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Predmluva

Jiz osmy roc¢nik workshopu Doktorandské dny se kona ve dnech 15. a 22. listopadu
2013 na katedfe matematiky Fakulty jaderné a fyzikalné inZenyrské CVUT v Praze. Na
této konferenci, organizované s finanéni podporou Studentské grantové soutéze CVUT,
se kazdoroc¢né predstavuji doktorandi oboru Matematické inzenyrstvi s prispévky pokry-
vajicimi Sirokou Skalu témat. Jedna se zejména o deterministické a stochastické modely
fyzikalnich, medicinskych a ekonomickych procesti, tvorbu a analyzu vypocetnich algo-
ritmd, ale i o témata zakladniho vyzkumu v teoretické informatice a matematické fyzice.

MozZnost prezentace pred odbornym publikem nejen z fad skolitelt a ¢lenti Oborové
rady je pro nase doktorandy neocenitelnou zkusSenosti, ktera je pripravuje k tcasti na
mezinarodnich konferencich. Tento sbornik je souborem prispévki, ktery prubézné doku-
mentuje praci doktorandt a slouzi jako podklad pro hodnoceni studia.

Dékujeme vsem, ktefi se na zdarném pribéhu této akce podileji.

Editori






Stability of Point Spectrum for
Three-state Quantum Walks on a Line*
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Abstract. Evolution operators of certain quantum walks posses, apart from the continuous
part, also point spectrum. The existence of eigenvalues and the corresponding stationary states
lead to partial trapping of the walker in the vicinity of the origin. This feature was found in the
three-state walk on a line with the Grover coin operator [1],[2], where the evolution operator
has one eigenvalue equal to unity. Similarly, Grover walk on a square lattice also has a point
spectrum [3]. We analyze the stability of this feature for three-state quantum walks on a line
subject to homogenous coin deformations. We find two classes of coin operators that preserve
the point spectrum. These new classes of coins are generalization of coins found previously by
different methods [4] and shed light on the rich spectrum of coins that can drive discrete-time
quantum walks.

Keywords: quantum walk, localization

Abstrakt. U jistych typti kvantovych prochazek miize mit evolu¢n{ operator, mimo spojitého
spektra, také spektrum bodové. Existence vlastnich hodnot a prislugnych stacionarnich stavi
vede k ¢astetnému uvéznéni chodce v okoli pocatku. Tato vlastnost byla nalezena pro Groverovu
prochazku o tfech moznych stavech posunu. Operédtor ¢asového vyvoje zde mé vlastni hod-
notu rovnou jedné. Podobné i Groverova prochézka na Ctvercové siti ma bodové spektrum.
V nasi praci analyzujeme stabilitu této vlastnosti vzhledem k homogennim deformacim mince.
Zabyvame se pfitom kvantovou prochézkou na pfimce o tfech moznych stavech. Vysledkem je
nalezeni dvou tfid minci, které zachovavaji bodové spektrum. Tyto nové tfidy jsou zobecnénim
predchozich vysledki, které vSak byly nalezeny jinymi metodami. Prace vrhéa svétlo na Siroké
spektrum minci, které mohou fidit diskrétni kvantovou prochazku.

Klicovd slova: kvantovi prochazka, lokalizace
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COMPASS Database Upgrade Proposal
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Abstract. This paper focuses on a proposal of the new online database structure for the COM-
PASS experiment at CERN. Several incidents that happened during the 2012 COMPASS physics
run indicated that due to lack of hardware during the development of the current structure the
system is not safe in case of a critical failure of one of its components. However, as the new
FPGA-based data acquisition system for the COMPASS experiment is currently being devel-
oped, there is a possibility to use some of the computers from the old DAQ architecture for
different purposes.

Keywords: CERN, COMPASS, database, MySQL

Abstrakt. Tento ¢lanek se zabyva navrhem nové architektury online databaze pro experiment
COMPASS v CERN. Béhem fyzikalniho programu experimentu COMPASS v roce 2012 doslo
k nékolika incidenttim, které poukazaly na to, Ze kviili nedostatku dodanych hardwarovych
komponent béhem implementace soucasné databazové architektury nenf cely systém bezpeény v
piipadé vypadku jednoho z uzli. Avsak diky vyvoji nového systému pro sbér dat, ktery pocita
s vyuzitim FPGA karet, bude mozné uvolnit nékteré pocitace pro jiné tcely.

Klicovd slova: CERN, COMPASS, databéze, MySQL

1 Introduction

Modern particle physics experiments produce data in quantities never seen before. This
poses very strong requirements on the quality of data acquisition systems (both hardware
and software). A critial part of every data acquisition system is the online database. The
online database at the COMPASS experiment [1] uses the MySQL relational database
management system [2]|. It contains meta-information about the run of the experiment.
These meta-information include beam parameters, detector configuration, software logs,
and additional information recorded by the shift crews during the run of the experiment.

Information from this database are needed to be quickly retrieved during the data ac-
quisition and data analysis. This means that all the machines connected to the COMPASS
inner network should be able to write to the database and read from it at any time. To
ensure this, the database structure should withstand failures of its components without
limiting the access of clients.
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Figure 1: COMPASS spectrometer

2 CERN and COMPASS experiment

The European Organization for Nuclear Research (CERN) is an international scientific
organization situated in the northwerst suburbs of Geneva, Switzerland. It was founded
in 1954 by 12 European countries and as of 2013 has 20 member states and 7 observers.
Its main purpose is to operate the largest particle physics laboratory complex in the
world.

The main mission of CERN is to study the basic constituents of matter. The main
instruments used are particle accelerators, which boost beam of particles to high speeds
before they are made to collide with each other or with particles in fixed targets, and
detectors which detect and record results of these collisions. As of 2013 CERN operates
the largest particle accelerator in the world — the Large Hadron Collider (LHC).

COMPASS (Common Muon and Proton Apparatus for Structure and Spectroscopy)
is a fixed-target high-energy physics experiment located at the Super Proton Synchrotron
(SPS) particle accelerator. The main purpose of COMPASS is to investigate the nucleon
spin structure and hadron structure and spectroscopy using high intensity hadron and
muon beams.

During the long shutdown of CERN accelerators in 2013 and 2014 (LS1) the main
plans for the COMPASS experiment include development of the new data acquisition
system together with the upgrade of the online database structure.

The COMPASS experiment has around 250.000 detector channels along the 60 m long
spectrometer setup (see Figure 1). Data from the detectors are produces via the frontend
electronics which feeds the data into 9U VME concentrator modules called CATCH or
into HGeSiCA boards. The readout is triggered by the Trigger control system (TCS).
The trigger decision is based on the energy deposited by charged particles on hadronic
and electromagnetic calorimeters and on signals from some other detectors.
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Figure 2: Current COMPASS DAQ system

3 COMPASS DAQ system

The data from CATCH and HGeSiCa boards are transfered through optical links to the
DAQ computers — readout buffers (ROB). ROB computers are equipped with spillbuffer
PCI cards that buffers the transmitted data. Last layer of computers (event builders)
then combines the detector data to complete blocks (events), prepare meta-information,
and after 24 hours transfers the data to the Central Data Recording System. The data
are then compressed and stored on magnetic tapes in a permanent storage (CASTOR —
CERN Advanced Storage) for further processing and analysis.

Several aspects of the experiment are constantly monitored (e.g. operation of the
frontend electronics, rate of different triggers, and beam stability). The monitoring is
performed on the fly by the DAQ software.

The software for the COMPASS DAQ system is based on the DATE package [3]
written for the LHC experiment ALICE.

DATE performs data acquisition in a distributed environment. It provides framework
for the detector readout, software for run control, event building, information logging,
and event sampling. It also allows for the interactive configuration.

After the physics program in 2011 the COMPASS experiment was approved for 6
more years and it was decided to build a new data acquisition system [5].

The new data acquisition system uses FPGA modules in two different modes: 15 to
1 multiplexer to reduce the number of links from one hundred to 8 and 8x8 switch to
combine data belonging to one event. These custom made modules collect and build
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complete events without use of any event building software and provide complete events
to the readout computers. Deployment of these modules significantly reduces the amount
of components involved in the COMPASS DAQ chain, which allows for simplification of
the software architecture.

3.1 Current COMPASS online database

The current COMPASS online database (Figure 3) was desinged and implemented by
Vladimir Jary in 2010 [4]. It uses three physical servers — all databases are stored on
two servers (named pccodbl1 and pcecodb12) which are synchronized using the master-
master replication, i.e. each query executed on pccodbl1 is immediately executed also
on pccodb12 and vice versa. The third server (pccodb10) serves as a proxy server and is
accessible via pccodb00 virtual address.

The replication is implemented by three processes (one on the maser server and two
on slave server) that read and write binary log files containing changes made to the
database tables. On the master server the process reads contents of the binary log and
sends updates to the slave server. On the slave server the first process connets to its
master server, receives the updates of the binary log, and writes them into a relay log.
The second process reads the modification stored in the relay log and executes them.
The replication is an asynchronous process, the slave servers do not have to be connected
permanently.
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Pccodb10, pecodb11, and pecodbl?2 servers are located in the COMPASS experimental
hall in the French part of CERN and are connected to the COMPASS internal network. To
increase the safety of the data, pccodb11 is replicated also to the compass02 server which is
located in the CERN computing center. Compass02 is also replicated to computer centers
of participating institutes to provide a kind of geographical backup in case of problems
on the COMPASS internal network. All three servers have the same configuration — 8
core Intel Xeon processor at 2.5 GHz with 16 GB of memory. They are running 64 bit
Scientific Linux CERN 5.4 and MySQL server version 5.1.45.

3.2 Nagios monitoring system

The Nagios monitoring software is used to watch over the database system. It is able
to monitor available resources on a remote host and present the results in a graphical
web interface. Furthermore, the Nagios system is able to perform a predefined action
in case of an accident. For example if Nagios detects that pccodbl1 server is down, it
reconfigures the proxy server to redirect all clients to the pccodb12 server. It can notify
a system operator by an e-mail or a SMS.

Nagios is very flexible and customizable by plugins. Each Nagios plugin is a small
application or script that monitors a state of service or resource and returns an integer
value which represents the state itself. A plugin can also print multiple lines of text
describing the state in more detail. Nagios periodically executes the plugins and displays
the output in a graphical web interface.

3.3 Database incidents
3.3.1 May 2012 incident

A serious problem appeared in May 2012, just few hours before end of the winter shutdown
and start of the data taking, the pccodbi! has crashed as a result of hardware failure.
Database experts were notified by the e-mail message sent by the Nagios system. After
the pecodbl1 server had been restarted, the replication to the pccodb12 stopped working.
The same problem appeared also on the compass02 server.

After a short investigation following problem was identified — the thread responsible
for storing events to the binary log on the pecodb1! machine was not running and the
“Client requested master to start replication from impossible position” error was reported.
Thus, the master server failed to write all events into its binary log before the crash and
after the restart and the slave server was trying to receive them. Several attempts were
made to force the slave process to skip the unwritten events, but it kept crashing.

To ensure the full synchronization, the replication process had to be restarted and data
synchronized manually. After the operation, the replication was started again without
any problems.

3.3.2 October 2012 incident

During the data taking in October 2012, the COMPASS DAQ system tried to execute
the following query during the night shift: UPDATE tb_run SET title="possibly ok". 1If
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October 03, 2012 09:00

‘ [10-03-2012 09:37:16] SERVICE NOTIFICATION: nagicsadmin; pccodbl 2;MySOL replication slave lag,OK; notify-service-by-email,OK - Slave is 0 seconds behind
[10:03-2012 (9:37:16] SERVICE ALERT: peoodbl 2;MySQL replication slave lag,OK;HARD;3,0K - Slave is 0 seconds behind
‘ [10-03-201 2 09:34:16] SERVICE NOTIFICATION: nagicsadmin; peood bl 2; My SOL replication slave status;OK; notify-service-by-email, 0K - 127.0.0.1 - Slave S0L Running Yes
[10:03-2012 (9:34:16] SERVICE ALERT: pecodbl 2;MySOL replication slave status,OK;HARD;3,0K - 127.0.0.1 - Slave S0L Running Yes
[10—113—2012 09:27:16) SERVICE NOTIFICATION: nagicsadmin; pecod bl 2; My SOL replication slave lag; CRITICAL; notify-service-by-email, CRITICAL - Slave is NULL seconds behind
‘ [10-03-2012 09:24:16] SERVICE MOTIFICATION: nagicsadmin; pecodbl 2; My SOL replication slave status; CRITICAL; notify-service-by-email, CRITICAL - 127.0.0.1 - Slave SQL Running Mo
o [10-03-201 2 09:14:46] Auto-save of retention data completed successfully.

October 02, 2012 18:00

‘ [10:02-2012 18:27:16] SERVICE NOTIFICATION: nagicsadmin; pecod bl 2; My SOL replication slave lag; CRITICAL; notify-service-by-email, CRITICAL - Slave is NULL seconds behind
[1002-2012 18:27:16] SERVICE ALERT: peoodbl 2;MySQL replication slave lag; CRITICALHARD, 3, CRITICAL - Slave is MULL seconds behind
[1002-2012 18:25:16] SERVICE ALERT: pecodbl 2;MySOL replication slave lag; CRITICAL;SOFT; 2, CRITICAL - Slave is NULL seconds behind

‘ [10:02-2012 18:24:16] SERVICE NOTIFICATION: nagicsadmin;pocodbl 2;MyS0L replication slave status; CRITICAL; notify-service-by-email, CRITICAL - 127.0.0.1 - Slave SQL Running No
[1002-2012 18:24:16] SERVICE ALERT: pecodbl 2;MySOL replication slave status; CRITICALHARD,S;CRITICAL - 127.0.0.1 - Slave S0L Running Mo
[1002-2012 18:23:16] SERVICE ALERT: pecodbl 2;MySOL replication slave lag, CRITICAL,SOFT; 1, CRITICAL - Slave is NULL seconds behind
[1002-2012 18:22:16] SERVICE ALERT: peoodbl 2;MySQL replication slave status; CRITICALSOFT, 2;CRITICAL - 127.0.0.1 - Slave S0L Running Mo
[1002-2012 18:20:16] SERVICE ALERT: pecodbl 2;MySOL replication slave status; CRITICAL,SOFT; 1, CRITICAL - 127.0.0.1 - Slave SQL Running Mo

o [10-02-2012 18:14:46] Auto-save of retention data completed successfully.

October 02, 2012 17:00

o [10-02-2012 17:14:46] Autosave of retention data completed successfully.

Figure 4: Nagios monitoring system log during the October 2012 incident

executed, this query would rewrite the title information of all COMPASS runs to possibly
ok. While trying to execute the query, the replication process crashed and the query
was fortunately not executed at all. The Nagios system sent an e-mail notification about
the replication process containing error messages Slave SQL Running No and Slave is
NULL seconds behind stating that the slave replication process was not running and
was unable to calculate the replication delay. As the replication was not working, there
was no redundancy during the night — i.e. the pccodbl1 was processing queries but not
replicating them to pccodb12 nor to compass02. In the morning the query was manually
skipped, the replication to pccodb12 and compass02 was restored.

During further investigation a bug in the DATE software was found. The shift crew
operating the COMPASS spectrometer is responsible for log keeping and for evaluating
finished runs. To do this the DATE software provides a graphical interface to fill in
the comment and some specific flags, the current run number is automatically pre-filled.
However, it has been discovered that if the run number is erased and the comment saved,
the DATE software tries to apply the change to all the runs. This bug was immediately
fixed to prevent further problems.

3.3.3 Outcome of the incidents

After these two incidents, it was decided that the database structure should change to
provide more redundancy in case of a failure. With the current structure, when one
of the two servers fails, there is no backup until the problem is fixed. Also some more
serious problems might cause limitations during the data taking. For example when
the replication crashes in a similar manner as in May 2012, the full database backup is
needed which makes the database unavailable during the task, i.e. the data taking cannot
proceed. One of the possible solutions is to build the master— n slaves replication.

To increase the redundancy of the whole system, more nodes should be added and
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Figure 5: New COMPASS database structure proposal

the master—n slaves replication should be used (see Figure 5).

4 New database structure proposal

As in the current structure, all the clients access the MySQL proxy server located on
the pccodb10 machine via pccodb00 virtual address. The pccodb1l machine becomes the
only master node and every query executed on this node is then executed on all the slave
nodes (pccodb12, pecodbl3, pecodbly) as well.

In case of a failure of one of the slave nodes, the master node keeps replicating to
the rest of the nodes. The problem of one node can then be fixed without causing any
limitations or without losing the backup.

In case of a failure of the master node, one slave node can immediately take its place
by redirecting the proxy server to it. Again, this process cuses no limitations during the
data taking.

This upgrade should be performed together with upgrading the Scientific Linux CERN
and MySQL to the most up-to-date versions on all the machines.
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5 Conclusion

The new database structure of the COMPASS online database was proposed and was
preliminarily approved on a meeting of COMPASS front-end group. The change should
be implemented as soon as required hardware is available (i.e. at the end of 2013 or
during 2014).
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Abstract. This paper introduces a tool which is able to recognize both the properties of a
code snippet and even its structure. This tool uses the Sripthon language to describe a snippet.
An abstract syntax tree is created from the given Java source, and it is compared with the
tree created from a Scripthon source code. During this process, many tree optimizations take
place. Therefore, the complete recognition process is very fast, and can be used to scan the large
programs.
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Abstrakt. Tato prace pfedstavuje néstroj slouzici k detekci struktur zdrojového kédu a jejich
vlastnosti. K popisu vlastnosti je pouZit jazyk Scripthon. Pfi porovnavani se pouZivi strom
abstraktni syntaxe ziskany ze zdrojového kédu. Tento strom je porovnan se stromem, ktery
je vytvofen ze zdrojového kédu jazyka Scripthon. Béhem tohoto procesu dochazi k mnoha
optimalizacim. Proto je vyhledavani velice rychlé a tedy i pouzitelné pro programy vétsi velikosti.

Klicovd slova: Java, porovnévani grafu, strom abstraktni syntaxe, Scripthon

1 Introduction

It is an easy task to search the source code. Nevertheless, this applies only in the case of
a simple text or simple structure names. This feature is supported in most of the current
Java development environments. Some IDEs support an advanced searching with regular
expressions. But, what if a user wants to know, whether a program contains the singleton
design pattern? Or, whether the specific method (with three concrete parameters) is
somewhere in a program?

It is very difficult to find such information; however, with using the mathematical and
programming knowledge, it is possible. When using the Scripthon language, these special
structures can be described very precisely. On the other side, by using the Java Compiler
API, the abstract syntax trees (hereinafter AST) can be obtained and compared with
the Scripthon’s output. This paper is on the using these trees for searching the desired
code snippet. This task is similar to the graph matching and isomorphic subgraphs
finding in a large set of trees. A number of solutions for all of these tasks have been
proposed [6], but they all suffer from the high computational complexity inherent to the
graph matching. An additional problem arises in the applications where an input graph
needs to be matched not only to another graph, but to an entire database of the graphs

11
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under the given matching paradigm. Therefore, some complexity reducing algorithms are
proposed in this paper.
The first section introduces necessary graph theory concepts. There can be found the
definitions of a graph, a subgraph and a graph isomorphism. The next two sections are
about the graphs generation, optimizations, and the comparison of the graphs generated
by the Compiler API. The Scripthon language is introduced briefly in the next chapter.
Because the language has been described already in another paper [1], only the important
properties are mentioned here. Finally, some results are presented in the conclusion.
There are several reasons to consider graphs as a very advantageous tool for the
representation of a source code of some language. One the reason is, that there is no
unnecessary material like spaces, comments etc. Another reason is, that there are many
well described mathematical algorithms to work with graphs. Some of the algorithms are
known for decades. Representing a code as a graph has also the disadvantage: it has a
large demands on a computer power and memory; especially for larger programs.

2 Basic graph theory concepts

A graph is defined as a four-tuple g = (V,E, o, ), where V denotes a finite set of nodes,
E CV x Vis a finite set of edges, a : V— Ly is a node labeling function, and 5 : E — Lg
is an edge labeling function. Ly and Lg are finite of infinite sets of node and edge labels,
respectively. All the graphs in this work are considered to be directed.

A subgraph g, = (Vg, Eg, ag, fs) of a graph g is a subset of its nodes and edges, such that
V. CV,E, =EN (Ve x Vy)

Two graphs g and g’ are isomorphic to each other if there exists a bijective mapping u
from the nodes of g to the nodes of g, such that the structure of the edges as well as all
node and edge labels are preserved under u. Similarly, an isomorphism between a graph
g and a subgraph g of a graph g’ is called subgraph-isomorphism from g to g

A tree is a connected and undirected graph with no simple circuits. Since a tree cannot
have a circuit, a tree cannot contain multiple edges or loops. Therefore, any tree must
be a simple graph. An undirected graph is a tree if and only if there is a unique simple
path between any two of its vertices.

The two graphs matching problem is actually the same as the finding the isomorphism
between them. Moreover, matching the parts of a graph with a pattern is the same
challenge as the finding the isomorphic subgraph.

3 Graph generation with Java Compiler API

The Java Compiler API is used to get a graph for the searching algorithm. This APT is
free, and it is included in a Java distribution. Basically, the Java Compiler API serves
to the advanced control of a compilation process. This API uses AST in the form of
the visitor design pattern. Unfortunately, this design pattern is no so convenient for the
searching purposes. This is because the Scripthon language is unable to describe so many
structures, and also because the searching algorithm is difficult to implement with the
visitor design pattern. Therefore, the more advanced graph is created from Java AST.
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[left, right, level, level under]

[1,12,1,3]
[4,11,2,2]

[2,3,2,2]

[7,10, 3,1]

O [8, 9, 3,0]

[5,6,2,1]

Figure 1: Tree with optimizations

This graph is very similar to AST, but it has several benefits. The first benefit is the
replacement of the visitor pattern with the classic approach. And the second one is the
enrichment of some additional information which significantly facilitates the searching.
While browsing a source code, the tree with nodes enhanced by four numbers, is created.
These numbers are the natural numbers named left, right, level and level under. The
first and the second number (left, right) denotes the order index of a node after the tree
preorder traversal. The level number denotes the level in a tree hierarchy of vertices, and
the level under number denotes a number of levels under the current node. (Compare
with the method described in [4]). The following rules are valid for these values.
Suppose that x and y are two nodes from a tree.

e The y node is an ancestor of x and x is a descendant of y if y.1left < x.left < y.right

e The y node is an parent of x and x is a child of y if 1) y.1left < x.1left < y.righ
and 2) y.level = x.level — 1

All these data are acquired during a single pass through the tree. Obtaining this infor-
mation is not a time consuming operation, because it is made during the tree production
process. On the other hand, the number of comparisons can be significantly reduced with
these numbers. Moreover, while comparing the trees, it is very easy to detect:

e How many elements have a given structure
e If a node is a leaf

e How many sub-statements are included in a given structure

Without this information, the comparison of two trees becomes much more time consum-
ing operation. In summary, this information is used in the cases where the shape of the



14 T. Bublik

given structures and its coupling is considered more than its properties.

A line reference to a source code is an important information which is also added to
the tree as a metadata. Therefore, it is easy to link the results with the original source
position and show it to the user. There are some more elements in a node metadata. For
example, some of the other metadata information is a filename of the source file.
Because the number of the comparisons is a key indicator for the algorithm speed, it is
necessary to keep the number of nodes as small as possible. Therefore, while creating a
tree from a source code, only the supported structures and its properties are considered
. Thus, the same Scripthon definition set is used during the tree creation process. Other
elements are omitted.

4 Scripthon description

The Scripthon language is described in [1], [2]. The following text will present just the
summarized and important properties of this language. Scripthon is a simple-to-lean
language which is able to describe a Java source code structure. Because of its simple
syntax, it is very easy to learn. The syntax of the Scripthon language is similar to the
syntax of Java, and it is very intuitive. Basically, keywords represent the structures
in Java language. Thus, a Scripthon program is built only with these words and its
properties. Each keyword has a special set of own properties. For example, a class is
represented by the Class() keyword. The parameters of this structure can be in the
parentheses, however, if the brackets includes no parameters, each class is a candidate for
searching and each class of a given program corresponds to this structure. For example,
the following command:

Class(Name = "Main”;Rest = public)

means that the wanted structure is a public class with the name Main. Each option of
all parameters is specified in the Scripthon documentation. It is denoted only by the
line separators or by tabs, how the structures are nested together and how the searched
hierarchy looks like.

Meth(Rest = private; ParamsNum = 2)

Block()
Init(Type = int;Value = ””;Name = "sum”)
Return(Value = "sum”)

This example means that the searched structure is a private method with two parameters.
Inside the method is a block with two statements. The first statement is a variable named
sum of type int. The second statement is a return statement with a parameter of the
previously specified variable.



Java Source Code Structures Scanning by Graph Matching Algorithm 15

The big advance of the Scrithon language is that it is able to describe the elements with
a variable depth of details. It means, that the searched structures can be described in a
detail or very loosely. For example, this is a very detailed description:

Class(Name = "TestDecompile”;Rest = public)
Meth(Name = "main”;Ret = void;Rest = public)
Init(Name = "toPrintValue”; Type = String)
MethCall(Name = ”System.out.println”)

The same script without details follows:

Class()
Meth()
Init()
MethCall()

Therefore, a searched subject can be found on the base of a very inaccurate description.
The results can be obtained with the iterative refinement of the input conditions. In the
end, a user can get the better results.

The level of detail which can be described by the current version of Scripthon is up
to the expression. In addition, Scripthon can describe a lot of Java structures, but it
cannot describe the individual elements of an expression statement. For example, while
describing an ¢f statement, it is possible to address the inner block, or the else block with
inner statements, however, the if expression in the parentheses cannot be described.
Moreover, Scripthon is not able to describe the mathematical operations. If a variable is
this way:

int i = a + b/45;

The most accurate statement in Scripthon is, that finds it, is:

M2,

Init(Name = 7i”; Type = int)

In the current version of the Scripthon language, nothing more cannot be described yet.
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5 Graph matching

The simple and many times described backtracking algorithm is used for the graph match-
ing. Basically, it is the problem of finding an isomorphic tree to the given tree from a large
database of trees. The only difference is, that the node properties need to be considered
during the process.

The source trees are created from the corresponding classes. The classes and the trees
are mapped one-by-one. Each tree corresponds to exactly one class. In the first step,
the algorithm checks whether the shape of the structure match, and then the properties
are compared. This is because the properties matching is much more time consuming
operation than shape detection. Many structures are eliminated from the process very
quickly in the case that the shape does not fit.

If the shape of the structure corresponds to the required shape, the structure parameters
are compared. All the parameters of a given node must be met. The node properties are
provided by the Java compiler. Unfortunately, because of the backtracking algorithm,
each node needs to be compared one-by-one. It has O(N?) complexity (according to [3]).
On the contrary, with the above outlined optimizations, the number of node comparisons
is significantly decreased. More on the graph matching techniques can be found in [5].

6 Conclusion

The used algorithm modifications substantially reduced the time needed to find the re-
quested Java structures. Moreover, also the time of the tree generation procedure has
been shortened. According to the measurements, the meta-information counting does not
significantly affect the time of a graph creation.

The searching with optimization is much faster. The tables I-I1I show the measured time
results. The small program means a program consisting of approximately 20 to 30 classes,
while the larger program is a program with approximately 100 to 150 classes. There are
also the results before and after the described optimizations.
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Table 1: Graph creation

Program type Time
Small program (no optimizations) 412 ms
Larger program (no optimizations) | 4 423 ms
Small program (optimized) 132 ms
Larger program (optimized) 337 ms
Table 2: Searching
Program type Time
Small program (no optimizations) | 2 345 ms
Larger program (no optimizations) || 11 236 ms
Small program (optimized) 753 ms
Larger program (optimized) 1 986 ms
Table 3: Total time
Program type Time
Small program (no optimizations) | 2 757 ms
Larger program (no optimizations) || 15 659 ms
Small program (optimized) 886 ms
Larger program (optimized) 2 323 ms

The measurements were performed on a quite common computer.

The computer

configuration was: 4GB of memory, an Intel Core I5 processor with a frequency of 2,4
GHz and Windows 7 as an operating system. The individual results represent the averages
of several consecutive measurements. The first column indicates the time needed to AST
generation, while the second one represents the time required to find a piece of the sample
code described by the Scripthon language. The last column is the sum of both times.
The lines represent the sizes of programs on which the measurements were performed.
As you can see from the tables, in the case of the small program, the graph assembling
is not significantly different. On contrary, better results can be obtained in the case of
larger programs. Probably, this is because the time needed for the overhead services
related to the starting and initializing the own search.
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Abstract. In this paper we study the expansions of real numbers in positive and negative real
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which are fixed points of two conjugated morphisms.

Full version of this contribution, Generating (£5)-integers by Conjugated Morphisms, was
published in Local Proceedings of WORDS 2013, [4].
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Abstrakt. Tento pfispek se zabyva rozvoji redlnych ¢isel v kladné a zaporné bazi, konkrétné
mnozinami Zzg a Z_p nezapornych [-celych a (—p)-celych cisel. Je zndmo, 7e mnoziny Zzg a
Z_g se obecné mohou znac¢né lisit. Pfesné popiseme viechny baze £3 € R, pro které lze mnoZiny
ZE a Z_g kodovat nekonecnymi slovy, které jsou pevnymi body konjugovanych morfismi.

Nezkracena verze tohoto piispévku, Generating (£f)-integers by Conjugated Morphisms,
vysla v Local Proceedings of WORDS 2013, [4].

Klicovd slova: (—p)-rozvoje, (—f)-celd isla, antimorfismus, konjugace

1 Introduction

Inspired by the work of Ito and Sadahiro |7], numerous papers have been recently dedi-
cated to the study of numeration systems with negative base from various perspectives.
Typically, properties of (—f)-expansions are examined in comparison with their well-
known positive base counterparts. The dynamical properties of (—p)-transformations
were studied for example in [3], [6] and [9]. For the results on the set of (—f)-integers,
see |2] and [15] while a related topic, arithmetics on (—)-integers, was studied for instance
in [10]. Recently, an effort was made in identifying numbers § for which 8- and (—f)-
numerations are the “most similar”. In particular, Kalle in [8] characterizes 8 € (1,2)
for which there exists a measurable isomorphism between - and (—/)-transformations.
In [11], the authors focus on comparison of languages of infinite words ug and v_g coding

*This work was supported by the Czech Science Foundation, grant GACR 13-03538S and by the
Grant Agency of the Czech Technical University in Prague, grant No. SGS11/162/OHK4/3T/14.
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the 8- and (—/f)-integers, respectively, in case of quadratic 5 > 1. The present contribu-
tion extends the result of [11] by providing the characterization of numbers 3 for which
the languages of ug and v_g coincide. For § € (1,2), this happens exactly for the class
of multinacci numbers, distinguished in [§].

2 Rényi (-expansions

In 1957, Rényi [13] defined the positional numeration system with positive (in general real)
base. Let § > 1, then any = € [0, 1) has a unique expansion of the form dg(z) = z x923 - - -
defined by

T; = LﬁTé_l(m)J, where Ts(x) = fx — | fz] .
For any = € [0,1) we then get an infinite word, more precisely an element of AN =
{0,1,...,[B] — 1}N. On the other hand, not every infinite word over AN does play the
role of dg(x) of some x € [0,1). Those who do, are called admissible (or S-admissible) and
their characterization is due to Parry [12]. He proved that a digit string z25--- € AY is
admissible iff it fulfills the lexicographic condition

0% Slex TiTit1Tiva - <lex dg(1) = ylg{l ds(y) for all i > 1. (1)

Here, <oy stands for standard lexicographic ordering and the limit is taken over the
usual topology on AN. Recall that the so-called Rényi expansion of unity is defined as

dﬁ(l) = dyidyds - -+, where d; = Lﬂj,dez, = dﬁ(ﬂ - LﬁJ) .

The infinite Rényi expansion of unity dj(1) can then be obtained as

d*(l) _ (dl e dm—l(dm - 1))"-’ lf dﬁ(l) = dl e dmow Wlth dm 7& 07
S ds(1) otherwise,

where the notation w* = www--- stands for infinite repetition of the word w. Let
us point out that the lexicographic ordering on admissible strings corresponds to the
ordering on the unit interval [0,1), i.e. * <y < dg(x) <jex ds(y).

The notion of S-expansions can be naturally extended from [0, 1) to all reals.

Definition 1. Let § > 1, € R*. Lel k € N be minimal such that 3z € [0,1) and
ds <ﬁx—k> = x129x3---. Then the [-expansion of x is defined as

)T U1 T @ T 1Tq2 if k=1,
(z)p = il =
O.xlxzxg... ka_07

where the symbol o separates integer and fractional parts of (x)s. The B-expansion of a
negative real number is then defined as (z)z = —(|x|)s.

As a natural generalization of Z, the set Zg of [S-integers can be defined using the
notion of (x)g.
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Definition 2. Let § > 1. Then the set of nonnegative S-integers is defined as

Zi;={r€R : (x)g=ap---mmg@ 0} = Uﬁngz(O)

i>0
The set of all B-integers is then obtained by symmetrization around zero,
Lg = ZE U (—Zg) .

Recall that a number 3 > 1 is called a Parry number, if dj(1) is eventually periodic.
Note that every Parry number is necessarily an algebraic integer. If it is also purely
periodic (i.e. the Rényi expansion of unity dg(1) is finite), then it is called a simple Parry
number. The remaining Parry numbers are called non-simple Parry numbers.

Thurston [16] showed that the distances between consecutive elements of Zg (let us
denote them as Ag, Ay, Ay, ...) are equal to

d;
Ap=> = k=012, (2)
i>1 B
where d}(l) = dydads---. One can easily see that the set Zg contains gaps of finitely

many different lengths iff 5 is a Parry number. Moreover, since Ay = 2121 % =1 and
any suffix of dj(1) either fulfills (1) or is equal to dj(1) itself, we get Ay <1 for all k.

We can encode ZE by an infinite word in the following manner. Starting with number
0 (which is always a [-integer) and continuing through all elements of Zg in increasing
order, encoding each gap between consecutive S-integers by a number Ay — k (where
k is the greatest index, at which the S-expansions of the two neighbors differ) will give
us an infinite word ug = wpujug - -- over the infinite alphabet N. We can generate this
encoding by a certain morphism, having ug as its fixed point.

If § is a Parry number, the distances between consecutive elements of ZE take only
finitely many values and it is known, that both ug and ¢ can be projected onto a finite
alphabet of the form {0,1,...,n}. The explicit form of the morphism ¢ fixing ug was
originally given by Fabre [5].

Theorem 1 ([5]). Let 5 > 1 be a Parry number. Then the morphism ¢ : {0,...,n}* —
{0,...,n}* encoding ZE has the following form:

o If B is a simple Parry number, dg(1) = dy - - di,0% (dj(1) = (dy - - dp—1(dy, — 1))“),
thenn =k —1 and
p(i) = 0% (i+1) fori<k—2,
ok —1) = 0%

o If B is a non-simple Parry number, dg(1) = dj(1) = dy -+ - di(dpr1 - - - dpyp)”, then
n=k+p—1and

@(i):OdiH(i—i—l) fori<k+p-—2,
ek +p—1) = 0%+,
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3 TIto-Sadahiro (—/)-expansions

In 2009, Tto and Sadahiro |7| introduced an analogous numeration system to Rényi (-
expansions which uses a negative base, the so-called (—()-expansions. Instead of defining

the expansions of numbers from [0, 1) first, the unit interval [¢,¢ + 1) with ¢ = [;—fl fixed

was chosen. Let —3 < —1, then any x € [¢,{ 4+ 1) has a unique expansion of the form
d_g(x) = x12973 - - - defined by

T; = L—BTZ;(:C) — L], where T_g(z) = =Pz — |—px —{].

As in Rényi numeration system, we get for any « € [(,¢ + 1) an infinite word from
AV ={0,1,..., 8]}

Another analogous concept is the (—f)-admissibility, which characterizes all digit
strings over A being the (—/)-expansion of some number. The lexicographic condition,
similar to the one by Parry, was also proved in [7]. Ito and Sadahiro proved that a digit
string z1 2923 - - - € AV is (—3)-admissible (or, if no confusion is possible, just admissible)
iff it fulfills the lexicographic condition

d,ﬁ(g) jalt TiTir1Ti42 **° <alt dig(ﬁ + 1) = lim d,ﬁ(y> for all 4 Z 1. (3)
y—I+1_

Here, <, stands for alternate lexicographic ordering defined as follows:
Uiy - -+ < V102 & (—=1)F(u, — vg) < 0 for k smallest such that w;, # vy, .

The reference digit strings d_s(f) and d* 4(¢ + 1) play the same role for (—f3)-expansions
as Rényi expansions of unity for S-expansions. While d_z(¢) is obtainable directly from
the definition, the following rule (proved in [7]) is to be used for determining d* 4(¢ + 1):

(Oll cee qul(lq — 1))w if d,5<£) = (lllg s lq)w for q Odd,

d s(l+1) =
ol ) {Od_ﬁ(é) otherwise.

In the rest of the paper, the notation d_g(¢) = lylol3--- will be used. We can now
recall the definition of (—/)-expansions for all reals.

Definition 3. Let —3 < —1, z € R. Let k € N be minimal such that ﬁ € (U, 0+1)
and d_g <ﬁ> = xywow3 - - -. Then the (—f)-expansion of x is defined as

Ty Tpo1Th @ U1 Ty - -+ if k> 1,
(x)-p = ey
0exixoxs3--- if k=0.

Definition 4. Let — 5 < —1. Then the set of (—f)-integers is defined as

Zg={z€R : (z)_g=ump-muge0’} = [ J(=B)T4(0).

i>0
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In order to describe the distances between consecutive (—/)-integers, we will recall
some notation from [2]|. Let

min(k) =min{ag_1---a1a9 : ax_1---a1ap0” is admissible} ,

where min is taken with respect to the alternate order on finite strings. Similarly we
define max (k). Furthermore, let v be the “value function” mapping finite digit strings to
real numbers,

k-1
Tpy - T1To  — Y(Tpo1- - 2120) = in(—ﬁ)i .
i=0

With this notation we can recall the results concerning the distances in Z_s and, later
on, encoding of Z_g by infinite words. It was shown in [2| that the distances between
consecutive elements x < y of Z_g take the values y —z € {A}, k € N} (not necessarily
pairwise distinct) with

L= [(=8)° 5 (min(k)) — 5 (max(k)| (4)

where £ is the greatest index at which (x)_s and (y)_g differ. In contrast with the result
of Thurston describing the distances in Zg, it is difficult to provide a similar explicit result
on Z_ga, due to tedious discussions arising from the alternate ordering. Nevertheless, the
formula (4) will be sufficient for our needs.

