the
connection between sections. The connection can be expressed as a single variable X also
referred as an artificial variable.

— (12)

In addition to the variable X the partial densities are also treated. Introduced mod-
ification is inspired by the problem of monotonous density. It is known that multiple
component systems in gradient theory require at least one density to have a monotonous
character along the coordinate axis. The same requirement was formulated by Cahn and
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Hilliard [2] and later further investigated by Liang et. al. [10]. This requirement implies
the remaining partial densities are expressed as functions of the one selected monotonous
density.

Proposed approach inspired by [10], introduces a new modified density p. With this
modified density the problem with selection can be softened and all partial densities are
processed in same manner as a functions of p.

5= > ic1 \/Ciibi (13)
> i1 /G
Here n is the number of components in mixture and ¢; ; is influence parameter of pure i-th
component. Monotonous character is justified by the existence of monotonous component
with high influence parameter as in case of investigated system.

With modified density (13) and artificial variable (12) the differential section of prob-

lem can be written as:

ﬁ ~/ ~/ X 14
ds” o (> vEi) )
This shape of equation is expressed for arbitrary geometry and specialized solver can be
used for individual geometries. For example, when the factor dS/ds = 1 the problem can
be numerically integrated. In other cases a numerical solution of differential equation is
searched for.
The algebraic section is also treated with notation (12,13). Consequentially one equa-
tion has to be added into a system for modified density. The linear system is then
composed of n nonlinear equations:

A[I,Q - _X
v C2,2
Aty
2 - _X
Cn,n

S Ve = 5y e (15)
i=1 1=1

Algebraic system here does not depend on the type of interface geometry as a trivial
result of the previous derivation. This feature of system permits the independent solution
regardless of the geometry type.

3.1 Algebraic system solution

This subsection offer a solution method for the nonlinear algebraic set of equation ob-
tained from core problem derivation. Because of the nonlinear character of problem the
Newton-Rhapson solver was selected. The numerical properties of a solver were further
improved with rearrangement of the set so that Jacobean matrix is symmetric. The fact
is straightforward consequence of the partial derivatives interchangeability also previously
shown by [10].
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Apg+ X\ J/c22 = 0

A/'Ln + X\/ Cnn = 0

S o VEii—pY i = 0 (16)
=1 =1

The computational procedure of the algebraic solver can be therefore developed around
the Newton-Rhapson iterator with the Jacobean inversion method. The whole procedure
is in steps applied across the modified density discretization and individual solution are
found. These values are coupled into the following data structure evaluated for discrete
modified densities p', 52, ... p9c.

This data structure is fundament for the piecewise cubic interpolation used after-
wards. The interpolation enables to use fewer discretization points and alleviate some
computational strain without suffering much greater error. It is also useful for following

solution to hold the algebraic solver results as functions p; (p), p2 (p), .-, pn (p), X (9).

3.2 Differential equation solution

The initial algebraic solution is followed by the differential solver. In developed solver
an artificial variable interpolation X (p) is used and a general approach is undertaken to
produce the density profile dependence p(s)

Utilising the previous knowledge of selected interface geometry permits the specialized
differential solver to be developed. This is especially useful for planar geometry case where
solution can be found analytically. The analytical solution is presented in next section 3.3
. In this study we develop the general solution method primarily used for the spherical
geometry. Therefore, the following equation is written with dS/ds factor substituted for
spherical geometry case.

X0
(Z?:l Cisi)

From the performed analysis of the problem and through the trial and error it has
been determined that the shooting method coupled with the predictor corrector type
solver can be used. Wide range of methods were tested and deemed to be not useful
because of the widespread convergence issues.

The solution method in theory translates the originally boundary value problem into
the initial value problem. Therefore, the investigation of droplets in this case can access
an information about gas density of surroundings. Also the initial bulk liquid density
derivative is known and understood as being zero, because of the requirement of homoge-
neously distributed density in volume in the centre of droplet. The task for the shooting
method is to find initial density that yields the density profile finishing at the a priory
known gas density. For droplets the shooting parameter is the initial liquid density which
correspond with experimentally measured systems.

2., .
= (17)
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The shooting method is also supplied with a decision criteria. The criteria is respon-
sible for the selection of the next shooting parameter .. It was found out that a
bisection method construct a reliable criteria and is able to cope with steep nature of
investigate searching task for aptimar shooting parameter.

3.3 Density profile computation

As mentioned in the previous section the core problem can be solved analytically in
special case of planar phase interface geometry. This was well investigated [13, 8, 11] and
found out that the shape of planar phase interface density profile can be computed as
following integral:

P ZZ =1 Cij (aa[;i) %
Z(p)—zO+/ ’ A ( >dp (18)

PO

Here the py and z, stand for initial selected values for initial density of integration
as the centre of profile respectively. These two parameters determine how is the profile
oriented and where it begins. This approach also replace differential for numerical integral
computation and only the partial densities are left to be determined.

In spherical case geometry the differential solver produces result in a form of mod-
ified density function of radius p(r) further modified into p;r. The process includes
transformation of modified density and partial density computation base on algebraic set
solution. With interpolated functions p;(p) the transformation of p(r) into p;(r) becomes
trivial. This operation depends on the monotonousness of modified density which implies
injectivity required for transformation.

The main property of interface is surface tension. This property states the force
exerted onto the dividing surface that holds the phases separate. For the systems with
planar interface geometry the generally known [21, 12, 14| expression for surface tension

is used as:
o & 0pi\ [ 0p;
= 2A E == =7 1
7 /pG “ Cuj(az)(&Z)dp (19)

ij=1

Following the argument by Liang et. al. [10] the integration can be also performed
in modified density which gives a negligible boost to the accuracy, because this way the
computation does not rely on modified density backward transformation. The second case
of spherical geometry offers no such direct approach and the Young-Laplace equation
have to be used for computation. It should be noted that saturation of system plays
important role as input parameter in droplet density profile computation. This state can
be identified with the Laplace pressure Ap. After a simple treatment the equation for
spherical surface tension is obtained.

3AQAp?
o= 2220 (20)
167
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Figure 1: Planar density profiles of C4H;y — Figure 2:  Spherical density profiles of
COy mixture for T' = 300K, p = 1.36 MPa C4H;y — COy mixture for 7' = 300K, p =
and Ap = 0 MPa 1.85 MPa and Ap = 5.53 MPa

4 Results

Density profiles give the information about phase interface and they are computed with
either (18) equation for planar geometry or according to the method described in section
about differential equation solution. These solutions are presented for the C4;Hig — COq
mixture depicting both investigated geometries. Distinct feature of both figures is the
substantial adsorption of carbon dioxide. The adsorption is more pronounced with in-
creased Ap illustrated with figures for Ap = 0 and Ap = 5.53MPa. It can be also noted
that profiles are computed until the stop criteria evaluation which in spherical case result
in longer gaseous part of profile. Because of a direct computation of planar case geome-
try the Fig. 1. have no such feature. Additionally the planar geometry has an arbitrary
selected initial distance of computation here set to z = 0. This means it should be used
only as reference for interface width in contrary to the spherical geometry where radial
distance is directly related to the size of droplet.

For the more complete comparison we also calculated the surface tension of C4Hqg —
COs mixture and compared it with the measurements of surface tension performed by
Brauer and Haugh [1] at Fig. 3. and Hsu, Nagarajan and Robinson [7] at Fig. 4. Both
figures depict the planar case because the experimental data for surface tension of droplets
are presently non-existent.

Figure 3. show good agreement of the experimental data with model across measured
temperatures. The model is qualitatively very well aligned to experiment with constant
over-prediction under 10% of modelled value. More troubling is problem with aborted
computation visible for lower temperatures 7' <= 327.59 K. These points were omitted
because the computation was terminated prematurely due to the improper equilibrium
conditions. Such problem is caused by non-compatible prediction of equilibrium state
from equation of state as compared with experimentally measured values. This issue
remain a task for future development with the aim for more robust equilibrium evaluation.
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Figure 3: Comparison of model and experi- .
mfntal data sur%ace tension for C.H _% 0 mental data surface tension for C4;H;g — CO,
4710 > mixture for T = 319.30 K, 344.30 K and

mixture for 7' = 310.93 K — 344.26 K. 377.30 K.

In second comparison for C4H;g — COy mixture at Fig. 4 three datasets are com-
pared. System conditions were well reproduced by model with a stunning precision for
higher temperatures 344.30K and 377.30K. The prediction for temperature 7" = 319.30K
provides appropriate estimation for higher pressures and deviates slightly more in region
of lower pressures around 0.2 — 0.35MPa. Aforementioned precision of prediction can
be attributed to selected EoS and system combination with medium carbohydrate and
carbon dioxide. Similar behaviour is expected for larger carbohydrates where prediction
of thermodynamic properties is better.

5 Conclusions

This study presents the unified mathematical model for two types of phase interface
geometry targeted at multi-component mixtures. The model is based on gradient theory
description of interface and utilise an advanced PC-SAFT EoS for equilibrium and system
properties calculation. The study also present an overview of proposed model together
with derivation of model key points. At the end of derivation the used formulas for
density profile and surface tension results are presented.

The proposed solution utilize the special shape of the simplified problem and enables
the innovative two step solution. The presented solution also unifies the two types of
investigated geometry previously not mentioned in literature. The model was tested
on binary system of carbon dioxide and methane which falls into the category of CCS
relevant mixtures. Modelled results were compared with experimental values of surface
tension and a close correspondence of prediction and data was observed.
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Abstract. Fractal investigation of a signal often involves estimating its fractal dimension or
Hurst exponent H when considered as a sample of a fractional process. Fractional Gaussian
noise (fGn) belongs to the family of self-similar fractional processes and it is dependent on
parameter H. There are variety of traditional methods for Hurst exponent estimation. Our novel
approach is based on zero-crossing principle and signal segmentation. Thanks to the Bayesian
analysis, we present a new axiomatically based procedure of determining the expected value
of Hurst exponent together with its standard deviation and credible intervals. The statistical
characteristics are calculated at the interval level at first and then they are used for the deduction
of the aggregate estimate. The methodology is subsequently used for the EEG signal analysis of
patients suffering from Alzheimer disease.

Keywords: fractal dimension, Hurst exponent, Bayesian approach, EEG, Alzheimer disease

Abstrakt. Hurstuv exponent H je uziteCnou charakteristikou pro fraktalni analyzu signalu,
ktery je zkoumén jako realizace ndhodného zlomkového procesu. Zlomkovy Gaussiv Sum (fGn)
patii do tfidy sobépodobnych zlomkovych procest a je zavisly na stejném parametru H. V
soucasné dobé existuje fada tradi¢nich metod, které slouzi pro odhad Hurstova exponentu. Novy
pristup k odhadu je zaloZzen na charakteristice prichodu signalu nulou a vyuziva jeho segmentaci.
S vyuzitim Bayesovské analyzy je predstavena nova axiomaticky zalozena procedura odhadu
H, ktera poskytuje jeho standardni odchylku a konfidenéni interval. Statistické charakteristiky
jsou nejprve odhadovany na trovni jednoho segmentu a nésledné jsou pouzity pro stanoveni
celkového odhadu. Metoda je pouZzita na analyzu signalu EEG pro identifikaci pacientu, kteii
trpi Alzheimerovou chorobou.

Klicovd slova: fraktélni dimenze, Hurstiv exponent, Bayesovsky pfistup, EEG, Alzheimerova

choroba

Plna verze: M. Dlask, J. Kukal, O. Vysata. Bayesian Approach to Hurst Exponent
Estimation. Methodology and Computing in Applied Probability 19 (2017), 973-983.
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Abstract. In practise we can encounter many problems where is useful (and sometimes neces-
sary) to employ small area estimation (SAE) methods to obtain reliable estimates of characteris-
tics of interest (means, totals, quantiles, etc.). The contribution deals with an area-level gamma
mixed model that can be useful in some applications involving only positive responses (e.g. in a
financial sector). To obtain estimates of regression parameters and predictors of random effects
the PQL algorithm and the ML Laplace approximation algorithm are introduced. In order to
check the behaviour of the fitting algorithms we perform simulation experiments and compare
acquired results of both of them.

Keywords: Area-level model, Generalized linear mixed model, PQL algorithm, ML Laplace
approximation algorithm

Abstrakt. V praxi lze narazit na fadu problému, kde je uZitené (a ¢asto nezbytné), pouZit
metody odhadovani v malych oblastech, abychom ziskali odhady charakteristik, které nés za-
jimaji (stfednich hodnot, kvantilii, atd.). Tento ¢lanek pojednava o statistickém modelu na
urovni oblasti, kde predpokladame, Ze odezvy maji gamma rozdéleni. Domnivame se, Ze by tento
model mohl byt uZite¢ny v praktickych aplikacich vyzadujicich pouze kladné odezvy (napf. ve fi-
nan¢nim sektoru). K odhadu regresnich parametri a predikei ndhodnych efektii pouzijeme PQL
algoritmus a ML Laplacetiv aproximacni algoritmus. Nasledné provedeme simulaéni experiment,
abychom ovéfili kvalitu vystupt obou algoritma.

Klicovd slova: Model na trovni oblasti, Zobecnény linedrni smiSeny model, PQL algoritmus,
ML Laplacetiv aproximacéni algoritmus.

1 Introduction

Small area estimation models can be divided into two parts: area-level models and unit-
level models. Considering area-level models, data are available (unlike unit-level models)
only at the area level. Data collected for each domain are usually used to compute the
direct estimate of investigated characteristic (e.g. mean). In unit-level models there are
some auxiliary data even at the individual level. One of the most basic area-level models
is the Fay-Herriot model that can be expressed as (see [1])

yd:XdTﬁ‘i‘Ud"i‘@d, dzl?"'aD7

*This work was supported by the grant SGS15/214/OHK4/3T/14. This work has arisen in coopera-
tion with Domingo Morales: the author used some parts from a still not published article dealing with
this topic.
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where 3 is a vector of regression parameters, e; ~ N(0,03) are independent sampling
errors and vy ~ N(0,02) are independent random effects. It is also assumed that the
random effects are independent on the samplings errors and the variances 0%, ..., 0% are
known. The model has p+ 1 unknown parameters: 8 = (fy,...,3,)" and o2. The task is
then to estimate the quantity py = x5 3+ v4. In this work we suppose that the responses

have the gamma distribution and we try to estimate unknown parameters.

2 Model

We consider a set of random effects {vg : d = 1,..., D} such that vy ~ N(0,1). In matrix
notation we have v = (vy,...,vp)T ~ Np(0,T ), Le.

fo(v) = ﬁexp {—%VTV} .

The conditional distribution of the target variable y, given vy is

Yalva ~ Gamma (Ud,ad = ﬁ) , d=1,....D
Hd

and the density follows

vq

F(yalva) = —8—yta! exp{ —aqya}1(0,00) (Ya) = (ﬁyd a8 P {_ﬁyd} 1(0,00)(Ya)-
NN > pa) T(va) fhd >

The expectation and variance of the conditional random variable y, given vy are

2
Vq Vg Iu
E[ydlvd] = a—d = Ud, Var[yd|/ljd] = ? — V_Z
d

The canonical link for the gamma distribution (see [2]) is the inverse link, g(z) = 1, then
we model the conditional expectation g as

1
Q(Md)ZEZXdTB—HZ)vd, d=1,...,D,

where 8 = (81,...,8,)" and x} = (za1,...,xqp). Considering the datay = (y1,...,yp)"
satisfy the assumptions of GLMM the random variables y4|vg, i = 1,..., D, are indepen-

dent, i.e. f(y|v) = HZ 1 f(yg|vq). Finally, we get

/fy|va dv—/ bly,v)dv, (1)

where
olyov) = (2n) PP exp § ﬂ}ﬁ (=) v, p{ -2
’ 2 )25 \wa) T(va) d
D Vg Vg—1
(27T) D/2exp{ %} (H V%i(U}z) ) exp {Z vqlog Xdﬂ+¢vd)}
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. . . o 1
The partial derivatives of g = XTBrguy e
%:_ Lar d,U/ aﬂd _ Uq :_Udﬂ2
95, IB+ova)? U 9 (x3 8 + ¢va)? «

There are p + 1 unknown parameters in this model: 3 = (84,...,3,)T and ¢. Due to
the fact that the integral in (1) cannot be calculated explicitly we employ two different
methods to obtain estimates of these parameters: PQL algorithm and ML Laplace ap-
proximation algorithm.

Remark 1 In practise, y, is a direct estimate of a domain total or mean with estimated

design-based variance o2 = var,(yg). By equating var(y|vs) to o2 and substituting s

by v, we get 02 = yd

3 PQL algorithm

The ML-PQL estimator of 3 and predictor of v (see [3]) maximizes the joint log-likelihood

D D
D 1
L =logy(y,v) = —5 log2m — 5 > vi+ > (valogva+ (va—1)logya —logT(va))
d=1 =1
Z valog(xg B + ¢va) — Z (Z ydl/dxdk;> B — ¢Z YaVaVa-
k=1 \d=1

We use the Newton-Raphson algorithm to maximize | = [(3,v). The first derivatives of
[ with respect to B and v are

D D
VqZar

U, — VaZar, T =1,...,p,

@ﬂr Z XTB+ gug 2 Vvt P

d=1

ol Vah
U = —— = — —
ptd 8vd va + Xgﬁ + ¢Ud

The second derivatives of [ with respect to 3 and v are

—(bydyd, dzl,,D

H 82l ZD: Vd-rdmxdrg 1
T2 — Aan an T A L\ r,ro=14,...,D,
" 05,,0pr, <GB+ v P
9%l VT qr @
H,\q= S r=1,....,p,d=1,....D,
T 0B0v,  (xLB+ ova)? P
82l Vd¢2
H =—=-1-——— d=1,...,D
p+d,p+d avg (Xg,6+¢vd)2’ ; s Ly
0%l
Hp—}—dl,p—i—dg = W = 0, dl,dg = 1, . 7D7 dl 7é dz.

The updating equation for the Newton-Raphson algorithm with fixed ¢ is
§HY =€ —HT(EW)u(EY), (2)
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where & = (87,vI)T, U =U(&) = (Uy,...,Uppp)” and H = H(E) = (H,)rucr... psp. At

the step £ of the algorithm, the penalized maximum hkehhood estlmatlon of ¢ maximizes

the joint likelihood of linear predictors nyf), e ,7753 where nd = ,8 + qﬁ(k)v((ik) and

¥~ NxEB® ¢?), d=1,...,D.
The joint log-likelihood of ngk), e ,ng) is

D
D 1
1*) = ) log2m — Dlog ¢ — 35 Z(nék) — xPB3*)2,
d=1

By taking the first derivative of (¥} with respect to ¢ and equating to zero, we get

ol D 1
0=y® — =4 —xﬁ(k
96 6 & dZ !
1« 1 <
k 2 k)2
7 =52 0 = xipM) = oW 5 S T
d=1 d=1
Finally, the ML-PQL updating equation for ¢ is
12
¢(k+1)2 _ ¢(k)2_ Z U((lk)2. (3)
D
d=1

3.1 Algorithm

The PQL algorithm calculates predictors of v and estimators of 3 and ¢. Steps of the
algorithm:

1. k:=1 (k denotes iterations), set the values B8, v(9 and ¢©

2. Run (2). Use ¢~V as known value and B#~Y, v(*=1) a5 algorithm seeds. Let %)
and v(® be the output.

3. Update ¢ by using the updating equation (3), i.e.

D
2 _1)2 1 k)2
P = plk=1) 5Zvc(l) '
d=1
4. Repeat the steps 2-3 until the convergence of 3%) " and o)

4 ML Laplace approximation algorithm

4.1 Laplace approximation to the likelihood

Let h: R — R be a twice continuously differentiable function with a global maximum at
xg, 1.e. h(xg) =0 and h(xy) < 0. Taylor’s series expansion of h(z) around z; yields to

h(x) = h(zo) + %H(:co)(x 20 + ol|& — ao]2) ~ hlzo) + %71(950)(3: — )2
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The univariate Laplace approximation is

/ eM®) / o) exp {—5(—’1(%))@ - xO)Q} dz

) s €XP { % (( 7 5170) 1/2> }
= (27r)1/2(—h(xo))_l/zeh(‘”o)/ dx
e Cm(—h(z0)
= (2m) "2 (=h(zp)) /2 ), (4)
Recalling assumptions, vq,...,vq ~ N(0, 1) are independent and

in 1%
Ya|vg ~ Gamma (ud, ,u_d> o pta = pa(vg) = (XEB+vg) ™, d=1,...,D.
d

The marginal density of y; can be expressed as

Flya) = / " Flyalva) £ (va)dva

) U vg—1 1
= / (27512/;% exp{vglog(x} B + dva) — vaya(xy B + ¢va) } exp {—5""3} dvg

Vg, Vg—1 e’} 2
= M} / exp {—%d + vglog(x} B + ¢va) — vaya(xh B + ¢Ud)} dvg

(2m)1/2T (1y
_ vt /Oo exp{h(vg) }dv
= (27T)1/2F(Vd) . p d ds
where
2
h(vg) = -~ + Vg 1Og(X§,3 + pvg) — ded(XdT,@ + ¢va), (5)
2
h(vd) = —Uq + xg%fgbvd — VaYa = —Vq + SVapta(va) — OVaya,
.. 2
h(va) = — (1 + (XdTﬁQZ—%;Wd)?) = —(1 4 ¢*vaps(va)).-

Let voq denote the global maximum of A then A(vgg) = 0 and h(veg) < 0. By applying
(4) in vy = voq, We get

l/d l/dl

f(ya) = ?E/—;)(l + ¢*vapig(voq))~? X

,02
X exp {—%d + vglog(x} B + ¢pvoa) — vaya(xh B + <Z5710d)} -

It holds that yy,...,yp are unconditionally independent and then the likelihood has the
form L(B,¢) = [12, f(y:). The log-likelihood is 1(3, ¢) = S22 14, where

dedycyld_l 1 Uba T
la = log f(ya) = loa = log Ty 2 log &oa — ~ T log(x4 8 + duoa)

— vaya(xy B + dvoa),
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where &yg = 1 + ¢?vgpud, and g = pa(voa). The first derivatives of pgq and &yg are

Ottod 0&0a

aﬂr - _xdr:ugda Nodr = aﬁr - _2¢2Vd'xdrﬂ’gd>

Ottog 05

96 —Vodkogs  Mod = s = 20Vafigy — 20°Vavoalipy-

The first derivatives of loy with respect to 3, and ¢ are

Oloa _ 1 1oar Olog  1moa
+ VaZgrfhod — VaTaryYd, = —=—— + VgUodftod — VaVodYd-
6ﬂr 2 gOd

Ers 2 &oa
It holds that

IMoar OMoar
o _ 60°VaZ gr Tashlyg, hodr —4Pratar oy + 66°VaTarvoatiog,
0Ps ¢
0 0
a?d = —4PVaTarfiog + 66" Vavoat ar g, g;d = Uiy — 8VaUoatlsy + 6O VaUgatig-
The second partial derivatives of [; are
Plog 1 —T'Mfofi — NodrMods )
= -z — VaZdrZdsogs
08,08, 2 &6 o
log 1 875:{," §od — ModrTod )
Aina — VaUodTdr fhogs
005, 2 f&d .
= — Uy .
52 5 g(]d dVodtod
For r;s =1,...,p+ 1, the components of the score vector and the Hessian matrix are
8lod 8lOd
Z 0B, Uop+1 = Z
D

9%l 9%l 9%l
HOrs = HOsr = Z 355(;;,« HOTP+1 HOerlT Z a¢a(2ir HOP+1P+1 Z a(b(;d
d=

In matrix form we have Uy = Uy(0) = (Upy, - - ., Ugps1)” and Hy = Ho(0) = (Hops)rs=1

where 8 = (8%, ¢)”. The Newton-Raphson algorithm maximizes ly(8), with fixed vg =
vod, d =1,..., D. The updating equation is
o+ = o) —H (W) U,(8W). (6)

For d =1,..., D, the Newton-Raphson algorithm maximizes h(vy) = h(vg, @), defined in
(5), with @ = 6 fixed. The updating equation is

RN,
WD) ) _ W (7)
h(vd ’00)
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4.2 Algorithm

The ML Laplace approximation algorithm is
1. Set the initial values k& = 0, 8@, 6 = 9© + 1,41, vc(lo) =0, véﬁl) =1,d=
1,...,D.

2. Until |0 — 0% V|| < &, \vc(lk) — v((ikfl)| <eg,d=1,...,D,do
(a) Apply algorithm (7) with seeds Uék), d=1,...,D, convergence tolerance ey

and 8 = 0™ fixed. Output: v((ikﬂ), d=1,...,D.
(b) Apply algorithm (6) with seed O(k), convergence tolerance €; and vyy = vc(lkﬂ)
fixed, d=1,...,D. Output: %+Y.

(c) k«k+1

3. Output: 0= B(k), Vg = vl(ik), d=1,...,D.

5 Simulation experiments

The target of simulations is to check the behaviour of the fitting algorithms: PQL and
Laplace approximation algorithm. We set the true values of parameters as 5y = 0.05,
B = 0.1 and ¢ = 0.01, i.e. p = 2. Let D = 50,100, 150,200 be the number of domains
to be considered. For d = 1,..., D, we generate vy = 100, x4 = %, vg ~ N(0,1) and

v,
ya ~ Gamma, (Vd7 M—d) ,where 1 = (Bo + Brxa + dva)
d

Steps of the algorithm
1. Repeat K = 1000 times (k =1,...,D)
(a) Generate a sample {yqs|/d=1,...,D}.
(b) Calculate 8, 3% and ¢®.

2. For 6 € {5y, 1, ¢}, calculate

LR s N

Yl
BIAS = - , -

As can be seen from tables 1 and 2, ML Laplace approximation algorithm seems to
work well. Despite of the very small values of both BIAS and MSE for the PQL algorithm,
there is a problem with estimation of the parameter ¢. We suppose that the true value
of ¢ is 0.01 but the output of the PQL algorithm for ¢ is smaller by several orders. The
estimations of the regression parameters 8y and 8; by PQL are, however, very well.
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D =50 D =100 D =150 D = 200
PQL Lap PQL Lap PQL Lap PQL Lap
Bo -0.0019 0.0042 -0.002 0.0042 -0.0018 0.0041 -0.0018 0.0041
B, 0.0016 0.0013 0.0017 0.0014 0.0015 0.0016 0.0014 0.0016
) -0.01  0.0051 -0.01 0.0052 -0.01 0.0052 -0.01 0.0052

Table 1: BIAS depending on the number of the domains D.

D =50 D =100 D =150 D = 200
PQL Lap PQL Lap PQL Lap PQL Lap
Bo 1.96e-05 0.00006 1.17e-05 3.92e-05 8.39e-06 3.27¢-05 7.07e-06 3.09¢-05
B 6.32e-05 0.00012 3.37e-05 6.98e-05 2.16e-05 4.94e-05 1.71e-05 4.24e-05
é  9.99e-05 0.00003 le-04 2.88¢-05 9.99¢-05 2.80e-05 9.99e-05 2.79-05

Table 2: MSE depending on the number of the domains D.
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Abstract. The anomaly detection is sub field of artificial intelligence the aim of which is
identifying data that are somehow different from an expected pattern. Anomaly detection is
also known as one-class classification because it is a similar task to the classification with the
only difference: The training set contains the only class. This makes the task difficult because
the character of the anomalous data is unknown when the model is trained. We give a survey of
neural network based models for anomaly detection and their noise robust modifications. The
performance is evaluated on the most advanced benchmark data for the anomaly detection

Keywords: Anomaly detection, autoencoder, replicator neural network

Abstrakt. Detekce anomalif je podoborem umélé inteligence a zabyvé se nalezenim anomaélnich
prvki. Jako anomalni se daji povazovat data (pozorovani), ktera jsou rozdilna bud od vzorovych
dat, nebo od ocekdvaného vzoru. Tato tloha se nékdy nazyva jako jednotiidni klasifikace a to
proto, Ze pro trénovani modelu jsou k dispozici pouze data z jedné konkrétni t¥idy. AvSak detekce
anomalii je mnohem slozitéjsi a obtiznéjsi kol nez klasifikace, protoze pri detekci anomalii
neni predem znam charakter anomalnich dat a je nutné rozhodovat, jak velké vychylky musi
data dosédhnout, aby byla detekovéna jako anomalni. V textu jsou popsany jiz znamé modely
neuronovych siti pro detekci anomélii véetné téch robustnich vic¢i sumu. V zévéru je testovana
presnost téchto metod na zatim nejpokrocilejsich testovacich datech pro anomélni detekci.

Klicovd slova: Detekce anomélii, autoencoder, neuronové sité

1 Introduction

Representation Learning is enabler of many types of models - classifiers, anomaly detec-
tors, etc. We focus on anomaly detection as the field that is relatively least researched,
while constantly gaining on importance. The anomaly detection is identifying data, items
and observations that are different from the other data or does not conform the expected
pattern. It is widely applied in many fields such as medicine, banking and credit card
fraud detection, system health monitoring, intrusion detection and network security.
Our ultimate aim is to define models well usable in large scale data modeling in
the area of network security. This, however, will be the next step. First, we aim at
verifying our models on smaller scale benchmark data. The choice of benchmark data

o7
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itself is a problem (see Sec. 3.4) - currently there is not available many good data sets
allowing reliable evaluation of methods [9] [12]. The existing anomaly detection models
very often fail to generalize well - some models work on some data but not on others,
with other existing models, it is the other way round. Hence our initial work focused on
1) reviewing existing models (see Sec. 2.1), 2) finding best methodology for performance
evaluation 3) researching options to utilize representation learning models to improve
anomaly detection (autoencoders have been used before but to limited extent only, while
in other fields - other than anomaly detection - they are known to provide significant
results), see Sec. 2.1.

2 Anomaly detection

Anomaly detection is a subfield of machine learning and is also known as one-class classifi-
cation and is similar to outlier detection. The goal is to detect a sample that is somehow
different from expected pattern or other observations. Contrary to the other machine
learning tasks such as classification, the anomaly detection is more difficult because the
character of the anomalous data is unknown when the model is trained. In addition to
that, the decision how much the sample must be different from others, to be detected
as anomalous, is a problem. To solve the anomaly detection problem, we need to ad-
dress the following concerns: 1) Choice of the model/ method with properties suitable
for the problem. 2) Address conceptual problems including thresholding and evaluation
(see Sec.3)

There is a number of methods for anomaly detection the survey of which is given in
[8], [21] and [25]. An example of a simple and popular method is one-class KNN [17] that
is beneficial for small scale data with an adequate structure. Next, there are methods
such as kernel PCA [23], kernel density estimation (KDE), robust KDE and one-class
support vector machine (SVM) that all have been dominated by neural network based
method proposed in [32] because deep architectures can learn and represent behaviour
and structure of the data more efficiently than shallow architectures like SVMs. Hence
the following text will be focused mainly on the neural networks. A paretical focus of the
work is on evaluation on real based data where the prior art is mostly lacking.

2.1 Neural networks in anomaly detection

Neural networks are utilized for anomaly detection, intrusion detection etc. in two differ-
ent ways. The first is that the neural network detector is learned with the only regular
data as usual in anomaly detection. The result should be an anomaly score or an another
similar metric which can be thresholded. Such networks are autoencoders (see Sec.2.1.1).
The second way is a usage of knowledge about the possible outliers thus the problem is
more related to the classification. Despite that, it is applied as an anomaly detector (see
Sec.2.1.2). The following text expects a basic knowledge of neural networks which could
be found in 1992 Neural networks and fuzzy systems [18], 2014 Neural network design
[10] and 2016 Deep learning book [15]
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2.1.1 Autoencoders

The autoencoders are applied under various conditions with more or less sufficient results.
First the autoencoder was applied on several problems in a simple way and the param-
eters of the neural network was the main issue. Then the autoencoder was extended to
deionising autoencoder which is powerful for noisy data. Finally, a few other types of
autoencoder have been introduced in last several years.

One of the earlier application was the autoencoder for credit card fraud detection [3]
introduced by Aleskerov in 1997. The paper also highlights the difficulty of discovering the
optimal setup of the autoencoder and demonstrates the developed user friendly GUI tool
box for tuning the parameters. In 2005, Han proposed a paper about the methodology
of constructing an optimal structure of the autoencoder using evolutionary algorithm
[16]. Thompson demonstrated utilizing autoencoder in novelty assessment in [29]. They
recognized simulated anomalous behavior of computer with the CPU’s load metrics.

In 2008, the deionising autoencoder was introduced in [30] and extended in [31] by
Vincent. The main point of the deionising autoencoder is that the training data are noised
and as a result, the network becomes noise robust. Salt and pepper noise is frequently used
in the literature for that purpose. Sakurada utilized autoencoder and extended denoising
autoencoder for the problem of processing the spacecrafts’ telemetry data in [27]. The
paper shows an effectiveness of dimensionality reduction with autoencoder on a noised
and correlated data from spacecrafts’ sensors. In 2014 the potential of autoencoder’s
utilizing in general on a real data is demonstrated in [9] by Dau. The paper points out
the problem of comparison among methods and tests the autoencoder on six data sets
based on a real data.

Two different types of autoencoder were developed in last years. The main difference
is the substitution of reconstruction error which forms the loss function that is minimized
while training and in addition it represents the anomaly score for each sample. The re-
construction error (see Sec. 2.2) is used standardly in all the presented papers above.
Variational Autoencoder based Anomaly Detection using Reconstruction Probability [4],
introduced in 2015, utilizes the reconstruction probability instead of reconstruction error.
Moreover the autoencoder is learned such that the training data must have a Gaussian
distribution in the hidden layer. The second method Deep Structured Energy Based
Models for Anomaly Detection[32], published in 2016, defines energy model that mini-
mizes the energy for the training set while learning. The energy has an inverse relation
to the reconstruction probability from [4]. Both methods are demonstrated as a noise
robust.

2.1.2 Other neural networks

In 1998 Cannady designed a neural network for misuse detection [7]. The neural net-
work has two output neurons that represent anomalous and legitim sample. It has nine
fixed input neurons and the number of hidden layers was determined empirically. The
disadvantage compared to the autoencoder is that the training needs samples of outliers.
Meanwhile Ryan introduced neural network for intrusion detection [26] that is trained on
computer’s logs and commands to recognize individual users. Then a log is detected as
anomalous if it is assigned to another user instead of the author. This is an example of
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a good utilizing of classification and the author obtained results with testing on random
commands , however, the network was not tested for commands and logs not seen before.
In 2005 Sarasamma proposed Hierarchical Kohonenen net for anomaly detection in net-
work security [28]. Single and multi-layer network is performed with KDD-99 based data
set. The method is designed with an expert knowledge of the data thus feature selection
is performed in advice and network is predefined according to types of anomalous data.
Each neuron of the layer except one represents a class of anomaly and the one is active
of the anomaly is represented in following layer. In other words, in the first layer the
only neuron is activated during detection and then either the neuron represents type of
anomaly or it is the only one without label that suggests to go to the next layer. In
addition to these methods there are many others which are similar such as [14], [33], and
[24].

2.2 Autoencoder principle

The autoencoder which is also known as replicator neural network or autoassociative
neural network is feed forward neural network that encodes the input to a compressed
form and then decode back to replicate the input.

Buottleneck

Input Hidden Output
Layer Layer Layer

Figure 1: Structure of the autoencoder as an feed forward neural network that encodes the
four-dimensional vector into two-dimensional (the hidden layer) and consequently decodes
to the original space. (Credit: https://www.researchgate.net/figure/222834127 figl -
Fig-1-The-structure-of-a-four-input-four-output-auto-encoder)

The autoencoder is composed of the encoder and the decoder such that the encoder
observes and performs nonlinear dimensionality reduction with minimal loss of informa-
tion and similarly the decoder performs a projection from the reduced space back to the
original one. In other words, the input vector x € R? is encoded to y € R which is
projected consequently to x’ € RY.

The encoding is performed as:

y = fo(x) = a(Wx + D)

where f is parameterized by § = {W,b}, a is an activation function, W is a d’ x d
weight matrix and b is a bias vector. Similarly the decoding (reconstruction) is performed
as:

X' = go(y) = a(Wx + 1)
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The parameters of the model are optimized with a training set X = {x(V), x® . x™}
thus each vector x) € X can be projected to y® and x’ @ such that the average recon-
struction error is minimized:

* ol .171 i) @Y .1n i i
0, 0™ = argrg}}glg ZZ:L<x( ) x ) = argrg}glﬁ ZZ:L<X( ),ggz(fg(x( )))>

where L represents a loss function which may be defined in many ways, however, the
squared error L(x,z') = ||z — 2/||* is the most common. [30]

Since the autoencoder is trained to minimize the reconstruction error for the training
data, tested observations that do conform to the pattern of the training data will have
smaller reconstruction error than observations that do not. As a consequence, the re-
construction error could represent the anomaly score and its analyses can be applied for
determining outliers (see Sec.3.2).

2.2.1 Denoising autoencoder

The denoising autoencoder is a modification of the basic method which should be noise
robust. The only difference is that the training data are noised for each training iteration.
The already proposed methods (see Sec.2.1.1) utilize salt and pepper noise such that the
only pepper corruption is performed. However the gaussian noise was not utilized in the
searched papers.

3 Thresholding and evaluation

3.1 Sensitivity

The sensitivity is an essential issue of all anomaly detection problems. In practice, dif-
ferent setups are required according to the problem. For example, the medical tests need
to be performed high sensitively not to neglect an ill patient. On contrary, the system
health monitoring must not be too sensitive because the operator would ignore the alarm
after many false alarms. Such a widely used setup of sensitivity gives an opportunity for
a failure of the detection thus a health patient could be redundantly treated and detained
in the hospital and a system could not run optimally without an alarm. However, this is
still a better case, than a dead patient or a crashed system due to alarm ignorance.

3.2 Threshold

The threshold is a numerical representation of the sensitivity and it decides whether the
tested sample is anomalous or not according to the anomaly score. The threshold is tuned
to the optimal value for the certain application. Theoretically, if the tested subject is
simple or the test is preformed perfectly, it is possible to find a perfect threshold with
a total true rate. In other words, the informative value of the test’s result is in the
separability of the distribution of regular and anomalous samples (see Fig.2). In addition
to the method’s quality, the training set has a significant influence on the result of the
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Figure 2: Thresholding - The graph in the upper left corner shows the distribution of
anomaly score for the regular samples (left peak) and anomalous samples (right peak).
Possible threshold is demonstrated with the vertical line and the consequential clas-
sification is indicated with colors and labels (True negative, false negative, false pos-
itive, true positive). The ROC curve, which is plotted in lower part, demonstrates
all possible thresholds and their probability of true positive and false negative.(Credit:
https://en.wikipedia.org/wiki/Receiver operating characteristic)

thresholding. Therefore it is tuned as one of the last parameters depending on the known
and current data. Anyway, since the thresholds may be different, it is more complicated
to define a metric for anomaly detection performance. If there was the only threshold,
the percentage of success could be used. [5]

3.3 Receiver operator characteristics and AUC

The performance measuring of the anomaly detection method must take into account all
possible thresholds. Receiver operator characteristics (ROC) is utilized to analyze the
performance over all thresholds. The graphical representation, which is shown in Fig. 2,
is a parametric plot that shows proportion of true positive and false positive rate for all
possible thresholds. Note that these proportions are based on the data-set as described
in previous paragraph. The curve always starts and finishes in the corners because the
lowest threshold classify all samples as positive thus the false and true positive rate is 1.
Similarly the highest threshold hits the opposite corner. In an optimal case, the curve
is plotted near the third corner that represents high true positive and low false positive
rate. On contrary, thresholding an random variable will form the curve as an diagonal.
Which means that none method should have the curve under the diagonal. To conclude,
it has been shown that the better the method is the higher the curve is plotted which
allows us to represent the quality of the method as a scalar that is independent on a
specific threshold. This metric is called area under the ROC curve (AUC) and it is often
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used in anomaly detection. [6] [13] [22] [20]

3.4 Benchmarks

Several different benchmark sets and metrics have been used for the anomaly detection
performance evaluation thus the comparison among the anomaly detectors is difficult.
However, several benchmark sets are more frequent in the literature than others because
they are built for a specific purpose such as intrusion detection or image recognition and
are widely used by their community.

KDD-99 [1] is a data set used for The Third International Knowledge Discovery and
Data Mining Tools Competition, which was held in conjunction with KDD-99 The Fifth
International Conference on Knowledge Discovery and Data Mining. The competition
task was to build a network intrusion detector, a predictive model capable of distinguish-
ing between “bad” connections, called intrusions or attacks, and “good” normal connec-
tions. This database contains a standard set of data to be audited, which includes a wide
variety of intrusions simulated in a military network environment.

MNIST [19] is a database of handwritten digits. It has been created as a sample
of NIST database and the data have been preprocessed and formatted for easier usage.
These data are real world based and widely used for image recognition and many other
machine learning branches due to the simplification of MNIST set.

99 DARPA IDEVAL [2] is a data set for intrusion detection. It contains network
traffic and audit logs collected on a simulation network in three weeks. The first and
third week does not contain any attack contrary to the second week when the network
faced various types of attack.

The great advantage of using one of these sets is the comparability of the results
among methods. On the other hand, the data sets presented above could be declared as
obsolete for the issues in present. In addition to that, the sets are narrowly focused on a
specific problem thus they are inappropriate to create a general benchmark for anomaly
detection. As a consequence, many authors in the filed of anomaly detection rather
constructed their own artificial data because the existing data sets were too different
from their problem.

In 2014 Sakurada [27] constructed artificial data from Lorenz system for the purpose
of processing the spacecrafts’ telemetry data. In 2014 Dau [9] created the data sets by
their own from the multi-class problem in the UCI machine learning repository. In 2005
Sarasamma [28] used an expert knowledge of KDD-99 (internet security) to present his
method to operate optimal. He selected only the most representative features in advice,
predefined several classes of outliers to the model and moreover, modified the data set.
However, this could have significantly affect the performance. Such an approach prefers
the best results under given conditions (typically used in practise) rather than measure
the performance of the proposed method in general.

In 2013 Emmott probably reacted on the situation of missing general comparison
data set for anomaly detection and introduced his methodology of creating such sets with
using multi-class data set from the UCI repository in [12]. Besides creating a number of
carefully selected sets, they also measured performance of 6 popular methods for anomaly
detection and demonstrated their score. There is a large number of various multi-class
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data sets usually based on a real data in the UCI repository hence the constructed sets
for anomaly detection are real-based. The performance evaluation could be more efficient
and general due to utilizing a number of different sets. This might be a breakthrough in
anomaly detection performance measurement if other researchers start to utilize it. In
2014 Dau considered these methodology as the most advanced [9].

4 Proposed experiment

The aim of the experiment is to evaluate the selected state-of-the-art approach with the
most advanced benchmark data for anomaly detection because their evaluation is not
covered properly with a uniform and well defined data set in the literature (see Sec. 3.4).
A similar idea was implemented in [9] but the author did not manage the original set and
did not replicate the methodology from the Emmott’s work [12].

A feed forward replicator neural network is utilized with several different setups. The
number of input and output neurons is equivalent to the dimension of the data set. We
use the following approach to find out the near-optimal size of the "bottle neck (see Fig.
n":

1. The required variations are predefined. Exactly: 0.7, 0.8, 0.9, 0.95, 0.97 and 0.98.

2. Number of dimensions (neurons) is computed to preserve the variations in the
following way:

(a) PCA is performed and the variation of each component is the matter.
(b) The components are sorted with respect to the variation.

(¢) The components are excluded consequently from the smallest one until the
variance of the rest forms the required proportion.

(d) The number of the included components is the result.

3. The experiment runs for each number of neurons in the "bottleneck" many times
and the results are averaged.

4. The best number of neurones is selected according to the results.

The algorithm above is an heuristic algorithm applicable generally. The best results
are expected for the chosen variance. However, the optimal number of neurons can only be
found with trial and error method for all possible values. Such an approach is mentioned
in the literature and is well applicable if the number of sets is low.

The utilized activation functions is ReLU (f(z) = max(0,x)) and linear (f(z) = z).
The experiment is performed with autoencoder consisting of 4 layers: Input(ReLU), bot-
tleneck(ReLU), output-hidden(ReLU), output (linear). The anomaly score is computed
as the reconstruction error in and the AUC of ROC evaluates the results (See Sec. 3.3).

The evaluation is performed with 29 data sets that were created in accordance to the
Emmott methodology proposed in [12|. The utilized datasets represent various problems
from the real world and have different properties such as dimension and number of ele-
ments. Each data set is composed of the target class (regular data) and anomalous data
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at four levels of difficulty to detect: easy, medium, hard, very hard which are tested sep-
arately and are assumed as separate data sets in the following text. Random sampling is
performed such that 75% of the regular data are included to the training and the rest to
the validation. The number of sampling iterations is eight and input data are normalized
to [0,1].

Evaluation over multiple data sets offers many sophisticated methods that are not
described in detail. However the survey is given in Statistical Comparisons of Classifiers.
over Multiple Data Sets [11].

The first experiment compares the performance of the basic autoencoder and the PCA
with kernel density estimation. Pairwise comparison over multiple data set is carried out
with scoring a point for each data set as shown in Tab.1. In other words the comparison
counts the number of sets where the method outperforms the other.

Table 1: Performance comparison of basic autoencoder and PCA with kernel density

Winning method easy medium hard very hard Sum
Basic autoencoder 14 14 13 7 48
Tie or missing data 1 1 4 8 14
PCA and kernel density estimation 14 14 12 14 54

The second experiment compares the performance among the four selected methods
(see Tab. 2). The noise "intesity" was selected from values 0.2, 0.1, 0.05 and 0.01 in order
to optimize the performence. The "intensity" represents proportion of corupted features
for the pepper noise and variance for the gaussian noise. Friedman ranking is utilized
for comparison such that lower rank means better performance. The Table 2 shows that
denoising autoencoders outperofrm the PCA and that the gaussian noise is more suitable
for the real-based data.

Table 2: Performance comparison among all methods

Method Friedman rank
Basic autoencoder 2.94
Denoising autoencoder with pepper noise 2.53
Denoising autoencoder with Gaussian noise 2.02
PCA and kernel density estimation 2.51

4.1 Discussion

The results indicate that the Gauss denoising autoencoder have better performance than
PCA and other methods on real data in general. An unexpected observation is that the
Gaussian noise has a better performance despite that the salt and pepper noise is mainly
used in the literature. Possible explanation is that the "salt and pepper" deionising
autoencoder is robust to the missing values and that could be the case of their testing
data.

The performance comparison of autoencoder over such many sets that are constructed
on more difficulty levels has never been done. The statistical significance should be proved
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to declare that any method is significantly better than other. The performance of the
methods in the first proposed experiment is not significantly different according to the
Wilcoxon signed-rank test. The same for the second experiment where the Friedman test
was performed. The obtained critical value is () = 6.1 but the required value for o = 0.1
is Q = 17.78.

5 Conclusion

The anomaly detection topic was introduced with a focus on the neural networks and
especially the autoencoders, the principle of which is explained in Sec.2.2. The difficulties
of evaluation with respect to sensitivity and the state of the benchmark sets in present
were discussed in Sec.3.

The performance of four methods for anomaly detecion (PCA based and three types of
AE) was compared with using 116 different problems (data sets). The experiment showed
that the noise robust autoencoder could outperform PCA. However, the comparison of
these methods over multiple data sets, does not proof that any method is better for all
sets but only for more sets than any other method. In other words, there might be a
number of data sets for which the worst ranked method is the most suitable. Moreover,
the tests (Wilcoxon and Friedman) did not prove the significance of the results.

It was discovered that there an universal method has not been Discovered yet (At
least among the autoencoders) and the existing have many imperfections such as abilities
to detect difficult data, no general key to find out the optimal structure and properties
of the neural network etc... Solving that is a future challenge. Especially with respect
to the increasing importance of applications on big data with difficult properties, both
robust and sensitive methods will be required.
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Abstract. This paper presents first part of support of distributed computing systems in the
Template Numerical Library (TNL). This library is developed at Department of mathematics
at FNSPE. The TNL library uses the Message Passing Interface (MPI) for communication be-
tween compute nodes, since it is the most often communication standard on high performance
computing clusters. This paper shortly presents a domain decomposition of a regular rectan-
gular mesh and some implementation details which is used in the TNL library. A performance
measurement is presented at final section.

Keywords: Cluster, Domain decomposition, MPI, TNL

Abstrakt. V této praci prezentujeme prvni kroky v pridani podpory distribuovanych vypocet-
nich systémi do knihovny Template Numerical Library (T'NL), ktera je aktivné vyvijena na
katedfe matematiky na FJFI. Pro komunikaci mezi vypocetnimi uzly vyuziva knihovna TNL
standarad Message Passing Interface (MPI), protoze je jednim z nejrozsitenéjsich zptsobu ko-
munikace mezi vypocetnimi servery na clusterech pro vysoce vykonné pocitani. V tomto ¢lanku
nejdiive predstavime pouziti pravidelnych pravothlych siti v TNL a dale se zaméfime na imple-
mentaci distribuovanych siti v knihovné TNL. Zavérem této prace predstavime vysledky méreni
rychlosti synchronizaci distribuované site.

Klicovd slova: Cluster, Doménovéa dekompozice, MPI, TNL

1 Uvod

Meassage Passing Interface (MPI) je standard pro komunikaci na clusterech pro vysoce
vykonné pocitani. Je primarné navrzen pro komunikaci mezi servery, ale da se vyuzit i
pro meziprocesovou komunikaci bez jakéhokoli zasahu do aplikace. Tento standard ma
vice implementaci, mezi nejznaméjsi patii OpenMPI [2], MPICH [3], Intel MPI [1] a dalsi.
Pro testovani jsme zvolili knihovnu OpenMPI, ovsem diky standardizaci je mozné prelozit
knihovnu TNL i s jinou implementaci MPI. Mezi zadkladni funkce MPI patii blokujici a
neblokujici zasilani zprav, dale rozesilani hromadnych zprav a redukce.