If we want to encode Z_g by an infinite word, the procedure is similar to the encoding
of Zg. But since Z_z contains both positive and negative numbers, we directly get a
biinfinite word

Vg = U_30_2U_1|vgvyvg -+, v; € {0,1,2,...},

i.e. the letter v; = k means that the gap between j-th and (j + 1)-th (—/3)-integer is A}
As the following theorem shows, there exists an antimorphism ¢ (although not explicitly
given), which generates v_g as its fixed point, i.e. P(v_g) = v_g.

Theorem 2 ([|2]). Let v_g be the word associated with (—p)-integers. There exists an
antimorphism 1 : N* — N* such that 1? is a non-erasing non-identical morphism and
P(v_g) = v_g.

Moreover, 1 is of the form

ok Sk + 1)2!5;/C for k even,
Riu(k+1)S;y  fork odd,

where w denotes the mirror image of the word u. The word Sy codes the distances be-
tween consecutive (—)-integers in {y(min(k)0),...,v(min(k+ 1))} (in given order) and
similarly Ry in {y(max(k)0),...,v(max(k +1))}.

Similarly to Parry numbers, another subclass of algebraic integers, the so-called Yrrap
numbers are defined. A real number [ is an Yrrap number, if d_3(¢) is eventually periodic.
Moreover, let us recall, that [ is called a Pisot number, if it is an algebraic integer greater
than 1 with all algebraic conjugates less than 1 in modulus. From [6], [9], [14], it is
known that every Pisot number is both Parry and Yrrap, while the converse does not
hold. Moreover, the sets of Parry and Yrrap numbers do not coincide.
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Remark 1. Although both the encoding v_g of (—[f)-integers and the antimorphism 1)
generating it were originally defined over the infinite alphabet N, it is not difficult to see
that whenever B is an Yrrap number, v_g and ¢ can be projected to a finite alphabet
as the distances of the same length can be coded by the same letter (periodic d_p({) =
periodic patterns in extremal strings min(k) and max(k) = periodic repetition of lengths
of distances in Z_g). Several examples of antimorphisms over finite alphabet coding Z_g
are presented in [2] and [15].

4 Comparing the Structure of Z} and Z_;

A natural question to ask is: for given S > 1, are the sets ZE and Z_g similar in any way?
From our point of view, the “similarity” can be expressed by three properties (ordered in
such a way that each one implies all of the previous):

1. both Zz; and Z_z contain only distances of length < 1 (not true for Z_z in general)
2. the sets of distances in ZE and Z_z are the same

3. ug and v_g are fixed points of conjugated morphisms (which implies that ug and
v_g have the same language)

Given an infinite word u (one- or two-directional), its language L£(u) is the set of all
its factors. i.e. finite words of the form wgug.q---u; for some k,l € Z. Note that we
cannot just compare maps ¢ and 1 generating ug and v_g respectively, as one of them
is a morphism and the other an antimorphism. Nevertheless, if we take ©? and 12 then
the comparison makes sense, as both are morphisms.

Definition 5. Let A be an alphabet (finite or infinite) and 7, p : A* — A* be morphisms
on A. We say that m and p are conjugated, if there exists a word w € A* such that either

wr(a) = p(a)w, for alla e A, or w(a)w =wp(a), for alla € A.

We denote m ~ p.

4.1 Observations for special Pisot Bases

Note that we consider only non-integer bases. The case § € Z is contained in the main
result (Theorem 3) as a trivial subcase (integers are Pisot numbers of degree 1) which
can be easily proved separately. In Proposition 1 we recall results of [11]| characterizing
quadratic bases for which both Z;g and Z_g are encoded by infinite words with the same
language.

Proposition 1. Let § > 1 be a quadratic Pisot number with minimal polynomial p(z).

1. Ifp(x) =2 —mx —m, m > 1:
the distances in Zj and Z_g are the same and @* ~ )*.

2. In all other cases, Z_g contains distances > 1.
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In order to provide similar characterization for cubic Pisot units, and later for the
general result in Theorem 3, it is useful to consider the following lemma.

Lemma 1. Let § > 1, denote m = |3]. Then A} <1 implies that
d_s(0) = m0* o 1lopro - (logs1 > 0) or d_g(f) =m0~ .

Note that the case d_g(¢) = m0* happens if 3 is a root of 2> — mz — m, which is
treated in Proposition 1. In the following proposition we use results of Akiyama [1] giving
characterization of cubic Pisot units.

Proposition 2. Let 8 > 1 be a cubic Pisot unit with minimal polynomial p(x) = z° —

ax’? —bxr —c, c = +1.

1. Ifp(x) =2 —ma* —mz —1, m > 1:
the distances in Zj and Z_g are the same and ©* ~ *.

2. Ifp(x) =2 —ma?+2 -1, m>2orp(x)=a2*—ma*+1, m>3:
the distances in ZE and Z_g are the same but ©* » 2.

3. In all other cases, Z_g contains distances > 1.

4.2 Main Result

Theorem 3. Let 8 > 1. Morphisms ©* and 1)* generating Zg and Z_g respectively are
conjugated iff 8 is a Pisot number with minimal polynomial x* — m(z* 1+ ... +2) —n
with m >n > 1, such that k is odd or m = n.

Remark 2. Let 5 be a Pisot number of even degree k > 2 with minimal polynomial
p(x) =2 —m(a* 1+ ... +2)—n, m>n>1. The sets of distances in ZZQ and Z_g do
not coincide, hence ©* ~ 1)?. Nevertheless, certain level of similarity can still be found,
as was observed for k =2 in [11]. Recall that v_g is an infinite word coding Z_z. If we
take the longer distance in Z_g and “cut” it into Aj_; =1+ 5 = Ao+ Ay, we are in
fact applying a morphism w(i) : {0,..., k —1}* = {0,...,k — 1}* on v_g, where

(i) = i ifie{0,... k—2},
Yok —1) ifi=k-1.

Then one could use similar approach as in previous examples and as in [11] to verify that
the words ug and w(v_g) have the same language. For ug is a fized point of ©*, w(v_g) is
a fized point of V' (which is the unique morphism for which T o1 =’ ow) and @ ~ P2
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Abstract. Non Destructive Testing (NDT) and harmonic medical imaging methods have been
widely developed thanks to the use of the symbiosis of Time Reversal (TR) based signal pro-
cessing tools and Nonlinear Elastic Wave Spectroscopy (NEWS) methods. Improvement of
TR-NEWS has been conducted with coded excitation using chirp frequency excitation and the
concept was presented and validated in the context of NDE imaging. The chirp-coded TR-
NEWS method uses TR for the focusing of the broadband acoustic chirp-coded excitation. The
method consist in the successive steps :

e emission of a linear frequency sweep signal (the chirp-coded excitation),
e recording of the response to the emitted signal (the chirp-coded coda),

e computation of the pseudo-impulse response, which is the correlation between the chirp-
coded excitation and its response,

e recording of the response to the time-revered emitted pseudo-impulse excitation (chirp-
coded TR-NEWS coda).

The resulting responses coming from nonlinearities in material are processed by means of sta-
tistical classification methods and signal processing. The classification of nonlinear vibrations
in this paper is performed by means of a fuzzy classification method, in which parameters are
extracted from the ultrasonic response containing acoustic nonlinearities. Parameters based on
¢-divergence measure are used in this work. Because ¢-divergence comes from theory of prob-
ability, the spectra are normalized in the sense that sum of the spectrum is always equal to 1.
For normalized spectrum S), the ¢-divergence Dy is defined as

l
Dy =3 Sp(0)0 (S (0)8,0) ) M)
=0

*This work is published in Proceedings of the ICSV20, International Institute of Acoustics and Vibra-
tion, 2013, ISSN 2329-3675, ISBN 978-616-551-682-2 and was presented on 20th International Congress
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Figure 1: Envelopes of the TR pseudo impulse responses extracted with Hilbert transform.
The response for system without source has quite good symmetry with respect to the
focusing located at ty = 3200/Af = 1.6us in comparison with the other signal, where
the left part differs from the right part of TR response.

where ¢ : (0,00) — R is convex with ¢(1) = 0. There are many possibilities for choosing of
fuction ¢ [10], Hellinger divergence [10] is used in this paper. The variable S7/¢" denotes a nor-
malized reference spectrum S"¢/¢"(f) = 32 [St(f)|/m, where m is the number of observations
from one type of signals, S*(f) are individual realizations of the normalized spectrum S(f).

Two experiments are performed to verify suitability of the connection between TR-NEWS
process and the classification technique. In the first one, different sources of nonlinearity are
measured, analysed and classified. In the second, the same source of nonlinearity is investigated,
but in different positions. Consequently, the analysis and classification is conducted in order
to reveal different positions by means of the classification. For signal responses (including TR
responses), a Hilbert envelop is performed in order to verify better a presence of nonlinearity.
Fig.1 shows dissymmetry in Hilbert envelops of TR signal responses when, in the system, either
no nonlinearity or different sources of nonlinearity (bubbles or UCA) are presenting. Nonlin-
earities in the system can be revealed by means of TR-NEWS if the dissymetry is observed.
The classification results in experiments were very satisfactory, because only by using simply
fuzzy method in combination with parameter ¢-divergence coming from theory of probability,
separation of signals coming from different scatterers or signals of scatter coming from different
positions can be done very well. Hence, we are able to decide how many scatterers or positions
of scatterer there are in a system. A disadvantage of the fuzzy method is that the number of
clusters has to be adjusted previously and in presence of outliers there is possibility of misclas-
sified data. This can be eliminate by analysis of dependency between classification and number
of clusters.

Keywords: time reversal, chirp excitation, fuzzy classification, ¢-divergence
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Abstrakt. Nedestruktivni testovani (NDT) a lékarské zobrazovaci metody dosahly znaéného
rozvoje diky vyuZziti spojeni zpracovani signalu zaloZeném na ¢asové reverzaci (TR) a metody
nelinearni elastické vlnové spektroskopie (NEWS). Dalsi zlepSeni spojeni TR-NEWS spoéiva v
pouziti chirp excitace, jenZ bylo ovéfeno a prezentovano nékolikrat ve spojeni s NDT zobra-
zovanim. Metoda TR-NEWS s chirpové kédovanou excitaci se skladé z nékolika krokti:

e vyslani kmito¢tové rozmitaného signalu (chirp excitace),
e nahrani odezvy na vyslany signal,

e vypocet pseudo-impulsni odezvy, kterd predstavuje korelaci mezi chirp excitaci a jeji
odezvou,

e nahrani odezvy na vyslanou ¢asové reverzovanou psedo-impulsni excitaci.

Vysledné odezvy pochézejici z nelinearit v materidlu jsou zpracovany pomoci statistickych klasi-
fika¢nich metod a metod zpracovani signalu. Klasifikace nelinedrnich vibrac{ v tomto c¢lanku
je provedena pomoci metody fuzzy klasifikace, ve které jsou parametry ziskany z ultrazvukové
odezvy obsahujici akustické nelinearity. V tomto ¢lanku pouzivame parametry zaloZené na ¢-
divergen¢ni mife mezi spektry. ProtoZe ¢-divergence pochézi z teorie pravdépodobmnosti, jsou
spektra signalt normovana v tom smyslu, Ze suma spektra je vZdy rovna 1. Pro normované
spektrum S, je ¢-divergence Dy definovand jako

l

Dy =3 8,(0)0 (S (0)8,0) ), 2)

1=0

kde ¢ : (0,00) — R je konvexni a ¢(1) = 0. Vybér funkce ¢ je iroky [10], v tomto ¢lanku byla
pouzita Hellingerova divergence [10]. Proménna Srefer oznacuje normované referenéni spektrum
Srefer(f) = 321" |SU(f)|/m, kde m pocet pozorovani z jednoho typu signalu (nelinearity), S°(f)
jsou jednotlivé realizace normovaného spektra S(f). Pro ovéFeni vhodnosti spojeni TR-NEWS
metody a klasifikac¢ni techniky byly provedeny dva experimenty. V prvnim byly naméfeny rizné
typy nelinearit, které byly analyzovany a klasifikovany. Ve druhém byla méfena ta samd nelin-
earita, ale v riznych pozicich v materialu. Nasledné byla provedena analyza a klasifikace pro
odhaleni riznych pozic nelinearity. Aby se lépe uréila pfitomnost odezvy nelinearity v signélu
byly pro signélové odezvy (véetné TR odezev) zkonstruovany Hilbertovy obélky, viz obrazek
1, kde je ukdzanana nesymetrie Hilbertovych obalek TR signali v pfipadé Zadné nelinearity a
riiznych typu nelinearit (bublinek v kapaling nebo UCA). Nelineratity v systému jsme schopni
odhalit pomoci TR-NEWS v p¥ipadé vyskytu jisté nesymetrie. Vysledky klasiface v provedenych
experimentech byly velmi uspokojivé, protoze pouze pomoci jednoduché fuzzy metody v kombi-
naci s parametrem ¢-divergence se nam podafilo velmi dobfe klasifikovat rizné typy nelinearit
a rovnéz ruzné pozice konkrétni nelinearity v materidlu. TudiZ jsme schopni rozhodnout na zék-
ladé vyuziti TR-NEWS a statistické klasifikace o tom, kolik nelinearit je pfitomno v materialu
nebo na kolika mistech se dané nelinearita vyskytuje. Nevyhodou fuzzy metody je nutnost apri-
orni znalosti po¢tu shlukil (poc¢tu typt nelinearit ¢ pozic) a daldi nevyhodou metody je znaéné
ovlivnéni vysledki odlehlymi pozorovanimi. Tyto problémy mohou byt eliminovany analyzou
zévisloti mezi klasifikaci a po¢tem shluki.

Klicovd slova: technika Casové reverzace, chirp excitace, fuzzy klasifikace, ¢-divergence
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Abstract. Software applications become more and more complicated, nowadays. The complex-
ity of the internal dynamics of a modern software application can be hard to maintain. Software
configuration is one of the areas where the internal dynamics can become very complicated
because there usually exists a huge amount of states that the system can be in. Of course,
implementation of configuration tools is a hard task, especially in imperative-style languages,
since the programmer must take into consideration all special combinations of states and im-
plement the appropriate behavior of the program for all of them. It is very easy to make a
mistake or to omit a special condition in such a code. There are two ways to solve this problem.
One is to use declarative programming which is suitable for these classes of problems (but the
programmer must be familiar with an unusual approach of this style of programming) or to use
system verifiers to check whether the application behaves correctly under all circumstances.

In [1], a multi-platform configuration tool Freeconf is described. This tool has different
types of configuration keys and for each key it uses an extra set of Boolean properties that
extend the semantics of the key [3]. The development of values of these semantic properties is
highly dynamic since the values change according to the user’s actions and one change usually
propagates further and induce more changes. Freeconf in its core implements this dynamic
behavior in Python. The code is not very maintainable since it is complex and adding more
properties or changing some rules of propagation is particularly non-trivial.

In [2], attempts have been made to abstract away from Freeconf and design a formalism that
would allow us to describe the general dynamic processes in a compact way and to be able to
verify whether the implementation is sound and the model itself does not have any deadlocks.
In the paper, the configuration hierarchical model is introduced and the propagation dynamics
in Freeconf is encoded in it. The model has two parts, one is a description of a static structure
of properties that must form a tree and the second is a list of propagation rules which have
the form of implications (i.e. condition-action rules). This compact declarative description is
then translated to UPPAAL, a powerful model-checking verification software written in Java.
UPPAAL expects the to be verified model in the form of a set of finite-state machine automata
and provides a GUI for designing them. In section 5 of [2]|, some of the difficulties and work-
arounds of this encoding are mentioned. Soundness of the Freeconf instance of the hierarchical
model was successfully verified in UPPAAL even though some errors in the propagation rules
were found and corrected rules were proposed. UPPAAL, however, turned out not to be the best
for verifying the configuration hierarchical model because of its visual modeling. In the future,
the better way seems to be to use the Spin verifier that uses the Promela language (similar to
C) to model the system.

Keywords: software, configuration, hierarchy, model, verification, UPPAAL
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Abstrakt. Komplexita softwarovych aplikaci v souc¢asnosti stile roste. Implementace vnitini
dynamiky modernich aplikaci se tézko spravuje. Typickym ptikladem jsou programy pro soft-
warovou konfiguraci, ve kterych je vnitini dynamika zpravidla velmi komplikovand, nebot systém
mize mit velké mnozstvi riznych stavi, mezi kterymi prechazi. Programovani takovych nastroji
je netrivialni, zvlasté v imperativnich jazycich, protoze programator musi vzit v avahu vSechny
okrajové stavy systému a implementovat chovani aplikace pro kazdy z nich. Je velmi snadné
udélat v takovém koédu chybu nebo vynechat néktery specidlni p¥ipad. Existuji dva p¥istupy k
FeSeni této situace. Za prvé je mozné programovat tyto nastroje v deklarativnich jazycich, které
se zvlagté hodi pro tyto t¥idy aloh (i kdyz programéator musi p¥ijmout zvlastni styl takového pro-
gramovani). Za druhé je mozné pouzit tzv. systémové verifikatory (system verifier) pro kontrolu
toho, Ze se aplikace chova spravné za v8ech okolnosti.

V ¢lanku [1] je popsan multiplatformni konfigura¢ni nastroj Freeconf. Tento nastroj pouziva
rizné typy konfigura¢nich kli¢i a pro kazdy z nich udrZzuje sadu booleovskych proménnych
slouzicich k zachyceni sémantiky kli¢e [3]. Vyvoj hodnot téchto proménnych je zna¢né dynam-
icky, nebot zavisi na akcich uzivatele a jedna zména se Casto propaguje déle a zpisobuje dalsi
zmény. Jadro Freeconfu implementuje toto dynamické chovani v Pythonu. Tato implementace
neni piili§ udrzitelné, protoze je komplikované a napf. pfidani nové dynamické proménné nebo
zména pravidel propagace je zna¢né netrividlni.

V ¢lanku (2] je popsan pokus o abstrakei konkrétnich dynamickych procest ve Freeconfu a
vytvofeni formalismu, ktery by umoznil zapsat v kompaktni podobé obecné dynamické procesy
a usnadnil verifikaci implementace systému. Clanek zavadi tzv. konfiguracni hierarchickij model
a popisuje jeho konkrétni instanci pro popis dynamiky Freeconfu. Model ma dvé ¢asti, a to popis
statické struktury sémantickych proménnych, kterd musi tvofit strom, a seznam propagacnich
pravidel ve tvaru implikaci (neboli pravidla typu podminka-akce). Tento kompaktni zapis je
pak pfeveden do vykonného verifikitoru modeli UPPAAL, ktery je napsan v Javé. UPPAAL
olekava sviij vstup v podobé mnoziny koneénych stavovych automatt a poskytuje GUI pro jejich
zadavani. V sekci 5 ¢lanku [2] jsou popsany nékteré problémy pii vytvareni vstupu UPPAALu.
Instance hierarchického modelu pro Freeconf byla poté tispésné ovérena, i kdyz byly v pribéhu
nalezeny nékteré chyby v propagacnich pravidlech a byla navrzena oprava. UPPAAL se nicméng
ukézal jako ne p¥ili§ vhodny néstroj pro ovéfovani konfigura¢niho hierarchického modelu, nebot
vyzaduje vizualni modelovani vstupu. V budoucnosti se zda byt vyhodnéjsi pouziti verifikitoru
Spin, ktery ocekava vstup v jazyku Promela, ktery je blizky jazyku C.

Klicovd slova: software, konfigurace, hierarchie, model, ovéfovani, UPPAAL
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Abstract. The problem of constructing the G L(n)-invariant solutions of Yang-Baxter equation
is considered. The degeneration of R-matrices to projectors is used to build new solutions.
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Abstrakt. Tento pfispévek se zabyva konstrukci GL(n)-invariantnich feSeni Yang-Baxterovy
rovnice. Degenerace R-matic je vyuzita ke konstrukci novych feseni.

Klicovd slova: Yang-Baxterova rovnice, R-matice, reprezentace, Lieova grupa

1 Introduction

Let Vi, i = 1,2,3 be vector spaces. The Yang-Baxter equation (YBE) is the following
equation in the tensor product V; ® Vo, ® V3

Ria(u) Riz(u + v) Ros(v) = Ros(v) Ris(u + v) Ria(u). (1)

The basic object R;;(u) arising in eq. (1) is a canonical embedding of a parameter-
dependent linear operator acting in the tensor product of spaces V; ® V; into V; @ Vo ® V.
The parameter u € C is called the spectral parameter. The spaces V; can be of arbitrary
dimension. Solutions of the Yang-Baxter equation are called R-matrices.

Let the spaces V; be modules of representations 7; of a group G. Solutions of (1) are
called G-invariant, if the following equality is satisfied

Ti(g) @ Tj(g) Rij(v) = Rij(u)Ti(g) @ T5(9) (2)
for all ¢ € G. Tt turns out that (2) is a very restrictive constraint on the solutions of (1).

Proposition 1. Let T;, T are representations of a group G. Let T, ®T; is a completely re-
ducible representation with a Clebsch-Gordan decomposition containing no multiplicities.
Then

Rij(u) = pr(u) Py,
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where operators Py, are projectors on the k-th representation in the Clebsch-Gordan de-
composition of T; @ T; and pi(u) are corresponding eigenvalues depending on spectral
parameter u.

Proof is a simple application of the Schurr lemmas.
There is an unproved assertion about g-invariant solutions of the YBE (1) where g is
a Lie algebra: for each triplet of g-moduli VA,V VA< the YBE

Ry ™ (u)Rae™ (u+ 0) Ryt (v) = Ry (0) Rz (u + 0) Ryp ™ (w)

is satisfied and the solution is unique up to a scalar factor.
Throughout this text, we are interested in G L(n)-invariant solutions of (1). The group
GL(n) has n? generators, denoted e,s, defined as a matrix identity, i.e.

(€ap); = 0a93; (3)
where o, 3,1,j = 1,...,n. These generators satisfy the following commutation relation
[€ag: €] = Opu€ar — daveyp (4)

The fundamental space of GL(n) is C".

Let us take the simplest case and solve equation (1) in the tensor product of three
fundamental vector spaces V; ® Vo ® V3. The R-matrix in V; ® V] is called the fundamental
R-matrix and will be denoted as R}jl (u). It can be proved that only two matrices satisfying
the invariance condition (2) for GL(n) are the identity matrix / and the permutation
matrix Pj; which permutes vectors of the u-th and the j-th space in the tensor product
Vi ® V. Therefore,

Ri3(u) = ul + Pps. (5)

The lower indexes denote which space is dealing with. The upper will be explained below.
Let us denote E,g3 = T'(eqap) a representation of generators e,g. Then, of course, the
operators E,z must satisfy the same commutation relation (4).

2 Constructing R-matrices

Remark 1. Let us explain the notation used throughout the text. A finite-dimensional ir-
reducible representation T™ of GL(n) is characterized by its highest weight A = (A1, Mg, ..., \p)
where \; are integers satisfying the dominance condition A\ > Xy > --- > \,. Using this
characterization we denote the space corresponding to the representation T® as V. Up-
per indexes are reserved to denote which representation is used. Lower indexes will be
used for a better orientation on vector spaces, as a kind of coordinates.

The most important representation is the fundamental one with the carrying space C".
All the other highest weight representations can be obtained out of it. The highest weight
of fundamental representation is (1,0,...,0).

We use the following notation: the highest weight (m,0,...,0) will be denoted as m+

—N—
and (1,1,...,1,0,...,0) as m—. For the fundamental representation we use (1,0,...,0) =
I+=1-=1.
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As a consequence, a tensor product of k fundamental spaces V1 can be denoted as
k

V1ol - @1 _ yer
Using this notation we will denote a R-matriz acting in V2 @ V™ as RA Ao where the

indices a resp. b denote the first resp. the second space of the tensor product. Moreover,
if, for example, A, = 2+ then index a has two components a = {ay, as}.

The starting point of our construction will be the R-matrix in the product of two
fundamental spaces V; ® V;, V; = V; = V! = C". As mentioned above, it has to be of
the form R} = ul + P;;. This R-matrix is invertible for all u € C with two exceptions
u = £1. In this case Rilj1 degenerates to a multiple of the projectors P* resp. P~ on the
symmetric resp. the antisymmetric subspace of V @ V'

R} (1) =2P" =2 B(I + Plg)] , Rj(-1)=-2P =-2 B(I — Plg)] :

Another solutions of the YBE (1) in bigger spaces than in the fundamental one can be
obtained using this degenerative property of Rijl which, as we will see below, can be
generalized to more complicated R-matrices.

Let us solve the YBE in the space V|37 ® V3 ® Vj, i.e.

R%Q,él( )R?2241< +v) Ry (v) = Ry (v )R?2241( )3%231( )- (6)

We obtain the solution R, (u) = Ri}(u)Rii(u) and BT}y (u+v) = R (u+v) Ry (u+v).

As known, the tensor product V; ® V5 can be decomposed into two subspaces corre-
sponding to two irreducible representations, called the symmetric resp. the antisymmet-
ric. The symmetric is denoted as V2 and the antisymmetric is denoted as V2. Here we
use the notation in accordance with remark 1. Let us denote the projectors projecting
on these spaces as P* resp. P~. A simple idea how to obtain R-matrices acting on these
spaces is to restrict solutions of equation (6) R%%gl(u) to the irreducible subspaces V2t
resp. V2~ of V®2,

Using this idea, the solution of YBE on the space V5™ ® Vs ®@ V,

Ry (w) RISy (u+v)Rij(v) = Ry (v) Ry (u+ v)Rigy (u) (7)

should be easily obtained by restriction of solution of eq. (6) to its irreducible subspace
V2%, But this does not work. A small modification is needed. The solutions are

R{l5y5(w) = PraRij(u+ 1) R (u)Pra

with only small change in the argument of R}} where instead of the term u appears u+ 1.
This small change in u is, in fact, very important for the success of this construction.

The essence of above mentioned construction is expressed in the following theorem
which is, in fact, much more general than special case above.

Theorem 1 (“on reproduction”, [2|). Let the YBE’s

ng(U)Rlc(U + U)RQC(U) = R20<U)Rlc(u + U)Ru(U) (8)
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are satisfied for ¢ = 3,4. Let the matriz Ri2(u) degenerates at the point u = x. Let
Ris(x)Pis = Ria(x), Piy = Pra, Riz(2)Piy =0, Piy =1 — P

where Pio is the projector on the complementary space to the kernel of Ris(x). Let the
following YBE’s are satisfied for a = 1,2

Rag(U)Ra4(U + U)R34(U) = R34(’U)Ra4(u + U)Rag(u).
Then the matrices acting in the spaces Pio(Vi @ Vo) @ Vj, resp. Ph(Vi @ Vo) @ Vi, b= 3,4
Rag)p(u) = PraRip(u + ) Rop (1) Pio

resp.
R<12>7b(u) e PéRlb(u -+ I)Rgb(u)Pﬁ

satisfy the YBE
R(12),3(U)R(12),4(U + v)R3y(v) = R34(U)R(12)74(U + U)R(lz),g(u)

resp.
R_1o> 3(u)Reios a(u + v)Rag(v) = Rsa(v)Reqos a(u + v)Roas 3(u).

Because RI} degenaretes in u = 1 into the projector Pjp = 2PT we immediately
obtain using this theorem solutions for YBE (7) in V3" ® V3 ® V}

Rizy (u) = PFRig(u + 1) Ryg(u) P
and simiralry for Rf;f (u+v). At the same time, we obtain the solution of YBE in the

space Vi3~ ®Va®Vj because of the fact that the projector P~ onto V2~ is the complement
to PT in V ® V. The solution is the following

Riyy (u) =P R (u+ 1) Ry} (u)P~.

2.1 Generalization of the theorem on reproduction

There is a straightforward generalization of the reproduction theorem to the case of a
tensor product of several spaces. As we have seen, the R-matrix R'(+1) degenerates
into the projectors

1 _ 1
731+2 = §RB(1)7 7)12 = _ERS(_U'

There is a more general form of this fact which can be proved using induction

Pil.:..m—&-l = + 1731 le m+1(im)7)2ﬂ.:..m+17 (9)
m 1
P = () mR}nlm-&-l(j:l)Rir}—l,m-i-l(i2) R (EM)PE L, (10)

PL oy = 1”’”“”“’H z+1 H U i s (A I—k) (11)

(:l:)l/Qm(m—l—l) lr[ j + 1 r_[

We can generalize theorem 8 in this form

k). (12)
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Theorem 2. Let the generalization of YBE’s (8) in V" @V
1T I 2w HRmH PRCEST) HR”v+uj)H 11 2htu
k=11=k+1 k=11=k+1

s satisfied for ¢ = I,11. Here, uy = 0 s only an auxiliary variable. Let the matriz
Q1m(ug, - um) = [Tt T ks R (u — w) degenerates at the point (us, ..., up) =
(9, ..., Tk)

Ql...m(‘CEZ; cee 7xk)731...m = lem(an, cee 73:16)7 7)12771 = Pl‘..m7
Ql...m(l‘% cee 7xk)7)1lm - 07 Pf_m =1 le

where Py, is the projector on the complementary space to the kernel of Q1. (22, ..., Tn).
Let the following YBE’s are satisfied for a =1,2,...,m

Rm[(u)Ra’[[(u + U)R[,[[(U) = R[7[[(U)Ra7[[(u + ’U)Ra’[(u).
Then the matrices acting in the spaces Py m(Vi @ Va @ -+ @ Vi) @ Vi resp. P, (Vi @
Va® @ V) ® Vo, b=1,11,

R(l...m =P H Rm+1_J v+ l‘j)lem

resp.

R<l...m> b\ U 731 m H ernl+1 —j,c U + x])Pllm

satisfy the YBE

Ry 1 (W) Ry ) 11w+ 0) Ry 11(v) = Ry 11 (V) Ratmy, 11 (w0 + ) Rty 1 (1)

resp.

Rey s 1(W) Ry s 11(uw+ )Ry 11(v) = Rrir(V)Retms 11 (0 + ) Req s 1 (1),
After this, we obtain the expression for the R-matrix in V™" @ V resp. V"™ @V

R?IT?m),a(“) = Pf,_,mRi(lz(u + m — 1) ct Rir}a(u>7)f_m7 (13)
Ry o) =Pr L Ril(u—(m—1))... R, (u)Py

'''''

2.2 R-matrices of the form RM!

Proposition 2. Let e, be the generators (3) of GL(n) in the fundamental representation
and Eos the same generators in an representation T™. Then the operator L™ in VA®V

defined by
LM(u)y=uPy @I+ Y Eop ® epa (15)
a,B=1
satisfies the YBE in V2 @ V ® V where Py is the projector on the space VA,
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There is a beautiful statement joining the L-operator (15) with the results (13), (14)
obtained above for A = m=, cf. [1].

Proposition 3. If T is an irreducible representation with the highest weight of the form
A = m= then the solution (15) coincides up to a scalar factor with the solutions (13),
(14)
m—1
LM () =[] (w+ k)" R (w), (16)

k=1

2.3 More general

Using the theorem 2, the same construction can be used to obtain Rﬁfﬁl...n) (u). In fact,

the R-matrix R™*" for a general representation A can be obtained. It is evident that
the construction of the theorem 2 is independent on the spaces V., ¢ = I, 11, i.e. these
spaces can be arbitrary modules of the group GL(n). Therefore, if we take for V, = V4
in (13) and (14), we obtain general R-matrices R™"* resp. R™—A

RS () =P L RiMu+m—1). R (WP,, (17)
RN () =P Rif(u—(m—1)). . R (WP, (18)

If A= (n,0,...,0), then using the R-matrix R (u) (13) we obtain

Ry W) = PR (utm—1).. RHw)Pf,
= Pl Pl aRilut+m+n—2).. Ril(u+n—1)

Ri(u+m+n—3)... Ry (u+n—2)

All the R-matrices R™" (u), R™"*(u), R™™" (u) can be representaed in terms of
fundamental matrices in a similar way as (19).

3 Spectral decomposition of R-matrices
Let us consider arbitrary representations A,, A, of GL(n) and A, = 1 and assume the

existence of corresponding R-matrices. Using explicit form of R (15) we obtain the
following YBE

= (v + Z E;® eji) (u + v+ Z EL® eji) R (w). (20)

ij=1
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Using the following notation

n

dij = EZ - Efj? d?j = Z( ik~ EkaEZj - Egj)a (21)
k=1
Cy(E) =Y EyE; (22)
ij=1
and relation
- a a 1 a

> (BB — BLEy) = S[C(B" - EY), d}], (23)
k=1

and excluding matrices e;; from YBE (20) we obtain the equation

1 1
R, 0y - 3] = L {(CE - 2. R ) 21
where [, | is a commutator and { , } is an anticommutator.
The group invariance of RQ;A”(u) implies the spectral decomposition of the form
Ryp(u) =) pi(u) P, (25)
k

where P, is the projector on the space VA* in the Clebsch-Gordan series V4 @ V4 =
S VAR,

The equations (24) and (25) allow, in principle, to determine the eigenvalues py(u) up
to a scalar factor, cf. [1].

The spectral decomposition of R-matrices is of a great importance for construing
solutions of the YBE (1) because of theorem 1, on repreduction, where a partial knowledge
of spectral decomposition of R-matrices is necessary. Therefore, if we know a spectral
decomposition of some R-matrix, we are able to construct another solutions of YBE in
the spaces corresponding to the spectral decomposition.

4 Conclusions

In the paper [1], Kulish, Reshetikhin and Sklyanin were successful in constructing of all
GL(2)-invariant R-matrices for arbitrary representations A,, A, of GL(2).

In [1, 2] are shown many solutions of G L(3)-invariant R-matrices. The authors also
mention that GL(3)-invariant R-matrices can be constructed for all finite-dimensional
irreducible representations but only special cases are shown.

Nevertheless, the method shown in section 2 cannot be directly applied to all repre-
sentations in the general case GL(n),n > 3, because of multiplicities in Clebsch-Gordan
series.

The set of relations (24) and (25) imposes big constraints on the eigenvalues of GL(n)-
invariant R-matrix. The spectral decomposition of R™*"*(u) were obtained in [1]. An-
other results were obtained in [2]. But, for general A,, A, is the system of equations (24)
and (25) overdetermined and the question of its consistency is under consideration.
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Abstract. Appearance of many real world materials is not static but changes in time. In case
of spatially and temporally homogeneous changes the material can be represented by means of
dynamic texture. Dynamic texture modelling is a challenging problem. In this article we present
possible solution based on eigen analysis of input data and subsequent processing and modelling
of temporal interpolation eigen coefficients using a combination of piecewise linear approximation
and normal distribution sampling. The proposed method shows good performance, enables
compress significantly the original data and extremely fast synthesis of arbitrarily long extension
of the original texture.

Keywords: Dynamic texture, texture analysis, texture synthesis, data compression, computer
graphics

Abstrakt. Vzhled mnoha skute¢nych materidlii nen{ staticky, ale ménf se v ¢ase. V pifpadé
prostorové a Casové homogennich zmén mtze byt material reprezentovan pomoci dynamické
textury. Modelovani dynamickych textur pfedstavuje slozity problém. V tomto ¢lanku uvadime
mozné feSeni zalozené na vlastni analyze vstupnich dat a nésledném zpracovani a modelovani
¢asovych interpola¢nich vlastnich koeficientti pomoci kombinace po ¢astech linedrni aproximace
a vzorkovani z normalniho rozdéleni. Navrzena metoda dosahuje dobrych vysledkt, umoziiuje
vyraznou kompresi ptivodnich dat a velmi rychlou syntézu libovolné dlouhého rozgiteni ptivodni
textury.

Klicovd slova: Dynamicka textura, analyza textur, syntéza textur, komprese dat, pocitacova
grafika

1 Introduction

Dynamic textures (DT) can be understood as spatially repetitive motion patterns exhibit-
ing homogenous temporal properties. Good examples might be smoke, fire or liquids. Also
waving trees or straws or some moving mechanical objects can be considered as dynamic
textures. A sequence of images which are called frames is a basic representation of DT.
Original data are always represented by finite length sequence. This property may limit
the use of DTs in virtual reality systems so temporally unconstrained modelling of DT
is an interesting problem in research such as computer vision, pattern recognition and
computer graphics.

*Pattern Recognition Department, Institute of Information Theory and Automation, ASCR.

41



42 M. Havlicek

Already published works dealing with DTs can be divided according to the application
to: recognition, representation and synthesis [1]. The DT synthesis is apparently the most
difficult task and there are only few papers on this topic available [2]. For example: spatio
temporal causal auto regressive model 7], auto regressive moving average model applied
on responses of dimensionality reduction filter based on singular value decomposition [6],
generative mono spectral DT model based on moving object structure modelling and
trajectory modelling by means of dictionary containing Gabor bases for particle elements
and Fourier bases for wave elements [8], combination of spatial steerable pyramid and
temporal wavelet transformation [3]. All of them are limited by time consuming synthesis
algorithm. In addition method [7] requires some high level of temporal homogeneity of
the input and method [3] is restricted on monospectral DTs.

Another possibility is utilize so called video editing techniques, developed for general
video sequences originally, which can be used for DT synthesis as DT can be considered
as a special case of general video sequence. Several examples: video textures genera-
tion based on searching for transition points for looping with additional blending and
morphing [5], further extended in [4], or tree structured vector quantization [9]. These
techniques are also time demanding, but some of them produce very high visual quality
results [9].

The contribution of this paper is to propose straightforward colour DT modelling
method with low computational demands enabling extremely fast synthesis of arbitrarily
long DT sequence and in addition compression of original data. The method is based on
combination of input data dimensionality reduction using eigen analysis and modelling of
resulted temporal coefficients by means of combination of piece wise linear interpolation
and uncorrelated noise sampling. It was inspired by the method described in [2| and
represents interesting alternative.

The rest of paper is organized as follows: Section 2 explains input data dimension-
ality reduction using eigen analysis, Section 3 describes temporal coefficients modelling,
Section 4 deals with DT synthesis, Section 5 presents some achieved results and Section
6 summarizes the article with a discussion.

2 Dynamic Texture Eigen Analysis

The first step is so called normalization of analysed DT in which average frame from all
frames in the sequence is computed and then this frame is subtracted from each frame
in this sequence. Values corresponding to pixels intensities of individual frames from the
normalized sequence are arranged into column vectors forming (n x t) matrix C' where n
is a number of values equals frame width x frame height x number of spectral planes in
the frames and ¢ is a number of frames. Then a covariance (¢ X t) matrix A is computed
as: A =CTC . The matrix A is decomposed using singular value decomposition so that
A =UDUT where U is an orthogonal matrix of eigen vectors and D is a diagonal matrix
of corresponding eigen numbers.

Only k£ < t eigen vectors corresponding to eigen numbers representing the most of
the information are saved. The number k£ can be determined by several techniques. The
threshold selecting vectors which are not used may be computed from the values of the
eigen numbers. Assuming that the eigen numbers i.e. the elements D(;;) are ordered by
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their value then the threshold d can be computed as for example:

t
1
(5 = ; ZZI D(z,z) or

0= D(i,i) where 1= ngmje{l,...,kq}(|D(j,j) - D(j+1,j+1)|) :

Only eigen vectors which fulfill that their corresponding eigen number is higher than
the treshold § are saved. The effects of selecting the threshold ¢ and therefore the number
of preserved vectors k and the other possibilities are further discussed in Section 5 and
Section 6.

Eigen images (n x k) matrix [ is computed as: [ = C'T, where T is (¢ x k) matrix with
elements: T{; ;) = % . Finally a matrix of temporal mixing coefficients of individual
eigen images I for all frames from the sequence is computed as: M = ITC . The (k x t)
matrix M is a subject of further processing described in following section.

3 Temporal Mixing Coefficients Processing

A threshold « is computed first: o = %Zle(ai) where

n—1
1
0=\ > (1Mo = Miisn)| — 1) (1 Moy — M| — 115)

=1

n—1
1
M= > (1M — Mgiil) -

=1

Then the matrix M is processed following manner: if j-th row of M fulfils 0; > o then
mean /i; and dispersion ¢; of normal distribution from elements of this row are estimated
as:

1 ¢ 1
=y > Mgy, 6= n > (Mg — 1) -

i=1 i=1
The row which is under o; < « is disjoint into several sub intervals. We denote the
set of the indices representing end points of the rows as L . The right edge ¢; of the
block is detected by the threshold j; applied to |M(;,;y — M, +1)| so that at least one
row jo € L satisfies | M, i) — Mjo.ir+1)| > 14, - Then values of M, ;) and M;;,)Vj € L,
where 7y is the left edge of the block, are saved instead of all values in corresponding
interval. In addition blocks with less than two elements are not saved at all. The set of
all saved blocks will be denoted as B . The division is driven by the row 7* which both
fulfils 0+ < a and the average value of all elements of this row is the higher than any

other such value of the rest of the rows j € k under o; < a.

Another possibility is to disjoint rows into the sub intervals with the same length. The
length of intervals affects overall dynamics of the synthesized sequence and it appears
that each DT need different division to achieve the best result. Although we have not
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developed any technique to detect this optimal division yet it is apparent that some semi
optimal division sufficient enough exists and it was verified by many experiments that this
semi optimal length equals to two percents of the total length of the original sequence.

4 Synthesis

The goal of the synthesis is to create certain number of DT frames so that overall visual
appearance is close enough to the original. Unfortunately there does not exist any appli-
cable criterion to decide if the synthesized DT is close enough to the original as explained
in Section 5.

During the synthesis a matrix (k x t7) of temporal mixing coefficients M, where ¢f
is a length of the synthesized sequence, in general different from t, is created block wise
from the blocks occurring the set B . Element Mlj is linearly interpolated if 7 € L or
sampled from uncorrelated noise with mean i; and dispersion ¢; otherwise. Blocks may
be chosen even non deterministically but |M;, ; — M, ;| < p; must hold for all j € L, i,
is the right edge of previously used block and ¢, is the left edge of the following one.

New DT sequence CT which is (n x ¢7) matrix can be then computed simply as:
CT = MU . Final step is addition of the average frame to each frame in the synthesized
sequence. Since only matrix operations occur in this step it can be easily performed on
contemporary graphics hardware which considerably increases the synthesis speed.

5 Results

We used the dynamic texture data sets from DynTex texture database ' as a source of
test data. Each dynamic texture from this sets is typically represented by a 250 frames
long video sequence, that is equivalent to ten second long video. An analysed DT is
processed frame by frame. Each frame is 400 x 300 RGB colour image. As a test DT
were chosen: smoke, steam, streaming water, sea waves, river, candle light, close shot of
moving escalator, sheet, waving flag, leaves, straws and branches.

Some results can be seen on Figures 1 and 2, showing selected synthesized frames and
corresponding frames from original sequence. In this case the deterministic version of the
algorithm with fixed length intervals were use to reproduce the sequence.

From the shown results can be seen that although there are some differences between
original and synthesized frames the overall dynamic stayed preserved. Unfortunately it is
really hard to express this similarity exactly. Robust and reliable similarity comparison
between two static textures is still unsolved problem up to now. Moreover, when we switch
to the dynamic textures the complexity of comparison between original and synthesized
DT sequence increase even more.

In some cases the synthesized DT is visually similar to the original except for less
details (for example: river and straws on Figure 1, sea waves on Figure 2), sometimes
the moves in synthesized sequence are blurred (for example: waving leaves and sheet
on Figure 2). Less detailed appearance is mainly caused by information loss during the
dimensionality reduction phase when only about 15% of the original information is saved.

thttp://www.cwi.nl/projects/dyntex/
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Figure 1: Original frames (odd rows) versus corresponding synthesized ones (even rows),
sequences: candle light, smoke, river, straws.
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Figure 2: Original frames (odd rows) versus corresponding synthesized ones (even rows),
sequences: sea waves, sheet, waving leaves, flag.
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Figure 3: The synthesis of several textures (candle light, river, straws and waving leaves)
300th and 400th frames.

The approximation of coefficients is reflected in the blurring. The worst result is the flag
sequence synthesis (Figure 2), maybe it is because this is not real DT but rather dynamic
scene and this method is limited to DTs.

Main advantage of this method to the solution published in [2], where Causal Auto
Regressive (CAR) model is used to process matrix M, is its stability in the synthesis step.
Another issue of using CAR model is that the overall dynamics of synthesized sequence
decreases with time which is serious problem in case of sequences longer than original
one. The general dynamic of the sequence is preserved in time in case of our method as
presented on some results on Figure 3 showing selected frames from synthesized sequence
longer than original one. The computational demands are identical for both methods.

6 Conclusion and discussion

We presented a novel method for fast synthesis of dynamic multispectral textures in this
article. The main part of the approach is based on modelling of temporal coefficients
resulted from input data dimensionality reduction step. This solution enables extremely
fast synthesis of arbitrary number of multispectral DT frames, which can be even more
efficiently performed by contemporary graphical hardware. There are still some unsolved
tasks. The detection of optimal number of component which should be saved is still
discussed, because this step is essential and affect overall performance and resulting visual
quality. The division of temporal matrix is not always the best solution and sometimes
the fixed length sub intervals serves as the universal semi optimal solution. On the other
we have not developed any method for optimal fixed sub interval length detection yet but
many experiments demonstrated that for most DTs 2% of the total length of the sequence
is sufficient. Although this method is still under development it represents interesting
alternative to the existing approaches.
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Abstract. For ¢ € R, ¢ > 1, Erdés, Jo6 and Komornik study distances of the consecutive points
in the set .
X™(q) = {Za]ﬂj :neN, q € {0,1,...,m}}.
j=0

The Pisot numbers play a crucial role for properties of X™(q).

We follow work of Zaimi who consideres X () with  being a complex Pisot number. For
a class of cubic complex Pisot units we show that X" () is a Delone set in the plane C and for
7 the complex root of Y3 + Y2 +Y — 1 we determine two parameters of the Delone set X™ ()
which are analogous to minimal and maximal distance for the real case X™(q).

Keywords: beta-numeration, Delone set, cut-and-project scheme

Abstrakt. Erdos, Jo6é a Komornik studuji, pro zadané ¢ € R, ¢ > 1, mezery mezi sousedy
v mnoziné .
X"(q) = {Zajﬂj :neN, aq € {0,1,...,m}}.
§=0
Ukazuje se, ze pisotovskost ¢ mé zésadni vliv na vlastnosti mnoziny X (q).

Navazujeme na praci Zaimiho, ktery studuje mnozinu X" (v) pro complexni pisotovské
¢islo 7. Pro jistou tfidu kubickych complexnich pisotovskych ¢isel jsme ukéazali, ze X™(y) je
delonovskad mnozina v C. Pro komplexni kofen polynomu Y3 + Y2 + Y — 1 jsme uréili dva
parametry delonovské mnoziny X" (v), které jsou obdobou minimalni a maximalni mezery
v readlném piipadé X™(q).

Klicovd slova: beta-numerace, delonovska mnozina, pruméty miizky

1 Introduction

In articles [EJK, EJK'], Erdds, Jo6 and Komornik study the set

X™(B) = {Zn:a]ﬂj :neN, q € {0,1,...,m}},

J=0

*This is an extract of the work [HP].

TThis work was supported by the Grant Agency of the Czech Technical University in Prague grant
SGS11/162/0OHK4/3T/14 and the ANR/FWF project “FAN — Fractals and Numeration” (ANR-12-IS01-
0002, FWF grant 11136).
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where 3 > 1. Clearly this set has no accumulation points, hence we can find an increasing
sequence
O=zp <1 <X << xp, < -+~

such that X™(3) = {z) : £ € N}. Their research aims to describe distances between
consecutive points of X™(/3), i.e. the sequence (g1 — =k )ren. Properties of this sequence
depend on the value m € N. It is easy to show that when m > $—1, we have xy 1 —x < 1;
and when m < # — 1, the distances x;,1 — ) can be arbitrarily large.

Properties of X™(/3) are dependent on 3 being a Pisot number (i.e. an algebraic integer
> 1 such that all its Galois conjugates are in modulus < 1). Bugeaud [B] showed that

ln(B) = lilzgn inf(zp41 — ) >0

for all m € N if and only if the base [ is a Pisot number. Recently, Feng [F]| proved
a stronger result that the bound § — 1 for the alphabet size is crucial. In particular,
(n(6) =0 if and only if m >  — 1 and 3 is not a Pisot number.

Therefore, let us focus on the case # Pisot and m > 3 — 1. From the approximation
property of Pisot numbers we know that for a fixed # and m > § — 1 the sequence
(xg41 — xx) takes only finitely many values. Feng and Weng [FW] used this fact to
show that the sequence of distances (1 — z) is substitutive, roughly speaking, can be
generated by a system of rewriting rules over a finite alphabet. This allows, for a fixed (3
and m, to determine values of all distances (rx.1 — x)). An algorithm for obtaining the
minimal distance ¢,,(/3) was as well proposed by Borwein and Hare [BH].

The first formula which determines the value of ¢,,(3) for all m at once appeared
in 2000 where Komornik, Loreti and Pedicini [KLP] study the base golden mean. The
generalization of this result to all quadratic Pisot units was provided by Takao Komatsu
[K] in 2002.

Zaimi [Z] started to study the set X" () where he considered v a complex number of
modulus > 1, and he put

ln(7) =inf{|z —y| 12 £y, 2,y € X"(7)}.

He proved an analogous result to the one for real bases by Bugeaud, namely that ¢,,,(v) > 0
for all m if and only if v is a complex Pisot number, which is defined as a non-real algebraic
integer of modulus > 1 whose Galois conjugates except its complex conjugate are of
modulus < 1.

To study X™() in C, we need to define characteristics analogous to £,,(3) and L, (/)
for the real case. Let us inspire by the notions used in the definition of Delone sets.

We say that a set X is: uniformly discrete if there exists d > 0 such that |z —y| > d for
all distinct x,y € 3; relatively dense if there exists D > 0 such that every ball B(x, D/2)
of radius D/2 contains a point from 3; and Delone if it is both uniformly discrete and
relatively dense.

Clearly, if ¢,,(~y) is positive, then X™(+) is uniformly discrete and £,, () is the minimal
d in the definition of uniform discreteness.

Let us define

Lim(y) = inf {D > 0: B(x,D/2) N X™(7) # 0 for all = € C}.
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In particular, L,,(v) = +oo if and only if X" (v) is not relatively dense.

The question for which pairs (v, m) the set X™(~) is uniformly discrete, and for which
(v, m) it is relatively dense is far from being solved. It is not even clear what maximal
allowed digit m ensures the relative denseness.

The aim of this work is to study the sets X () simultaneously for all m € N, for a
certain class of cubic complex Pisot numbers with a positive conjugate +'. For such v
the Rényi expansions in the base 1/4" have nice properties which will be crucial in the
proofs. When the base 1/4" € R has so-called Property (F), we show that X™(v) C C is
a cut-and-project set. Roughly speaking, X" () is formed by projections of points from
the lattice Z* which lie in a sector bounded by two parallel planes in R?, see Theorem 3.1.
From that, we deduce the asymptotic behaviour of ¢,,() and L,,(7):

Theorem 1.1. Let v be a cubic complex Pisot unit such that it has a positive real conjugate
7', whose inverse 1/v" has Property (F). Then

lu(7) = O(/m) and Ln(y) = O(y/m).

The method of inspection of Voronoi cells for a specific cut-and-project set, as estab-
lished by Masakova, Patera and Zich [MPZ, MPZ’, MPZ"], enables us to give a general
formula for both ¢,,(v) and L,,(7). In the case that ~ is the complex Tribonacci constant,

i.e. the complex root of Y3+ Y2 4+Y — 1, we get:

Theorem 1.2. Let v = yp =~ —0.771 4+ 1.115i be the complex root of the polynomial

k
Y34+ Y?2+Y —1. Let m € N. Find a mazimal k € Z such that m > (1 — 7’)(%) , where
~" is the real Galois conjugate of ~v. Then we have

1—(v)
3—(v)*

The article is organized as follows. In the preliminaries, we recall certain notions from
algebraic number theory. In section 3 we prove that X™() is a cut-and-project set in
certain cases. In section 4 we provide algorithms for computing ¢,,() and L,,(7), and
we prove Theorem 1.1. These algorithms are applied on the complex Tribonacci number
in section 5, providing the proof of Theorem 1.2. The conclusions are in section 6. We
should remark that we omit proofs of all statements.

Cn(v) =" and Ly(v)=Aly|™*, where A=2

2 Preliminaries

We will widely use the algebraic properties of cubic complex Pisot numbers . Such v has
two Galois conjugates. One of them is the complex conjugate 7. The second one is real
and in modulus < 1, we will denote it 7/; we have either —1 <+ < 0or 0 <+ < 1. In
general, for z € Q(v) we denote by 2z’ € R its image under the Galois isomorphism that
maps 7y — 7.

As usual, we denote Z[y] the set of integer combinations of positive powers of 7.
When 7 is a unit (i.e. the absolute term of its minimal polynomial is 1), we know that

Z[1/v] = Zly] = vZ[].
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We use some notions from [-expansions. For a real base § > 1, and for a number
x > 0, there exist unique integer coefficients ay,any_1,an_o,... such that

N
ng—ZaJﬂj<B” foralln < N

Jj=n

(unique up to leading zeros). Then the string ayay_1---ajap.a_ja_o--- is called the
Rényi expansion of x in the base 3. If only finitely many a;'s are non-zero, we speak about
finite Rényi expansions. The set of numbers 2 such that z has finite Rényi expansion is
denoted Fin(B). We say that 5 > 1 satisfies the Property (F') if Fin(/3) is an algebraic
ring, i.e. Fin(8) = Z[3] + Z[1/].

Akiyama [A] described the real cubic units having Property (F) in terms of the
coefficients of the minimal polynomial. From this result, and using Cardano’s formula to
determine whether a cubic polynomial has complex roots, we can deduce that a non-real
v satisfies the hypothesis of Theorem 3.1 if and only if

Y 4by +ay—1=0, wherea,bc Z satisfy:
a>0, —1<b<a+1 and 18ab+4a®—a®b* —4b®>+27 > 0. (2.1)

In particular, the complez Tribonacci constant yr ~ —0.771 4+ 1.115i (the root of Y3 +
Y2 +Y — 1) and the minimal cubic complex Pisot unit va ~ —0.877 4 0.744i (the root
of Y34+ Y2 —1) fall into this scheme. More generally, for all @ > 0 and b = —1,0,1 the
polynomial Y3 + bY3 4+ aY — 1 is good.

3 Cut-and-project sets versus X" (v)

A cut-and-project scheme in dimension d + e comprises two linear maps ¥ : R4+¢ — R4
and @ : R¥T¢ — Re satisfying that ¥(R?*¢) = R? and restriction of ¥ to the lattice Z*+¢
is injective and the set ®(Z*°) is dense in R°.

Let 2 C R® be a nonempty bounded set such that its closure equals the closure of its
interior, i.e. = Q°. Then the set

$(Q) = {U(v) s v € 24, ®(v) € Q} CR?

is called cut-and-project set with the acceptance window 2. Cut-and-project sets can be
defined in a slightly more general way, c.f. [M].

It is well known that () is a Delone set with finite local complexity. Morover, in
case e = 1, the form of acceptance window Q = [I,r) or Q = (I, 7] guarantees that 3(2)
is repetitive, i.e. for every z € ¥(Q2) and ¢ > 0 the patch (X(Q2) — z) N B(0, o) occurs
infinitely many times in ().

We will use the concept of cut-and-project sets for d = 2 and e = 1. With a slight
abuse of notation, we will consider ¥ : R* — C ~ R2. Then it is straightforward that for
a cubic complex number v, the set defined by

x,(Q) = {z EZy]: 7 € Q}, where 2 C R is an interval, (3.1)
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is a cut-and-project set; really, we have

. (vo, v1,v2) = vg + V177 + voy?  and P, (vg, v1,v2) = vg + v17 + vy (Y')?.

We will often omit the index « in the sequel.
The set X™ () is described in terms of algebra, whereas the set ¥({2) has a geometric
description. We show that in certain cases, these sets coincide:

Theorem 3.1. Let v be a cubic complex Pisot unit with a positive conjugate 0 < ' < 1.
Suppose that 1/~" has the Property (F). Let m > ~5 — 1 be an integer. Then X™(7) is a
cut-and-project set, namely

X"()=S(@Q) ={z€2Zh]: 2 €Q} with Q=][0,m/(1-7)). (3.2)

In general, the cut-and-project sets are not self-similar. However, in our special case
(3.1), we can prove a nice self-similarity property that will be useful later:

Proposition 3.2. Let v be a cubic non-real unit. Then we have

E((fy’)kQ) = "3(Q)  for any interval Q and any k € 7Z.

4 Voronoi tessellation of X™(y)

In a Delone set X, the Voronot cell of a point = € X is the set of points that are closer to
x than to any other point in X, formally

T(a:):{zeC:|z—x\§|z—y[ forallyEZ}.

The cell is a convex polygon having x as an interior point. For every cell 7 (z) we define
two characteristics:

e §(7(x)) is the maximal diameter d > 0 such that B(z,d/2) C T (z);
o A(7(x)) is the minimal diameter D > 0 such that 7 (x) C B(z, D/2).

These 0 and A allow us to compute the values of £,,(v) and L,,(y), namely
ln(7) =f6(T(2)) and  Ln(y) =sup A(T(x)), (4.1)

where x runs the whole set X (7).

A protocell of a point x is the set 7 (x) — z. We can define 4, A analogously for the
protocells. The set of all protocells of the tessellation of 3(€2) is called palette of ()
and is denoted Pal(£2).

Cut-and-project sets have finite local complexity. This means there are only finitely
many protocells, i.e. the palette is finite. For any y € X(2), the local configuration of size
L around y is

Q) NBy,L)=y+2(Q—y)NB(0,L). (4.2)
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Therefore, there exists L > 0 such that if (2 —y}) N B(0,L) = £(Q — y4) N B(0, L),
then the protocells of y; and y, are identical. From the theory of Voronoi tessellations we
know that L = sup,cy o) A(7 (z)) is a good estimate. In the rest of the section, we will
consider L with such property.

Since X(2) is repetitive in our case, we have that ¢,,(y) = 6(7 (z)) for infinitely many
x € X™(), and L,,(v) = A(7 (x)) for infinitely many = € X™ (7).

The algorithm to compute all protocells of the set ¥(2) for 2 = [0, ¢) is based on the
following claim about them. Not only that the palette is final, we are even able to arrange
the points of 3(£2) by their protocell:

Lemma 4.1. Let Q = [0,¢) be an interval. Then there exists a finite set = = {{ < & <
s < En_1} C (0,¢) such that the protocell of y € () as a function

0,c) NZ[Y] = Pal(Q), ¥ —=T(y)—y
is constant on each of the intervals [0, &), [£0,&1), - -+, [En—2,En—1), [En—1,C).

The proof is constructive and gives
5= ({x L2 € D(Q)NBO,L)}U{c—2 10 e S(@)N B(O,L)}) \{0).  (4.3)

The lemma allows us to compute all the protocells of the Voronoi tessellation of ¥(£2)
for a fixed Q2 = [0, ¢):

Algorithm 4.2. Input: v satisfying (2.1), 2 = [0,¢), L > 0.
Output: The pallete of 3(2).
1. Compute the set = = {&, < & < -+ < &v_1} given by (4.3).
2. Choose abritrary points yo,...,yn € 3(£2) such that 0 < yg < & <y < -+ <
yn—1 <énv—1 Synv < c.
3. Compute the local configuration of size L around each y;.
4. Compute the corresponding protocells to each of these points.
5. Remove possible duplicates in the list of protocells.

Remark. In the real algorithm, we do not need to get the points y;, we can consider directly
¢ as the value of y; and compute the local neighborhood as ¥([¢;,&; + ¢)) N B(0, L).

The output of this algorithm for v = vy ~ —0.771 + 1.115i, the complex Tribonacci
constant, and for X?(y) = X(Q), where Q = [0,2/(y — 1)), can be seen in Figure 1.

The self-similararity property (cf. Proposition 3.2) allows us, when we study () with
Q2 =10,¢), to fix aribtrary ¢y > 0 and consider only values of ¢ such that v'cy < ¢ < .

Lemma 4.3. Let us fit co > 0. Then there exists a finite set © = {0y < 0; < --- <
On_1} C (7'co, o) such that the pallete Pal(]0,c)) as a function

cr— Pal([O, c))

is constant on each of the intervals (v'cq,0), (60,61), - -, (On—2,0n_1), (On_1, o).
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R
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Figure 1: Voronoi protocells for XQ(fyT) =%, (), where Q@ = [0,2/(1 — 77)). For a given
point z € X(12), its protocell 7 (z) — x is determined by the value of z’.

As in the previous lemma, the proof is constructive and leads

© = (Ily — Ip) N (7'co, cp), where Tly:= TN (—co,cp)
and Il := {x’ :x € X(R) N B(0, L)} (4.4)

The lemma gives us all possible cut-points of the interval [y/cy, ¢p) into sub-intervals
on which the palette is stable. However, unlike Lemma 4.1, this one gives no clue on what
happens directly at the cut-points, and the cases ¢ € © have to be studied seperately.
Therefore, we can find all the palettes by the following algorithm:

Algorithm 4.4. Input: v satisfying (2.1), ¢g > 0, L > 0.
Output: All possible palettes Pal(€2) of ¥(Q2) for Q = [0,¢) and 7'¢o < ¢ < ¢p.
1. Compute the set © = {fy < 0y < --- < Oy_1}.
2. Choose abritrary points o, ...,yy € R such that v'cy < yj, < 6p < y; < --- <
Yn_1 < On_1 <y < co.
3. Using Algorithm 4.2, compute the palettes Pal(2) for all Q = [0,¢) with ¢ =
7o, 00, ON_1,Y0 -, yn. (We need 2N + 2 steps.)
4. Remove possible duplicates in the list of palettes.

The output of this algorithm in a certain case is in the section 5, namely in Table 1.

In the previous, we assumed that we know an estimate L > sup, ey o) A(7 (7)), and
we have yet not provided a way how to find such number. The following procedure enables
to find a good estimate:

Algorithm 4.5. Input: v satisfying (2.1), Q = [0, ¢9).

Output: An upper bound L such that L > sup,cy) A(z).

We will denote L := 2|y|?, where p is minimal such that 3(7?) and S have the opposite
signs.
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Interval for ¢ The palette of ¥(2), where () = |
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Table 1: The protocells for the complex Tribonacci system for abritrary alphabets. For
m € N get minimal k € Z such that ¢ .= g*"'m/(8 — 1) > 32, where 3 = 1/7/. Take the
corresponding row in the table. Then the protocells of X" () are tiles in this row deflated
(and rotated) by the factor 1/4*. Each but the last tile in the list appears rotated by
180° as well, we omit these to make the table shorter. We omitted the palettes for the
cut-points. However, a palette for a cut-point is the intersection of the palettes for the
surrounding intervals, i.e., for instance Pal([0, 8% + 1)) = {73, T, Tz, To }.

S
O
&

N (2
CONE 2N\ 2\

1. Compute the ‘palette’ P of ¥(Q), where Q = [0,2), using Algorithm 4.2, where we
input L in the algorithm.

2. For this palette, compute the maximal value of A and denote it L; := maxzep A(7).

3. Let k be minimal integer such that co(y¥)* > ¢.

4. Output L = |y|*L;.

All the above considerations lead to Theorem 1.1.

5 Complex Tribonacci number exploited

In this section, we will describe the details of the proposed workflow on an example —
the complex Tribonacci base v = vyp. We aim at the proof of Theorem 1.2. We put
B =~y =1/4"in the sequel.
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Figure 2: Part of the Voronoi tessellation of X?(y), where v = 7 is the complex Tribonacci
constant. The point 0 is encircled, tiles of the same shape are drawn in the same colour.
The case m = 2 is one of the special cases when ¢ = 2/(1 — +/) hits a cut-point, namely
= = (7')7* + 1. The palette of X*(7) is the intersection of the 4th and the 5th row of

Table 1.

We will choose ¢y = 3. Algorithm 4.5 gives for L = 2||*> = 28 ~ 3.6786 a value
Ly=p 35;27__11 ~ 1.8774. We have that ¢y/3 > 2 > ¢y/3?, therefore k = 1 and we get an

estimate L = /3,/ 3%2{_11 ~ 1.3843.

Using this L, we run Algorithm 4.4. This gives © of size 14. The number of cases in
step 3 of this algorithm is then 31.

This means that we have to run Algorithm 4.2 exactly 31 times to obtain all the
possible palettes. Amongst these 31 cases, there are many duplicates, and we end with
only 18 cases. Moreover, we observe that for cut-points 6;, the palette is the intersection
of palletes of the two surrounding intervals. All the palette for the intervals are depicted
in Table 1.

At the bottom of the table, the values of (7)) and A(7) are written out for each

protocell. It turns out that every row of the table but the special case ¢ = 3? has minimal

62-1
332—1

value of ¢ equal to 1/4 and maximal value of A equal to /3 . However, it cannot

happen that m/(1 —+') = (vy)*.
Theorem 1.2 summarizes the results in this section.

6 Conclusions and open problems

In this paper, we prove that

ln(7) =O(Vm) and  Ln(y) = O(vVm)

for a wide class of cubic complex Pisot numbers. For a given v satisfying (2.1), we give
an algorithm for computing ¢,,(y) and L,,(y) simultaneously for all m.

The question whether this asymptotic behaviour is true for all complex Pisot ~
remains open, as well as the question which is the minimal m (depending on 7) such that
L(7y) < 4o0.
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Abstract. This article is focusing on automatic electronic chip classification depending on
their quality directly after fabrication. The mass production of chips can not be 100% efficient,
therefore the defects on chip may occur. These defects are usually not random and could be
divided into classes. The aim of the method proposed in this article is to explore these classes
of defects and automatically recognize them.

Keywords: chip classification, Timepix detector, clusterization, principal component analysis

Abstrakt. Tento ¢lanek se zabyva automatickym rozfazovanim elektronickych ¢ipa do skupin
v zévislosti na jejich kvalité. Masova produkce ¢ipti nemiize zabezpedit 100% vytéznost, a tak
musi byt pocitano s tim, ze nékteré z ¢ipt budou defektni. Tyto defekty vSak typicky nebyvaji
nahodné a jsou pozorovany opakované. Cilem popisované metody je odhalit tyto Casté defekty,
roziadit je do t¥id a automaticky je rozpoznéavat.

Klicovd slova: klasifikace ¢ipt, detektor Timepix, shlukova analyza, principal component anal-
ysis

1 Introduction

In microelectronics industry, integrated chips are produced on a thin circular slices of
semiconductor called wafer. The wafer serves as a basis for microchip fabrication on
which photolitographic, ion implantation and etching operations are performed. Finalized
semiconductor chips of one or more designs (so called MPW - Multi-Project Wafer) are
placed side by side, and finally before packaging ther are diced into individual electronic
circuits.

During these production phases, many defects can arise, mainly because of imperfec-
tions in wafer processing or impurities such as dust particles. Some defects are fatal for
the final chip, while others do not significantly influence the operation of a chip. There-
fore it is necessary to test (probe) the chips before distributing them and then use the
results of the test to classify them into categories depending on their quality.

In this article, we present the method of fast and efficient chip classification using
patterns which utilizes digital-to-analog converter voltage trends and the knowledge of
commonly occurring defects and their impact on the quality of the chip. The results
of this method is a set of patterns which is often observed and which may be used for
assigning a chip to a defined quality class. Although we are focusing solely on the Timepix
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chip in the following text, the method is general enough to be applied to an arbitrary
integrated circuit which is produced with specific structural elements.

Figure 1: On the left side, there is an example of a silicon wafer. Timepix chip bounded
on a probe card can be seen on the right side.

2 Timepix chip and its characteristics

The Timepix chip is a member of Medipix2 chip family developed at CERN. It is a
hybrid pixel detector consisting of 256 x 256 pixel matrix, with pixel size 55 x 55 um?.
The chip is designed in 0.25 ym CMOS technology and is intended for medical diagnostics,
defectoscopy, etc.

The main characteristics determining the chip quality after fabrication are its 13
digital analog converters (DACs). Five of them convert voltage, the remaining eight
current. The Timepix chip contains special testing structures which allow to measure
responses of the DACs to input current, resp. voltage directly on the wafer. The testing
is performed using probe station which is able to precisely connect each chip on the wafer
with special needles.

In our measurement, the responses of all 13 DACs from chips on 3 wafers were collected
and analysed. Each wafer contains 107 chips, i.e. totally we have 107-3-13 = 4173 data
sets. In table 1, detailed technical properties of 13 DACs are shown.

For further information on the Timepix chip, please refer to [4] and [5].

3 Mathematical tools

In this section, the mathematical methods and algorithms used for chip classification will
be briefly described.

3.1 Principal component analysis

The Principal component analysis (PCA) is a mathematical method used to reduce the
dimensions of data set in order to simplify further data processing while keeping as much
information as possible. It is based on linear transformations performed in a way that the
resulting data sets have the most variability in the first coordinate, second most in the
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DAC Range Bits Mid range value  V/I LSB size ‘ Values
IKrum 0-40nA 8 20nA—1.497V I 157pA 26
Disc 0-1.67uA 8 840nA—1.005V I  6.57TnA 26
Preamp 0-2puA 8 1.04A—966.4mV 1  7.89nA 26
BuffAnalogA 0-10.2pA 8 5.04pA—924.1mV 1 39.4nA 26
BuffAnalogB  0-391uA 8 197uA—1.168V I 1.54pA 26
Hist 0-200nA 8 100nA—582mV I 780pA 26
THL 0-2.2V  10+4 1.16V Vo 398uV 102
Vcas 0-2.2V 8 1.16V Vo 398uV 2
FBK 0-2.2V 8 1.18V Vo 9.19mV 26
GND 0-2.2V 8 1.18V Vo 9.19mV 26
THS 0-40nA 8 20nA—1.47V I 156pA 26
BiasLVDS 0-382uA 8 197uA—1.603V I 1.54pA 26
RefLVDS 0-817mV 8 417mV Vo 3.19mV 26

Table 1: Detailed electronical characteristics of the Timepix DACs. In the last column,
a number of measured values for each chip is presented.

second coordinate, etc. This allows us to cut off the data sets and continue the analysis
with significantly reduced amount of data.

More precisely, given data vectors ordered in a matrix X by rows (each row represents
one data set), we are looking for such a matrix transformation Y = X - W7 that vary,
is maximal, vary, is maximal while y; and ys are uncorrelated, and similarly for other
components, vary is maximal while keeping the condition yj is uncorrelated to y;, 1 =
1,2,...k—1.

It can be shown [1] that this problem is equivalent to finding eigenvalues and eigen-
vectors of a sample covariance matrix C = (X —x-11)T . (X — x - 1T) of data sets, i.e.
solving the equation

Cv=2Mxv, |v|=1,

ordering the resulting eigenvalues )\; in descending order, and setting the rows of the
matrix W as

Vi

Vo
W =

Vi

where v; is eigenvector corresponding to i-th largest eigenvalue and n is dimension of
data samples.

Furthermore, when we define the set of variables

Zf:l Ai

gbk N Z?:l Ai

-100 for k=1,2,...,n,
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we obtain the percentages of variability contained in first £ components. This allows us
to decide how many components are sufficient to use for further analysis.

For more detailed information on PCA, please see [1] or [3].

3.2 Hierarchical cluster analysis

Cluster analysis is an important statistical method for data classification. Since the
term cluster can not be precisely defined, there are many approaches to perform cluster
analysis, each giving different results. Therefore the appropriate algorithm must be care-
fully chosen, according to the specific application. The one chosen for our purposes is
hierarchical clustering using Ward’s criterion [2].

Hierarchical clustering is a class of algorithms based on recursive agglomeration, resp.
division of data into clusters. In our case, agglomerative clustering was used starting with
n clusters formed by n experimental samples. In each step of the algorithm, two clusters
are merged together. To determine which two clusters are going to be merged in step 1,
Ward’s criterion

ng - My

min (SM = min : ka — leQ

k,leC; kleC; ng + 1y
is evaluated. C}; denotes the set of clusters in step i, n; and n; are the number of points in

clusters k and [ respectively, X; and X; are the centroid coordinates of clusters computed
with respect to the Euclidean distance of data sets in cluster.

Algorithm ends after n — 1 steps when all points are forming one cluster. The result is
often presented as dendrogram, a tree diagram illustrating the process of merging clusters.
by selecting the level k of the tree, division into k classes can be obtained.

2.5
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Figure 2: Example of hierarchical clustering. In this model case two Gaussian distributed
clusters consisting of 15 points were created around points [0, 0] and [1.5, 1.5] with different
variance. After performing Ward’s clustering, all but three points were properly matched.
The plot on the right represents the resulting dendrogram.
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4 Method proposal

The presented method of chip classification involves two steps. First, the significant
trends are extracted from sufficiently large amount of experimental data. After that,
the trends are assigned to chip quality classes and the desired patterns are used for chip
classification.

4.1 Significant trend extraction

For significant trend extraction, the PCA and hierarchical clustering discussed in section 3
are used. The PCA is performed on all of the DACs data sets (i.e. 13 times for each DAC
separately). Then, it is sufficient to analyse just a few of the transformed components
(in our case, 2 or 3). With these reduced data sets, hierarchical clustering is performed.
The number of resulting clusters should be chosen experimentally. However, assuming
that statistically the most of chips are without defects, the number of clusters can be
relatively high in order to achieve finer resolution. This approach has a little drawback,
since many of clusters would contain a small number of outlying points (i.e. defected in
the worst way), but these points can be omitted. The most interesting clusters are those
with high of points — we can select these clusters as significant trends.

After trends extraction, detailed discussion with competent electronics designers is
necessary. Some trends may be non-defective, some DACs may be more important than
others, etc. Finally, the patterns are assigned to the quality classes, eventually other
criteria can be set.

4.2 Chip classification

To obtain a specific pattern for each DAC, all points from a cluster are averaged, even-
tually fitted with a curve.

To perform a chip classification, the PCA of the selected patterns is computed. Chips
under test are then identified with quality class, if their characteristics are close enough
to specific patterns, e.g. with respect to the Euclidean distance in the PCA transformed
coordinates.

5 Results

In this section, an example of the proposed method usage is presented. The measured
13 DACs of Timepix chips were used as data sets. Alltogether, data from 321 chips
were used. Data corresponding to each DAC were analyzed separately using the PCA
and cluster analysis of their first two components. In this special case, the variability
included in the first two components was approximately 95%, which turned out to be
satisfactory.

Each DAC data set was divided into 12 clusters. Everytime, minimum of two or three
distinctive clusters with large amount of data appeared. Furthermore, we assumed that
the cluster with the most members is the optimal class (however, it is not always the
case). To illustrate how the exact patterns can be determined, we took the cluster with
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‘ Fit of Preamp Fit of BuffAnalogA Fit of BuffAnalogB

a 0.8759 0.9445 5.04

b 0.01279 0.005273 -1.976
c -0.4078 -0.3934 1.531
d -0.2632 -0.1678 -0.02372

Table 2: Computed coefficients for exponential fitting averaged ’ideal” patterns of Preamp,
BuffAnalogA, BuffAnalogB DACs.

the maximal number of elements and declared it as the ’ideal’ behavior. These ideal
clusters were averaged and, in three cases (Preamp, BuffAnalogA, BuffAnalogB), fitted
with exponential function

flx)=a-e"" +c-e*.

This step was necessary due to the fact that the averaged curves were not smooth enough,
possibly because of the relatively small data set of 321 chips. The list of the computed
coefficients for these fits can be seen in table 2.

6 Conclusions

In this article, we have introduced the method for automatic recognizing of commonly
occurring defects in silicon chips. The results using Timepix chip were presented. It was
shown that this method is efficient and that it could be used in real application. In present
time, the chip classification is complicated task which could be performed often only by
experienced electronics designers. The presented method could be useful for acceleration
of the process of defining and recognizing chip quality classes.
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Figure 3: Example of the Vcas DAC trend exploration. As can be seen, two major groups

are dominant — 12 and 4 with number of points in the cluster of 215, resp. 86. The group
12 was used for ideal DAC computing. Most of the other groups are outliers, e.g. 6 or 7
and should be treated as absolutely insuficient.
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Figure 4: Example of the Vcas DAC trend exploration. In figure above, the result of

hierarchical clustering can be found. The largest clusters in the top of plot correspond
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Figure 5: Ideal DACs reconstruction. On the left side, the results obtained by simple
averaging of the most significant trends of each DAC is shown. On the right side, the same
results with three DACs Preamp, BuffAnalogA, and BuffAnalogB fitted with exponential

functions are presented.
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Abstract. Dynamical decoupling is a known and successful method of eliminating undesired
environmental effects on quantum systems. We present another application of the dynamical
decoupling by Pauli pulses, namely using it to eliminate a specific additional coupling added to
a working linear qubit network. We assume the additional coupling to arise from bending the
network, which is a step towards more dimensional arrangements than one dimensional linear
networks.