Template Numerical Library (TNL)[4] je numerickd knihovna vyvijend na katedfe
matematiky FJFI a je zaméfend na vypocty na vicejadrovych procesorech (CPU) a na

*Tato prace vznikla za podpory projektd CERIT Scientific Cloud (LM2015085) a CESNET
(LM2015042) financovanych z programu MSMT Projekty velkych infrastruktur pro VaVal.
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grafickych kartdch firmy nVidia podporujicich technologii CUDA (GPU). Pomoci Sab-
lon jsou implementovany zakladni i pokrocilé objekty pro rtizny hardware, coz umoznuje
pouhou zmeénou Sablonového parametru zmeénit hardware, na kterém tloha bude poci-
tana, bez dalsich zasahit do kédu. Knihovna TNL podporuje vypocty na strukturovanych
pravouhlych sitich, tak i nestrukturovanych sitich.

Prvnim ¢asti knihovny TNL s podporou distribuovanych systémi je podpora dekom-
pozice vétsich strukturovanych pravouhlych siti mezi vice vypocetnich uzld. V tomto
¢lanku predstavime doménovou dekompozici 1D, 2D a 3D siti. Knihovna TNL s touto
podporou bude schopné provadét napiiklad vypocty explicitnich fesSi¢t na distribuova-
nych systémech. Jako piiklady budeme uvadét 2D sit, implementovana byla i 1D a 3D
sit.

2 Dekompozice 2D a 3D sité

Dekompozice sité mezi vice uzli probihéd nasledujicim zptisobem. Sif rozdélime na pod-
sité, které jsou pokud mozno stejné velké, a dale tyto lokalni sité zvétSime o prekryv
se sousednim vypocetnim uzlem. Velikost pfekryvu volime dle tlohy. Napftiklad fesime-li
Laplaceovu rovnici pomoci explicitniho schématu kone¢nych diferenci, pak nam staci pre-
kryv jednoho prvku. Na obrazku 1 je dekompozice 1D sité a na obrazku 2 je dekompozice
2D sité. Na obrazku 3 je Sipkami naznacena komunikace pro 8-mi okoli. Volba okoli také
zavisi uloze. Napriklad vyse zminény diskretizovany Laplacetv operator zavisi pouze na
4 okolnich bodech. Pak je zbytecné v ramci dekompozice sité uvazovat 8-mi okoli, které
bere v ivahu i rohové sousedy. Stejny zptisobem lze provést i dekompozici ve 3D. Zde
se mtzeme bavit o 6-ti okoli, pro sousedstvi pfes stény, o 18-ti okoli pro sousedstvi pfes
hrany a stény a plné 26 okoli.

Volba okoli také urcuje pocet navazanych spojeni mezi vypocetnimi uzly, coz mize
mit vliv na rychlost komunikace. Druhy parametr, ktery ma zasadni vliv na rychlost
komunikace je mnozstvi prenasenych dat. Zde maji nejvétsi prispévek hrany pro 2D a
stény pro 3D. Mnozstvi pfenasenych dat zavisi na velikosti sité a na poc¢tu vypocetnich
uzli a jejich distribuci. V nésledujicim piikladu uvazujme 2D sit a 4 okoli. Necht sit ma
n x m prvki a mame N vypocetnich uzli, dale necht N lze rozloZit na soucin i * j. Pak
pocet prenasenych prvki sité S je

S=m(j—1)+n(i—1)
a pocet navazanych spojeni je
P=(Gi—-1)j+(—1)

Pro lepsi predstavu vlivu distribuce uzli na tyto parametry uvedme tabulku pro rtizné
distribuce pro sit 100 x 100 a pro 24 uzli. Teoretické minimum pfenesenych dat nastava
pro i = j = V/N, vychazi-li celo¢iselné.

Nakonec této ¢asti uvedme, zZe velké vypocetni clustery mivaji kruhové sifové topolo-
gie, které je pro tento typ distribuce sité velmi vhodny. Kruhova sifovéa technologie ma
primé propojeni sousednich uzli. Pii spravném namapovani nasi ilohy na cluster maji
sousedni uzly, ve smyslu dekomponované sité, pfimé propojeni a neblokuji sifovy provoz
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Obrézek 1: Dekompozice 1D sité s 15 prvky mezi 3 vypocetni uzly. Uhlopfi¢nym srafova-
nim jsou vyznaceny prekryvy mezi vypocetnimi uzly, Sipkami je naznacena komunikace
mezi nimi a svislym vInitym srafovanim jsou vyznaceny hrani¢ni prvky siteé.

Distribuce | Pocet prvkti Pocet spojeni
1x24 2300 23
2 x 12 1200 34
3x8 900 37
4x6 800 38

Tabulka 1: Pocet pienesenych prvki sité a pocet navazanych spojeni mezi vypocetnimi
uzly v zavislosti na zvolené rozlozeni 24 vypocetnich uzli do dvojrozmérné miize. De-
komponovand sit ma 100 x 100 element.

jiné komunikaci, pfenosy pak probihaji plné paralelné. Ma-li cluster kruhovou sit o nizsi
dimenzi, neZ nase sit, pak je vyhodné dekomponovat sit pravé v dimenzi kruhové sité.

3 Distribuovany Grid v TNL

Nejdiive se podivame jak je strukturovana pravouhld sit v TNL implementovana. Tato
sit je reprezentovana Sablonovou t¥idou Grid. T¥ida gridu sama nenese data sifové funkce
vyhodnocované na této siti. Pouze popisuje prostorové usporadani uzli, bunéek ¢i hran, ob-
sahuje souradnice pocatku a prostorovy krok. Nad timto gridem se vytvari sitova funkce,
reprezentovana tfidou MeshFunction. Tato tr¥ida spojuje informace o gridu s paméti alo-
kovanou pro jednotlivé hodnoty funkce. Ty se ukladaji vétsinou do tiidy Vector.

Grid poskytuje pro praci s sitovou funkei tii zdkladni Traversary. Prvni z nich vy-
hodnocuje pouze vnitini prvky sité, druhy vyhodnocuje vSechny prvky sité a posledni
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Obrazek 2: Dekompozice 2D sité s 12 x 12 prvky mezi 9 vipocetnich uzlé. Uhlopfiénym
srafovanim jsou vyznaceny prekryvy mezi vypocetnimi uzly a svislym vlnitym Srafovanim
jsou vyznaceny hrani¢ni prvky sité.

vyhodnocuje pouze okrajové prvky sité, kde prvky mohou byt bunky, hrany nebo uzly
sité. Tyto zakladni traversary jsou vyuzivany tfidami operatort, ¢i jinymi tf¥idami pra-
cujicimi se sitovou funkci. Pouziti pravidelné pravouhlé v TNL je pak néasledujici:

typedef MeshType Grid<2,double,Host,int>;

MeshType grid(size);

int dofsize=grid.getEntitiesCount()
Vector<double, Host, int> dof(dofsize);

MeshFunction<MeshType,2,double> meshFunction;

meshFunction.bind(grid,dof)

functionevaluator.evaluateAllEntities(meshFunction,
somefunction) ;

Pro implementaci dekomponované sité jsme zavedli tiidu DistributedGrid. Tento objekt
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Obrazek 3: Detail komunikace 2D dekomponované sit€. Vyznacené jsou kopirované entity
pro vypocetni uzel v levé horni ¢asti obrazku. ithlopti¢né jsou vysrafovany odesilané entity
tohoto uzlu, vlnité jsou vysrafovany prvky pfijimané timto vypocetnim uzlem.

nenahrazuje ptivodni grid, pouze uchovava informace o distribuci sité mezi vypocetnimi
uzly, velikosti lokalni sité, velikosti presahii a podobné. Distribuovany grid na kazdém
vypocetnim uzlu také predpocita cisla sousednich vypocetnich uzli vsemi sméry, pokud
existuji. Pokud je vypocetni uzel na kraji ptvodni sité, pak neméa timto smérem souseda
a distribuovany grid si pro tento smér ulozi ¢islo —1. Diky tomu je snadné a rychlé
ve vypoctu urcit, zda vypocetni uzel obsahuje danym smérem okrajové entity, ¢i zda
ma danym smérem piesah. Nakonec distribuovany grid obsahuje metodu, kterd nastavi
parametry lokalni sité predstavované ptivodnim gridem tak, aby jednotlivé lokalni ¢asti
na sebe navazovali. Lokalni grid pak obsahuje pouze presahy ve smérech kde ma dany
vypocetni uzel souseda.

Pro spravnou funkénost traversart pribyla gridu reference na distribuovany grid. Po-
kud neni nastavena, pak se pouziji ptivodni traversary. Pokud je nastavena, vyhodnocuji
se pouze entity mimo presahy a hranice se vyhodnocuji jen na vypocetnich uzlech zpraco-
vavajici okraj sité. Tyto informace ziskavaji traversary pravé z objektu distribuovaného
gridu.

Po vyd¢isleni sitové funkce je potieba doplnit hodnoty sitové funkce v piesazich. K
tomuto ucelu byl sestaven nastroj DistributedGridSynchronizer, ktery uzivateli zakryva
veskerou praci s MPI. Tato tfida v konstruktoru podle distribuovaného gridu, ktery pie-
bira jako parametr, pfedpocita velikosti posilanych dat jednotlivymi sméry a vytvori
zasilaci a pfijimaci buffery. Po zavolani funkce synchronize, ktera bere jako parametr
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tFidu sitové funkce, kterd ma byt synchronizovana, naplni pfijimaci a odesilaci buffery
daty z lokalni sitové funkce a zajisti komunikaci, pomoci asynchronniho zasilani zprav
MPI. Funkce provede zahéajeni posilani vsech zprav pomoci funkce MPI_Isend a zahajeni
piijmu vSech zprav pomoci funkce MPI Irecv a poté pocka na dokonceni vSech operaci po-
moci funkce MPI_Waitall. Pro funkce MPI Isend a MPI _Irecv byly vytvofeny Sablonové ,
které automaticky doplnuji parametr MPI Type, dle typu zasilanych dat. Diive uvedeny
priklad pouziti gridu v TNL se pfi rozsifeni na distribuovany systém zméni néasledujicim
zplusobem:

typedef MeshType Grid<2,double,Host,int>;

MeshType globalGrid(size);

DistributedGrid<MeshType,2> distributedGrid(globalGrid);
MeshType localGrid;
distributedGrid.SetupGrid(localGrid);

int dofsize=localgrid.getEntitiesCount ()
Vector<double, Host, int> dof(dofsize);

MeshFunction<MeshType,2,double> meshFunction;
meshFunction.bind(localgrid,dof);

functionevaluator.evaluateAllEntities (meshFunction,
somefunction) ;
distributeGridSynchronizer.Synchronize(distributedGrid,
meshFunction) ;

Nakonec uvedme, ze distribuovany grid v ' TNL pro rozmisténi vypocetnich uzli do 2D
¢i 3D miize vyuziva funkci MPI_Dims_create. Tato funkce umoznuje uzivateli vynutit
distribuci uzli v néjakém sméru rucné. Distribuovany grid tento zptisob ovlivnéni roz-
misténi vypocetnich uzltt umoznuje pomoci volitelného parametru, ktery pracuje stejnym
zptsobem. Diky tomu miizeme dosahnout jednodimenzionalni dekompozice 2D sité. Dis-
tribovany grid i synchronizer podporuji plnohodnotna okoli, tedy ve 2D 8-mi okoli, a ve
3D 26-ti okoli. Podpora volby okoli bude pridana pozdéji.

4 Méreni

Pro testovani nasi implementace distribuovaného gridu jsme sestavili nasledujici aplikaci.
Aplikace vytvori 2D distribuovany grid na kterém nékolikrat vyhodnoti linearni funkci.
Po kazdém vyhodnoceni funkce provede synchronizaci sifové funkce. Méfime primérnou
dobu synchronizace, primérnou dobu vyhodnoceni linearni funkce a celkovou dobu béhu
programu. Velikost sité a pocet opakovani zapisii jsou programu piredany jako parametr.
Pocet vypocetnich uzlli je dan parametrem predavanym spoustécimu programu mpirun.
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Distribuce | 500 1000 2000 4000 8000 16000 32000
(22) 0,60 042 064 058 0,76 144 241
(4,1) 040 045 052 083 1,62 232 448
(1,4) |064 069 050 073 063 1,02 1,30

Tabulka 2: priimérna doba synchronizace v milisekundach pro rizna rozdéleni 4 vypocet-
nich serveru pro rizné velké sité. Rozdéleni je uvedeno v prvnim sloupci ve tvaru uspora-
dané dvojce poc¢tu uzlt v ose X a v ose Y. Sité byly ¢tvercové o hrané uvedené v prvnim
radku.
\ 500 1000 2000 4000 8000 16000 32000
(3,2) | 0,47 0,73 057 0,84 1,13 1,66 295
(6,1) | 0,38 0,18 0,28 0,52 1,10 1,85 3,70
(1,6) | 0,13 0,14 0,21 0,26 059 049 0,86

Tabulka 3: primérna doba synchronizace v milisekundach pro rizna rozdéleni 6 vypocet-
nich servert pro rizné velké sité. Rozdéleni je uvedeno v prvnim sloupci ve tvaru uspora-
dané dvojce poctu uzlt v ose X a v ose Y. Sité byly ¢tvercové o hrané uvedené v prvnim
radku.

Celkove byly sestaveny 3 aplikace, prvni voli rozlozeni vypocetnich uzli pomoci zmino-
vané funkce MPI_Dims_create, druha vynucuje rozlozeni vypocetnich uzli pouze v ose X,
a treti pouze v ose Y.

Dtivodem pro porovnani linearnich rozlozeni vypocetnich uzli v osach X a Y je sku-
tecnost, ze data sitové funkce jsou v paméti uloZeny v jednorozmérném poli po Fadcich.
Pti rozdéleni vypocetnich uzlt v ose Y se do posilacich buffert kopiruje prvni a posledni
radek, tedy data v paméti uloZzena za sebou, zatimco pri rozdéleni vypocetnich uzli v ose
X se do posilacich bufferti kopiruje vzdy prvni a posledni prvek kazdého radku, tudiz se s
paméti nepracuje efektivné. Jak ukazalo méfeni ma tato skute¢nost zasadni vliv na dobu
synchronizace pii komunikaci po rychlém rozhrani InfiniBand.

Méreni byla provedena s 20 zapisovymi cykly na sitich o rozmérech 500 x 500, 1000 x
1000, 2000 x 2000, 4000 x 4000, 8000 x 8000, 16000 x 16000 a 32000 x 32000 element.
Postupné byly vsechny tfi aplikace spoustény na 1 az 9 vypocetnich uzlech. Vypocetni
uzly byly exkluzivné vyhrazeny pouze pro toto méfeni, ovSem sitové prvky Infinibandu
exkluzivné vyhrazeny nebyly, coz mohlo ovlivnit méfeni. Méfeni na 2 vypocetnich uzlech
bylo ukonceno chybou, pravdépodobné zptisobenou infrastrukturou vypocetniho clusteru
na kterém byl vypocet spoustén, proto je ve vysledcich neuvadime.

Z namétenych dat jsme vybrali nasledujici vysledky. V prvnich tfech tabulkach jsou
uvedeny priumeérné casy synchronizace dat pro rtizna rozdéleni vypocetnich serveru a
rizné velké sité. V tabulce 2 jsou rozdéleni ¢tyt uzli, v tabulce 3 jsou rozdéleni Sesti
uzld a v tabulce 4 rozdéleni osmi uzli. Z prezentovanych vysledki je vidét, ze rozdéleni
serveril v ose Y je v synchronizaci nejrychlejsi i za cenu vice prenasenych dat. Z ostatnich
vysledki, zde neprezentovanych je patrné Ze linearni rozdéleni vypocetnich uzli v ose Y
je vzdy vyhodnéjsi nez rozdéleni uzli v ose X.

V tabulce 5 uvadime porovnani dob synchronizace pro linearni rozdéleni vypocetnich
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| 500 1000 2000 4000 8000 16000 32000
(42) | 0,44 0,48 0,68 0,77 094 149 2386
(8,1) | 0,66 0,50 0,83 1,07 154 235 3,78
(1,8) | 0,52 0,70 0,71 1,00 085 087 137

Tabulka 4: priimérna doba synchronizace v milisekundach pro rizna rozdéleni 8 vypocet-
nich serveru pro rizné velké sité. Rozdéleni je uvedeno v prvnim sloupci ve tvaru uspora-
dané dvojce poc¢tu uzlt v ose X a v ose Y. Sité byly ¢tvercové o hrané uvedené v prvnim
radku.

3 4 5 6 7 8 9
500x500 0,06 0,64 0,09 0,13 040 0,52 0,11
1000x1000 | 0,08 0,69 0,11 0,14 040 0,70 0,37
2000x2000 | 0,15 0,50 0,40 0,21 0,21 0,71 0,43
4000x4000 | 0,19 0,73 0,21 0,26 0,50 1,00 0,22
8000x8000 | 0,25 0,63 0,28 0,59 0,567 0,85 0,36
16000x16000 | 0,35 1,02 0,56 0,49 0,77 0,87 0,51
32000x32000 | 0,62 1,30 0,68 0,86 0,83 1,37 1,06

Tabulka 5: primérna doba synchronizace v milisekundach pro rtzné pocty vypocetnich
uzlt v linearni distribuci v ose Y a rtizné velikosti sité. Velikost sité€ je uvedena v prvnim
sloupci, a pocty vypocetnich uzlt v prvnim radku.

uzlt v ose Y pro rizné pocty vypocetnich uzli a rtzné velké sité. Z vysledktl je patrné,
ze méreni bylo ovlivnéno vnéjsimi vlivy, protoze primérna doba synchronizace pro 8
vypocetnich uzli vychéazi znatelné delsi nez doba synchronizace pro 9 vypocetnich uzli.
Pro porovnani uvadime také tabulku 6 s primérnymi dobami vyhodnoceni linearni funkce
na synchronizované siti. Pro nejvétsi dvé testované sité synchronizace predstavuje méné
nez 5% celkového casu.

Nakonec uvedme standardni porovnani celkové doby béhu aplikace pro riizny poctech
vypocetnich uzli a rizné sité. Pro porovnani byly zvoleny c¢asy pro linearni rozlozeni
uzltt v ose Y protoze vétsinou byly nejrychlejsi. Tabulka 7 uvadi dobu béhu aplikace v
zavislosti na velikosti sité a po¢tu vypocetnich uzli, tabulka 8 uvadi vypoctené urychleni
a tabulka 9 uvadi vypoctenou efektivitu. Z naméfenych dat je vidét, ze i velmi rychla
synchronizace ma negativni velky vliv na celkovou efektivitu. Proto bude dale do knihovny
TNL pfiddna podpora pro prekryti vypoctu a synchronizace. Uvedme také, Ze v celkové
dobé je zahrnuta také ivodni ¢ast programu, kterd ma také na celkovou efektivitu vliv.

5 Zaver

V tomto ¢lanku byla prezentovana implementace dekompozice pravidelné pravothlé sité v
knihovné TNL. Implementovana byla dekompozice 1D, 2D i 3D siti, princip synchronizace
dekomponované sité byl vysvétlen na 1D a 2D siti. Pro 2D sit byla sestavena a spusténa
testovaci aplikace, ktera odhalila, Ze na rychlém rozhrani Infiniband ma velky vliv na
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1 3 4 5 6 7 8 9

500x500 0,34 0,75 1,06 1,09 1,09 157 1,66 1,80
1000x1000 | 1,06 1,12 124 152 142 172 1,61 1,65
2000x2000 | 4,62 2,34 225 222 216 228 214 196
4000x4000 | 16,74 6,78 548 464 431 402 362 395
8000x8000 | 59,20 23,31 17,89 14,68 1348 1187 1043 10,30
1600016000 | 222,94 79,94 60,78 102,50 4566 41,78 3594 33,74
32000x32000 | 899,60 305,72 225,66 182,22 165,01 139,85 121,45 249,77

Tabulka 6: primérna doba vycisleni linearni funkce v milisekundach pro rtzné pocty
vypocetnich uzld v linearni distribuci v ose Y a rizné velikosti sité. Velikost sité je
uvedena v prvnim sloupci, a pocty vypocetnich uzlt v prvnim radku.

1 3 4 3 6 7 8 9
500x500 0,008 0,017 0,035 0,024 0,025 0,040 0,044 0,039
1000x1000 | 0,030 0,026 0,040 0,034 0,032 0,043 0,047 0,042
2000x2000 | 0,113 0,058 0,061 0,057 0,051 0,053 0,060 0,052
4000x4000 | 0,413 0,169 0,148 0,115 0,106 0,103 0,104 0,095
8000x8000 1,471 0,570 0,456 0,365 0,340 0,302 0,272 0,260
16000x16000 | 5,412 1,957 1,500 1,261 1,109 1,015 0,889 0,845
32000x32000 | 21,237 7,332 5,476 4,453 3,983 3,391 2,977 2,847

Tabulka 7: doba béhu aplikace v sekundéach pro rtizné pocty vypocetnich uzli a rizné
velké siteé.

3 4 5 6 7 8 9
500x500 |05 02 0,3 0,3 02 02 02
1000x1000 | 1,1 0,7 0,9 09 0,7 06 0,7
2000x2000 |2,0 1,8 2,0 22 21 19 22
4000x4000 |24 28 3,6 3,9 40 40 4,3
8000x8000 | 2,6 3,2 4,0 43 49 54 57
16000x16000 | 2,8 3,6 4,3 4,9 53 6,1 6,4
32000x32000 | 2,9 3,9 48 53 63 7,1 7.5

Tabulka 8: urychleni aplikace v sekundach pro rtizné pocty vypocetnich uzli a rtizné velké
sité.
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3 4 5 6 7 8 9
500x500 6 6 7 6 3 2 2
1000x1000 |37 18 17 15 10 8 8

2000x2000 |65 46 39 37 30 23 24
4000x4000 |81 70 72 65 57 50 48
8000x8000 |86 81 81 72 70 68 63
16000x16000 | 92 90 8 81 76 76 71
32000x32000 | 97 97 95 89 89 89 83

Tabulka 9: efektivita paralelizace aplikace v procentech pro rtizné pocty vypocetnich uzlt
a ruzné velké siteé.

rychlost synchronizace uspofadani kopirovanych prvki sité v paméti. Z naméfenych dat
se nejvyhodnéjsi jevi linearni rozdéleni uzli v ose Y. Méreni bylo prozatim provedeno na
malém poctu vypocetnich uzli, do budoucna bude rozsireno alespon na 20 uzli. Pro vétsi
testy nam prozatim neni dostupnéa infrastruktura.

Mezi dalsi kroky pro dokonceni této casti patii implementace ukladani dekompono-
vané sitové funkce do souboru, podpora prekryti vypoctu se synchronizaci a podpora
synchronizace mensich okoli. Nasledovat by méla podpora dekompozice sité mezi vice

GPU.
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Abstract. Proportional integral derivative (PID) controllers are important and widely used
tools of system control. However, tuning their gains is a laborious task, especially for complex
systems with multiple coupled controllers. To minimize the time and effort spent tuning the
gains in a simulation software, we propose to formulate the problem as a black-box optimization
problem and solve it with an appropriate method.

We introduce two applications of tuning PID controllers in simulations: combustion engines
and an AC filter. For each, a befitting objective function is derived and the resulting problem
is successfully solved by a variant of CMA-ES. For the first application, the performance of
CMA-ES, PSO and SHADE is compared and the winning method’s practical applicability is
verified on models of real production engines.

Keywords: CMA-ES, black-box optimization, PID controller

Abstrakt. PID (proporéni, integracni, deriva¢ni) regulatory jsou dilezitym a Siroce pouZivanym
néstrojem pro fizeni systémii. OvSem naladit jejich jednotlivé slozky miize byt slozité, obzvlast
v piipadé komplexnich systémi s vice navzijem se ovliviiujicimi regulatory. Cilem této prace je
minimalizovat ¢as a tusili nutné k nalezeni spravného naladéni regulatori v simula¢nim softwaru.
Problém formulujeme jako black-box optimaliza¢ni tlohu, kterou nasledné fesime pomoci vhodné
metody.

Zabyvame se dvémi konkrétnimi aplikacemi ladéni PID regulatort pomoci simulaci: vznétové
motory a AC filtr. V obou pfipadech odvodime vhodné tcelové funkce a vyslednou tlohu resime
pokroéilou verzi metody CMA-ES. V tloze s motory srovnavame CMA-ES s PSO a SHADE
a uzite¢nost vitézné metody je ovérena na ladéni regulatord v modelech skuteé¢né pouzivanych
motort.

Klicovd slova: CMA-ES, black-box optimalizace, PID regulator

1 Introduction

In a controlled system, PID controllers ensure that given quantities remain constant or
within given range. For example, in a room with air-conditioning and/or heating and
a temperature sensor, a PID controller keeps the temperature at the pre-set 21°C. The
principle remains the same for more complex systems such as a running combustion engine

*This work has been supported by grant 260007 Stradi.
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or an AC filter, where multiple controllers may be present and affect each other (i.e. be
coupled).

An engineer’s task is to tune the gains of all the controllers, so that the system’s
behavior is satisfactory, i.e. all controlled quantities get to and remain at desired levels.
For financial and time reasons, this is often done first with the help of simulations before
dealing with physical equipment. This work focuses on the use of such simulations and
suggests a method that is to aid engineers in their task without the need to analyze
the given system. For combustion engine simulations, 1D dynamics simulation software
WAVE is used [18]. This part is largely based on the author’s preprint paper [10|. For
AC filter simulation, Matlab Simulink [16] and PLECS [1] software combination is used.

The need to solve both these problems arose from industrial applications. Presently,
manual work makes up a major part of the controller tuning process. This lengthy
procedure is based on trial and error and requires a knowledgeable and experienced control
engineer. For systems with a single controller (or multiple but decoupled controllers),
simple rules of thumb (e.g. Ziegler-Nichols) can be employed. Similar, already-solved
problems can also provide a guideline. However, when having a complicated or unique
system of coupled controllers, the complexity of the task makes it very difficult to solve
even for an experienced control engineer. Moreover, in our application of PID controllers
in combustion engine models, other professionals need to tune the controllers as well,
creating the need for a simple-to-use, robust tool. We aim to deliver a method that
would eliminate or significantly lower the need for manual tuning. It should find a
solution within acceptable time and with as little user interaction as possible. When
combined with simple tuning rules or educated guess, our method is to use the provided
solution approximation as a starting point and quickly find a more refined solution.

The PID tuning problem with either one controller or multiple but decoupled or sym-
metric controllers can be and has been reformulated as a black-box optimization problem
and solved with an appropriate method. Evolutionary algorithms have been used, e.g.
genetic algorithm [15], differential evolution (DE) [3, 11], particle swarm optimization
(PSO) [4, 5] and many hybrids [11, 14].

The tuning problem with multiple coupled controllers can too be formulated as an
optimization problem. However, compared to other research on controller tuning [3, 4,
5, 11, 14, 15|, dealing with coupled controllers requires an extra level of complexity. Tts
multiple objectives can be efficiently combined into one, enabling us to solve the problem
with usual, and faster, algorithms.

The time budget poses the greatest limitation. With simulations taking up to several
minutes each, we aim for few thousand simulation runs at most. This imposes high
expectations upon efficiency of the method used.

Considering properties of the problem and with the support of experimental evidence,
we choose to use a variant of the Covariance Matrix Adaptation Evolution Strategy
(CMA-ES) [8, 6, 9, 13|, an evolutionary algorithm founded deep in probability theory. It
has proven to be very effective and robust method in the extensive testing of Black-Box
Optimization Benchmarking (e.g. [7, 2]), surpassing the above mentioned algorithms and
many others (on the relevant sort of problems). Despite its fame in the optimization
community and large number of practical applications, it has so far been little used for
tuning PID controllers [11, 12, 20| or similar problems.
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In this work, we derive fitting objective functions for both problems and show the

applicability of CMA-ES. For the combustion engine problem, we compare performance
of CMA-ES, PSO and SHADE (Success-History based Adaptative Differential Evolution

[19])-

2 Formulation of the problem

2.1 PID controllers in simulations

PID controllers are well known and powerful tools in system control [17]. Their input is
the error
e(t) = actual(t) — target(t),

i.e. the time-dependent difference between the desired target value and the actual value
of a quantity (as measured by a sensor or computed by a model). The output control
signal that defines the system’s subsequent reaction is given as

C(t) = Pe(t) + I/o e(t)dr + D %e(t),

where P, I and D are the proportional, integral and derivative gains, respectively.

In both our applications, the controllers’ implementation is provided within the simu-
lation software. Having k& controllers within a system, each determined by three constant
gains P, I and D, there are 3k gains to be tuned: x = (P, 1, D1, ... , Py, I, Dy).
When the controllers’ gains are set and the whole simulation is run, it outputs the above-
mentioned error functions’ e;(t) = e;(x,t), i = 1,...,n. development over time.

It remains to process e;(z,t) so that the final function value contains all information
about the input’s quality. We do so in the next sections by defining an objective function
F(z,t) that will be minimized (without loss of generality, we always assume that that
higher quality inputs have lower function values).

Our goal is to find such vector x that the corresponding controlled quantities converge
to the target values (for constant targets) or start mirroring the target value functions
(for targets changing in time) and do so as quickly as possible. For practical purposes,
the minimizer found need not be unique.

2.2 Objective function for combustion engine simulations

In the case of combustion engine simulations, construction of the objective function is
rather straightforward. Figures 1 and 2 show how the simulation output looks like (on
a simple testing model with 3 controllers and 3 controlled quantities). The objective
function must then reflect that: 1) all controlled quantities must converge to the target
values, 2) the convergence should be as fast as possible, 3) larger error in the beginning
of the simulation is OK, 4) each controlled quantity uses different units.

Placing more emphasis on errors with greater time, we weight the error function by
time and integrate over time interval [ty,t]. Finally, we scale each objective by the inverse
of the (constant) target value, so that their numerical values are comparable and do not



89 K. Henclova

3 3
Time [ Time [ Time [

Figure 1: Unsatisfactory solutions: at least one of the controlled quantities does not
converge to the target value.
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Figure 2: Good solutions: all controlled quantities converge to the target values.

depend on the units of the corresponding quantity. Note that |target;| is the remainder
of the integral over time of the target’s (constant) function.
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(@.) > e | Dlete il ar

controlled quantities

Time t corresponds with the end of the simulation. Time ¢y > 0 is, however, subject
to choice. It must be selected manually as a time point just before the output starts to
follow a trend. The meaning of ¢, > 0 is that it cuts out from the objective function the
information that — in this particular application — is essentially noise. Setting ¢ty > 0 is
not neccessary but it can significantly shorten the optimization computation time.

2.3 Objective function for AC filter simulations

For the AC filter, we must take a more general approach. Figure 3 depicts the typical
outputs and the prescribed smooth sinusoidal target value functions. The actual value
functions tend not to be smooth and overshoot significantly (large overshoot is forbidden
due to practical restrictions on not burning the equipment). Moreover, there are 6 sections
for each phase (= controlled quantity), the beginning of each being the most troublesome.
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Figure 3: Various outputs of AC filter simulation.

To derive an appropriate objective function F(z,t), the weighted sum over the ob-
jectives is used again, this time over all phases and all sections. Each objective is then
composed of two parts: scaled L1-norm of the error function (this time we do not use
time to weight the error within the integral because the error is most important in the
beginning of each section) and L1-norm of the error function’s derivative (i.e. its bounded
variation), which penalizes non-smooth outputs.

de(zx,T)

- D
Z Z |target ez, e, e, +Da dr

phases sections

Ly
Resetting the time counter to 0 at the begining of each phase, the L1-norm is defined

as || f(7)]lz, = fo |f(7)|dr. Based on typical values of the corresponding L1-norms, the
constants were set to Dy = 10, Dy = 1le — 09.

3 The optimization method

Clearly, the objective functions will be non-convex, non-differentiable, possibly ill-condititoned,
multimodal and must be taken as a black box (since the simulations are such). Meta-
heuristic and evolutionary methods have been extremely successful when tackling this
sort of problems. Based on the results of the extensive Black-Box Optimization Bench-
marking [7, 2|, the Covariance Matrix Adaptation Evolution Strategy with bi-population
restart scheme (BIPOP-CMA-ES) was the method of first choice for our application.

The Covariance Matrix Adaptation Evolution Strategy (CMA-ES) [8] is an evolu-
tionary algorithm that uses stochastic and algebraic tools to define optimally diverse
population of candidate solutions in an area that seems to be most promising. The size
of the area and its location are determined based on the algorithm’s previous experience
with the objective function. New candidate solutions are sampled from a multivariate
normal distribution, whose mean and covariance matrix are adapted in each generation
along with the general step size. For details see Algorithm 1.

There are many upgrades available for basic algorithm. In our application, supported
by numerical experiments, we use the elitist BIPOP-aCMA-ES version, i.e. Covariance
Matrix Adaptation Evolution Strategy [8] with active covariance matrix updates (includ-
ing information about detrimental directions [13]), elitist scheme of parent selection (best
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candidate solutions are parents of new generations until they are superseded [6]) and bi-
population restart strategy (method alternanates between 2 regimes with small and large
population sizes [9]).

Several important properties of CMA-ES make it so effective in our application. First
and foremost, CMA-ES does not use gradients and it does not even presume their ex-
istence. Moreover, it does not even use the actual values of the objective function once
relative ranking has been assigned to the candidate solutions (except for some stop-
ping/restart criteria). As a result, transformations of the objective function that have no
effect upon the relative ranking of individuals do not effect the method’s performance,
making it more robust. Further, the method exhibits invariance to invertible linear trans-
formations of the search space. In particular, CMA-ES is invariant to scaling of variables
(coordinate axes), which is the key property that makes it well-suited for tuning multiple
controllers: parameters of one controller are usually of roughly the same scale, but with
multiple controllers, the scaling may differ by many orders. A reference point (a vec-
tor of typical or expected magnitudes of the controllers’ gains) provided by a user then
determines how the coordinates are rescaled.

Algorithm 1: Elitist BIPOP-aCMA-ES

set A, u
initialize m,0,C = I,ps = 0,pc. =0
initialize restart _regime = 1, count; = 0, counta =0

while termination criteria not met do
while restart criteria not met do
if not first generation in a restart then
fori=1,...,u do
L Titp = T // relabel parents of previous generation
fixu=Fs // relabel parents’ objective function values

fori=1,...,Ado

x; ~ N(m,c%C) // sample new population from normal distribution
fi = evaluate(z;) // evaluate z; with objective function
sort z;,1=1,..., A+ p acc. to f; // assign relative (descending) ranking
m* =m
m = update_m(x;,...,Tyu) // move the mean utilizing the parents
// the evolution paths contain information about past progress
Po = update_ps (po, 0~ 1C~1/2(m — m*)) // isotropic evolution path update
pe = update_pe(pe, o~ (m —m*), |lps) // anisotropic evolution path update
C = update_C(C,pe, (x1 —m*)/o,...,(xr4y —m*)/0) // covariance matrix update
o = update_o(o, ||ps||) // step size update

if restart_regime =1 then
L counti = county + A\

else
L county = counts + A\

if county < counts then
L restart _regime — 1

else
L restart regime = 2

reinitialize parameters and variables acc. to selected restart regime
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Table 1: Results of 5 CMA-ES runs on real-world models with one (M.1.1, M1.2), two
(M2.1, M2.2, M2.3) and three (M3.1) controllers with reference points of various quality.
Minimum, maximum and average number of simulation runs is provided.

’ model ‘ reference p. H min ‘ max ‘ aver. ‘ ’ model ‘ reference p. H min ‘ max ‘ aver. ‘
PI baseline 2 68 28 PI baseline 11 66 35
10! PI b. 35 | 153 79 M2.1 | 10! PIb. 244 | 280 | 255
M1.1 | 102 PIb. 95 | 519 | 225 10~! PIb. 4 32 21
1071 PIb. || 20 | 120 | 66 PI baseline 8 98 29
1072 PIb. || 49 | 296 | 123 M2.2 | 10! PIb. 60 | 770 | 364
PI baseline 1 22 9 10~1 PI b. 44 107 64
10' PI b. 4 | 28 11 PI baseline 9 78 32
M1.2 | 102 PIb. 80 | 225 | 187 M2.3 | 10! PIb. 250 | 757 | 629
107" PIb. || 34 | 100 | 51 10~! PIb. 49 | 1188 | 347
1072 PIb. || 57 | 181 | 94 PID baseline || 10 | 91 57
M2.3 | 10! PID b. 274 | 857 522
10~! PID b. 82 | 1576 | 749
PID baseline || 41 | 331 | 152
M3.1 | 10! PID b. 827 | 1763 | 1268
10~ PID b. || 179 | 3867 | 2476

4 Experiments

Extensive experiments were performed using a simplified model of a combustion engine
to determine the best setting of CMA-ES for our application and to verify its robustnes.
The method’s practical usability was tested on models of real engines (see table 1).
CMA-ES was also compared to Particle Swarm Optimization (PSO) and Success-History
based Adaptative Differential Evolution (SHADE), clearly defeating both (see table 2),
especially regarding reliability. For details see [10].

In all cases, we aimed for computation times that are acceptable for engineers using
an ordinary PC, i.e. cca 3000 objective function evaluations (= simulation runs) at most.
The methods were provided with starting reference points of various quality with “PID
baseline” and “PI baseline” (i.e. with D gains set to 0) being the easiest and the other
reference points adding orders of magnitude to each of the baseline vector’s elements.

The AC filter testing shows very promising preliminary results as well, yet more tests
must still be performed.

5 Conclusion

This paper has shown how to construct fitting objective functions for two problems of
tuning PID controllers in simulations. It was also shown that CMA-ES can solve the
corresponding numerical optimization problem. CMA-ES reaches satisfactory run times
and outperforms PSO and SHADE, especially in terms of reliability and robustness.



K. Henclova

86

8601 - [ - [esse [ ee [ - ] - - [ -] - [ - [ - [ - [ - [ - [ e onpman
8ETT 18T - veec | 91 || €91z | 4.¥T | 9v6T | gatz | €291 || osor | veut | @oer | - | - ‘q aId 0T
08¢ 60.2 - 176 20z || 9get | s6ze | 0911 | 8T0T | ¥2g9 || - | 9811 | 10e | ¥29 | Lse ‘q dId ;01
eve 6ee | g1 || ess W1 || 06e | Le&v | 60z | 81F | 66c || €r | osz | vor | vo1 | €€ ‘q dld ;0T
220z - - 0eTF | €96 - - - - - - - - -1 - ‘q dId (01
2011 - - zovT 29 - - - - - - - - -1 - ‘q dId {01
29 99y | 6eT || 9g ze 8o | v | L6V | 206 | sev | se | 1. | <01 | s¢ | cog ourpeseq (Id
z18 G661 - 2191 | 6gz | @evt | ever | zote | 0601 | 8TT¥ || 009T | - - -1 - ‘q 1d 01
z6¢ 2092 - veel | cee || €eTe | L6vT | €8.2 | PIST | gqTg || €ov | ozz | €8 | - | €68 ‘q1d ¢ 01
L€ 1.6 0¢ 918 19 8eg | 09z | oocT | 9aT | @ve || e | 6e | sv | oL | 9g ‘q1d {01
1902 - - ooLe | Te8 - - - - - - - - - - ‘q 1d 401
6701 - - 790z | oS - - - - - - - - - - ‘q 1d 101
9L 729 - 89T i cel | ootz | Tve | 96€ | o€l - - - 1o [ e ourpseq 14
savino | mavis [ osd || xew [ ww o | v# | e# [ et | # || o# | v# | e# [ e# | H d ouaIafe
owiry uni ofeIoAw suni §a-yIND suni qAVHS suni OSd

"198pN( USALS oY} UIYIIM STUY J0U PIP
SUILI 9I0UI 10 SUO J1 pojndurod jou sem oUW} UNI 98RIOAY "SUOIJRN[RAS UONDUN} ))00T JO 308pnq papraord o) UMM PUNoOj J0U sem
(G'( wRY) SSO[ onNfeA UOIOUN] M UOIIN[OS '9°1) UOIN[0S AI0JORISIJes ® JRI[) SURIUL - JO onfeA oy, ‘sjyutod oouaIojol €] Jo [ord

10§ pourrorod o1om suni §H-VIND 0T PuR sunl J(VHS ¢ ‘suni OSd G ‘[opou dIseq oY) U0 SUI)So) WILIOZ[R JO SUNSAY :g ORI,



Tuning PID Controllers in Simulations Using CMA-ES 87

References

1]

2]

13l

4]

[5]

6]

7]

18]

19]

[10]

[11]

[12]

J. Allmeling and W. Hammer. PLECS - piece-wise linear electrical circuit simulation
for Simulink. In ’Proceedings of the IEEE 1999 International Conference on Power
Electronics and Drive Systems’, volume 1, 355-360, (July 27 1999).

A. Auger, S. Finck, N. Hansen, and R. Ros. BBOB 2010: Comparison Tables
of All Algorithms on All Noiseless Functions. Technical Report RT-388, INRIA,
(September 2010).

Z. Bingul. A new pid tuning technique using differential evolution for unstable and
integrating processes with time delay. In ’Neural Information Processing: 11th In-
ternational Conference, ICONIP 2004, Calcutta, India, November 22-25", 254260,
Berlin, Heidelberg, (2004). Springer Berlin Heidelberg,.

Gaing. Z.-L. A particle swarm optimization approach for optimum design of PID
controller in AVR system. IEEE Transactions on Energy Conversion 19 (June 2004),
384-391.

S. P. Ghoshal. Optimizations of PID gains by particle swarm optimizations in fuzzy
based automatic generation control. Electric Power Systems Research 72 (2004),
203-212.

N. Hansen, D. Arnold, and A. Auger. Evolution Strategies. In ’Springer Handbook
of Computational Intelligence’, J. Kacprzyk and W. Pedrycz, (eds.), Springer Berlin
Heidelberg (2015), chapter 44, 871-898.

N. Hansen, A. Auger, R. Ros, S. Finck, and P. Posik. Comparing Results of 31
Algorithms from the Black-Box Optimization Benchmarking BBOB-2009. Workshop
Proceedings of the GECCO Genetic and Evolutionary Computation Conference 2010
(2010), 1689-1696.

N. Hansen and A. Ostermeier. Completely derandomized self-adaptation in evolution
strategies. Evolutionary Computation 9 (2001), 159-195.

Hansen, N. Benchmarking a Bl-population CMA-ES on the BBOB-2009 Function
Testbed. In ’Proceedings of the 11th Annual Conference Companion on Genetic
and Evolutionary Computation Conference: Late Breaking Papers’, GECCO 09,
2389-2396, (2009).

K. Henclova. Using cma-es for tuning coupled pid controllers within models of com-
bustion engines. Submitted to Engineering Optimization. Preprint version available
at arxive.org, (2017).

M. W. Iruthayarajan and S. Baskar. Evolutionary Algorithms Based Design of Mul-
twariable PID Controller. Expert Syst. Appl. 36 (July 2009), 9159-9167.

W. M. Iruthayarajan and S. Baskar. Covariance Matrix Adaptation Evolution Strat-
egy Based Design of Centralized PID Controller. Expert Syst. Appl. 37 (August
2010), 5775-578]1.



88 K. Henclova

[13] G. A. Jastrebski and D. V. Arnold. Improving evolution strategies through active
covariance matriz adaptation. In 'IEEE Congress on Evolutionary Computation —
CEC 2006’, 2814-2821, (2006).

[14] W. M. Korani, H. T. Dorrah, and H. M. Emara. Bacterial foraging oriented by
Particle Swarm Optimization strategy for PID tuning. In 'Computational Intelligence
in Robotics and Automation (CIRA), 2009 IEEE International Symposium on’, 445—
450, (Dec 2009).

[15] Kwok, D.P. and Sheng, F. Genetic algorithm and simulated annealing for optimal
robot arm PID control. In ’Evolutionary Computation, 1994. IEEE World Congress
on Computational Intelligence., Proceedings of the First IEEE Conference on’, 707—
713. IEEE, (1994).

[16] Matlab simulink, (Version 2016b). The MathWorks Inc., Natick, MA, USA.

[17] K. Ogata. Modern Control Engineering. Prentice Hall PTR, Upper Saddle River,
NJ, USA, 2nd edition, (1990).

[18] Ricardo Software. WAVE Manual, (2016).

[19] R. Tanabe and A. Fukunaga. Success-history based parameter adaptation for differ-
ential evolution. In ’Evolutionary Computation (CEC), 2013 IEEE Congress on’,
71-78. IEEE, (2013).

[20] Y. Wakasa, S. Kanagawa, K. Tanaka, and Y. Nishimura. Pid controller tuning
based on the covariance matriz adaptation evolution strategy. IEEJ Transactions on
Electronics, Information and Systems 130 (2010), 737-742.



Kohonen SOM Learning Strategy and Country
Classification®

Radek Hiebik

2nd year of PGS, email: Radek.Hrebik@seznam.cz
Department of Software Engineering
Faculty of Nuclear Sciences and Physical Engineering, CTU in Prague

advisors:

Josef Jablonsky, Department of Econometrics
Faculty of Informatics and Statistics, University of Economics, Prague

Jaromir Kukal, Department of Software Engineering
Faculty of Nuclear Sciences and Physical Engineering, CTU in Prague

Abstract. The Self-Organized Mapping (SOM) represents a traditional tool for multidimen-
sional data analysis overperforming analytical power of cluster analysis. But there are possible
difficulties when the SOM is applied to data patterns of large size. We present testing exam-
ple using iris dataset. Our approach is mainly used for macro-economical data analysis which
is based on logarithmic differences, pattern dimensionality reduction and finalization of data
analysis using Kohonen SOM learning. General methodology was applied to main economic
indicators describing the situation of thirty five countries during more than twenty years. The
used dataset comes from regularly published statistics of European Commission. The main aim
is to identify the similarities of countries. The role of SOM topology, learning strategy and
reduced pattern size can be also used to predict behaviour during crisis based on the identified
similarity and known.

Keywords: SOM, Kohonen learning, iris dataset, artificial neural network, macroeconomic indi-
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Abstrakt. Samoorganizujici se mapy (SOM) predstavuji tradi¢ni néstroj pro multidimen-
zionalni analyzu dat, ktery pfesahuje analytickou silu shlukové analyzy. Pokud se SOM aplikuje
na datové vzory velkych rozmért, vyskytuji se problémy. V piispévku nechybi detailni testovaci
priklad. N&s pfistup se pouziva hlavné pro makroekonomickou analyzu dat, ktera je zaloZena na
logaritmickych diferencich, sniZeni dimenze a u¢eni pomoci Kohonenovych map (SOM). Obecna
metodika byla aplikovana na hlavni ekonomické ukazatele, které popisuji situaci tficeti péti zemi
bé&hem vice nez dvaceti let. Pouzita datova sada pochézi z pravidelné publikované statistiky
Evropské komise. Hlavnim cilem je uréit podobnosti zemi. Uloha topologie SOM, strategie
uceni a redukci dimenze lze také pouzit k predikci chovani v prubéhu krize, a to na zakladeé
zjisténé podobnosti.

Klicovd slova: SOM, Kohonenovo uceni, tloha identifikace kosatcd, neuronova sit, makroeko-
nomické ukazatele, predikce krize
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1 Introduction

In our research we deal with basic economical indicators which are published on regular
basis. The Self-Organized Mapping (SOM) represents a traditional tool for multidimen-
sional data analysis which overperforms analytical power of cluster analysis. We face
possible difficulties applying the SOM to data patterns of large size. So we have to make
data preprocessing. Our approach of macroeconomic data analysis is based on logarith-
mic differences, pattern dimensionality reduction and finalization of data analysis using
Kohonen SOM learning.

This general methodology was applied to the statistic data describing the economic situa-
tion of more than thirty countries during more than twenty years. The regularly published
data come from statistics of European Commission. The aim is to identify similar groups
of countries and characterize the similarity. The role of SOM topology, learning strategy
and reduced pattern size can be also used to crisis prediction based on similarities with
countries already suffering with crisis.

2 Kohonen Learning

Kohonen Self Organized Map (SOM) is organized as follows. Let m,n, H € N be number
of patterns, pattern dimensionality and number of SOM neurons [4]. The individual
patterns are x; € R™ where j = 1,...,m and form the pattern set S = {x1,...,X;, }.
The topology of SOM [8] is described by undirected graph G of H vertices which are
connected with unit length edges. The SOM topology matrix G € {0, 1}7*# generates
mutual vertex distances A; ; for 1 <4,5 < H. The result of SOM learning is the system
of weights [10] w; € R™ where ,i = 1,..., H. We begins with random weights setting
w;(0). The weights evolve during learning process and their values are denoted as w;(q)
where ¢ € Nj.