Keywords: dynamical decoupling, quantum networks and spin chains

Abstrakt. Dynamical decoupling je znamad, tspésné pouzivand metoda pro eliminaci nezé-
doucich efekti prostiedi na kvantové systémy. Ukézeme dalsi aplikaci dynamical decoupling
pomoci Pauliho pulsti a to eliminaci nezadouci interakce v jinak fungujici kvantové siti. Pted-
pokladame, ze pfi¢inou pfidané interakce je fyzické priblizeni qubitt pfi ohybu linearnifho Fetizku
qubit. Ohyb sité je prvni krok k sitim fungujicim ve vice dimenzich nez jedné.

Klicovd slova: dynamical decoupling, kvantové sité a spinové fetizky

1 Introduction

Quantum communication was first introduced by means of transfer of a qubit quantum
state between the two ends of a linear spin chain by Bose, Nikolopoulos et al., and Chri-
standl et al. independently [1, 2, 3], but for a fully operational quantum computer more
advanced techniques of quantum information manipulation are needed [4]|. It is natural
to assume two dimensional arrangements are the next possible step towards constructing
an operational quantum computer.

In this article we consider a general formalism summarized for example in [5], which
is independent of the specific physical implementation of a quantum network at hand and
is, therefore, very general. The advantage of the formalism is that one can describe all
the qubits in the network with Hilbert spaces C? and the respective Hamiltonians can be

*This work was supported by the Grant Agency of the Czech Technical University in Prague, grant
No. SGS13/217/OHK4/3T/14.
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expressed using only the Pauli matrices

and the identity

[:00:<(1] (1)) (1d)

The method of dynamical decoupling by Pauli pulses that we are going to use has
been described in great detail in [6]. We will be giving a brief summary of the method in
Sec. 3. In order to use the method, we have to assume that the individual systems can
be manipulated by very fast, even instantaneous, operations — the assumption of the so
called bang-bang control. The premiss of the bang-bang control enables us to represent
the manipulation by a set of unitary operators.

2 Formalism

We will be using the dynamical decoupling to eliminate the effect of an unwanted part of
the Hamiltonian H and turn it into H;gqea1, which we assume is one of the Hamiltonians
known to facilitate the perfect state transfer [5]. Without the loss of generality we assume
the Hiqea1 to be a Heisenberg Hamiltonian.

Let us assume the network consists of N qubits, with the Hilbert space (C2)®N and
the Hamiltonian H;qea being some general Heisenberg Hamiltonian

%ideal = Z BZO'ZZ — Z Jl’J (0’?0;6 + 0'?0';-/) y (2)
i %,]

which, however, facilitates the transfer of a single excitation (that is a condition on
choosing the appropriate J; ;). The situation we are investigating can be then described
by the Hamiltonian

H = Higear + 9 (05 _105, +04_100.1) (3)

where g € R and o € {2,..., N — 1} is an index of the corner site under consideration
from Figure 1.

We expect the interaction between the qubits to have some sort of spatial dependence
and the additional interaction g then to arise in the system naturally. It makes good sense
to study g from 0 to the interaction magnitude between the corner site and its neighbors
only, otherwise the additional interaction could not be considered a perturbation. This
type of perturbation and its effects have been previously studied in |7] and it has been
shown that the interaction has a severe negative effect on the performance of the network.
It is therefore of interest to us to attempt to eliminate the perturbation via the dynamical
decoupling method.
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Figure 1: Bent network and additional interaction

3 Methods

The dynamical decoupling we will be using divides the time evolution over time ¢ governed
by the Hamiltonian H into m sub-intervals At. Before and after each interval we apply
an instantaneous unitary operation. The goal of the procedure is to eliminate the effect
of the undesired part of the Hamiltonian after time ¢ by chosing a suitable sequence of
the unitaries.

Let the sequence of the unitary operations be denoted by po,...,pm, if h = 1, the
time evolution is

U(m-At) = pme—mmpm_le—mm g .p1e_mAtpo, (4)
where
pi=0o"®.. . @, (5)
kj €{0,...,3}. (6)
We can then introduce new operators derived from p; by
9k = Pk * Pk—1 " --- " Po- (7)
If we now notice that
= grg! 8
Pk = 9kTp1> (8)
we can rewrite the time evolution into the form
U(m-At) = gn (gjn_le_mmgm,l) . (gge_iH'tg()) (9)
— gmef’i(gjn_lﬂgm_l)At o 6775(937‘[_90)At7 (10)

where in (10) we have used the fact that g; are unitary. We would now like to use the
Magnus expansion [9], in order to do that we identify the time evolution with the one
resulting from an average Hamiltonian H

U(mAt) = ge AL,

The operator g,, can be chosen to be the identity and then it is possible to perform the
Magnus expansion in

H=H"+H" + . (11)
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to find in the lowest order

If we can choose the sequence p; so that

ZQTH% - 1deal>

(12)

(13)

where we allow for the scaling factor D, just by rescaling the time we would effectively
eliminate the additional coupling from the system. That is in the lowest order, one needs

to remember that the dynamical decoupling is only an approximate method.

4 Decoupling Scheme

We propose a decoupling scheme in Table 1.

’ ‘ o1 ® e ole-l®  gle®@ oglatl® ... o'N
9o I I 1 1 I I I
g1 | o° o” o” 1 1 1 I
Jo 1 1 I I oY oY oY
gs | alter o® and [ o* o” I alter 0% and [

Table 1: Decoupling scheme

That the scheme is actually a decoupling scheme can be easily shown by direct calcu-
lation of the condition (13) for m = 4 and D = 2 if one uses the properties of the Pauli

matrices.
The procedure goes as follows:

1. Let the system evolve for }Lt, where ¢ is the time of the unperturbed state transfer.

2. Apply the o Pauli pulse to all the qubits in front of the bending, repeat Step 1.

3. Apply the (09"’)T Pauli pulse to all the qubits in front of the bending and ¢¥ on all

the qubits behind the bending.

4. Repeat Step 1 and apply (ay)T to all the qubits behind the bending.

5. Apply the altering sequence of % and I to all the qubits but the corner, where you

should apply o%, repeat Step 1.

6. Apply the altering sequence of (0"‘)T and [ to all the qubits but the corner, where

you should apply (o%)".

7. Repeat Steps 1-6.
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The procedure was derived using equation (8) defining the Pauli pulses from g;. The
repetition of the decoupling scheme is necessary because of the scaling factor %

Usually, the intermediate state during the process is not considered, as it is assumed
to change rapidly. However, this scheme uses the ¢” and ¢¥ matrices on many of the
qubits and these matrices create excitations in the sites they act on. For that reason,
during the procedure many excitations are created and annihilated. It is an important
question of stability of the system that arises and should be answered.

5 Conclusions

We were able to find a decoupling scheme that eliminates in the first order the additional
coupling introduced into the system by bending the network. We hope this is a first step
toward manipulation of information in more dimensions.

Because the procedure may excite the network to a great extent, simulations need to
be performed in the future to find out if — on average — it is an issue or not. Simulations
are also desirable because the procedure is imperfect, it is working only in the first order
and it might be the case that the remaining terms in the expansion are too large to
neglect.

The method we propose is one that relies on being able to instantly apply Pauli
matrices to all the qubits in a very rapid sequence. On various systems this could be
done differently, but it is a question that needs to be addressed for every computational
system individually. On trapped ions, for example, the sequence of ¢ pulses can be
achieved by illuminating all the ions with an electromagnetic pulse.
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Abstract. This extended abstract serves as a summary of the study of microscopic behavior
of interacting particle systems published in [1], [2], and to be published in [3], [5], which extend
works [4], [6]. The aim of the study is the time- and distance- headway distribution of interacting
particle systems used for traffic modeling. A class of models is introduced, for which a mapping
to zero-range processes is a useful tool to obtain the analytical derivation of stated quantities
using car oriented mean field approximation.

Keywords: headway distribution, TASEP, zero-range process

Abstrakt. Tento rozsffeny abstrakt slouzi jako shrnuti studie mikroskopického chovani{ systémi
interagujicich ¢astic prezentovanych v [1], [2] a v pFijatych ¢lancich [3], [5]. Tato studie rozsifuje
¢lanky [4], [6]. Cilem studie jsou Casové a prostorové rozestupy v systémech interagujicich ¢astic
uzivanych pro modelovan{ dopravy. Je pfedstavena tiida modeli, jejichz zobrazeni na zero-range
procesy je uZiteénym néastrojem pro analytické odvozeni zminénych veli¢in pii poziti tzv. car
oriented mean field aproximace.

Klicovd slova: rozdéleni rozestupii, TASEP, zero-range proces

1 Introduction

This extended abstract introduces a concept of interacting particle systems which are
used for traffic modeling. The study focuses on exclusion processes [4], [6], [1] and zero-
range processes [2], [5] mainly. The goal is tu study the headway distributions, which
is considered to be a microscopic characteristics of traffic-like models. To derive such
quantities analytically, it is useful to follow the concept of car oriented mean field ap-
proximation. For the Totally asymmetric simple exclusion process (TASEP) this has been
done in [4], [6]. The idea is to use the grand-canonical measures P (n) = Pr[o e @ @ o],
Py(m) = Pr[e o oo e] of the system on an infinite line for investigation of the system
on a large system of L > 1 sites and |oL] particles. The first measure is referred to as
probability of a cluster of size n, the second as probability of a gap of length m.

*This work was supported by the grant SGS12/197/OHK4/3T /14 and the research program MSM
6840770039.
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2 Model background

This article focuses on these measurers as it is the first step for headway analyzes. The
use of zero-range processes for this purpose is motivated by the simplicity of the steady
state probability measure, which has factorized form

P(nl,...,nM)Z%Hf(nk), (1)

where n;, € Ny is the number of particles in site k, M is the number of sites, and Z
the normalization constant. The dynamics of considered ZRP models is given by the
hopping rates g(n), denoting the intenzity of a particle to hop from a cluster of size n
to the neighboring site. As we consider the totally asymmetric processes, the particle in
site x hops to x + 1 with intenzity g(n,). In such case, the marginal measure f can be
calculated as

fn)=TTak)™" (2)

This means, that the hopping rates are crucial for investigating the steady state of the
system. Moreover, the marginal measure f(n) is closely related to the measures Pj(n) =
Prloeeeo] and Py(m) = Pr[eocoe|. A particle hopping model as depicted in Figurel can
be understood as the ZRP in two different ways. Both of them are depicted in Figure 2.
Firstly, the sites (containers) of ZRP are associated with empty sites (denoted by numbers
in Figure 1). The state of each container corresponds to the number of particles in the
compact block behind the empty site. Analogically, we can associate the containers with
particles (denoted by letters in Figure 1) and the state variable denotes the number of
empty sites in front of the particle.

[ ¥ ]
ﬁ oo o | ..W
1 A B 2 C 3 4 5 D E

Figure 1. Particle-hopping process with periodic boundary. 5 particles A, B, C, D, E are
moving along the lattice of 10 sites; 5 empty sites 1, 2, 3, 4, 5 are “moving” in opposite
direction

~ vy 2822
©)
o0 ©)
LIE JK Oj0| |O
12345—\ TABCDE

Figure 2: Two different mappings of particle-hopping process from Figure 1 to the ZRP.

The aim of the study to be published in [5] was to investigate the possibilities of
extracting appropriate hopping rates from the “real” system. As a reference model, the



Headway Distribution for IPS

75

car-following Intelligent driver model (IDM) with randomized velocity, acceleration pa-
rameter, and deceleration parameter has been used.

3 Results

The simulation experiment showed that the mapping of IDM to the particle hopping
model of the first type is not applicable, because the repulsive force between particles
disables the particles to form a cluster in the sense of ZRP. The mapping to the zero range
process of the second type, i.e., the process associated with hopping holes in opposite

direction, is more straightforward.

As will be shown in [5], resulting hopping rates g(n) for the corresponding ZRP are

presented in the Figure 3.
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Figure 3: The experimental hopping rates of ZPR in traffic.

The temporal and headway distribution for various densities obtained via simulations
of corresponding ZRP are given in Figure 4. Such distribution qualitatively correspond

to those observed in real traffic.
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Figure 4: Time and headway distribution.
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Abstract. Mechanical behavior of human skin is of great interest in dermatology, plastic
surgery, regenerative therapies, and cosmetics. Small changes in viscoelastic properties of skin
are very sensitively reflecting some skin- and also internal diseases. This work deals with ultra-
sonic noninvasive investigation of viscoelastic properties of human skin under stepwise tensile
loading in-vivo. A small skin-loading device with built-in ultrasonic transmitting and recei-
ving probes [4] is used to observe elastic wave propagation changes during the complex short
time step loading and relaxation history. Chirp coded ultrasonic signals of variable amplitude
in the frequency range 0.1 - 1 MHz are transmitted along the forearm of several all-aged persons.
Ultrasonic wave propagation along the human skin tissue is influenced by many external factors,
for example by temperature, humidity, etc. Moreover, mechanical properties of the skin depend
on the whole time history of loading. Linear ultrasonic parameters like velocity and attenuation
are evaluated from direct propagating waves, and Time Reversal (TR) procedure is used to
reveal amplitude-dependent spectral changes and nonlinear effects during the wave propagation
at different loading and relaxation stages. Instantaneous complex elastic modules are obtained
from ultrasonic measurements, and viscoelastic 5-element rheologic model parameters are eval-
uated from relaxation curves. The influence of external factors like local temperature, humidity,
and others (gender-, age-dependency) on resulting skin characteristics have been discussed in our
previous work [2]. TR signal reconstruction helps to partial elimination of dispersion effects.
Further, we investigate the anisotropic behavior of the skin using a small multi-axial device
which is equipped with ultrasonic transmitting and receiving probes [3]. In our previous work
[6] we investigated locally the anisotropic behavior of the forearm and back skin in-vivo. Ba-
sic anisotropy characteristics are determined from temporal changes of ultrasonic velocity and
attenuation after defined skin loading in various directions, and compared with viscoelastic prop-
erties of the skin evaluated from tensile test curves. Using those methods, [5] and [6], we expect
to detect some nonlinearities which refer to a pathological behaviour of the skin tissue. Con-
trary to current state-of-the art, e.g. [1], [7], a great merit of this approach is the possibility
to measure instantaneous changes caused by relaxation behavior of biopolymers, including skin.

*This work has been supported by grants SGS12/197/OHK4/3T /140f the Czech Ministry of Educa-
tion, IT ASCR No. 904150 and with institutional support RVO: 61388998 (Ultrasonic testing of a me-
chanically loaded human skin tissue - experiments and modeling).
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Partial results of this work were presented at International Congress on Ultrasonics 2013 |2],
Human Skin Engineering and Reconstructive Surgery 2013 [3], POSTER 2013 - 17th Interna-
tional Student Conference on Electrical Engineering [5] and Stochastic and Physical Monitoring
Systems 2013 [6]. The whole text will be published in the Ultrasonics journal.

Keywords: Anisotropy, in-vivo methods, ultrasonic testing, viscoelasticity, time-reversal method

Abstrakt. Znalost mechanického chovani lidské kozni tkdné& je dilezita pro oblasti jako der-
matologie, plastickd chirurgie, regenerativni terapie a kosmetika. Malé zmény ve viskoelastic-
kych vlastnostech velmi citlivé odrazeji néktera koznf a také vnitfni{ onemocnéni. Tato préace
se zabyva ultrazvukovym neinvazivnim vySetfovanim viskoelastickych vlastnosti lidské kozni
tkané pii skokovitém tahovém zatézovani in-vivo. K vySetfovani pouzivame maly ptipravek
na zatézovani ktze, ktery je opatfeny ultrazvukovymi sondami [4], jednou pfijimaci a dvéma
vysilacimi. Pomoci néj mtizeme sledovat zmény v §ffen{ elastickych vln ktzi béhem komplexnich
cykli zatézovani a relaxace v kratkych ¢asovych krocich. Ultrazvukové pulzy typu Chirp s riiz-
nou amplitudou a frekvenci 0,1 — 1 MHz jsou vysilany podél predlokti nékolika dobrovolniki
riizného veku. Sifeni ultrazvuku podél lidské kozni tkané je ovlivnéno mnoha vnéjsimi faktory,
napiiklad teplotou, vlhkosti, atd. Mechanické vlastnosti kiize navic zavisi na celém pribéhu
zatézovani. 7 §ifeni ultrazvukovych vln vyhodnocujeme linearn{ ultrazvukové parametry jako
rychlost §ifeni a utlum. K vyhodnoceni ¢asové zavislosti spektralnich zmén a nelinearnich efekti
pii riiznych zatézovacich a relaxa¢nich stavech pouzivame metodu ¢asové reverzace (TR). Z ul-
trazvukovych meéreni ziskdme okamzité komplexni elastické moduly. Z relaxaénich kiivek jsou
vyhodnoceny viskoelastické parametry reologického 5-prvkového modelu. V nasf pfedchoz{ préci
[2] je diskutovén vliv vnéjsich faktoru jako teplota, vlhkost a jinych (zavislost na pohlavi, véku)
na charakteristiky kize. Rekonstrukce TR signali pomahé ¢asteéné eliminaci disperznich efekta.
Dale vySetfujeme anizotropni chovani kdze pomoci malého kruhového pfistroje opatieného ul-
trazvukovymi vysilacimi a pfijimacimi sondami [3|. V nasi pfedchozi praci [6] jsme zkoumali
lokalni anizotropni chovani ktze zad a predlokt{ in-vivo. Zékladni charakteristiky anizotropie
jsou urceny z Casovych zmén rychlosti a Gtlumu ultrazvuku pii urcitém zatizeni a v rlznych
smérech. Nasledné jsou porovnany s viskoelastickymi vlastnostmi ktize ziskanymi z kiivek
naméhani v tahu. Pouzitim téchto metod, [5] a [6], pFedpokladame zjisténi nelinearit, které
budou poukazovat na patologické chovani kozni tkané. Oproti souc¢asnému stavu v tomto oboru,
napt. [1], [7], je pfinos této préce v moZnosti méFit okamzité zmény zpusobené relaxaénim
chovanim biopolymeri, tedy i ktize.

Castetné vysledky této prace byly prezentovany na konferencich International Congress
on Ultrasonics 2103 [2|, Human Skin Engineering and Reconstructive Surgery 2013 [3], POSTER
2013 - 17th International Student Conference on Electrical Engineering [5] and Stochastic
and Physical Monitoring Systems 2013 [6]. Cely text bude publikovan v ¢asopise Ultrasonics.

Klicova slova: Anizotropie, metody in-vivo, ultrazvukové testovani, viskoelasticita, metoda
Casové reverzace

References

[1] S. Gahagnon, Y. Mofid, G. Josse, F. Ossant. Skin anisotropy in vivo and initial
natural stress effect: A quantitative study using high-frequency static elastography.
Journal of Biomechanics. 45 (2012), 2860-2865.



Noninvasive Study of Skin Viscoelastic Properties Using Ultrasound 79

2]

3]

4]

5]

[6]

7]

J. Hradilova, D. Tokar, Z. Pievorovsky, S. Dos Santos. Ultrasonic time reversal
technique used to in-vivo investigation of human skin under loading. In "Proceedings of
the 2013 International Congress on Ultrasonics’, May 2-5 2013, Singapore. Singapore:
Research Publishing Services. (2013), 978-981-07-5938-4.

J. Hradilova, D. Tokar, Z. Ptevorovsky. A noninvasive in-vivo study of the skin
anisotropy using multi-directional ultrasonic probe. In ’International Conference Hu-
man Skin Engineering and Reconstructive Surgery Proceedings’, May 20-22 2013,
Prague, Czech Repubic. Technical University of Liberec. (2013), 978-80-7372-956-1.

Z. Ptevorovsky, M. Chlada, J. Krofta, D. Varchon, P. Vescovo. Nonlinear ultra-
sonic characterization of human skin under tension. In *Ultrasonics International 2003
"UT’03" Abstract Book’, June 30 - July 3, 2003, Granada, Spain. Elsevier. (2003),
P191.

D. Tokar, J. Hradilovi. Device for viscoelastic properties evaluation of human skin in-
viwvo. In "POSTER 2013 - 17th International Student Conference on Electrical Engi-
neering’, May 16 2013, Prague, Czech Republic. Czech Technical University in Prague.
(2013), 978-80-01-05242-6.

D. Tokar, J. Hradilova, Z. Prevorovsky. In-vivo mapping of human skin anisotropy
using multi-directional ultrasonic probe. In ’Stochastic and Physical Monitoring Sys-
tems 2013,Proceedings ’, June 24-29 3013, Nebfich, Czech Republic. Prague: CTU.
(2013). (accepted)

A. Vexler, I. Polyansky, R. Gorodetsky. Fuvaluation of skin viscoelasticity and
anisotropy by measurement of speed of shear wave propagation with viscoelasticity
skin analyze. Journal of Investigative Dermatology. 113 (1999), 732-739.






Principal Component and Economic Data

Radek Hrebik

2nd year of PGS, email: radek.hrebik@seznam.cz
Department of Software Engineering
Faculty of Nuclear Sciences and Physical Engineering, CTU in Prague

advisor: Vojtéch Merunka, Department of Software Engineering,
Faculty of Nuclear Sciences and Physical Engineering, CTU in Prague

Abstract. This paper deals with principal component analysis in sphere of economic data. The
aim is not to deal primary with principal component analysis but to introduce the possible use
in interpreting economic indicators. As it is well known principal component analysis reduce
the dimensionality of origin data set. The input for this research is simple, statistic data about
economiic situation of more than thirty states during twenty two years. Paper present three ways
of interpreting these data as input to principal component analysis and show the results.

Keywords: principal component, analysis, economic time series, objects

Abstrakt. Pfispévek se zabyva analyzou hlavni komponenty v oblasti ekonomickych dat. Cilem
prispévku neni se priméarné zabyvat samotnou analyzou hlavni komponenty, ale jeji aplikaci na
data z ekonomické oblasti. Cilem analyzy hlavni komponenty je sniZzeni dimenze ptvodniho
souboru s daty. Vstupem analyzy pro tento tcel jsou statistickd data popisujici ekonomickou
situaci ve vice nez t¥iceti zemich po dobu dvaceti dvou let. Cilem je prezentace t¥i pFistupt k
analyze hlavni komponenty t&chto ekonomickych ¢asovych tad.

Klicovd slova: hlavni komponenta, analyza, ekonomické Casové Fady, objekty

1 Introduction

The contribution is focused on principal component analysis (PCA). The aim is not to
describe the principal component analysis itself in detail. The main idea of principal
component analysis is reduction of dimensionality of some data set that consists of a
large number of interrelated variables. The reduction retains as much as possible of the
variation present in the data set. The aim is achieved by transforming to a new set of
variables called the principal components. These principal components are uncorrelated
and ordered so that the first few retain most of the variation present in all of the original
variables. [2] In this research is the aim the reduction to two principal components (PC1
and PC2).

Paper deals with the basic economic data and shows the ways of possible interpreta-
tion to serve as input for principal component analysis. The aim is to search the main
indicators, monitor the potential trend of concrete objects and finding objects having
something in common. It goes hand in hand with principal component analysis goal
defined by Abdi and Williams — extracting the important information from the table to
represent it as a set of new orthogonal variables called principal components and to dis-
play the pattern of similarity of the observations and of the variables as points in maps.

I
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Paper presents three basic ways of using principal component analysis to interpret
economic data. The way means to interpret the data set as objects. As the reason for
doing such research can be also trying to predict the future development of some country
and find the position of state if we know the basic economic prediction. There is also
very interesting to capture some progress in time.

1.1 Used data

To do such research play the key role the input data set. As already said it should be
some economic time series. Used economic data has been selected from Statistical Annex
of European Economy presented by European Commission in spring 2013. |3]

As input to analysis serve the thirty five countries from the whole world, majority
are the European countries. The observation take place in years 1993 to 2014. Selected
indicators are the total population, unemployment rate, gross domestic product at cur-
rent market prices, private final consumption expenditure at current prices, gross fixed
capital formation at current prices, domestic demand including stocks, exports of goods
and services, imports of goods and services and gross national saving. So totally nine
indicators are monitored. As the time series go to year 2014 it is clear that years 2013
and 2014 represent predictions.

2 State in year as object

As first possible interpretation of the data set is the object represented by a state in a
given year. So the number of objects is relatively high. The total number of object is
in this case seven hundred and eighty, it represents number of states multiplied by the
number of observed years.

As the number of object is high, the origin data set dimensionality is relatively small.
It is created just by nine indicators. The result of principal component analysis is that
two principal components are created mainly by combination of population and gross
domestic product as shown the indicators weights in table

Table 1: PCA — State in Year as Object

Indicator PC1 PC2

Total population -1,106 | 1,683
Unemployment rate -0,000 | 0,025
Gross domestic product -0,113 | -16,492
Private final consumption expenditure | -0,000 | 0,013
Gross fixed capital formation 0,000 | -0,021
Domestic demand including stocks -0,000 | 0,004
Exports of goods and services -0,000 | -0,062
Imports of goods and services -0,000 | -0,060
Gross national saving 0,000 | -0,026
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Figure 1: PCA — State in Year as Object
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The figure 2| shows that main points are concentrated by vertical axis. As representa-
tive state of vertical line can be selected for example Germany. As the state represented
by movement also in horizontal line can be mentioned for example France. Because the
number of objects is quite high, for better interpretation there are the objects grouped
by the same colour for a given year in figure ?7. The weights of components are in table
The first principal component explains almost all of the variance.

The detailed view on values of principal components for three selected countries is
shown in table 2| As already mentioned Germany is represented by points in vertical line
as can be seen in figure

In case of France there is the result of principal component analysis shown in figure
from which is evident that growing gross domestic product is connected with growing
population. So in this case the growing gross domestic product goes hand in hand with
growing population. That is the different between France and Germany, where the gross
domestic product is growing in conditions of almost the same population.

The example of Czech Republic shows that the population is almost constant as in
case of Germany, but the potential to grow the gross domestic product is much smaller.
The differences between years are very small.

3 States as objects

In second case of possible use of principal component analysis there are the object rep-
resented by each state. So the properties are made of indicators in selected years. The
number of object is thirty five.

In comparison to first case of use the number of objects is dramatically fallen down.
So the representation will be very simple and it will be clear which states are closed to
each other. From graphic representation are easily noticed the groups of states. When
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Figure 2: PCA — State in Year as Object with legend
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Table 2: Values of principal components of selected countries

Year | CZ - PC1 | CZ -PC2 [ DE - PC1 | DE- PC2 | FR - PC1 | FR - PC2
1993 | 0,0067 0,2861 0,2827 1,9173 1,0522 0,7847
1994 | 0,0050 0,2647 0,2052 1,5870 0,9852 0,6696
1995 | 0,0063 0,2370 0,1282 1,1589 0,9195 0,5430
1996 | 0,0110 0,1980 0,0564 1,3007 0,8555 0,4740
1097 | 0,0144 0,1865 0,0091 1,4556 0,7919 0,4969
1998 | 0,0170 0,1607 0,0148 1,2527 0,7238 0,3324
1999 | 0,0206 0,1501 | -0,0047 1,0328 0,6289 0,2273
2000 | 0,0235 0,1200 | -0,0371 0,8603 0,5009 0,0847
2001 | 0,0383 0,0600 | -0,0854 | 0,6842 0,3648 0,0330
2002 | 0,0450 | -0,0031 | -0,1209 | 0,6133 0,2278 0,0244
2003 | 0,0446 | -0,0073 | -0,1421 0,5579 0,0936 0,0207
2004 | 0,0429 | -0,0389 | -0,1377 | 0,3294 | -0,0474 | -0,0789
2005 | 0,0342 | -0,0848 | -0,1273 | 0,1840 | -0,1925 | -0,1445
2006 | 0,0236 | -0,1322 | -0,1000 | -0,2735 | -0,3284 | -0,3074
2007 | 0,0060 | -0,1683 | -0,0720 | -0,8476 | -0,4502 | -0,5334
2008 | -0,0275 | -0,2207 | -0,0296 | -1,1202 | -0,5596 | -0,5795

2009 | -0,0458 | -0,1366 | 0,048 | -0,7816 | -0,6633 | -0,2043
2010 | -0,0540 | -0,1618 | 0,0810 | -1,3902 | -0,7716 | -0,2752
2011 | -0,0481 | -0,1983 | 10,0712 | -1,8237 | -0,8814 | -0,3854
2012 | -0,0523 | -0,1764 | 0,0276 | -1,9930 | -0,9842 | -0,3722

2013 | -0,0549 -0,1612 -0,0166 -2,1568 -1,0835 -0,3459
2014 | -0,0566 -0,1736 -0,0425 -2,5564 -1,1822 -0,4637
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Figure 3: PCA — State in Year as Object — Germany
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Figure 4: PCA — State in Year as Object — France
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Figure 5: PCA — State in Year as Object — Czech Republic
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one point represent one state there is very easily seen the groups of states with similar
type of economy. The result of principal component analysis is shown in figure [0, The
first principal component explains almost ninety nine percent of variance in origin data
set. The values of principal components of each state are summarized in table

The principal components are in this case counted from nearly two hundred indicators.
So the reduction of dimensionality is high in this case. These values are created by the nine
economy indicators in twenty two years. As in the first case of using principal component
analysis also here are the biggest weights on gross domestic product and population. In
case of first principal component is the population values included with bigger weight
than in case of gross domestic product. Second principal component is preferring the
values of gross domestic product in years.

The values of first principal component are in most cases very close to zero, following
the weights that implies that the population is without big changes having affect to
component values. Second principal component is mostly counted from gross domestic
product values. There also apparent the bigger range in values.

4 Years as objects

The third kind of data interpretation is by objects representing calendar year. So there is
only twenty four objects in this case. As the number of objects is decreasing, the number
of properties of each object is increasing. The total number of indicators of each object
is created by number of countries mal number of describing properties. The number of
properties is totally over three hundreds. The result showing principal component values
is shown in figure [7] The first principal component explains almost ninety nine percent
of variance in origin data set.

The advantages of such approach is the very clearly seen the progress in time. The
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Table 3: PCA — States as objects

State PCA 1| PCA 2
Belgium 0,195 0,376
Germany 0,258 | -0,115
Estonia 0,317 | 0,090

Ireland 0,179 0,044
Greece 0,223 | -0,118

Spain -0,547 | -0,509

France -0,443 | 0,558

Italy -0,202 | 1,178

Cyprus 0,279 0,075
Luxembourg 0,290 0,061
Malta 0,299 | 0,020
Netherlands 0,148 0,089
Austria 0,239 | 0,141
Portugal 0,230 | -0,205
Slovenia 0,296 | 0,062
Slovakia, 0,296 0,047
Finland 0,267 | 0,129
Bulgaria 0,431 | -0,001
Czech Republic 0,280 | 0,240
Denmark 0,262 0,090

Latvia 0,356 | 0,022
Lithuania 0,377 | -0,032
Hungary 0,347 | 0,067

Poland 0,279 | 0,388
Romania 0,468 0,333
Sweden 0,219 | 0,361
United Kingdom -0,318 | 1,921
France 0,324 0,118
F.Y.R. of Macedonia | 0,294 | 0,016
Iceland 0,297 0,022
Turkey -1,189 | -4,953
Montenegro 0,304 | 0,021
Serbia 0,322 | -0,169
United States -5,431 | 1,033
Japan 0,056 | -1,400
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Figure 8: PCA — Years as objects — Czech Republic

PCA, (092505 )

next possible use of this approach is to do the analysis just for national data and see the
development of separate country. Example of Czech Republic is shown in figure In
this case explains the first principal component almost ninety three percent of variance
in origin data set. Both principal components explain almost all variance in origin data
set.

5 Summary

It was shown that principal component analysis can be also very useful in interpreting the
economic data. It represents some other way of interpreting time series and shows how
the states position in comparison to others. To fully interpret the results there is need to
study the weights of principal components to know what stands behind the components
values. The third case of use — the years as objects — gives very clear representation of
changing economic situation.
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Abstract. EEG signal of healthy patient can be recognized as output of a chaotic system. There
are many measures of chaotic behavior: Hurst and Lyapunov exponents, various dimensions
of attractor, various entropy measures, etc. We prefer permutation entropy of equidistantly
sampled data. The novelty of our approach is in bias reduction of permutation entropy estimates,
memory decrease, and time complexities of permutation analysis. Therefore, we are not limited
by EEG signal and permutation sample lengths. This general method was used for channel
by channel analysis of Alzheimer diseased (AD) and healthy (CN) patients to point out the
differences between AD and CN groups.

Keywords: EEG, Alzheimer’s disease, permutation entropy, unbiased estimation, hash table

Abstrakt. EEG sinaly zdravych pacientt jsou podobné chaotickému systému. Existuje mnoho
mér pro chaotické chovani: Hursttiv a Lyapuntiv exponent, attraktory, entropie atd. V tomto
¢lanku preferujeme permutacni entropii ekvidistantné vzdalenych dat. Vyhodou tohoto nového
postupu je redukce vychyleni odhadu permutadni entropie, snizeni pamétové a ¢asové naroc¢nosti.
Diky tomu nejsme limitovani délkou EEG signalu a délkou permutac¢niho vzorku. Tato metoda
byla pouzita pro analyzu jednotlivych kanala EEG u pacientti s Alzheimerovou chorobou (AD)
a zdravych jedinci. Nasledné byly tyto dvé skupiny porovnany.

Klicovd slova: EEG, Alzheimerova choroba, permutaéni entropie, nestranny odhad, haSovaci
tabulka

1 Introduction

Alzheimer’s disease (AD) is the most common form of dementia, which gradually destroys
the host’s brain cells. Recent findings estimate that 35 million people worldwide currently
suffer from AD. Clinically, AD manifests itself as a slowly progressing impairment of men-
tal functions whose course lasts several years prior to the death of the patient. Structural
changes in AD are related to the accumulation of amyloid plaques between nerve cells
in the brain and with the appearance of neurofibrillary tangles inside nerve cells, par-
ticularly in the hippocampus and the cerebral cortex. Although a definite diagnosis is
possible only by necropsy, a differential diagnosis with other types of dementia and with
major depression should be attempted. Magnetic resonance imaging and computerized
tomography can be normal in the early stages of AD, but a diffuse cortical atrophy is the
main sign in brain scans. Mental status tests are also useful. Electroencephalography

*This work has been supported by the grant SGS11/165/0OHK4/3T /14
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(EEG) is a non-invasive technique that was first used by Hans Berger in 1929 to record
electrical activity of the human brain. The EEG has been used as a tool for investigating
dementias for several decades. The conventional spectral analysis of EEG has mainly
been concerned with spectral features in several frequency bands. Although the spectral
analysis has been successful in AD studies, nonlinear dynamic analysis is crucial if trying
to capture higher order dynamic properties of the brain. In particular, several authors
have analyzed the EEG in AD patients with non-linear methods. It has been shown that
AD patients have lower correlation dimension (D) values as a measure of the underlying
system dimensional complexity - than control subjects [9]. Furthermore, AD patients
also have significantly lower values of the largest Lyapunov (\;) exponent than controls
in almost all EEG channels. However, estimating the non-linear dynamic complexity of
physiological data using measures such as Dy and \; is problematic, as the amount of
data required for meaningful results in their computation is beyond the experimental
possibilities for physiological data [10]. One alternative solution lies in computing the
entropy of the EEG [8]. The concept of entropy has achieved a large consensus as an
indicator of complexity of nonlinear signals [7], [11]. Dauwels et al. [12] and many other
authors have shown that Alzheimer’s disease increases power in the delta and theta-bands
in the case of EEG analysis in frequency domain but the power spectrum is a global char-
acteristics of EEG signal which disables to study local events in the signal. A number of
variants of this notion have been proposed in the literature which show different degrees
of flexibility, relevance to different problems, efficiency in their computation, as well as
theoretical foundations. This work investigates the potential of complexity analysis of
multidimensional EEG as indicator of AD onset through permutation entropic modeling.

2 Permutation entropy

2.1 Shanon entropy and its estimation

Definition. Shannon entropy 5] Hs of a discrete random variable X with possible values
x1, ..., Ty, and probability mass function p(X) is defined as

Hs = —Zpihlpi, (1)
i=1

where p; = p(x;).

If the probability function is unknown for an experimental data set, and the number of
possible values is finite for random variable X, we estimate probalility function p; by
relative frequency p;x and number of events ky as

n,
PjN = #7 (2)

kn=Y 1<k, (3)

n; >0
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where n; is the number of occurrences x; of random variable X, and n the total number
of measurement results. Then we get naive estimate of Shannon entropy as

kn
Hy = — ij,N Inp;x. (4)
=1

This estimate is biased, and therefore it has a systematic error.

Miller [2] modified naive estimate Hy using first order Taylor expansion, which produces

better estimation ) .
N —
) 5
o (5)

Hy = Hy +

2.2 Application to permutation analysis

Entropy estimates can be easily applied to permutation event analysis [3],[4]. Method-
ology from [2] estimates a smaller bias. Let time series be {a;}7_, and sliding window
{br}}_; of length w, then we can substitute signal values by in the window with their
orders and then obtain permutation pattern {m}}’_;. The process of pattern conversion
is depicted in Fig. 1.

The universe of random variable X is a set of all permutation of length w. Therefore,
the number of possible permutations is

m = wl, (6)

but the number of various permutations in given signal cannot exceed the number of
sliding samples as
kn<n=T-w+1. (7)

The number of occurences of jth permutation pattern corresponds with n;, and n is the
total number of samples. Now, we can directly use (4) and calculate the biased naive
estimation Hy as in [5]. Our methodology is based on Miller’s approach [2| and direct
application of (5) to permutation patterns. The difference between estimates (4) and (5)
varies according to number of distinct patterns and time series length.

3 Permutation analysis for large samples

The main disadvantage of the original procedure of permutation analysis [3] is in its mem-
ory and time complexities. They realized permutation memory as a matrix of w columns
and w! rows together with counter vector of length w!. It enables permutation analy-
sis only for w < 13 on a typical computer. The time complexity of single permutation
counting is also w!, in the worst case. Therefore, we decided to use more sophisticated
data structure for permutation analysis. There are many data structures and algorithms
for realizing of look-up table as a kind of memory with fast access. Our memory has to
be optimized only for two operations: FIND and INSERT. We used hash table with open
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addressing and linear probe strategy [6] as a model, which is easy to realize. Let P > n
be the optional prime number. Then the loading factor is defined as a ratio « = n/P < 1.
The mean number of permutation vector comparisons during successful FIND operation

was determined [6] as
1 1
Elopr = B (1 + ) : (8)

11—«

In the case of unsuccessful FIND operation and INSERT operation, the mean number of
permutation vector comparisons is higher [6] than in the previous optimistic case

FTps — % (1 + (1_;&)2) | ()

Our tiny and fast implementation of permutation memory is a matrix of occurred permu-
tations with w columns and P > n rows together with counter vector of length P. The
time complexity of single permutation counting is constant and dependent only on load-
ing factor in the best (8) and worst (9) cases. It enables very fast permutation analysis for
higher sample length w and long EEG sequences. The last implementation detail is how
to realize hash function index = h(wr) for given permutation pattern 7. By substracting
vector of units from vector 7, we obtain digital form y = 7 — 1 in the first step. Let
R = w be the base of digital system. In the second step, we calculate the value v of y
according to base R. The resulting index into hash table has a value index = v mod P.
In the case of Matlab environment, we must increase the index by one. In the case when
P > 3n, we have o < 1/3 and then the mean number of trials is less than 1.25 in the
optimistic case (8) and less than 1.625 in the pessimistic (9).

4 Application to EEG

Permutation entropy was applied to EEG signals obtained from two groups of patients. In
our prospective study, EEG data were obtained during examinations of 10 patients with
moderate dementia (MMSE score 10-19). All subjects underwent brain C'T, neurological
and neuropsychological examinations. The other group is a control set consisting of 10
age-matched, healthy subjects who had no memory or other cognitive impairments. The
average MMSE of the AD group is 16.2 (SD of 2.1). The ages of the two groups are
69.4 + 9.2 in Alzheimer’s group and 68.7 4+ 7.7 in normal group, respectively. The first
group included 5 men and 5 women, the second group 4 men and 6 women. Informed
consent was obtained from all included subjects and the study was approved by the local
ethics committee. All recordings were performed under similar standard conditions. The
subjects were in a comfortable position, on a bed, with their eyes closed. Electrodes
were positioned according to the 10-20 system of electrode placement; the recording was
conducted on a 21-channel digital EEG setup (TruScan 32, Alien Technik Ltd., Czech
Republic) with a 22-bit AD conversion and a sampling frequency of 200 Hz. The linked
ears were used as references. Stored digitized data were zero-phase digitally filtered using
a bandpass FIR filter (100 coefficients, Hamming window) of 0.5-60 Hz and a bandstop
filter of 49-51 Hz [6]. The analysis started by manual artifact removal. Time series length
T varies between 70000 and 120000. We tried to separate these two groups of patients
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by two-sample t-test with null hypotheses and alternative hypothesis as
H, : EH(AD) = EH(CN), (10)
Hy : EH(AD) # EH(CN). (11)

The window length w is the only one parameter of permutation entropy evaluation. We
investigated its influence in the case of 8" channel in the range w = 4 to 13. Results
are collected in Tab. 1 related to the separation power in two-sampled t-test and its
p-value. Optimum value of window length (embedded dimension) is w = 14 which is
in contradiction to statistical conventions. Our interpretation is based on supposition
that EEG permutation patterns are not as diverse as they theoretically should be. This
hypothesis is illustrated on Fig. 2 where ten most frequent permutation patterns of two
patients are added into two distinct plots. Locally monotonic behavior of EEG signal has
relatively high probability on the case of AD, while CN exhibits rather chaotic behavior.
This phenomenon is difficult to investigate using shorter window or performing analysis
in frequency domain.

The final results for permutation entropy estimators Hy and Hy; are in Tabs. 2 and 3.

First, we evaluated separation ability of naive estimate Hy of Shannon etropy Hg. Using
False Discovery Rate (FDR) [1|] methodology of multiple testing for 19 channels and
a = 0.05 together with t-test, we obtained appr = 0.0413 from pyaue in the Tab. 2.
But the differences are significant over the whole front and medial part of the skull for
ch < 18 in the sense of FDR.

Then we evaluated separation ability of Miller estimate Hy; of Shannon etropy Hg. Using
the same method as above, we obtained appr = 0.0216 from pyae in Tab. 3 and the
differences are significant mostly over the front half of the skull for ch = 1..12,14, 17.

The difference between naive and Miller estimates is not constant because both EEG
signal length and the number of occurring patterns vary within patient groups. Therefore,
Miller estimate of permutation entropy causes results which differ from naive approach.
Fortunately, novel estimate generates results with more clear biomedical interpretation.
Separation power of permutation entropy is depicted on Fig. 3 for 8" channel and
optimum pattern length w = 14 for naive (left) and Miller (right) approaches.

5 Conclusion

Using Miller’s approach instead of direct calculation of Shannon’s entropy from permu-
tation frequencies, we have developed a novel method of ECG analysis via permutation
entropy. The second advantage of our method is in its very fast permutation analysis
and low consumption of computer memory which enables analysis of large time series
with greater length of permutation patterns. When the method was applied to diagnose
Alzheimer’s disease from 19 channel EEG, we recommended pattern length w = 14 and
Miller estimate of permutation entropy to achieve the best separation between AD and
CN groups in standard two-sided two-sampled t-test.
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Table 1: Naive estimate of permutation entropy for 8" channel
Window Mean Hy DPyalue
AD CN
4 2.6227 | 2.6763 | 0.289642
5 3.7898 | 3.8901 | 0.245163
6 5.0485 | 5.2067 | 0.210272
7

8

6.3754 | 6.6048 | 0.178109
7.7024 | 8.0207 | 0.136442

9 8.8811 | 9.3133 | 0.070555
10 9.7614 | 10.2749 | 0.022015
11 10.3455 | 10.8547 | 0.004363
12 10.6971 | 11.1372 | 0.001093
13 10.8891 | 11.2568 | 0.001305

Table 2: Naive estimate of permutation entropy (w = 14)

Channel Mean Hy Pralue
AD CN

1 10.9509 | 11.2344 | 0.016177
2 10.9288 | 11.2340 | 0.008799
3 10.9993 | 11.2730 | 0.013094
4 10.9439 | 11.2670 | 0.006146
5 10.9060 | 11.2483 | 0.004253
6 10.9520 | 11.2611 | 0.005397
7 10.9841 | 11.2793 | 0.009685
8 10.9866 | 11.3035 | 0.003957
9 10.9596 | 11.2858 | 0.005039
10 10.9461 | 11.2645 | 0.005418
11 10.9514 | 11.2629 | 0.009163
12 11.0033 | 11.2973 | 0.011947
13 10.9875 | 11.2294 | 0.041253
14 10.9350 | 11.2227 | 0.017088
15 10.9433 | 11.2043 | 0.032689
16 10.9311 | 11.1979 | 0.038126
17 10.9410 | 11.2494 | 0.013556
18 10.9690 | 11.1694 | 0.132795

19 10.9643 | 11.1649 | 0.120322




V. Hubata-Vacek

Table 3: Miller estimate of permutation entropy (w = 14)

Channel Mean Hy Pualue
AD CN

1 11.4235 | 11.7096 | 0.018250
2 11.3954 | 11.7084 | 0.008843
3 11.4808 | 11.7570 | 0.013002
4 11.4095 | 11.7476 | 0.005664
5 11.3629 | 11.7228 | 0.003964
6 11.4196 | 11.7390 | 0.004630
7 11.4621 | 11.7632 | 0.009132
8 11.4643 | 11.7943 | 0.002798
9 11.4278 | 11.7702 | 0.003966
10 11.4110 | 11.7424 | 0.004780
11 11.4184 | 11.7399 | 0.009315
12 11.4858 | 11.7863 | 0.011526
13 11.4636 | 11.6979 | 0.053263
14 11.3966 | 11.6882 | 0.021538
15 11.4063 | 11.6662 | 0.045093
16 11.3920 | 11.6574 | 0.054132
17 11.4048 | 11.7225 | 0.015627
18 11.4407 | 11.6232 | 0.203424

19 11.4349 | 11.6188 | 0.193535
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50r

Figure 1: Permutation analysis of EEG: original EEG (top), windowed signal for w = 14
(middle), permutation pattern(bottom)

AD

14 14
12 12
10 10
8 8
= =
6 6
4 4
2 2
0 0
0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14
k k

Figure 2: Ten most frequent permutation patterns as union plot for 8" EEG channel and
w = 14 for typical AD patient (left) and CN patient (right)
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Abstract. We consider a generalized Schrédinger operator in L?(R?) with an attractive strongly
singular interaction of ¢’ type characterized by the coupling parameter 8 > 0 and supported by
a C*-smooth closed curve I' of length L without self-intersections. It is shown that in the strong
coupling limit, # — 04, the number of eigenvalues behaves as % + O(]In ), and furthermore,
that the asymptotic behaviour of the j-th eigenvalue in the same limit is —% + 11+ O(B] In 5]),
where p; is the j-th eigenvalue of the Schrédinger operator on L?(0, L) with periodic boundary
conditions and the potential —in where v is the signed curvature of I'.

This paper was published in Journal of Physics A: Mathematical and Theoretical within the

volume 46, number 34 and it was presented at the conference Mathematical result in Quantum
Mechanics QMath12 in Berlin from September 10th to 13th, 2013.

Keywords: quantum graphs, singular interactions of ¢’ type, point spectrum

Abstrakt. V této praci se zabyvame Schrodingerymi operatory ptsobicimi na L?(R?) popisu-
jicimi singuldrni interakce typu 0’ charakterizované vazebnym parametrem 3 > 0 lokalizované
na C*-hladké uzaviené prosté kiivce I' o délce L. Je spocteno chovani bodového spektra v
limité silné vazby, ktera odpovida situaci § — 04. Pocet vlastnich hodnot lze spocist jako
% + O(|Ing|). Déle j-ta vlastni hodnota v ramci stejné limity silné vazby lze zapsat pomoci
vyrazu —%4—/@ +O(B| InF]), kde p; je j-ta vlastni hodnota Schrodingera operatoru na prostoru
L?(0, L) s periodickymi hrani¢nimi podminkami a s potencidlem ve tvaru —in, kde v je kfivost
kiivky T

Plna verze ptfispévku byla otisténa v ¢asopise Journal of Physics A: Mathematical and The-
oretical within the volume 46, number 34 a byla pfednesena na konferenci Mathematical result
in Quantum Mechanics QMath12 in Berlin from September 10th to 13th, 2013.

Klicovd slova: kvantové grafy, singularni interakce typu ', bodové spektrum
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Abstract. We study the phenomena associated with the solar wind protons reflections on
the lunar surface. We perform several two-dimensional global hybrid simulations with proton
particles and fluid electrons. The ambient interplanetary magnetic field is perpendicular to the
simulation plane. The results show the formation of a wake structure behind the obstacle with
plasma depleted cavity in the center surrounded by low-frequency waves propagating away from
the cavity. The properties and generating mechanism of these waves are discussed. We also
study the dynamics of reflected protons and its influence to lunar plasma environment.

Keywords: solar wind, Moon, hybrid simulations

Abstrakt. Studujeme jevy spojené s odrazy protond sluneénfho vétru na mésiénim povrchu.
Provadime nékolik dvourozmérnych globalnich simulaci s protony jako ¢asticemi a elektrony jako
kontinuem. Meziplanetarni magnetické pole je kolmé na simula¢ni rovinu. Vysledky ukazujf
vznik struktury lunarniho chvostu za prekazkou, s dutinou bez plazmatu uprostied obklopenou
nizkofrekven¢nimi vlnami §ificimi se smérem od dutiny. Popisujeme vlastnosti a mechanismus
vzniku téchto vin. Zabyvame se také dynamikou odrazenych protont a jejich vlivem na prostredi
plasmatu v okoli Mésice.

Klicovd slova: slune¢ni vitr, Mésic, hybridni simulace

1 Introduction

The Moon has no atmosphere nor significant global dipolar magnetic field. Therefore
the solar wind particles directly impact its surface forming a lunar wake structure on the
nightside of the Moon. Studying the interaction between the solar wind and the Moon is
important for understanding the lunar plasma environment.

The beginning of the research of lunar plasma environment is, naturally, associated
with first flights of space satellites. First in-situ data from the lunar wake were based on
the measurements made by Explorer 35 trough the years 1967 — 1973 [6]. Also the Apollo
surface and orbital experiments [10] made some measurements of the lunar wake, but, as
in the case of Explorer 35, with a very low resolution. However, all these experiments
were able to detect a significant depletion of solar wind density behind the Moon.

*This work has been supported by the Grant Agency of the Czech Technical University in Prague,
grant No. SGS13/146/0OHK4/2T /14
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Simulation run | Ambient magnetic field | Reflection model
a B = (\/5/2, \/5/2, 0) no reflections
b B =(0,0,1) no reflections
¢ B =(0,0,1) specular
d B =(0,0,1) inverting

Table 1: List of performed simulations.

Then several decades passed with relatively little interest in lunar research. On De-
cember 27, 1994, the WIND spacecraft used the Moon for a gravitational assist. It passed
at a distance of 6.5 lunar radii through the lunar wake and made several measurements
in this area with all its instruments switched on. The data showed a number of interest-
ing plasma physical processes. They were described in many papers published mostly in
1996 [2, 8]. Several numerical simulations were performed to explain observed phenomena
|1, 12|. Until then, it has been believed, that all particles hitting the Moon are absorbed
by the lunar surface.

A systematical research of the lunar plasma environment started in 2007 by Japanese
spacecraft SELENE (Kaguya) [7, 9] followed by Indian spacecraft Chandrayaan-1 [4, 13].
Their measurements have indicated that the simplified picture of the Moon as a passive
solar wind absorber is incomplete. The instruments onboard these spacecrafts detected
solar wind ions reflected on the lunar dayside surface. These ions were also detected
inside the near lunar wake. Let us note that Apollo 12 and 14 experiments observed
energetic ion fluxes at the nightside surface [3].

In fact, the lunar plasma environment seems to be more complicated. Chandrayaan-
1 discovered that up to 20% of the impinging solar wind protons are reflected from the
lunar surface back to space as neutral hydrogen atoms [13]. Moreover, the bomboardment
of the lunar surface by charged particles may also lead to charging and mobilization of
lunar dust. In this paper we present results from global hybrid simulation in the plane
perpendicular to IMF. We focus to periodic kinetic effects caused by ion gyration and
generated wave structure.

The Japanese spacecraft Kaguya was orbiting the Moon at ~ 100 km altitude. The
low energy up-going ions measurements by MAP-PACE onboard discovered that about
one percent of SW ions is scattered at the lunar surface [9] In situ observations during
one revolution was presented in [7]. The trajectory plane was perpendicular to IMF. The
autors explain the unexpected detection of upgoing positive ions deep in nightside using
simple numerical model - particle trajectory calculations in prescripted magnetic field. In
order to get more realistic picture of lunar wake, we implement proton reflections on the
surface into global simulation. Then we compare the data from virtual spacecraft flight
through the simulation plane with real in-situ observations from [7].

2 Simulations

We have performed four simulations with different conditions. A 2.5-D version of the
hybrid code is used [5]. It has 2 spatial dimensions and 3 velocity dimensions. We use
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specular inverting

Figure 1: Illustrations of the two different reflection models used in simulations.

selenocentric coordinate system in the simulation X - Y plane, where the x-axis points
tailward.

At the beginning of the simulation, the Moon represented by a disk of radius Ry is
surrounded by isotropic Maxwellian protons with the constant solar wind speed vy, =
5v4. The initial ambient magnetic field is also introduced in the simulation plane. It is
scaled to one, and its orientation differs in different simulation runs. Since the electric
field is proportional to the factor 1/p, we must avoid the plasma density dropping out
below the value n,,;, = 0.05.

The simulation units are derived from the properties of unperturbed plasma. The
time is given in inversed proton gyrofrequency, (2, = wg*pl. The unit of space distances is
proton inertial length, A, = ¢/w,,. It follows that the velocities are scaled by the Alfvén
velocity v4. The values of protonic and electronic betas are chosen to be 3, = 3. = 1.

We use spatial resolutions Az = Ay = 0.2A, and the temporal resolution At =
O.OlQIjl. For calculations of electromagnetic fields we use substepping Atp = At/10.
The simulation plane contains N, = 3200 meshpoints in x-direction and N, = 2100
meshpoints in y-direction. We use 200 superparticles per cell. Total simulation time
is tyor = 909;1. Since the proton gyroradius rg, = 24/6,/mA, = 1.13A,,, the selected
space resolution 0.2A,, is sufficient to exhibit effects of proton gyromotion. Assuming the
density n, = 5em™®, the proton inertial length is A, = 102 km. Since the Moon radius is
1738 km, we can set R;, = 17A,. Note that it is possible to model the solar wind-Moon
interaction on real scales. This is not true for example in Mercury simulations [11], where
the ratio between the planet radius and A, is much higher and scaling down of the sizes
is needed. The total sizes of our simulation box are L, = 38R and L, = 25R;.

Up to here, the simulation parameters are the same for all configurations. The list of
performed simulations is given in Table 1. We denote different simulation runs by letters
a, b, ¢, and d. They differ in the orientation of the ambient magnetic field and in the
behavior of proton superparticles that hit the lunar surface.

In simulation a the vectors of the ambient magnetic field B lie in the simulation plane
(B = (v/2/2,v/2/2,0)). Thus the angle between B and solar wind velocity v, is 45°.
Such configuration was widely investigated [12] and we present it in this thesis only in
the reason of comparison. All other simulations (b, ¢, and d) have been performed with
the ambient magnetic field perpendicular to the X - Y plane, i. e., B =(0,0,1).

When the superparticle in simulations a or b hit the lunar surface, it is removed from
the simulation. In fact, it is removed with the probability 1 — n,,;,, = 0.95 in order to
avoid very low plasma densities resulting to singularities of the electric field, as discussed
above. Simulations ¢ and d are extended by implementation of proton reflections. Thus,
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Figure 2: Proton density plots for various simulation runs: Panel a represents the case
with ambient magnetic field vectors lying in the simulation plane (i.e. initially B, = 0).
Other panels show the situation with ambient magnetic field vectors perpendicular to the
simulation plane (i.e. initially B, = B, = 0) and different reflection models: without
reflection (b), specular (c), and inverting (d). Right panel shows the corresponding scale.
Overlaid curves denote several profiles of the density in arbitrary units.

when the superparticle hit the surface of the Moon, it is reflected with the probability
fr = 0.01. We assume no velocity loss during reflection. The proportion of particles not
removed from the simulation remains unchanged, . e., 1., = 0.05.

The dependence of reflection angle on the incidence angle is still unknown. Moreover,
since it probably depends on the microstructure of the lunar surface, it can also vary in
time. We use two extremal reflection models (Figure 1).

Simulation ¢ use a specular model, which assumes the Moon to be an ideal sphere.
The incidence and reflection angle are equal in this case. Another model, which we have
called inverting, is used in simulation d. The superparticle hitting the surface changes
the sign of all velocity components. This model corresponds to very uneven surface.

3 Results

3.1 Densities

Let us start with the distribution of the proton density (Figure 2). In all cases, we can see
a vacuum region formed downstream the Moon. It is surrounded by waves propagating
away from the center and forming edges of lunar tail structure. At both edges of the tail,
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Figure 3: Fourier analysis of the magnetic fluctuations B in region 15R;, < = < 25Ry,
—6R;, < y < —1R;, and time interval 80%} <t< 11()u);p1 The left panel shows the
fluctuations as a function of k, and k, (averaged over all frequencies w). The right panel
shows the fluctuations as a function of k, and w (averaged over all k,). The frequency is
given in the plasma rest frame.
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large rarefied plasma regions are observed.

Although the overall structure of the lunar wake is similar in all configurations, the
influence of the ambient magnetic field orientation on the lunar wake environment is
crucial. In case a, plasma refills the cavity along magnetic field lines. Thus, the cavity is
refilled relatively fast.

When the ambient magnetic field is perpendicular to the simulation plane (cases b,
¢, and d), the situation is absolutely different. The plasma particles cannot move across
magnetic field lines and the plasma-depleted cavity is of larger size as compared with the
previous case (see Figure 2b-d). The waves propagating away from the cavity will be
discussed in separate Section 3.2.

Introduction of proton reflections on the lunar surface leads to further changes in the
lunar wake environment. Let us focus first on the specular model (Figure 2¢). We observe
a dense plasma region at the bottom edge of the lunar wake followed by a rarefied plasma
region, which is larger than in previous cases. Another difference is the compression of
bottom wave-dominated region in y-direction.

Using the inverting model (Figure 2d) leads to further changes in lunar wake. Namely,
the region with relatively high density at the bottom edge of the wake is larger. Thus, the
selected reflection model influences the global plasma environment. In other words, the
global solar wind - Moon interaction is influenced by changes in the local microphysics
of the reflection process.

3.2 Waves

In Figure 2 we observe low-frequency waves propagating away from the lunar cavity.
In order to process Fourier analysis of these waves, we have performed the simulation
d (the most realistic one, as we will see in Section 3.4) with a longer total time, t;,; =
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110wq_p1. The reason of such a long time is that we need to analyze larger waves-dominated
rectangular area for longer time. We study the waves in the solar wind rest frame, in
the bottom part of the lunar wake. Namely, we get the region 15R;, < x < 25Rp,
—6RL < y < —1Ry and the time interval 80w, < t < 110w,'. The time resolution is
chosen to be 0.5w_}.

The results of the analysis are shown in Figure 3. Left panel shows the fluctuations
0B as a function of k, and k, averaged over all frequencies w. The dependence of the
fluctuations on k, and the frequency w is plotted in the right panel. The plot is averaged
over all k,. It follows that the frequency and the wavenumber of observed low-frequency
waves are w ~ 0.19w,, and k =~ 0.14, respectively. The resulting phase velocity w/k ~
1.35v4 and the fact that the waves propagate perpendicular to the magnetic field enable
us to assume that the waves are magnetosonic waves with dispersion relation

w = (v + vg) K, (1)

where v, is the speed of ion acustic wave which in simulation units is

~1. 2)

Thus, the phase speed of magnetosonic waves is w/k = V2v4. It corresponds to the
results of the Fourier analysis.

The generating mechanism is related to Larmor radius and thus it is a kinetic effect.
We will describe it from the view of the rest frame. For illustration, let us focus on the
protons having the guiding center at the level y = —Ry. According to the phase of the
Larmor motion, the proton is at the given moment located above or below this level.
This location is important at the position x = 0 of the proton trajectory. Whereas the
protons located here above the guiding center hit the lunar surface and are removed from
the simulation, another protons continue in the motion. Note that the process is, in fact,
more complex, because the Moon is placed not only at the position x = 0.

This Larmor phase filtering effect of the obstructing Moon leads to formation of a
periodic strucure along the cavity boundaries with the period 27vg,. This periodicity
leads to propagation of magnetosonic waves.

The wavenumber can be expressed by

V2

k= . 3
44 (3)
The components of wavevector k are then
1 2 202
kx = ) ky = \/_ - & (4)
2T Vs ATy v2,

and the angle between equiphase lines of propagating waves and the z-axis

cost = \/§UA. (5)

US’U)
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Figure 4: The reflected protons density for specular (a, ¢) and inverting (b, d) model.
The values are scaled to the SW proton density.

If we put the parameters of our simulation to these relations, we get £k = 0.12, k =
(0.032,0.11), and 9 = 16.4°. These values corespond almost exactly to to the simulation
data (see Figure 3). Note that from the rest frame, view the waves look stationary and
they do not propagate.

3.3 Proton reflections

As explained in section 2, we have implemented proton reflections on the lunar surface.
One percent of the protons impacting the lunar dayside are reflected without loss of
kinetic energy (in the rest frame). Two different models prescribing how the reflection
angle depends on the incidence angle were used. Let us now focus on the reflections in
more detail.

Figure 4 shows the distribution of the density of reflected protons in both reflection
models. There are significant differences in these plots according to used model. We see
that the protons enter the near Moon wake and give rise to a strong asymmetry in this
region. Whereas the southern hemisphere of the near-Moon wake is dominated by the
reflected protons, they cannot reach the northern part. Note the cloud with a relatively
high density of reflected protons approximately at the position [R;, —Ry]. The formation
of this region is explained below.

The dynamics of the reflected protons can be described in the following way. For
simplicity, we assume the reflection at the equator, in the direction normal to the surface.
First we look at the situation from the rest frame. The proton moves in the solar wind
with the velocity of vy,. Then it is reflected on the lunar dayside surface (without loss of
energy) and its velocity changes to —vy,. In the plasma frame, the velocity of its motion
is equal to —2v, and the proton starts to gyrate counterclockwise with 7, = (vgy,/va)A,.
At the bottom part of its gyration, it has the velocity of 2v,. If we now return to the
rest frame, the velocity in that area reaches 3v,,. Thus, the reflected protons obtain 9
times the original kinetic energy at this position.

When the proton reach the first loop of the trajectory, the magnitude of its velocity
is minimal. This leads to the creation of regions with relatively high density of reflected
protons observed in Figure 4.

There are three possible destinations of reflected protons depending on the position
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Figure 5: Comparison of experimental data from Kaguya with simulation data. Energetic
ion spectrum taken during one revolution by Kaguya (a) (adopted from [7]). Simulation
data taken along a virtual spacecraft orbit for specular (b) and inverting (¢) reflection
model.

and the angle of the reflection: they can hit the dayside again, or they can impact the
nightside, or, finally, they can continue in gyro-motion with the solar wind bulk speed.

3.4 Comparison with in-situ data

In order to verify the relevance of our simulation model, we let a virtual spacecraft fly
through our simulation plane at ~ 100 km ~ 1A, altitude and measure up-going protons.
Then we compare the resulting data with real in-situ observations. In fact, we take a
ring of inner radius A, and outer radius 1.4A, and divide it into 220 slices. We sum all
protons in each slice and sort it according to their kinetic energy.

The results are plotted in Figure 5. Top panel shows the real in-situ measurement of
Kaguya. The flight of our virtual spacecraft begins above the equator on the dayside and
continues to the north. Here it detects only protons reflected from the surface. Around
the north pole, the solar wind protons are detected. Therefore there is a growth of the
measured particles number. No particles reach the north part of the nightside. Then,
below the equator, the spacecraft starts to detect protons reflected on the dayside and
accelerated by the motional electric field. The detection of solar wind protons around the
south pole follows again. In the south part of sunward side we can see both the protons
reflected from the surface and those reflected further north from the detection place and
accelerated by the electric field.

Middle panel corresponds to the specular reflection model. We observe a detection of
low-energy protons in the left part of the spectrum plot. Such protons are not present
in real measurement. It indicates that the inverting reflection model (bottom panel) is
more realistic than the specular one.

4 Conclusions

We have studied the phenomena associated with the solar wind proton reflections on the
lunar surface using different initial and boundary parameters. We have performed several
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numerical simulations using a two-dimensional hybrid code. The results provide a global
view to the in-situ observations.

We have demonstrated the influence of the magnetic field direction upon the shape of
the lunar wake. Some interesting physical effects are exhibited in simulation results. We
observe the creation of waves propagating away from the center of the lunar wake. The
Fourier analysis showed that the wavenumber £ = 0.13 and the frequency w = 0.18wg,,.
Since the waves propagate perpendicular to the magnetic field lines with the velocity
~ V/2u4, we expect that they are magnetosonic waves.

We have described the generating mechanism of the waves. It is related to the Lar-
mor phase filtering effect by the obstructing Moon. It results in the periodic structure
of plasma along the borders of plasma-depleted cavity downstream the Moon. Such a
configuration is unstable and leads to energy dissipation through magnetosonic waves.
We have derived the expected wavenumber k = v/2/(47v,4) = 0.12 and the angle between
equiphase lines of propagating waves and the z-axis 9 = arccos(v/2v4 /vs,) = 16.4°.

In other two simulations we have implemented to the code proton reflections on the
lunar surface. One percent of the impacted protons is reflected without loss of energy.
We used two reflection models: the specular model and the inverting model. The former
assumes that the Moon behaves like an ideal sphere, whereas in the latter all protons are
reflected contrary to the incidence direction.

We have showed that the introduction of the proton reflections changes the shape
of the lunar wake. The reflected protons are picked-up by the solar wind, accelerated
by the motional electric field to obtain up to 9 times the original kinetic energy, and
then they penetrate into the near-Moon wake, leading to asymmetry of the lunar plasma
environment. We observe a region with relatively high density of reflected protons below
the nightside sub-solar point associated with a trajectory loop. We have demonstrated
that the protons reflected to the south of the equator may hit the lunar nightside surface.

We have compared the simulation data with in-situ observations of Japanese space-
craft Kaguya. The comparison of two reflection models with real data follows that the
inverting model is more realistic than the specular one.

There are several directions how to extend the research of lunar wake. First of all, the
full three-dimensional model will give more realistic results. We can also include alpha
particles into the simulation, which were neglected in present thesis. It will be interesting
to verify the simulation results with real data from ARTEMIS mission, in which two
spacecrafts orbit at various altitudes. In order to fit the simulation to the real data, the
more appropriate reflection model will be required.
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Abstrakt. Tento pifspévek si klade za cil ptiblizit souvislost mezi rozsifenimi Lieovych algeber
a jejich kohomologiemi. Ta je nasledné vyuzita k reformulaci nasich hypotéz a jejich ¢astecnému
dokézani.
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1 Uvod

Lieovy algebry maji nezanedbatelnou roli v moderni matematické fyzice. Objevuji se v
mnoha oblastech vyzkumu, od teorie strun, pfes symetrie diferencialnich rovnic, az po
kvantovou mechaniku. Pfes jejich nesmirnou diilezitost jesté zdaleka nejsou klasifikovany
a prozkoumany. Jedina oblast, kterd je pomérné podrobné zmapovana, jsou poloprosté
Lieovy algebry. Na druhou stranu feSitelné algebry, které jsou diky Leviho teorému [3|
druhou podstatnou ¢asti dulezitou ke klasifikaci Lieovych algeber, jsou klasifikovany kom-
pletné pouze pro dimenze n < 10.

Alternativou k podrobné vyc¢tové klasifikaci je p¥istup Pavla Winternitze, Libora Sno-
bla a dalgich autori (namatkou t¥eba [5-7]), ktefi zvolili konstrukéni piistup. Vybrali si
posloupnost nilpotentnich algeber a nalezli vSechna jejich fesSitelna rozsiteni. Tim se sa-
moziejmé neziskd kompletni vycet feSitelnych algeber, ale dostaneme jich velké mnozstvi,
a to ma své vyhody. Napiiklad jsme si mohli v pribéhu klasifikace v§imnout zajimavych
vlastnosti, které mély vSechny tyto fesitelné algebry spole¢né, a vyslovit nékolik hypotéz.

Rozsiteni Lieovych algeber mé velkou souvislost s jejich kohomologiemi. Napiiklad
druh& komologicka grupa méa pfimou souvislost s centralnimi rozsifenimi (viz napt. [1]).
Proto jsme se rozhodli, Ze se pokusime ptreformulovat n&s problém do Fec¢i kohomologii, s
¢imz nam velmi pomohl ¢lanek [4].

Struktura tohoto prispévku je nasledujici. Pfedpokladame, Ze ¢tenai méa zédkladni zna-
losti Lieovych algeber a jejich kohomologii (pokud ne, jdou nalézt tieba v [1,2]). V sekci
1 popiSeme souvislost rozsiteni algeber s kohomologiemi. V nésledujici sekci upfesnime
obecnou konstrukei pro nas pripad resitelného rozsifeni. Poté se kratce zastavime u toho,

_ *Tato prace byla podpofena grantem SGS10/295/OHK4/3T/14 ze Studentské grantové soutéze
CVUT.
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jak klasifikace rozsiteni souvisi s exaktnimi posloupnostmi. Nakonec, v sekci 4, formu-
lujeme dvé hypotézy, podivame se na né pomoci aparatu kohomologii, coZ ndm pomuze
zjistit, proc¢ jedna z nich platila pro nase pripady.

1 Konstrukce rozsireni na direktnim souctu algeber

1.1 Operator pseudokohranice

Pro kazdou Lieovu algebru méame nasledujici exaktni posloupnost.
0 — (g) — g > Dex(g) " Dut(g) — 0, (1)

Kde Out(g) := Der(g) / Inn(g), ¢ je inkluzivni zobrazeni a 7 je kanonicka projekce na
faktorprostor.

Chceme rozsitit algebru g pomoci algebry . K tomu ndm poslouzi zobrazeni 6 : h —
Out(g), po kterém chceme, aby to byl homomorfismus Lieovych algeber.

Ke kazdému takovému 6 lze zvolit fez o, t.j. linedrni zobrazeni (obecné to nebude
homomorfismus algeber) takové, 7e m oo = 6.

0 ¢(g) ! g Der(g) —— Out(g) — 0

Ptestoze o neni obecné homomorfismus, a tedy negeneruje reprezentaci na g, mizeme
derivace ztzit na centrum (t.j. o(-) [¢()) vytvorit tak h-modul z €(g). Navic tento b-
modul nezavisi na volbé fezu o, protoze rizné fezy se lisf pouze o vnitini derivaci, ktera

je na centru nulova. Podobné ¢ast o kterou fez o neni homomorfismus také vymizi na
centru. Mame tedy reprezentaci py na €(g).

po(@)o = ()0, ()
pro libovolny fez o.

Pro kazdy fez o jde definovat zobrazeni d, : C"(h, g) — C™*1(b, g) pomoci ,kohrani¢niho
predpisu®.

n

(dy w) (o, - -, ) = Z(—l)ia(xi)w(xo, By )

=0
+ Z(—l)”jw([xi,xj], oy - - - 7:%1', ce 7JA7]'7 PN ,l’n).

i<j

Toto zobrazeni nazveme operator pseudokohranice.
Zobrazeni d, je nilpotentni (t.j. di = 0) pravé tehdy, kdyz o je homomorfismus. V
kazdém piipadé, pokud se omezime pouze na formy s hodnotami v centru g, vSechna
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zobrazeni d, splynou do jednoho operatoru kohranice (znacit ho budeme d,, nebo dy) a
vytvoif nam komplex (C*(h,&(g)),ds), nebot o [¢(g) uz homomorfismus je.

1.2 Obstrukce rozsireni

Zobrazeni o sice obecné neni homomorfismus, ale miizeme ,zmérit", jak moc se od néj lisi.
Pro kazdou dvojici vektoru z, y z h musi totiz platit, ze o([z,y]) — [o(x), o(y)] je n&jaka
vnitini derivace. Pro kazdou o mizeme timto zpusobem zvolit v, : h A h — g, tak aby

lo(x),0(y)] — o([z,y]) =: ady, (zy) - (5)

Pomoci dvojice o a 7, Ize definovat algebru na € := b + g.

[(05 €1), (03 €2)] == (0 [en, e2]),

[(20),{0; )] := (0; 0(2)e), (6)
[(20), {y; 0)] == ([, y]: vo (2, )

Zbytek relaci se dodefinuje tak, aby bylo nésobeni linearni a antisymetrické. Zbyva
ovérit, zda plati Jacobiho identity pro rizné volby vektoru e; € g a x,y,2z € b.

e Jacobiho identita pro libovolnou trojici ey, es, e3 je splnéna, nebot plati i pro g.

e Jacobiho identita pro libovolnou trojici eq,eq, z je splnéna diky faktu, Zze o je
derivace.

e Jacobiho identita pro libovolnou trojici e, x, y je splnéna z definice 7, v (5).

e Jacobiho identita pro libovolnou trojici x,y, z neplati automaticky, ale je splnéna
pravé tehdy, kdyz d, v, = 0.

Definujme obstrukci f77% :=d, v, a prozkoumejme ji. Na zac¢atku vime, ze se jedné
3
o zobrazeni f7 : A\ h — g.

Véta 1.1. Pro v8echny fezy o a kompatibilni volby 7, ma f>7% hodnoty v €(g). A tedy
fre € C3(h, <(g)).

Proof. Plyne z definice 7, v (5). O
Véta 1.2. Pro vSechny fezy o a kompatibilni volby 7, je obstrukce 77 kocyklus.

Proof. Az na krok (%), kde je nutno rozepsat delsi algebraicky vyraz, je dikaz piimocary.

fa,'yg € Z3<b> 6(9)7%) < 0=dy fo-ﬁa =dyd, Yo = d, ds Vo

© (Y(z0, 1), y(xa, x3)] + cyklus v x, ..., z3.
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Jiz vime, Ze pro dané zobrazeni 6 jsou obstrukce vzdy kocykly. Nésledujici tvrzeni
ukazou, ze dokonce pokryvaji prave jednu tiidu v H3(h, €(g); pg).

Véta 1.3. Pro libovolnou kompatibilni dvojici o, 7, a libovolny dalsi fez o' existuje
7 € C?(h, g) kompatibilni s ¢’ a zachovavajici obstrukci, t.j.

fo'ﬁa _ fo,/7,y/
do Yo = dU’ 7/-

(7)

Proof. Pro o'(z) = o(x) + ada(y) lze volit

Y'(2,y) = v(z,y) + Az, 9]) + o(2)Aly) — o(y)A(z) + [A(z), A(y)],
=y(z,y) + do A(z,y) + [A(z), A(y)]

Véta 1.4. Pro dané 6 se libovolné dvé obstrukce f7171, 9272 1igi o kohranici.

Proof. Nejprve vyuzijeme pfedchozi véty a najdeme ~' takové, 7e for7 = f727" a poté
ukazeme, Ze 7' — 7, je hledana kohranice. O

Nyni vime, Zze vSechny obstrukce patii do jedné tiidy ekvivalence. Néasledujici véta
ukazuje, 7e tato tiida ekvivalence je timto zptisobem tplné pokryta.

Véta 1.5. Pro libovolnou obstrukci f77 a libovolny ekvivalentni kocykl g plati, ze g je
také obstrukce.

Proof. Ukdzeme, 7e g = fo7 8 kde 3 je prvek jehoz kohranice je rozdil ¢ — f. Snadno
se ukaze, ze 7, + [ je kompatibilni se o. ]

Jelikoz obstrukce pokryvaji pravé jednu kohomologickou t#idu, mizeme definovat
,globani obstrukei*

fo = 11771 (9)

a shrnout nase poznatky v nasledujicim tvrzeni.
Véta 1.6. Rozsifeni g pomoci h RN Out(g) existuje pravé tehdy, kdyz fy = 0.

Proof. Pokud rozsiteni existuje, odpovida mu jedna nulové obstrukce, takze tiida ekviva-
lence fy musi byt nutné nulova. Pokud je globélni obstrukce nulova mohu vzit libovolnou
obstrukci f?7 ta je nutné ekvivalentni 0 a pomoci postupu ve vété 1.5 najdeme nulovou
obstrukei. O]



Cohomologies of Lie Algebras and Extendability 119

2 Resitelné rozsireni

V sekci 1 jsme rozebrali, jak lze definovat struktura linearni algebry na direktnim souc¢tu
b+ g. V této sekci definujeme, co se mysli obecnym rozsifenim a poté se omezime na
rozsiteni reSitelna.