Kohenen learning rules [7]| are very simple. The weight of i-th neuron is changed in ¢-th
step by rule

wi(q) = wilg —1) + a(q) - cig - (xg — Wi(g — 1)) (1)
fori=1,...,H, x, ~ U(S) is uniformly selected pattern from S, ¢;, is space factor and
a(q) > 0 is ageing function which is supposed to be non-increasing. The winner is also
selected according to Kohonen rule |7] as

p, € argmin ||x, — Wi||2. (2)

We recommend generate the initial weights from the multi-varietal Gaussian distribution
as
w;(0) ~ N(EX, varX/100) (3)

for ¢ = 1,...,H. The space factor ¢;, is calculated using mutual vertex distances as
follows. Using learning radius R, > 0 and index of winner vertex ¢,, we directly evaluate

Cig=€xp | ——=5-
(5%
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according to Gaussian decay. The final learning strategy consists of ' € N learning epoch
which we characterized by triplets (ay, Ry, Ni) for k = 1,..., E. Here, «y is ageing factor,
Ry, is learning radius, and Ny is number of learning steps in k-th epoch.

3 Quality Measures

The basic way of quality measurement design is based on measuring distances. The
Euclidean distance of points x,y in R" is denoted d(x,y) = [|x — y||2.
Using the pattern x; we can investigate the distances to weights wy and define winner as

win(j) € argmind(x; — wy) (4)
k=1,...,H

but the function win(j) is of stochastic nature due to possible distance equities. In some
cases we found the winner but one i. e. the second winner which is defined as

win2(j) € argmind(x; — wy) (5)
keM;

where M; = {1,..., H} \ {win(j)}.

Using distances and winners we can design traditional measures of various nature.

3.1 Distance penalization

The Quantization Error (QE) is traditionally related to all forms of vector quantization
and clustering algorithms [9]. Using linear penalisation we directly penalise the distances
between patterns and corresponding winner weights as

QEI - Z d(Xj7 Wwin(j))- (6)
j=1
The quadratic penalisation
QEQ = Z dQ(Xja Wwin(j)) (7)
j=1

is also frequently used but has higher sensitivity to outliers.

3.2 Topographic error

General topographic rule is: if two objects are close in reality they must be closed also
in the map. Using this principle the Topographic error (TE) [5] is defined as

1 m
TE=1-— D Guin()win2(s) ®)
j=1

where G € {0, 1}#*# is SOM topology matrix with g,., = I(||p, — Po|l2 < 1). The main
advantage of TE is in its robustness to outliers. Therefore we use this criterion as main
quality measure in this study.
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3.3 Correlation based measures

The correlations between mutual distances of patterns and mutual distances of winner
weights can be directly used as quality measures.

Let 7, 7 be pattern indexes. The mutual pattern distances can be defined as

d;; = d(x;,%;). The mutual distances of corresponding weights are

0ij = d(Wuin(i), Wuin(j))-

Finally, we obtain m(m — 1)/2 pairs of corresponding distances and directly calculate
Pearson correlation coefficient r, Spearmann p or Kendall 7 coefficient as quality measure.

3.4 Time Complexity of Measures

The evaluations of QF1, QF> and T'E are very fast with time complexity O(mnH). The
evaluation of correlation measures is more complex. The Pearson r has time complexity
O(mnH + m?) due to simple statistics over m(m — 1)/2 distance pairs. The Spearmann
p is complicated with pair sorting and its time complexity is O(mnH + m?*log(m)). The
Kendall 7 is not recommended for large pattern sets due to time complexity O(mnH+m?).

4 Testing Example

The SOM and its learning as testing example was studied for nineteen neurons placed in
2D space in hexagonal topology with unit neighborhood distances, i.e. H =19, N = 2.
Artificial two dimensional data were generated in the first case as follows. Total number
of 5 000 patterns were generated randomly from seven classes with uniform probability.
The center of the first class was placed in the origin. The centres of remaining six classes
were placed around in unique distance in the vertices of hexagon. Individual patterns
were generated from this Gaussian mixture with standard deviation o = 0.2.

Basic quality measures are included in table 1. Resulting weights are depicted in figure
1, meanwhile the density map figure (pattern number in given neuron) and traditional
U-map [l]are depicted in figure 2. All neurons and SOM properties were interpolated
on convex hull of SOM neurons using cubic interpolation. This convention is useful for
weight and density interpretation. As seen the algorithm is able to map the weights pro-
portionally to data coordinates and corresponding contours are approximately uniformly
placed parallel lines in figure 1. The density map shows higher central density and six
density regions in the network corners meanwhile U-map is approximately constant due
to data homogeneity.

Traditional iris flower classification task [2| was originally designed for classifier testing
but we apply them for SOM learning with final class density evaluation. Total number
of 150 patterns of three classes (Iris setosa, Iris virginica, Iris versicolor) are described by
four properties (sepal length, sepal width, petal lenght, petal width). The initial weights,
ageing factor and number of learning steps were the same as in previous case. Resulting
weight maps are depicted in figure 3 together with class densities and U-map of iris lower
problem in figure 4. The SOM learning results can be interpreted using class membership
knowledge. As seen in figure 4 the class of Iris setosa is well separated in right corner but
remaining two classes are not separable but placed in opposite part of SOM in the left
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Measure Hexagonal Test Iris Dataset
QE; 0.2389 0.3121
QE, 0.2339 0.3450
TE 0.0000 0.0000
p-value of r 0.0953 0.0120
p-value of p 0.1054 0.0165
p-value of 7 0.2682 0.1030

Table 1: Quality of SOM learning for hexagonal test

s/
v/’ &’ 9‘!/ ,Q:‘\/ Q/.
S ~

Figure 1: Resulting weights w; (left) and ws(right) for hexagonal test

top corner. The remaining part of SOM is not occupied by patterns as also demonstrated
as maximal values in U-map.

The subjective evaluation was followed by quality measures evaluation. The results of
traditional Graph SOM [4] with Kohonen learning, Gaussian characteristic and H = 19
was learned for £ = 9 with

a = (0.1,0.08,0.07,0.06, 0.05,0.04, 0.03,0.02,0.01),

R=(5,3,3,1.5,1,0.7,0.5,0.3,0.2) and N; = 1000. The results are collected in table 1.

5 Case Study: Economical Indicators

As input data we used the main economic indicators. Data has been selected from
Statistical Annex of European Economy presented by European Commission in autumn
2016 [3]. As analysis input serve the thirty five countries from the whole world, majority
are the European countries. The indicators are observed in years 1993 to 2016. Selected
indicators are the total population, unemployment rate, gross domestic product at current
market prices, private final consumption expenditure at current prices, gross fixed capital
formation at current prices, domestic demand including stocks, exports of goods and
services, imports of goods and services and gross national saving. Nine indicators are
monitored in total. The main aim of our research is based on data for each country.
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Figure 2: Density map (left) and U-map (right) for hexagonal test

Figure 3: Resulting weights w (left top), ws(right top), ws(left bottom), wy(right bottom)

for iris flowers
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Figure 4: Resulting class densities — setosa (left top), versicolor (right top), virginica (left
bottom) and U-map (right bottom) for iris flowers
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As the dimensionality of input data is quite high, represented by main nine indicators
in each year, we use principal component analysis for data dimension reduction. We
prefer the standardize variant of PCA which divides the components into square roots
of adequate eigenvalues. This approach is frequently called data whitening. The main
advantage of the standardization is in identity covariance matrix which generates the
components in unified form. We studied data whitening for D = 2,3,4,5. Then we
applied Kohonen SOM with hexagonal topology with node number H = 7,19. The SOM
learning with Gaussian decay was driven by two strategies. For H = 7 we used only
E = 2 with a = (0.1,0.05), R = (2,1), N, = 1000. The larger SOM with H = 19
was learned for £ = 9 with a = (0.1,0.08,0.07,0.06, 0.05,0.04,0.03,0.02,0.01), R =
(5,3,3,1.5,1,0.7,0.5,0.3,0.2) and Ny = 1000. Our aim was to obtain the SOM with
zero topographical error (TE) and minimum possible quadratic penalisation (QE;). The
results of QF; are captured in table 2.

Table 2: Optimal Q) F; measures

D | SOM; | SOMy
21 0.002 | 0.001
3| 0.003 | 0.002
4 | 0.010 | 0.007
5 | 0.020 | 0.010

6 Results

In all cases we obtained zero values of TE which means that learning was executed well.
It is evident from table 2 that SOM;g generates results with lower value of QE; which is
rising with growing dimension. The distribution of countries is captured in figure 5. We
see the PCA with 2 components as the best solution and resulting SOM. The different
groups of countries were identified. They tell us about the similarities of the concrete
countries. The main thing what we can see is the position of Germany, which is usually in
the same group as France. In the case of Czech Republic its position depends on number
of components but we are in the same group with Poland and Slovenia in all cases. In all
cases there are relative compact group of traditional countries which slightly differs each
other. The positions of countries with extreme macro-economical behaviours differ with
whitening dimensionality. The results are also in accordance to our previous research
based on PCA and data whitening [6]. We see some countries which are complicated
to be predicted and forms separate groups in each case. This group is represented by
Bulgaria and Latvia. The country classification serves also as indicator of upcoming crisis
to the closest countries.
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Figure 5: Results for H = 19 and different number of components

7 Conclusion

Kohonen SOM learning was used to country self-organization in hexagonal SOM topol-
ogy with whitened log differentiated macroeconomic data. The best result were obtained
for H = 19 and 2 dimensional whitening with topological error 0% and minimum pos-
sible quadratic penalisation. The resulting SOM maps are in agreement with general
expectations. From the crisis prediction point of view there is a group of leading Euro-
pean countries (DE, FR, AT, DK, CY, IE), the other European countries with standard
economies (UK, ES, IT, IR, BE, NL, LU, CZ, SK, PL, HU) are in the neighbourhood
with slightly different response during crisis. The countries with extreme behaviour dur-
ing crisis (RS, BG, LV, LT, ME, RO) are placed far from the previous groups. The
Kohonen SOM is not too sensitive to dimension of data whitening and therefore, the
resulting maps only differ in details but save the country similarity property.
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Abstract. Ten types of discrete Hartley transforms of Weyl orbit functions are developed. These
functions form a generalization of the one-dimensional cas transform. Fundamental domains of
even affine and dual even affine Weyl groups, governing the argument and label symmetries of
orbit functions, are determined. The discrete orthogonality relations are formulated on finite
sets of points from the refinements of the dual weight lattices.

Keywords: Weyl-orbit functions, discrete orthogonality, discrete Fourier transform, Hartley-orbit
transform

Abstrakt. Cilem je vyvoj deseti typu diskrétnich Hartleyovsych transformaci Weylovych orbit-
nich funkci. Tyto funkce tvor{ zobecnéni jednorozmeérné transformace cas. Urc¢ili jsme funda-
mentalni domény sudych afinnich a duélnich sudych afinnich Weylovych grup, pomoci kterych
se Tidi symetrie argumentt a symetrie indexovani orbitnich funkci. Diskrétni ortogonalita je
formulovana na koneénych souborech bodi na zhusténé dualni vahové mfize.

Klicovd slova: Weylové orbitni funkce, diskrétni ortogonalita, diskrétni Fourierova transformace,
Hartleyovska orbitni transformace

1 Introduction

The aim of recent research is to complete and extend the discrete Fourier analysis of
Weyl-orbit functions from [10, 8, 11]. The discrete Fourier calculus of all ten types of
orbit functions with symmetries inherited from all four types of even Weyl groups is
unified in full generality. The real-valued versions of the functions and transforms are
also developed by modifying the exponential kernels of orbit functions to their Hartley
alternatives [1].

Since introduction of the discrete version of the Hartley transform in [1], both con-
tinuous and discrete Hartley transforms form fully equivalent real-valued variants of the
standard Fourier transforms. As alternatives to complex Fourier transforms, these trans-
forms together with their 2D and 3D versions found applications in many fields includ-
ing signal processing [18|, pattern recognition, geophysics [17], measurement and optics.
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In the context of Weyl-orbit functions and their corresponding transforms, the Hartley
transforms have not yet been studied. Replacing exponential kernel as in original 1D
Hartley transform yields novel families of real-valued special functions of Weyl groups,
which inherit (anti)symmetry properties as well as discrete orthogonality relations from
the original Weyl-orbit functions. The resulting generalized Hartley transforms together
with the original ten types of Weyl-orbit functions offer, especially in 2D and 3D, richer
options and application potential due to greater variability of domain shapes and bound-
ary behaviour.

2 Weyl groups and Crystallographic root systems

Consider the root system Il with its associated Lie algebra of rank n. The notation from
[10, 11] is taken. The simple system A = {ay, -+, a, } of the root system II forms a basis
of the Euclidean space R™, with the symbol (, ) denoting its scalar product. Note that
the notions of the root system II and its inherent set of simple roots A are also developed
independently on Lie theory. There exist two types simple systems — the first type with
roots of only one length, denoted by A,, n > 1, D,, n > 4, Es, E;, Eg, and the second
type with two different lengths of roots, denoted by B,, n > 3, C,,, n > 2, G5 and F}.
The following notation of the standard objects [13], which are induced by the set A are:

e the highest root £ € II

e the marks mq,..., m, € N of the highest root £ = mjaq +- - - +m,,, together with
mgoy = 1,

e the Coxeter number m = mg+mq + -+ + m,,
e the root lattice QQ = Zay + - - - + Zay,,

e the Z-dual lattice to @,

PV ={w' eR" | (W, a) €Z, Va e A} = Zw + -+ + Zw,

n

with
<ai7 wj\/> = 5ij7 (1)

e the dual root lattice Q¥ = Zay + - - - + Za,, where

20
V= L ied{l,...,n}, 2
%= o { n} (2)

e the dual marks my, ..., m. of the highest dual root n = myay+---+m a, together
with my =1

e the Z-dual lattice to QY

P={weR" | (w,a")€Z Va' € Q'} =Zw + -+ Lw,,
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e the Cartan matrix C with elements

Ci' = <ai7 Oé}/>>
e the index of connection ¢ of II equal to the determinant of the Cartan matrix C

c=detC. (3)

The properties of Weyl groups and affine Weyl groups can be found for example in
[13]. The finite Weyl group W is generated by n reflections r,, @ € A, over the hyperplane
defined by the normal vector «.

2(a, o)

a; a€R™.
(ai, Oéz'>

T, 0 = T;0 = a —

The infinite affine Weyl group W% is the semidirect product of the Abelian group of
translations Q¥ and of the Weyl group W

W = QY x W. (4)

Let ¢ denote the retraction homomorphism ¢ : W2 — W of the semidirect product.
The fundamental region F' C R" of W can be chosen as the convex hull of the points

wY w)/
{o,m—ll,...,m—n}.

Alternatively, W% is a Coxeter group generated by n reflections r; and an affine
reflection rg given as

Toa = Tea + = rea =a— 2<<;’§>>

(€, 6"

The set of n reflections r; together with the affine reflection 7 is denoted by

R={ro,r1,...,m0}.

£, aeR".

2.1 Sign homomorphisms

Any homomorphism ¢ from W to the multiplicative group {1, —1} is called a sign ho-
momorphism [8]. Two standard choices of sign homomorphisms are the trivial homomor-
phism and the determinant denoted as

o¢(w)= det(w),
1(w) =1.

The sign homomorphisms ¢! and ¢* are defined on the set of generators {r, | a € A}
of W as

-1 if o € Ay,
1 otherwise,

O'Z(T‘ )_ —1 lfOéeAl,
@1 otherwise.
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The set of sign homomorphisms ¥ of a root system A with two different lengths of roots
contains only four elements [§], i.e.

¥ = {1, 0% o°, o'}

The set of 'negative’ generators from R with respect to the sign homomorphism o is
denoted by R?,

RO={reR|ooy(r)=—-1}. (5)
The set F'7 C F'is given by

Fo={ac F|oo(Stabyu(a)) = {1}}. (6)

3 Affine even Weyl groups

3.1 Fundamental domains

Kernels of the non-trivial sign homomorphisms of a given Weyl group W form normal
subgroups W7 C W known as even Weyl groups [16],

Wo={weW | o(w)=1}.

The corresponding affine even Weyl groups are the kernels of the expanded sign homo-
morphisms o o 1)

W;H = {waff c Waff | Uow(waﬁ) — 1}

For any r, € R°, the set F'U7,F7 is a fundamental domain of W2 [9].
Generalizing relation (6), the set F9 is given as

F77 ={a€ FUr,F’ | 5o ¥ (Stabyan(a)) = {1}} . (7)
Note also that for the fundamental domain F' U r,F'? it holds that

FUrF? = F™°. (8)

3.2 Dual affine Weyl group and its even subgroups

The dual affine Weyl group Wat is a semidirect product of the group of shifts from the
root lattice @) and the Weyl group W,

Wa = Q x W. (9)

Let 12 denote the dual retraction homomorphism 2//; . W — W of the semidirect product.
Equivalently, the dual affine Weyl group W is generated by reflections 7; and the
reflection 7§ given by

2 2
rga:rna+—n r.a=a {a, )

oy " ()

n, a€R"
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The set of generators of Wat is denoted by RY,
RY ={ry,r1, ..., rn}.

Similarly to the fundamental domain F', the fundamental region F"¥ of Watl is the convex

hull of the vertices ¢ 0, <%, ...

my? T my
The corresponding dual affine even Weyl groups are the kernels of the expanded sign
homomorphisms o o v

Wat = {@ e W | oo d(@™) =1},

The set of generators of the affine Weyl group Wt with negative values of the sign
homomorphisms o o 1) is denoted by RY7,

R = {r €RY | ocot(r) = —1}.
Similarly to (6) the domain FV7 is given by,

FYo = {b € FV | oo (Stabe.q (b)) = {1}}.

The fundamental domains of the dual even affine Weyl groups /I/I?Uaff are determined anal-
ogously. The set FV Ur,FV? is for any r, € RV’ a fundamental domain of W%, The
dual analogue of F77 is given as

o

FYoo — {b € FYUTYFY" | & o (Stabe,q (b)) = {1}} . (10)

3.3 Orthogonality coefficients and weights

This section defines the coefficients (hy7) and weights (e”) necessary in the discrete or-
thogonality of Weyl-orbit functions and Hartley kernel orbit functions.
The isotropy subgroups of W2T and their orders are for any a € R" denoted by

Stabyyai(a) = {w2® € W2 | wa=a}, h°(a) = |Stabyaa(a)|.
Related functions €? : R™ — N are defined by the relation

e (a) = J;‘Ea’) (11)

Since for any w2® € W2 are the stabilizers Stabyyan(a) and Stabyar (w*a) conjugated,

it holds that
€ (a) = € (wa), w2 c Wt (12)

The calculation procedure of the coefficients h'(a) is detailed in §3.7 in [10]. Having
calculated the values of h'(a) from this procedure the remaining values h?(a) for any
a € F are calculated thusly

oy ) h*a) if a € F°,
hola) = { %hl(a) otherwise. (13)
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The last step is to extend the values of h?(a), a € F to the entire fundamental domain
F*7 of W2 via the following relation

h?(rya) = h7(a).

Finally, the coefficients €7 (a), a € F*7 are determined from h?(a) by equation (11).
The dual versions are developed analogously. The isotropy subgroups of W21 are for
any b € R" denoted by

Staber,q (b) = {wgff e W | 2Tp = b} .

o

Consider the discretization factor M € N, defining the density of the discretization pro-

cedure. The orders of the stabilizers Stabg.qe(b/M), are denoted by

o

o

K2 (b) = ‘Stabwaﬁ (%) ‘ . (14)

The calculation procedure of the coefficients hy}(a) is detailed in §3.7 in [10]. Having cal-
culated from this procedure the values of h}}(b) the following relation allows to determine
hy?(b) for any b € MF" as

By (b) = hy; (D) if b/M € FY°,
M shyi(b)  otherwise.

The last step is to extend the values of hj7(b), b € MF" to the entire magnified funda-

mental domain M FV? of Wjﬂ via the following relation

haf (rob) = hyf (b).

4  QOrbit functions

Consider a sign homomorphism ¢ € ¥ and the corresponding even subgroup W7 C W.
Taking another sign homomorphism o € ¥ and a parameter b € R", the most general
form of Weyl-orbit functions ¥;° : R® — C is introduced as

Uy (a) = Y o(w)e”™ b, (15)
weWe

This general definition leads to three types of orbit functions for root systems with one
root-length and to ten types of orbit functions for root systems with two root-lengths [9].
The real-valued modification of orbit functions which for a € R uses the Hartley kernel

cas(a) = cos(a) + sin(a)

instead of exponential kernel. Fixing an even subgroup W¢ C W, an additional sign
homomorphism ¢ € ¥ and a parameter b € R", the Hartley orbit functions ;7 : R” — R
are defined via relation

G%(a) =Y F(w)cas(2m (wh,a)). (16)

weWe
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Similarly to (15), such definition leads to three types of real-valued orbit functions for
root systems with one root-length and to ten types of orbit functions for root systems
with two root-lengths. Note that the relation of exponential function to the cas function
implies

C{)"’— e\IJ"”—l—Im\IJ”" (17)
This property immediately allows to replicate the argument-label symmetries formulated
in [8].

Let b € P, then for any w*® € W2 and any a € R it holds that

&7 (wa) = o (w™) - 77 (a). (18)

Let a € %PV, then for any w*f € /Wjﬁ and any b € R" it holds that

-~

T an( 1)@ =70 (@) 7 (a).

M

Y

5 Discretization of orbit functions

Following the standard choice in Fourier analysis, only discrete values of labels of orbit
functions b € P are considered. For any resolution factor M € N, the discrete Fourier
calculus of orbit functions is developed on the set of points Fy;” defined as

_ 1 _
Fy7 =—P'NF".
M
The sets of labels A7 are defined as
AP = PN MFYo7, (19)

For any 0,0 € ¥ and M € N it holds, for the numbers of elements of the sets F' ff
and A7/, that
= [AF7 .

Lo (20)

5.1 Discrete orthogonality of orbit functions

The discrete orthogonality relations of the discretized functions \I{’", be A?f on the finite
point sets Fff have the following formulation [9]. For any o, € ¥ and any b, b € Aﬁf
it holds that ~ N
<111‘;v", \Ifg;“> =W MRS (B)dhy, (21)
Py

where ¢, hy7 are defined by (3) and (14), respectively, and |W| is the order of the
subgroup W¢.

The discrete orthogonality relations of all types of functions U are also inherited
by the related orbit functions with Hartley kernel ¢ ie. For any 0,6 € ¥ and any
b,b' € A7} it holds that

<¢g,v, 45’”>Fa,a = c|W?| M™hY{ (b)b. (22)

M



106 M. Jurdnek

5.2 Discrete orbit function transforms

An arbitrary function f : R” — C, sampled on the point set F' ff, can be interpolated
0,0 o,0

by the interpolating function I[f]7. The interpolating function I[f]}; is required to
coincide with f at all the gridpoints of Fy;7,

1[f157 (a) = f(a), a€ Fy’. (23)
The interpolating function I f]if is given in terms of expansion functions \I/f’o,
157 (@) = > k7% %(a), acR™ (24)
beAT;”

The frequency spectrum coefficients kf"’ are uniquely determined by the standard method
of calculation of Fourier coefficients

(1977

G Fyi° 1 =
kU,U — M — o \IIG',O' ) 2

S g gy a2 @Y @ (9)
b b Fo° a€Fy’

Taking into account equality (23), relations (25) and (24) constitute the forward and
backward discrete Fourier-Weyl transforms, respectively, of the discretized function f.
Furthermore, using the Parseval equality of the orthogonal basis W77, b € AJ) results in
the following relation

Y. C@lf@P =W M"Y b7 (o)

acFy° beA T

502
kb .

Similarly to the interpolation formulas and discrete transforms of the standard orbit
functions, their related real-valued versions are formulated in terms of Hartley orbit
functions. An arbitrary real-valued function g : R® — R sampled on the point set

Fff can be interpolated by the real-valued interpolating functions Ih[g]7/. Again, the

interpolating function Ih[g]77 coincides with g at all the gridpoints Fy;7,

Ih[gl3/" (@) = g(a), a € Fy,
and is given in terms of expansion functions Qf 7,
Thig)7/ (@) = Y 1;7¢%(a), a€R™
beA;”

The frequency spectrum coefficients lf’” of the Hartley-Weyl transform are determined

by
e o & >Fﬂ”9’” ! 3 e (a)g(a) " (a) (26)
= — — = p 6
STl W) 2, ”
F]‘c’{af" (IEF]”

and the relation between the sum of squared values of g and the sum of squared values
of its frequency spectrum is

ST ela)gila) = W M ST BB,

g,0 G,0
acFy; beAy;
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6 Concluding Remarks

Discrete orthogonality relations (21) and decomposition formulas are in [4] exemplified for
six types of two-variable E—functions of algebras Cy and (5. Effectiveness of interpola-
tion formulas (24) of these two-variable E'—functions is demonstrated on complex-valued
model functions in [5]. Comparable interpolating ability of real-valued functions is ex-
pected for Hartley orbit functions. Good performance of orbit functions in interpolation
tasks indicates great potential in other fields related to digital data processing. The
interpolation properties of all types of orbit functions as well as existence of general
convergence criteria of the operator sequence 177 : f — I[f]7/ deserve further study.

Link between the Weyl-orbit functions and the inherited discrete and continuous or-
thogonality relations of the generalized multidimensional Chebyshev polynomials is being
recently investigated in connection with the corresponding polynomial methods such as
polynomial interpolation, approximation and cubature formulas.

The discrete transforms (25) and (26) of orbit functions specialize for the case A; to
one-variable discrete Fourier, discrete Hartley, discrete cosine and sine transforms |[1].

Discrete orthogonality relations (21) and (22) are formulated on the points of the
refined dual weight lattice. This choice of the points induces in turn the dual affine Weyl
group (anti)symmetry of the orbit function labels. The labels of this discretization share
the same (anti)symmetry with the points generated by the given affine Weyl group. The
Fourier transforms constructed on the points of the refined (dual) root lattice represent
the remaining unresolved discrete transforms related to the four classical Weyl group
invariant lattices. The merit of having all four classical lattice transforms available is the
possibility of generating novel and relevant transforms on generalized lattices, including
the 2D honeycomb lattice. The open problem of detailing the root lattice transforms
is however, specifically challenging, since the symmetry groups of the labels are not in
general Coxeter groups.
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Abstract. This paper deals with the Cramér-Rao Lower Bound (CRLB) for a novel blind
source separation method called Independent Component Extraction (ICE). The Cramér-Rao
Lower Bound is used to determine the best achievable accuracy of blind source separation (BSS)
methods. Only efficient methods are able to reach the CRLB. Blind source separation focuses
on estimation of unknown source signals from observed mixtures.

The most popular method for BSS in last years is well known Independent Component
Analysis (ICA). We have recently performed a novel ICA based method: ICE. Compared to
ICA, ICE aims to extract only one independent signal from a linear mixture. The target signal
is assumed to be non-Gaussian, while the other signals, which are not separated, are modeled
as a Gaussian mixture.

The most frequently used criterion for measurement of the accuracy of a method is Interference-
to-Signal Ratio (ISR). Hence, CRLB-induced Bound (CRIB) for ISR is derived. Numerical sim-
ulations, performed in MATLAB, compare the CRIB with the performance of an ICA and an
ICE algorithm. The results show good agreement between the theory and the empirical results.

Keywords: Blind Source Separation, Cramér-Rao Lower Bound, Independent Component Anal-
ysis, Independent Vector Analysis

Abstrakt. V této praci se zabyvame odvozenim Cramerovy-Raovy dolni meze pro nové pred-
stavenou metodu pro slepou separaci signilu zvanou Independent Component Extraction (ICE).
Cramerova-Raova mez se vyuZiva pro stanoveni maximalni dosazitelné pfesnosti separace signali
pomoci dané separacni metody. Metody dosahujici CRLB nazyvame eficientni. Ukolem slepé
separace je odhadnout nezndmé zdrojové signély z jejich smési.

V poslednich letech je nejrozsifenéjsi metodou pro slepou separaci analyza nezévislych kom-
ponent (ICA). Na zakladé modelu ICA jsme pro slepou separaci signalu vyvinuli novou metodu:
ICE. Narozdil od ICA, se ICE zabyva separaci pouze jednoho nezavislého signalu z linearni
smési. Predpokladame, Ze cilovy signédl neni Gaussovsky. Ostatni signaly, které nejsou pred-
métem separace, pak modelujeme jako Gaussovskou smés.

Nejbéznéji pouzivanym kritériem pro méfeni presnosti separa¢nich metod je Interference-to-
Signal Ratio (ISR). Z tohoto divodu dale odvodime mez pro toto kritérium, tzv. CRLB-induced
Bound (CRIB). Pro porovnani vysledki metod ICA a ICE s odvozenou mezi CRIB jsme vyuzili
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numerické simulace v programu MATLAB. Zavéry z téchto simulaci ukazuji na dobrou shodu
mezi teoretickymi predpoklady a empirickymi vysledky.

Klicovd slova: Analyza nezévislych komponent, Analyza nezavislych vektori, Cramérova-Raova
dolni mez, Slep4 separace signalu

Full paper: This paper has been accepted for presentation at the 2017 IEEE Inter-
national Workshop on Computational Advances in Multi-Sensor Adaptive Processing
(CAMSAP 2017), which will be held in Curagao, Dutch Antilles, December 10-13, 2017.
V. Kautsky, Z. Koldovsky, P. Tichavsky, Cramér-Rao Induced Bound for Interference-to-
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Abstract. In this paper, we present an efficient GPU accelerated solver for the numerical solu-
tion of two-phase compositional flow in porous media and potentially other interesting problems.
The underlying system of partial differential equations is formulated in general coefficient form
to allow us to easily test different models and problem formulations without substantial mod-
ifications of the numerical solver. The numerical scheme is based on the mixed-hybrid finite
element and discontinuous Galerkin methods, semi-implicit time discretization, and various sta-
bilization techniques. The used numerical methods allow us to consider any spatial dimension
and use both structured and unstructured meshes. The solver is implemented in the C++ lan-
guage with the help of the TNL library, the CUDA framework and OpenMP. We also present
multiple key optimizations necessary for high-performance computations such as ordering of the
mesh entities and an improved GMRES method. We use a benchmark problem with known
semi-analytical solution to verify the convergence of the numerical scheme and present the GPU
speed-up compared to single- and multi-thread computations on CPU.

Keywords: two-phase compositional flow, mixed-hybrid finite element method, upwind, GMRES
method, parallel implementation on GPU, unstructured meshes

Abstrakt. V této praci predkldadame efektivni TeSi¢ akcelerovany pomoci GPU pro numer-
ické TfeSeni kompozi¢niho dvoufézového proudéni v poréznim prostiedi a potencialné i dalsich
zajimavych tloh. Soustava parcidlnich diferencidlnich rovnic je formulovana pomoci obecnych
koeficienti, diky ¢emuz Ize jednoduse testovat rizné modely a formulace tloh bez zdsadnich zmén
kone¢nych prvka a nespojité Galerkinovy metody, semi-implicitni ¢asové diskretizaci a néko-
lika stabiliza¢nich technikdch. Pouzité numerické metody umoznuji pouziti strukturovanych i
nestrukturovanych siti v prostoru libovolné dimenze. Resic je implementovan v jazyce CH+-+ s
vyuzitim knihovny TNL, platformy CUDA a OpenMP. Prace také popisuje nékolik kli¢ovych op-
timalizaci pro zlep8eni efektivity vypoctu, jako napf. prec¢islovani entit sité a modifikace metody
GMRES. Konvergence numerického schématu je ovéfena pomoci analyzy experimentalniho fadu

*This work has been supported by the Student Grant Agency of the Czech Technical University in
Prague, project No. SGS17/194/OHK4/3T/14.
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konvergence pro testovaci tlohu se znamym semi-analytickym feSenim. Pro vSechny vypocty je
provedena analyza efektivity paralelniho vypoctu na GPU a vicejadrovém CPU.

Klicovd slova: dvoufazové kompozi¢ni proudéni, hybridni metoda smiSenych koneénych prvki,
upwind, metoda GMRES, paralelni implementace na GPU, nestrukturované sité

1 Introduction

Numerical simulations of complex practical problems in the field of computational flow
dynamics require immense computational power. In recent years, using GPUs for general-
purpose computations has become very popular because of their massive computational
power and better power efficiency compared to traditional CPUs. However, efficient
utilization of the GPU typically requires data structures and algorithms to be designed
specifically for this architecture.

In this work, we present a numerical solver for a general system of partial differential
equations, which can be used to describe many practical problems. We describe the key
aspects of the efficient implementation of the solver for the CPU and GPU architectures.
The GPU speed-up compared to single-thread and multi-thread computations on CPU
is measured on a benchmark problem of two-phase flow in porous media.

2 General formulation

The numerical scheme is derived for the following system of n partial differential equations
in a general coefficient form

j=1 j=1

m; (— Z D,;VZ; + wl) + Z Z;a,;
j=1 Jj=1

for i = 1, ...,n, where the unknown vector function Z = (Zy, ..., Z,)" depends on position
vector £ € Q C R? and time ¢t € [0,7], d = 1,2,3. The system of equations (1) is
supplemented by the initial condition

(1)
V -

+ Z i = [i
j=1

Zi(x,0) = Z]””(a:), VeeQ, j=1,...,n, (2)
and boundary conditions for all ¢ € (0,7,

Zi(z,t) = ZjD(ac,t), Va € FjD co, j=1,..,n, (3a)
v;(x, 1) - ngo () = v (z,t), YeelV con, i=1,..,n, (3b)

where by v, we denote the velocity

J=1
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Based on the nonlinear coefficients in (1) we refer to the computational method as
NumDwarf. The choice of coefficients in (1) depends on the problem and its formulation.
The details of the choice of coefficients for the immiscible two-phase flow and two-phase
compositional flow in porous media can be found in |5, 6].

3 Numerical scheme

The numerical scheme for the solution of the system (1) is based on the combination of
the mixed-hybrid finite element and discontinuous Galerkin methods for the spatial dis-
cretization, the Euler method for temporal discretization and the semi-implicit approach
of the frozen coefficients method for the linearization in time. The scheme is stabilized
with upwind and mass-lumping techniques.

The scheme has the following features: it is locally conservative, leads to a linear
system with a positive-definite matrix, allows to use unstructured meshes, and it can be
efficiently parallelized. Last but not least, a modification of the MHFE method described
in [5] can be employed to solve problems with vanishing diffusion.

The detailed derivation of the numerical scheme can be found in [5, 6].

4 Implementation

The solver is implemented in the C++ language with the help of the TNL library, the
CUDA platform [8] for the GPU parallelization, and OpenMP [3] for the CPU paral-
lelization. The TNL library is being developed by the team around Tomas Oberhuber at
the Department of Mathematics, FNSPE CTU in Prague, and the key novel algorithms
and data structures implemented in TNL for the NumDwarf solver are described in the
following subsections.

4.1 Data layout

In high-performance computing, data structures and algorithms have to be designed
collectively. The NumDwarf solver stores many coefficients which are naturally stored in
multidimensional arrays. An interesting problem is how to choose the orientation of
these arrays, i.e., the order of indices for accessing the elements. In [6], it is explained
that the optimal orientation depends on the computational architecture, for example in
the case of two-dimensional arrays, the optimal orientation for CPU is row-wise, but for
GPU it is column-wise. To avoid code duplication, we need to have a unified interface
independent of the architecture and a possible technical solution using multiple C+-+14
meta-programming techniques has been proposed in [6].

4.2 Parallelization of the numerical scheme

The computation of the numerical solution to (1) consists of initialization and a time
loop, which for each £ = 0,..., N, — 1 computes the approximation of the solution
Z" at time tyy1 from the state Z " at current time ¢,. The computations in each time
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step involve many local computations on the mesh entities such as coefficient updates
which are independent of each other and therefore can be computed in parallel. We
also have to assemble many small matrices Q, € R™" which are local to each cell
K € K;, and compute the inverses QI_(IRKF and QI_(IGK for each K € ), and F € &.
The computation on local inverses on GPU can be implemented efficiently using the LU
decomposition of matrices stored in the shared memory [6].

Then we have to assemble the sparse matrix for the linear system AZ*** = b which
has to be solved to obtain the approximation Z*™ for the next time level. In sequential
codes, matrices arising from various PDE discretizations are traditionally constructed by
initializing all matrix entries to zero, traversing the mesh cells K € K;, and adding the
coefficients local to K to the corresponding matrix elements. However, when performed
in parallel, this simple approach leads to conflicts between multiple cells that contribute
to common matrix elements. The conflicts can be avoided by mesh coloring [2] but it still
impairs the efficiency of the solver for medium size problems. In the NumDwarf scheme,
the rows of A correspond to faces F € &, and the contributing terms originate from faces
F e &k U&, of cells Ky and K, adjacent to the face E. Therefore, the matrix can be
assembled row—by-row even in parallel without any conflicts. In addition, the number
of non-zero elements per row is fixed and depends only on the geometry of mesh cells.
This is advantageous for GPUs because it avoids insertion of padding zeros to the sparse
matrix storage format as well as divergent threads during the SpMV operation. For the
meshes consisting of a single type of cells, i.e., with constant number of faces per cell e,
the number of non-zero entries of A is (2e — 1)n, en, and 1 for rows corresponding to
inner, Neumann boundary, and Dirichlet boundary faces, respectively.

4.3 Linear system solver

The resolution of the linear system AZ*™ = b at each time level is the computationally
most expensive step. The matrix A € R™Y is large, sparse, nonsymmetric, and its
structure can be very complex depending on the mesh ordering. Direct methods for the
solution of such systems suffer from huge memory requirements due to fill-in, therefore
iterative methods such as GMRES, BiCGstab or TFQMR are usually more efficient.

Due to highly non-linear coefficients in (1), the matrix A is extremely ill-conditioned
and methods such as TFQMR need a strong preconditioner in order to converge. The
TNL library currently provides only the Jacobi preconditioner for all architectures, there-
fore we rely on the restarted GMRES(s) method which is robust enough to converge. The
GMRES method is based on the Arnoldi’s algorithm for the construction of the orthonor-
mal basis of the Krylov subspace K, = span{®;, Av;,..., A* '9,} which traditionally
uses the MGS orthogonalization. It is commonly written as in [9]:

Algorithm 1

1. Set B, € RY such, that ||o,]| = 1.
2. Fori=1,.... s

2.1. w; ‘= Av;,

2.2. Fork=1,...,u

2.2.1. hy; = W) Oy
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2.3. iz = |lwgll. If By = 0, stop.
24 6i+1 - h;’lI)Z

it1,

Algorithm 1 is inherently a sequential algorithm because the order of steps in the inner
loop ensures numerical stability. In practice, we even have to repeat the orthogonalization
step 2.2 twice to ensure convergence (MGSR). Overall, only SpMV and Level 1 BLAS
operations can be parallelized.

To improve the scalability of the Arnoldi’s algorithm, we replace the MGS part by
Householder transformations [9]:

Algorithm 2

1. Choose non-zero vector z; € R”.

2. Forie=1,...,s+1:

2.1. Find Householder vector y; € RY such, that (y;))j=0forj=1,...,i—1and
2

(Pzzl)]ZOfOIJZZ—Fl,,N, WherePzzl—t_Zylsz, t_’L:

(72
s+1
24 If/l S S, Compute Z,L'_;’_]_ - P’L e P]_A'B,L

Algorithm 2 is numerically more stable than the original version using MGS (Algo-
rithm 1) and its cost is comparable to MGSR. To expose more parallelism, we replace the
sequential application of the Householder transformations with the compact WY repre-
sentation (CWY) for the products P, ...P; and P, ... P, which was introduced in [10].
We denote Y; = [yi,...,y;] € RY T, = #, € R and recursively define an upper
triangular matrix T, € R",

T, = <T61 _tiTitl'Yilyz) _ (5)

Then the following relations hold:
P,..P,=1-Y,T,Y], (6a)
P,.. P, =1-YT/Y] (6b)

Application of the compact WY representation leads to the following modification of the
Arnoldi’s algorithm:

Algorithm 3

1. Choose non-zero vector z;, € R".

2. Fori=1,...,s+1:

2.1. Compute y; and t; for the current z; same as before.
2.2. Update Y; and T, using ¢;, y,;, T;,_; and Y,;_;.
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23 hi—l = |:(P,LZZ> :| s+l

Jlj=1

2.5. If i <s, compute z;, = <I — YiTiTYiT> Av,.

Algorithm 3 has better numerical stability than Algorithm 1, it has less global syn-
chronizations because there is no explicit inner loop and the orthogonalization can be
implemented with Level 2 BLAS operations.

In both variants of the GMRES method, the restarting parameter s can be chosen
adaptively, which reduces the computational cost on both CPU and GPU architectures.
We use the strategy introduced in [1] and slightly improved in [6].

4.4 Unstructured meshes

As part of the TNL library, we implemented the Mesh template, which is a data structure
for working with homogeneous unstructured meshes, i.e. meshes where all cells have the
same shape (e.g. triangle, rectangle, tetrahedron or cuboid) and the number of neigh-
bouring cells of a vertex is not constant. Its purpose is to provide storage for numerical
meshes and algorithms for accessing topological properties, such as enumerating neigh-
bouring cells of a given vertex. It was designed with efficiency and flexibility in mind,
which makes it suitable for integration into complex algorithms for high-performance com-
putations. To achieve these goals, the implementation relies heavily on C+-+11 features
and template meta-programming techniques.

The static compile-time configuration allows to change many parameters, such as the
mesh topology determined by the cell shape, dimension of the space in which the mesh is
included, coordinate data type (e.g. float, double), global and local index types (e.g. int
and short int), dimensions of the entities stored in the mesh, and the data representing
connectivity information between neighbouring entities.

4.4.1 Optimizations for CPU and GPU

The static configuration affects the size of the mesh itself (unnecessary entities can be
omitted), as well as the size of mesh entity structures (unnecessary connections can be
omitted). Consequently, the size of a mesh entity depends on its shape, but not on
the number of its neighbours. To work with the mesh on GPU, it has to be initialized
sequentially on the CPU and then it can be transferred to the GPU. Similarly to the
handling of multidimensional arrays, the internal data layout of Mesh allows coalesced
memory accesses during parallel traversal on GPU.

On both CPU and GPU architectures, the efficiency of the solver for (1) is strongly
affected by the ordering of mesh entities. Not only direct manipulation with the mesh data
structure is affected, most important consequence is the structure of the sparse matrix
resulting from the MHFE discretization. We demonstrate this effect on a 2D benchmark
problem using two ordering strategies: the original ordering generated by the frontal
algorithm of Gmsh (see Fig. 1), and a custom ordering based on an in-order traversal of
a d-dimensional tree of the entity centres (see Fig. 2). The original ordering does not
consider the spatial position of the entities and, consequently, the corresponding sparse
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(a) Mesh ordering (polygonal chain connecting (b) Matrix structure
the cell centres)

Figure 1: Ordering of the coarsest triangular mesh with Id. 2D1A generated by the frontal
algorithm of Gmsh and the corresponding structure of the global sparse matrix.

(a) Mesh ordering (polygonal chain connecting (b) Matrix structure
the cell centres)

Figure 2: Ordering of the coarsest triangular mesh with Id. 2D1A generated by the 2-d
tree traversal and the corresponding structure of the global sparse matrix.

matrix “does not look sparse”; although every row contains at most 10 non-zero elements.
The alternative ordering preserves the spatial locality of neighbouring entities and the
corresponding sparsity pattern constitutes of several diagonals and small blocks. The
results in Table 1 show that computations using the alternative ordering are significantly
faster, which can be attributed to better cache efficiency in the SpMV operation.

5 Results

We use a benchmark problem with known semi-analytical solution to verify the conver-
gence of the numerical scheme by means of the experimental order of convergence. It
is a multidimensional extension of the one-dimensional McWhorter and Sunada problem
[7] for the special case of incompressible two-phase flow in homogeneous porous medium
with neglected gravity and specific initial and boundary conditions. The general semi-
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Intel Core 17-5820K

Nvidia Tesla K40

1 core 6 cores
Id. Gmsh tree t/G  Gmsh tree t/G  Gmsh tree t/G
2D1A 0,4 0,4 0,91 0,6 0,6 0,92 1,3 1,3 1,00
2D2A 5,1 5,0 0,99 3,6 3,6 1,00 7,9 7,9 1,00
2D3A 99,9 98,5 0,99 36,2 35,7 0,99 470 46,2 0,98
2D4A 2662 2383 0,90 6325 573,6 0,91 3744 351,5 0,94

2D5 64145 45953 0,72

15687 11976 0,76

3913,2 3387,0 0,87

Table 1: Comparison of the computational times for triangular meshes ordered by differ-
ent strategies: the frontal algorithm of the Gmsh program and using 2-d tree.

analytical solution described in [4] exhibits radial symmetry due to a point injection of
one of the phases. The details of the setup for this benchmark problem as well as the
choice of parameters for the numerical solution can be found in |5, 6].

The numerical solution of the benchmark problem has been computed in 2D on struc-
tured rectangular grids and unstructured triangular meshes and in 3D on structured
cuboidal grids and unstructured tetrahedral meshes. A series of refined meshes of each
type has been used for the EOC analysis in the L; and Ly norms. The results presented
in Table 2 for the capillarity models by Brooks and Corey and by van Genuchten indicate
that the scheme converges with the first order of accuracy in all cases.

Brooks & Corey van Genuchten

Id. HEh,Snnl €0Cg 1 HEh,Sn”2 €0Cg 2 ||Eh7an1 €0Cg 1 HEh,SnHQ €0Cg 2
oDY [ 1,52-1072 3,26-1072 1,41-1072 2,17-1072
2DY | 8,75-1073 0,80 2,08-1072 0,65 788107 0,84 1,24-1072 0,81

2 5 0,82 , 0,62 5 0,87 5 0,86
2Dy | 4,97 - 10 1,35- 10 4,31-10 6,83 - 10

2 5 0,85 _5 0,60 5 0,88 5 0,88
oD} | 2,76 - 10 ogy 59310 063 | 23410 oge 57210 0.85
oDY [151-107% 579-107°  ° 1,29-107% 2,06-107°

& 11,54-1072 251072 1,43-1072 2,13-1072
2DIA 15 o_3 0.7 3,25 o_2 084 | b 3 o_3 097 2 3 o_2 0.93
oD% | 8,14 - 10 ogy 18910 o6l | 79810 ogq 116710 0.83
oD% | 4441078 0’96 1,19-1072 0’67 4,01-107° 1’01 6,22-107° 1’00
2D5 | 2,41-107° 0’86 7,79-107° 0’64 212-107° 0’85 3,30-107° 0’84
oD% 1 1,29-107% 7 490-107° 7 1,15-107% 7 1,79-107% 7
3DV | 8,28-107 2,59-1072 8,15-10° 1,64-1072
3DY | 4,67-107° g’gi 1,59 -1072 g’gg 4.42-107° g’gz 906107 g’gg
3DY | 2,60-107° 0’86 9871072 0’69 2361072 0’93 4,90-107° 0’92
3DY [144-107% 6,12-107° 124-107% 258.107%  °

AN -2 -2 -2 -2

15-1 A48 -1 1,211 2431

3D1A L15 0_3 0,69 3’r8 0_2 0,62 | 0_3 0,77 3 0_2 0,73
3D5 | 8,02-10 ogg 292710 075 | 81310 003 100610 0,90
3D | 4,41-107° 1’02 1,49 1072 0’93 4,26-107° 1’ 14 8,83-107° 1’ 13
3D5 | 2,40-107° 1’01 8,62-107° 0’71 2,16-107° 1’08 4,53-107° 1’08
3D5 1 1,26-107% 7 548-107° 7 1,09-107% 7 228.107° 7’

Table 2: Errors of numerical solutions and experimental orders of convergence for rect-
angular, triangular, cuboidal and tetrahedral meshes.
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For the same benchmark problem, we also present the GPU speed-up compared to
single- and multi-thread computations on CPU. The values in Tables 3 and 4 demonstrate
the advantages of massive parallelization for sufficiently large problems. Additionally, we
compare the MGSR and CWY variants of the GMRES method which were introduced in
Algorithms 1 and 3, respectively. On GPU the CWY variant is significantly faster than
the MGSR variant, but on CPU the computational times are more or less the same.

GPU CPU
1 core 2 cores 4 cores 6 cores
Id. CcT cT GSp CT Eff GSp CT Eff GSp CT Eff GSp
2D1EI 5,1 0,6 0,12 0,7 0,45 0,13 0,8 0,19 0,15 0,9 0,11 0,17
2D2D 28,1 11,5 0,41 79 0,72 0,28 6,4 0,45 0,23 6,8 0,28 0,24

2Dy 117,01 1736 1,48 95,9 0,91 0,82 61,2 0,71 0,52 52,8 0,55 0,45
2D 7404 40235 5,43 21541 0,93 291 1192,1 0,84 1,61 9416 0,71 1,27
oDY 8237,3 823235 9,99 47982.0 0,86 5,82 26919,0 0,76 3,27 199155 0,69 2,42

MGSR

2DV 1,5 0,7 0,45 04 0,79 0,28 0,3 0,52 0,22 0,3 0,41 0,18
.. 2D5 110 13,2 1,20 7.6 0,87 0,69 4,8 0,68 0,44 4,0 0,55 0,37
= 2Dy 46,3 1970 4,25 1075 0,92 2,32 65,7 0,75 1,42 52,6 0,62 1,14
@)

2D} 380,0 43257 11,38 23606 0,92 6,21 14481 0,75 3,81 11958 0,60 3,15

2DY 44499 91166,3 20,49 49004,3 0,93 11,01 29182,1 0,78 6,56 24684,0 0,62 5,55

2D5 4,7 0,3 0,07 0,5 0,33 0,11 0,5 0,18 0,10 0,6 0,09 0,13
& 2D5 224 50 0,22 3.9 0,65 0,17 3,1 0,40 0,14 3,6 0,23 0,16
o 2DY 120,0 98,5 0,82 59,5 0,83 0,50 38,3 0,64 0,32 35,7 0,46 0,30

3

Z oD% 7783 23828 3,06 12088 092 167 7010 0,85 0,90 5735 0,69 0,74

2D5 73879 459534 6,22 255124 0,90 345 146027 0,79 1,98 119764 0,64 1,62

2D5 15 04 0,27 0,3 0,60 0,22 0,2 0,45 0,15 0,2 0,32 0,14
.. 2D% 8,9 6,2 0,70 3,7 0,84 0,42 2,3 0,66 0,26 2,0 0,52 0,23
% 2D 511 1220 2,39 67,7 0,90 1,32 40,3 0,76 0,79 32,5 0,63 0,64

2D 396,1 26956 6,80 1480,7 0,91 3,74 8552 0,79 2,16  671,7 0,67 1,70
2D5 40083 574042 14,32 32100,5 0,89 8,01 18814,1 0,76 4,69 16414,0 0,58 4,09

Table 3: Comparison of computational times CT', parallel CPU efficiency Eff and
GPU/CPU speed-up GSp for the 2D benchmark problem.