Definice 2.1. Rozsiteni algebry g o algebru b je usporadana trojice (i, &, ), takova, ze
1. m: & — b je homomorfismus algeber,
2. i:g — € je homomorfismus algeber

3. kratka posloupnost

0 g—tse Ty 0 (10)

je exaktni kratkou posloupnosti (SES).

Tato definice v sobé zahrnuje fakt, Ze g lze interpretovat jako idedal algebry &, nebot z
exaktnosti posloupnosti (10) plyne, 7e g je isomorfni jadru zobrazeni 7. Navic lze korektné
sestrojit homomorfismus algeber 6 : h — Out(g) predpisem 6(z) := i~ o ad,-1, o7, coz
neni nic jiného, Ze se vezme libovolny m-vzor x, najde se odpovidajici vnitini derivace a
ta se z0Zi na g.

Dusledky definice v prfedchozim odstavci, spolu s faktem, ze & je jako vektorovy
prostor isomorfni h-+g ukazuji, Ze postupem v sekci 1 opravdu vytvorime rozsireni algebry
g o algebru h. (Dokonce takto dostaneme, az na isomorfismus SES, vSechna rozsiteni.)

Resitelné rozsirent g je speciadlni piipad rozsiteni algebry, ve kterém € je teSitelna
a g je jejim nilradikdlem. Pozadavek nilradikality ndm d& nékolik podminek. Zaprvé
g musi byt nilpotentni, potom, jelikoz h ~ & /g, vyzadujeme po algebie b, aby byla
abelovska a do ttetice chceme, aby h piuisobilo na g nilindependentné. To znamena, ze
pokud zvolime libovolny nenulovy vektor x z dopliku g do €, tak vnitini derivace ad,
nesmi byt nilpotentni (jinak by x také patiilo do nilradikalu).

3 Klasifikace

Ted, kdyz vime, Ze rozsifeni nejsou nic jiného nez kratké exaktni posloupnosti (SES),
miuzeme je klasifikovat. Na mnoziné rozsiteni algebry g o algebru h se zavadi dvé relace
ekvivalence, prvni je definovina pomoci isomorfie SES a druhé, jemnéjsi, pomoci ekviva-
lence SES.

Definice 3.1 (Isomorfie SES). Dvé kratké exaktni posloupnosti (SES)
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jsou isomorfni, pravé kdyz existuje trojice isomorfismu (a, b, ¢) takovych, ze diagram

o B

0 Al B1 Cl 0
a b Is (12)
0 A, —22 B 5 C, 0

komutuje.

Pozadavky v definici lze samoziejmé zeslabit. 7 existence isomorfismu a, b plyne exis-
tence isomorfismu ¢, stejné jako z existence isomorfismu b, ¢ plyne existence a. P¥ipadné
takzvana véta o tfech morfismech fiki, ze pokud a,c jsou isomorfismy a existuje homo-
morfismus b, tak b je také isomorfismus.

Kromé isomorfie kratkych exaktnich posloupnosti se jesté definuje jejich ekvivalence.

Definice 3.2 (Ekvivalence SES). Dvé kratké exaktni posloupnosti (SES), pro které A; =
Ag a C7 = (s jsou ekvivalentni, pokud existuje homomorfismus = : B, — By takovy, jsou
isomorfni pomoci trojice (1,Z=,1). Neboli komutuje diagram

0 Ay B 0
1 = 1 (13)
0 L RN W T 0

Je vidét, Ze se jedna o silnéjsi podminku, nez isomorfismus, protoze fixujeme prvni a
tfeti homomorfismus na identitu.

Obé relace ekvivalence maji své vyhody. Hrubsi relace se pouzivala ve [2-4], nebot
plati nasledujici véta.

Véta 3.3. Méjme dvé fesitelna rozsiteni (i., €., 7.), kde € = 1,2. Algebry &; a &, jsou
isomorfni pravé tehdy, kdyz jsou rozsifeni (i., €., 7.) isomorfni jako SES.

Proof. Smér zprava doleva plyne z definice isomorfie SES. Pro opa¢ny smér musime nalézt
automorfismus a z definice (3.1), za predpokladu, ze zname b. Existence ¢ je pak zaru¢ena.
Vyuzijeme faktu, 7e obraz i.(g) je nilradikdlem g, protoZe uvazujeme fesitelna rozsiteni.
Nilradikal je jednozna¢né uréen a miZzeme tedy korektné slozit a := i;' o b o4y. Snadno
je vidét, ze levy ¢tverec v (12) komutuje. O

Pokud nés tedy zajimaji kolik mame tiid neisomorfnich algeber, jez jsou fesitelnymi
roz8ifenimi zadaného g, sta¢i nam zajimat se o neisomorfni SES. Na druhou stranu ek-
vivalence rozsifeni ndm pomoci nasledujici véty, kterou ponechame bez dukazu, umozni
zapojit kohomologické metody.

Véta 3.4. Pro pevné 0 : h — Out(g) jsou t¥idy neekvivalentnich rozsifeni (pokud alespon
jedno rozsiteni existuje) 1-1 k H(h, €(g), ps)-
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V této sekci jsme se dozvédéli, ze abychom klasifikovali feSitelné rozsiteni algebry g o
k vektori, je potfeba vzit vSechny homomorfismy 0 : a;, — Out(g), kde a; je abelovska
algebra o dimenzi k. Pro dané pevné 6 je potieba vybrat libovolny fez o : a — Der(g)
a nejprve zkontrolovat nilindependenci, t.j. podivat se, zda jediny nilpotentni operator v
o(a) je ten nulovy. Néasledné vybereme libovolné v : h A h — g kompatibilni podle vzorce
(5). Pokud je obstrukce f77 = 0 mod B3(a,€(g), ps), pak rozsifeni existuje a mnozinu
neekvivalentnich rozgiteni s danym 6 lze parametrizovat pomoci H?(a, €(g), ps)-

4 Hypotézy

V této sekci budeme prezentovat dvé hypotézy, které jsme vyvodili z vysledki z [2-4| a
dalsich, v nich citovanych, ¢lankii.

Hypotéza la Resitelné rozsiteni s maximéalni dimenzi je jednoznac¢né ve smyslu, ze pro
dany fez o existuje pravé jedno kompatibilni .

Hypotéza 2a Pokud pro dané 6 existuje alespon jedno rozsiteni, lze zvolit o tak, Ze jeho
hodnoty jsou v centru €(g).

Nyni miizeme vyuzit nasich definic a preformulovat nase hypotézy do fe¢i kohomologii
a kratkych exaktnich posloupnosti. V té ma prvni hypotéza obzvlasté jednoduchy tvar.

Hypotéza 1b Pro rozsifeni s maximalni dimenzi, které je dané zobrazenim 6, je H?(a, €(g), pg) =
0.

Hypotéza 2b Pokud pro dané 6 existuje alespoii jedno rozsifeni, existuje rozsireni (i, €, )
takové, ze m mé levou inverzi (takzvané splittable rozsifenf).

Nyni lze snadno odvodit hlubsi divod, pro¢ prvni hypotéza platila pro nase zkoumané
piiklady. K tomu pouzijeme vétu, kterou lze najit dokdzanou napiiklad v [1].

Véta 4.1. Necht a je nilpotentni algebra, p reprezentace této algebry na b. Potom jsou
nésledujici tii tvrzeni ekvivalentni.

1. H%a,b,p) = 0.
2. H'(a,b,p) = 0.
3. H"(a,b,p) =0, Vn € N.

Tuto vétu nyni pouzijeme. Algebra a bude abelovska algebra, kterou rozsitfujeme,
roli b bude hrat €(g) a reprezentace bude py. Ve vSech piipadech maximalniho rozsiteni,
které jsme zkoumali byl fez o vidy regularni, t.j. operatory o(z) pro z € a nemély
netrivialni spoletné jadro. Tim vice nemaji spoletné jadro, kdyz je ztuzime na €(g). A
tvrzeni, Ze o(a) [¢(g nemaji spoleéné jidro neni nic jiného nez preformulované tvrzeni, Ze
H°a,&(g),pg) = 0. A z vty 4.1 pak plyne, ze kohomologicki grupa H?(a, €(g), pg) = 0,
a to je tvrzeni nasi hypotézy.

7 véty 4.1 plyne také pomoci podobné tvahy, Ze pro libovolné nilindependentni reg-
ularni 0 rozsifeni existuje (H>(a, €(g), pg) = 0) a je jednozna¢né (aZ na ekvivalenci).
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Tyto tvahy nam toho samoziejmé nefikaji moc o tom, pro¢ bylo pro maximalni
rozsiteni 6 regularni. To je pfedmétem naSeho dalsiho zkoumani, coz plati i pro nasi
druhou hypotézu.
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Abstract. This article deals with the method of algebraic multigrid and its parallelization on
GPU. Algebraic multigrid is a sparse matrix iterative solver, which finds the solution by solving
also restricted versions of the original problem. The main difference from more widely known
geometric multigrid is that it can create the restricted problems without any knowledge about
the matrix origin and therefore it can be used for larger range of problems. The article farther
presents possibilities how to parallelize this algorithm on multicore CPU architecture and on
GPU. Finally it also shows speedup obtained by the GPU parallelization.

Keywords: GPU, Algebraic Multigrid, Parallelization

Abstrakt. Tento ¢lanek se zabyva metodou algebraického multigridu a jeji paralelizaci na GPU.
Algebraicky multigrid je itera¢ni metoda pro feSeni soustav rovnic s fidkou matici, vyuzivajici k
feSeni restrikce problému na mensf soustavy. Na rozdil od geometrického multigridu nepotiebuje
k vytvofeni podproblémi znalost puvodni dlohy, ze které matice pochézi, coz jej ¢ini mnohem
vice univerzalnim. Clanek se dale zabyva moznostmi paralelizace tohoto algoritmu a to jednak
pro vicejadrové proceseory a druhak pro grafické karty. V z&véru je pfedstaveno zrychleni,
kterého bylo paralelizaci na GPU dosaZeno.

Klicovd slova: GPU, Algebraicky Multigrid, Paralelizace

1 Introduction

Multigrid methods are a group of algorithms for solving differential equations using a
hierarchy of discretizations, they can be used as solvers as well as preconditioners. Con-
vergence analysis shows that many standard iterative solvers can quickly eliminate high-
frequency parts of errors, but not the low-frequency ones. The main idea of multigrid
methods is therefore to solve problem also on hierarchy of coarser grids, where formerly
low-frequency parts of error become high-frequency ones. The solution from coarser grids
can be then used to improve solution on the original grid, which should yield a signifi-
cant improvement in convergence speed. The typical application for multigrid is in the
numerical solution of elliptic partial differential equations in two or more dimensions.

Main class of this method (the so called geometric multigrid methods) has the issue
that coarser grids and transition operators between them must be provided as part of the
original problem and are defined based on the used discretization shceme and geometry.
This restricts the use of geometric multigrid as black-box solver and limits the types of
problems it can be used for.
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Algebraic multigrid methods (AMG), on the other hand, construct their hierarchy
of operators directly from the system matrix, and the levels of the hierarchy are simply
subsets or aggregations of original unknowns without any geometric interpretation. Thus,
AMG methods can be used as true black-box solvers for sparse matrices, however their
are mostly little less effective, that their geometric counterpart.

As with all iterative methods if solution of really big problems is desired some kind of
parallelization must be used. This article deals with parallelization of multigrid methods
on multi-core architecture with shared memory, specifically on multi-core CPUs and
GPUs. GPU (graphical processing unit) is a special piece of hardware designed to improve
visual quality of computer games. It has highly parallel architecture and outperforms
processors both in computational power and memory bandwidth, which makes it very
suitable for efficient numerical programming.

2 Algebraic multigrid

Main part of AMG is the creation of coarser version of the original problem. This is
achieved through following steps:

e Selecting variables which will form coarser grid
e Defining transition operators
e (Creating coarse problem matrix

Once the problem hierarchy is created the main iteration is same as in the case of ge-
ometric multigrid and so any standard multigrid cycle can be used to obtain the final
solution.

2.1 Coarse/Fine grid splitting

First part is to choose unknowns which will form the coarser grid. There are two require-
ments on the coarser grid:

1. Must correctly approximate the problem.
2. Must have substantially fewer points.

First requirement is however quite general so it will have to be explained a bit more.
For coarser grid to correctly approximate the finer one it is needed that all unknowns
which aren’t in the coarser grid can be approximately calculated from the ones that are
in the coarser grid. The problem matrix A describes how each of the unknowns depend
on it’s own value (we expect A to be M-matrix so the diagonal entry should be dominant)
and on the values of other unknowns (non-diagonal entries). Therefore it is logical the
expect that some good approximation of the missing unknowns can be obtained if one
knows the values of unknown which the missing ones depend upon. Let us define strong
dependence.
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Definition 1: Given a threshold value 0 < 6 < 1, the variable (unknown) u; strongly
depends on the variable u; if

—a; j > Omaxys(—a). (1)

This means that variable u; strongly depends on the variable u; if the coefficient a;;
is comparable in magnitude to the largest off-diagonal coefficient in the ith equation. We
can state this also from inverse perspective.

Definition 2: If the variable u; strongly depends on the variable u;, then the variable
u; strongly influences the variable w;.

Let us denote C' as the set of all unknowns which will be chosen for coarse grid, F' as
all unknowns that won’t and S; all unknowns, that strongly influence unknown ¢. Then
given the previous definitions we can more exactly specify coarse grid requirements as

1. For each unknown i € F', every unknown j € S; (that strongly influence i) either
should be in the C' or should strongly depend on at least one point in C'

2. The set of coarse unknowns C should be a maximal subset of all unknowns with
the property that no unknown ¢ € C strongly depends on any other unknown

jel.j#1
It is not always possible to enforce both these rules. In such cases we prefer to fulfill
the first one. While this choice may lead to larger coarse grids than necessary, experience

shows that this trade-off between accuracy and expense is generally worthwhile[1].
The basic coarsening algorithm can look as follows:

1. Evaluate all unknowns, based on the number of other variables they strongly influ-
ence

2. Take one with biggest score (in case there is more than one, select any of them)
and put in C'

3. Put all unknowns that strongly depend on it to F
4. Reevaluate all affected unknowns

5. Repeat from 2

2.2 Defining transition operators

When the coarse grid has been selected, the next goal is to define transition operators.
Starting with the interpolation one I (although physical grids may not be present, we
continue to denote fine-grid quantities by h and coarse-grid quantities by 2h) we require
that the ith component of I e be given by

h o €; ifieC
e S 2
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where the interpolation weights are defined, according to [1] by

ij + ZmeDf (Zk;eci amk)
@i + D nepw Qin

: (3)

wij =

where C; is the set of the coarse-grid unknowns j € C' that strongly influence i, D} is the
set of the neighboring unknowns k € F' that strongly influence 7, and D}’ is the set of all
neighboring unknowns that do not strongly influence <.

Restriction operator can be then constructed from the interpolation one by simple
transpose:

It = ()", (4)

and restricted matrix is produced by

Al = AN, (5)

2.3 Multigrid cycle

Main iteration multigrid cycle is same for both algebraic and geometric multigrid. It
expects to have the coarse problem matrices and transition operators defined and it finds
the solution of given problem by iterative process. Classical V-cycle multigrid cycle looks
as follows:

1. Start with initial approximate solution z{!

2. Relax (do few smoother iterations) the current solution to get new guess x"

3. Compute the fine-grid residual r* = b" — Alz"

4. Restrict residual to the coarse grid r?" = [2hrh

5. Solve A2he2h — p2h

6. Interpolate error correction to fine grid by e = I}, e*"

7. Correct current solution z"* = 2 + "

8. Repeat from 2 (if needed)

This was case of two grid hierarchy, if more grids are to be used, simply replace the direct
solution of the coarse-grid problem with a recursive call to this algorithm on all grids
except the coarsest one.

3 Multigrid parallelization

Main part of the computational time is normally spent in iteration cycle. This cycle as
was already described, consist of transition operators and some relaxation, which is the
most critical part of whole algorithm, therefore it’s parallelization will be described first.
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3.1 Relaxation scheme

As smoother we use either damped Jacobi method or Gauss-Seidel method. Jacobi
method is quite easy to parallelize as it doesn’t have any dependence in calculation of
new unknown values, each thread can be used to calculate any number of them. Gauss-
Seidel on the other hand is inherently sequential and thus cannot be directly parallelized.
Therefore it was needed to switch to its Red-Black version, which is easily parallelizable
even though it has the disadvantage, that it can’t be used for general matrices. This can
be solved by multi-color coloring, but that wasn’t implemented yet.

3.2 Transition operators

Simple Matrix-vector multiplication is used to convert quantities from one grid to another.
So it can be easily parallelized over unknowns,

void Mult(const mat & A, const arr & x, arr & res)

{

#pragma omp parallel for schedule(static)
for (int r = 0; r < A.getRowsCount (); r++)

{

res|[r] = 0;
for (int 1 = O; i < A.getRowSize(r); i++)
res[r] += A.getRowValue(r,i) * x[A.getCollndex(r,i)];

3.3 Coarsening

Most challenging part to paralelize is the coarsening algorithm. It needs to select many
coarse unknowns at once but also ensure that there aren’t strong dependencies between
them. 2 standard strategies exist.

Grid decomposition Which divides the grid to smaller ones and each thread splits
one of these sub-grids and afterwards boundaries are solved in some less parallel way. This
version is however not really suitable for architectures with large number of threads (e.g.
graphic cards), because then processing boundary points becomes the main computational
part.

Noise adding Adds random values to score of each unknown, which creates local
maxims, which can be chosen for coarse grid in parallel. However there are number of
disadvantages to this system:

e Obtained results are random and will differ each time.
e More complicated structure for storing point scores must be created.
o Still difficult to paralelize effectively.

Because none of the method seems to be easily usable this part of the algorithm wasn’t
parallelized yet and will be dealt with later if it starts to hinder the computations.
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4 GPU programming

GPU is shared memory parallel architecture so all threads that run on it use the same
memory. Unlike multi-core programming where there are typically 2-32 computational
cores running at once, GPU can spawn hundreds of concurrently running threads. These
threads are, however, not completely independent and all run the same function (called
kernel) so it is the SIMD (simple instruction multiple data) type of architecture.

There are several technologies, that allow programmer to create application for GPU,
but most important are [6]:

e OpenGL - Tt is cross-platform graphical APT so basic knowledge about computer
graphics is needed and general problems have to be inconveniently masked as a
graphical ones. This was the first way how graphics card could be used to solve
general problems, but nowadays it is once again used only for graphics.

e CUDA - Is a technology from NVidia company designed specifically for general
purpose computing on graphics cards, main disadvantage is that it only works with
NVidia graphics cards. Advantages are that it is being rapidly developed and there
exist a lot of example and documentation for it.

e OpenCL - Newest technology for general computation on graphics card, it is an
industry standard and so it can be used for almost all new devices ranging from
graphics cards to cell phones.

For the purpose of this article CUDA was used rather than OpenCL. However core parts
of both these technologies are very similar, the main difference is only in the naming of
the API functions.

4.1 GPU specifics

There are some key principles which must be taken into account when creating program
for GPU, which come from the type of calculations graphics cards were designed for. The
most important are:

Limited communication Computational threads form a two layer hierarchy. On
first one threads are grouped to blocks, and on second all blocks create the so called grid.
Number of blocks in the grid is completely up to the programmer and it should match
the size of the solved problem. Size of the block can be also chosen, however it must be
less than 513. The reason for this two level hierarchy is that only threads that are in
the same block can communicate between each other. This means that blocks have to be
completely independent.

Branching Threads on the GPU aren’t completely independent, groups of 32 threads
in the same block forms the so called warp. Threads in the warp has to always execute
same instruction at the same time or wait, so if the kernel contains divergent branches
and not all threads in the warp take the same one, complete computational time for each
thread will be equal to the sum of all taken branches.
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Coalescing Very important feature for numerical computation on GPU is the coa-
lescing. Graphics card have much bigger bandwidth than standard RAM when reading
blocks of data. More precisely when half warp (16 consecutive threads) try to read or
write continuous block of data it can be coalesced into single operation and so whole
block can be loaded more than ten times faster. Since most numerical applications are
limited by memory accesses, utilizing this feature is absolutely crucial when implementing
numerical problems on GPU. There are several ways how coalescing can be achieved even
when data aren’t naturally read in right order:

e Best solution, if it is possible, is to reorder data so that access to them will be
coalesced. One classic example is to use structure of arrays instead of array of
structures (i.e. group data by type, not by the thread they belong to).

e Threads in the same block can pre-fetch data to shared memory (shared within
block), even random accesses to this memory are very cheap. This is especially
useful when needed data form a continuous region, but are accessed randomly.

e If data are needed to be ordered differently in different kernels they can be dupli-
cated (unless memory is a strong concern) this can be especially useful in the case
of constant data (for example data describing mesh on which problem is solved).

Transports between GPU and CPU memory GPU don’t use same memory as
CPU, it has its own video RAM (VRAM). This isn’t issue when problem is completely
solved on GPU, but in case of converting only most computational demanding parts on
GPU and doing rest of the work on processor, constant copying can cause a significant
overhead.

4.2 GPU implementation

GPU implementation of the parallel algorithm was quite straightforward, only needed
change was that if Red-Black Gauss-Seidel method is to be used, data must be reorder so
that coalescing can occur during Red /Black phase (i.e. they must be reordered according
to colors). Apart from that all parts of algorithm were easily parallelized by the manner
that each unknown is handled by one thread and there is no communication between
threads. This means:

e In matrix-vector multiplication each thread multiply one row of matrix with the
given vector and write one value of final vector

e In Jacobi/Gauss-Seidel iteration each thread actualize one unknown

e In computation of residuum each thread computes one value of final vector (similar
to matrix-vector multiplication).

One notable thing is that GPU isn’t well suited for restriction operations like sum or
min/max search. Algorithm however needs to compute L2 norm of residuum which is a
sum type operation. To accomplish this efficient algorithm from [5] was used:
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__global ~ void Norm2Kernel(double xin, double % out, int N)

{
__shared  float sdata|[CUDA_ SUM BLOCK SIZE];

const unsigned int tid = threadldx.x;
sdata|tid] = 0;

for (int i = tid; i < N; i+=CUDA_SUM_BLOCK_SIZE)
{

}

__syncthreads ();

sdata|[tid] += in[i]*in][i];

for ( unsigned int s = blockDim.x/2 ; s > 0 ; s >>= 1 )
{
if ( tid < s ) sdata|[tid| 4= sdata|[tid + s];
__syncthreads ();

}

if ( tid = 0 ) out[0]= sdata|[0];
}

and residuum was calculated only once each 10 smoother iterations.

All these operations are relatively undemanding on arithmetic computations, so their
bottleneck is the memory bandwidth. Therefore coalescing became crucial for efficient
implementation. Fortunately apart from red /black reordering it was quite easy to achieve
it without too much added code complexity.

Also RAM/VRAM data transfers, don’t create any issue because whole multigrid
cycle is implemented on the gpu. So the problem is only once copied to VRAM and after
the computation final result is copied back.

5 Results

The computations were done on the system equipped by Intel Core 2 Duo 2.6Ghz CPU
and Nvidia Geforce GTX480 GPU. All simulations were computed in double precision.

First table (Tab 1) compares classical iterative solvers with both multigrid methods.
It clearly shows that multigrid methods are faster by the order of magnitude and that
geometric multigrid is faster than the more general algebraic one, but the difference isn’t
too big.

Second table (Tab 2) shows the same problem, this time it compares multigrid methods
implemented on CPU and GPU.

Last table (Tab 3) shows again comparison of CPU and GPU version of multigrid but
for a larger problem. Interesting fact, that should be noted here, is that GPU speed-up
is worse than for the smaller problem. This is strange because GPU normally performs
better for larger problems as the effect of GPU overhead becomes negligible. This issue
should be looked into in the future.
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| | Time | Rel. Speed-up |

Jacobi 1419 s 1

Gauss-Seidel 952 s 1.5
Geometric-Multigrid | 87 s 16.3
Algebraic-Multigrid 113 s 12.6

Table 1: Comparison of different CPU solvers. For the 2D Laplace equation with 65 000
degrees of freedom

] H Time ‘ Speed-up ‘

Geometric-multigrid 87 s
GPU Geometric-multigrid | 7's 12.4
Algebraic-Multigrid 113 s
GPU Algebraic-Multigrid || 18 s 6.2

Table 2: Comparison of multigrid solvers on CPU and GPU. For the 2D Laplace equation
with 65 000 degrees of freedom

Also because multicore architectures are quite common nowadays it would be good the
compare GPU version also with version parallelized over OpenMP or similar technology.
This was tested, however the obtained speed-up was quite insignificant (about 20% for 4
core CPU), so we suspect that there was some fundamental flaw and so we won’t compare
GPU implementation with this version until further testing.

‘ H Time ‘ Speed-up ‘

Geometric-multigrid 1218 s
GPU Geometric-multigrid || 143 s 8.5
Algebraic-Multigrid 1538 s
GPU Algebraic-Multigrid || 276 s 5.6

Table 3: Comparison of multigrid solvers on CPU and GPU. For the 2D Laplace equation
with 262 000 degrees of freedom

6 Summary

This article presented key principles of Algebraic multigrid and its parallelization as
well as basics of GPU programming. The algebraic multigrid algorithm was successfully
implemented and parallelized on GPU. It was proven that AMG is suitable for GPU
implementation and it can be accelerated more than five times. In the future we would like
to create also proper OpenMP implementation to compare it with the GPU version, test
different coarsening strategies and use the AMG solver in our program for incompressible
flow simulations.
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Abstract. This contribution deals with the numerical simulation of dislocation dynamics.
Dislocations are line defects in crystalline lattice causing the disturbance of the regularity of the
crystallographic arrangement of atoms. From a mathematical point of view, the dislocations are
defined as smooth closed or open planar curves which evolve in time. The motion itself is only
two-dimensional and is driven by the equation for the mean curvature flow. We describe the
evolving curves by parametric approach and the model is numerically solved it by means of semi-
implicit finite differences and flowing finite volumes method. However, numerical experiments
show this model exhibits unintended behaviour, since during the evolution, the grid points are
accumulated in certain segments. We overcome this problem by adding the tangential velocity
to the model, which does not affect the shape of the curve.

Keywords: dislocations, mean curvature flow, tangential redistribution

Abstrakt. Tento prispévek se zabyva simulaci disloka¢ni dynamiky. Dislokace jsou c¢arové
poruchy v krystalové mtizce zpasobujici nepravidelnost v uspofadani atomt. 7 mamematického
hlediska jsou dislokace popsény jako hladké uzaviené nebo oteviené planarni k¥ivky, které se
vyvijejl v ¢ase. Jejich pohyb je popsin rovnic{ pro pohyb kfivek fizeny jejich stf¥edni kiivosti.
Pohybujici se kfivky jsou definovany parametrickym popisem a model je numericky fefen semi-
implicitni metodou zalozenou na metodé& kone¢nych diferenci nebo plovoucich kone¢nych objemd.
Numerické experimenty vSak ukazuji, Ze tento model vykazuje defektni chovani v podobé toho,
7e v pribéhu casového vyvoje se uzlové body kfivky nahromad{ v jistych segmentech. Tento
nechtény jev je feSen dodanim te¢né slozky rychlosti do modelu.

Klicovd slova: dislokace, pohyb kfivek Fizeny stfedni kiivosti, redistribuce

1 Introduction

Dislocations are line defects of the crystalline lattice. They acts in such a way that the
crystallographic arrangement of atoms is disturbed along the dislocation line. Theoretical
framework about the dislocations theory is extensivelly discussed in literature such as |1,
2]. From the mathematical point of view, the dislocations can be represented as a closed
(inside the crystal) or open (ending on a surface of the crystal) curves, which can evolve in
time and space. At a certain physical conditions, e.g. at low homologous temperatures,
the dislocations can move only along so called slip planes, i.e. some crystallographic
planes with the highest density of atoms.

*This work has been supported by the grant Two scales discrete-continuum approach to dislocation
dynamics, project No. P108/12/1463 of the Grant Agency of the Czech Republic.
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2 Curve Evolution in Plane

The dimensionless mathematical model of evolving dislocation curve I'* can be described
by the equation for the mean curvature flow, which reads as

U:—kF+F, (1)

where v is the normal velocity, kr is the mean curvature and F is the force term acting
on the curve I'* in the normal direction. Our goal is to find a family {I" : ¢ € [0, T)0z]} of
closed or open curves in R?, whose normal velocity is proportional to the mean curvature,
i.e. satisfying the equation for the mean curvage flow (1). Nowadays, there exist sev-
eral approaches to treat the equation (1). Very popular methods come from the family
of interface-tracking approaches, such as the phase-field method [5, 6] or the level set
method [3, 4]. It is often reffered, that their main advantage is the ability to deal with
the topological changes like merging or splitting with almost no difficulties. Hovewer,
when considering to use such approaches for a dislocation dynamics problems, where
is often required a longer time evolution, one might to experience some difficulties in
the computational costs since in the case of a planar curve, it is required to solve the
two-dimensional problem to obtain the curve, which is an one-dimensional object.

Very fast method for the time evolution of curves is provided by the parametric (some-
times referred as direct or Lagrangian) approach [7]. The curve I'* can be parametrized
either by some fixed interval or directly by its length (so called arc-length parametriza-
tion). The parametric approach, hovewer, can not deal with the topological changes on
its own, thus it requires development of separate algorithms to treat such changes.

In this contribution, we focus on the parametric approach. In this case, the planar
curve I'! is given as the following set

" = {X(u,t) = (X1(u,t), Xou,t) : u € I},

where the curve is described by the spatially and time dependent vector function called

parametrization
X: I, xI, - R?

where I, = [0, 1] is the fixed interval for the parameter v and I, = [0,7] is the time
interval. The unit tangential vector t is defined as t = 0,X/|9,X|. The unit normal
vector n! is defined as n = 9,X*/|0,X|, where the Xt is vector perpendicular to the
X, and hence the relation t - n = 0 holds. The normal velocity v is defined as the time
derivative of X projected into the normal direction

0, X+

—9,X - .
v 8t ‘auxl

According to the Frenet formulae, one can determine the curvature kr from the following

relation B %L
1
—— Oyt = —kp——. 2
0. X] "0.X] @

Lin the case of closed curve, the outer normal vector is considered; in the case of open curve, there is
a selected pre-defined direction
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Differentiating the left-hand side of (2) and using the perpendicularity condition, one can
derive the formula for the curvature as the following

O X 0, X+

—kr = . .
T ouXP |a.X

To obtain the parametric equations, we can substitute the previous relations into the
equation for the mean curvature flow (1) and multiply it by n

Ouu X
|0 X2

+ F(X, t)ﬁ (3)

X = .
o 0.X]

The equation (3) is complemented with some initial condition
X|t:0 = Xini

and appropriate boundary conditions. In the case of a closed curve, the periodic boundary
condition is set
X|u:0 = X|u:1-

For the open curves we choose the fixed ends boundary condition, i.e.

X‘u:O = XO; X’u:l = X1~

3 Tangential Redistribution of the Grid Points

It is known when tracking a curve motion, the tangential terms do not affect its shape (see
[11], Proposition 2.4) and hence it is sufficient for the analysis to take into the account only
the terms in the normal direction to the curve. Hovewer, numerical experiments show that
the parametric equations (3) are not apropriate for the numerical computation. Since the
curve is discretized by a certain number of grid points, except the perfectly symmetric and
uniform situations with constant curvature, like a shrinking circle, we can observe that
during the evolution, the grid (discretized) points are accumulated somewhere and, on
the other hand, very sparse somewhere else. One possible way to overcome this problem
is to employ some kind of tangential redistribution, i.e. to complement the equation (3)
with a term standing for the tangential velocity

OuuX O X

0, X+
9.X12 T “a.x

+ F(X,t)

The term «, usually called redisribution coefficient, is a function of curvature (and hence
position) and time, thus o = a(k,t) = «(X,t). Generally, the tangential terms affect
the discretization points and move them along the curve without affecting its shape. If
correctly chosen, the numerical algorithm is more stable and has higher accuracy. On
the other hand, wrong choice of tangential terms can lead to the errors and in the worst
case, to the failure of the algorithm.

The problem of tangential redistribution has been extensivelly studied by many au-
thors. We use the curvature adjusted tangential redistribution proposed by D. Seviovic
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Figure 1: The impact of the tangential redistribution. On the left figure there is a case
without the tangential velocity, the curve on the right figure was computed with the usage
of the uniform redistribution.

and S. Yazaki in [12], in which one can also find a brief overview and a critical discussion
of redistribution methods. The impact of the tangential redistribution is shown on the
Figure 1.

According to the [12], the tangential component of the velocity has been proposed as
the soluton of the following problem

0u(¢k)a) = = (1) + o (oo (018 = o109, )

where 0; denotes the derivative with respect to the arc-length, i.e. 0,X = 9,X/|0,X|
and ds = |0, X|du. The quantity L is the curve length in time ¢ and w is a given positive
constant. The other factors in the problem (5) are as follows

pk)=1—-ec+evl—c+e?,
f=pER)k(k+F)—¢ k) (02k+ 0*°F + k*(k+ F)),

(FC0) = 7 [ Plstids

To get the unique solution « of the equation (5), the following additional condition must
be considered
<Oé(', t)) =0.

The function ¢(k) plays important role because it is proposed to control the redistribution
on the grid points. The special choice p(k) = 1 produces the uniform redistribution for
w = 0 and asymptotically uniform redistribution for w > 0. The function ¢ = |k| was
proposed for the crystalline curvature flow. Choosing € € (0,1), we obtain curvature
adjusted redistribution [12].

4 Physical Model

Generally, there are several possibilities how to describe the motion of dislocations. We
consider the model proposed by Kratochvil and Sedlacek [8], which enables to describe
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the dislocation motion law by the mean curvature flow
Bv = Tky + F, (6)

where the B denotes the drag coefficient equals to B = 107° Pa-s, T denotes the line
tension and F' is the sum of all forces acting on the dislocation except the dislocation
self-force, which is approximated by the mean curvature. The force term reads as the
following

F = b(Tapp + Twall + Tint — Tf?")7 (7)

where b is the magnitude of the Burger’s vector b — vector which represents the magnitude
and the direction of the lattice distorsion of dislocation in a crystal lattice. The particular
force terms are caused by various stresses

® T, is the shear stress applied on the crystal,
® T,ay is the stress from so called PSB channel, where the dislocation moves in,
® T, is the stress caused by mutual interaction between the dislocations,

e 7y, is the stress caused by crystal lattice resistance, which slows down the movement
of dislocation.

The value of 7,,, is usually chosen in the range of 20 — 70 MPa, the 74, is chosen as
5 MPa.

The quantity L is the dislocation line tension. This term is anisotropic and causes
straightening of the dislocation curve. According to the [1], it can be approximated as

L~ E®(1—2v+3vcos®(),

where E(© is the dislocation edge energy and v is the Poisson’s ratio. The quantity ¢ is
the angle between the Burger’s vector and the segment of the dislocation line.

The motion of dislocation itself is considered within co called PSB (persistent slip
band) channel [1, 2, 7]. Generally, it is a patterm consisting of ares with high densities
of dislocations (channel walls) and low densities of dislocations (channel itself). This
structure usually arises from cyclic loading of a crystal. The behavior of the channel
stress field 7,4 can be described by the one-dimensional function in the Figure 2.

The problem of mutual interaction was theoreticaly solved by Devincre [9], Devincre’s
fomula (8) provides the 3D stress tensor field 74 = Ti‘? at a location x generated by the
dislocation half line from the grid point A to infinity

G 1 L L 1 - .
A
" =1r R(U + R) {(b X Y)ity + (b x V)it — ——((b x £):Y; + (b x 1);Y;)
- 8
11—y %5 Ths R2 RU+R ||’

where the meaning of the parameters is as follows
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Figure 2: Wall force function, the x-axis is in nm, the y-axis is in N.

= R — Ut normal component of R to the dislocation segment,
shear modulus.

t  tangential vector of the dislocation segment,

R = (Ry, Ry, R3)T vector to the location x from A,
R =+/R?+ R3+ R3,

U =R-t,

Y, =R;+ Rt

. -

G

The stress tensor generated by a straight dislocation segment AB is then given as a
difference of tensors 74 and 75, i.e.

Tint = 77 — 78,

In this contribution, we consider the Burger’s vector b = (b,0,0)T parallel with z-axis
and slip planes, where dislocation moves, parallel with zz-plane in mutual distance h.
Generally, to compute the forces acting on the dislocation exposed to a stress field 7,
generated by other dislocations can be used so called Peach-Koehler formula [10], which
reads as

— -

Ent = (Tintb) X { (9)

Using the formula (9) greatly simplifies the problem, since for the considered model
problem of parallel slip planes and Burger’s vector parallel with the x-axis it is sufficient
to compute only the component 715 of the stress tensor 7;,;.
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5 Numerical Schemes

For the numerical computations we use the fully discrete semi-implicit numerical scheme
based on finite differences method

Xk+1 k—i—_l XL,(C
XiH _p s en Xug e op Xas
’ (X3 ,) TooXy) QX% )

where X¥ ~ X(jh, k7) for the spatial step k and the time step 7, Q(X) = /X7 + X3 + &2
serving as the regularization term since we want to avoid dividing by zero. The symbols

X% ;and X%, - denote the first and the second central differences. We also use the semi-

imphc1t scheme based on flowing volumes method proposed by D. Sevéovit and S. Yazaki
[12]

J_ k
k+3 e k1 k5 ~ektl _ ok
—a 7-)cj 1 ( + b )Xj X]+1 X +TF Q(Xk )’
where
k1 k+1
kL 2 1 o K+l 2 I a Pt _ ks ks
G Tk \ R T S T R R A
J Jj+1 J J Jj+1 J

for the quantity rf = ]Xf - X?_1| — line segment representing the control volume.

6 Computational Results

We present the results of the two numerical experiments , when we deal with the inter-
action of two dislocations on nearby parallel slip planes in the PSB channel. We suppose
there are two initial dislocation lines with fixed points in the channel walls, driven by
the forces (7) with opposite signs. Each dislocation is located in a different slip plane h
apart.

In the first experiment on the Figure 3, the distance between the slip planes is h = 65
nm. The interaction force is attractive and speeds up the motion. When the dislocations
overlap, the interaction force become repulsive. In this case of a relatively long distance
h, the force generated by channel walls and applied stress is greater than the repulsive
force and the dislocations continue to glide.