6 Conclusion

We presented a parallel solver for a general system of PDEs based on the semi-implicit
MHFEM /DG numerical scheme. Multiple optimizations were performed to improve the
efficiency of the solver, namely a modified GMRES method using the CWY orthogo-
nalization instead of MGSR was employed and the unstructured meshes were suitably
reordered. The results of numerical simulations for a benchmark problem with known
semi-analytical solution indicate that the numerical scheme converges with the first order
of accuracy in all cases. Computations on GPU were about 20 times faster compared
to 1-threaded computations on CPU and about 6 times faster compared to 6-threaded
computations on CPU, hence, GPU acceleration can be very beneficial for large problems.
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GPU CPU
1 core 2 cores 4 cores 6 cores

Id. CcT CT GSp CT Eff GSp CT Eff GSp CT Eff GSp

3D} 5,9 13,8 2,34 7,2 0,96 1,22 4,3 0,80 0,73 3,4 0,67 0,58
£ 3pY 557 5246 9,42  304,7 0,86 547 173,7 0,76 3,12 128,2 0,68 2,30
CED 3D 1234,3 21128,7 17,12 12770,7 0,83 10,35 7317,4 0,72 5,93 6241,6 0,56 5,06

3D} 447983 (not computed on 1, 2 and 4 cores) 272104,0 6,07

3D7 2.1 152 17,30 80 0,96 3,82 44 0,86 2,13 34 0,75 1,62
E 3DF 30,8 564,3 18,33 319,5 0,88 10,38  186,7 0,76 6,07 150,3 0,63 4,88
5 3Dy 8280 205695 24,84 12406,1 0,83 1498 7092,6 0,73 857  5533,7 0,62 6,68

3D 31805.,6 (not computed on 1, 2 and 4 cores) 234.066,0 7,36

3D2 3.8 1,7 0,44 1,2 0,71 0,31 0,8 0,53 0,21 0,8 0,33 0,22
% 3D2A 6,1 7,2 1,19 43 0,84 0,70 2,6 0,70 0,43 2,3 0,53 0,37
O 3D3A 45,3 274,5 6,06 152,6 0,90 3,37 87,5 0,78 1,93 72,4 0,63 1,60
2 3D2 8731 112700 12,91 62283 0,90 7,13 3414,9 0,83 3,91 31879 0,59 3,65

3DE 55880,2 (not computed on CPU)

3D> 1.4 2.0 1,48 1,2 0,85 0,88 0,7 0,68 0,54 0,6 0,54 0,46
. 3D2A 2,6 8,7 3,30 49 0,89 1,85 2,9 0,75 1,10 2,3 0,64 0,86
= 3D3A 23,9 330,9 13,87 184,8 0,90 7,75  107,9 0,77 4,53 93,4 0,59 3,92

© 3D4A 566,2 12069,5 21,32 6506,3 0,93 11,49 3771,0 0,80 6,66 3306,2 0,61 5,84

3DE 376953 (not computed on CPU)

Table 4: Comparison of computational times CT', parallel CPU efficiency Eff and
GPU/CPU speed-up GSp for the 3D benchmark problem.

References

1]

2]

3]

4]

[5]

[6]

A. H. Baker, E. R. Jessup, and T. V. Kolev. A simple strategy for varying the restart
parameter in GMRES(m). Journal of computational and applied mathematics 230.2
(2009), pages 751-761.

P. Bauer, V. Klement, T. Oberhuber, and V. Zabka. Implementation of the Vanka-
type multigrid solver for the finite element approximation of the Navier—Stokes equa-
tions on GPU. Computer Physics Communications 200 (2016), pages 50-56.

L. Dagum and R. Menon. OpenMP: an industry standard API for shared-memory
programming. Computational Science & Engineering, IEEE 5.1 (1998), pages 46-55.

R. Fucik, T. H. Illangasekare, and M. Benes. Multidimensional self-similar analytical
solutions of two-phase flow in porous media. Advances in Water Resources, 2016.

R. Fucik, J. Klinkovsky, J. Solovsky, T. Oberhuber, and J. Mikyska. Multidimen-
stonal mized-hybrid finite element method for compositional two-phase flow in het-
erogeneous porous media and its parallel implementation on GPU. Computer Physics
Communications (under review, 2017).

J. Klinkovsky. Mathematical modelling of two-phase compositional flow in porous
media. Master’s thesis, FNSPE CTU in Prague (2017).



Two-Phase Flow in Porous Media Using Unstructured Meshes on GPU 121

[7] D. B. McWhorter and D. K. Sunada. Ezact integral solutions for two-phase flow.
Water Resources Research 26 (1990), pages 399-413.

[8] NVIDIA. CUDA Toolkit Documentation, version 8.0, 2017, URL: http://docs.
nvidia.com/cuda/index.html.

[9] Y. Saad. Iterative methods for sparse linear systems. STAM, 2003, ISBN: 0-89871-534-2.

[10] R. Schreiber and C. Van Loan. A storage-efficient WY representation for products of
Householder transformations. STAM Journal on Scientific and Statistical Computing
10.1 (1989), pages 53-57.






Unfolding of Spectra in Damped Unitary
Ensemble of Hyperbolic Kind*

Ondrej Kollert

2nd year of PGS, email: ondra.kollert@gmail.com
Department of Mathematics
Faculty of Nuclear Sciences and Physical Engineering, CTU in Prague

advisor: Milan Krbélek, Department of Mathematics
Faculty of Nuclear Sciences and Physical Engineering, CTU in Prague

Abstract. This work aims to provide the comprehensive interaction analysis of the spectra
of random matrices from hyperbolic damped ensembles. For that purpose, the transformation
of spectra through unfolding procedure needs to be performed. Here, it is introduced and
thoroughly investigated for general counting processes. After its application on the random
matrix spectra, the nearest-neighbor spacing of the eigenvalues is studied in the dependence of
its position in the spectra.

Keywords: Unfolding, Level Spacing, Counting Process, Random Matrices

Abstrakt. Tato prace si dava za cil dikladné analyzovat spektra hyperbolickych utlumenych
nédhodnych matic. Pro tento ucel je nezbytné pouzit transformaci spektra skrze zobrazeni un-
folding. Zde je tento koncept predstaven a do detailu probiran z hlediska teorie ¢itacich procest.
Po aplikaci procedury unfolding je zkouman odstup mezi sousednimi vlastnimi ¢isly danych
nahodnych matic v zavislosti na pozici téchto vlastnich ¢isel ve spektru.

Klicovd slova: unfolding, hladinovy odstup, Gitaci proces, nahodné matice

Introductory Talk

The counting process theory has been thoroughly dealt with in [1| where the classical
theory is extended by new results of which the most important ones are presented in the
paper [2]. The usefulness of those results lies in their ability to describe certain agent
systems from the interaction point of view. These agents are assumed to be characterized
through the sequence of one-dimensional random variables which often represent arrival
times of events or the locations of some objects in space.

Here, we particularly focus on the system of eigenvalues of the so called hyperbolic
damped unitary ensembles firstly mentioned in the paper [3] as the numerical implemen-
tation of the so called Calogero-Moser hyperbolic random matrices. However, the notion
damped unitary ensembles (DUE) was introduced in [4]. In that paper, a very close cor-
respondence between the matrices’ eigenvalues and the system of vehicle locations was
found. Particularly, it was shown that the nearest-neighbor spacing of the eigenvalues
very well describes that of cars located in one lane of the road.

*This work was supported by the grant Detection of stochastic universalities in non-equilibrium states
of socio-physical systems by means of Random Matrix Theory within agency GACR, number 15-15049S
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The first section of the work is devoted to the necessary transformation procedure
called unfolding. The concept will be established in its most general way for counting
processes. The important transition to finite version of counting processes will be dealt
with as well. In the second section, the damped unitary ensemble of random matrices will
be defined. Moreover, the origin of these matrices and mainly the guess of the theoretical
formula for the level spacing between the matrices’ eigenvalues will be provided. The
last section belongs to the confirmation and application of the gained knowledge on
the numerically generated data. Primarily, the level spacing between the eigenvalues of
matrices from hyperbolic DUE will be thoroughly examined.

1 Unfolding of Counting Process

Before we investigate nearest-neighbor spacing distribution, it is necessary to transform
the initial system via unfolding. To properly understand the procedure, we will first
introduce the basic terms and notation of the counting process theory. First of all, let us
define the general counting process itself.

Definition 1. Let (R;);en be a tight sequence of independent a.s. positive random vari-
ables where the sequence of the inversions (1/R;)ien is also tight. Define the variables
T =Y'"0 R, for k€ N and N, = #{k € N| T}, < t} fort € R. Then (N)icr is said to

be a counting process.

The random variable T} = Ry in the definition above expresses kind of an initial point
of a counting process while the elements of the sequence (R;);en represent the nearest-
neighbor spacings between the points (T} )gen. Concerning the assumptions of tightness,
they ensure that the counting process has expected properties. First, thanks to the
tightness of the inversions (1/R;);en, the sequence of the partial sums (7})ren converges
to infinity a.s. Using this fact, some other fundamental results can be derived most of
which are summarized in the following proposition.

Proposition 1. Let (Ny)ier be a counting process. Then for t € R{, it holds

1) Ny <00 a.s., 3) dpo € R so that E(epNt) < oo forp < po,
2) B(NT) < oo forr € RY, 4)t£1£nooNt =0 a.s. and tligloNt =00 a.s.

The definition 1 is quite general and there is not actually much more to claim about the
corresponding counting process. To derive some more advanced characteristics describing
the process, additional assumptions have to be imposed on the sequence (R;);en,. The
most natural and also simple approach is to assume an identical distribution of the
respective random variables and also Ry := 0 a.s. The resulting process then represents a
very famous renewal process. As a matter of fact, this is not an ideal type of a counting
process to use since its properties are difficult to handle not only from the theoretical
point of view. However, performing just a slight change by considering the density for
the distribution of the random variable Ry in the form

fRo :A(l_FRl) <1>
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with positive parameter A = 1/E(R;), the major downsides of the corresponding counting
process disappear. The formal definition of such a process is given below.

Definition 2. Let (14)ier be a counting process with the i.i.d. spacing sequence (R;)ien
and the initial point Ry distributed according to (1). Then (vy)ier is said to be a level
counting process and Ly = Ry + Si_1 the kth level where Sy = Zle R; is the so called
k-fold level spacing for k € N.

The process just defined was introduced in the paper [2]. It provides an easier and
more slick way of dealing with the properties of counting processes and interacting agent
systems in general. Its crucial property is the linearity of the corresponding expected
value. Specifically, it holds E(r;) = At for ¢t € R so the derivative of the expected value,
i.e. the density of the counting process, is constant everywhere.

In this work, we aim to present a transformation which maps a general counting
process from the definition 1 to the level counting one. The transformation is called
unfolding and its definition is provided below.

Definition 3. Let (N;);cr be a counting process and U: R — R a function satisfying
o limy , U(t) =0 and limy_, U(t) = oo,

e U is continuous and increasing,

o there is a level counting process (V4)ier such that Ny = vy

The mapping U is said to be an unfolding of the counting process (Ny)ier.

In real applications, it is usually very difficult, mostly rather impossible, to verify all
the assumptions so that it is eligible to apply unfolding. In fact, the most problematic
part is the last point of the definition. Particularly, there is usually not enough data to
verify that the transformed process satisfies all the properties of a level counting process.
However, here we deal with the eigenvalues of random matrices so we can afford to
generate enough of them to analyze even this condition. Some numerical tests will be
thus given on this topic in the next section. Now let us introduce the specific form of a
mapping which satisfies at least part of the assumptions required in the definition 3.

Theorem 1. Let (N})ier be a counting process such that the first member of the partial
sum sequence is a countinous random variable. The mapping defined as

Ut) = pE(N)) (2)

where p = 1/X and X\ > 0 then satisfies the first two conditions in the definition 3 and
for Ny = vy, it also holds E(vy) = At for all t € R. What is more, the mapping with
such properties is unique.

Proof: The easier part of the proof is to verify the first two conditions. The very first one
is immediately implied from the fourth claim of the proposition 1. The increasing trend
of U follows from the the fact that a counting process is a.s. increasing function.
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To proceed further, we need to express the expected value of a counting process
through the distribution functions of the corresponding partial sum sequence (T} )ren. In
fact, it holds

E(Nt):E(#{k€N|Tk§t}):E<§: Tk<t) ZFTk (3)

whereby the convergence is even uniform which follows from the monotone convergence
theorem. Now because we can write T,y = 11 + Zle R; for all k¥ € N and T is
continuous, all the members of (T})reny must be continuous as well. All the reasoning put
together, the expected value of a counting process is a continuous function.

The derivation of the last condition in the claim is the most strenuous part of the proof.
First of all, let us denote the random variables transformed via ¢ and the corresponding
counting process as

Lk = Z/{(Tk) y Vi = #{k eN | Lk S t} (4)

where t € R and k£ € N. Due to the increasing trend of the function U, the process (1)ier
is related to the original one (N;),cg through the relation

Ny =#{k e N|T}, <t} = #{k € N|U(T}) <UL)} = vug

which is in fact the first part of the condition being proved. To show the linearity of the
expected value E(14), it would be useful to apply the inversion of & now. However, that
does not have to necessarily exist because & might not be strictly increasing. We thus
need to deal with the areas where the function is constant. According to (3), the function
U is constant on some set if and only if F7r, for all k£ € N are on that set constant. This is
equivalent to the statement that U is strictly increasing on some set if and only if there
is k € N such that Fy, is strictly increasing on that set. Based on these observations,
define the set

A= supp(T})
k=1
where the symbol supp(7}) denotes the support of the corresponding random variable.

From here, it holds that T}, € A a.s. for all £k € N and as a consequence, the restriction
V.= Z/I|A then satisfies

U(Ty) = V(T)) as.

Additionally, the equation V(A) = R} applies which follows from the properties of U as
the expected value of a counting process. The restriction V is already strictly increasing
which allows one to write

ZE (T) <t) =Y E(V(T) <t) ZETk<V (1)) = E(Ny-11)
k=1

where the relation (4) was used. Using the definition (2) and also the fact that V=!(¢) € A
for all t € R, we finally get the equality

Ew) = XUV () = V(Y1) = At.
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The last part of the proof is devoted to the uniqueness of the function chosen as (2)
having all the properties claimed. Let U be an arbitrary function satisfying the first two
conditions in the definition 3 and also the relation N; = Vi) where E(1;) = At for all

t € R. The mapping U then complies with the definition (2) as
B(N) = B(v) = MA(0).
[

According to the relation (4), the function ¢ maps the points (7k)ren to the new
ones (Ly)ken so that they become uniformly distributed in their state space. If the state
space is for instance time, this action results in the loss of the information about the time
evolution in the system. On the other hand, if the mapping I/ is in addition unfolding,
the simplicity of the resulting level process allows one to unfold many useful properties
about the corresponding system as will be seen in the third section. Various counting
processes can be in this way transformed so that they are examined and consequently
compared to each other.

As a result of the theorem 1, the mapping of the form (2) is actually the only candi-
date which could satisfy even the third assumption for the unfolding of a counting process
(N¢)ier. That brings up a question what are the requirements to be imposed on the pro-
cess (Ni)ier so that the function (2) is its unfolding. The intuitive idea is that unfolding
only kind of rescales all the nearest-neighbor spacings so that their distributions become
the same as it is required in the definition for a level process. Therefore, it is believed
that the counting process, on which we intend to apply unfolding, should be formed by
the sequence of spacings (R;);en all having the same or very similar distribution up to
some scale constant. Ideally, it should thus hold

Vi,jeN 3s€R : R 2 sR;. (5)

Unfolding is shrouded by mysteries and it is still far from being completely understood.
Some of the insights will be given in the next sections using real data, but before that,
let us present one particular case in which the mapping (2) actually satisfies all the
requirements to be unfolding.

Theorem 2. Let (N;)ier be a counting process defined through the partial sum sequence
(Tk)ken- Suppose that the sequence (T ,)i_, is the increasingly ordered version of the
i.i.d. random variables (Yyn)}i_, for all n € N such that the limit lim, oo Ty, — Ty
holds for all k € N. Then unfolding of the process (Ny)ier exists and its image results in
the homogeneous Poisson process.

Proof: The theorem will be shown by the transition from the process (N;)cr to its finite
version defined as N;,, := #{k € n|T, < t} for t € R where n is the number of
elements present in the system. The corresponding finite version of unfolding for y < oo
then satisfies

Un(t) = pE(Ny) = pE(#{k € A Th <)) = 0> Fry () = By, (6 (6)

k=1
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where the distribution function of Y, is the mixture of all the distribution functions
(Fr,,)i—1- Based on this kind of notation, it is clear that (7} ,);_, represents the or-
dered statistics of the i.i.d. sequence (Y} ,)r_; established in the claim of the theorem.
Analogically, the sequence of levels Ly, = U,(T}) is then the ordered version of the
variables Xy, := U, (Yin). According to the relation (6), the sequence (Xj,)r_; is also
i.i.d. and moreover, its elements has uniform distribution U(0, un).

Suppose now that (v;,)wer is the finite counting process defined through the partial
sum sequence (Ly,)i_,. As the consequence of the results obtained in the previous
paragraph, the process (14,)ier has the binomial distribution Bi(n,¢/(un)). Denoting
the limits of (N;,)ier and U, as (NV;)er and U respectively, it additionally holds

Ny = nll_{glo Nt,n = nh_{go Vi (t)n = VU(t) (7)

E(yy) = lim E(v,) = lim nFx, ,(t) = Xt
n—oo n—oo
for allt € R where A := 1/u. Now thanks to the convergence lim,,_,, Bi(n, \t/n) = Po(}),
the resulting counting process (14 )cr is actually the Poisson process. Moreover, since the
Poisson process satisfies the properties of a level counting one, the mapping U is truly
unfolding.
O

As a matter of fact, the counting process (/V;);>o described in the claim of the theorem
above is the inhomogeneous Poisson process. Indeed, the relation (7) directly implies that

N oy URY)
P(Nt = k‘) = P(Vu(t) = k) = Te
for all £ € N and ¢t € R. This relation actually provide the way of generating a general
counting process with an arbitrary expected value E(N;) = AU(t) for t € R. The function
U might then represent a time or a space evolution reflecting some real application system
and the parameter A\ the intensity which the elements occur in that system with.

The concept of the finite counting process discussed above is crucial while dealing
with the real application systems since they naturally always contain a finite number
of elements. That is why the results presented for the counting processes based on the
definition 1 are just asymptotically approximative ones. As was mentioned, that is also
why the tools introduced here and in the paper [2] must be used for the systems with
number of elements high enough. Their actual application will be performed on the real
data in the following sections.

2 Introduction to DUE of Hyperbolic Kind

The major system studied in this work is the set of eigenvalues of the random matri-
ces called damped unitary ensembles (DUE). Before restricting only to their hyperbolic
version, let us introduce the concept generally.

Definition 4. The random matriz D = (Dij,n)?jzl for natural n is said to belong to the

damped unitary ensemble if D;; ~ N(0,0%) for i = j and Dy, = ig/fu(i — j) a.s. for
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1 # j where g and o are positive. The function f, is required to be continuous, odd and
to satisfy |limy_,o fn(t)| = 00

Since the function f,, is odd, the matrix defined above must be always hermitian. That
means the corresponding eigenvalues are real random variables so the concepts discussed
in the previous section apply to them as well. The word dumped was used because of the
increasing character of the function f,, which makes the elements of the matrix D smaller
as they get farther from the diagonal. The simplest type the function f,, is a linear one
for which the respective ensemble is called the rational. In this work, we will deal with
the hyperbolic ensemble which is obtained by setting

r 2m
fu(t)  msinh(27t/n)

for t € R. This particular choice of the function f,, comes from the paper [3] where the
corresponding matrix ensembles were introduced as the numerical implementation of the
so called Calogero-Moser hyperbolic matrices. These represent the Lax matrices of the
integrable models characterized by the Hamiltonian

H(p1, - Dns -5 ) = Zpﬂrg > ———

1<J

(8)

f47r/'y - QJ>

for n particles with momentum (p;)?_; and one-dimensional positions (¢;)!; where g and
v are positive parameters. The Lax matrix L is determined by the existence of the pair
matrix M such that the Hamilton equations can be then rewritten in the form

OL

5, = LM —ML. (9)

Considering the Hamiltonian (8), the condition (9) determines the elements of the matrix
L as L;; = p; for i = j and L;; = ig/far/y(@ — q;) for ¢ # j where 4,5 € n. Using
the methods of statistical physics, one can then derive the probability density for the
momentum and positions in the form

Fne s oot ) = cexp<—alzp1+922

—b cosh(vq;) | -
i#j f4’T/'Y ] Z ha )
(10)

where the second term in the exponent represents the confinement potential holding the
repulsing particles together. The density above seems to be very cumbersome to work
with. That is also why its approximation for the implementation purposes was proposed.
Particularly, instead of considering positions to be random, they were chosen to take the
values ¢; = i a.s. Using this adjusted distribution and setting 7 := 4m/n, the matrix L
then matches the one from hyperbolic DUE established in the definition 4.

In the paper [3], the authors also derive the joint distribution of the eigenvalues of the
random matrix L. Thanks to the integrability of the underlying system, it is possible to
perform the canonical transformation of the momentum and the positions of the particles

to the corresponding action-angle variables. As a matter of fact, the action ones turns
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out to be the eigenvalues of the Lax matrix L. After the transformation of the density
(10) and integration over the angle variables, we get the joint density for the eigenvalues

in the form
) (11)
where K, stands for the Macdonald’s function of the zeroth order.

From the density above, it is possible to deduce the estimate of the level spacing
distribution for the respective eigenvalues. First, let us investigate the character of the
distribution for the high values of spacings. In that case the function (11) is mainly deter-
mined by its exponential part which corresponds to the distribution of the independent
Gaussian random variables. Based on the theorem 2, the spacing after unfolding is of an
exponential character. To deduce the behavior of the level spacing density around zero,
it is necessary to use the approximation Ky(t) ~ /7 /(2t)exp(—t) as t — oo. Plugging
this into the expression (11) and combining it with the estimate for the high values of
level spacing, we obtain

1+

AL, ) = cexp(—aZ)\g) HK()(bH

i#]

)\—)\

fs,(t) = ctOe P/ttdt (12)

for t > 0. The constant ¢ normalizes the density and d is often determined by the condition
E(S7) = p applied for the purpose of comparing differently scaled spacings. As a matter
of fact, this density determines the generalized inverse Gaussian (GIG) distribution. How
well it fits to the data generated from the matrix in the definition (4) will be tested in
the following section.

3 Level Spacing for Eigenvalues of DUEy,

In this section, we will thoroughly look at the repulsive interaction kind of dependencies
governing in the spectra of the matrices established in the definition (4). Specifically, we
are aiming to study the distribution of the spacings between two nearest eigenvalues. We
will do so after the application of the rescaling transformation introduced in the theorem
(1) and compare individual spacings throughout the whole spectra. For that purpose,
the expected value

E(N,,) = ZFAM (1) (13)

for t € Ris required. The sequence (A ,,)7_, represents the ordered version of the spectra
of the matrix from DUE}(n, g).

The intensity function as the derivative of the expected value (13) becomes the density
mixture of all the ordered eigenvalues. This mixture is sometimes also denoted as the
eigenvalue density. It is well known that the eigenvalue density of the Wigner matrices
is a semiellipse according to the famous Wigner semicircular law. In the case of damped
matrices, the distribution certainly does not follow this behavior as can be seen in the
figure 1. Instead, it gradually changes from the Gaussian distribution to almost uniform
one as the parameter g increases. This trend was attempted to be captured in the paper
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Figure 1: The eigenvalue densities of DUE}, matrices for various values of the param-
eter g.

[3] by the formula

62 —t2

ft) = @eXp< e ) (14)

for |t| < e and f(t) = 0 otherwise. The function ¢(¢}) plays the role of a normalization
factor while €, > 0 are the parameters of the distribution. The distribution function of
(14) can be used as the decent approximation of the rescaling transformation pE(N;,n).
If no such a theoretical formula is available, a polynomial regression is usually performed
to estimate the distribution function of eigenvalue density. Nevertheless, non of these
strenuous approximative approaches will be needed in our case. Since we deal with
random matrices, we can generate enough of them to precisely normalize the scale of all
the spacings manually. By normalization, it is meant here to convert all the respective
means to one. Note that this method might not be able to be used in the real systems as
only one realization of the finite counting process is usually available. It is also sufficient
only when dealing with nearest-neigbor spacing distributions. If one wants to study
more advanced characteristics like multi-fold spacing or rigidity, the transformation (2)
is necessary to be applied.

Let us now try to fit the spacing distributions by the guessed formula (12) in which the
parameter d is determined the scaling condition E(S;,,) = 1. The fits for various positions
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of the spacings in the spectra are presented in the figure 2. Apparently, the distribution
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Figure 2: Histograms and fits of spacing densities between two nearest eigenvalues
from DUE}y, located in various parts of spectra.

changes significantly determined by the weak repulsion character on the edge of the
spectra to quite strong one in the bulk. It is surprisingly different behavior than in the
case of the well-known Gaussian random matrices whose eigenvalue spacing distributions
appear to be identical no matter the position of the spacing in the spectra. As a result,
the finite counting process formed by the eigenvalues of the matrices from DUE, does
not have an unfolding. Indeed, the application of the mapping (2) to the process would
not result in a level counting one since the corresponding spacing distributions would not
be the same.

Let us now have a look at the dependence of the spacing distribution on the position
in the spectra more in detail. The figure 3 shows the estimates of the parameters a and
B of the distribution (12) for all the nearest-neighbor spacings between the eigenvalues of
the matrices from DUE, (128, g) for various values of g. As expected from the symmetry
of the graphs in figure 1, the change in the parameters o and 3 going from the edges of
spectra to its bulk is symmetric as well. The trend of the change seems to be parabolic in
the case of the parameter o. Despite the high variability in the estimates of the parameter
[, their trend indicates to have a semicircular behavior.

The spectra of the matrices from DUEy thus truly cannot be unfolded as a whole.
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Nevertheless, the estimates of the parameter « in roughly the middle quarter of the spec-
tra appear to have a steady trend. Considering only those eigenvalues, the unfolding
could be performed on corresponding counting process. However, the theoretical predic-
tion (14) does not fit very well this time and the mentioned polynomial regression method
has to be used instead.

As a matter of fact, it is again possible to bypass the method using polynomial re-
gression. Setting a threshold i and taking only those eigenvalues (A;)}2% from the middle
quarter of the spectra (i € {48,...,80}) satisfying |A;| < h performs the approximate
unfolding! as well. The threshold A is chosen with respect to the estimates of the expected
values E(Ays) and E(Agp).

So far, we have investigated the spacing distribution in the dependence of the loca-
tion in the spectra of the matrices from DUE(128,¢g). Let us now have a look at the
dependence of the distribution on the parameter g more thoroughly.

In the figure 4, the respective estimates a(g) and §(g) are plotted for various locations
of the spacings in the spectra. In the case of parameter «, its estimates seem to have
a quadratically increasing trend while those of the parameter g indicate possible linear
trend.
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Abstract. Object recognition is a process for identifying objects in images or video sequences.
One of the powerful tools in object recognition is an invariant description of objects. The
descriptors ought to be computationally stable and have high discriminative power. Hence,
invariants constructed from orthogonal Gaussian—Hermite moments can be used advantageously.
Gaussian—-Hermite (GH) moments play a special role among various orthogonal moments |1, 2,
3, 5, 6, 8, 10]. They were proved to be very robust w.r.t. additive noise comparing to other
common moments [4, 7|. The GH moments are the only moments orthogonal on a rectangle
which offer a possibility of an easy and efficient design of rotation invariants. This is guaranteed
by the Yang’s Theorem [9]. However, the construction of invariants w.r.t. scaling cannot be
accomplished easily and a novel approach is needed.

The first paper is concerned with invariants with respect to scaling constructed from Gaussian—
Hermite moments. The invariance is achieved owing to modulation of Gaussian-Hermite poly-
nomials using variable parameter o that depends on the input image. The scale invariance can
be easily coupled with the rotation invariance. This approach can be effortlessly applied in 2D
and 3D with high numerical stability as demonstrated in experiments on real data.

The second paper is dealing with rotation invariants of vector fields. Vector field images
are a new type of data appearing in many engineering areas in the last few years. A 2D
vector field f(x) can be mathematically described as a pair of scalar fields (images) f(x) =
(f1(x), fa(x)). At each point x = (z, y), the value of f(x) show the orientation and the magnitude
of a certain vector. Hence, it is necessary to develop new methods and algorithms for dealing
with this type of data. In this paper, we propose a method for the description and matching
of 2D vector field patterns under an unknown rotation of the field. The considered rotation
of a vector field is so-called total rotation, where the action is applied not only on the spatial
coordinates but also on the field values. Invariants of vector fields with respect to total rotation
constructed from Gaussian—Hermite moments orthogonal on a square and Zernike moments
orthogonal on a disk are introduced. Their numerical stability is shown to be better than that
of the geometric/complex moment invariants. We demonstrate their usefulness in a real world
template matching application of rotated vector fields — a vortex detection in a fluid flow.

Keywords: Scale invariants, Variable modulation, Normalization, Vector field, Total rotation,
Invariants, Gaussian-Hermite moments, Zernike moments, Numerical stability.

Abstrakt. Rozpoznavani objektt je proces identifikace objektti v obraze ¢i videu. Jednim
z pristupi je pouziti deskriptori objekti, které jsou invariantni vici jistym typtm transformaci

*This work has been supported by grants No. GA15-16928S and SGS15/214/OHK4/3T/14.
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v obraze. Vypocet téchto deskriptorti by mél byt numericky stabilni a mély by mit vysokou
diskriminabilitu. S vyhodou lze proto pro jejich konstrukci vyuZzit ortogonéalnich Gaussovych—
Hermitovych (GH) momenti. Tyto momenty hraji dileZitou roli mezi ortogonalnimi momenty
[1, 2, 3, 5, 6, 8 10]. Bylo dok4zano, ze GH momenty jsou velmi robustni vii¢i aditivnimu Sumu
ve srovnani s jinymi béZné pouzivanymi momenty [4, 7]. GH momenty jsou jediné momenty
ortogonalni na obdélniku, ze kterych 1ze snadno zkonstruovat rotacni invarianty. Coz je mozné
diky Yangové vété |9]. Bohuzel rozsifeni na invarianty vaci skalovani je netrivialni a je tieba
zvolit novy pristup.

Prvni z uvedenych ¢lankt pojednava o invariantech vici skadlovani konstruovanych pomoci
Gaussovych-Hermitovych momenti. Invariance je dosazeno diky modulaci Gaussovych—Hermi-
tovych polynomt proménnym parametrem o, ktery zavisi na vstupnim obrazku. Invariance viici
gkalovani muze byt snadno kombinovana s invarianci vuci rotaci. Tento pfistup lze jednoduse
pouzit jak pro dvourozmérna tak i pro t¥irozmérna data. Numericka stabilita vypocti je demon-
strovana na experimentech s redlnymi daty.

Druhy c¢lanek se zabyvé rotaénimi invarianty pro vektorové pole. V poslednich letech se diky
novym zpusobtim méfeni a novym typtim méficich zafizeni setkdvame stale ¢astéji s multidimen-
zionalnimi vektorovymi poli. 2D vektorové pole f(x) lze matematicky popsat jako uspotradanou
dvojici skalarniich obrazku f(x) = (f1(x), fa(x)). V kazdém bodé x = (z,y), popisuje hod-
nota f(x) velikost a smér daného vektoru. Je proto potieba k jejich analyze vyvijet specialni
metody a algoritmy ¢i vyznamné modifikovat stavajici postupy z tradiéni oblasti zpracovani
obrazu. V tomto ¢lanku navrhujeme metodu pro popis a vyhledavani vzorta ve 2D vektorovych
polich pfi neznamé rotaci pole. UvaZzovana rotace je tzv. totalni rotace, kdy transformace nepi-
sobi pouze na prostorové soufadnice, ale také na hodnoty pole. Déle predstavujeme invarianty
vektorovych poli vzhledem k totalni rotaci zkonstruované pomoci Gaussovych—Hermitovych mo-
mentl ortogonélnich na ¢tverci a Zernikeovych momenti ortogonalnich na kruhu. UkazZeme, Ze
numericka stabilita téchto invarianta je vyssi nez stabilita invariantu zaloZzenych na geometrick-
ych /komplexnich momentech. UzZite¢nost téchto invariantt demonstrujeme na realné problému
— detekci virtt v proudéni kapalin.

Klicovd slova: Invarianty vuacéi Skalovani, proménné modulace, normalizace, vektorové pole,
totalni rotace, invarianty, Gaussovy—Hermitovy momenty, Zernikeovy momenty, numericka sta-
bilita.
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Vector Fields from Orthogonal moments, Pattern Recoginition 74 (2018), 110-121.
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Abstract. Random walk is a very well studied object. Since its first introduction by Pearson in
1905 a number of alternative models have been developed. This paper presents a novel approach
to a random walk with memory. This memory is introduced by a varying transition probability.
Asymptotic properties of such a random walk are described and possible real life applications of
such model are introduced.
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Abstrakt. Nahodna prochazka je objekt studovany vice nez sto let. Od roku 1905, kdy Pear-
son poprvé koncept ndhodné prochazky predstavil, byla vyvinuta cela fada alternativ k ptivod-
nimu modelu. Tento ¢lanek se vénuje ndhodné prochézce s paméti, jez se projevuje promén-
livou pfechodovou pravdépodobnosti. Jsou zkoumény asymptotické vliastnosti takovéto ndhodné
prochézky a naznacena mozna pouziti modelu v praxi.

Klicova slova: Nahodnéa prochéazka, pamét, proménliva pravdépodobnost

1 Introduction

Random walks has been subject to extensive study for over a hundred years since they
were first introduced in by Pearson in 1905 [1]. Since then, many different variations of
a random walk have been introduced. Those variations usually involve different supports
(i.e. a random walk on a lattice, graph, finite set) and time properties (discrete or
continuous) [3]. Many variations also involve a memory factor added into the random
walk, such as self-avoiding walk or reinforced random walk [2|. Introducing a long term
memory factor into a random walk leads to a very different asymptotic behavior.

In this paper one-dimensional random walk is considered, in which the position of the
walker is controlled by a varying transition probabilities. After each step, the probability
that the next step will be in the same direction as the previous one is lowered and the
probability that the walker will move in opposite direction is increased accordingly. The
transition probabilities evolve in time in a random way and the actual values of the
transition probability depend on the entire history, making the walk a non-Markovian
stochastic process.

The model is described in the next section and section 3 indicates possible evolution
of this theory and concludes this paper.
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2 Model

2.1 Previous work

Similar problem has been studied by Turban in [4]. In the paper, the discrete time one-
dimensional random walk with the following properties is studied. The step size [;” of the
t —th step to the right and step size [, of the t — th step to the left satisfy the condition

IF 41 =2Vt

and the size of the step is evolving according to the following rules for ¢t > 1

=\,
7 =2— 2\,

J’_ _ _ —
1 {zt =2\,

Ot—1 =+1— {

ly = Al

where the Ising variable o; = 41 with equal probability p = %, If =lf =land0 < X < 1.
The limit A = 1 corresponds with the Bernoulli random walk, the limit A = 0 corresponds
to a situation when the walker does not move for some time. Turban shows that such a
random walk is well controlled and that it is non-diffusive (with Hurst exponent of the
mean square displacement o = 0) even for A close to 1.

2.2 The Model

In this paper slightly different approach is considered. Let’s take a random walk on
integers, with step size I; € {—1, 1}. The probability that in time ¢ the step will be
positive is

P(ly=1)=p/

and the probability that the step will be negative is
Plly=-1)=p, =1—p/.

The transition probabilities vary in time such that the probability of moving in the same
direction as in previous step is lowered by a coefficient A € (0, 1)

p—i- — )‘p;:1 i1 =1 (1)
' L=2Apy b =-1

_ {1 — AL =1 2)

APy by =—1

As there always holds that p; = 1 — p;, it is sufficient to further only consider p;. Let
p: = p; . From equations 1 and 2 follows for ¢ > 1 that

ADi— li1=1
P = Pt—1 t-1 (3)
1—-—A+ )\pt,1 lt,1 =-1
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1
P = )\pt—l + 5(1 — /\)(1 — lt_1> (4)
Let’s calculate the expression for p; using induction. First let’s assume p; = 1. For ¢ = 2

5.
expression 4 gives

1 1
p2:§)\—|—§(1—)\)(1—l1). (5)
For any ¢ let’s assume that
1 1 t—1
— t—1 (1 — t—l—il_ )
=X o A);A (1-14) (6)

This holds for t =2 (5). For t =t + 1 we get

1 1 t—1 . )
Pry1 = >\(§/\t_1 +5(1=24) DN —L) + 1= = 1k)
i=1

t—1
1., 1 s 1
== —(1— =1)+=(1- —
P = 5N+ 5 /\);/\ (1=1)+ 5 (1= N1 = 1)

1 1 ! ,
=N+ -(1=-2\ AT =
Di41 5 + 2( ) ;_1: ( )
which is in accordance with 6 and thus 6 holds for any ¢ > 1. Since

t—1 t—2 1 )\tfl
11—\ NI — (1 =\ No=(1-)N—" =1t
( ); ( ); ( ) T

expression 6 can be reduced to

1 1 1 - .
P = §At‘1 +501 - AL — S1=2 > AT (7)
=1

by — %(1 —(1-N YA (8)

Proposition 1. For p; = p, Vt > 1 it holds
1 t—1
=N 4 S (1= )\ N — g,

pe=pAT 4 5 ); (1=1),

which can be expressed as
1 1 t—1
—(p— I\ (1 =(1=2\ A1)
S T ) Bl

Proof. Follows directly from 4, 5 and 7. O

Examples of the random walk with memory in probability as well as the model intro-
duced in [4] and the standard random walk can be seen in Figures 1 and 2. It can be
seen that the memory coeficient on probability does not limit the position of the walker
as much as the step length memory coeficient, but it still significantly affects the random
walk development.
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Figure 1: Comparison of random walks generated by the same random numbers for
starting probability p = 0.5 and varying memory factor A. Red dashes are the standard
random walk, blue dots are random walks with memory introduced by Turban and green
dash-dot lines represent random walks generated by the model introduced in this paper.

2.3 Mean values of the process

Let X; be the position of the walker at time ¢. It holds that
Xi =X 1+
To calculate the expected value EX; it holds that
EX,=FEX, 1+ Fl, 9)

with

The expected transition probability Ep,; at time t can be calculated as
Epy = (Epi-1)’X + (1 — Epi—1)(1 — (1 — Epi—1)A)
Ept = 2Ept71)\ o Ept,1 + 1. (11)
Proposition 2. For Vt > 1, it holds that

1—(2x— 1)1
2

Epy=(2A—1)""p+ (12)
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Proof. For t = 1, equation 12 yields

Epy=p (13)
and for t = 2 Lo
Ep2:(2)\—1)15+T:2;5/\—)\—;5+1, (14)
which is in accordance with 11. For ¢t =¢ + 1 we get from 11
1— (2 —1)1 1—(2Xx—-1
Ept+1 = 2[(2)\ — 1)t_1ﬁ + ( 5 ) ])\ —\—= [(2)\ _ 1)t_1ﬁ + ( 5 ) ] +1
1—(2x—1)1
Epray = 2020 — 115 — A2\ — 1)1 — (20 — 1)1 — L= AQ )

202 =1t =142 =1+ 2

Epir = 2\ — D520 — 1) +

1— (2N =1)
Epii=(2A—=1)'p+ %

and thus 12 holds for all t > 1. ]
Proposition 3. For Vt > 1, it holds that

EX, = (2p - 1)%

Proof. For t =1 equations 9, 10 and 13 yield (given X, = 0, i.e. the walker starts at the
beginning)

(15)

EX, =2 —1
and for ¢t = 2 (using 14)
EXo=25— 14220\~ A—p+1)—1
EX, = 2025 — 1),

which is the same as the result when using 15. Assuming 15 holds for ¢t we get for t = t+41

from 9, 10 and 12
EXipn=EXy +2Epi1 — 1

EXi1=(2p— 1)% F2[(2) — 1) + 1- (2;\ — 1)t] i
EXin = (20— 1)(% +(2r-1)h

t—1
EXi = 25— 1) 2 =1+ 2\ - 1))
=0

— (2) — 1)t

EXi = (2]5 - 1) 2(1 — )\)




146 T. Kourim

2=0.99, =0.80 2=0.80, 5=0.80
—-==- Standard RW et 6004 ——- Standard RW
6001 ..... Variable step size PO e A Variable step size /"
—-- Variable probability o —-- Variable probability oo
e 500 - -
500
)r‘ -
.
o 400 1 el
400 4 - e
= S 300 e
X 300 4 X -
/’ ’
200 4
200 4
- L
100 Pad

t
A=0.50, p=0.80 A=0.20, p=0.80
600 6004
—-== Standard RW e —-== Standard RW
senee Variable step size ’_"' ----- Variable step size oy
500 —:- Variable probabilty e -~ 5004 —" Variable probability -
"
et o
400 7 400 rad
, L
’ ” ’,
L
g 300 4 el g 300 L,
/,/"’ 4
200 - 200 e
,,,,
100 /,/ 100
/
1//
0 aZiwm 0 e
0 200 400 600 800 1000 o 200 400 600 800 1000

Figure 2: Comparison of random walks generated by the same random numbers for
different starting probability p = 0.8 and varying memory factor .

2.4 Asymptotic behavior

Now let’s examine the situation for £ — co. From Proposition 2 follows that

1
Ep, =

t—o0 5
and from Proposition 3 that
2p—1
X - Z-L
In other words the memory introduced by the coefficient A will in long term eliminate
the effect of the starting probability p and drag the transition probability to the value of
%. In a similar manner, the expected position of the walker will remain constant in the
long run, at the position given by
2p—1
2(1—=X)

2.5 Monte Carlo simulations

Monte Carlo simulations have been used to explore the asymptotic properties of the
random walk with variable transition probability and to compare it to the standard
random walk and to the random walk with memory introduced by Turban [4]. Figure
3 shows the expected position of the walker for the different types of random walk!

!The case when p = 0.5 is trivial, as all three types converge to 0. The standard random walk diverges
for Vp # 0.5 and is thus not showed.
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Figure 3: Comparison of the expected position of the walker for different starting proba-
bilities p and memory factor A. Blue dots are random walks with memory introduced by
Turban, green dash-dot lines represent random walks generated by the model introduced
in this paper and red line is the computed value of FX; given by Proposition 3.

and different values of starting probability p and memory factor \ together with the
expected position of the walker given by Proposition 3. The expected values of transition
probabilities for different p and A, both theoretical and observed, can be seen in Figure
4.

Finally, Figures 5 and 6 show the observed variance of the walker position and the
transition probabilities Var(X;) and Var(p;). These observations suggest that the vari-
ance of transition probability converges and does not depend on the initial probability

p and the variance of the position of the walker diverges linearly with respect to both p
and .

3 Conclusion

In this paper, a novel approach to a random walk with memory was introduced and
the basic properties of such random walk were derived. Asymptotic properties were
also demonstrated using Monte Carlo simulations. It seems that there are many real
life application of such a model. The evolution of the score in some sports seems to
follow the rules introduced in this paper. The (out)performance of a new worker in a
company or the reliability of a machine could be another examples of real life applications
of the introduced model. However, further research has to be conducted to prove these
assumptions.
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Abstract. Latest works show that quantum physics allows for new type of chaotic behaviour
without analogy in classical physics. This chaos is connected to quantum description of physical
state which is subject to nonlinear operation. The chaos has been analytically described in
particular set of pure two-qubit states subject to a particular protocol. We aim on investigating
chaotic evolution of mixed states which is beyond contemporary knowledge. We work with single-
qubit version of protocol originally designed to purify quantum entanglement. We reveal a new
phenomenon, half-attractiveness of quantum physical states. Our main result lies in concept of
box-counting dimension which is used to characterise structures of chaotic mixed states. We
show that the structure undergoes a phase transition where the purity of states plays the role
of temperature. These sudden qualitative changes of the structures are very surprising. Finally,
we also give quantitative characteristics of basins of attraction which indicate that number of
states that can be purified by the protocol explodes exponentially with growing purity.

Keywords: qubit, quantum entanglement, chaos

Abstrakt. V nedévnych c¢lancich byla objevena existence nového typu chaotického chovani
kvantovych systémi, ktery neméa analogii v klasické fyzice. Pri¢inou chaosu je samotny kvantovy
popis stavu, na ktery je aplikovan nelinedrni operdtor. Analyticky byl chaos popsén pro specialni
t¥idu dvouqubitovych stavi pii aplikaci specialniho protokolu. Na$im cilem je popsat evoluci
smiSenych stavi, coz jde za hranice soucasného poznani. Pracujeme s jednoqubitovou verzi
purifikaéniho protokolu. Odhalili jsme novy jev, poloatraktivitu kvantovych stavia. Hlavni
vysledek naSi prace spocivi ve vyuziti tzv. box-counting dimenze k charakterizovani struktur
stavll s chaotickou evoluci. Tyto struktury podléhaji fazovému prechodu, pficemz roli teploty
hraje ¢istota stavi. Tyto nahlé kvalitatvni zmény zminénych struktur jsou velmi prekvapujici.
Rovnéz prezentujeme kvantitativni charakteristiku oblasti pritazlivosti atraktort, kterd znadci,
7e pocet stavi, které purifikacni protokol umi 'vydcistit’ roste exponenciilné s ¢istotou stavu.

Klicovd slova: qubit, kvantové provazani, chaos
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1 Introduction

Quantum information and computation offer great improvements to classical tasks. Quan-
tum entanglement is one of phenomena that is widely exploited in newly proposed al-
gorithms. However, it suffers form decoherence that cannot be in principle eliminated.
Processes aiming on repairing the entanglement are called purification protocols. One of
them proposed [2] and generalised [1] lately sacrifices a copy of a piece of information to
repair another copy. These exponential costs have to be taken into account for multiple
iterations and they are the reason to seek improvements to the protocol. The particular
protocol has been shown to induce chaotic behaviour in a special set of pure states.

This type of chaos in the sense of the sensitiveness of the state’s evolution to initial
conditions has no analogy in classical physics. It is also different from so called quantum
chaology (which studies quantum systems corresponding to classically chaotic systems)
because the chaos is rooted deeply in the mathematical description of the quantum reality.
The reason for this chaotic feature lies in nonlinear maps which can be generally found
in physics of open quantum systems but these have not been yet studied. We now aim
on showing that the dynamical regimes can be very interesting, rich and surprising.

Because of the complex and intricate nature of the topic we study single-qubit version
of the protocol acting on general mixed states. The single-qubit states can be isomorphi-
cally mapped onto a particular set of two-qubit states. This allows for reinterpretation
of our results to protocol capabilities regarding entanglement purification. We propose a
new method to characterise chaotic dynamics inside the Bloch sphere based on study of
states that are sensitive to initial conditions. These states form an interesting structure
which we characterise in the parameter space of the physical system using concept of box-
counting dimension. After explaining the method and we present our main observation.
We find that the structure of chaotic states undergoes a phase transition with respect to
purity of the initial states.

Additionally, we show that the relative amount of states of given initial purity that
converge to the mixed attractor increases with lowering purity. This finding can be
interpreted in terms of purification capabilities of the protocol; this purification is meant
as increasing the purity of the state here but in two-qubit reinterpretation it manifests
in entanglement purification capabilities.

2 Chaos and quantum systems

The nonlinear map acting on mathematical representation of a physical system is the
crucial point of our research. General nonlinear maps in quantum physics can be studied
only in open systems, because closed system evolve unitarily. In this mode it is impossible
to implement expanding or contracting maps. And it is exactly the expanding property
that is responsible for the sensitivity to initial conditions, i.e. chaos.

If we would like to examine general nonlinear operator acting on two qubits we would
need theory for 15 functions of 15 real variables. Therefore, we choose single-qubit pro-
tocol version where three real variables are dealt with. Nevertheless, we remain beyond
scope of mathematical books. In this setting we will find many phenomena familiar to
classical nonlinear dynamics [6] and theory of complex functions [5]. Amongst these are
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fractal structures and attractiveness/repulsiveness in certain directions.

The nonlinearity in our protocol is result of interaction of two qubits mediated by
measurement-based modification. This is experimentally implemented via CNOT gate
which determines computational base of a qubit (]0), 1)), whole this paper is set into this
basis. The CNOT gate is also responsible for the nonlinearity of the protocol. For the
detail discussion of the protocol, its construction and physical realisation see |1, 2, 3, 4];
in following text we only present crucial shards of information.

2.1 Protocol iteration

The original purification protocol is constructed to act on two-qubit states but it can
be generalised to act an other systems. We choose single-qubit system because of two
reasons. The system is simpler but it still goes beyond accessible knowledge as already
mentioned. And we can show that the single-qubit states can be mapped to a class
of two-qubit states in a way that preserves all physical characteristic and the evolution
function. Our examination of single-qubit mixed states than can be easily reinterpreted
for that particular set of mixed entangled states.

Let us take the most general single-qubit state and we shall parameterise it in following
way with respect to computational basis:

_1 1+a b—ic
p—2 b+ic 1—a

);a,b,ceR:a2+b2+c2§1 (1)

where the conditions ensure that the state is physical. The protocol action on the state
given by triplet (a,b,c) yields state with (a’, b, ¢):

(2)

2 2 _
(@b ) = Fla.b,c) = (b c 2a 2bc )

14+a2’14+a2" 1+ a?

The evolution function stirs the states wildly inside the interior of Bloch ball while the
surface, the Bloch sphere is invariant. Pure state can be characterised with a complex
number [¢) = (1 + |2|*)71(|0) + 2|1)) and its evolution is expressed via function f(z) =

%, for details see [4, 3]. Asymptotic dynamics of a pure state has only two possibilities:

e state belongs to the Fatou set of evolution function f, therefore it is attracted to
superattractive cycle |0) <> 1/v/2(|0) + [1));

e state belongs to the Julia set of f, which means it evolves chaotically. The set is a
fractal formed by border of the basins of attraction that belong to different parts
of the pure cycle. This regime also contains fixed unstable states.

For mixed states we find following new additional possibilities of asymptotic evolution:

(1) (1)), the maximally mixed state;

e state converges to new attaractor py = % (

e state converges to half-attractive mixed cycle (0.295598,0,0) = (ag,0,0) = p, <
oy = (0,b9,0) = (0,0.543689,0) or half-attractive pure state py = (ag,by,0) =
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(bo, /1 — b,0); the numbers ag, by can be determined analytically by solving equa-
tions p” = p. States in this regime are sensitive to initial conditions, perturbation
can deflect them to either of attractors. State ps is even guaranteed to be chaotic in
the pure states dynamics. Now we also (numerically) find it is attractive for certain
set of mixed states.

The last possibility is very interesting because it suggests that the state can be re-
sistant to certain types of perturbation (and sensitive to others). Generally, this effect
can have relevant impact on experimental usability of some general nonlinear protocols.
These finding were obtained from numerical computations, now we give analytical clues
that state py is indeed an attractor and cycle p, <> p; is half-attractive. To do this we
evaluate two protocol iterations.

4 a? — b*c? " _ (1+a®)(b* — ) S g abc
(1+a2)?+ (12 — )2’ (1+a2)?+ (12— )2’ (1+a2)? + (b2 — )2

(3)
and consider regime of small perturbations to state py by setting |al, |b],|c|] < 1/8.
Within this regime each state is forced to converge to py in sense of converging se-
quences a™, b ™. Their convergence is not necessarilly monotonic but it is mono-
tonic when the protocol is applied pairwise. To give clues to half-attractiveness of
pPa < pp we consider also two iterations of the protocol and regime of small pertur-
bations a = ag,b = 0, ¢ = 0. Using Taylor series we find a”|,—qy p=c = ao(1—b*+O(b¥)) =

ao, [0"||a=ag b=e = % — (b6)’ < |b| whenever |b| < 1/2. The cycle is therefore resistant
) ag

to perturbation satisfying particular relations in a,b. This relation basically determines
a curve in plane ¢ = 0, we see in figure 3 that this curve runs through ¢ = 0 plane
and separates attractor basins of the mixed and the pure attractors. The relation is
very complicated and we have not succeeded in expressing it. Repulsiveness of the cycle
can be viewed when considering states (t,0,0) or (0,¢,0);t € (0,1) subject to two itera-
tions. In these invariant sets of states repulsiveness is proven analytically via derivative
of evolution function ¢t — ¢”.

Particular plane of states ¢ = 0 is important for several reasons. It captures all
asymptotic features of mixed states because all states (up to negligible set not capturable
by numerical calculations) approach this plane; inside this plane they are evolved to the
positive-positive quadrant because of the squaring in 2. All critical states are found in
this quarterdisc and the attractiveness inside this disc is clearly presented in 3.

2.2 Box-counting method and chaos description

We remind the chaotic behaviour can be described analytically on the Bloch sphere which
can be identified with the Riemann sphere which is conformal to complex plane, state and
its evolution are then described by single number z € C and function z — 2’ = i—zz This
function can be examined using theory [5]. The main feature is that the chaotic states are
confined to a peculiar fractal structure with deterministically chaotic evolution. Such tool
is not available for mixed states. However, we develop a new method of characterising
the chaotic evolution in mixed states based on the pure states analysis. We notice that

the states 1 with the same purity P are spheres. We identify these states with a plane
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using stereographical projection

14 a0+ b c

P _ _
2 C TT I YT 1 .

(4)

Identification with a complex plane does not yield evolution function which can be anal-
ysed using theory [5] unless P = 1. We stay with the two-dimensional real plane and
calculate evolution numerically. After determining asymptotic evolution of the states in
the plane, we assign them a colour based on attractor they converge to. In this way we
obtain an image we will refer to as attractor map. We stress that one such map is created
for chosen purity value P and illustrate asymptotic evolution of states that initially have
purity P. The evolution typically brings states away from their initial sphere but in this
way we can analyse what asymptotic regimes are and are not available depending on the
mixedness of the state.

In the attractor maps we find areas of the same colour which are cuts of basins of
attraction of attractors. In other words, the islands are states with regular behaviour.
On contrary, states forming the borders of these islands are necessarily chaotic because
perturbations can deflect them to one or another attractor meaning the states are sensitive
to initial conditions. We state that we are going to study the particular structure of
borders of attractor islands in attractor maps. This structure in pure state case collapses
to fractal structure shown in [4] (the existence and properties are guaranteed by theory).
There is a measure capable of characterising the fractalness of the structure, it is the
fractal dimension, also known as Hausdorff dimension:

Statement 1. Dimension D of an object Y C X in metric space (X, p) is

log N,
D = lim min —2 =, (5)
e—0 ]og =

where N, is number of open sets covering the object ), the minimum is taken over all
possible coverings with open sets of diameter < €.

This quantity captures how finer the structure gets when we study it in finer and finer
scales. Nonetheless, it is impossible to determine it for general objects. Therefore, we
use following concept of boz-counting dimension which relieves the definition to estimate
the dimension numerically. The method is described in many similar but not same ways,
e.g. like in [6] and for its fundamentally simple approach we develop it on our own in
MATLAB interface as described later. The crucial idea of the box-counting concept lies in
taking boxes instead of challenging all possible coverings. Bypassing the minimum across
all possible coverings increases the dimension estimate but allows to easily numerically
determine number of covering boxes. We use pictures of fractals which we cover with
rigid grid of m x m squares which is in contrast with [6] where floating boxes are used.
Second idea simulates the limit ¢ — 0 by taking boxes of smaller and smaller size, in
other words m increasing to the resolution of the picture n pixels. Although we can
reach only € = n/m > 1 the dimension estimate remains reliable when pictures of high
resolution are used. It is because we use another idea: from the 1 we can see that the
dimension is a slope of line formed by points [logm,log N,,| in limit m — oco. As this
limit is simulated we conclude that the method is implemented in following steps: We
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choose purity of initial states P. We create attractor map (as described earlier) of the
states. This map of resolution n X n is then cut into m x m boxes for all possible m|n
and number of covering boxes N,, is determined. The dimension is gained as the slope
of line fitted by least squares method through points [log m,log NV, ].

This approach naturally has several pitfalls. If the box structure coincides with the
structure of our interest, it cannot capture the structural character properly, especially
when the structure is curve, in pathological case like the model of Sierpinski carpet in
figure 1 the method fails. The setting of the object in the picture (and in consequence
its setting in the box grid) has important influence on the resulting value, see figure
1. Last important caveat lies in the finite resolution of used pictures. These inherently
cannot capture infinitely recurring fractal structure but can only approximate it. That
is the reason to use images with high resolution. However, when the number of boxes is
large m ~ n each box captures only few pixels which do not contain proper structural
information. In consequence, we cannot use high values of m to fit the dimension because
they underestimate the value. Also, for low values of m a single box contains large pieces
of object and does not capture fine details. Aware of these issues we suggest to use
various pictures of the object and decide image from image proper values of m to fit the
dimension of the structure. We ’calibrated’ the method on basic structures to be more
reliable but still the method can yield value precisely only to first, maximally second
decimal digits. Avoiding pathological objects we conclude the dimension of the structure
can give indicative estimate of its fractalness but not precise value. Besides, no other
method of characterising the structural features exists.

Figure 1: Simplified
model of the Sierpinski
carpet simulates finite
resolution of  pictures
and also demonstrates
position dependence of
the box grid. A level
finer grid cannot capture
border of grey-white.

3 Chaotic dynamics in single-qubit mixed states

3.1 Phase transition in the structure of chaotic states

In figure 2 we illustrate the structure of chaotic states on a sphere within mixed states.
From the numerical calculations we immediately make following conclusion. For purity
P =1—¢e;¢ > 0 arbitrary, there are states converging to the mixed attractor. However,
visually the structure is very similar to structure of pure states. In order to qualify the
structure we use the box-counting method to find the dimension of the borders of the
coloured island in these images.
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0

0 1 2
Figure 2: Example of attractor map for ini-
tial purity P = 0.9. Colour coding of at-
tractors is same in both figures 2,3: white
colour marks states converging to |0) af-
ter even number of protocol iterations and
bright grey states converging to |0) after
odd number of iterations; grey colour marks
states converging to the mixed attractor;
dark colour stand for nonphysical states.
Only positive-positive quadrants are shown
because of central symmetries.

Figure 3: Evolution in quarterdisc of ¢ = 0
plane. The arrows symbolise 'the attrac-
tive forces’ - how fast does a state converge
to its attractor when two(!) protocol itera-
tions are used. When the attractive forces
of the attractors compensate on the bor-
ders of the grey-scaled regions, the states
can be attracted to the saddle states marked
with half-filled circles. The attractive states
are marked with filled circles, the repulsive
state with an empty circle.

Results confirm that the fractal structure can be preserved in the mixed states. This
is surprising result because mixedness means statistical uncertainty of the physical state.
Presence of this uncertainty does not necessarily change the evolution to some trivial
regime. Even more surprising is the fact that the dimension remains constant in regime
P =1 — ¢ which means that the fractal structure is the same.

The most important result is obvious when we plot the dimension of the structure of
chaotic states of chosen initial purity P with respect to this purity. From 4 we can see
that the dependence is essentially a phase transition. The structure is the phase and it
is in mode fractal when the purity of states is in range P € (P, 1). Value P; numerically
coincides with purity of state

_1 1—|—a1

1—a1

) ;ap = 0.3611  — P =0.769292
1-— aq

(6)
which is a repulsive fixed state also shown in figure 3. The value a; can be determined
analytically solving p’ = p. It seems that this state is the least pure source from which
the fractal structure grows. For lower purity, the structure of states that initially have the
chosen purity and exhibit sensitivity to perturbations has dimension 1, i.e. is nonfractal.
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This means that the structure is formed by union of ’'common’ curves. Another transition
in structure happens at the purity F, of p, defined earlier as a part of half-attractive cycle.
This value is equal to Py = H% = by = 0.543689. The state p, is the least pure state
which does not converge to the maximally mixed state pg. This implies that for P < B
there is no structure of chaotic states.

We interpret the sudden change of the fractal dimension when the purity of the initial
states is changed as phase transition. The reason is that the structure of chaotic states
is not some abstract mathematical construction but truly a phase with its own physical
properties, namely exponential sensitiveness to initial conditions, i.e. chaos.

3.2 Quantitative characteristics of attractor basins

The dimension of the structure is its qualitative characteristic and the phase transition
expresses that there is single fractal structure changing to nonfractal and than disap-
pearing suddenly. The fact that the fractal structure has its dimension D = 1.56 means
that the structure has zero area but infinite length. The dimension expresses the self-
similarity and complexness of the structure. In contrast, the nonfractal structure after
the transition has finite length. While in preceding subsection we have demonstrated the
qualitative properties of the structure of chaotic states, now we have discussed also its
quantitative properties.

However, we also present certain quantitative properties of the attractor basins. This
structure is formed by points of regular behaviour and in the attractor maps it is formed
by coloured islands themselves (not their borders like before). We now want to determine
relative amount of states drawn to each attractor. To do this we express the sphere of
states as a matrix of elemental areas in spherical coordinates and we assign to an attractor
all elemental areas sin JAJYAp for each state ~ ¢, that converges to it. By omitting
the radius of the sphere we obtain percentage of states of chosen initial purity converging
to this and that attractor.

The dependence of relative areas is shown in figure 5. Numerically fitted, it is piecewise
composed of exponential functions A = exp(a; P + ;) + ;. The parameters undergo
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100% ' ' Figure 5: Parti-
tion of states with
— i chosen initial pu-

rity that converge
to the mixed
attractors. Curve
is formed by
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sudden changes, not only in points of phase transition studied before but also other purity
values which numerically match with appearance of other sources of fractal structure, i.e.
points where the fractal visually emerges from. The quantitative description of attractive
basins (more precisely their cuts with hyperplanes of states if constant initial purity) is
more complex in purity than the quality of structure of chaotic states. We can interpret
the exponential dependence in following sense: Relative amount of states that are not
purified by the protocol exponentially explodes as the purity is lowered. This time we use
term purification for making a state less mixed, in two-qubit protocol version this leads
to analogous statement about purification of entanglement.

4 Conclusion and outlook

When we step outside the unitary dynamics of quantum system we can come across
irregular dynamics exhibiting sensitivity to initial conditions. This type of chaos goes
far beyond classical physics. As a result of quantum description of physical system it
can manifest in interferences or have no analogy at all. The physics of quantum open
systems is at its very beginning concerning the chaos in quantum states. Although the
theoretical tools demonstrated its presence in pure states subject to particular protocol,
it was not clear whether same chaos is present in mixed states which contain uncertainty.
Our study shows that this uncertainty is not necessarily amplified during the evolution
and even mixed states can be purified and they can be chaotic.

The phase transition presented in our work is not only some abstract mathematical
construction but has its physical meaning and properties. The phase is the structure
of chaotic states which is understood via its dimension. The temperature is the purity
of the initial states which is capable of measuring statistical uncertainty of the physical
state. The transition of phase vs. temperature then means sudden dramatic change
of the structure of chaotic states of given initial purity. This transition can hardly be
experimentally measured because the dimension of the states is still D < 2. Therefore,
the experimental chance to prepare such state is also negligible. In contrast to this jump
from fractal to nonfractal structure, the jump from nonfractal to no structure means that
no state can experimentally exhibit sensitivity to initial conditions. All states with purity
P < Py are doomed to converge to the maximally mixed state under our protocol.
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While the dimension gives qualitative description of the structure, we also presented
certain quantitative characteristic of the evolution of the mixed states by means of areas of
attractor basins captured by attractors within states of chosen purity. We demonstrated
that the relative number of purifiable states is reduced exponentially with decreasing pu-
rity. Nevertheless, the exponential function changes its parameters with the temperature
yielding more complex dependence behaviour than the qualitative characteristics.

The presented results describe dynamics within mixed single-qubit states. There
is an isomorphism between the single-qubit mixed states and a particular set of two-
qubit states that preserves evolution and all physically relevant properties of the state.
In consequence, these results are also valid for these particular two-qubit states when
properly interpreted.

The fact that the structure of chaotic state undergoes a transition ’fractal <> nonfractal
<> none’ means that the amount of chaotic states is qualitatively and also quantitatively
different. The exact nature of the evolution of these states remains unclear because
numerical simulations show half-attractive behaviour of certain states (we remark in pure
states the theory guarantees deterministic chaos in Julia set of the evolution function).
This newly-found property could possibly manifest in experiments. The question we settle
now is: What type of chaos can quantum physics allow? What regimes are forbidden by
quantum description of the world? The fractal shapes can be possibly change when the
protocol is modified. When the Hadamard gate is replaced by another protocol, we can
encounter different chaotic patterns and different attractors. We suggest detailed study
of the protocol modification. We believe the nonlinear dynamics in quantum physics is
unusually rich and exotic and has many to offer.
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Abstract. Quantum walk is a simple abstract model of an excitation spreading in some envi-
ronment represented by an undirected graph, where the state and the evolution of the system
are described by quantum physics. Therefore, quantum walks can be used for simulation of
various quantum systems. In this work, we investigate a percolated version of a quantum walk,
where the graph undergoes a continuous change during the evolution.

We use our previous general results to determine asymptotic transfer probabilities of an
excitation from some given initial vertex to a sink vertex for several examples of 3-regular graphs.
First we demonstrate our methods on one of the simplest graph representing a spatial structure
- the cube graph. Further we investigate tree graphs and present a closed-form expression for
the transfer probability on a class of "snowflake" graphs of arbitrary size.

Keywords: quantum walks, percolation, transfer, asymptotic behaviour

Abstrakt. Kvantova prochézka je jednoduchy model Sifeni excitace v prostiedi reprezento-
vaném neorientovanym grafem, kde je stav a vyvoj systému popsan pomoci kvantové mechaniky.
Kvantové prochazky tedy mohou slozit k simulaci kvantovych systému. V této praci se zabyvame
kvantovymi prochézkami s perkolaci, kde podkladovy graf podléhé nepretrzité zméneé pii casovém
vyvoji systému.

Pouzivame zde nase pfedchozi vysledky ke stanoveni asymptotické pravdépodobnosti pFenosu
excitace z daného pocatecniho vrcholu do koncového vrcholu pro nékolik prikladi 3-regulérnich
grafi. Nejprve demonstrujeme nase metody na jednom z nejjednodussich grafi predstavujicich
prostorové téleso - na grafu krychle. Dale zkoumame stromové grafy a dochazime k vyrazu pro
pravdépodobnost prenosu na tiidé grafi "snéhovych vlocek" libovolnych velikosti.

Klicovd slova: kvantové prochézky, perkolace, pfenos, asymptotické chovani

1 Introduction

Even without quantum computers capable of outperforming the classical ones, there is a
need for understanding quantum effects in various systems. Since the number of classical
bits needed to simulate a certain number of qubits grows exponentially, it is intrinsically
difficult to simulate a quantum system on a classical computer. Fortunately, one does

161



162 J. Mares

not need a universal quantum computer to deal with this problem. We may just use
some other quantum system, which we are able to controll and measure, and use it as a
quantum simulator [1] to gain insights about another system of interest. The model of
quantum walk can be used just for this purpose. An example of this can be the realised
simulation of two-particle dynamics by a 1-walker quantum walk in a 2-dimensional lattice
[2].

In our previous work [3], we have presented some general solutions of the asymptotic
behaviour of percolated coined quantum walks on general and in particular 3-regular
graphs. Now we apply these findings in the study of an asymptotic transfer of an exci-
tation in chosen graphs and classes of graphs. In the whole work we use our modified
framework for defining coined quantum walks. We shortly introduce this framework and
recapitulate the previous results (without derivations) so that we can use them further.

2 Coined Quantum Walk Definition

The quantum walk is defined on an undirected graph G(V, E), where V is the set of
vertices and F is the set of edges. We call GG the structure graph of the quantum walk.

The Hilbert Space

The walker is described as standing in some vertex facing towards some other vertex. We
associate with the structure graph G a directed graph G@(V, E(?) called the state graph.
Every undirected edge in the structure graph corresponds to two directed edges of the
state graph and these directed edges correspond to base states of the walker. The Hilbert
space H is, therefore, spanned by states \e(d)), where @ € E@ is some directed edge.
Apart from edges going from one vertex to another, the state graph may also contain
added loops. (Those may be used to assure regularity of the state graph.)

We will denote subspaces spanned by states corresponding to edges originating in
some vertex v € V' as H,. The Hilbert space ‘H of a quantum walk can than be written
as a direct sum of vertex subspaces: H = @, ., Ho.

The Time Evolution

The time evolution proceeds in discrete steps and is governed by a unitary evolution
operator U:

[W(t+1)) = Ulp(t)) = U [4(0)) .
The operator U can be further decomposed into applications of three unitary operators:
U =CPR.

Here R is what we call a reflecting shift operators and it moves the walker among vertices
- every state is mapped to the other one on the same undirected edge (the initial and
the terminal vertex are swapped) or it is left unchanged in the case of loops. Further,
the local permutation operator P is applied. It is a permutation operator that only acts
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locally in vertex subspaces and determines the final direction of the walker in the new
vertex. The combined action of R and P represents a so called shift operator. Finally,
there is the coin operator, which is an arbitrary vertex-local unitary operation.

Percolated Quantum Walk

By percolation we understand a random disturbance of the underlying structure graph
resulting in some broken edges that can not be traversed by the walker. In particular, we
will study dynamical percolation, where a new percolated graph (graph obtained from
the original structure graph by closing some edges) is generated in every step of the walk.
(An edge can, therefore, be closed in one step and open in the following step.)

The Hilbert space is not affected by the percolation, but directed edges corresponding
to a closed undirected edge are replaced by loop. Consequently, the reflecting operator
Ry (corresponding to some configuration of open edges K C F) does not move the walker
over a broken edge.

The coin operator C' and the local permutation P are not affected by percolation.

3 Asymptotic Evolution of Percolated Quantum Walks

The process of percolation brings classical randomness into the system and we now use
a density matrix to describe the state of the walk. The time evolution is now governed
by a random unitary operation:

plt+1) =Y mcUkp(t)UL,

KCcE

where Uy is the evolution operator with the modified reflecting shift operator Rx cor-
responding to the particular percolated structure graph G (V, K) for K C FE and 7 is
the probability of the occurrence of this configuration.

The asymptotic behaviour of a system with such time evolution is studied in [4]. The
asymptotic state is determined by so called attractors — solutions of the set of equations:

U X\Ul = \X,, forall K € 27, (1)
for some given A fulfilling |A| = 1.

The asymptotic state (the limit for infinitely many steps) of a percolated quantum
walk is than given as [4]:

prose(t) = SO NTe(p(0) X, ) X,
A

where 7 distinguishes different attractors for the eigenvalue A in the orthonormal basis of
the solutions of (1) and p(0) is the initial state of the quantum walk.



164 J. Mares

Pure Eigenstates Ansatz

In many cases it is possible to use a simpler approach [6] for finding the set of attractors
using common eigenstates of all unitary operators Uk:

Uk |$ai) = & |¢as) , for all K C 2, (2)

with a corresponding eigenvalue « (i distinguishes different common eigenstates corre-
sponding to «). Then the operator:

Yi= > A3 |6as) (65l

af*=\

is an attractor corresponding to the superoperator eigenvalue A = af*. It is common
that the whole set of attractors can be constructed from these so called p-attractors
and a single non-p-attractor resulting from the identity operator. We have shown in
the previous work that this is the case for a percolated quantum walk with the grover
coin on a 3-regular graph with the reflecting shift operator (the local permutation P is
the identity) or cycling shift operators (in every vertex, P can act as a clock-wise or
counter-clock-wise permutation).

4 Percolated Grover QWs on 3-regular Graphs

Here we will consider both true 3-regular undirected structure graphs (leading immedi-
ately to 3-regular state graphs) and structure graphs with some vertices of lower degree,
where we add some loops in the state graph to assure 3-regularity.

We use the 3-dimensional Grover coin in every vertex:

Gs =

W =

We have dealt with the asymptotic behaviour of such walks in the previous contri-
bution. Here we restrict ourselves to uantum walks with the reflecting shift operator
(the local permutation P is the identity), which exhibit an interesting phenomenon of

trapping.

Common Eigenstates

Since there are only p-attractors and the identity attractor for this percolated quantum
walk, the task of finding the asymptotic state reduces to finding the set of common
eigenstates of all evolution operators. There is always one p-attractor corresponding to
the eigenvalue 1, which has all the matrix elements the same. The interesting part are
the attractors corresponding to -1, where the condition (2) ultimately leads to two rules
for the common eigenstates:

1. The sum of vector elements in one vertex must be equal to 0.
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2. Vector elements corresponding to directed edges on one undirected edge must be
the same.

It can be shown that the equations are independent except from the case of a bipartite
structure graph. Then there are N = 2#V — #F common eigenstates corresponding to
the eigenvalue -1. If the graph is bipartite, one of the equations can be obtained from
the others and the number of independent common eigenstates is N = 2#V — #FE + 1.

It is possible to construct a non-orthogonal basis of the subspace of common eigen-
states in such a way that all the matrix elements are 1, -1 or 0. (This is no longer true
after orthogonalization.) Then the common eigenstates can be represented as paths of
non-zero elements in the graph, which are either closed or start and end in loop states.
(Due to the zero-sum condition, only two elements in every vertex can be non-zero, so
there is no branching.) As a result, the common eigenstates are typically restricted to
some subset of vertices and the walker can be trapped in some part of the graph.

Asymptotic Transport

We study a scenario where the walker starts in some given vertex and there is a sink in
some other vertex. Whenever the walker enters the sink vertex, he is lost in the sing.
This means that the state of the system is projected to a subspace of non-sink states
after every step of the walk.

We ask, what is the probability of the walker moving from the initial vertex to the
sink (excitation transfer) versus the case of the walker staying trapped in the non-sink
vertices of the graph.

If we have the common eigenstates of the percolated walk and we orthogonalize them
in such a way that we first use the sates with no sink overlap (preserving this property in
the maximal number of states after orthogonalization), we can determine the asymptotic
transfer probability easily. We just exclude the common eigenstates with sink overlap and
the probability of trapping is given by the overlap of the initial state with the remaining
common eigenstates.

5 Example: Percolated Grover QW on a Cube

One of the simplest examples of 3-regular graphs is the cube. Let us position the cube
in a coordinate system as shown in figure 1. Every vertex has one edge in the direction
of every axis and we use this to denote states of the walk - the computational basis is
chosen in the order e,, ey, e, in every vertex.

The graph is bipartite and has 8 vertices and 12 edges. Therefore, we must find
N = 16 — 124+ 1 = 5 common eigenstates corresponding to the eigenvalue -1. The
cube has 6 faces with even number of edges and we simply choose 5 of those and use
common eigenstates corresponding to cycles on these faces (denoted as "down", "left",
"back", "right", "front"). For example the eigenstate on the left edge will be:|¢l(_1)> =
[-1,0,1,-1,0,1,0,0,0,0,0,0,—1,0,1,—1,0,1,0,...,0]". The only common eigenvector
for the eigenvalue 1 has all elements equal: [)(*1) = \/Lﬂ[l, L1,..., 1%
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Figure 1: Coordinates on the cube graph. The vertex numbers are chosen so that they
correspond to binary numbers given by coordinates zyx. We denote faces by their position
so for example the left face has vertices vg, v1, v5 and vy.

Further calculations are performed using Wolfram Mathematica software, which al-
lows for symbolic solutions. Overall, we obtain a complete set of 37 attractors, 10 cor-
responding to the eigenvalue -1 and 27 corresponding to +1 allowing us to calculate the
asymptotic regime when an initial state is given.

The sink is located in the vertex v; and the initial state is always localised in the vertex
vp. The common eigenstates with no sink overlap correspond to the "down", "left", and
"back" faces. Depending on the initial state, the transfer probability ranges from 70 % to
100 %. The full transfer occurs exclusively for the initial state [1g) = \/Lg[l, 1,1,0,...,0],
because it is orthogonal to all trapped common eigenstates with no overlap with the sink:
]w(([l)> : \wl(fl)> and \wéfl)) States with the minimum transfer are linear combinations of
the states:

o |,] 1 ]. (3)

Obviously, if the walker begins for example in the state Wf[l)), he will stay trapped in
that state and the transfer probability will be 0, but this state is not localised in the
vertex vy at the beginning.

This kind of asymptotic trapping has already been shown in [7] for a quantum walk
on a line with a coin state corresponding to no movement of the walker ("lazy quantum
walk"). Our result demonstrates that the trapping is not associated with the presence o
these no-movement states, but rather with the presence of vertices of the degree higher
than two.

We also investigate (numerically) the transfer probability in the non-percolated version
of the reflecting quantum walk on a cube graph. Obviously, the common eigenvectors
present in the percolated version are also eigenvectors for the non-percolated walk, so
the trapping is again present for most of the initial states. Nevertheless, more trapped
eigenvectors can be identified. There are eigenstates corresponding to the eigenvalue -1

similar to {]wi(*%} { o The difference is that the values 1 and -1 of the elements
ie{dl,b,r,
oscillate on the level of directed edges. (There is no condition requiring the elements

corresponding to the same undirected edge to be the same.) For example the eigenvector
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Figure 2: Numerical simulation of Grover quantum walk on a cube graph with a reflecting

shift operator: without percolation, initial states |1)y) = \%[1, 1,1,0,...,0] (blue circles)

and [Yg) = \%[1, —1,0,0,...,0] (purple squares) and with percolation , initial states
Vo) = \/Lg[l, 1,1,0,...,0] (yellow diamonds) and |¢g) = \%[1, —1,0,0,...,0] (green tri-
angles). The horizontal axis shows the step of the walk and the vertical axis cumulative
transfer probability.

corresponding to the left face is:
IX\™Y) =[-1,0,1,1,0,—1,0,0,0,0,0,0,1,0,—1,—1,0,1,0,...,0]".

The vector 1) = \%[1, 1,1,0,...,0] is again orthogonal to all the trapped eigenstates
and therefore is fully transferred. The minimum transfer probability is again for linear
combinations of the states (3). Nevertheless, the transfer probability is only 40 %, so the
chance of trapping is doubled compared to the percolated walk. This is associated with
the presence of the other set of localised eigenvectors.

Results of a numerical simulation are shown in figure 2. We can see that the per-
colated walk converges to higher asymptotic transfer probability for the initial state

[¢0) = 751, —1,0,0,....,0].

6 Example: Percolated Grover QW on Tree graphs

A class o graphs with some interesting properties are tree graphs - graphs with no cycles.
Let us now consider 3-regular tree graphs. In fact, an undirected structure graph can not
be a 3-regular tree graph, but we add loops in the state graph to achieve the 3-regularity.

The tree structure makes the construction of the set of p-attractors easy. The common
eigenstate corresponding to the eigenvalue 1 is trivial (all vector elements are the same).
For the eigenvalue -1 we need to find N = 2#V — #F common eigenstates. A tree graph
with #V vertices has exactly #F = #V — 1 undirected edges and therefore 2# F paired
directed edges and finally the remainder of 3#V — #2FE = 2#V — #FE + 1 loops.

We can just choose one loop as a starting one and construct independent common
eigenstates as paths from this loop to all other loops. Nevertheless, the common eigen-
states have to be orthogonalized while keeping in mind that the eigenstates with no sink
overlap have to be used first in the Gram-Schmidt process.
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Figure 3: Snowflake graphs of the order 1, 2 and 3. The walker starts in the middle
vertex and the sink vertex is not filled. The common eigenstates correspond to paths in
the graph depicted by lines. The dotted-line states have an overlap with the sink and
therefore will be removed from the asymptotics. The dashed-line states are crucial since
those have no overlap with the sink and have an overlap with the initial vertex. In the
orthogonalisation, we start with the solid-line states (no overlap with the sink or the
origin), then we use the dashed-line states and the dotted-line states must be added last.

"Snowflake" Graphs

Let us consider a class of tree graphs recursively generated in the following way: The
graph of the order 0 is just one vertex with three loops. The next order is obtained by
replacing every loop by an edge leading to a new vertex with two loops.

Let us now investigate trapping in these graphs with the walker starting in the middle
vertex and with a sink in one of the border vertices. The asymptotic transfer is given
by the presence of trapped common eigenstates of the eigenvalue -1. A possible choice of
those (before orthogonalisation) is shown in figure 3.

After orthogonalisation, we have only two common eigenstates with an overlap with
the original vertex and no overlap with the sink (only one for the order 1). Let us denote
them as |7T) (spanning only the two branches without the sink) and |73) spanning the
whole graph without the sink vertex. Those are the only ones contributing to the trapping.
The amount of trapping is given by an overlap of the initial state with these two states.

The state |T}) is very symmetrical and we will describe it as \‘/tjlvll, where |t1) is the

state scaled to natural numbers. The state |t;) has elements 28 and —2* in the initial
vertex and the values are halved in every branching with also gaining the -1 phase.

Let us also denote |T) = \|;—2Nl2 The state |t;) has elements 2%, 2% and —2%! (on the
sink branch) in the initial vertex. On the non-sink branches it is similar to |¢;), but the
corresponding elements in the two branches have equal signs. The sink branch is more
complicated, because the presence of the sink introduces asymmetry. Nevertheless, in
the end we only need some information about the normalisation constant, in particular
that Ny > 3N;. To prove this, let us first note that the squares of the elements on the
non-sink branches contribute N; to the sum. Now we can consider every element on the

sink branch with two corresponding elements on the non-sink branches. If the non-sink
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branch was symmetrical, the values on the sink branch would be double the values on
the non-sink branches. Then since (2a)* = 4a® = 2(a® + a?), the normalisation constant
would be Ny = 3N;. The sum of the elements in every vertex must be the same and since
uneven splitting will always generate larger sum of squares, it will in fact be Ny > 3N,
for arbitrary order k.

We note that not only (77 |72) = 0, but also the restrictions of these states to the initial

vertex are orthogonal. Therefore, the trapping will be maximal, if the initial state is only
. . . . . . _2k+1’2k72k‘ T
a scaled version of the restriction with the greater magnitude. Since “MOW—WT]H =

. T
% = /3 and /N, > /3Ny, the trapping will be always maximal for the initial

state \%[0, 1,—1,0,...,0]" having an overlap with |7}).
Thanks to a simple structure of |T1), we can explicitly calculate the normalisation
constant Nj as:

k—1
Nl(k,) _ 2k+1 + Z 22+i(2k’—i)2 — 2k+1(2k+2 o 3)

i=0
This allows us to express the maximal trapping probability on a snowflake graph for an
arbitrary order k as:

Ptrap<k) = Nl(k) - k42 _ 3

The values for the smallest graphs are P,4,(1) = % = 0.4 for the order 1, Py,,(2) = % =
0.307692 for the order 2 and Pj.q,(3) = % = (.275862 for the order 3. The maximal
trapping probability decreases with k, approaching the value 1/4.

We have also investigated a "disabled" version of the graphs where one of the non-sink
branches is missing. Here the asymmetry prevented us from finding nice simple results for
a general order of the graph. Nevertheless, our procedure allows for finding trapping rates
for some small orders. Using Wolfram Mathematica, the maximal trapping probabilities
were found to be Py(1) = 0.571 for the order 1, Py(2) = 0.528 for the order 2 and
Pyis(3) = 0.522. While for the order k£ = 1 the state with maximal trapping is the same
as for the non-disabled version, for other orders the states with maximal trapping differ
(from the one for k£ = 1 and also among themselves).

We can see, that in the disabled version the trapping is stronger, which is due to
a very high weight on the loop in place of the missing branch, which is now a part of
the initial vertex. The trapping also decreases slower with increasing order of the graph.
Since the first trapped state |T}) is analogous to the one for non-disabled graph |T}),
where the missing elements are just cut off, we can estimate the the maximal trapping
probability by the one for a state \%[0, 1,—1,0,...,0]T having a maximal overlap with

IT1). (The true maximal trapping state is different and has a non-zero overlap with |73).)
The normalisation constant is:
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and the maximal trapping probability

2_22k 2k+1 9 9
Pais(k) > — = = > .
wlk) 2 G T PP 352 5-8.2F %5

Therefore, the maximal trapping probability will not decrease under % for an arbitrary
order of the graph. Nevertheless, it can stay higher and the limit may be different.

7 Conclusion

In this work we apply general results presented in the previous contribution. Certainly, it
is advantageous to make some modifications of the procedure suited for particular graph
of interest, but it is demonstrated that our methods are applicable for quantum walks on
various graphs.

As seen mainly in the example of the cube graph, percolation can enhance the transfer
probability on the studied graph by excluding some trapped states from the asymptotic
regime. This result also transfers to other 3-regular graphs, since analogous trapped
states will be present. Note also, that the analytical solution of the percolated quantum
walk brings a significant insight into transfer properties of the unpercolated walk.

On the example of snowflake graphs we demonstrate that the results may be rather
counter-intuitive. By removing a non-sink branch, where the walker could be trapped,
we increase the maximal trapping probability. Nevertheless, thanks to the analytical
solution, this can be understood mathematically.
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Abstract. A synchronizing delay is a constant related to circularity of morphism. It is well-
known that knowledge of the value of the synchronizing delay is very helpful when analysing the
structure of bispecial factors of a given morphism. As shown in this paper, it is also possible
to use this connection in the opposite direction: if the structure of bispecial factors is known, a
good upper bound on the value of the synchronizing delay can be found. Using this method, a
linear upper bound on the minimal value of the synchronizing delay of any primitive Sturmian
morphisms is given.

Keywords: circularity, Sturmian morphism, synchronizing delay

Abstrakt. Synchroniza¢ni zpozdéni je konstanta svazané s cirkularitou morfismi. Je znamo, Ze
znalost hodnoty synchroniza¢niho zpozdéni muze byt s vyhodou vyuZita pfi analyze struktury
bispecialnich faktori daného morfismu. V tomto ¢lanku ukazujeme, Ze tento vztah lze vyuzit také
opafnym smérem: pokud je struktura bispecidlnich faktort zndma, lze toho vyuzit ke stanoveni
dobrych hornich odhadi hodnoty synchroniza¢niho zpozdéni. S vyuzitim této metody je nalezen
linearni horni odhad hodnoty synchroniza¢niho zpozdéni pro vSechny primitivni sturmovské
morfismy.

Klicovd slova: cirkularita, sturmovsky morfismus, synchroniza¢ni zpozdéni

1 Introduction

The notion of circularity originally comes from theory of codes, where circular codes are
well-known. A set X’ of finite words is a code if each word in X" (the set of all finite
concatenations of words from X) has a unique decomposition into words from X. If we
slightly modify the requirement of uniqueness, we get the definition of a circular code: X
is a circular code if each word in X' written in a circle has a unique decomposition into
words from X.

In combinatorics on words, an analogue to codes are morphisms which are injective
on their languages. Circularity is defined as slightly relaxed injectivity: a morphism is
circular if all long enough factors of its language have a unique preimage in its language
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except for some prefix and suffix bounded in length by some constant. This constant is
called a synchronizing delay and it is studied in this paper.

As explained by Cassaigne in [1]|, knowledge of the value of the synchronizing delay
can be very helpful when analysing the structure of bispecial factors in languages of
fixed point of morphisms. This idea was further developed by one of the authors in [3],
where an algorithm for generating all bispecial factors is given. This algorithm works
for a large family of morphisms and its computational complexity depends on the value
of the synchronizing delay. Moreover, as shown in this paper, this link between the
synchronizing delay and the structure of bispecial factors can be used also in the opposite
direction: if the bispecial factors are known, it is possible to find a good bound on the
value of the synchronizing delay.

Mossé in [9] proved that every injective primitive morphism is circular. In fact, circu-
larity is closely related to repetitiveness [8, 6]. Because of this connection, the circularity
is decidable by an efficient algorithm [5]. However, if the morphism is circular, the al-
gorithm does not provide any information about the value of the synchronizing delay
(except for finiteness). Recently, a theoretical upper bound on this constant for all prim-
itive morphisms was given in [2|, but this bound is unreasonably huge and clearly is very
far from being optimal. No other general upper bounds are known.

Therefore, we focus on some restricted cases in order to find some more reasonable
bounds on the synchronizing delay. We have already studied the case of binary k-uniform
morphisms in [4|, where we found a polynomial (in k) upper bound. In this paper we
focus on primitive Sturmian morphisms, which are well-known and widely studied objects
in combinatorics on words [7].

The main result of this work is a linear (in the length of images of letters) upper
bound on the synchronizing delay of primitive Sturmian morphisms. In particular, we
prove the following result. The details of the proof are given in Section 3.

Theorem 1. Let v be a primitive Strumian morphism. Then its minimal synchronizing
delay Zin 1s bounded as follows:

Zmin < 3[(0)] +2[y(1)] = 3.

Moreover, it seems this bound is not far from being optimal. In fact, we suppose
that methods similar to those used in [4] will allow us to find the exact value of the
synchronizing delay for a given primitive Sturmian morphism.

2 Preliminaries

A finite set of symbols is an alphabet A. A finite word of length n over A is a string
U = Ugly * - Uy_1, Where u; € A for all i =0,1,... n— 1. The length of u is denoted by
|u] = n. The set of all finite words over A is denoted by A*, the empty word is € and
At = A*\ {e}. An infinite word over A is a sequence u = ugujus - - - = (u;)ien € AY with
u, € Aforallie N=0,1,2,...

If a word u € A* is a concatenation of three (possibly empty) words x,y and z from
A*, ie. u = xyz, the word x is a prefix of u, z is a suffix of u and z is a factor of u.
A factor is denoted by y C u. We put z7'u = yz and uz~! = zy. Similarly, w € A*
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is a factor of u = wpujus---, denoted by r C u, if there are indices ¢ < j such that
T = WjUit1 - .. u;. The index 7 is called the occurrence of r in u.

The language L£(u) of an infinite word u is the set of all its factors. The mapping
Cu : N — N defined by Cy(n) = #{w € L(u) : |w| = n} is called the factor complexity
of the word u. An infinite word u is eventually periodic if u = wovvvvv ... for some
v,w € A*. Otherwise, u is aperiodic. It is easy to prove that an infinite word u is
eventually periodic if and only if its factor complexity C, is bounded. Moreover, the
factor complexity of any aperiodic word satisfies Cy(n) > n + 1 for every n € N. An
infinite word u with Cy(n) = n + 1 for every n € N is called Sturmian word.

A word w C u is called right special factor if there are at least two letters a,b € A
such that both wa and wb belong to the language £(u). Similarly, a word w  u is called
left special factor if there are at least two letters a,b € A such that aw,bw belong to
L(u). If a factor w is both left and right special then it is called bispecial factor.

A morphism over A* is a mapping ¢ : A* — A* such that ¢ (vw) = ¥ (v)(w) for all
v,w € A*. The domain of the morphism 1 can be naturally extended to AN by

Y(upuyug - -+ ) = P (ug)h(uy )t(ug) - - - .

A fixed point of the morphism % is an infinite word u such that ¢ (u) = u.

A morphism v is non-erasing if )(a) # € for all a € A. A morphism ¥ is primitive if
there exists a positive integer k such that the letter a occurs in the word ¥*(b) for each
pair of letters a,b € A. And a morphism ¢ is injective if for every u,v € A*: ¥ (u) = ¢ (v)
implies that u = v.

2.1 Circularity

In [1] circularity is defined using the notion of synchronizing point (see Section 3.2 in [1]
for details). We give here an equivalent definition employing the notion of interpretation.

Definition 2. Let ¢ be a non-erasing morphism over A* with fized point u and u C u.
A triplet (p,v,s), where p,s € A* and v C u, is an interpretation of the word wu if

$(v) = pus.

Definition 3. Let ¢ be a morphism over A* with fixed point u. We say that two interpre-
tations (p,v, s) and (p',v',s") of a word u  u are synchronized at position k, 0 < k < |u,
if there exist indices i, ] such that

... v) =pur...up  and V- v;) = pug - ug,

where v = vy ---v, € A%V =0 v € A" and u =uy---up € A (If k = 0, we put
uy -+ ugp = €.) Two interpretations that are not synchronized at any position are called
non-synchronized. We say that a word v — u has a synchronizing point at position £k if
all its interpretations are pairwise synchronized at position k.

Definition 4. Let ¢ be a injective morphism over A* with fixed point u. We say that ¢
is circular (on L£(u)) if there is a positive integer Z, called a synchronizing delay, such
that any u C u longer than Z has a synchronizing point. The minimal constant Z with
this property is denoted by Zin.
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Example 5. The word u = 010010100100101001010 - - - is the fixed point of the morphism
10— 010,1 — 01. For example, the factor 10 is non-synchronized, however, the factor
01 has a synchronizing point at position 0 (before letter 0): |01. In fact, it is easy to
see that every factor of length 3 has its synchronizing point: 0|01, [010, 10|0, 1|01. Since
the minimal value of the synchronizing delay represents the length of the longest factor
without synchronizing point, the minimal value of the synchronizing delay it this case
Is 2.

2.2 Sturmian words and morphisms

Sturmian words appear in many various mathematical concepts and so there is a lot of
equivalent definitions. For example, any Sturmian word u can be identified with an upper
or lower mechanical word. A mechanical word is described by two parameters: slope and
intercept. The slope is an irrational number o € (0, 1) and the intercept is a real number
p € [0,1). To define the lower mechanical word s, , = (s,) we put Iy = [0,1 — ). The
n'" letter of s, , is as follows:

| 0 if the number an+p mod 1 belongs to Iy,
T 1 otherwise.

The definition of the upper mechanical word s, , = (s},) is analogous, it just uses the

interval Iy = (0,1 — . Let us stress that s,, # s/, for at most one index n € N. All upper
and lower mechanical words are Sturmian and any Sturmian word equals to a lower or
to an upper mechanical word. Language of a mechanical word depends only on . Many
further properties of Sturmian words can be found in |7].

A morphism 9 is called Sturmian if ¥)(u) is Sturmian word for any Sturmian word u.
It is easy to prove that every Sturmian morphism is injective. As mentioned in Introduc-
tion, Mossé [9] proved the following theorem: Every injective and primitive morphism is
circular. Since we study only primitive Sturmian morphisms, these morphisms are always
circular.

We will work with these four Sturmian morphisms:

‘ 0—0 ' 0—0 . 0— 01 ' 0— 10
Y1510 P 1o )11 LR F

and with the monoid M generated by them, i.e. M = (@4, @b, Ya, @s). For a non-empty
word u = ug - - - u,_1 over the alphabet {a,b, o, 5} we put

Pu = Pug © Pug © "0 Py
Note that the monoid M is not free. It is easy to show that for any k£ € N we have
PaakB = Ppbka and Paakb = Pvpka -

Moreover, Theorem 2.3.14 in [7] says that these two relations are the only relations
on the monoid M.
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Remark 6. The morphism F : 0 — 1,1 — 0 cannot change the factor complexity of
an infinite word and so E is clearly Sturmian morphism. But F does not belong to
the monoid M, in fact, E is the only missing morphism. More precisely, any Sturmian
morphism 1 either belongs to M or ¢y = no E, where n € M. To generate the whole
monoid of Sturmian morphisms, usually denoted by St, one needs only three morphisms,
say F, ¢, and ¢,. We have

Po = EQOaE and ¥Yp = ESObE (1)

Our aim is to study the fixed points of Sturmian morphisms. If u is a fixed point of 1,
it is also a fixed point of ¥2. Due to (1), the square ¥? always belongs to M. Therefore
we may restrict ourselves to fixed points of morphisms from M.

Example 7. The Fibonacci word is the fixed point of the morphism 7 : 0 — 01,1 — 0.
Morphism 7 is Sturmian, but 7 ¢ M. We see that 7 = ¢, o E and by the relations (1)
we have 72 = 5.

It is easy to prove that a Sturmian morphism ¢,, from the monoid M is primitive if
and only if w contains at least one letter from both sets {a, b} and {«, 5}.

2.3 Conjugate morphisms

We say that a morphism ¢ : 0 — w;, 1 — wq over {0,1}* has 1-conjugate, denoted by
conj, (¢), if the last letters of the words w; and ws are equal. If we denote this letter by
T, we put

0 — zwiz?

1 — zwyz!

it
or equivalently, 1 = conj; () if there exists a letter x € {0, 1} such that
zo(v) = ¢Y(v)x  for each v € {0,1}".
Ezample 8. In this notation, ¢, = conj;(¢,) and pg = conj, (¢.) as
0pa(v) = pp(v)0  and 1, (v) = @s(v)l  for each v € {0,1}".

We say that non-erasing morphisms ¢ and v are conjugate if one can be reached from
the other one by applying the mapping conj, repetitively.

Let 1 be a non-erasing morphism. Denote by J; the set of all morphism which
are conjugate with 1. Obviously, we get for any ¢, ¢’ € Jy that |p(0)| = |¢'(0)| and
lo(1)] = |¢'(1)|. Let us put |p(1)| + |¢(0)| = L. If the morphism ¢ is Sturmian, then,
by Proposition 2.3.21 in [7], the cardinality of 7, is L — 1. Therefore, there are L — 1
morphisms in 7 and they are all mutually conjugate.

Finally, let us notice that conjugacy could be analogously done also in the opposite
direction, in that case the common letter goes from the beginning of images to the end
of images. Indeed, the set [J,; remains the same.
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FEzample 9. Consider the Sturmian morphism ¢ = ppz: 0 — 010, 1 — 01. Since L =5,
the set J, contains four distinct morphisms: ¢y 0 — 010, 1 — 01, ¢a5: 0 — 100,
1 — 10, @pa: 0 — 001, 1 — 01 and @uq: 0 — 010, 1 — 10. We can also see all these
conjugates from the following notation:

¢(0)u 010010 010010 010010 010 010
Y(u 01010 01010 01010 01010’

(2)

where u is a sequence of letters which one by one moves from the beginning of images to
the end of images. Clearly, it is: |u| = L — 2.