In the second experiment on the Figure 4, the distance between the slip planes is
h = 35 nm. The interaction force also attracts the dislocations. However, since the
slip planes distance is smaller, the interaction force is bigger and when overlapping, the
repulsive force stops the movement at a certain position and the dislocations remain in
steady state.

7 Conclusion

We have presented the mathematical model of evolving curves based on the parametric
approach. The discussed disadvantage of this approach was treated by adding the tan-
gential velocity to the model, which proved to be very useful technique for stabilizing the
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algorithm. We have also introduced the physical model of evolving dislocations based
on the equation for the mean curvature flow and described several force terms acting
on the dislocations. The presented results of numerical simulations show the motion of
dislocations in PSB channel and their mutual interaction.
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Figure 3: Time evolution of two dislocation curves with the distance h = 65 nm. During
the passing, the dislocations slightly change their shape. All axes are in nm.
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Figure 4: Time evolution of two dislocation curves with the distance h = 35 nm. At
a certain position, the repulsive force is too high and the dislocations stop moving. All
axes are in nm.
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Abstract. We show that a number of realistic financial time series can be well mimicked by
multiplicative multifractal cascade processes. The key observation is that the multi-scale be-
havior in financial progressions fits well the multifractal cascade scaling paradigm. Connections
with Kolmogorov’s idea of multiplicative cascade of eddies in the well developed turbulence are
briefly discussed. To put some flesh on a bare bones we compare volatility time series for S &
P 500 stock index with a simulated multiplicative multifractal cascade processes. Qualitative
agreement is surprisingly good. Salient issues, such as Codimension functions or Multifractal
Diffusion analysis and its role in scaling identification are also discussed.

This article has been presented and is part of proceedings of the International symposium on
complex systems held in Prague, 10.-13. September, 2013.

Keywords: Multiplicative cascades, Rényi entropy, Multifractal volatility

Abstrakt. Znacna ¢ast redlnych ¢asovych fad mutze byt dobfe popsana procesy zaloZenymi na
multifraktalnich kaskddach. Klicové pozorovani je, ze vice-8kalové chovani pfi vyvoji ¢asovych
fad se shoduje s koncepci multifraktdlnich kaskdd. V ¢lanku jsou také diskutovany spojitosti s
pivodni Kolmogorovou myslenkou multifraktalnich kaskad jako sobé-podobnych turbulenénich
vird. Pro ilustraci tohoto p¥istupu srovndme Casovou fadu volatility burzovniho indexu Standard
and Poor’s 500 (S&P 500) s ¢asovou fadou, ktera byla vytvorena jako multifraktélni kaskada.
Kvalitativnni shoda téchto dvou fad je velmi dobra. Dalsi typické problémy, jako nap¥. multifrak-
talni kodimenze nebo metoda MF-DEA pro urceni 8kalovacich exponentt jsou také diskutovany.
Tento ¢lanek byl prezentovan a je obsazen ve sbornfku konference International symposium on
complex systems held in Prague, 10.-13. September, 2013.

Klicovd slova: Multiplikativni kaskddy, Rényiho entropie, Multifraktaln{ volatilita
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Abstract. Diffusion-driven (or Turing) instability of the standard reaction-diffusion system is
only achievable under the well-known and rather restrictive conditions on both the diffusion
rates and the kinetic parameters. In this study we generalize the standard model by letting
the reactants bind to a substrate and investigate the influence of such binding on the Turing
parameter space. The idea that binding of the self-activator to a substrate may effectively
reduce its diffusion rate and thus destabilize a steady state that would otherwise be stable was
formulated in an article by Lengyel and Epstein [4], where the authors reduce the original system
of three linear partial differential equations to a two-dimensional reaction-diffusion system under
the assumption that the bound state evolves on a fast timescale. We, however, analyse the full
system outside this limit. Qur results obtained from the full model are in agreement with
the results by Lengyel and Epstein [4] in the sense that Turing instability does not require
the reactants to diffuse at different rates. We show that, unlike the reduced system, the full
system allows relaxing the standard kinetic constraints on Turing instability, particularly two
self-activators to generate a pattern.

Keywords: Diffusion-driven instability, interacting substrate

Abstrakt. Difuzi zplisobené (neboli Turingovy) nestability standardniho reakéné-difuzniho sys-
tému lze docilit pouze za znadmych a pomérné restriktivnich podminek jak na difuzni konstanty,
tak na parametry chemické kinetiky. V tomto p¥ispévku uvazujeme o néco obecné&jsi model
sestavajici ze dvou chemickych latek, které difunduji a navzajem spolu reaguji, pficemz jedna z
nich se navic navazuje na nepohyblivy substrat. Nésledné studujeme vliv rychlosti navazovan{
na velikost Turingova prostoru. Myslenku, Ze navazovani na substrat miZe snizit efektivni
rychlost difuze a tim destabilizovat jinak stabilni stacionarni stav, zformulovali jiz Lengyel a
Epstein 4] a toto tvrzeni demonstrovali na systému dvou reakéné-difuznich rovnic, ktery ziskali
asymptotickou redukci ptivodntho systému tii rovnic za predpokladu, Ze kinetika navazovani je
vyrazné rychlejsi nez ostatni déje. V tomto ¢lanku analyzujeme ptvodni (neredukovany) systém,
coz nam umoZni popsat chovani, které pomoci redukovaného systému nelze postihnout. NaSe
poznatky jsou v souladu s vysledky, které obdrzeli Lengyel a Epstein [4] v tom smyslu, Ze pro
vznik Turingovy nestability neni poti¥eba, aby chemické latky difundovaly s rozdilnou rychlosti.
Navic dokézeme, Zze na rozdil od redukovaného systému lze v tom neredukovaném rozvolnit i
podminky na kinetické parametry. Jako ilustraci dokladame piiklad systému obsahujictho dvé
sebeaktivujici latky, ktery pro vhodnou volbu parametri vykazuje Turingovu nestabilitu.

*Results contained in this article were presented at the conference BIOMATH 2013 in Sofia, Bulgaria
and the article is going to be submitted to The Bulletin of Mathematical Biology. We are grateful for
being supported by the grant SGS12/198/OHK4/3T/14.
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Summary

Diffusion-driven instability is an interesting phenomenon that was first formulated by
Alan Turing [8] in 1952. The idea that diffusion can destabilize a system and generate
a stationary pattern, i.e. a spatially non-homogeneous stationary solution, seemed to be
revolutionary and inspiring for many researchers. From the mathematical point of view,
a typical setting for such a study consists of a system of two reaction-diffusion equations
that describe the time evolution of concentrations of two chemicals that both participate
in a chemical reaction® and diffuse. In order to distinguish instability caused by diffusion
from other types of instabilities, we assume that the trivial steady state of the system of
ordinary differential equations

Uy = fuu + fvvu

_ (R)
Ut = G, U + g,

that describes the time evolution? of concentrations u and v of two chemicals that only
react but do not diffuse, is asymptotically stable. Additionally, if the corresponding
system of partial differential equations

Uy = Dquu + fuu + fvva

RD
Uy = DUAQ:U + gyt + gy, ( )

that has been derived from (R) by adding diffusion terms, is unstable, the system (RD) is
said to exhibit Turing instability or diffusion-driven instability (DDI) |7, 2, 4, 6, 5|. The
set of parameter values that permit Turing instability (meaning that for a suitable choice
of domain the system exhibits DDI) is often referred to as Turing parameter space.

In this paper we consider a generalization of the system (RD) where we let one of the
chemicals bind to a substrate, for example to an extra-cellular matrix. We distinguish
two states of the chemical that is allowed to bind: bound and unbound. Let us denote the
concentration of the binding chemical in the unbound state by u and its concentration in
the bound state by w. The concentration of the second chemical that is not allowed to
bind is denoted by v. The corresponding system of reaction-diffusion equations reads

Uy = DuAa:u + (fu - hu)u + fvv - h’wwa
v = DyALv + guu + gy, (RDB)

wy = hyt + hyw.

Note that the third equation in (RDB) governing the time evolution of w does not
contain a diffusion term. This is an important fact that enables two chemicals with
identical diffusion rates to generate a pattern (see Klika et al. [3] for further reference). On
the other hand, Mincheva and Roussel [6] have shown (using a graph-theoretic method)

'In this paper we restrict ourselves to linear reaction kinetics that allows us to use simple algebraic
tools for stability analysis.

2We denote by uy, resp. v, the derivative of u, resp. v, with respect to t and by A, the laplacian
with respect to x.
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that if all the equations of the system contain a diffusion term, then the diffusion rates
must be different in order for a pattern to emerge.

The system (RDB) has already been studied by I. Lengyel and I. R. Epstein [4] who
consider an asymptotic reduction of the full model to a system of two reaction-diffusion
equations. We provide an additional discussion on consistency of this reduction with the
asumption of asymptotic stability of the trivial steady state of the corresponding system
(R) without diffusion terms.

Furthermore, we employ methods of linear stability analysis to derive necessary and
sufficient conditions for DDI in the full system (RDB). We show that, as opposed to the
standard system (RD) |7, 2] and the reduced system considered by Lengyel and Epstein
[4], the full system allows DDI even if the parameters f, and g, are both positive. This
is a significant relaxation of the constraints on chemical kinetics. We also confirm the
results by Lengyel and Epstein in the sense that in the full system RDB equal diffusion
coefficients do not preclude DDI. Moreover, if DDI occurs for a particular choice of
parameters with D, = D, it automatically occurs for the same kinetic parameters and
diffusion of any magnitude, as long as the diffusion constants are identical. We remark
that identical diffusion constants are in contradition with DDI in the standard system
(RD), see |7, 2] for further details.

To illustrate the results and to show that no fine parameter-tuning is needed in order to
find an example of a system that exhibits Turing instability and violates the conditions
for DDI in standard reaction-diffusion equations without binding [7, 2|, we perform a
simple sensitivity analysis of a concrete system with D, = D,, f, > 0 and g, > 0. We
also plot a few slices of the Turing parameter space that were obtained numerically.

To summarize, we have shown that binding of the reacting chemicals to a non-diffusing
substrate can significantly relax the constraints that DDI imposes on the model param-
eters. In particular, a system with binding allows two chemicals that diffuse at the same
rates as well as two self-activators to generate a pattern due to diffusion.
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Abstract. The article focuses on the application of a segmentation algorithm based on the
numerical solution of the Allen-Cahn non-linear diffusion partial differential equation. This
equation is related to the motion of curves by mean curvature. It exhibits several suitable math-
ematical properties including stable solution profile. This allows the user to follow accurately
the position of the segmentation curve by bringing it quickly to the vicinity of the segmented
object and by approaching the details of the segmentation curve. The purpose of the article is to
indicate how the algorithm parameters are set up and to show how the algorithm behaves when
applied to the particular class of medical data. We describe in detail the algorithm parameters
influencing the segmentation procedure, namely the force term allowing the segmentation curve
to quickly move towards the segmented object, choice of the gradient control and the stopping
criterion. The algorithm itself is easy to implement and its parallelization is possible. The
left ventricle volume estimated by the segmentation of scanned slices is evaluated through the
cardiac cycle. Consequently, the ejection fraction which serves as a medical information is eval-
uated. This approach allows the user to process cardiac cine MR images in an automated way
and represents, therefore, an alternative to other commonly used methods. Based on the phys-
ical and mathematical background, the presented algorithm exhibits the stable behavior in the
segmentation of MRI test data, it is computationally efficient and allows the user to perform
various implementation improvements.
This article has been published in Kybernetika ([1]).

Keywords: cardiac MRI, co-volume method, image segmentation, level set method, PDE

Abstrakt. Tento ¢lanek se zabyva aplikaci segmentac¢niho algoritmu zalozeném na numerickém
feSeni Allenovy-Cahnovy parcidlni diferencidlni rovnice. Pomoci této rovnice lze popsat po-
hyb kfivek, ktery je zavisly na jejich kiivosti. Tato vlastnost dovoluje pohybovat segmentacn{
kfivkou tak, Ze popiSe segmentovany objekt. Hlavnim obsahem této prace je popis vypocetnich
parametrd, jejich nastaveni a vlastnosti algoritmu aplikovaného na segmentaci medicinskych
dat. Podrobné jsou popsany parametry ovliviujici pritbéh segmentace. Pouzity algoritmus je
aplikovan na segmentaci levé srdec¢ni komory ze série snimkt obsahujici cely srde¢ni cyklus.
Diky tomu lze vy¢islit tzv. ejekéni frakei. Tento pristup uzivateli umoznuje zpracovat snimky
z magnetické rezonance automaticky a mize slouzit jako alternativa ke stavajicim segmentacénim
algoritmim.
Tento ¢lanek byl publikovan v ¢asopise Kybernetika ([1]).

*This work has been supported by the grant No. SGS11/161/OHK4/3T/14.
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Abstract. Processing data in distributed environment has found its application in many fields of
science (Nuclear and Particle Physics (NPP), astronomy, biology to name only those). Efficiently
transferring data between sites is an essential part of such processing. The implementation of
caching strategies in data transfer software and tools, such as the Reasoner for Intelligent File
Transfer (RIFT) being developed in the STAR collaboration, can significantly decrease network
load and waiting time by reusing the knowledge of data provenance as well as data placed in
transfer cache to further expand on the availability of sources for files and data-sets. Though, a
great variety of caching algorithms is known, a study is needed to evaluate which one can deliver
the best performance in data access considering the realistic demand patterns.

Records of access to the complete data-sets of NPP experiments were analyzed and used as
input for computer simulations. Series of simulations were done in order to estimate the possible
cache hits and cache hits per byte for known caching algorithms. The simulations were done
for cache of different sizes within interval 0.001 - 90% of complete data-set and low-watermark
within 0-90%. Records of data access were taken from several experiments and within different
time intervals in order to validate the results. In this paper, we will discuss the different data
caching strategies from canonical algorithms to hybrid cache strategies, present the results of
our simulations for the diverse algorithms, debate and identify the choice for the best algorithm
in the context of Physics Data analysis in NPP. While the results of those studies have been
implemented in RIFT, they can also be used when setting up cache in any other computational
work-flow (Cloud processing for example) or managing data storages with partial replicas of the
entire data-set.

Keywords: data transfer, cache, optimization, algorithm

Abstrakt. Zpracovani dat v distribuovaném prostiedi nachazi své uplatnéni v mnoha oblastech
védy (napf. v jaderné a Casticové fyzice (NPP), astronomii, biologii). Efektivni pienos dat mezi
sitémi je nedilnou soucésti takového zpracovani. Implementace strategii keSovani v softwaru pro
pfenos dat a v nastrojich, jako je napi. Reasoner for Intelligent File Transfer (RIFT), ktery byl
vyvinut v ramci experimentu STAR, miize vyrazné snizit zatizeni sité a ¢ekaci doby vyuzitim
znalosti o pivodu dat, stejné jako data v pfenosové mezipaméti, k dal§imu rozsifeni dostupnosti
zdrojti souborti a dat. PfestoZe je znamo velké mnozZstvi riiznych keSovacich algoritmi, je nutné
prozkoumat a vyhodnotit, ktery z nich mtze podavat nejlepsi vykon v pfistupu k datim pii
zvazeni realistickych modeld pozadavki. Zéznamy o pfistup do kompletnich datovych sad ex-
perimentd v NPP byly analyzovany a pouzity jako vstup pro poéitacové simulace. Rady simulaci
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byly provedeny za tcelem odhadu moZnych zasahi kese a zasahti keSe na bajt pro zndmé algo-
ritmy. Simulace byly provedeny pro cache riznych velikosti v intervalu 0,001-90 V tomto ¢lanku
budeme diskutovat rtizné strategie keSovani dat, od kanonickych algoritm® po hybridni keSo-
vaci strategie, budeme prezentovat vysledky nasich simulaci pro rizné algoritmy, rozebereme a
uréime vybér nejlepsiho algoritmu v souvislosti s fyzikdln{ analyzou dat v NPP. Vysledky téchto
studii byly zaclenény do RIFT, mohou vSak byt pouzity také pro nastaveni cache v jakémkoli
jiném vypocetni prostfedi (napi. zpracovani v cloudu) nebo fizeni datovych alozist s ¢asteénymi
replikami celé sady dat.

Klicovd slova: pfenos dat, mezipamét, planovani, algoritmus

1 Introduction

Efficient usage of available cache space is important for transferring and accessing data in
computational grids. Though, a great variety of caching algorithms is known, a study is
needed to evaluate which one can deliver the best performance in data access considering
the realistic demand patterns.

Cache cleaning algorithms can be applied to keep in the cache of data-transfer tools files
that may be reused. The size of those cache is small (several percent of the entire dataset)
and the clean up has to take place regularly to make space for further transfers. Another
task can, for example, be to delete a part of local data replica if no longer in use or
requested. The problem posed by cache cleanup is to select and delete files which are the
least likely to be used again. An investigation to find the most appropriate algorithm is
required.

In this study, all the caching algorithm were implemented following the concept known
as "water-marking". Water-marking is an approach where thresholds are set for the
cache cleanup starts and stops. It considers the current disk space occupied by the data
in cache and the high-mark and the low-mark for cache size are externally set up and
can be adjusted as needed. When the used cache size exceeds the high-mark, the cache
clean-up starts, and files are deleted until the used cache size gets below the low-mark.
The time interval between clean-ups depends on combination of high/low marks, cache
size and data-flow.Therefore with watermarking concept more computational demanding
algorithms can be implemented as the cleanup may be independent of the data transfers.

2 Access patterns

Several data access patterns were extracted from log files of data management systems
at sites of HEP/NPP experiments in order to simulate caching. Three different access
patterns were used as input for our simulations:

STAR1: the pattern was extracted from Xrootd [8] logs taken from the STAR
experiment’s Tier-0 site of RHIC Computing Facility at Brookhaven National Lab-
oratory (RCF@QBNL), it consist of records made during a 3 months period (June-
August 2012) of all datasets available in STAR.
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Figure 1: Distribution of files by size for three datasetst: a - STARI1, b - STAR2, c -
GOLIAS.

STAR2: the pattern was extracted from Xrootd [8] logs of Tier-0 site of STAR ex-
periment (RCF@QBNL), it consist of records made during a 7 months period (August
2012 - February 2013) under similar conditions.

GOLIAS farm is a part of regional computing center for particle physics at the In-
stitute of Physics (FZU) in Prague, and is part of a Tier-2 site for the CERN/ATLAS
experiment. The facility also performs data processing for another experiment -
AUGER, which makes less than 1% of the total requests. The pattern was ex-
tracted from DPM [9] logs for a 3 months period (November 2012 - February 2013).

The usage of access patterns corresponding to different time periods and experiments
helps to verify the results of our simulations. As input of our simulations, we tried to
focus on a few characteristic access patter. The key parameters we came up with for
the three access patterns are given in Table 1. Both STAR access patterns have similar
parameters. It is noteworthy to mention that the first one was taken right before the
Quark Matter 2012 conference and the second one, right after. This is important as the
access to data is intensified before a conference and without verification, it would be
doubtful if our findings would be stable across time. The number of files requested only
once during the period, is less than 10% in both cases.

The FZU/GOLIAS access pattern is taken from another experiment with different
data-storage structure, DPM is used here within a Tier-2 data access context (user anal-
ysis). This access pattern is much less uniform and differs from the other two: the size
of files is not explicitly limited and can reach 18 GB, the number of requests for a file
varies from 1 up to 94260, with an average 5. 44% of files were requested only once.

When analyzing an access pattern one can subtract a set of unique filenames. It is a
set of all files requested at least ones during the period of consideration. The following
histograms at the Figure 1 represents the distribution of those unique files by size for
each data-set. Here one can see that filesize distribution at GOLIAS is more dispersed
than in STAR. Also, as it can be observed at the histograms, at STAR maximal filesize is
limited to 5.3 GB (the files of larger size are splitted into several files). This fact explains
the second peak at the histograms for STAR1 and STAR2 datasets. At GOLIAS there
is no limitation for filesize, to peaks at the histogram can be explained with the presence
of files with different types of data.

The timing characteristics of an access pattern can be pictured as a distribution of a
time interval between two consequent requests for the same file. This histograms are given
at Figure 2. In both STAR access patterns the distribution is close to log-normal with the
peak time interval corresponds to 24 hours. This can be explained by the users behavior,
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Figure 2: Distribution of time intervals between sequential requests for the same file.
This distribution helps to understand the timing characteristics of access. Three different
access patterns are presented: a - STARIL, b - STAR2, ¢ - GOLIAS.

Table 1: Summary of three user access patterns used as input for simulations. The
selection of two time sequence in STAR and one from a different experiment aims at
verifying stability of our result and findings.

STAR1 STAR2 GOLIAS

Time period months 3 7 3
Number of requests %108 33 52 21
Data transferred PB 20 80 10
Maximal number of requests for one file — 192 203 94260
Average number of requests per file — 19 15 5
Number of unique files %108 1.8 1.7 3.8
Total size of dataset PB 1.45 2 1
Maximal file size GB 5.3 5.3 18
Average file size GB 0.8 1 0.3

one can imagine a situation when a scientist checks a result of computational job in the
morning, edits the code and then resubmits the analysis on the same dataset, and the
new output will be available only next working day. The GOLIAS access pattern is less
regular. This can be explained with the large amount of jobs submitted automatically
with different periods, and probably smaller average time of job running.

3 Cache simulation
Selection of cache policy depends on the user access pattern and the disk space available.

The efficiency of caching can be estimated by two quantities, the cache hits H(1) and
cache hits per megabyte of data H,(cache data hits) (2):

Ncache
H=—" 1
Nreq - Nset ( )
Hd _ Scach,e (2)

S7'eq - Sset



Distributed Data Processing in High-Energy Physics 155

where N, is the total number of requests, S,., -the total amount of transferred data in
bytes, Nyt -the number of unique filenames, S, - the size of storage in bytes, Negcne -
the number of files transferred from cache, S.,cn. - the amount of data transferred from
cache in bytes.

By maximizing the cache hits H one reduces the number of files transferred from
external sources and thus reduces the overall make-span due to transfer startup overhead
for each file. By maximizing the cache data hits H; one reduces the network load, since
more data is reused from the local cache.

If the access pattern is completely random, the expected cache hit and cache data
hits would be equal to cache size/storage size, so it can be useful to compare the actual
cache performance to this estimation.

Altogether 27 different caching algorithms were simulated. But the majority of studied
algorithms did not bring any improvements over the simplest one (FIFO). Only the
algorithms that appeared to be the most efficient are discussed in this paper:

- First-In-First-Out (FIFO): evicts files in the same order they entered the cache.
Performance of this trivial algorithm provide a good comparison benchmark against
more sophisticated ones which can demand significant computational resources.

(O Least-Recently-Used (LRU): evicts the set of files which were not used for the
longest period of time.

® Least-Frequently-Used (LFU): evicts the set of files which were requested less
times since they entered the cache.

* Most Size (MS): evicts the set of files which have the largest size.

+ Adaptive Replacement Cache (ARC)[5]: splits cached files into two lists: L1 -
files with access count = 1, and L2 - files with access count > 1. LRU is then ap-
plied to both list, the self adjustable parameter p = cache hits in L1/cache hitsin L2
defines the number of cached files in each list. The general idea is to invest more
into the list which delivers more hits.

* Least Value based on Caching Time (LVCT)|4]: Deletes files with the smallest
value of the Utility Function:

1
CachingTime x FileSize

(3)

Utility Frunction =

where Caching Time of a file F is total size of all files accessed after the last
request for the file F.

v Improved-Least Value based on Caching Time (ILVCT)[3]: Deletes files
with the smallest value of the Utility Function:
1 (1)
NumberO f AccessedF'iles x CachingTime x FileSize

where Caching Time is the same as for LVCT and Number Of Accessed Files
is a number of files requested after the last request for selected file.

Utility Function =
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4 Results

Three series of simulations with three access patterns were performed for each algorithm
(90 simulations in total for each algorithm):

e 10 simulations with cache size 1-90 % of storage with fixed low-mark 75% and high-
mark 95%. Those simulations aim to understand what would happen if we have
large storage cache. Those cases are aligned with a DPM and Xrootd use where
most (if not all) the dataset(s) are in the system.

e 10 simulations with cache size 1.2 - 0.0025% of storage with fixed low-mark 75%
and high-mark 85%. We used those simulations to understand the behavior of cache
cleanup if the cache size is by several orders less than the dataset size. This is in
fact a most common case for transfer cache on data transfer nodes.

e 10 simulations with fixed cache size 10% of storage,fixed high-mark 95% and variable
low mark within 0-90%. We performed those simulations to better understand the
effect of data retention on cache (delete the least in hope of re-use).

In order to compare one algorithm against another an average improvement can be
calculated in a following way:

n  walue2; —valuel;

, i=1 luel,
Average improvement = e (5)
n

where n is the total amount of simulations with equal parameters for both algorithms,
1 is the number of the simulation,valuel - cache hits or cache data hits of a reference
algorithm (FIFO), value2 - cache hits or cache data hits of a compared algorithm.

Table 2 contains the results of comparison of all the algorithms represented in this
paper against FIFO. Results of simulation series 1 and 2 were used to calculate the average
improvement (60 values for each algorithm). According our results, the LFU algorithm
does not bring any improvement over FIFO due to its well known flaw - it accumulates
files which were popular for a short period of time, and those files prevent newer ones
from staying in cache. The ARC algorithm was developed as an improvement to LRU,
and not surprisingly, it outperforms LRU by ~5% in cache hits and ~7% in cache data
hits. Therefore, LFU and LRU algorithms could be excluded from the further analysis
in our case studies.

The graphical detailed results of simulations for all 3 series are given at Figures 3-5.
The performance of FIFO and 3 algorithms appeared to be the most efficient (MS, ACR
and LVCT) is presented at the plots.

Difference between Tier-2 and Tier-0 access patterns leads to distinct cache perfor-
mance. Only the data dedicated for the ongoing analysis is placed at the Tier-2 site,
while at the Tier-0 site all the experimental data is stored. As a result — the access pat-
tern at the Tier-2 site has stronger access locality. STAR1 and STAR2 access patterns
correspond to Tier-0 site and GOLIAS to a Tier-2 site. Thus, any particular algorithm
at the plots delivers higher cache hits and cache data hits for GOLIAS access pattern
than for STAR1 and STAR2.
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Figure 3: Results of simulation. Performance of algorithms for cache of larger size can
be compared. For all of the simulations on this plot the following parameters were fixed:
low mark = 0.75, high mark = 0.95

The behavior of algorithms is similar within each dataset that is, their respective
performance ordering is the same. This observation implies that if one of the algorithm
appears to be most efficient for one of the datasets it is also the most efficient for the
other datasets. This statement is also true for the rest of simulated algorithms not
present on our figure. Though the communities represented by the STAR and GOLIAS
access patterns are somewhat similar, this result is slightly surprising as our case studies
represent two time sequence within the same usage and totally uncorrelated experiments.
It would be interesting to study those algorithms in a different experimental context
(outside the HEP/NPP communities) but this study is outside the scope of our paper.

The MS algorithm has shown outstanding cache hits, but the lowest cache data hits.
At the same time the LVCT has cache hits comparable to the MS while cache data hits
are 2% improved over the FIFO. This algorithm could be an optimal when the cache hits
is the target optimization parameter. The ARC algorithm has shown the highest cache
data hits for studied access patterns.

The dependence of algorithms performance on low mark is presented at Figure 5.
With higher low mark the number of clean-ups increases and that is why the difference
between algorithms becomes more notable. Performance of efficient algorithms (FIFO,
LRU, ARC and LVCT) increases steadily with the low mark. One should be careful when
setting up a cache low mark at a particular site, since a higher low mark can increase
cache performance significantly, but at the same time it can result in running cache clean-
ups too often, consuming significant computational resources (and potentially increasing
the chance to interfere with data transfers hence, degrading transfer performances if
delete /writes/read overlap).
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Figure 4: Results of simulation. Performance of algorithms for cache of smaller size can
be compared. For all of the simulations on this plot the following parameters were fixed:
low mark = 0.75, high mark = 0.85
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Figure 5: Results of simulation: dependence of cache performance on low mark. For all
of the simulations on this plot the following parameters were fixed: cache size / storage
size = 0.1, high mark = 0.95
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Table 2: Average improvement of algorithms over FIFO.
Algorithm cache hits cache data hits

MS 116 % -20 %
LRU 8 % 5%
LFU 27 % -18 %
ARC 13 % 11 %
LVCT 86 % 2%
ILVCT 28 % 2 %

5 Conclusion

Performance of cache algorithms implemented with watermarking concept was simulated
for a wide range of cache sizes and low marks. Three access patterns from Tier-0 and
Tier-2 sites of 2 different experiments were used as input for simulations. Regardless of
the cache size, Tier-level and specificity of experiment the LVCT and ARC appeared to
be the most efficient caching algorithms for the communities we investigated. While we
found the result surprising at first, we attribute this result to an access pattern which
is intrinsically similar in nature. An extension of this work could be the investigation
of this result in a different experiment context which is a work beyond our initial goal.
LVCT and ARC could certainly be safely implemented in tools such as RIFT.

e If the goal is to minimize makespan due to a transfer startup overhead the LVCT
algorithm should be selected.

e If the goal is to minimize the network load the ARC algorithm is an option.
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Abstract. This paper summarizes known facts about zero-range processes focused on conden-
sation phenomenon. A brief summary on Markov semi-groups is given to develop satisfactory
tools for building a Markov process on an infinite state space. Due to the known Markov gen-
erator, we are able to develop an appropriate Markov process and to find out its stationary
measures. Defining a condensation phenomenon in probability sense we are able to describe
phase transitions. Finally, we will give some insight into the dynamics of condensation.

Keywords: Condensation; zero range processes; interacting particle system

Abstrakt. Tento pifspévek shrnuje zékladni poznatky jevu kondenzace v zero-range procesech.
Teorie Markovskych semi-grup umoziuje vytvofit potfebné nastroje pro konstrukei Markovského
procesu na nekonecném stavovém prostoru a urceni staciondrni miry. Definovanim jevu kon-
denzace v pravdépodobnostnim smyslu, jsme schopni popsat fazové prechody odpovidajiciho
Markovského procesu a podat kratky piehled dynamiky kondenzace.

Klicovd slova: Kondenzace; zero range proces; interacting particle system

1 Introduction

We are interested in the conservative interacting particle systems which are Markov pro-
cesses with continuous time and discreet state space. The goal of the research is to study
traffic phenomena, and in this article, we focus on known facts about a condensation
phenomenon of the zero range process.

We will denote a state space as S = E*, where A C Z% and E will be a local
state space. For all x € A, n(x) will denote the number of particles occupying z, thus
n(z) € E will be local state of the system on a position x € A. Whole configuration
of the system is denoted by n = (1(x))zea. In order to simply but correctly outline the
process construction considered in section 2, we firstly consider the local state space to be
of finite size, i.e. £ =1{0,1, ..., 0maz}, Where 0,4, € N. And we assume product topology
on S, thus (S,0(S)) is a compact measurable space with Borel o-algebra.

161
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2 Interacting particle systems

2.1 Construction of the process and dynamics

We will use a canonical construction of the process. Population €2 is the set of all right-
continuous functions with left limits () on [0, 0co) with values in S, so called trajectories.
A random variable is projective mapping

YViQxRy= S Y(n(),t)=n(t),
o-algebra is a canonical one

F= Q) BY)=oltit>0).

te[0,00)

and we define canonical filtration (.E)te[o o) O (Q, F), which is the system of o-algebras
{Fi, t > 0} such that F;, € F, € F for all 0 < s < ¢t and for which Y(n(-),s) is
Fs-measurable.

To have defined Markov process on the state space S, we need either the system of
probability measures P,, or transition probability P(n, A)!, where n € S and A € o(S).
Using the transition probabilities or the family of probability measures respectivly, we
can define the remaining object by the following formula

Fi(n, A) = PplYi € A}, (1)

where Y; = Y(n(:),t) = n(t). It means, that the process Y which started in state n will
be in time ¢ in the set A.

Based on known probability measures P,, we define Markov process® as a quadru-
ple (2, (F:),Y,P,). Then the transition probabilities {P;,t > 0} defined by (1) form
(Markov)? semi-group of one parameter bounded linear operators on (Cy(S;R), || - ||),
where (Cy(S;R), || - ||) is Banach space of bounded continuous real functions on S with a
supreme norm.

An infinitesimal operator of a semi-group P, is defined by the formula:

£7n) = Jim, Js P(m, d&){(&) —f(m) _ i Ptf(n)t_ £(n) |

feD,,neS.

Domain D/ of this operator are functions for which the limit exits, and £ : D, +— Cy(S; R).
For every f € D,, function P, f is differentiable, hence we have got the evolution equation

d(Pf)

dt
for which function P,f is unique solution*. It is convenient to look on P, as a "time-
evolution" operator of observable f, which could be for example the number of particles

occupying position x: f(n) = n(x).

= L(Pf) = R(Lf), Pof = [, (2)

!'We assume homogeneous processes, and expect a homogeneous transition probability.

2Such quadruple must fulfil some assumptions imposed on its objects. Proper definition of the Markov
process can be found in every monograph concerning Markov processes. For example see [3], chp.3.1.

3"Markov" designates that the semi-group is conservative, normal, positive contraction semi-group.

4See chp. 2.2 in [3] for more information concerning infinitesimal generator and uniqueness theorems.
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We consider system without explosions, which means, that in any arbitrary bounded
time-interval only finite number of jumps of particles could happen. If the length of the
time-interval decreases to 0 we assume that only one jump happens. This one jump will
be considered as an "infinitesimal transition".

Let us denote by P(S) the space, which is defined as the totality of finite, countable
additive functions 7(-) on o(S); especially it consists of all probability measures. Spaces
(Cy(S;R), || - |]) and P(S) are naturally connected by the scalar product®

(f.m) = /S f(€)n(de) .

Thus, it could be shown, that the space (C,(S;R),|| - ||) is regarded as a subspace of P#,
i.e. a dual-space to P.

If we know the initial distribution 7 € P(S) of the system, the time dependent
distribution of the process denoted by 7P, € P(S) is uniquely defined through the formula

/Ptfdﬂ':/fd(ﬂpt), f €C(S;R).
s s

We are interested in the long-term behavior of the transition probability®. It requires
solving equation (2) to find out behavior of the observable f in time. However, that
problem can be transformed to the dual-space of measures, thus we are looking for the
long-term behavior of the distribution of the particles on the lattice; i.e. a stationary
distribution, such that

nPo=mn, Vt>0.

It is worth noting, that by integrating equation (2) through S with respect to some
stationary measure m € P(S), the left-hand side of the equation vanishes and we obtain
a new equation to be solved in the form

/L‘fdw:o, Vf € Co(SiR), (3)
S

where Cy(S; R) C C(S;R) denotes the set of cylindric functions.

2.2 Dynamics of particles

The infinitesimal operator (called Markov generator) for an interacting particle system
on a lattice with the additional assumption that particles do not appear nor disappear is
given by

Lfm) =Y clz.yn)lfn™") - fm)], feC(S;R),neS,

z,yeN

where ¢(z, y,n) denotes the infinitesimal transition rate with the meaning of the transition
of one particle from a position x € A to a position y € A with the current configuration

®More precise is to say, that they are connected by duality pairing.
6Which describes the long-term behavior of the system
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n. The c(x,y,n) is assumed’ to be non-negative, continuous in n, c(-,-,n) is assumed
to be irreducible®, and the total rate of particles jumping to a position y is uniformly
bounded; i.e. SUp,cp Y cp SUPyes ¢(@, Y, ) < oo. If A is a finite lattice, the infinitesimal
transition rates can be expressed as

Pi(n,n"7") =Py(Ys =n""Yn) = c(x,y,m)t + o(t) ,for t \, 0,

where n*7Y is the configuration with one particle less on the position x and one particle
more on the position y then the configuration 7 had.

The assumptions imposed on the infinitesimal transition rates ¢(x,y,n) defining the
infinitesimal operator £ are reasonable due to the fact, that £ generates strongly con-
tinuous Markov semi-group P, on Cy(S;R), which means, that P, maps C,(S; R) to itself,
being stochastically continuous. For S being a compact space?, Hille-Yoshida!® theorem
gives us the unique solution to equation (2); i.e. functions P,f € Cp, for all f € D,.

2.3 Canonical & Grand-canonical measures

For the finite sized lattice Ay, of size L € N, we have the corresponding state space Sy.
Considering the system is closed!!, the number of particles in state n,

So(m) =) nlx)EN,

TEAL

is conserved in time for every n € S, ie. > (Y(n(-),0)) = >, (Y (n(),t)),Vt > 0.
State space Sy, is composed of non-communicating subsets

SL,N:{TIGSL|ZL(T’) :N}v NE {Oala"'aL'nmax}-

This leads to non-uniqueness of the stationary measure on the whole state space. How-
ever, on each subset Sy n, the process is irreducible and have the unique stationary
measure fif, n, so-called canonical. All stationary canonical measures jz n are exactly
the extremal points of the set of stationary measures for a closed system!?,

[6 = {ML7N|N € {07 17 7L . nmax}}a

i.e. they are extremal points of convex hull of all stationary measures for the closed
system, they are called pure phases. On contrary, for an open system, the number of
particles is not conserved as they enter and leave the system and the process is irreducible
on S;, and have one unique stationary measure; meaning |/.| = 1.

"For the reasons behind these assumptions, see [7] Theorem 1.3.9.

8S0 that a particle from arbitrary position can reach every position within a finite time.

9This concept was covered by Ligget, for the proof, see [7].

100btaining Markov process from infinitesimal generator is nicely covered by Kuo in [6], chp.10.9. with
comparison to another approach using Kolmogorov equations and It6 theory.

I The particles in the system do not enter nor leave.

12For the more rigorous statement and its proof, see |7], proposition 1.1.8 .
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For the closed system, we can define one measure for the whole state space Sy, as a
convex combination of the canonical measures!'?

L'nmam
s =Z(L, )" Y N Z(L, N)prw
N=0
where Z(L,¢) = S y"wer ¢NZ(L, N). Measure pf is so-called grand-canonical measure.

It is easy to see that ppn(-) = ps(-| >0,() = N). Because e, < 00, it is well defined
for all ¢ € [0, 00).

For the system on infinite lattice, for instance consider A = Z¢, the set of the ex-
tremal stationary measures become more complicated due to uncountable state space.
Sometimes' there exists a one-parameter family of stationary measures p, for every
"density"® p € [0, Dmas], Where these measures are the only extremal measures, i.e.