3 Upper bound on synchronozing delay

To bound the value of the synchronizing delay, we use knowledge of the structure of
bispecial factors in fixed points of Sturmian morphisms. There are several concepts
which enable us to describe the structure of bispecial factors in Sturmian words. We use
the method similar to the basic ideas from |[3].

Let ¢ be a primitive Sturmian morphism with a fixed point u. First, we study
how bispecial factors change under the application of one of the following morphisms:
Pa, Pb, Pa, . In particular, we show that every bispecial factor longer than 1 has at
least one synchronizing point under any of these morphisms. By repeating this process,
we can show that every long enough bispecial factor has at least one synchronizing point
under the morphism v too. Then, we find some suitable bispecial factor » and we bound
its length. Finally, we determine how often the bispecial factor r has to appear in u. As
a consequence, we are capable to find a length K such that every factor longer than K
contains at least one occurrence of a bispecial factor r and so at least one synchronizing
point. But it means that we have a upper bound on the value of the synchronizing delay

3.1 Preimages of bispecial factors

Because of (1), the role of ¢, and ¢, and, analogously, the role of ¢, and ¢z are symmetric,
so we focus only on images under the morphisms ¢, and ¢,. We use results from |[7],
more precisely, a small modification of Proposition 2.3.2:

Proposition 10 (|7]). Let x be an infinite word.

o [f py(x) is Sturmian, then x is Sturmian.

o [f .(x) is Sturmian and x starts with the letter 1, then x is Sturmian.
Lemma 11. Let u and W' be Sturmian words such that u = p,(u’). Let w be a bispecial
factor of w with |w| > 1. Then there is a w' T u’ such that w = @y(w’)0. Moreover,

this factor w' is unique, it is a bispecial factor of W' and all the interpretations of w are
synchronized both at the beginning and at the end of the factor gy(w').
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Proof. Take a Sturmian word u,u’ such that u = ¢,(u’). By the form of morphism ¢y,
u can be written as u = 0101021 ---, where k; > 0 for all i € N. Take a bispecial
factor w of u with |w| > 1. Then the word w must both begin and end with 0. So we
can easily find a word w’ such that w = ¢, (w’)0, it suffices to cut w into blocks 0 and 01
(we omit the last letter 0) and desubstitute 0 and 01 for 0 and 1 respectively. It remains
to show that this w’ is unique. Indeed, it follows from the fact that the morphism ¢ is
injective. The factor w’ is obviously a bispecial factor, because of the form of ¢, and the
fact that w is a bispecial factor. Since there is a synchronizing point before every letter 0,
all the interpretations of w are synchronized both at the beginning and at the end of the
factor ¢p(w’). In other words, the occurrences of bispecial factor w in u are one-to-one
to occurrences of bispecial factor w’ in u’.

[

Lemma 12. Let u and u’ be Sturmian words such that u = ¢,(0’') and u starts with
the letter 1. Let w be a bispecial factor of w with |w| > 1. Then there is a w' T U’ such
that w = Op,(w'). Moreover, this factor w' is unique, it is bispecial factor of 0’ and all
the interpretations of w are synchronized both at the beginning and at the end of factor

‘Pa(w,)'

Proof. Take a Sturmian words u, u’ such that u = ¢,(u’). By the form of morphism ¢,,
u can be written as u = 1010%10%21 - ., where k; > 0 for all i € N. Take a bispecial
factor w of u with |w| > 1. Then the word w must both begin and end with 0. So we
can easily find a word w" such that w = 0p,(w'), it suffices to cut w into blocks 0 and
10 (we omit the first letter 0) and desubstitute 0 and 10 for 0 and 1 respectively. This
w’ is unique, since the morphism ¢, is injective. The factor w’ is obviously bispecial
factor, because of the form of , and the fact that w is a bispecial factor. Since there is
a synchronizing point after every letter 0, all the interpretations of w are synchronized
both at the beginning and at the end of factor ¢,(w’). In other words, the occurrences
of bispecial factor w in u are one-to-one to occurrences of bispecial factor w’ in u'.

O

The only case which is not covered by Lemmas 11 and 12, namely the case that
u = @,(u') and u begins with 0, can be transformed to one of the previous cases.

Lemma 13. Let u be a Sturmian word such that u starts with the letter 0 and u = ¢, (')
for some word u'. Then there exists a Sturmian word v such that u' = 0v and u = (V).

Proof. By using the following easy observation ¢,(0w) = ¢,(w0) for every w € {0, 1}*,
we have 1 = @,(w) = ¢, (0v) = op(v).

Prove the observation by induction on |w|. The first step w = € is trivial since
©a(0) = ¢p(0). Suppose that ¢,(0w) = p(w0) for every w € {0,1}*. Then

©a(0wl) = 0 (0w) e (1) = @a(0w)10 = @u(w0)10 = ¢u(w)010 = w,(w10),
Pa(0w0) = @a(0w)pa(0) = @u(w0)0 = 3 (w00) .
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In accordance with Lemma 13, in this case we will use the Sturmian word v instead
of the word u’, since we need to maintain the Sturmian property. Indeed, in this case
the occurrences of bispecial factor w’ in v are not exactly one-to-one to occurrences of
bispecial factor w in ¢, (v), the first occurrence of w’ in v (in this case w’ is a prefix of
v) does not have its complete corresponding occurrence of w in ¢,(v) — the first letter
0 is missing. However, this exception is not substantial and we can omit it without
lose of correctness: there are infinitely many occurrences of any bispecial factor in every
Sturmian word and the new uncomplete bispecial factor is not important at all.

3.2 Suitable bispecial factor

Let ¢y = ¢,, be a primitive Sturmian morphism, w = wy - - - w; and u be a fixed point of
1. Without lose of generality, we can suppose that letter 0 is more frequent in u, since
the exchange of letters 0 <» 1 cannot change the value of the synchronizing delay. It
means that 0 is a bispecial factor in u. The aim of this section is to find the shortest
bispecial factor r in u containing ¥ (0), prove that r has at least one synchronizing point
and bound its length.

First, we apply the morphisms ¢,, € {@a, @b, Pa,pp} on the infinite word u, the
choice of the morphism depends on the last letter of the word w. Because of Lemma
11 or 12 (or their analoques for gz, ¢,), the infinite word ¢, (u) is Strumian and we
obtain a new bispecial factor r; = s1¢y, (0)p1, where s1,p1 € {¢,0}, from the bispecial
factor 0. Moreover, the bispecial factor 71 has a synchronizing point under ¢,, and the
occurrences of 0 in u and r; in ¢, (u) are one-to-one. Clearly, we can continue in the
same way: application of the morphism ¢,, , leads to the new infinite word ¢, _,u, (1)
and the bispecial factor 19 = 9w, _, (11)P2 = 20w, (51)Puwp_ywi (0)Puw,_, (P1)p2, which
has a synchroninizing point under ¢,,, , and its occurrences in ¢, ., (1) are one-to-one
to occurrences of 0 in u.

After repeating this process k-times, we obtain the original infinite word u again and
the bispecial factor r, = sgppw,pr = -+ = s¥(0)p. This bispecial factor r has some
synchronizing point under ¢,,, and its occurrences in u are one-to-one to occurrences of 0
in u. But it means that r; must have at least one synchronizing point under the morphism
¥ too. One can also realize that 7 is the shortest bispecial factor of u containing ¢(0).

It remains to bound the length of words s and p on the length of ¥(0) and ¥(1). As
follows from the notation (2) in Example 9, the number |s| + |p| has to be equal to the
length of the word u (from Example 9): |u| = L—2 = ¢(0)+¢(1)—2. Now we summarize
all these result in the following observation.

Observation 14. Let ¢ be a primitive Sturmian morphism with a fixed point u such
that 0 is more frequent letter in u. Then the shortest bispecial factor r in u containing
¥(0) has at least one synchronizing point under 1 and its length is bounded by |r| <

2[9(0)] + |(1)] = 2.
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3.3 Occurrences of suitable bispecial factor

Finally, we have to determine how often the bispecial factor r appears in u, more precisely,
we have to determine the length of the longest factor of u which does not have to contain
the whole factor r as its factor.

Let us denote by v the longest factor of u which does not contain any occurrence
of r (the beginning of the factor ). Since the word u is Sturmian and the letter 0 is
more frequent in u, the word 11 is not a factor of u. We also know the occurrences

of 0 and r always coincide in u. Based on this two observations one can realize that
lv| < [(0)] + |1p(1)] — 1. Therefore, we can bound as follows:

L <ol +[r] = [9(0)] + [ (D)] = T+ 290)] + [¢ (V)] = 2 = 3[¢(0)] + 2| (1)] - 3.

In other words, every word longer that L has to contain the word r as its factor and so
has to contain at least one synchronizing point under 1. This concludes the proof since
now he have

Zmin < L < 3‘¢(0)’ + 2|¢(1)’ -3,

which is the statement of Theorem 1.
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Abstract. The effect of unilateral sources on the existence of patterns in reaction-diffusion
equations has been studied in a vast number of papers. There was proved that this type of
sources leads to an emergence of patterns for diffusion rates, for which this cannot happen in
systems without sources. In this paper, basic regularity theorems and Hopf lemma are used
to prove the existence of bifurcation points in a system with two unilateral condition and the
existence of a new class of non-homogeneous solutions (i.e. patterns). The explicit formula for
such bifurcation points is derived as well as the form of the solutions.

Keywords: reaction-diffusion equations, bifurcation, unilateral sources

Abstrakt. Vliv jednostrannych zdroji na existenci vzoru v systémech reakce-diffuze byl studova
n v mnoha ¢lancich. Ukazuje se, Ze tento typ zdroji vede k existenci vzort i v systémech s
hodnotami diftiznich parametri, pro které by bez pritomnosti zdroju k formovéani vzora nedoslo.
V tomto ¢lanku je pomoci zakladnich vét o regularité parcialnich diferencialnich rovnic a Hopfova
lemmatu dokézana existence bifurka¢nich bodd v mnoziné takovych parametri. Déle je zde
odvozen explicitni vzorec pro vypocet téchto bodu a popsana konstrukce piislusnych reseni.

Klicovd slova: rovnice reakce-difuze, bifurkace, jednostranné zdroje

1 Introduction

The aim of this paper is to study bifurcation from zero of stationary solutions of the
reaction-diffusion system

dlAu + bllu + blgv +nq (’LL, U) =0 in Q\QU,

1
dgAU + bglu + bQQ’U + TLQ(’LL, U) =0 in Q\QU, ( )

*This work has been supported by the grant SGS16,/239/0HK4/3T /14
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u>0, diAu+ bju+bpv+ni(u,v) <0 in Qp,
u- (dyAu+ bjyu + bisv + nq(u,v)) =0 in Qp,

v >0, doAv+ byju + byv + ng(u,v) <0 in Qp, (2)
v - (daAv 4 boru + bogv + ng(u,v)) =0 in Qp,

u=v=0 on 01,

)

in a bounded domain 2 C R with Lipschitz boundary and with unilateral obstacles in
the set {2y C R. This is a system containing a mechanism which prohibits the decrease
of concentrations of u an v below zero in the area €.

Let d; > 0 be fixed, dy € R be a bifurcation parameter and n,,n, = 0. If the obstacle
is not present, i.e. Qy = (0, then under the assumption

by > 0> b22, by >0 > b12, Tr B = by + bas < O, det B = by1bys — biobey > 0, (3)

the set of all positive critical points can visualized as a system of hyperbolas in the
space R? with the asymptotes x;, see Fig. 1. More precisely, for any fixed positive

d Cal: G0 Copn G

dq

xil )(3 X2 )(1

Figure 1: Sketch of hyperbolas.

dy € (0,21)\{x2, x3,- - } it is possible to find a value dy for which there exists a nontrivial
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solution of the system without obstacles. The sets Dg, Dy are called the domain of
stability and instability respectively. In the domain of stability, the trivial solution of the
system (1) with Qy = () and with the Dirichlet b.c. is stable and hence, there cannot
appear any non-homogeneous solutions. On the other hand, in the domain of instability
the trivial solution of this system is unstable, and there are nontrivial non-homogeneous
stationary solutions, i.e. patterns.

In a general system with ny,ny # 0, (4) and (3), these critical points can be under
additional assumptions also bifurcation points. For particular systems there can exists
non-homogeneous solutions (patterns) even in Dg, but there is no guarantee that it will
happen for an arbitrary system. Let us note that the assumptions (4) guarantee that the
system has a trivial solution.

However, if the unilateral sources are active and (3) is true, there exist a branch
of critical points, which interfere into Dg, and therefore there are nontrivial solutions.
Under some additional assumptions these critical points can be also bifurcation points of
the problem (1), (2); see Theorem 1. This shows that the addition of unilateral sources
leads to an occurrence of non-homogeneous stationary solutions, i.e. patterns, for the
diffusion parameters, for which it is impossible in the system without these unilateral
sources. In addition to the previously published result [1], the new bifurcation branch
will be described by an ezact formula, depending only on parameters b;;, d; of the system
and eigenvalues of Laplacian on the set Q\y with Dirichlet boundary conditions. The
analytic results will be demonstrated on particular examples.

This paper is a natural generalization of the results proved in [3] for the case of Laplace
equation. Although the generalization to the system of two partial differential equations
is straightforward, there are several technical problems which have to be treated.

1.1 Abstract formulation

Let Q C R? and Qp C R? be bounded domains with a Lipschitz and C? boundary
respectively. Let Qp C Q. The nonlinear functions ny,ny € C'(R?) are supposed to
satisfy
n1(0,0) = ny(0,0) =0, n7(0,0) = n5(0,0) =0, (4)
where prime denotes the total derivative, and the growth conditions
(€ 20|+ [n2(&, )] < O+ [P+ [xP7") forall x,€ €R
6_§(§’X)‘ + EM

with 2 < p < co. The Sobolev space W;?(€2) and a convex cone K will be defined in a
standard way as

W&’Z(Q) ={u e WLZ(Q)‘ u|gn = 0 in the sense of traces}, (6)
K :={uec W, Q)| u>0onQy}. (7)

The scalar product and norm on this space will be defined by

(5)

(&X)‘ SO+ [P+ [x[P7?) fori=1,2 forall x.£ €R,

(u,v) = / Vu-Vudx, |ul = (/ |Vul? dx) for all u,v € Wy (Q).
Q 0
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The weak formulation of the system (1) is

Find u,v € K :

/Qd1Vu -V(p —u) —bju(p —u) — biav(p —u) — ny(u,v)(p —u) >0,
(8)
/QdQVv V(¢ —v) — byyu(th) — v) — bev(¢p —v) — ng(u,v) (v —v) >0,

for all p,v € K.

The linearization of this system is a problem

Find u,v € K : /d1Vu-V(go—u)—bll(gp—u)—bm(go—u)20 for all p € K,
Q

/ 1y V0 - V(1 — 1) — byt (10 — 0) — bia(th — v) > 0 for all ¥ € K.
Q
(9)

Let di € (0,y;) be fixed. A significant role will play here two Laplace eigenvalue
problems. The first one is

Au+ ku =0 in Q\Qyp,

1
u=10 on 02U Ny, (10)

and the second one is
Au+ rku =0 in €, (11)
uw=0 on Jf).

Remark 1. If is well known, that the first (smallest) eigenvalue Ry of the problem (10)
is simple, and the respective eigenfunction does not change its sign in the set Q\Qy. The
second smallest eigenvalue of (10) will be denoted as Fs.

The first eigenvalue and the respective eigenfunction of (11) have the same properties.
Because the eigenvalues of Laplacian with Dirichlet b.c. are monotone w.r.t. domain,
there is k1 < Ki.

Remark 2. Let Qp = 0, i.e. the obstacle is not present. It can be proved that the k-th
hyperbola from the Fig. 1 is described by the formulas

1 b12091
dor(di) = — [ ———— +b
2.x(d1) o (dmk - + 22) )

see e.g. [2]. If di € (bi1/kKe,bi1/k1), then dyy is positive and day is negative for any
k> 2. And in general, if di € (bi1/Kit1,b11/K:), then daj > 0 for all j <i and dy; <0
for all j > 1i. The envelope of these hyperbolas is denoted by Dg. The set which is to the
right from the envelope is called the domain of stability, Ds and the set to the left from
the envelope is called the domain of instability, Dy .

Definition 1. The point dy > 0 is a critical point of the system (9) with fized di > 0 if
and only if there exists a solution u,v € K, (u,v) # 0 of this system.

Definition 2. The point dy > 0 is a bifurcation point of the system (8) with fized dy > 0
if and only if in any neighborhood of (ds,0,0) in R x K? there exists (dy,u,v) € R x K?
with (u,v) # 0 solving this system.
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2 Main Theorem

Theorem 1. Let dy € (by1/ka,b11/k1). Under the assumptions (3) — (5) the number

b12 b21 + b22

¥ = ———= 4 =
lfl(dml - 511) R1

(12)

is a bifurcation point of (8) with fixed d;.
Let Ko < /%1. There exists dl,madl,M € (bll//%%bll/'%l) such that Zf dl € (dl,madl,M);
then d¥ € Dg.

Proof. First step is to prove that the point dX is a critical point of the system (9) with

fixed d; € (0,b11/k1). For further purposes we will define the space Wy *(Q\Qy) in the
1,2/0y) : . .

same way as W7 () in (6) and consider an auxiliary problem

d1AU + bllu + b121) =0 in Q\QU, (13)
dgAU -+ b21u + bQQU =0 in Q\QU,

and with the Dirichlet b.c. on 02U 0€)y. It can be by a direct computation verified that

for (dy,d%) there exists a nontrivial solution of (13), with the respective eigenfunction

(UoﬂJo) = (#61761) )
diRq — b1y

where e; is the eigenfunction respective to #; with unit norm, and because e; does not
change its sign in Q\Qp, see Remark 1, it can be chosen either positive or negative a.e.
in 2. Even though the sign does not play role for such linear system, it will play a crucial
role for variational inequality. For further purposes ey will be chosen negative a.e. Since
also b1y < 0 and dyk; — by; < 0, the functions ug, vy have the same constant sign a.e. in
Q. Since d; € (ko/b11,k1/b11) is fixed, and because &, is simple, there exists only one
couple (ug,vp) (up to multiples) solving (13) with the parameters (dy, d).
To get the bifurcation, the Dancer Theorem will be employed.

Theorem 2 (Dancer Theorem). Let L : H — H be a compact linear operator, N :
R x H — H be a nonlinear compact operator, Ao be a simple characteristic value of the
operator L, ug be the eigenfunction corresponding to the characteristic value Ag. Moreover
let for any bounded set M C R the operator N satisfy a condition

N(A
N u) =0 wuniformly for all A € M. (14)
=0 lul]
Denote S the closure of all solutions of the equation

A — Lu+ N(A\u) =0 (15)

with u # 0, i.e.

S ={(\u) | u#0, uis a solution of (15)}.
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Then (Xo,0) € S, i.e. Ao is a bifurcation point of the equation (15). Denote C' the com-
ponent of S which contains (X\g,0). Then C' consists of two connected sets C*,C~, C =
CtUC~ such that

C*NC™ N B((M,0);p) = {(X,0)} and C* N IB((Ao, 0); p) # 0,

where B((X,0);p) is a ball with sufficiently small radius p. The sets Ct and C~ are
either both unbounded or

C* N O™ # {20, 0)}.
By use of (5) and Theorem about Nemyckii operator there can be defined the operators
A WEQ\Qp) == WEHQ\Q) , Ny, Ny = (WE(O\Q))” = WE(Q) as

(Au, w) = /Quw dx, for all u,w € Wy *(Q\Qp),

(N;(u,v),w) = / ni(u,v)w dx  for all u,v,w € Wy (Q\Qu), i =1,2.
Q

Due to the compact embedding W, (Q\Qy) <€ LP(Q) the operators A, Ny, N, are com-
pact. The weak formulation of the system

di Au+ biyu + bigv 4+ nq(u,v) =0 in Q\Qyp,

16
dgAU -+ bglu + bQQ’U + n2(u, U) =0 in Q\QU, ( )

is equivalent to a system of two operator equations

d1U — bllAU - blgAU - N1 (U, ’U) = 07
dQ’U — bzlAU — b22Av — NQ(U, ’U) = 0,

and this system can be written in a form
10 u o dl_l 0 bllA blgA u . Nl(u, U) - (17)
0 1 v 0 d;l bglA bQQA v NQ(U, U) e
The linearization of this equation is
1 0 u . d;l 0 bllA ble u 0
0 1 (% 0 d;l bglA b22A (% -
and as d; is fixed, it is a characteristic value problem
w — A(d2)Lw = 0,

where w = (u,v) € Wy (Q\Qp)?, L is a linear compact operator (due to compactness of
A), and A(ds) is an characteristic value, depending on the parameter dy. This problem is
equivalent to a weak formulation of (13). Since & is simple and dy € (by1k2, bi1/R1) the
characteristic value d is simple. The vector formulation of 17 is
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which is suitable for Dancer Theorem. The operator N(u,v) := (N;(u,v), No(u,v)) is
compact and due to (4) it satisfies (14). Hence, the assumptions of the Dancer Theorem
are fulfilled and the point A(d) is according to this theorem a (global) bifurcation point
of the equation (17) and therefore also of the equation (16) with Dirichlet b.c. and fixed
d;. Moreover, there exists two branches of solutions bifurcating in the directions +(ug, vo)
from (df,0) € R x Wy*(Q\Qu). More precisely, there exists two sequences {da.,, u, v}
{don,u, v, } of weak solutions of (16) with Dirichlet b.c. such that

u v
lim dy,, = dY, lim z = g, L = (18)
e =00 \/lug 2 + [lvg 12 Vg 12+ flvg 12
wt v
lim & = —uo, & = —p, (19)
oo /Nt 2 + o2 Vg l? + o [1?
Jm v = Y = Jh v = i v =0, (20)
the limits of ut,vF are w.r.t. W, ?(Q\Qp). Let us remind here that ug, vy were chosen

to be negative a.e. in Q. For the purposes of this proof the branch {ds,,u;, v;"} will be
discarded, and the sequence {ds,,u, , v, } will be relabeled as {ds,, u,,v,}. The next
step is to prove the regularity of solutions in a neighborhood of the set 9.

Let Qy be a domain with C? boundary satisfying

O\(Q UQy) € Q\Qu, 09y NaQy = 0. (21)

The growth conditions (5) and standard regularity arguments can be used to prove that
that u,|q,, vala, € W2(Qy) and moreover

Unp

[[unl[? + [[on]”

Un

lim Vg — - -
Va2 + o]

n—oo

=0, (22)

11m
n—00

W3.2(Qy) w32(Qy)

the step-by-step procedure for a case of Laplacian is described in [3].
Since ug, vg € W32(€y,), it is possible to use the Hopf Lemma together with negative-
ness of ug, vy the get a result

Ouo
on

dvg b12 Oug

for a.a. Q —(z) =
(z) > 0 for a.a. = € 00y, aﬁ(x) dre b o7

> 0 for a.a. x € 0Qy. (23)

Now we define the function ugy by

~()_ 0 if$€QU
vol®) = up(z) if z € Q\Qy

and vy similarly. Substituting g, 7y in (9) and using that g(x) = 0 for a.a. = € 0Qy
leads to

/dlv7jb0 : V(g& — 1~L0> — (bnuO + bqu)(Q& — fbo) =
Q

N . ou - ot
:d1/ — Aty — (brrug — biavo) (¢ — Up) dx + / a—B(SO — ) = / —BSO >0,
Q\Qu oQy In



188 J. Navratil

because ¢ > 0 a.e. in 9€)y. Similarly the second equation gives

/dQV% -V (¢ — ) — (barug + bagvg) (¢ — 0p) =
Q

0o ~ / 0o

— W —1) = —=v =>0.
9 o (1/} 0) . on 1/)

Therefore ug, vg are nontrivial solution of (9) and d¥ is a critical point of this system.
We construct the functions

:/ —dgA’[LO — (b21U0 + bQQU())(I/) — 170) dx +
A\Qu

~ () 0 if v € Qp
U= u(z) it e O\Qy

N()_ 0 if v € Qp
U= o) if 2 € Q\Qp

Due to (22), (23) there exists ny such that for any n > ngy the normal derivatives of

u, and v, on 0y satisfy

ou,,
on

Similar procedure as for linear case gives

ov,

on

(x) > 0 for a.a. x € 09y, (x) > 0 for a.a. x € 0.

dl / V&n : V(QD - ﬂn)—(bllun + blZUn - ’rLl(an, ’[Jn»(@ — ﬂn) dx =
Q
= d1 / —Aﬂn—(bnun — blgvn — nl(iln, @n)((p - ﬂn) dX+
AN\Qy

+/ 8un(g0—ﬁn)dS:/ au"gpdszo,
1o} 0

o, O 0, O

ds., / Vit - V(1) — Bn)— (bartin + bazv — 1 (itn, ) (¢ — ) dx =
Q

- d?,n/ _Aﬁn_(bﬂun - b22vn - n?(an7 f)n)('lvb - {]n) dX—"
N\Qu

+/ (%W—an)ds:/ O a8 > 0,
o

Qs 8n 0y 871

i.e. the functions 4, ¥, are solutions of (8). Therefore dX is a bifurcation point of (8).
The key to the proof of the last statement is in Proposition 3.1 in [2]. Let

) 1 )
da(F,dy) : (& + 522) .

R \dik —bn

For dy € (by1/ka,b11/R1) there is dX = dy(k1,dy), as follows from the definition of di. If
Ri < k; are different positive numbers, then there exists exactly one positive di < b11k;
such that dy(#;,dy) = da(Rj,dy). In simple terms, the hyperbolas intersects exactly at
one point. The points of intersection satisfy

det B b11 det B
—+ =

0.
bu1 bas

/%i/%jbggd% - (I%Z + /%j)dl
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Let ko < A1 < k1. The intersection points are

det B . bll det B

N ) N
5151b22d17M — (Fél -+ Kl)dl,M

b beg

det B by det B

/%1’f2b22d%m — (R1 + K2)dim == .
' b1 bao

Dividing these equations gives

det B
buin 1

oy 2 S det B
Hlﬁgbzgdlym — (/{/1 -+ /€2) b1y

l%lffleQdiM — (k1 + K1)

Since Ay < Ky < Ky this can be true only if dy,, < dy . Since da(ke,d;) is negative
for all dy € (bi1/k2,b11/kK1), cf. Remark 2, and because dy(&,d;) < do(k1,d;) for any
di € (dl,m’dl,M) it must be (dl,dé() € Dg. ]

3 Applications

The set of all positive critical points (di,ds) € R% of the problem (1) with Dirichlet b.c.
on 0f), i.e. of the problem without unilateral terms, is

o0 by 1 b12b21
C .= dy,d 0, — RY| dyi= — | o———+b '
U{( 1, 2)6(7 m)x | da Ki (d1/€i—511+ 22)}

i=1

It is easy to verify that there are no positive critical points if d; > by1/k1. The set of
bifurcation points of (1), (2) is described by the exact formula (12), and it only suffices
to (numerically) compute the eigenvalues kj. To demonstrate the results Thomas model
from [4] in the set Q = [—1,1]* and Qy = By05(0,0) was chosen. In particular,

u = diAu+v(a —u— h(u,v)),

v = doAu+ y(ab — av — h(u,v)),
with @ = 150, b = 100, o = 1.5, v = 252, K = 0.05, p = 13 and with Dirichlet
boundary condition and small random initial condition. This system has a stationary
solution (u,v) = (37.738,25.1588). The system has to be shifted by u = u—u, v =v—0,

in order to this stationary solution be equal to zero and (4) be true. The stationary
system with unilateral sources is then as follows:

di Au + 226.7u — 1124.50 + ny (u,v) = 0 in [-1,1]? (24)
daAv + 478.7u — 1502.50 + ny(u,v) = 0 in [—1,1]%,

u>0, diAu+226.Tu —1124.50 + ny(u,v) <0 in Byes(0,0),

w- (dyAu+ 226.7u — 1124.50 + ny(u,v)) =0 in By es(0,0),

V>0, dolv+4T8.Tu — 150250 + na(u,v) < 0 in Boos(0,0), (25)

v - (daAv + 478.7u — 1502.5v + ny(u,v)) =0 in Byes(0,0),

u=v=0 on 0,
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where ny,ny satisfy (4). The eigenvalues of the Laplace operator on €2 are known to be

(km)?
R

The first eigenvalue x; = 72 /4, the second one is ko = 72 = 9.9. The first eigenvalue of
the Laplacian (10) was numerically computed as #; = 9.1£0.1. The situation is sketched
in the Fig. 2. The red curve represents the set of bifurcation points of the problem (24),
(25) partially interfering into Dg, which is impossible for a system without sources, whose
critical points generates the hyperbolas in this figure (cf. the Fig. 1). Although there is
infinitely many hyperbolas, there are plotted only five of them in the Fig. 2.

R =

New bif. points

d,

5 10 15 20 25
Figure 2: Hyperbolas for Thomas system

The further research will focus on numerical solution of this particular problem and
other systems, and on a study of resulting patterns.
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Abstract. In this work we study the Kramers-Fokker-Planck equation with a potential whose
gradient tends polynomially fast to zero at the infinity. For this class of short-range potentials
in one position variable, we show that complex eigenvalues do not accumulate at low-energies.
The first threshold zero is always a resonance and the corresponding resonant state is uniquely
determined. This allows us to obtain the low-energy resolvent asymptotics, which, in combina-
tion with more general high energy pseudospectral estimates, gives the large-time asymptotics
of solutions to the KFP equation in appropriate spaces. These are expressed in terms of the
equilibrium state, the Maxwellian.

Keywords: return to equilibrium, threshold spectral analysis, pseudo-spectral estimates, Kramers-
Fokker-Planck equation.

Abstrakt. V tomto ¢lanku studujeme Kramers-Fokker-Planckovu rovnici s potencidlem, jehoz
gradient v nekone¢nu kleséd polynomialné rychle k nule. Pro tuto tfidu kratkodosahovych po-
tenciali v jedné proménné polohy ukazujeme, Ze komplexni vlastni hodnoty neakumuluji pobliZ
nizkych energii. Prvni prahova hodnota nula je vzdy rezonanci a odpovidajici rezonantni stav
je jednoznacéné urc¢en. To nam umoznuje ziskat asymptotiky rezolventy pro nizké energie, jez,
spole¢né s vice obecnymi vysokoenergetickymi pseudospektralnimi odhady, ndm dava ve vhod-
nych prostorech aysmptotiky feSeni KFP rovnice pro velké ¢asy. Tyto jsou vyjadieny pomoci
rovnovazného stavu, Maxwellidnu.

Klicovd slova: navrat do rovnovihy, prahova spektralni analyza, pseudospektralni odhady,
Kramers-Fokker-Planckova rovnice

*This work is based on the submission to an impacted journal
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Abstract. We give the classification of T-duals of the flat background in four dimensions with
respect to one-, two-, and three-dimensional subgroups of the Poincaré group using non-Abelian
T-duality with spectators. As duals, we find backgrounds for sigma models in the form of
plane-parallel waves or diagonalizable curved metrics often with torsion. Among others, we find
exactly solvable time-dependent isotropic pp-wave, singular pp-waves, or generalized plane wave
(K-model).

Keywords: sigma model, pp-wave background, string duality, non-Abelian T-duality, isometry
group, spectator

Abstrakt. Predkladame klasifikaci T-duélt plochého pozadi ve ¢tyrech rozmérech vzhledem
k jednorozmérnym, dvourozmérnym a trojrozmérnym podgrupam Poincarého grupy s vyuzitim
neabelovské T-duality s prihlize¢i. Jako dualy nalézdme pozadi pro sigma modely ve tvaru pp-vin
nebo diagonalizovatelnych kiivych metrik ¢asto s torzi. Mimo jiné nalézame exaktné feSitelnou
Casove zavislou izotropni pp-vinu, singularni pp-vlny nebo zobecnénou rovinnou vinu (K-model).

Klicovd slova: sigma model, pp-vlna, strunova dualita, neabelovska T-dualita, grupa isometrif,
prihlizec

Full paper: F. Petrasek, L. Hlavaty, and 1. Petr. Plane-parallel waves as duals of the
flat background II: T-duality with spectators. Class. Quantum Grav. 34 (2017) 155003.
arXiv:1612.08015 |[hep-th]|.

*This work has been supported by the Grant Agency of the Czech Technical University in Prague,
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Abstract. An area of increasingly frequent applications of evolutionary optimization to real-
world problems is continuous black-box optimization. However, evaluating real-world black-box
fitness functions is sometimes very time-consuming or expensive, which interferes with the need
of evolutionary algorithms for many fitness evaluations. Therefore, surrogate regression mod-
els replacing the original expensive fitness in some of the evaluated points have been in use
since the early 2000s [3]. The Surrogate Covariance Matrix Adaptation Evolution Strategy (S-
CMA-ES) [1] and its successor the Doubly Trained S-CMA-ES (DTS-CMA-ES) [4] represent
two surrogate-assisted versions of the state-of-the-art algorithm for continuous black-box opti-
mization CMA-ES [2]. In [5] and [9], we have investigated extensions of S- and DTS-CMA-ES
that control the usage of the model according to the model’s error. In [6] and [7], we have com-
pared the ordinal and metric Gaussian process regression model using in combination with the
DTS-CMA-ES. Moreover, we have presented an overview of several algorithms using surrogate
models to speed up the original CMA-ES |§].

Keywords: benchmarking, black-box optimization, surrogate model, Gaussian process

Abstrakt. Oblasti se stale se zvySujicim mnoZzstvim aplikaci evolu¢ni optimalizace na prob-
lémy z praxe je spojita black-box optimalizace. Vyhodnoceni takovéto skuteéné black-box fit-
ness funkce ale byva velice ¢asové nebo vypocetné narocné, coz koliduje s faktem, Ze evoluéni
algoritmy vyzaduji mnoho vyhodnoceni fitness funkce. Proto se jiz témér od roku 2000 vyuzi-
vaji ndhradni regresni modely namisto skute¢né fitness funkce pro nékteré z vyhodnocovanych
bodu [3]. Algoritmy Surrogate Covariance Matrix Adaptation Evolution Strategy (S-CMA-
ES) [1] a jeho naslednik Doubly Trained S-CMA-ES (DTS-CMA-ES) [4] predstavuji dvé vari-
anty v sou¢asnosti nejlepsiho algoritmu na spojitou black-box optimalizaci jménem CMA-ES [2],
které pouzivaji ndhradni modely. V ¢lancich [5] a [9], jsme predstavili rozsifeni S- a DTS-CMA-
ESu, ktera 1idi pouzivani modelu v zavislosti na jeho chybé&. Porovnani ordinalnich a metrickych
modeld zaloZenych na gaussovskych procesech v kombinaci s DTS-CMA-ESem jsme provedli v
[6] a [7]. Dale jsme také vypracovali porovnéani nékolika algoritmi pouzivajicich nahradni modely
k urychleni ptivodniho CMA-ESu [8].

Klicovd slova: benchmarking, black-box optimalizace, ndhradni modelovani, gaussovské procesy

*The reported research was supported by the Czech Science Foundation grant No. 17-01251, by the
Grant Agency of the Czech Technical University in Prague with its grant No. SGS17/193/OHK4/3T /14,
and by the project Nr. LO1611 with a financial support from the MEYS under the NPU I program.
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Abstract. Artificial intelligence is present in many modern computer science applications.
The question of effectively learning parameters of such models even with small data samples is
still very active. It turns out that restricting conditional probabilities of a probabilistic model
by monotonicity conditions might be useful in certain situations. Moreover, in some cases,
the modeled reality requires these conditions to hold. In this article we focus on monotonicity
conditions in Bayesian Network models. We present an algorithm for learning model parameters,
which satisfy monotonicity conditions, based on gradient descent optimization. We test the
proposed method on two data sets. One set is synthetic and the other is formed by real data
collected for computerized adaptive testing. We compare obtained results with the isotonic
regression EM method by Masegosa et al. which also learns BN model parameters satisfying
monotonicity. A comparison is performed also with the standard unrestricted EM algorithm
for BN learning. Obtained experimental results in our experiments clearly justify monotonicity
restrictions. As a consequence of monotonicity requirements, resulting models better predict
data.

Keywords: computerized adaptive testing, monotonicity, isotonic regression EM, gradient method,
parameters learning

Abstrakt. V dnesni dobé& se uméla inteligece vyuziva v mnoha oblastech lidské ¢innosti a to s
pomoci rozliénych modelt. Otéazka moZnosti efektivniho u¢eni takovych modeli je proto stéale
velmi aktualni. Ukazuje se, Ze, v pfipadé omezeni modelu dodateénymi podminkami monotonic-
ity, je v ur¢itych podminkéch pfinosné. V mnoha aplikacich je dokonce nezbytné, aby byly tyto
podminky splnény, protoze vychézi z modelované reality. Tento ¢lanek se zaméruje na podminky
monotonicity uplatnéné v modelech bayesovskych siti. Predstavujeme algoritmus zaloZeny na
gradientnim sestupu k uceni parametrii modelt splhujicich podminky monotonicity. Tyto algo-
ritmy testujeme na dvou datovych sadach. Prvni sada je tvofena syntetickymi daty, zatimco
druhé se sklada z redlnych dat sesbiranych pro tento tcel. Ziskané vysledky porovnavame s
EM isotoni regresi vytvofenym autory Masegosa et al., ktery také uc¢i model bayesovské sité
spliwujici podminky monotonicity. Srovnani je téZ provedeno s neomezenym EM algoritmem pro
uceni bayesovskych siti. Ziskané vysledky z naSich experimentu jasné potvrzuji uzite¢nost pod-
minek monotonicity. Jako dtsledek jejich vynuceni pii uceni parametri, vysledné model 1épe
predpovidaji data.

*This work was supported by the Czech Science Foundation (project No. 16-12010S) and by the
Grant Agency of the Czech Technical University in Prague, grant No. SGS17/198/OHK4/3T/14.
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Klicovd slova: pocitacové adaptivni testovani, monotonicita, EM isotoni regrese, gradientni
metoda, u¢eni parametru
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Abstrakt. Nelinedrni Schrodingerovou rovnici se v principu rozumi jakakoli z obecné t¥idy rov-
nic —ih(z,t) = A(x, t)+F(x,t), v*(z,t)](x, t), kde F je libovolny nekonstantni funkcional.
Pro razné volby F' se nasledné objevuji rizné moznosti fenomenologického uplatnéni této rovnice.
V praxi se setkdvame zejména s piipadem kvadratické nelinearity F[v(x,t)] = ¥*(z,t)y(z,t)
v teorii supravodivosti a pii studiu Bose-Einsteinova kondenzatu. Z nepolynomialnich funkcio-
nalu se lze (v podobnych aplikacich) v literatufe nejcastéji setkat s logaritmickou nelinearitou
Fly(x,t)] = In[*(z, t)¢(x, 1)].

Nelinearni Schrodingerova rovnice je pro libovolnou volbu F' rovnici lokalni, coz je také nutnéa
podminka vétsiny soucasnych fyzikalnich teorii. V nedédvné dobé se ale objevilo nékolik moznych
aplikaci tzv. PT-symetrickych Hamiltoniant (jak v klasické, tak v kvantové mechanice), které
mohou v nékterych pripadech vést na nelokalni (efektivni) teorie. To bylo také popudem k
nedavnému studiu modifikované NLSE s (nelokalnim) funkcionalem F' = *(—=z,t)y(x,t) (cit.
no. 43, 44).

V tomto ¢lanku se zabyvame dalsim logickych krokem v této Gvaze: srovnanim logaritmické
NLSE a jeji nelokalni analogie F[¢(z,t)] = In[¢*(—x, t)y(x,t)]. Jelikoz nelokalni “hustota prav-
dépodobnosti” ¥*(—x,t)y(x,t) je obecné komplexni funkei pro z € R, studujeme tuto rovnici
(inspirovani cit. no. 42) na modifikovaném defini¢nim oboru, ktery tvoii spravné zvoleny kontur
v komplexni roviné. Nakonec diskutujeme nékolik explicitné zkonstruovanych referen¢nich reseni
lokalni i nelokalni logaritmické NLSE, a to jak pro pfipad jednocasticové vinové funkce, tak pro
jeji vektorovou (vicecasticovou) formu.

Klicovd slova: nelinedrni Schrédingerova rovnice, logaritmicka Schrédingerova rovnice, P7T-
symetrie

Abstract. In its most general meaning, the nonlinear Schrédinger equation is understood to be
any of the family of equations —i;(z,t) = AY(z,t)+ F¢(z,t), ™ (x, t)]|¢(z, t), with F being an
arbitrary nonconstant functional. For varying F' we may encounter vastly different possibilities
of phenomenogical appllications of the equation. The most often discussed case is probably the
quadratic nonlinearity F[¢(z,t)] = ¢¥*(x,t)y(x,t) relevant e.g. when studying superconductivity
and Bose-Einstein condensates. Among non-polynomial functionals, one may encounter also the
Fli(a, 1) = nfo* (@, ), 1)

The NLSE is a local equation for any choice of F', which is also a strict requirement of the
vast majority of current physics theories. However, a number of possible applications of PT-
symmetric Hamiltonians (in both classical and quantum mechanics) emerged recently, which
could sometimes lead to nonlocal (effective) theories. This was also the principal motivation for
studying a modified NLSE with a nonlocal functional F' = ¢*(—x,t)y(z,t) in cit. no. 43, 44.
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In the present paper, we take another step in this direction and provide a comparison of
the logarithmic NLSE and its nonlocal analogue F[i(z,t)] = In[¢)*(—=z,t)(x,t)]. Since the
nonlocal “probability density” ¢*(—x,t)y(z,t) is in general complex-valued for z € R, we study
the equation (iinspired by cit. no. 42) on a modified domain, consisting of a carefully selected
contour in the complex plane. We finally construct several reference solutions to these equations,
both for the case of single-particle wavefunction and its many-body matrix counterpart.

Keywords: nonlinear Schrédinger equation, logarithmic Schrédinger equation, P77 -symmety
Plna verze: M. Znojil, F. Ruzicka and K. G. Zloshchastiev, Schriodinger Equations with

Logarithmic Self-Interactions: From Antilinear PT-Symmetry to the Nonlinear Coupling
of Channels, Symmetry 9 (2017), 165.
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Abstract. Our research reported in this paper is twofold. In the first part of the paper we
use standard statistical methods to analyze medical records of patients suffering myocardial
infarction from the third world Syria and a developed country - the Czech Republic. One of our
goals is to find whether there are statistically significant differences between the two countries.
In the second part of the paper we present an idea how to deal with incomplete and imbalanced
data for tree-augmented naive Bayesian (TAN). All results presented in this paper are based on
a real data about 603 patients from a hospital in the Czech Republic and about 184 patients
from two hospitals in Syria.

Keywords: Machine Learning, Data analysis, Bayesian networks, Missing data, Imbalanced data,
Acute Myocardial Infarction.

Abstrakt. Nas vyzkum, kterym se zabyvame v tomto ¢lanku, mé dvé ¢asti. V prvni Gésti
pouzivame standardni statistické metody k analyze lékafskych zaznamu pacientt, kteri prodélali
infarkt a pochazeli bud ze zemé tetiho svéta (Syrie) nebo z rozvinuté zemé (Ceska republika).
Jednim z naSich cilu je zjistit, zda mezi obéma zemémi existuji statisticky vyznamné rozdily.
V druhé ¢asti ¢lanku predkladame myslenku zabyvat se netplnymi a nevyrovnanymi daty pro
klasifikator Tree-Augmented Naive Bayes (TAN). VSechny naSe vysledky jsou prezentovany v
tomto ¢lanku a vychazejl z redlnych tdaji o 603 pacientech z nemocnice v Ceské republice a
priblizné 184 pacientti ze dvou nemocnic v Syrii.

Klicovd slova: strojové uceni, analyza dat, bayesovské sité, netplnd data, nevyrovnana data,
akutni infarkt myokardu

1 Introduction

Acute myocardial infarction (AMI) is commonly known as a heart attack. A heart attack
occurs when an artery leading to the heart becomes completely blocked and the heart
doesn’t get enough blood or oxygen. Without oxygen, cells in that area of the heart
die. AMI is responsible for more than a half of deaths in most countries worldwide. Its
treatment has a significant socioeconomic impact.

One of the main objectives of our research is to design, analyze, and verify a predictive
model of hospital mortality based on clinical data about patients. A model that predicts

*This work has been supported by the SGS grant CTU SGS16/253/OHK3/3T/14.
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well the mortality can be used, for example, for the evaluation of the medical care in
different hospitals. The evaluation based on mere mortality would not be fair to hospitals
that treat often complicated cases. It seems better to measure the quality of the health
care using the difference between predicted and observed mortality.

A related work was published by [1]. The authors analyze the mortality data in U.S.
hospitals using the logistic regression model. Other work was published by [2]. The
authors compare different machine learning methods using a real medical data from a
hospital.

2 Data

Our dataset contains data about 787 patients characterized by 24 variables. 603 patients
of them are from the Czech Republic [2] and 184 are from Syria. The attributes are listed
in the Table 1. Most of the attributes are real valued, four attributes are nominal. Only a
subset of attributes was measured for the Syrian patients. Most records contain missing
values, i.e., for most patients only some attribute values are available. The thirty days
mortality is recorded for all patients. In the Czech Republic the results of blood tests are
reported in millimoles per liter of blood. In Syria some of the measurements are reported
in milligrams per liter and some in millimoles per liter. We standartize all measurements
to the millimoles per liter scale.

We will note U = {X, X, ..., X,,} for a discrete domain, where X;,i € {1,2,...,m}
is a discrete attribute and take on values from a finite set, denoted by Val(X;). We
use capital letters such as X, Y, Z for attribute names, and lower-case letters such as
x,y,2 to denote specific values taken by those variables. Sets of variables are denoted
by boldface capital letters such as X,Y,Z and assignments of values to the variables in
these sets are denoted by boldface lowercase letters x,y,z. A classified discrete domain
is a discrete domain where one of the attributes is distinguished as “class”. We will use
Uc = {A1, Ay, ..., A,,C} for a classified discrete domain. A dataset D = {uy,...,uy}
of instances of Ug, where each w;,i € {1,..., N} is a tuple of the form (a;,...,a?, ¢)
where a} € Val(Ay),...,a" € Val(A,) and ¢; € Val(C). Also we note that the class is
always known, and a missing value in the dataset is denoted by N A.

3 Preliminary Statistical Analysis

For a preliminary statistical analysis [3] we selected a subset of attributes that are highly
correlated with the class [5] and present in both groups, namely, we considered these
variables: age, nationality, gender, STEMI location, and the class mortality. The STEMI
location encoded by 1 denotes a STEMLinf, 2 denotes a STEMI.ant, and 3 denotes a
STEMI.lat. The nationality is encoded by a binary variable, where 0 means Czech and 1
means Syrian. The Gender is encoded by a binary variable where 0 denotes a man, while
1 stands for a female. The mortality is also encoded as a binary variable, where 0 means
that the patient survived 30 days, while 1 means that he/she did not.

Already from Figure 1, where the histogram of the age values is presented, we can see
that from patients that didn’t survive a high percentage are young patients from Syria.
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Table 1: Attributes

Attribute Code type value range in data Country
Age AGE real [23, 94] SYR, CZ
Height HT real [145, 205] CZ
Weight WT real [35, 150] CZ
Body Mass Index BMI real [16.65, 48.98| CZ
Gender SEX nominal {male, female} SYR, CZ
Nationality NAT nominal {Czech, Syrian} SYR, CZ
STEMI Location STEMI  nominal {inferior, anterior, lateral} SYR, CZ
Hospital Hospital nominal {CZ, SYR1, SYR2} SYR, CZ
Kalium K real [2.25, 7.07] CZ

Urea UR real [1.6, 61] SYR, CZ
Kreatinin KREA  real [17, 525| SYR, CZ
Uric acid KM real 197, 935] SYR, CZ
Albumin ALB real [16, 60| SYR, CZ
HDL Cholesterol HDLC  real [0.38, 2.92] SYR, CZ
Cholesterol CH real [1.8, 9.9] SYR, CZ
Triacylglycerol TAG real [0.31, 11.9] SYR, CZ
LDL Cholesterol LDLC real [0.261, 7.79] SYR, CZ
Glucose GLU real [2.77, 25.7| SYR, CZ
C-reactive protein CRP real [0.3, 359] SYR, CZ
Cystatin C CYSC real [0.2, 5.22] SYR, CZ
N-terminal prohormone of | \ppnp o) [22.2, 35000] //
brain natriuretic peptide

Troponin TRPT  real [0, 25] CZ
g)l;’;zgrgia&%ggon Tate | GFMD  real [0.13, 7.31] CZ
Glomerular filtration rate

(based on Cystatin O) GFCD  real 10.09, 7.17] CZ

The standard chi-square test of conditional independence between two variables re-
veals (see Table 2) that there is a significant dependence (at the level 0.05) between
the mortality and nationality, the gender and nationality, also there are a significant de-
pendencies between the gender and age, the mortality and gender — the patients from
Syria have the lowest probability to survive, also they are younger and there is higher
percentage of woman.

Finally, we learned the logistic regression model, that describes the relationship be-
tween the considered independent variables and the mortality as the dependent variable.
We have got:

IOglt P(C:”A:CL) = /304—51@14-...4—54@4
= —0.034 4+ 0.001 - aq + 0.027 - as — 0.007 - a3 4+ 0.065 - a4

where a;: age, ao: gender, az: STEMI loc, and a4: nationality. Variables age and
nationality appeared to be statistically significant for mortality prediction.
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From the preliminary statistical analysis we can conclude that:

e In Syria the mortality from AIM is significantly higher than in the Czech Republic
— 87.3% Syrian patients survive, while 94.7% patients from the Czech Republic

survive.

e The age of patients in Syria is lower in average (the average difference is 13 years)
and there is a higher prevalence of women among the patients with AIM in Syria
than in the Czech Republic.

e The STEMI location is related to the mortality.

Table 2: The Chi-Square Test of conditional independence

gender STEMI loc. mortality nationality

age value 174 -.010 .048 -.381
sign. | .0001 775 181 .0001

gender value .022 .068 .92
sign. .53 .057 .01

STEMI loc. value -.026 -.036
sign. 0.46 312

mortality value .089
sign. 0.013
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4 Machine Learning Methods

The preliminary statistical analysis studied mostly the pairwise relations only. Since the
explanatory variables may combine their influence and the influence of a variable may be
mediated by another variable it is worth of studying the relations of variables alltogether.
Our data are incomplete and imbalanced. We will present an idea for dealing with that
type of data using tree-augmented naive Bayesian (TAN).

4.1 Bayesian networks

A Bayesian network [6] is an annotated directed acyclic graph that encodes a mass prob-
ability distribution over a set of random variables U. Formally, a Bayesian network for U
is a pair B = (G, ©). The first component, G, is a directed acyclic graph whose vertices
correspond to the random variables U = {X, Xs,..., X,,}, and whose edges represent
direct dependencies between the variables. The graph G encodes independence assump-
tions: each variable X; is independent of its non-descendants given its parents in G. The
second component of the pair, namely ©, represents the set of parameters that quantifies
the network. It contains the parameter Qxi\Hzi = f(x;|I1,,) for each possible value z; of X;
and II,, of IIx,, where IIx, denotes the set of parents of X; in G. Accordingly, a Bayesian
network B defines a unique joint probability distribution over U given by:

m

m
f(X1:$1,...,Xm:$m) = Hf(Xi:xi“_[Xi :Hxi) = H9$1|H;c1
=1 =1

for each IIx, which is a parent of X;.

4.2 Learning with Trees

A directed acyclic graph on {X1, Xs,..., X} is a tree if IIx, contains exactly one parent for
all X;, except for one variable that has no parents (this variable is referred to as the root).
A tree network can be described by identifying the parent of each variable [7]. A function
m:{1,...,n} = {0,...,n} is said to define a tree over X, Xo,..., X, if there is exactly one ¢
such that m(7) = 0 (namely the root of the tree), and there is no sequence iy, ..., i such that
m(ij) = ij41 for i < j < k and 7(ig) = 41 (i.e., no cycles). Such a function defines a tree network
where Ty, = { X} if (i) > 0 and TIX; = 0 if (i) = 0.

4.3 Learning Maximum Likelihood TAN

Let {A1, As,..., Ay} be a set of attribute variables and C be the class variable. We say that
B (Bayesian network) is a TAN model if Il = @) and there is a function 7 that defines a tree
over {A1, Aa,..., Ay} . The optimization problem consists on finding a tree defining function 7
over {A1, Aa, ..., Ap} such that the log likelihood is maximized [8] LL(Br|D) = ) cplog f(u).

To learn the maximum likelihood TAN we should use the following equation to compute the
Na; 1, (ai,11a;)
NHH.,L' (Hal)
that attribute i has value a; and its parents have values Il,, in the dataset. Similarly, N, (Il,,)

is the number of times that the parents of attribute A; have values Il,, in the dataset.

parameters [8], 0, 11, = where Ny, 11, (@i, Il,;) stands for the number of times
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5 Learning TAN from incomplete data

Missing data are a very common problem which is important to consider in a many data mining
applications, and machine learning or pattern recognition applications. Some variables may
not be observable (i.e. hidden) even for training instances. Now more and more datasets
are available, and most of them are incomplete. Therefore, we want to find a way to build
a new model from an incomplete dataset. Normally, to learn the maximum likelihood TAN
structure [8], we need a complete data, such that all instances u;,7 € {1,..., N} from U¢g are
complete and don’t have any missing value. In case the data are incomplete and there is an
instance which has a missing value, we will not use the whole instance in TAN structure learning
i.e. not use the other known values from that instance in TAN structure learning. Note that the
class is always known, and a missing value in the dataset is denoted by NA. Our goal is to learn
a tree-augmented naive Bayesian (TAN) from incomplete data. Some previous work by [13]
propose maximizing conditional likelihood for BN parameter learning. They apply their method
to MCAR (Missing Completely At Random) incomplete data by using available case analysis in
order to find the best TAN classifier. In other work by [9] also deals with TAN classifiers and
expectation-maximization (EM) principle for partially unlabeled data. In their work, only the
variable corresponding to the class can have missing. Also, other work by [10] deals with TAN
based on the EM principle, where they have proposed an adaptation of the learning process of
Tree Augmented Naive Bayes classifier from incomplete data. In their work, any variable can
have missing values in the dataset. The TAN algorithm can be adapted to learn from incomplete
datasets, such that most available data will be used in TAN structure learning. The procedure
is shown in Algorithm 1, where the Conditional Mutual Information "CMI" is defined as:

f(2)f(%,y,2)

I(X,Y|Z) = ) flayz)log Fomvm s

XyY,2

where the sum is only over x,y,z such that f(x,z) > 0 and f(y,z) > 0. In Algorithm 1, on line
25 we build a complete undirected graph in which the vertices are the attributes Ay, ..., A,.
Annotate the weight of an edge connecting A; to Aj,i # j by Ip,; = I(4;, Aj|C) One line 26
we build a subgraph from G, without any cycles and with the maximum possible total edge
weight. On line 27 we transform the resulting undirected tree to a directed one by choosing a
root variable and setting the direction of all edges to be outward from it. On line 28 we add the
class C to the graph as a node and add edges from C to all other nodes in the graph

The idea behind Algorithm 1 is that we believe if we use more data then the estimates of
conditional mutual information are more reliable.

6 Imbalanced Data

In case of imbalanced data the classifiers are more sensitive to detecting the majority class and
less sensitive to the minority class. Thus, if we don’t take care of the issue, the classification
output will be biased, in many cases resulting in always predicting the majority class. Many
methods have been proposed in the past few years to deal with imbalanced data. In our research
the mortality rate of patients with myocardial infarction refers to the percentage of patients who
have not survived more than 30 days, where the results are 89% of patients survive and 11%
of patients do not survive, therefore the data are quite imbalanced. One of the most common
and simplest strategies to handle imbalanced data is to under-sample the majority class [11, 12].
While different techniques have been proposed in the past, they did not bring any improvement
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Algorithm 1 TAN For Incomplete Data

1:
2:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:

procedure CMI(A4;, A;,C}) > // Conditional Mutual Information
D = {u,...,uy},un = (aj,aj,c),m € {l,...,N}, such that u,, =
(ai,...,an,¢c) €D
Foreach u,, € D
If(az == NA|(Ij == NA)
Delete U, from D

endfor

Compute I, = I(A;, 4;|C) from D

return 7/,
Endprocedure
Read D = {uy,...,un},u,, = (ay,...,a,,¢),me {1,...,N}
var:

n the number of attribute variables A;
I,[n][n] the WeightMatrix;
UG the UndirectedGraph;
UT the UndirectedTree;
T the DirectedTree;
TAN the DirectedGraph;
Foreach A;,i € {1,...,n—1}
Foreach A;,j € {2,...,n}
L,.; =CMI(A;, A;,C)
L) = I
LU = L
EndForeach
EndForeach
G = ConstructUndirectedGraph(L,[i][j])
UT = MaximumWeightedSpanningTree(G);
T = MakeDirected(UT);
TAN = AddClass(7);

with respect to simply selecting samples at random. So, for this analysis we propose the following
steps:

e Let M be the number of samples for the majority class, and N be the number of samples
for the minority class, and M be L times greater than N.

e Divide the instances which have majority class into L distinct clusters.

e Train L predictors, where each predictor is trained on only one of the distinct clusters,
but on all of the data from the rare class. To be clear, the data from the minority class
are used in the training of all L predictors.

e Use model averaging for the L learned predictors as your final predictor. i.e (in our
case we will compute a conditional mutual information between each pair of attributes
(Ai, Aj),i,j € 1,2,...,n,i # j given the class L times for each pair, in each time will use
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only one of the distinct clusters and all data from the minority class, then we will use the
average of conditional mutual information for each pair to compute a weight matrix).

After integrating this step into the Algorithm 1, we will have a TAN algorithm which deals with
an incomplete and imbalance data 2:

Algorithm 2 TAN for incomplete and imbalance data

1: var

2: M The number of samples for the majority class
3: N The number of samples for the minority class
4:  Dr All instances of the majority class, Dy C D
5: Dp All instances of the minority class, Dp C D
6: integer division L = M/N

7. Divide Dy to L parts, Dp,, k€ {1,...,L}

8: Foreach Dr,

9:  Dy=Dp,UDp
10: EndForeach
11: Compute WeightMatrix I, [n][n] foreach Dy,
12: I[n][n] = the average of I, [n][n], k€ 1,...,L > // I, is the WeightMatrix which

wwill be used in Algorithm 1

13: Continue from line 26 in Algorithm 1 using ﬂp

7 Results

For each data record classified by a classifier there are four possible classification results. Either
the classifier got a positive example labeled as positive (in our data the positive example is
the patient survived) or it made a mistake and marked it as negative. Conversely, a negative
example may have been mislabeled as a positive one, or correctly marked as negative. Our
results are summarized in Figure 2 using the ROC curves. We use the 10 fold cross validation
as the model evaluation method. The ROC curve shows how the classifier can sacrifice the
true positive rate (TP rate: number of positive examples, labeled as such over total positives)
for the false positive rate(FP rate: number of negative examples, labeled as positive over total
negatives) (1-specificity) by plotting the TP rate to the FP rate. In other words, it shows how
many correct positive classifications can be gained as you allow for more and more false positives
by changing the threshold.

In Figure 2 we compare our results with normal TAN ([8]) and SMOTE algorithm ([4]) for
TAN. Algorithm 2 has achieved the highest area under the ROC curve (AUC) with 0.82. The
results of Algorithm 1 (ROC = 0.77) is better than the normal TAN algorithm (ROC = 0.62).
But SMOTE algorithm with TAN (ROC = 0.802) is better than Algorithm 1.

8 Conclusions

First, we used medical data on patients with AIM for preliminary statistical analysis. We
found a significant difference between Syrian patients and Czech patients. Second, Bayesian
networks are a tool of choice for reasoning in uncertainty, with incomplete data. However, often,
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Bayesian network structural learning only deals with complete data. We have proposed here an
adaptation of the learning process of the Tree Augmented Naive Bayes classifier from incomplete
and imbalanced datasets. This methods have been successfully tested on our dataset. We have
seen that our Algorithm 2 performed better than normal TAN and TAN-SOMTE.

References

1]

2]

3]
4]

5]

6]
7]

8]

19]

[10]

[11]

[12]

[13]

H. M. Krumholz, S.-L. T. Normand, D. H. Galusha, J. A. Mattera, A. S. Rich, Y. Wang
and Y. Wang, Risk-Adjustment Models for AMI and HF 30-Day Mortality, Methodology,
Harvard Medical School, Department of Health Care Policy, (2007).

J. Vomlel and H. Kruzik and P. Ttuma and J. Precek, and M. Hutyra, Machine Learning
Methods for Mortality Prediction in Patients with ST Elevation Myocardial Infarction, In
the Proceedings of The Nineth Workshop on Uncertainty Processing WUPES’12, Czech
Republic, 204-213, (2012).

L. Wasserman. All of Statistics, Springer-Verlag New York, (2004).

N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, Synthetic Minority
Over-sampling Technique, Journal of Artificial Intelligence Research, Volume 11, Issue 16,
321-357, (2002).

M. Hall and E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and H. Witten, The
WEKA Data Mining Software: an Update, In ’ACM SIGKDD Exploration ACM SIGKDD
Explorations’, Volume 11, Issue 1. (2009), 10-18.

F. V. Jensen, An Introduction to Bayesian Networks, Springer, (1996).

J. Pearl, Probabilistic reasoning in intelligent systems: networks of plausible inference, Mor-
gan Kaufmann Publishers Inc. San Francisco, CA, USA, (1988).

N. Friedman, D. Geiger, and M. Goldszmidt, Bayesian network classifiers, Machine Learn-
ing Journal, Volume 29, Issue 2. (1997). 131-163.

I. Cohen and F. Cozman and N. Sebe and M. C. Cirelo and T. S. Huang, Semi-supervised
learning of classifiers: theory, algorithms and their application to human-computer interac-
tion, IEEE Transactions on Pattern Analysis and Machine Intelligence, Volume 26, Issue
12, 1553-1568, (2004).

O. C. H. Francois and P. Leray, Learning the Tree Augmented Naive Bayes Classifier from
incomplete datasets,

Third European Workshop on Probabilistic Graphical Models, 91-98, (2006).

R. Laza, R. Pavon, M. Reboiro-Jato and F. Fdez-Riverola R. Laza and et al, Evaluating
the effect of unbalanced data in biomedical document classification, Journal of Integrative
Bioinformatics, Volume 16, Issue 3, pp. 177, (2011).

M. M. Rahman and D. N. Davis, Addressing the Class Imbalance Problem in Medical
Datasets, International Journal of Machine Learning and Computing, volume 3, Issue 2,
224-228,(2013)

R. Greiner and W. Zhou, Structural extension to logistic regression, Eighteenth Annual
National Conference on Artificial Intelligence (AAI02), 167-173, (2002).



210 1. Salman

o
S
[ee]
g
©
Q-
(O]
s
a
|_
<
g
N
N -
7. =— Normal TAN (0.62)
Jy = = TAN_SMOTE (0.802)
1: Algorithm (1) (0.77)
S - = Algorithm (2) (0.82)
| | | | | |
0.0 0.2 0.4 0.6 0.8 1.0
FP.rate

Figure 2: ROCs (TAN , TAN SMOTI , Algorithm(1) , Algorithm(2))



The Problem of Coexistence of Several
Non-Hermitian Observables in P7-Symmetric
Quantum Mechanics*

[veta Semoradova

2nd year of PGS, email: semorive@fjfi.cvut.cz
Department of Physics
Faculty of Nuclear Sciences and Physical Engineering, CTU in Prague

advisor: Miloslav Znojil, Department of Theoretical Physics
Nuclear Physics Institute, CAS

Abstract. During the recent developments of quantum theory it has been clarified that the
observable quantities (like energy or position) may be represented by operators A (with real
spectra) which are manifestly non-Hermitian in a preselected “friendly” Hilbert space HE,
The consistency of these models is known to require an upgrade of the inner product, i.e.,
mathematically speaking, a transition H() — H(S) to another, “standard” Hilbert space. We
prove that whenever we are given more than one candidate for an observable (i.e., say, two
operators Ay and Ap) in advance, such an upgrade need not exist in general.

Keywords: non-Hermitian operator, two observables, PT-symmetry, metric operator

Abstrakt. Béhem nedavného rozvoje kvantové teorie bylo vyjasnéno, Zze pozorovatelné veli¢iny
(jako energie ¢i poloha) mohou byt reprezentovany operatory A (s realnym spektrem), které
jsou zFejmé nehermitovské v predvybraném ,,pratelském® Hilbertove prostoru H¥). Konzistence
takovychto modelt vyzaduje zménu skalarnfho soucinu, to jest, matematicky Ffeceno, piechod
HE) — HS) do jineho, ,standardniho* Hilbertova prostoru. Ukazujeme, Ze kdykoliv mame vice
nez jednoho kandidata na pozorovatelnou (to jest napiiklad dva operatory Ay a Aj), takovyto
prechod nemusi obecné vibec existovat.
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Abstract. This work deals with testing of a numerical method for solving two phase flow
problems in porous media. We briefly describe the numerical method, it’s implementation, and
benchmark problems. First, the method is verified using test problem in homogeneous porous
media in 2D and 3D. Results show that the method is convergent and the experimental order
of convergence is slightly less than one. On the problem in heterogeneous porous media, the
method produces oscillations at the interface between different porous media and we demon-
strate that these oscillations are not caused by the coarseness of the grid. To overcome the
oscillations, we use the mass lumping technique which eliminates the oscillations at the inter-
face. Tests on the problems in homogeneous porous media show that although the mass lumping
technique slightly decreases the accuracy of the method, the experimental order of convergence
remains the same.

Keywords: two phase flow, heterogeneity, mixed hybrid finite element method, mass lumping,
porous media, upwind

Abstrakt. Clanek se vénuje testovani numerické metody pro feseni tiloh dvoufazového proudéni
v poréznim prostiedi. Na zacatku je strucné popsana numerickd metoda, jeji implementace
a testovaci ulohy. Metoda je nejprve testovdna na tdloze v homogennim prostiedi ve 2D i
3D. Ukazuje se, ze numerické schéma je konvergentni s experimentalnim fadem konvergence
o néco mensim nez jedna. PrTi feSeni tlohy v heterogennim prostfedi se na rozhrani mezi
ruznymi prostiedimi objevuji oscilace, u kterych ukazeme, Ze nejsou zptisobeny pouzitou siti.
Pro odstranéni oscilaci pouzijeme techniku mass lumping, které oscilace na rozhrani vyrazné
omezi. Na testech v homogennim prostfedi se pak ukazuje, ze ackoli pouziti mass lumpingu
nepatrné zhorsi presnost numerické metody, experimentalni fad konvergence zistava stejny.

Klicovd slova: dvoufazové proudéni, heterogenity, hybridni metoda smisenych koneénych prvki,
mass lumping, porézni prostiedi, upwind

1 Introduction

Mathematical modeling of two phase flow in porous media can be used in many appli-
cations. For instance prediction of contaminant transport can be used for protection of

*The work was supported by the Czech Science Foundation project no. 17-06759S: Investigation of
shallow subsurface flow with phase transitions and by grant No. SGS17/194/0OHK4/3T /14 of the Grant
Agency of the Czech Technical University in Prague.
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water resources or for sanitation of dangerous substances leakage. Except for special
cases, there is no known way how to solve these problems exactly but with numerical
methods, we can find at least a good approximation of the solution.

This paper focuses on the verification of the proposed numerical method. The method
is implemented in parallel using MPI [12, 13]. Firstly, we test the method on two phase flow
problems in homogeneous porous media in 2D and 3D. We further proceed with a problem
in heterogeneous porous media which shows limitations of the method. Therefore, we
propose a modification using mass lumping technique which helps to solve problems in
heterogeneous porous media correctly. Finally, we compare both approaches on problems
with known exact solution.

2 Numerical method

Here, we briefly describe the numerical method. A detailed description of the method
together with a different approach to parallelism, using CUDA, is described in [7]. The
method can be used for solving a system of n partial differential equations in the following
coefficient form:

n

>N aZj+V‘

’jﬁ = fi; (1)

j=1

j=1

where Z; = Z;(z,t), j = 1,...,n, are unknown functions (V¢ > 0, Vo € Q) , Q C R? is
the computational domain, and d is the spatial dimension, d € {1,2,3}. N;;, fi, and
m; are scalar coefficients, w; are vector coefficients and D) ; are symmetric, second order
tensors. The coefficients can be functions of time ¢ and spatial coordinates x, but also of
the unknown functions Z;.

The method was implemented in C++ and for the parallel implementation, MPI was
used. Serial implementation of the method is described in detail in [7], parallel imple-
mentation in 2D, using MPI, is described in [13]|. The parallelism in 3D which is used in
this paper is a direct extension of the 2D case.

Triangular and tetrahedral meshes used in this paper were generated by Gmsh [8].

2.1 Coefficients in general formulation

All benchmark problems presented here are represented by the following choice of coeffi-
cients in the general formulation of the method given by Eq. (1):

B0 (%
N = dpe , m=[("" ’\f) :
(_q)pnd&: (I)Sn% pn%

dp

o )\tK —)\tK o _)\tprg
D‘(o AtK)’ w_<>\tang ’ 7

(7)
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where:
o —] is the porosity,
Sa -] is the a-phase saturation,
Do kg - m ™3] is the a-phase density,

[
|
Ja kg -m™3-s7! are the sinks/sources,
[
[
[

g m - s~ is the gravity vector,

K m?] is the permeability tensor,

Era -] is relative permeability (Burdine [2] or Mualem [11]
model),

Lo kg -m™!-s7! is dynamic viscosity of the phase «,

Ao = % kg™ -m -] is the a-phase mobility (A; = Ay, + \p),

P [Pa] is the a-phase pressure,

a € {w,n} denotes the wetting or non—wetting phase.

These coefficients represent mass conservation law and Darcy’s law for both phases, refer
to [6] for details .

3 Homogeneous porous media

In this section, we verify the numerical method on benchmark problems in 2D and 3D
in homogeneous porous media. For these problems, the exact solution can be found and,
therefore, we can compute the errors of the numerical solution and experimental order of
convergence.

3.1 Benchmark problems

The benchmark problem used in this section is the extension of the McWhorter and
Sunada problem into an arbitrary dimension. We only briefly describe the configuration
of the problem, a more detailed description together with the method to find the exact
solution can be found in [5, 10]. We assume a radially symmetric domain with the
prescribed initial saturation S; and the inflow at the origin in the form:

Qolt) = At'T . (2)

The problem configuration in 2D is illustrated in Fig. 1. This setting together with the
neglected gravity and the assumption of incompressible phases allow us to find the exact
semi-analytical solution of the problem [5, 10].

The problem is defined in the whole R? or R? but due to the assumed radial symmetry,
we restrict ourselves only to one quadrant in 2D or one octant in 3D, respectively. We
also have to restrict ourselves to a domain of finite length and compare the results at
a certain time when the head of the solution does not reach the boundary representing
infinity.

In this paper, the computational domains are a square with 1 m long side and a cube
with 1 m long edge in 2D and 3D, respectively. In both cases, we compare the solutions
at time ¢t = 20000 s.

The exact solution requires prescribing a flux at the origin (point-wise). Numerical
method used in this paper cannot handle to prescribe a flux in one point, therefore, we
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Figure 1: Benchmark problem configuration in 2D.

approximate the point inflow condition via a boundary condition by prescribing the flux
through all element boundaries (edges, faces) that are adjacent to the origin as illustrated
in Fig. 2. The corresponding value of the Neumann boundary condition is computed so
that the total volume injected through the boundary is the same as the volume given by
Eq. (2).

We set coefficients A = 105 m? - s7! for the 2D case and A = 10~"m® - s~ for the
3D case. Initial saturation in the domain is .S; = 0.95 for both cases.

O

I

4
i

B i NAPL injection area
(a) Tetrahedra (b) Triangles

nNAPL injection

Figure 2: Approximation of the point injection flux at the origin in 2D and 3D.

3.2 Numerical analysis

In this paper, Brooks—Corey [1] and van Genuchten [14] models for capillary pressure
together with Burdine [2] and Mualem [11] models for relative permeability, respectively,
are used.

Numerical solutions in 2D (contours) and 3D (isosurfaces) together with the compar-
ison with the exact solution in radial coordinates are shown in Fig. 3.

With the known exact solution, we can compute errors of the numerical solution and
the experimental order of convergence. Results for 2D and 3D are shown in Table 2 and 3,
respectively. Properties of the used meshes are given in Table 1, the following notation
is used:
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Mesh ID h Elements | Degrees of freedom
2D 6.71- 1072 242 766
2D5 | 3491072 944 2912
2D5 | 1.64-1072 3714 11 302
2D, | 8.73-107° 14 788 44 684
2DF | 4.23-107° 59 336 178 648
3D} 2.13-107" 1312 5 874
3D5 | 1.27-107" 3 697 15 546
3D5 | 6.29-1072 29 673 121 678
3D | 3481072 | 240 372 973 750
3D5 | 1.84-1072 | 1939 413 7 807 218

Table 1: Properties of the meshes used in the benchmarks described in Section 3.1.

Brooks & Corey van Genuchten
Id. | [Eps,llv eocs, 1 Ens,ll2 eocs, 2| [|Ens,|l1 eocs, 1 [|Ens,|l2 eocs, 2

2D 1,45 - 1072 3,17 - 1072 1,42-1072 2,12 - 1072

0,92 0,78 0,98

A -3 —2 -3 -2
-1 1,91-1 1-1 1,15-1
2D5 (7,94 - 10 0,78 9 0 0,60 7,5 0 0,86 » 5-10 0,84

A -3 -2 -3 -3
2D5 (4,40 - 1 1,21-1 1 11-1
i 4010 0,95 7’ 0 0,69 3,93 - 10 1,05 6, 0 1,03

2D 2,41 - 1073 4.1073 2031073 19-1073
4A’ 0 0,85 7,84-10 0,66 ,03- 10 0,90 3,19-10 0,89

2D5 (1,30 1073 4,85-107° 1,06 - 1073 1,68 1073

0,94

Table 2: Errors of the numerical solution and experimental orders of convergence in 2D
for the benchmark problem described in Section 3.1.

h mesh element size. To compute h, we circumscribe a circle (ball) to each triangle
(tetrahedron) of the mesh and take h as the radius of the largest such circle (ball).
| En.s,|l, isthe L, norm of the difference between the exact and numerical solution of the
saturation S,, on mesh with element size h.
eocs, p is the experimental order of convergence in L, norm, see [7] for details.
Different results for the Brooks—Corey and van Genuchten models are caused by dif-
ferent capillary pressure - saturation relationships for the near-water-saturated state.
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Brooks & Corey van Genuchten
Id. | [|Ens,llv eocs, 1 [|Ens,ll2 eocs, 2| [|Ens, |1 eocs, 1 |Eps,ll2 eocs, 2

. 72 . 72 . 72 . 72
L12-107% ) g 3381077 o0 [121-1072 ) 24310

. 73 . 72 . 73 . 72
7,82 - 10 0,84 2,47 - 10 0,72 8,13 - 10 0,08 1,66 - 10
. 73 . 72 . 73 . 73
A4,35 10 1,03 1,49 -10 0,92 4,25 -10 1,14 8,84-10
. 73 . 73 . 73
3D%° (2,37 - 10 0,82 8,63 - 10 2,17-10 1,04
3DE|1,41-107° 5,23.1073 1,12-1073 2,39-1073

0,73
0,90

1,12
4,56 -1073

0,79 1,02

Table 3: Errors of the numerical solution and experimental orders of convergence in 3D
for the benchmark problem described in Section 3.1.

Contour
Var:S_n

—0.7129

0.6182

oe . Brooks & Corey model, 2D triangles

0.5235

0.4288 Exact
0.3340 QDSA
0.2393 E
‘ = 0,9 .
0 I L 1 L 1 L 1 L 1 L
0 0,2 0,4 0,6 0,8 1
0.2 0.4 0.6 0.8 p [m]
(a) 2D - contours of saturation Sj,. (b) 2D - comparison with the exact solution.

Contour
Var:S_n

1.0_
0.7959

—0.6893

0.5827

Brooks & Corey model, 3D tetrahedra

04761

03695 Exact

A
0.2629 3D3

0.1563

‘ 0,2 0,4 06 08 1
. . p lm

(c) 3D - isosurfaces of saturation .S,,. (d) 3D - comparison with the exact solution.

Figure 3: Numerical results and comparison with the exact solution. In radial coordinates,
p denotes the distance from the origin (injection point).
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4 Heterogeneous porous media

In this section, we focus on problems in heterogeneous porous media. As was shown
in [12], the numerical method cannot correctly capture the effects at the interface between
two different porous media. Oscillations appear in the solution and are more apparent in
the case of flow from finer to coarser sand.

To demonstrate the oscillations in this work, we use the same benchmark problem as
in [12] which was originally proposed in [9]. The problem setup is shown in Fig. 4. We
consider three layers of sand, the middle one finer than the remaining two, initially fully
saturated with water. NAPL is injected through the upper boundary with a given flux.

Phebbbeibd

0,155 m Coarse

0,2m Fine

0,145 m Coarse

0,5 m

Figure 4: Heterogeneous problem setup based on [9, 12].

We use the numerical solution obtained using the vertex centered finite volume method
in 1D on a very fine mesh as a reference solution to which we compare our numerical
results. The 1D solution taken from [4] is in a good match with results provided in [9].
We want to compare our 2D results with this 1D solution. We do not use only the values
over single crossection through the center of the domain, but we plot superposed values
from all the elements of the mesh using their y position of the center.

Numerical results for the original variant of the method are shown in Figs. 5a, 5c,
and be. We can see the oscillations that are present for several mesh refinements and,
therefore, are not caused by the coarseness of the mesh.

4.1 Mass Lumping

To overcome the oscillations at the material interface we use the mass lumping technique.
One of the steps of the MHFEM method used in this paper is to discretize numerical fluxes
between elements. This is done by computing matrices B; ; x, with elements defined by
the following integral [12]:

T —1
Bijkpr= / wi rD; ;WK g, (3)
K

where K is the element, wx r and wk g are the basis functions of the lowest order Raviart-
Thomas-Nédelec space. Element K is a simplex (line segment, triangle or tetrahedron
depending on the dimension of the problem) and integrated functions are polynomials
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Brooks & Corey van Genuchten
Id. | [|Eh,s,ll1 eocs, 1 I|Ens,ll2 eocs, 2| |1Ens, |1 eocs, 1 [1Eh,s,ll2 eocs, 2

2D%

2D5

2D5

2D4

A
2D}

. 72 . 72 . 72 . 72
1,48 - 10 0,91 3,22-10 0,76 1,44 -10 0,98 2,16 -10

. 73 . 72 . 73 . 72
BAT-1070 o 1961077 0 17591077 o 11T-10

10-3 10—2 103 103
4,56 - 10 0,96 1,25-10 0,69 3,95 - 10 1,04 6,15 - 10

10-3 10-3 _10-3 10-3
2,49 - 10 0,86 8,10 -10 0,68 2,04-10 0,90 3,20 - 10

1,33-1073 4,96-1073 1,06-1073 1,68-1073

0,95
0,85
1,04
0,89

Table 4: Errors of the numerical solution and experimental orders of convergence in 2D
for the mass lumping variant of the method.

of the second order and, therefore, the integral in Eq. (3) can be computed exactly
(in the following using notation exact integration). The value of this integral can be
also approximated using a quadrature rule [3]. We use the following quadrature rule to
approximate the integral of arbitrary function over simplex K.

k
| FRIKEY ), (@)

where k is the number of vertices of the simplex (line segment k& = 2, triangle k£ = 3,
tetrahedron k = 4) and x; are the positions of the vertices. In our case, the function f is
the integrated function on the right hand side of Eq. (3).

Numerical solutions using mass lumping technique are shown in Figs. 5b, 5d, and
5f. In the comparison with the basic variant of the method using exact integration, it
can be seen that the use of the mass lumping technique eliminates the oscillations at the
material interface.

5 Mass Lumping in homogeneous porous media

In the previous section, we showed that use of mass lumping eliminates the oscillations
at the material interface. In this section, we show how the mass lumping technique
affects the accuracy of the method in the case of homogeneous porous media where we
can compare the results with exact solutions. We use the benchmark problem described
in Section 3.1, solve it with the mass lumping variant of the method, and compare the
results with those given in Section 3.2.

Errors of the solution and experimental orders of convergence in the 2D and 3D cases
are shown in Table 4 and 5, respectively.

Results show that in both 2D and 3D cases, the errors of the mass lumping variant
of the method are slightly worse than without mass lumping but the method is still
convergent with the same experimental order of convergence.
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1D reference solution 1D reference solution
Exact integration Mass lumping
08
_. 06 .
£ L
® 04t @
0.2 2 F ;\h 1
|
0 - - - ok 0 - - - -~
0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5
y [m] y [m]

(a) 1 506 elements, exact integration. (b) 1 506 elements, mass lumping.
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0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5
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(c) 5 886 elements, exact integration. (d) 5 886 elements, mass lumping.

1

1

1D reference solution 1D reference solution

Exact integration ~ x | Mass lumping
0.8 0.8 |
_ 06 f 06
L L
%) %
04 r 04
02 0.2 ® ,.j
0 L L L L O L L L L
0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5
y [m] y [m]

(e) 23 308 elements, exact integration. (f) 23 308 elements, mass lumping.

Figure 5: Comparison between the exact integration and the mass lumping technique on
various meshes for the solution in a heterogeneous porous medium.

Brooks & Corey van Genuchten
Id. | [[Ep,s,ll1 eocs, 1 [|Ens,ll2 eocs, 2| [[Ens,ll1 eocs, 1 [|Ens,ll2 eocs, 2
3Di 1,13-10:2 0,67 3,46'10:2 0,61 1,22.10:2 0,77 2,49.10:2 0,74
3D2A 7,96 - 10 XS 2,52 10 o 8,22 - 10 0 1,70 - 10 "o
3D3A 4,50 - 10 1,01 1531077 g0 [430-107% ) Lo 897-10 1,12
3D§ |2,47-1073 0,83 8,64 1073 0,79 2,20-1073 1,04 4,63-1073 1,02
3DE 1,44 1073 5,26 - 1073 1,15-1073 2,41-1073

Table 5: Errors of the numerical solution and experimental orders of convergence in 3D
for the mass lumping variant of the method.
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6 Conclusion

In this work, we tested the numerical method for solving two phase flow problems in
porous media. We showed that for homogeneous porous media, the method is convergent
for both 2D and 3D cases with the experimental order of convergence slightly less than
one. In the case of heterogeneous porous media, the method produces oscillations at
the interface between different porous media when exact evaluation of the integrals in
matrix B is used. To overcome the difficulties, we used the mass lumping technique which
eliminates the oscillations and only very slightly affects the accuracy of the method as
was shown in the comparison of the solutions using the benchmark problems in 2D and
3D with known exact solutions.
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Abstract. The concept of continuous time fractional Levy processes and its discrete time coun-
terpart ARFIMA model are introduced. This class contains wide range of processes exhibiting
so called fractional behaviour. Methods for computationally simple estimation of key ARFIMA
parameters are presented.

The theory of fractional Levy processes is then applied to financial time series data. Key
ARFIMA parameters are estimated on rolling window basis for S&P 500 daily data and transmu-
tations of statistics are detected in the original data based on time evolution of these parameters.
This transmutation reminds phase transitions in statistical physics.

Keywords: Fractional Levy processes, ARFIMA, Transformation of statistics, Finacial time
series

Abstrakt. Predstavime frakéni Levyho procesy a jejich diskrétni verzi ARFIMA model. Tato
tfida obsahuje Sirokou Skalu procesu vyznacujici se takzvanym frakénim chovanim. Efektivni
metody pro odhad ARFIMA parametri jsou predstaveny.

Tato teorii je poté aplikovana na finan¢ni data. ARFIMA parametry jsou odhadnuty na posou-
vajici se podmnoziné uvazovanych dat a transmutace statistika je detekovana na zékladé jejich
¢asového vyvoje.

1 Introduction

Fractional processes have been successfully applied to number of problems in physics,
biology or economy [1,12]. They are closely related to anomalous (non-Brownian) diffu-
sion and they lead to non- standard scaling relations between temporal and positional
coordinates, i.e. standard Brownian scaling

(22(t)) ~ ot (1)

is no longer valid. For self similar processes this can be caused by two mechanisms - by
correlations between increments of the process or by infinite variance of underlying pro-
cess |2]. We will see that fractional Levy processes can compass both of these mechanism
in unified framework.

*This work was supported by the Grant Agency of the Czech Technical University in Prague, grant
No. SGS16,/239/0HK4/3T /14 and by Czech Science Foundation Grant No. 17-33812L.
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There is a number of ways which may give a rise to fractional dynamics. Trapping or
long range memory effects may for example lead to this behaviour. However probably the
most illustrative way to derive fractional processes is from continuous time random walk.
It is well known result that continuous time random walk with finite average waiting
time between jumps and finite jump size variance leads to Brownian motion in the limit.
However if one of these assumptions fails to be satisfied the resulting process exhibits
fractional behaviour. The infinite average waiting time leads to processes with various
memory effects, fractional Brownian motion being the most prominent example, while
infinite jump variance leads to stable processes. These are the two already mention mech-
anism leading to fractional behaviour.

Fractional processes can be well described using fractional differential equations [3].
Changing the order of temporal and spatial derivative in Fokker-Planck equation to non-
integer order leads to desired distortion of standard Brownian scaling. However there is
a number of different non-equivalent definitions of fractional differentiation and unified
framework for fractional processes defined as solutions of fractional differential equations
is still missing.

That is why we will not pursue the approach based on fractional differential equations
in this paper. Instead we will start from definition of so called Levy fractional pro-
cesses |4]. This class of processes directly combines fractional behaviour observed for
fractional Brownian motion with behaviour of heavy tailed stable processes. This means
that fractional behaviour of these processes is caused simultaneously by both correlations
between increments and infinite variance of underlying process. While these processes
cover incredibly wide range of processes and they likely provide general enough framework
to model any type of fractional behaviour their analytical tractability is a major issue.
Even simulation of such processes is a complicated issue with no satisfying solution am
aware of.

However in the limit fractional Levy processes can be written as normalized sums of so
called ARFIMA processes [5]. ARFIMA is discrete time stochastic model which directly
generalizes well known ARMA linear model. Broadly speaking ARFIMA model describes
(in the limit) behaviour of increments of Levy fractional processes.

Fitting ARFIMA model is complicated but tractable process [6]. However for our pur-
poses we will only need to fit two main parameters of ARFIMA process - parameters
effecting deformation of scaling of temporal and positional coordinate. Discontinuities
and local extremes in time evolution of these parameters may be regarded as points of
transmutation of underlying statistics. Furthermore in analogy to truncated Levy flights
another so called damping coefficient is introduced which essentially cuts off extreme val-
ues produced by stable noise which lead to unrealisticly high fourth moments which are
not observed in financial time series.

The class of fractional Levy processes contains essentially all self-similar processes with
stationary increments. Financial data have typically fractal nature [11] i.e. are self-similar
and the assumption of stationary increments is also in most of the cases reasonable. That
is why we believe that fractional Levy processes provide appropriate and sufficient frame-
work for financial time series modelling.

The paper is organized as follows - in the first part theoretical background behind frac-
tional Levy processes is presented. Basic properties of these processes are discussed and
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in particular two cases are mentioned - fractional Brownian motion and Levy stable pro-
cesses. Then discrete time counterpart of Levy fractional processes - ARFIMA model
- is introduced. The basic properties of this model are presented and connection with
fractional Levy processes is established.

The second part of this paper will focus mostly on numerical methods used to estimate
ARFIMA parameters and their application to real data. Computationally tractable
method is introduced which allows for effective estimation of these parameters. The
method is applied to daily data observed on financial markets during last sixty years.
Analysis of evolution of these parameters on rolling window data is then used for detec-
tion of transmutation of statistics.

2 Fractional Levy processes and ARFIMA model

General Levy fractional process can be define in analogical way as fractional Brownian
motion as an integral [7]

L3y (t) = / ((t— 2)" — (~2)) dLo(x) @)

where L, is a-stable symmetric process, d = H — 1/a with H € (0,1) and 0 < a < 2
and (z)y = max(z,0). In what follows we will always also consider o > 1 because Levy
processes with o < 1 have number of undesirable properties.

Parameter « is called stability index and H is famous Hurst self similarity index. Hurst
index is connected with fractal dimension of graph of the process which is equal to 2 — H
8]

Fractional Levy processes are H-self similar processes with stationary increments. They
can be described via their characteristic function [4]

o _CHZa
i (z) = e @D (3)

The density of fractional Levy processes is not available in closed form in the general
case.

The alternative to describe very similar class of processes exhibiting this type of fractional
behaviour is through fractional Fokker-Planck equation. One of possible forms of this
equation is [1] )

88_1/;/ = OD§7KQ%W(x, t) (4)
where ODI} ~7 is Riemann-Liouville derivative. Riemann-Liouville operator is integral op-
erator and therefore this equation is non-local and resulting process exhibits non-trivial
memory effects. Parameter v effects scaling - it holds (x%(¢)) ~ ¢” which means that case
~v > 1 corresponds to super-diffusion and v < 1 to sub-diffusion.

There are two special of fractional Levy processes we should mention.

Levy stable processes: The case d =0 ie. H = 1/a leads obviously to Levy stable
processes [2]|. Levy stable processes are H-self similar processes with stationary and in-
dependent increments. The general form of characteristic function of Levy stable process
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is
In (k) = itvk — ot|k|*(1 + iﬁ%’w(k, a)) (5)

where

—tan(ma/2)  for a #1
wik, @) = { @/minlk|  fora—1

However in this paper we will focus only on symmetric case i.e. g = 0.
The stability index o determines the tail behaviour of density of stable process (if a < 2)

1
Pa() ~ T2l 2| = o0 (6)

The closed form density for Levy processes is available only in several cases - most
important being case a = 2 which leads to Brownian motion. All Levy processes other
than Brownian motion have infinite variance.

The theoretical importance of stable distributions follows from generalized central limit
theorem - stable distributions are attractors for normalized sums of iid variables with
infinite variance [10].

Stable processes with o < 2 have qualitatively different behaviour than Brownian motion,
one of important differences is the fact that fractional dimension of a trail of a stable pro-
cess is equal to max(«, 1) [8]. This means that Brownian motion can fill two dimensional
space while any other stable process cannot. This behaviour is due to the fact that heavy
tailed stable processes move by very small jumps with occasional large jump - this means
that they form clusters instead of filling the whole space.

Fractional Brownian motion: The case a = 2 leads to integration with respect to
Brownian motion which yields fractional Brownian motion [8].

Fractional BM is H-self similar Gaussian process with stationary but not with indepen-
dent increments. The increments of fractional BM are positively correlated in the case
H > 1/2 and negatively for H < 1/2. This means that the case H > 1/2 leads to super-
diffusion and long range dependence of increments, if H < 1/2 increments are negatively
correlated and process is sub-diffusive. The case H = 1/2 is just Brownian motion.

2.1 ARFIMA model

Autoregressive fractionally integrated moving average model (ARFIMA) [5,13] generalizes
the standard linear ARMA model in two ways, naturally these two generalizations repre-
sent the two mechanisms leading to fractional behaviour. The general form of ARFIMA
model is

A,(B)X, = B,(B)(1 - B)'Z, (7)

where B is a lag operator, A, B are polynomials of order p respectively ¢ and Z; are iid
a-stable variables representing random noise.
The term (1 — B)~? is defined via Taylor expansion as

o0

1-B)17=Y %z (8)
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We denote the above defined model as ARFIM A(p, d, q, «), for it to be correctly specified
(converge a.s.) the following must hold [6]

H=d+1/a<1 (9)

Furthermore if roots of polynomial 4, lie outside of unit circle the ARFIMA process is
stationary.
Stationary ARFIMA process is asymptotically H self-similar with H = d + 1/a. The
most important result for us is the following limiting relation, let X be ARFIMA process
then
| Nt]
NTINTX, B Ly(t) N — oo (10)

i=1

So ARFIMA model can be considered as discrete time version of Levy fractional processes.
The case d = 0 leads to ARMA processes (with a-stable noise) and exponentially decaying
autocorrelation functions. The case d > 0 is similar to the case of fractional Brownian
motion and leads to long range dependence

> E[X(0)X (k)] = oo (11)

k=0

The case d < 0 is analogical to the case of fractional Brownian motion with H < 1/2 and
leads to short and negative correlations.

Even though ARFIMA is discrete time model it is quite complicated and even simulation
of ARFIMA is quite tricky. However it is much more tractable than fractional Levy
processes and at the same time it exhibits fractional dynamics caused by both non-trivial
correlation structure and by infinite variance of its noise process.

3 Parameter estimation and transmutation of statistics

The methods for estimating parameters o and d of ARFIMA model are presented in this
section and applied to S&P 500 daily data.

3.1 Numerical estimation of ARFIMA parameters

ARFIMA model is defined by four parameters d, «, p, g and by p + ¢ coefficients of poly-
nomials A and B. Due to large complexity of ARFIMA model parameters p, ¢ are often
assumed to be equal to one at most which still gives the ARFIMA model sufficient gen-
erality. The estimation of coefficient of polynomials A, B can then be formulated as well
defined optimization problem and solved numerically [6].

However the most important parameters of ARFIMA model are the two parameters defin-
ing the fractional nature of the model d and a. We will introduce computationally simple
methods to estimate these parameters in the following paragraphs.
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Estimation of anomalous diffusion parameter

The parameter d effects the memory effects of the underlying process, it is sometimes
called memory or long range dependence parameter.
Most common way to estimate this parameter is so called rescaled range (R/S) method
[11]. It estimates Hurst exponent as

E[@] ~Ct" t— 0 (12)
o(t)

where R(t) is a range of the cumulative sum of the underlying stationary (noise) process
and o(t) denotes standard deviation of the noise process.
However this method returns the true parameter H only in Gaussian case, it generally
gives value d 4+ 1/2 which is equal to the true Hurst exponent only in the case o = 2.
In other words this method assumes that the fractional behaviour of the underlying self-
similar process is caused solely by the correlations between increments (i.e. the underlying
process is fractional BM) and therefore fails in the general case of fractional Levy pro-
cesses.
Similarly there are methods assuming that fractional behaviour of self-similar process is
caused solely by infinite variance of the underlying noise process. Mantegna and Stanley
for example proposed the following test [9]:
For process with stationary increments self-similarity implies the following relation p;(0) =
7rp1(0). First we estimate an empirical density at zero p;(0). This can be done from the
histogram for example. Then we get the following relation

A
Inp;(0) ~ H1n T+ Inpa(0) (13)

Mantegna and Stanley applied this to SP 500 and obtained H ~ 0,55. They concluded
the a-stable model with a@ ~ 1,8. However this test implicitly assumes that the other
source of fractional behaviour is not present (i.e. that process has independent incre-
ments).

We instead propose the following simple method which seems to provide accurate esti-
mated of parameter d. We define mean sample displacement as follows

M) = 3 (s X (14
N—t—14%

The key result is that if the process X; is cumulative sum process of stationary ARFIMA
process (with a > 1) then the following asymptotic relation holds (for large N) [6]

My (t) ~ 3! (15)

So clearly the case d = H — 1/a > 0 corresponds to super diffusion and d = H —1/a < 0
leads to sub diffusion. Interesting is the case d < 0 with non-Gaussian noise, in this case
the large jumps produced by stable noise are compensated by large jumps of opposite
sign and on average the diffusion of the process is slower that in the standard Brownian
case.

The proposed method of estimation of parameter d is the following:
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1. Estimate My(t) for t =1,2,..,10

2. Run regression In My(t) ~ Int

3. Take the calculated slope ¢ and calculate d = ‘S_Tl

The proposed estimator is consistent, it has been tested and seems to produce reliable
results. However in some case it is required to calculate My (t) for more values of ¢ before

running the regression.

Estimation of stability index

There is number of ways in which parameters of stable distribution can be fitted. The
most common ones are maximum likelihood method (using approximate likelihood func-
tion), methods based and tabulated quantile values and methods based on regression of
empirical characteristic function. The regression methods seems to be most reliable [14].
However we are interested only in stability parameter «, so we will follow different ap-
proach. We present method for calculation of Hurst index H applicable for general class
of fractional Levy processes. Combined with previous method to estimate d we then
obtain stability index as a = 7.
We will apply concept of p-variation for this analysis, we define sample p-variation of
process X;c(1..ny of lag m as [16]

N/m—1

Vi = Z | X(ir1)m — Xim|” (16)

i=0
Let us assume that X is cumulative sum process of stationary ARFIMA process, then
for sufficiently large N/m it holds [6]

l. ifa=2orifl<a<2andd>0

VP~ mfr—t (17)
2. ifl<a<2andd<0

Vn’;NmH”_p/a (18)

It worth noticing that in the first case variation increases with growing p but it decreases
in the second case.
In the first case the following estimation technique can be applied.

1. Estimate V2 for p = 1/{0.01,0.02..1}

an*Vf)2

2. For fixed m find p that minimizes ( Ved
1

3. estimate H = 1/p

The appropriate choice of m has to done based on sample size, generally it is better to
choose larger m as long as N/m remains sufficiently large.

The second case can be transformed into the first case by using concept of surrogate
data, which means essentially reshuffling the (stationary increment) data. That should
break the correlation structure within the data and essentially set d = 0, then the same
approach can be applied.
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3.2 Transmutation of statistics in financial time series

We will apply the methods presented above to detect the transmutation of statistics in
S&P 500 daily data observed between years 1950 to 2007. There is approximately 14500
data points in analysed time series.

Proposed approach assumes that logarithms of observed prices follow fractional Levy pro-
cess. This is quite standard approach, in fact famous Black-Scholes theory assumes that
logarithms of asset prices follow particular case of fractional Levy processes - Brownian
motion. We checked stationarity of increments of the process using unit root test and
self-similarity of log-levels using rescaled range approach, both these assumptions seems
to be satisfied.

We applied methods for estimation of o and d parameters of fractional Levy process to
rolling window sample of original S&P 500 daily data. The evolution of these parameters
determining the fractional nature of process will allow us to detect transmutations of
statistics in original data.

Some parameters of the approach were determined purely by numerical analysis, after
testing different specifications we chose

1. the length of rolling window sample to be 3000 data points
2. to replace 600 data points of the rolling window sample in every iteration
3. we chose parameter m used in estimation of Hurst index to be equal to 3

We first applied the above approach to the whole dataset, we obtained

H ~0.56,d ~ 0.01 = a ~ 1.81 (19)

Notice that this is exactly the same result that Mantegna and Stanley obtained for similar
dataset using different approach based on self similarity, they ignored the fractionality
causes by parameter d however in this case we can see that its effect is negligible.
Application of the above described approach on rolling window sub-sample of size 3000
data points and replacing 600 data points in every iteration yielded time evolution of
Hurst index H = d 4+ 1/« depicted in Figure 1. The dates in the graph are always the
end dates of the corresponding rolling window sample.

The red lines denotes points where derivative of H changes sign, these will be regarded
as point of transmutation of statistics. The blue line denoted point where d changes
sign from positive to negative, i.e. point of transmutation from super-diffusion to sub-
diffusion. The discontinuity of H in this point is caused by this transmutation, due to
nature of rolling window approach this discontinuity can be seen twice, however only the
first one interests us.

When we plot the original log-prices we can see that the located points of transmutation of
statistics are clearly significant For the first two "red lines" the transmutation of statistics
can be seen very clearly, the other two are less clear mainly due to smaller sample size in
these windows. This can be also seen from the following table summarizing the different
windows (separated by red lines in Figure2)
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Hurst exponent evolution
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H d Q kurtosis | skewness | damping coefficient
Ist | 0.55(0.02 | 1.89 | 9 -0.7 0.06%
2nd | 0.65 | 0.07 | 1.72 | 2.5 0.23 0.16%
3rd | 0.53 | 0 1.89 | 5.8 -0.42 0.08%
4th | 0.52 | -0.06 | 1.72 | 3.8 -0.31 0.1%
5th [ 0.48 1 -0.04 |19 |29 0.13 0.14%

where damping coefficient is introduced because kurtosis of simulated values from stable
distributions are much higher than observed kurtosis. The damping coefficient determines
how many extreme values simulated from given stable distribution we have to exclude for
simulated and observed kurtosis to match. We used simulation approach to determine
these values. This idea is known from theory of truncated Levy flights [12| and damping
is there introduced through cut-off of density function, for fractional processes this is
more complicated however.

The transition from super-diffusive regime to sub-diffusive regime can be clearly seen. It
also seems that there are two well defined regimes of stability index «, in addition the
stability index of whole dataset lies approximately in the middle of these. Interesting is the
third transition where H does not change much because the change in « is compensated
by change of d .

Based on our analysis of this and few similar samples we can state few empirical rules
that seem typically to hold

1. The point of transmutation is typically either point where d or derivative of d
changes sign, in this case first and last transition are related to change of sign of
derivative of d and middle transitions to sign of d

2. transitions seem often to be followed by change of sign of skewness
3. transitions caused by change of sign of d seem to behave less regularly

4. transition from super diffusive to sub diffusive regime causes discontinuities in
rolling window graph of H

Conclusion

We used formalism of fractional Levy processes and ARFIMA model to detect transmu-
tations of statistics in daily S&P 500 data observed on financial markets. The method
seems very promising and we can conclude that the underlying dynamics of the observed
data clearly changes in located points of transmutation. Proposed parameter estimation
technique seems to be quite reliable and on the whole dataset it gave similar results as
other methods typically used.

While the initial results are promising the method must be tested for much broader range
of datasets. That should also give us better understanding of underlying transitions. We
would also like to develop analytical framework for estimation of size of rolling window
sample and for number of points that are replaced in every iteration.

The main objective would be to classify transitions observed on financial markets in uni-
fied framework, the idea we have in mind at the moment is to build in this framework
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in analogy with phase transitions in statistical physics. For example the key diffusion
parameter d could play similar role as thermodynamic potentials, because the statistic
transmutation is typically related to discontinuity of d or of its derivative.

We also plan to apply this method to higher frequency data in the future, the results
there might be quite different due to much higher volatility of diffusion parameter d.
The understanding of these transition could also allow us to forecast future volatility of
underlying financial time series.
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Abstract. Multiple-instance learning (MIL) is a subset of supervised binary classification. In
MIL, multiple instances (feature vectors) belonging to a single individual are collected in bags
which are then labeled as positive or negative. Usually, no indication is given whether the label is
given by a number of positive /negative observations in a bag or if the bags differ with their entire
structure. In this contribution we research the possibility of representing the internal structure
of bags by a set of base vectors and selection matrices which are unique for each bag. This
leads to an ill-posed matrix factorization problem which we solve by employing the Bayesian
framework. Performance of the resulting algorithm is validated on a testing MIL dataset. Also,
motivation is given by describing a real-world MIL problem of detection of malware infected
computers.

Keywords: multiple-instance learning, supervised learning, variational Bayes, matrix factoriza-
tion

Abstrakt. Multiple-instance learning (MIL) je druhem binarni klasifikace s u¢itelem. MIL prob-
lémy se vyznacuji tim, ze ke kazdému jedinci existuje nékolik vektort piiznaki sdruzenych do jed-
iné matice - tzv. bagu. Kazdému bagu jako celku je pak pfifazeno oznaceni pozitivni/negativni.
Neni pritom dano, zda je napf. pozitivni oznaceni zptisobeno nékolika pozitivnimi vektory mezi
zbytkem negativnich nebo zda se lisi celkova struktura bagti. V tomto prispévku se zabyvime
reprezentaci vnit¥ni struktury bagi pomoci mnoziny zékladnich vektort a vybérovych matic,
unikatnich pro kazdy bag. Regeni této Spatné podminéné tlohy je navrzeno ve tvaru maticové
faktorizace a je hledano pomoci bayesovského hierarchického modelu. Odvozeny algoritmus
je otestovan na vzorovém MIL datasetu. V textu je také popsdna motivace danad problémem
vyvstavajicim v detekci malwarem napadenych pocitaci.

Klicovd slova: multiple-instance learning, uc¢eni s ucitelem, varia¢ni Bayes, maticova faktorizace

1 Introduction

In multiple-instance learning (MIL), the problem of supervised binary classification is
made more difficult for the learner due to a number of reasons. Firstly, instead of having
a set of instances (feature vectors) labeled as negative or positive, a number of bags of
instances is received, where the whole bags are labeled as positive or negative. Every
bag consists of a (possibly different) number of instances whose individual labels are not
known. The common conception is that a bag is labeled negative if all instances in it
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are negative, but if even a single instance is positive, then the label of the bag is also
positive [6]. Secondly, the ratio of negative to positive instances in a bag can be arbitrarily
high. In real-world problems however, this presumption can be violated and positive and
negative bags may be generated from entirely different sources. In [4], the MIL model
was formalized for the first time and a solution using axis-parallel rectangles constructed
by the conjunction of the features was proposed.

A number of different MIL problems were solved using different approaches. Decision
trees were used [3] for the drug activity prediction problem. Boosting algorithm was
proposed to be used for face detection in [2]. The kNN nearest algorithm with Hausdorff
distance [11], a variant of the support vector machine algorithm [1] or various set distances
[10] were compared on a common MIL dataset.

The problem of malware detection in computers connected to a network whose activity
we supervise is of particular interest to us. In such a case, the communication of every
computer with the outside world (using a HTTP protocol) goes through a common hub.
The observer, for a limited time frame, collects all HT'TP requests of the computers in
the network. From each request, we substract a number of features (e.g. bytes sent
and received, request lenght in ms). A collection of such instances for one computer
creates a bag. Additionaly, some computers are known to be infected with malware that
communicates with the Internet. Their bags are then labeled as positive and together with
bags of some uninfected computers compose a training dataset. Presumably, positive bags
should contain a number of positive instances - requests created by the malware. This
poses an interesting MIL problem, as the ratio of positively labeled bags to negatively
labeled ones is small (~2%) and it is possible that not all positively labelled bags actually
contain a malware-originated request. Decision trees [8] and neural networks [9] were used
to tackle this problem.

In the following text, the MIL problem will be formalized. Also, an approach leading
to matrix factorization will be outlined. The solution will be sought after using Bayesian
formalism. The performance of the resulting algorithm will be presented on a well-known
MIL dataset. Finally, some comments will be made about the method and the future
outlook

2 MIL and matrix factorization

Let the structure of the training MIL dataset be following: there are N bags - matrices
Y, € REXMn 5y € N. The columns of each bag are instances y,, € RE,m € M,,. Labels
of the bags are stored in the vector x € {0,1}". Now, let Y € RLXM be a single bag.
Consider the following factorization

Y = BAT + E, (1)

where B € R/ is a matrix consisting of a few base, general instances. A € RM*H can
be thought of as a selector matrix that chooses the base instances for a given Y. Matrix
E € R¥*M g the noise. This model can very well represent a true MIL problem as it
can be expected that there is a number H of universal instances that repeat across and
inside bags. Some of these can be positive and some negative.
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Computation of this factorization is an ill-posed problem and has infinitely many
solutions. To achieve the properties described above, we must impose some further re-
strictions on the simple model (1). This will be discussed in the next section.

Now, suppose that we concatenate all the positive and negative bags together in two

general matrices
N

Ty € RVM My = ) M, (2)

n=1
=0

N
Ty e RVM My = ) M, (3)

n=1
rn=1

By computing the factorization (1) for Ty and 7, we obtain two base matrices By and B;.
If we computed them in accordance with the properties stated above, then they should
differ by a number of base positive instances. When deciding on the label of an unknown
bag Yy.1, we compute matrices Ay and A; from (1) with Yy on the right side and with
a fixed By and By, respectively. Then the label is given by the decomposition where the
reconstruction has smaller error, i.e.

oy = argmin{|[Ya g — BiAT [la 1 € {0,131}, (4)

where ||.||2 is the matrix L:norm. The classification is based on the assumption that
decomposing with respect to a correct base should be more precise than the using the
wrong one. However this might not be true for all MIL datasets.

3 Variational Bayes matrix factorization

In this section, we build a bayesian hierarchical model around the simple model (1) with
the proposed factorization properties in mind, i.e. B is a matrix of base instances and A
is a selector matrix. To achieve this, we want the matrix A to be sparse. In an ideal case,
A would only consist of ones and zeros as it selected the apropriate instances encoded in
B. In a Bayesian context, the property of achieving sparsity is called ARD (automatic
relevance determination, see [12]).

3.1 The hierarchical model

We will start by choosing the data likelihood and prior for B in accordance with [7],
where ARD is implied on the columns of B and A in order to reduce the inner dimension
H. However, to achieve the proposed sparsity, we will impose the ARD property on every
single element of A by choosing a normal distribution of vectorized matrix A instead of
the the original matrix normal distribution. The data likelihood and priors on A, B are
chosen as

p(Y|B,A,0) = MN(Y|BAT oI}, Iy), (5)
p(vec(AT)|Cy) = N (vec(AT)|0,CY), (6)
p(B|Cp) = MN(B|0,1I,,Cz"). (7)
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Here, N M(.) is the matrix normal distribution and N(.) is the normal distribution, I,
is identity matrix of size d. Prior distributions for covariances are following:

H M
p(Ca) = [ 9G(Camnlao, Bo), (8)
hym=1
Cs = diag(Car1, Carz2, - .., Camn), 9)
H
Cp) = HQ(CBh|70,50) (10)
h=1
CB :diag(Cgl,...,CBH), (11)
p(a) = G(a|no, C), (12)

where G(.) denotes the gamma distribution. It is actually through the estimation of the
precisions (inverse variances) that the ARD property is achieved.

3.2 The Variational Bayes method

The joint probability distribution of the data and the parameters is now
p(Y,0) =p(Y, A, B,Ca,Cp,0) = p(Y|B, A, 0)p(A|Ca)p(B|Cr)p(Ca)p(Cr)p(a), (13)

where the simplification © = (A, B,C4,Cp,0) is used. The structure of the model
does not permit a direct evaluation of the true posterior p(A, B,Ca,Cp,0|Y) = p(6Y).
Instead of resorting to MCMC methods, we use the computationally less expensive Vari-
ational Bayes (VB) framework. Using some approximations, VB will enable us to come
to an analytic expression for an equilibrium state that describes the parameters of the
posterior.

VB approximates the true posterior distribution with a product of mutually indepen-
dent posteriors

p(OFY) = q(B]Y) = q(A]Y)q(B|Y)q(CalY)q(CplY)q(a]Y). (14)

The fixed log marginal probability of ¥ can be expressed as

Inp(Y) = / el (250 ) de (15)

(@)1 (g@'y) (16)
]—"()+KL Y)||p(©]Y)) . (17)

Here, F(q) is the free energy and KL(.) is the Kullback-Leibler divergence between the
true and the approximate posterior. It is an integral probability measure and is equal
to zero if the two arguments are equal. Because KL divergence is always non-negative,
we can minimize it by choosing the right forms of approximate posteriors in ¢(©]Y") that
maximize the negative free energy F(q), thus bringing the approximate posterior closer
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to the true one. From the VB theory, the posteriors that maximize the free energy have
the form

Ing(0,]Y) = Eqye,v) i Inp(Y,0)], (18)

where the expectation is taken over all other approximate posteriors ¢(©;|Y’) but the
i-th. For details see Chapter 3 in [13]. Using conjugate priors, the posterior distributions
have known forms and analytical expressions of their parameters.

3.3 The approximate posterior

In this place, we will analytically derive the posterior distribution for variance of the data
o using prescription (18). It is a simple and straightforward computation compared to
other posteriors but it ilustrates the principle of the VB method. Recollecting the form
of the likelihood, the priors (5) - (12) and using (18) we have

Ing(alY)=(n—1)Ino— (oo — U%tr <E [(Y - BAT)T (Y — BAT)] ) + # In o + const.

(19)
Here, const. stands for terms that are not dependent on ¢ and that are considered to be
part of the integration constant of the posterior distribution. Expectation is computed
with respect to the other posteriors. By collecting the terms for ¢ and In o, we see that
the posterior of ¢ is again a Gamma distribution of the following form

q(a]Y) = G(aln,q), (20)
ML

n ="+ 5 (21)

¢:g0+%tr (B[(v - BAT)" (v - BAT)]). (22)

Clearly, the posterior balances the influence of the prior and the data. Usually, the prior
parameters 7, (o are set to small values (e.g. 107!°) to keep the estimates unbiased.

Following the procedure outlined above for the rest of the estimated parameters, we
arrive at the following posterior distributions

q(vec(AT)Y) = N (vec(AT) |14, X ), (23)
Q(B|Y> = MN(B|MB; Iy, 23)7 (24)
q(CAmh’Y) = g(CAmh|amh> ﬁmh); (25)
¢(CerlY) = G(Caa|Vn, on), (26)
with their shaping parameters given by this set of equations:

jia = 65 avee(BTY), Sa = (Ca+6Iy ®BTB)™, (27)
My = 6Y A%y, Sp = (6ATA+ Cp)Y, (28)

1 1—
Oy = O + 57 B’mh - BO + §A$nha (29)

L 1——
Yn = Yo + 5, 5h = (50 -+ QB?;Bh (30)
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Here, the notation~ is used for expectation over posterior distribtutions and ® is used
for Kronecker product. The equations contain a number of lower and higher moments
that can be expresed using the shaping parameters and well known properties of used
distributions. They have the following form

M
A= devec(uA)T, ATA = ATA + Z sub(X4,m, H), (31)
m=1
B = Mp B'B=B"B + LYy, (32)
o1 OMH 711 TMH
Oy = dia =, Cp = dia o, 33
4 s <511 5MH) b & (511 5MH) (3)
~ N
G =-, 34
: (34)

tr (E|(v - BA")" (v = BA")|) =t (Y'Y + BTBATA - 2V ABT) . (35)

The notation devec(.) is used for the operation of devectorization a vector into a
matrix of the original size, sub(3 4, m, H) is the m-th diagonal submatrix of ¥, of size
H x H.

To compute the solution of the system of equations, we use an iterative algorithm. It
starts with some initial values for the shaping parameters. Then, the shaping parameters
of each posterior are updated using the equations (21), (22), (27) - (30) and keeping
the shaping parameters of other posteriors fixed. This way, it is guaranteed that a local
minimum of KL divergence is found [5]. The algorithm is described in Algorithm 1.

Algorithm 1: VBMF - Variational Bayes Matrix Factorization
input :bag Y € R“M inner dimension H, stopping conditions
maxlter € N e € R
output: shaping parameters of posterior distrubution ¢(0|Y)
initialization: initialize the values of shaping parameters, set
nlter =0,Bs = Mp,6 = ¢+ 1;
while niter < maxlter Ad > ¢ do
update shaping parameters of q(vec(AT)|Y) using (27) ;
update shaping parameters of ¢(B|Y’) using (28) ;

update shaping parameters of ¢(Cp|Y") using (30) Vh € H

(
(
update shaping parameters of ¢(C4|Y) using (29) Vm € M,heH :
(
(0]Y) using (21), (22) ;

update shaping parameters of ¢(o

Bs—Mg]|
set § = 1Bs—Mall.
[|MBll

set Bs = Mp;
set niter = niter + 1;

report B = Mp, A = devec(u14)” and the rest of estimated shaping parameters;
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3.4 The classification algorithm

This section compiles the whole procedure of training the classification algorithm and
then using it to classify a new sample bag. The basic idea of classification was already
described in section 2.

Algorithm 2: MIL classification using VBMF
input : training dataset {Tp, 71}, testing dataset {Y7,...,Yp}
output: estimated labels {x1,...,zp}
using Algorithm 1 on the matrix Tj, compute negative basis By and its
covariance X pgg;
using Algorithm 1 on the matrix 77, compute positive basis B; and its covariance
2 B1;
ford=1,...,D do
Compute the backward factorization with fixed By;

e initalize Algorithm 1 for Y, with Mg = By, ¥ = ¥po

e compute the rest of Algorithm 1, ommiting updates for ¢(B|Y) ;

e report estimates and set Ay = A
Compute the backward factorization with fixed By;
e initalize Algorithm 1 for Y; with Mg = By,Xp = Xp1
e compute the rest of Algorithm 1, ommiting updates for ¢(B|Y) ;

e report estimates and set Ay = A

set the estimate of label as x4 = argmin{||Yy — BiAL|| : i € {0,1}},

4 Validation

The classification algorithm was tested on set of well-known datasets of MIL problems.
While on some it did not perform well, on a few particular datasets the classification
procedure did achieve some success. This is the case for other MIL algorithms, that
are sometimes tuned with a particular dataset in mind. An overview of the size of the
datasets is in table 4. In these datasets, the labels of all bags are known.

dataset ‘ number of bags N instance length L average bag size M
BrownCreeper 548 38 19
Musk1 166 92 5
WinterWren 248 38 19

On these datasets, the classification algorithm was tested in the following manner:
a) a subset of bags was randomly chosen and used as traning data b) for every bag in
the remaining (testing) subset, the classification was computed. This was repeated more
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times. Each time, an error metric called equal error rate (EER) was computed. We define
it as

(36)

fal ti fal iti
EER — <Z alse negatives ) false positives ) /

> positive labels = > negative labels

It is used here because of the unbalanced number of negative and positive samples in
some datasets.

The matrix ¥4 has a total of M2H? elements. For some datasets, this slows down
the computation due to memory allocation and a very difficult inversion of the term in
(27). A compromise between precision and speed has been done so that for M H > 200
only the diagonal of the matrix is estimated and kept in memory. When compared to the
computation of the whole matrix, this does not lead to significantly deteriorated results.

For the 3 datasets, the histograms of EER for different ratio of training and testing
data for 100 tries is in Figure 1. Missing entries for smaller percentage of known labels
are caused by numerical difficulties when inverting ill-conditioned matrices. Clearly, for
larger percentage of known labels the mean error is smaller and is in the range of 10-20%.
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Figure 1: Equal error rate histograms for the classification experiment on available
datasets. Internal factorization dimension H = 5, 100 retries for each known label per-
centage.

5 Discussion

In this article, an introduction to multiple-instance learning was given with the motivation
for the work given by malware datection in a network of computers. Unfortunately, real-
world data from this field are not yet available, so all experiments were only made on a set
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of well-known MIL problems. In the rest of the paper, basic idea behind the method was
described and further elaborated using Bayesian formalism. The proposed hierarchical
model was detailed together with the resulting algorithms for matrix factorization and
classification of MIL datasets.

In comparison to other MIL algorithms, the classification error of our method is still

high, as the cutting-edge approaches achieve EER in the range of 5-10%. Clearly, further
work is required to be able to compete. The direction in which to improve is certainly
the classification rule, which is now based on a very simple error criterion.
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Abstract. The article addresses an approach to decision making when a decision maker (human
or artificial) uses incomplete knowledge of environment and faces high computational limitations.
It considers a closed decision-making (DM) loop consisting of agent-environment pair described
by agent’s actions and environment states (possibly partially observable). Agent’s DM problem
(estimation, filtering, prediction, classification) is to influence the environment behavior in a
desired way by choosing and applying a tailored DM policy generating optional actions with
respect to environment.

In general LL is an approach that searches and uses relevant information from the past data
and use solutions already invented (analogical modelling, memory-based prediction, transfer
learning, ...). Particularly, the lazy FPD uses currently observed data to find and employ past
closed-loop similar to the actual ideal represents preferences.
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Abstrakt. Clanek se zabyva pristupem k rozhodovani pii netuplné znalosti prostiedi a vysokym
vypocetnim omezenim. Uvazujeme uzavienou smycku sloZenou z paru agent a prostiedi pop-
saného pomoci akei agenta a stavi prostiedi (¢astecné pozorovatelnych). Cil agenta je ovlivnit
chovani prostiedi vybérem a uplatnénim rozhodovaci strategie. Lazy learning je obecny piistup,
ktery vyhledéva a pouziva relevantni informace z pozorovanych dat a pouziva jiz vyvinuta reseni.
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Abstract. Modern experiments in high energy physics impose great demands on the reliability,
the efficiency, and the data rate of Data Acquisition Systems (DAQ). This contribution focuses on
the development and deployment of the new communication library DIALOG for the intelligent,
FPGA-based Data Acquisition System (iFDAQ) of the COMPASS experiment at CERN. The
iFDAQ utilizing a hardware event builder is designed to be able to readout data at the maximum
rate of the experiment. The DIALOG library is a communication system both for distributed and
mixed environments, it provides a network transparent inter-process communication layer. Using
the high-performance and modern C++ framework Qt and its Qt Network API, the DIALOG
library presents an alternative to the previously used DIM library. The DIALOG library was fully
incorporated to all processes in the iIFDAQ during the run 2016. From the software point of view,
it might be considered as a significant improvement of iFDAQ in comparison with the previous
run. To extend the possibilities of debugging, the online monitoring of communication among
processes via DIALOG GUTI is a desirable feature. In the paper, we present the DIALOG library
from several insights and discuss it in a detailed way. Moreover, the efficiency measurement and
comparison with the DIM library with respect to the iFDAQ requirements is provided.

Keywords: Data acquisition system, DIALOG library, DIM library, FPGA, Qt framework,
TCP/IP

Abstrakt. Moderni experimenty ve fyzice vysokych energii kladou veliké naroky na spolehlivost,
efektivitu a rychlost pfenosu dat systémii pro sbér dat (DAQ). Tento ¢lanek se zaméfuje na vyvoj
a nasazeni nové komunika¢ni knihovny DIALOG pro inteligentni systém pro sbér dat zaloZeného
na FPGA (iFDAQ) experimentu COMPASS v CERNu. iFDAQ ¢erpa udalosti vytvofené na
drovni hardwaru a je navrzen tak, aby umozioval ¢teni dat pfi maximalni rychlosti pfenosu
dat z experimentu. Knihovna DIALOG je komunika¢ni systém jak pro distribuované tak pro
smiSené architektury a poskytuje sitovou transparentni meziprocesovou komunikaéni vrstvu. Po-
moci vysoce vykonného a moderniho C++ frameworku Qt a jeho Qt Network API predstavuje
knihovna DIALOG alternativu k diive pouzivané knihovné DIM. Knihovna DIALOG byla plné
integrovana do v8ech procesi v iFDAQ béhem sbéru dat v roce 2016. Tato integrace z hlediska
softwaru muze byt povazovana za vyznamné vylepSeni iFDAQ ve srovnani se sbérem dat v
predchozim roce. Pro rozsifeni moznosti ladéni je DIALOG GUI vitanym néstrojem pro on-
line sledovani komunikace mezi procesy. V ¢lanku prezentujeme knihovnu DIALOG z nékolika
pohledt a detailné ji diskutujeme. Kromé toho je k dispozici vykonnostni méfeni a porovnéni s
knihovnou DIM s ohledem na pozadavky iFDAQ.

Klicovd slova: Systém pro sbér dat, knihovna DIALOG, knihovna DIM, FPGA, Qt framework,
TCP/IP
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Abstract. The structure and function of human brain is quite complex. Various brain regions
communicate with each other. Observing external potentials via EEG electrodes, we can study
these communications as dependencies of multichannel EEG signal. The hypothesis presented
here is that Alzheimer’s diseased and normal control participants can be distinguished due to
different distributions of scalp EEG-based causality measurements. The theory of Vector Auto-
Regressive model and Granger causality is used to obtain the Causality Index as a novel criterion
of brain activity. The general methodology is applied to real 21-channel EEG data obtained from
normal control and Alzheimer’s diseased groups of patients. The developed method is applicable
to the localization of pathophysiological changes of Alzheimer’s disease.

Keywords: VAR model, Granger causality, EEG, Alzheimer’s disease, multiple-testing

Abstrakt. Struktura a funk¢nost lidského mozku jsou velmi slozité. Riizné oblasti mozku
spolu navzajem komunikuji. Pfi sledovani externich potencidli skrz elektrody EEG miiZzeme
studovat tuto komunikaci jako zavislosti vicekandlového EEG signalu. Prezentovana hypotéza
predpokladé, Zze pacienti s Alzheimerovou chorobou a kontrolni tcastnici mohou byt od sebe
odliseni diky rozdilnému rozlozeni miry kauzality v naméfeném EEG. Je zde pouzit vektorovy
autoregresni model a Grangerova kauzalita k tomu, aby byl uréen novy Kauzalni index, ktery
popisuje mozkovou aktivitu. Obecnd metodologie je aplikovdna na redlna 21kanalovda EEG data
od zdravych pacient a pacient s Alzheimerovou chorobou. Vyvinutda metoda se dé pouzit k
lokalizaci patofyziologickych zmén pt¥i Alzheimerové chorobé.

Klicovd slova: VAR model, Grangerova kauzalita, EEG, Alzheimerova choroba, mnohonasobné
testovani

1 Introduction

Alzheimer’s disease (AD), the most common form of a neurodegenerative disease, causes
brain cells atrophy in parallel with a decline in memory, language and everyday activities.
EEG records electrical activity of the neural tissue. Thus, any pathological changes affect
the resulting EEG signal [3], [1], [5]. Lower mean levels of channel-to-channel synchro-
nization [11], [17] and greater uniformity in alpha and gamma band activity [14] have
been shown in AD patients’ EEG data. The dynamic relations between EEG channels,
the direction of interactions, and their strength can be studied via Granger causality [§],

*This work has been supported by the grant SGS 17/196/OHK4/3T /14
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[10], [4]. An alternative approach to causality investigation was used by McBride et al.
[13]. In this research, the Vector Auto-Regressive (VAR) model of optimum length is
directly applied to channel pairs followed by Granger causality testing to obtain novel
criterion called Causality Index. Channel pairs with maximum significance of differences
are localized and interpreted.

2 VAR model of multichannel EEG

The multichannel EEG data are proceeded by VAR model [16] to obtain both an opti-
mum model order [9] and Granger causalities [7|. I suppose time series of length M in
k-dimensional space and VAR(p) model of order p in the form [12]

p
X, = C + Z A, X + €, (1)

m=1

forn =p+1,...,M where x,,,c,e, R forn=1,...,M, A,, c R">* form=1,...,p,
and e, ~ N(0,3) as independent vectors. Unknown matrices A,, and bias vector c
are estimated by the least squares method. The covariance matrix X is estimated from

residues r,, as
M

1 T
C= T Z r,r,, (2)

n=p+1

where T' = M — p is constrain number.

The quality of VAR(p) model varies with its order p. Schwarz criterion BIC(p) (Bayesian
Information Criterion) [6] is frequently used to find the optimum model order as pop €
argmin BIC(p), where

2InT
BIC(p):1n|C|+kan . (3)

The optimum value of model order varies segment by segment, but the most frequent
value of popt (over all patients and their segments of length M) is postulated as the best
choice for following Granger causality analysis [7].

3 Granger causality in investigation of multichannel
EEG interactions

The k-dimensional VAR model of order p is used to investigate EEG signal dependences.
Granger causality is focused on EEG channel pairs investigations. We study channels ch;,
chj for i,5 € 1,...,k,© # j. The complete model is studied first as a two-dimensional
VAR(p) model with x, = (2,4, 2, ;)" € R? and 2p+ 1 unknown parameters as producing
residual sum SSQ)..

The reduced one-dimensional case produces residual sum SSQ), using also VAR(p) model
of p+1 unknown parameters but only for channel ch;, where x, = z,,; € R. Therefore, in
this submodel p parameters were constrained to zero values to eliminate the influence of
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channel ch;. The standard F-test of variance equity hypothesis Hy is based on criterion

_S85Q, —S55Q. T—-2p—1
C8sQ e
which has Fisher-Snedecor distribution F of p and T — 2p — 1 degrees of freedom for
independent channels. Applying this test to all segments of all patients, we obtain various
p-values, but it is a case of multiple-testing. Therefore, False Discovery Rate (FDR) [2]
correction has to be performed to obtain decreased critical value appr as follows.

Let H € N be the number of independently tested hypotheses on critical level & > 0. The
corresponding p-values are p;, for k£ = 1,..., H. Comparing the sorted p() values with
diminished critical levels kar/ H, we find k* = max(k : pi) < «) if it exists. The decreased
critical value is defined as appr = pu~) or appr = 0 in the case of " non-existence.
Finally, all hypotheses satisfying pr. < appg are rejected, which is statistically correct as
proven in [18].

The FDR technique is employed in this novel approach as a very sensitive tool to
localize significant segment dependencies. This approach is used for the design of novel
Causality Index of relative channel synchronization.

Let u be patient index, AD, CN be sets of diseased and control patients, and let us denote
Ny, N;;, as the number of all segments of u-th patient and the number of significant
segment dependences of ch; on ch; of u-th patient.

The Causality Index can be defined as the relative frequency of synchronized events

F

(4)

Si,j,u = Nifj,u/Nu' (5)

Variable S; ;,, € [0, 1] is a measure of synchronization from j-th to i-th channel for a
given patient. The final hypothesis is focused on the Causality Index differences between
AD and CN groups. For the fixed pair of channels ch;,ch; I test the hypothesis Hy if
the median of Causality Index differs, using Wilcoxon-Mann-Whitney (WMW) rank-sum
test, again with FDR correction.

4 Data description

General approach was applied to the group of 26 patients with Alzheimer’s disease (AD)
and 139 control patients (CN). All subjects were recorded under the same resting protocol,
i.e. eyes closed, lying on a bed. The standard 10-20 EEG system of electrode placement
was used to obtain 21-channel digital EEG via TruScan 32. The sampling frequency was
200 Hz with 22 bit AD converter. Due to quasistationarity, the EEG signal was segmented
to two-second segments of 400 samples for separate analysis. The total number of 24 742
segments from all patients were used for statistical investigation.

5 Results

The statistical analysis had three aims. The optimum order of VAR(p) model was in-
vestigated first. Then inter-channel causalities in individual segments were tested and
segments with statistical significant causalities were localized. In the final step, the main
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1.

Figure 1: Significant increasing (grey) and decreasing (black) of Causality Index in
Alzheimer’s disease: consequent channels ch; as rows, antecedent channels ch; as columns.

issue, i.e. whether the Causality Index is affected by Alzheimer’s disease, was the subject
of multiple-testing.

5.1 Optimum length of VAR model

The first aim of separate segment processing was to estimate the optimum model order
Popt 0f VAR(p) model of dimension k£ = 19. Using non-overlapping 24 742 segments of all
patients I minimized BIC(p) for p < 100. The optimum order varied from 11 to 48, and
the most frequent value was pop — 26 as experimental modus. This value was postulated
as the recommended model order for the consequent Granger causality investigations.

5.2 Significant channel dependencies

The total number of 19 x 18 = 342 channel pairs can potentially significantly interact
in the case of 19-channel EEG. The F-test of hypothesis Ho: 0201t = Oreducea Was used
for all pairs and 24 742 segments with p = 26 on critical level &« = 0.05. The resulting
p-values were corrected by FDR to obtain decreased value appg = 0.0023. Significant
combinations of channels and segments were labelled and counted to obtain Causality

Indexes S -

5.3 Causality Index changes

Being focused on channel pair ch;, chj, The Hy: S;;(AD) = S; ;(CN) hypothesis was
tested, where S;;(AD) is a median of S;;, for v € AD and S;;(CN) is a median of
Siju for w € CN. The non-parametric WMW test of critical level a = 0.05 was applied.
The p-values resulting from 342 independent tests were corrected by FDR technique
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with appr = 7.3074 x 10~ Significant channel pairs with increasing or decreasing
Causality Indexes in Alzheimer’s disease are collected in Tab. 1. The dependencies
between antecedent (rows) and consequent (columns) channels are depicted in Fig. 1.
For better biomedical interpretation, the traditional EEG 10-20 scheme is used to show
channel pairs with significant dependencies in Figs 2, 3.

Table 1: Significant changes of Causality Index

T 7 Sap Sen p-value

7 10| 0.9677 0.7097 | 3.01x107°
11 10| 0.6882 0.4301 | 6.35x10°
3 1510.9839 0.8495 | 2.73x1076
4 1510.9462 0.7742 | 2.34x107°
5 151 0.8763 0.7097 | 2.73x10~*
6 15]0.9140 0.7312 | 8.43x1076
7 1510.9839 0.7957 | 7.49%x10~7
9 1510.9194 0.6882 | 9.14x107°
11 15| 0.8172 0.5806 | 1.48x1076
7 16| 0.9785 0.8495 | 2.58x10~*
14 3 |0.5000 0.7312 | 5.48x10~*
15 3 |0.5376 0.7849 | 2.83x107°
14 7 |0.6828 0.8710 | 4.61x1074
15 7 |0.6344 0.8602 | 2.08x10~*
16 7 | 0.6183 0.8065 | 1.99x10~4
16 9 |0.5108 0.6667 | 8.25x107°

5.4 Biomedical interpretation

As seen in Tab. 1, there are many significant changes in the Causality Index. The lowest
p-value was observed for the pair of 7th and 15th channels. This pair can be used for
distinguish between AD and CN. Using rule 5715, > 0.92 for the diagnosis of AD in the
case of uth participant, the sensitivity and specificity were 73 % and 77 % respectively.
Similar behaviour was also observed on the other significant channel pairs.

During Alzheimer’s disease, the Causality Index exhibits very interesting changes. The
significant increase in the Causality Index (Fig. 2) points from parietal to frontal regions
of the brain. In AD, it means that neural activity in the frontal lobes is highly activated
from the parietal zone. The opposite significant dependencies (Fig. 3) come from the
left and right frontal lobes to the parietal zone. This behaviour can be interpreted as a
decreasing Causality Index between the inspiring frontal neurons and receiving parietal
zone. This interpretation is consistent with the concept of the dynamics of changes in
the course of a developing Alzheimer’s disease [15].
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NASION

Figure 2: Causality increasing in the case of Alzheimer’s disease: arrows from antecedent
to consequent channels.

NASION

Figure 3: Causality decreasing in the case of Alzheimer’s disease: arrows from antecedent
to consequent channels
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6 Conclusions

The theory of VAR model was applied to multichannel EEG. The optimal order was 26
as an experimental modus value. Significant interchannel causalities were obtained over
segments of patients. The False Discovery Rate correction was used as an efficient tool
for selecting significant EEG events. The event counting forms a novel Causality Index
as a criterion able to distinguish between AD and CN. 10 significant electrode pairs were
observed with decreasing Causality Index and 6 electrode pair with increasing Causality
Index in AD. The difference in Causality Indexes can help in diagnosing Alzheimer’s
dementia. Interchannel dependencies observed exhibiting statistically significant changes
in the Causality Index have direct biomedical interpretation. In AD, there is a significant
increase in the Causality Index between the parietal and frontal domains of the brain.
The complementary effect of decreasing Causality Index was also localized, however the
direction was opposite.
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Abstract. Iterative reconstruction techniques find their used in many optimization problems,
such as matrix completion in computer vision or reconstruction in image processing. Brief intro-
duction to iterative algorithm based on proximal gradient method will be presented together with
connection to the image reconstruction problem. Furthermore, reconstruction of the subsam-
pled (compressed) medical data will be formulated as a variational problem using total variation
regularization, ready to be solved using presented method. Finally, we will demonstrate and
compare selected methods on real data acquired from MRI scanner at IST of the CAS in Brno
and propose further extension of current model.

Keywords: image reconstruction, TV regularization, proximal algorithms

Abstrakt. Iterativni rekonstrukéni metody jsou ¢asto vyuZiviny v mnoha optimalizac¢nich
tlohéch jako naptiklad doplnéni dat ve strojovém uceni nebo rekonstrukci obrazu. Provedeme
kratké shrnuti iterativniho algoritmu zaloZeném na vyhodnoceni proximalniho operatoru a ukédzeme
jeho vazbu na tulohu rekonstrukce obrazu. Déle formulujeme rekonstrukci podsamplovanych
zdravotnickych dat jakozto tlohu varia¢niho poctu s regularizaci ve tvaru totalni variace v
takovém tvaru, aby byla feSitelnd uvedenou metodou. Nakonec vybrané algoritmy predvedeme

a srovname na datech ze skeneru vyuzivajici magnetickou rezonanci umisténého na UPT AV CR

v Brné a navrhneme dal$i rozsifeni modelu.

Klicovd slova: rekonstrukce obrazu, TV regularizace, proximalni algorithmy

1 Introduction

Many inverse imaging problems such as image denoising, image deconvolution or image
signal reconstrucion can be conveniently formulated as a variational problem

min {0 [ 1)+ gl - el )

z€eR?
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where 1 C R? is image domain, z € L' () is the desired solution and y € L' () is
the original data which are to be reconstructed. Parameter A € R{ scales the trade-off
between "data" term and regularization term. Data term ensures closeness of the solution
and the input, whereas regularization represents effort to improve visual features of an
image. Operator A represent transformation of output to comparable domain in which y
is acquired. In basic case of medical imaging, A typically denotes Fourier transformation.
Modern imaging techniques relies on methods of compressed sensing (CS), where only
selected samples of Fourier domain are taken into account, rather than sampling at the
full (i.e. Nyquist) rate. Usually, matrix A also models trajectory of given samples and
multi-coil sensitivites for more realistic models. If K is assumed to be gradient of input
image, proposed model (1) becames so-called Total Variation (TV) regularization model
(or ROF model) introduced in [1]. Major advantage of incorporating TV regularization
is allowing appearance of sharp discontinuities in the solution. This fact is often sought
after in image processing, since edges represent important features such as boundaries of
objects. However this formulation of cost functional (1) leads to difficult minimization,
given the non-smooth property of the total variation. We will introduce used algorithm
based on proximal operators, which can be successfully used to tackle such problems with
application to MRI data reconstruction.

2 Iterative Reconstruction Technique

Algorithms based on evaluating proximal operator can be percieved as a generalization
of standard gradient descent. We will briefly introduce main idea of this technique and
present its use in iterative method to solve optimization problem (1).

2.1 Proximal Operator

Let us suppose, that we want to solve

min f(z) = min g(z) + h(z) (2)

where g : R” — R" is convex and differentiable while A : R® — R" is only convex but

not necessarily differentiable. Instead of making quadratic approximation of f around x

with step size t € RT to get gradient descent update for the case of g and h both convex

and differentiable, it is possible to approximate only g while h stays in its original form.
We obtain following

ot —arguin {o(a) + Vo(o)7(: ~ 2) + el ol + hio) |

—argmm{zit = =l + 2090)" (= ~ )+ V) ) + 9(0) — 2IValI + ()
—argmm{%k— (x —tVg(x ))Hg—l—h(z)}

=prox, ,((« — tVg(z))),
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where we denoted minimizing term by the symbol prox. Components in prox forces
update to be as close to gradient step of g as possible and keeps values of h small. Using
this intuitive derivation, we can formally define proximal operator prox,, : R" — R" by

z

1
prox, ,(z) = argmin {EHZ — |3+ h(z)} :

Combining proximal operator with gradient descent, leads to writing minimizing algo-
rithm of (2) as

Algorithm 1 General proximal operator minimization

1. Initialize z° € R™.
2. Let 27 = (21 —tVg(a*1)).

3. Define z* = prox, ,(«1).

The last step of Algorithm 1 can be also written in the gradient descent manner as

T — prox, ,(r —tVg(x
e thtk(qu)’ Gy(z) = p t,h(t g( )),
where Gy(z) is so-called generalized gradient. Notice that the evaluation of proximal
operator depends only on the gradient of g and h itself, thus it can be conveniently used
when proximal operator of h is known. Especially, this is the case of h = A|| - ||1, where

respective proximal operator is of form

[ 1
prox |-, () = argmin {%HZ —z|)5 + )\HzHl} : (3)
The solution to this equation can be written as a soft thresholding operator Sy,(x) where

Sxi(x) = sgn(x)(lz| = At).

It can be easily shown, that Sy;(x) minimizes term in (3) and is easily numerically com-
puted.

2.2 Alternating Direction Method of Multipliers

Following algorithm employs alternating minimization of objective functions to tackle
variational problems with non-smooth regularization. Such method is called Alternating
Direction Method of Mutlipliers (ADMM) and is built on minimizing each function from
min g(z) + h(z)

separately. This technique is known as dual minimization or Douglas-Racheford splitting
and its main advantage is when evaluating proximal operator of f + ¢ is more numeri-
cally demanding, than computing each proximal operator separately. We will now derive
solution to (1) using this method.
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Formal steps of ADMM algorithm originates from minimizing augmented Lagrangian
[2]. Firstly, rewrite original problem (1) as a constrain optimization

1
min §||y — Az||3 + Mz[, st Kz —2z=0.
Furthermore, we write augmented Lagrangian of such problem as
1 p
Lo(w, 2,u) = 5lly = Azll; + Mzll1 + pu’ (Ko — 2) + S| Kz — 213, (4)

where constant o > 0 is called penalty parameter. Notice, that additional terms equal to
zero at optimal point by definiton of constraint Kz — z = 0. Minimizing of augmented
Lagrangian (4) is treated separately over its primal variables z and z, therefore we can
write ADMM algorithm in following manner

Algorithm 2 ADMM
1. Initialize 2°,u°, 2° € R", p € R*.

2. Let 2% = argminL, (2%, u”, 2*) = argmin {%Hy — Azk||2 + ouFT Kok + | Kar — zk||2} :

T

3. Let 2% = argminL,(z*, u¥, 2F) = argmin {)\szHl — ouk" 2k 4 Kk — zkHQ}
4 4

4. Update u* = u* + o(a* — 2%).

Finding optimal value x* in step 2 of Algorithm 2 can be easily attained using
partial derivative of L, over z in closed-form solution

¥ = (ATA+ oKTK) Y (ATy + oK™ (2 — u)).

To find optimal z* one can successfully use evaluation of proximal algorithm, namely soft
thresholding operator defined in previous section. We can write

2* = Sy, (U + Kab).
Finally, dual variable u is updated by gained values of constrain to conclude current

iteration. Notable feature of ADMM is, that it converges fast at early stage, but requires
fair number of iterations for high precision results.

3 MRI Data Reconstruction

Let us now closely describe acquired data that were used in reconstruction and exactly
formulate model to simulate measurement and reconstruction.
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3.1 Data Description

Data originate from in-vivo experiment with a standard Sprague-Dawley rat at the Bruker
9.4T MRI Small Animal Scanner stationed at the Institute of Scientific Instruments of
the CAS. MRI scanner collects signal in k-space (i.e. Fourier domain) and due to the
physical constraints of the scanner, data are sampled alongside the radial trajectories.
Radials are rotated through the space using golden angle technique allowing relatively
dense sampling of important regions of k-space [5]. MRI machine compound aquisition
from 4 coils and returns 128 complex coefficients of k-space for each coil and radial.
During the experiment time of 14 minutes 50 000 projections of 128 coefficients were
sampled. In all formulations, coil sensitivities were estimated using ESPIRIT algorithm
proposed in |7].

3.2 Formulation of Reconstruction Problem

Firstly, we will omit the element of time for simpler notation and write formulation of
reconstruction of static data as

4
. 1
miy {Z Sl = MESg + Aumul}, (5)

zeC?
=1

where S; maps sensitivity of coil 7, F' corresponds to the 2D Fourier transform and M
interpolates cartesian grid to the sampled radial space. Matrix M together with F' can
be replaced with non-uniform Fourier transformation. Regularization term is in form of
Total Variation, therefore K computes gradient of the image.

This formulation can be extended to reconstruct dynamical data as

T-1
~ s~ MFSuz|2 + M| Kall, b . 6
min {ZZ 9, 1S3 + All fﬂt“l} (6)

t=0 i=1

N | —

It is worth noting, that instead of estimating output image for each time-frame sep-
arately (as can be achieved iterating static case through all data), this formulation opti-
mizes coefficients of given basis. Let us elaborate more explicitly for the case of modeling
dynamics as a polynomial of 2nd degree

p(t) = a+ bt + ct*.
If plugged into the (6) for x; we get

N —

a,b,c,eC? -
t=0 =1

T—1
min { > Hym—MtFSi(a+bt+ct2)H§+)\HK(a—i—bt—|—ct2)H1}.

and reformulated to more compact and tidy matrix notation

N | —

T-1
min {Z Z lyei — M,FS;Byx"||2 + )\||KthT||1} 7

eC?
v t=0 i=1
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where By = [[ It It*] and x = [a b ¢]. Tt is clear, that we can choose various forms of
prescribed basis B; with coefficients  and we will present results of different options in
following sections.

Finally, let us briefly note the formulation of Low Rank + Sparse model (L+S) which
will be also evaluated in results section. L+S model can be written as

win, { 5l MPS(L+ S) -+ AulL]. + sl K]} )
Lsec? | 2

and estimates output image as a sum of two components: low-rank regularized by nu-
clear norm and sparse regularized by TV norm. Used implementation of L+S model uses
non-uniform Fourier transformation together with density compensation technique (cou-
pled in matrix M F’) rather than radial interpolation M with uniform Fourier transform
F developed in ADMM formulation. For further detail see for example [§].

4 Results Comparison

We will now present reconstructed data and several different approaches to attain the
most realistic outcome. All ADMM results share the same parameters A = 1 and o = 0.1,
L+S algorithm was used with setting Ay, = 0.025 and Ag = 0.5.

4.1 Regridding and Reconstruction

Simple method how to transform measured signal into image domain is called regridding
and it is direct, non-iterative approach. Regridding is one-off application of operator A,
i.e. matrices M, ' and S in our formulation, to the input data. No regularization is
employed and it can be easily seen (Figure 1), that this operation suffers from artifacts
when compared to the results of the ADMM algorithm on static formulation (5). Namely,
notice the streak-like artifacts that originate from radial sampling. Both results were
obtained using 200 projections per one frame. Decreasing number of used projections
increases temporal-resolution of outcome image (as 60 projections takes roughly 1 second
of measurement) but brings significant degradation of image quality (at least in static
formulation), as is shown on Figure 2.

4.2 Perfusion Curves

The measured data are not the same during the whole experiment, intensity of signal
varies on time and body tissue. One of the main objectives of reconstruction is to get
this function of intensity on time (so called perfusion curve) as detailed and realistic as
possible. Typical perfusion curve has sharp increase at the beginning of the measurement
(corresponding to the increased activity of contrast agent) followed by slow decline. Per-
fusion curves of static reconstruction (i.e. separately reconstructed image through whole
data) together with several selected outcomes of dynamic formulation (6) is shown on Fig-
ure 3. Selected pixel is marked by red dot in Figure 1 b). Prescribed basis for dynamical
formulation was estimated orthogonal basis using singular-value decomposition method
on various perfusion curves from static case. In presented case, first 3 singular curves
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(a) Regridding. (b) Static reconstruction.

Figure 1: Comparison of regridding and iterative reconstruction.

Figure 2: Iterative reconstruction using 28 projections.
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Figure 3: Comparison on static reconstruction using 200 samples and dynamic from 50,
or 28 samples.

were used. It can be seen, that prescribing basis for dynamic reconstruction can lead to
improved stability of perfusion curve and possibility to further reduce used samples, thus
increase temporal resolution.

4.3 Comparison with L+S

Measured data were also processed by different formulation of reconstruction problem,
the Low Rank +Sparse model (7). L+S model assumes, that perfusion curve consists
of one component with low rank and other, that is sparse in Fourier domain. Figure 4
shows comparison of perfusion curve reconstructed from 28 projections per one frame and
relative improvement of cost functional in each iteration. Convergence comparison agrees
with standard ADMM feature of high convergence speed, namely in the first iterations.
Perfusion curves were rescaled by maximum of each curve and prompt to say, that L+S
model estimates somewhat more stable decline after the growth phase. It is worth noting,
that final rank of L+S model was one, whereas ADMM was the most stable at basis of
rank 2 and 3. Nevertheless, these differences are up to more detailed research.

5 Conclusion

We have introduced main idea of proximal operator and demonstrated its application on
iterative recontruction of MRI data. Two different formulation of reconstruction problem
were shown and results on real data we demonstrated. Further work lies in modeling
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—L+4S
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(a) Perfusion curves. (b) Relative improvement of cost.

Figure 4: Comparison of perfusion curve and convergence of ADMM and L+S model

acquisition process in greater detail and developing faster reconstruction techniques to
increase both temporal and spatial resolution of outcoming images. This should lead to
more reliable perfusion analysis of outcoming data and to improve diagnostics of vascular
diseases affecting myocardium, brain and other organs, as well as cancer diseases in the
long-term.
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