[e = {/le|p € [0777ma$]} :

Parameter p could be comprehended in the similar way as in the finite system, i.e. as the
density of particles in system (% in the finite system).

We are interested, on the contrary, if for some p there exist more then one extremal
stationary measure (pure phase), then we say, that the system exhibit phase transition,
and if there is no extremal measure beyond a critical density'®, we say, that the system

is in condensation.

3 Zero-range processes

3.1 Definition and construction

Now we consider state space with the number of particles not bounded on each position,
i.e. the local state space E = Ny and a state space S = Nj.

We are interested first of all in zero-range processes. A zero range process is defined
by its infinitesimal transition rates c(x,z + y,n), which are dependent solely on the
configuration at the position x € A.!7 The transition means that the number of particles
n(x) on a position € A decreases by one with the rate g(n(x)) and the leaving particle
jumps to the position x—+y with probability p(y) of finite range, i.e. p(y) =0,|y| > R € N.
The infinitesimal transition rates are given by

c(r,x+y,m) = g(n(x)) - ply).

Note that we assume only translation invariant probabilities on the lattice A.

13For more information, see any book concerning statistical physic. Brief summary could also be found
in [5].

14Usually assuming certain monotonicity property, see [7], chp. I11.2 and for example see [1].

15Tn the sense of the number of particles on the position.

16Proper definition of critical density will be given later.

1"Not being concerned of the position, where the particle jumps in, but being concerned of the state
on the position the particle jumps from, gives the model its name - it has zero range of scope.
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Because of the state space not being compact, the construction of a Markov process
corresponding to a given semi-group of operators, as it was outlined in section 2.1, is not
true without any additional assumptions. Moreover, it is not obvious, if on such state
space with given infinitesimal generator there exists a semi-group of bounded operators
assigned to that generator.

However, it could be shown'®, that if we constrain the state space S on

S ={neNg[nll. < oo},

where ||9||a = >,cpn(2) a(x) and o : A — (0, 00) is some suitable function such that

R
D aly)<oo, > p)al+y) < Ma(z) Ve €A,
yeA y=—R

for some M > 0, and we assume that

ilelglg(k+1)—g(k)|=¢§<oo, g(k) > g(0) =0,Vk € N, (4)

then infinitesimal generator L:

Lfm) = clx,y,m)f(n"") — f(n)]

z,yEA

defined for Lipschitz functions f € Lip(S;R), generates semi-group P; of the operators
on Lip(S;R) with )
[Pf(m) = PLf(O] < e | — (o (5)

for all m,¢ € S and for all f € Lip(s; R), and where [ is Lipschitz constant for f.

It is worth to note, that P, is defined for f € Lip(S;R) ¢ C(S;R) and it is not
strongly continuous on C(g;R); however, the property (5) of the semi-group P, assures
that P, {Y; € S} = 1, thus being conservative and defining process Y (n(-),t) for n(-) € Q
and t > 0.

Since, in what follows, we will often consider only a finite lattice A, note that the zero
range process is in this case a countable state space Markov process and as such it is well
defined by rates only.

3.2 Stationary measures of zero range processes

Now we consider a finite lattice A, = (Z/LZ) with the periodic boundary; i.e. particles
jump from "the last position" to "the first position". It is known'®, that the zero range
process on S = N)* defined above has stationary product measures 15(-) = Tloea vo(2, ),
with one-point marginal

vy(r, k) = vy{n(z) = k} = ——<W(k)¢", (6)

18See Andjel [1], Theorem 1.4 .
19This basic result can be found for example in [1], [4] or [5].
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with weight W (k) = [, -5, fugacity ¢ € [0,00), and Z(¢) = 332, W (k)" as a
normalization constant. Fugacity is connected with the chemical potential a of the system
via the formula e® = ¢, thus being an "objective" variable. Then one-point marginals (6)
define the grand-canonical product measure ué and the corresponding canonical measures

given by pp n(-) = p5(-] 32, (-) = N) with arbitrary ¢ € [0,00) as

wi () = Z(%N) TT W () 6(, (), ), (7)

TEAL,

where 0(-,-) is Kronecker delta. For the quantitative description of condensation, we
define the expected particle density per position

p=Eun(x) =) kuj{n(z) =k} =) kvj(k) = R(9),

which is position independent and which is a function of fugacity ¢. We say, that the
system is at critical density if the fugacity goes to a critical value ¢, i.e.

will denote the critical density. The measures ,ué are well defined for all ¢ € D, C [0, 00),
which is determined by the radius of convergence of the series Z(¢). Often Dy = [0, ¢.),
and the range of R(¢) is D, = R(Dy) = [0,00), i.e. the critical density p. diverges®®. We
are more interested in the case when D, = [0, ¢.], and D, = [0, p.] for some p, < co. In
such case, the system exhibits condensation. It is achieved for slowly decaying tail of the
rates g(k) for large k, which introduces attraction between particles.

3.3 Generic model for condensation

Considering the rates of the following form?" (8), we can obtain a borderline for rates for
which condensation is observed: v < 1land b >0ory=1and b > 2

g(k):a—l—k—i,a,7>0,b€R, (8)
otherwise the condensation phenomenon does not appear. We will consider transition
rates of the form (8), however, following theorems were proved for general rates, which
are uniformly bounded away from zero and which are either uniformly bounded from
above or there exists limy_,~ g(k) in (0, co].

One would expect, that for a large system size L, N = |pL| — oo with a fixed particle
density p, the canonical measure should be close to the grand-canonical measure in some
sense. An important question arises, what happens with the grand-canonical measure if
the limit of canonical measures is considered under a particle density p > p..

20For example in the case of non-decreasing rates g(k); see [4].
ntroduced by Evans, see [4], studied further by Grosskinsky, see [5].
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The convergence of canonical measures pr,|,r to the grand-canonical product mea-
sure Vg(,) was proved?? in the weak sense, and later also the convergence in the norm was
proved?® when we eliminate the most occupied position in the system, i.e. arg max,ecx n(z).

The former result is based on the following theorem considering only the n-point
marginal and thus not consisting of the most occupied position.

Theorem 1. ** Let ®(p) be defined by

_ [ R7Y(p), forp<opc
@(p)_{ Ge;  for p = pe

Then the relative entropy of n-point marginals “ZLpLJ and Vg(p) asymptotically vanishes,
1.€.
lim H(NZ,LpLJ ’Vg)(p)) =0 )

L—oo

for every n € N and p € [0, 00).

The following result concers the most occupied position in the case, when the chosen
p is above the critical value p,.

Theorem 2. *° Let v} (k) have a monotonic decreasing power law tail (write v} (k) ~
k=) with b > 2 and finite first moment p.. Then for every p > p. the normalized
mazimum occupation number satisfies a weak law of large numbers, namely it converges
wn probability as

1
max 7(z) Hrolet), 1, for L — oo,

(p— pe)L zehy
where (p — pe)L is the number of all excess particles in the system.

So far we know, that the typical configuration in the limit L — oo has all positions
except one, which is randomly chosen, distributed according to vs,, and all excess particles
are gathered on the one position forming the condensate.

3.4 Relaxation dynamics of ZRP

In this section we briefly describe results of simulations. We are interested in the relax-
ation time needed for the system to relax into the stationary state. Also, we are interested
in dynamics of condensates; for the purpose of this work, we assume the rates g(k) to
be one of form (8), which are non-decreasing and allowing condensations. We start with
the finite number of positions, A, = {1,..., L}, with N € N particles. By analyzing the
normalization function Z(¢) and the particle density R(¢) near criticality?®, i.e. in the
limit ¢ — ¢., we could find out the critical density

{ oo for b <2
Pec =

1
—2 fOI'b>2

22For the proof see [5].

ZFor a proof see [2].

24Cite from [5], Theorem 5.2 .

25 (Cite from [5], Theorem 5.5 .

26By expanding proper hypergeometric function.
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The initial configuration of the system is set to be "uniform", meaning all positions
contain the same number of particles % = p > p. and the system contain (p — p.)L
excess particles. Each position containing at least a a-fraction of the number of all excess
particles, will be denoted as cluster. The coefficient « is from interval (0,1) and should
be small enough.

The behavior of the system can be divided into 3 phases as could be seen from Figure 1:

1. Nucleation - particles are gathering on few positions, so-called clusters. This phase
is very unstable (in the terms of time spent in this phase) and it is not physically
interesting.

2. Coarsening - clusters exchange their particles and grow at the expense of the smaller
ones, which finally leads to the saturation.

3. Saturation - when only one cluster survives with all (p — p.) L excess particles. This
is the stationary distribution for the finite systems

For a further description of these phases some natural assumptions are needed (they
arose from heuristic analysis of the process); the assumptions®” of separation of time scales
and independence of excess particles in the bulk express the average time a particle needs
to move from one condensate to another one and that all positions except the clusters
behave as a homogeneous medium, where excess particles move independently.

Based on these assumptions, it can be derived?®, that a typical condensate size grows
with time according to

1
m(t) ~t°,  where 8 € [5, 1].

As simulations demonstrate, clusters exchange particles until only few of clusters
survive. The saturation regime starts when only two clusters are surviving and exchanging
particles. We would like to know the dynamics of exchanging. Let us describe it by the
master-equation for condensate size m

1 1 1
Oualm,t) = ~qlm,0) |5 + | a0 = L0y gl L)y )
M M M M

where M = (p — p.)L are all excess particles in the system, g(m,t) is the probability to
find m particles on one condensate and M — m particles on the other one at time ¢.

For any initial condition the solution of (9) tends to the inverse binomial distribution
g*(m) = 1/(Y), with the two extreme occupation numbers m = 0 and m = M, which
are most probable in the limit L — co. Both with the probability 1/2 of occurring.

4 Discussion

The goal of this paper was to lay some basic facts about zero range processes as the base
for further research, to get familiar with the underlying Markov processes and to get some

2TFor a further explanation of these assumptions, see [5], chp. 6.2.1 .
Z8Gee [5).
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Figure 1: Relaxation dynamics in ZRP. This figure was taken from the [5].

insight into relaxation dynamics through simulations of zero range processes. This paper
does not aim to summarizes the all know facts, which is not possible on a few pages.
However, we restricted ourself on the periodic boundaries of lattice our motivation of this
research is comparison between this simple model with results from traffic data.
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Abstract. This paper introduces searching process as a means for analysis of discrete optimiza-
tion heuristic algorithms. Performance of a searching process on a task with finite number of
states is studied via Markov chain. Using this approach a thorough comparison of three different
time complexity measures, which are introduced in the paper as well, is performed. According
to the output of the measures on three different tasks the Qoo measure seems to provide most
reasonable results for heuristic performance analysis.

Keywords: Integer optimization, heuristic algorithm, time complexity measure, Markov chain

Abstrakt. Tato praca predklada prehladavaci proces ako prostriedok na analyzu heuristick-
ych algoritmov pre celodiselnti optimalizaciu. Vykonnost prehladévacieho procesu na tlohe s
konetnym poctom stavov je analyzovand s vyuzitim Markovovych retazcov. Tymto pristupom
je vykonané dokladnd analyza troch réznych mier ¢asovej naroc¢nosti, ktoré su taktiez prezento-
vané v praci. Na zaklade vystupov mier na troch réznych tlohach je doporuc¢ované miera Q)o,
ktoré sa javi, Ze poskytuje najprimeranejSie vysledky pre analyzu vykonnosti heuristiky.

Klicové slovd: Celoéiselna optimalizacia, heuristika, miera ¢asovej narocnosti, Markovov retazec

1 Introduction

Researchers dealing with optimization problems and /or developing their own optimization
heuristics are interested in time complexity measures since they can be used to determine
the difficulty of distinct optimization problems and also to evaluate the suitability of
given optimization heuristic for given task.

When dealing with discrete optimization task using a heuristic approach, the algorithm
searches through the space of feasible solutions, or states, to find any of the goal states,
which are optimal, or sub-optimal, solutions of the given problem. More formally, let U
be a non-empty set of states. Let G C U be a non-empty set of goals. Any state x € G
is called a solution of the searching task (U, G). Let N € N be the maximum number
of searching steps. Any algorithm generating the sequence of (xi,Xs,...,xy) € UV is
called a searching process (SP). The number of searching steps (time complexity of SP)
is defined as n = min{k € N|x; € G}, i.e. in the case of successful search. Should the
search end with a failure we set n = +oo.

*This paper has been supported by the grant OHK4-165/11 CTU in Prague
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To make a relevant example, a typical discrete instance of Optimization Problem (OP)
defined as the minimization of an objective function f: D — R where D = {x € Z" |
a < x < b} is an appropriate integer domain may be regarded as searching task (U, G)
where G = {x € U |f(x) < f,,t} with f,,x = min{f(x)|x € U}.

We may quite realistically suppose that the SP is produced by a stochastic algorithm and
the complexity n is a stochastic variable with the domain of Dgp = {1,2,..., N, +o0}
and densities p, > 0,Vn € Dgp satisfying > p, = 1. The value of p, for n < N may be
interpreted as the probability of finding the solution in n-th step of the SP. Moreover,
we may define pgue. = ZnN:1 pn as the probability of success and ps = 1 — pguce as the
probability of failure in a single run of SP. In the following we will be studying SP with
Psuce > 0 only.

2 Traditional Approach to Time Complexity Measures

To study the behaviour of a SP we may use three widely used, e.g. by Yang and Deb [1],
basic characteristics:

® Douce as reliability of the SP,

- N , :
e Doy D as mean number of searching steps in the case of successful

e En=p
search,

_ 1/2
e VDn = psu%;{;Q(ZnN:l (n—En)py) / as standard deviation of the searching step

number in the case of successful search.

To address the fundamental problem of measuring SP time complexity and thus perfor-
mance, as long as the SP has reliability of pg,... = 1, a very straightforward criterion of
mean number of steps En is frequently used. On the other hand, for 0 < pguec < 1 we
have to adjust the value of En due to decreased reliability of the SP.

An example of adjusted time complexity evaluation is based on the Feoktistov criterion

2],
En

FEO = (1)

Other authors use similar criterion as well, for example [6] defines time complexity mea-
sure SP1 as

psucc

ETS
SpPl=—4 (2)
Ds
where ps € (0,1] is probability of success and 75 number of evaluations for a run of an
heuristic algorithm. Therefore SP1 = FEO.

Following the traditional approach we are able to search for optimal value of FEO,

FEOqy =min{ FEO |N € N} , (3)

and more importantly to find the minimal number of steps that guarantee optimal quality,

NFEO,opt7
NFEO,Opt = mln{N c N | FEO = FEOOpt} s (4)

after which the SP should be terminated.
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3 Extended Searching Process Measure

The recommendation of optimal running and even restarting strategy may be performed
via analysis of the Extended Searching Process (XSP) time complexity analysis.

XSP is based on the idea of following trivial, but very practical habit — if the SP is
successful in the first run, then the searching task is done. Otherwise, should the process
end with a failure, we continue to repeat new runs until succeeding.

Let k € N be the index of an SP run. Let j = 1,2,..., N be the searching step index
inside the individual SP run. The distinct runs of SP are supposed to be independent
and, therefore, the XSP successfully terminates in the n—th step with probability

Pn = PN(k-1)+j = (1- psuCC)k_lpj : (5)

We can directly calculate
En* = Z np, = (6)
n=1

N succ 1 — Msucc succEn
Psuce (1 = Psuce) | P '

2
Psuce Psucc

(7)

(1 = Panee) ™! Z(N(k: —1)+j)p; =

1

Hence, the relationship between time complexities of the XSP and the original SP is

1— succ
En*=En+ N . — e (8)

psucc

Finally, this formula can be used directly to build up the quality criterion of XSP and,
as has been noted, of SP time complexity, the Q). measure:

Qc =En+ N (e — 1) - (9)

Despite using different statistical reasoning similar approach was proposed by [6]:

1- s
SP2 = (— ) FE . + ETS (10)
Ds

where F Fy,. is the maximum number of function evaluations and therefore: SP2 = Q).

It is obvious that the this criterion is quite similar to the Feoktistov’s one. In fact, there
is a very clear relation between the two. Starting from the inequality of n < N we obtain
En < N and then Qo > En+En-(p;l.—1) = En/psuec. = FEO . We can conclude that
Feoktistov’s criterion is the lower bound of the novel criterion of SP time complexity.

Again, this way we are able to search for optimal value of @),

Qoo,opt - mln{Qoo | N € N} 3 (11)

and more importantly to find the minimal number of steps that guarantee optimal quality,
Nopt7
NQ,opt = mlD{N eN | Qoo = Qoo,opt} ) (12)

after which the XSP should be terminated.
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4 Random Shooting Envelope Measure

Another measure can be based on the rather trivial idea of random shooting heuristic
algorithm. Let p be number of states and v be number of goal states. Then pyrr = v/ is
probability of goal hitting by a single random shot and number of evaluations has geometric
distribution with probability density function (PDF) and cumulative distribution function

(CDF) as follows:

Pn = puir - (1 — pHIT)n_l )
F,=1- (1 _pHIT)n .

Defining time constant as
1
T = >0,
— 11’1(1 — pHIT)

we can reformulate CDF of random shooting as

F,=1—exp(—n/T) .

(16)

Random shooting is the only one heuristic which can be restarted without any change
on CDF. That is why we have decided to compare random shooting CDF with CDF of

given searching heuristics.

First, we define upper bound (envelope) of given CDF by condition:

VneN: F, <1—exp(—n/T) .

After inequality rearrangement we obtain upper bound for time constant

n

: < —_—
Vn eN T_—ln(l—Fn)

which is the same as

T§min{_l |N e N} .

n
Il(l — FN)
This motivates us to define random shooting time:

N

Ths = ———
B “n(1 — Fy)

as third time complexity measure and to find its optimum value
TRS,opt = min{TRs | N € N}
and corresponding optimum interruption time as

NRS,opt = min{N e N ’ TRS = TRS,opt} .

(18)

(19)

(20)

(21)

(22)
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5 Finite Time Horizon

Let N be number of searching steps in as single run, H be the number of independent
serial runs, and M be constrain of total step number. In such case we have to minimize
failure probability

Prail = 1 - Psuce = (1 - FN>H (23)
subject to H- N < M. This constrained integer minimization task with two independent
variables H, N can be converted to

® = — Inpry = max (24)

with H = | M /N |. Therefore, we obtain one-dimensional optimization task with unknown
N as

®=—|M/N| -In(l— Fy)=max . (25)
If M is large, we can approximate
M M
@z—ﬁln(l—FN):T—RS:max . (26)

Therefore, maximization of ® is approximately minimization of Tgrs, which is equivalent
to random shooting envelope if M — oo, what can be written exactly as

M
Trs = lim — = min . (27)

M—o0
There is also relationship between ® criterion and (), measure as
Qu = sk sy~ sk, = (1 — Fy) = (1 — Fy)M/N (28)

where s; stands for failure probability s; =1 — Zi:l pr for 7 =0,1,..., N.

Therefore
lim — " _ Thg — mi (29)
]Wllnoo —1I1QM — Rs TR

Finally, we recognize the equality of finite time horizon, random shooting envelope, and

(s approaches which is a support argument for Trg complexity measure and it suppresses
individual examination of ® and (), measures.

6 Searching Process Analysis via Hypothetical Search-
ing Process

Having three time complexity measures F'EOqpt, Qooopt a0d TRs opt, We would like to
compare their properties via hypothetical and real-world scenarios. First, we define three
hypothetical searching processes with parameters ng € N and 0 < pguee < 1. Their
common characteristics are identical reliabilities pgyc. and maximum running times ng.
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Degenerated Search (DES) has CDF
0
F, = { e (30)
Psuce, T > no -
Trimmed Linear Searching Process (TLS) has CDF
F, = min(—22 p ) (31)
o
Trimmed Random Shooting (TRS) has CDF
F, = min(1 — exp(—n/T™), Psucc) (32)
where n
T = 4 (33)

- 111(1 - psucc) .

If we terminate DES, TLS, TRS after N = ng steps, we obtain identical reliabilities pgucc,
but different values of En:

EnDES =nNo , (34)
ng+1
Enrrg = % : (35)
1— succ 1/no 1—(1- succ) * 1— succ 1/no
E ppps = L~ Pauee) (1~ Pouce) - (1 = Pouce) ™ (36)

1— (1 - psucc)l/nO Psuce

It is easy to prove Entrs < Enrrs < Enpgs for ng > 2. Therefore, TRS is the fastest
and DES is the slowest with the same reliabilities.

Applying three time complexity measures F'EOqp;, Qoo opt and Trs opt, We can compare
their decisive power. General results are collected in Tab. 1 except the case of FIEOp
for TRS which has to be investigated numerically. The dependency of measure values on
reliability pguce is demonstrated in Tab. 2 for ng = 1000.

Table 1: General comparison of measures

Process FEOopt Qoo,opt TRS,opt NFEO,opt NQ,opt NRS,opt

_no _no ____no

DES Psucc Psucc — hl(l*psucc) no no no
not+l no_ _ mo—1 ___no

TLS 2psucc Psucc 2 - ln(lfpsucc) no no no

: 1/n0\—1 ng :
TRS | numerically | (1 — (1 — psyce) /™) BTG numerically 1 1
For ng > 2 we observed:

FEOopt,TRS < FEOopt,TLS < FEOopt,DES ) (37)

Qoo,omeRS < Qoo,opt,TLS < Qoo,opt,DES ) (38)

TRS,0pt, TRS = TRS,0pt,TLS = TRS,0pt,DES - (39)

Therefore, Trsope measure of time complexity does not reflect the differences among
DES, TLS, and TRS. Remaining measures F'EOq,; < Qo opt are of same importance,
but we prefer () opt for its relationship to XSP and also because Q) opt advocates serial
repetition of the searching process.
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Table 2: Numerical comparison of measures for ng = 1000

Psuce | Process DES TLS TRS
FEQ | 10000.00 | 5005.00 | 4802.11
0.1 | Qooopt | 10000.00 | 9500.50 | 9491.72
TRs opt 9491.22 | 9491.22 | 9491.22
FEQOq | 3333.33 | 1668.33 | 1432.66
0.3 | Qooopt | 3333.33 | 2833.83 | 2804.17
Trsopt | 2803.67 | 2803.67 | 2803.67
FEQOup | 2000.00 | 1001.00 | 743.53
0.5 | Qooopt | 2000.00 | 1500.50 | 1443.20
Trsopt | 1442.70 | 1442.70 | 1442.70
FEOqp | 1111.11 556.11 229.43
0.9 | Qooope | 111111 | 611.61 | 434.79
Trsopt | 434.20 | 43429 | 434.29

7 Markovian Simulation

The rather simple and straight-forward, but sometimes also very effective, heuristic we
will use for experimental case study is the well-known Shoot and Go (SG) or Iterated
Local Search (ILS) algorithm [4]. In our implementation the random solution is improved
iteratively via local search in its neighbourhood. Effectiveness of this approach based
on steepest descent is dependent mainly on the neighbourhood shape and size. General
neighbourhood of x € D can be defined as R, ,(x) = {y € D|||x —y||, < p} , where pis
norm parameter and p is neighbourhood radius. In our experimental study we will apply
Manhattan (p = 1) and Hamming norm (p = *HAMM’) and a small neighbourhood size
(p = 1,2). Periodic extension of D is also possible but it is useful only in combination
with Manhattan norm.

The resulting SP can be studied as a Markov chain [5] with a finite number of states
as long as the py,ps, ..., py probabilities can be calculated for given N. The numerical
study was performed for following three problems.

Weighted Sum Problem having objective function f(x) = Zzzl wyxy, where 0 < 2, < R,
R e N, w, = a'/*, a > 1 is a relatively uncomplicated integer objective function with
minimum at 0. Study for d = 5 and R = 3 was performed and results are collected in
Tab. 3. We may clearly see that all criteria tend to prefer smaller neighbourhood size
and the results suggest to proceed with searching in a relatively long runs (Quoopt and
Trsopt) — in other words, this criteria "trust" the heuristic.

Knapsack Problem having objective function f(x) = — S0 muap+A-max(0, 320 wyap—
w*), 0 <z < R, REN, 7, wg,w*, A > 0 with both weights w and item values 7 coming
from geometrical sequence could be considered a more intricate integer objective function.
Results of a study for d = 5 and R = 3 are collected in Tab. 4. As opposed to the first
example, smaller neighbourhood is preferred only for the Manhattan norm. Smaller N
advised by all criteria reflects increased difficulty of this problem as well.

Clerc’s Zebra3 problem is a non-trivial binary optimization problem and part of discrete
optimization benchmark problems [3]. Objective function value f is the sum of the result
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Table 3: Weighted sum problem simulation results

Norm Extension P FEOopt Qoo,opt TRS,opt NFEO,opt NQ,opt NRS,opt
None 11 25.3971 | 25.5177 6.5342 49 225 225
Manhattan 2| 40.6063 | 43.2484 | 25.2317 69 833 768
Periodic 11 29.4557 | 29.9991 10.9 55 362 363
2] 60.1713 | 70.958 55.1548 85 1712 1538
Hamming None 11 29.7584 | 30.9355 | 15.1241 53 500 001
2| 86.4279 | 116.3463 | 104.9813 92 3045 2716

Table 4: Knapsack problem results

Norm Extension P FEOopt Qoo,opt TRS,opt NFEO,opt NQ,opt NRS,opt
None 1] 159.74 | 261.12 | 258.44 30 21 21
Manhattan 2| 204.44 | 360.26 | 358.01 43 29 28
Periodic 1| 175.27 | 297.51 | 295.52 26 18 18
2| 221.15 | 399.94 | 398.26 44 29 29
Hamming None 1| 206.11 | 350.82 | 349.09 23 16 16
2| 189.38 | 337.07 | 334.77 66 48 48

of applying the function (40) to consecutive groups of three components each, if the rank
of the group is even, or (41) otherwise. The maximum value is d/3, where d is dimension
of the problem. We may use the value of d/3 — f as modified objective function and
search for its optimum, 0. Results of a study for d = 12 are collected in Tab. 5. In the
case of Clerc’s Zebra3 problem only more appropriate Hamming norm is presented, since
the Manhattan one is practically the same (both with or without periodic extension).
Results for p = 1 indicate the hardest problem of the three with minimal suggested N.
Nevertheless, it may be of interest that by increasing the neighbourhood size we are able
to significantly simplify the problem and advance with the search in much longer run.

0.9 |yl =0 0.9 |yl =3

) 06 |y=1 ) 06 |y|=2
b)=9 03 |y =2 (40) BOI=9 03 |y =1 (41)

1.0 |yl =3 1.0 |yl =0

Table 5: Clerc’s Zebra3d problem results
Norm Extension 1Y FEOopt Qoo,opt TRS,opt NFEOppt NQ,opt NRS,opt
1| 1597.17 | 2682.56 | 2681.71 10 7 7
2| 536.03 | 970.44 | 967.46 68 46 46

Hamming None

8 Conclusions

Even a very well designed heuristic should be terminated in the right moment and re-
started in order to improve its chances of success. To accomplish this goal, the researcher
should examine multiple runs of the heuristic. According to observed probabilities of
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finding the optimum in distinct number of evaluations, the investigator should apply
their preferred complexity measure and plan optimal termination and re-starting strategy
accordingly. It may be useful also to get feedback on deliberation of the algorithm
— instance with higher termination point can be regarded as more trusted to find the
solution in one run. This way, one could also identify sophisticated heuristics in terms of
their ultimate results and not based on their computational complexity.

In this paper, we have compared three different criteria that can examine performance
of given heuristic algorithm on given problem. Using this criteria while studying the
results of presented Markovian simulation and also performance of our own heuristics we
suggest that the ()., measure is worth using. While Tgg is a rather extreme criterion
and FFEO well-known and relevant criterion, we propose the ()., measure for being more
appropriately sensitive to performance of given heuristic on given problem and thus can
provide important and suitable feedback when tuning algorithms.
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Abstract. There are two essential tasks in image forensics. Integrity verification (genuineness
analysis) of digital images and image ballistics. In image ballistics we address the problem of
linking digital images under investigation to either a group of possible source imaging devices
or to one particular source imaging device which has been used to capture these photos. The
latter one is the main topic of this paper. Specifically, we develop a novel method to identify
the source camera of a digital image by using its sensor unevenness caused by Photo-Response
Non-Uniformity (PRNU).

Keywords: image forensics, PRNU, source camera identification

Abstrakt. Ve forenzni analyze obrazu existuji dvé zdakladni tlohy. Ovéfeni integrity (auten-
ti¢nosti) digitalniho obrazu a obrazova balistika. V obrazové balistice fesime problém nalezeni
typu zaznamového zaFizeni, nebo konkrétniho fotoaparatu, ktery byl pouzit k zachyceni snimku.
Tato druhé tloha je hlavnim tématem naseho prispévku. Konkrétné jsme vyvinuli novou metodu,
jak identifikovat u digitalniho obrazu zdrojové zaFizeni pomoci jeho senzorové nekonzistence zpii-

sobené PRNU.

Klicovd slova: forenzni analyza obrazu, PRNU, identifikace fotoaparitu

1 Introduction

Since image ballistics makes possible to differentiate between source cameras of the same
make and model, it became especially useful in the forensic, law enforcement, insurance,
and media industries. Insurance companies, for example, often need to know whether
or not claim-substantiating photos were taken by the person looking for compensation.
Law enforcement agencies are also tasked with finding the source camera when criminal
activity is discovered in digital images (e.g. child pornography, etc).

Although in past researchers mainly were focused on data hiding and digital water-
marking approach to carry out digital image integrity verification and image ballistics,
today there is a relatively new approach called passive one which does not need embed-
ding any secondary data into the image. So, in contrast to active methods, the passive
approach does not need any prior information about the image being analyzed. There

*This work has been supported by the grants GACR 13-28462S and VG20102013064
Institute of Information Theory and Automation, AS CR

183



184 A. Novozamsky

.

Optical system Color filter Gain AID conventor Postprocessing Compression

> —-AD—> DSP |»|JPEG|>

Figure 1: A typical digital camera system.

have been developed methods to detect image splicing, traces of non-consistencies in color
filter array interpolation, traces of geometric transformations, cloning, computer graphics
generated photos, JPEG compression inconsistencies, etc. Typically, pointed out meth-
ods are based on the fact that digital image editing brings specific detectable statistical
changes into the image.

Our aim in this paper is to uncover some important drawbacks of existing source
identification methods and analytically develop a novel way to identify particular source
cameras by employing their sensor properties [1, ?|. Specifically, we will use the mul-
tiplicative nature of PRNU noise component present in digital images. Moreover, we
also will deal with artifacts brought into the image by vignetting, JPEG, and embed-
ded camera software. Effectiveness of proposed analytical concept will be experimentally
measured and compared to state-of-the-art.

2 Fingerprints of Different Camera Components

A typical camera is consisted of several different components (see Fig. 1). As pointed out
in [2], the core of every digital camera is the imaging sensor. The image sensor (typically,
CCD or CMOS) is consisted on small elements called pixels that collect photons and
covert them into voltages that are subsequently sampled to a digital signal in an A/D
converter. Generally, before the light from the scene which is being photographed reaches
the sensor it also passes through the camera lenses, an antialiasing (blurring) filter, and
then through a color filter array (CFA).

The CFA is a mosaic of tiny color filters placed over the pixel of an image sensor to
capture color information. Color filters are needed because typical consumer cameras only
have one sensor which cannot separate color information. The color filters filter the light
by wavelength range, such that the separate filtered intensities include information about
the color of light. Most commonly, Bayer color filter is used. Here, each pixel captures
intensity of one of the red, green, or blue color information. This output is further
interpolated (demosaicked) using color interpolation algorithms to obtain all three basic
color channels for each pixel.

The resulting signal is then further processed using color correction and white balance
adjustment. Additional processing includes gamma correction to adjust for the linear re-
sponse of the imaging sensor, noise reduction, and filtering operations to visually enhance
the final image. Finally, the digital image might be compressed stored and stored in a
specific image format like JPEG.

What is important in sense of forensic analyzes of digital images is that different
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components of camera leave different kind of artifacts or fingerprints useful for integrity
verification of photos or ballistics analysis. Typically, fingerprints left by CFA, post
processing, and compression parts are in common for cameras of same make and model.
In other words, assuming that we know their value and behavior for a particular camera
make and model and based on the fact that digital image editing (e.g., photoshopping)
change these values (fingerprints), they can be employed for verification of the originality
of digital images .

On the other hand, each camera has its own unique sensor consisted on millions of
pixels each of unique properties. Thus, if we are able to find such an information brought
into image by the sensor and which will remain stable and present in all images captured
by that sensor and cannot be fount in no image captured by any other sensor, then we
can call it fingerprint of that sensor or camera. Such a fingerprint can be employed to
link digital images to particular digital cameras which captured them.

2.1 Sensor as a Camera Fingerprint

Image sensors suffer from several fundamental and technology related imperfections re-
sulting in their performance limitations and noise. As pointed out in [2], if we take a
picture of an absolutely evenly lit scene, the resulting digital image will still exhibit small
changes in intensity among individual pixels which is partly because of pattern noise,
readout noise or shot noise.

While readout noise or shot noise are random components, the pattern noise is deter-
ministic and remain approximately the same if multiple pictures of the same scene are
taken. As a result, pattern noise can be the fingerprint of sensors which we are searching
for.

Pattern Noise (PN) is consisted of two components called Fixed Pattern Noise (FPN)
and photo response nonuniformity (PRNU). FPN is independent of pixel signal, it is an
additive noise, and some high-end consumer cameras can suppress it. The FPN also
depends on exposure and temperature.

PRNU is formed by varying pixel dimensions and inhomogeneities in silicon resulting
in pixel output variations. It is a multiplicative noise. Moreover, it is not dependent on
temperature and seems to be stable over time.

The values of PRNU noise increases with the signal level (it is more visible in pixels
showing light scenes). In other words, in very dark areas PRNU noise is suppressed.
Moreover, PRNU is not present in completely saturated areas of an image. Thus, such
images should be ignored when searching for PRNU noise.

Despite the fact that there are not a lot of studies analyzing the PRNU noise in deeper
details (probably due to physical limitations and no significant demand for it so far), it
can be shown that it has dominant presence in the pattern noise component. This made
possible Fridrich et al. [3, 1] to employ it in order to identify source cameras. In other
words, PRNU noise is employed as the fingerprint of camera sensors.
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3 Motivation

Generally, it can be claimed that state-of-the-art source identification methods are mostly
based on methods proposed by Jessica Fridrich et al. (e.g., [3, 1]). There have been pub-
lished some additional papers by other authors (e.g., [4, ?]) aiming to improve accuracy
of results. Generally, they bring modifications to the original paper of Jessica Fridrich et
al. [3, 1] based on some theoretical or empirical findings. Nonetheless, the key concept
of measuring sensor’s fingerprint remained unchanged.

Nonetheless, having available a larger set of cameras of same and different models
and a large set of ground-truth digital images captured by these devices, one can simply
run an experiment to measure the effectiveness and fragileness of existing methods. By
performing such an experiment, it is quite easy to notice that state-of-the-art source
identification methods suffer of a number of essential non—perfections.

Below we discuss three important drawbacks specifically caused by optical zoom,
JPEG, and embedded software in cameras.

3.0.1 Impact of optical zoom

When applying typical PRNU-based camera identification methods (e.g., [3, 1]) on dig-
ital images acquired by cameras having available rich optical zoom possibility then they
typically fail. Let us demonstrate the problem with by carrying out a simple experiment
using Fujifilm FinePix S100fs camera. The focal length of this camera can be changed
from 28 mm to 400 mm. We captured 50 images of blue skye for each of the following
focal lengths Z € {28,50, 100,200,400} and used them to calculate camera sensor’s fin-
gerprint using the algorithm pointed out in [1]. In other words, 5 different fingerprints of
the same camera have been obtained. Moreover, we took 5 images of a natural scene for
each of mentioned focal lengths to carry a basic source identification task.

Figure 2 demonstrates results of 25 test images and 5 fingerprints. First image shown
in Figure 2 demonstrates results of testing test images with sensor fingerprint of Fujifilm
FinePix S100fs obtained by photos captured with focal length of 28 mm. Five test images
captured by the same focal length exhibit high correlations (in other words, source camera
has been found correctly). Nonetheless, all other test images captured by the same camera
but differen focal lengths exhibited very low correlations (in other words, source camera
has not been identified). Second image shown in Figure 2 shows result of testing test
images with sensor fingerprint obtained by photos captured with focal length of 50 mm.
Five test images captured by the same the focal length exhibit high correlation. Again,
all other test images failed. Other images shown in Figure 2 uncovers the same problem
under scenarios of using other focal lengths in Z.

We also carried out the same experiment with other cameras such as Nikon Coolpix
L23, Canon PowerShot A495, Pentax Optio P80, etc. with very similar results. Ap-
parently, this is a serious drawback as it is very difficult to create a stable fingerprint
for a cameras having rich focal length. To cover all focal lengths, one should create one
fingerprint per each available focal length, |5], which is very time consuming and almost
impossible in real-life applications.

The question is why this problem happens? The reason behind this is, so called,
vignetting which causes a change of PRNU values at different zoom levels. There are
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Figure 2: Problem of camera source identification caused by optical zoom. Fujifilm
FinePix S100fs is a camera having different possibilities of focal lengths. Shown results
demonstrate that correctness of source identification test is dependent on particular sensor
reference images and corresponding focal length.

several types of vignetting such as mechanical, optical, natural or pixel vignetting [6].
Some types of vignetting can be completely covered by lens settings (using special filters),
but most digital cameras use built-in image processing to compensate with vignetting
when converting raw sensor data to standard image formats such as JPEG or TIFF.
Typically, vignetting is stronger at the non-central parts of the photo.

3.0.2 Impact of embedded camera software

Assume we have 100 pieces of different iPhone 3 devices. Moreover, we have a digital
image captured by one of these iPhones and our aim is to identify the particular source
device. In other words, we need to have such a fingerprint of each device that distinguish
it uniquely and eliminate features in common for these devices.

On the other hand, there is an embedded software in digital consumer cameras which
perform operations like color filter array (CFA) interpolation, white balancing, gamma
correction, color enhancement, interpolation (digital zoom), etc. Because of the fact
that this embedded software is typically in common in cameras/smartphones of the same
model, it brings into digital images of cameras of same model very similar changes. This
is a serious problem which occurs in higher rate of false positives when having a higher
number of source imaging devices of same model under investigation.

3.0.3 Impact of heavy JPEG

Let us assume the example with iPhone 3 mentioned before. Assume that this digital
camera produces heavily compressed JPEG images. As it is known, highly JPEG com-
pressed images exhibit blocking artifacts. Figure 3 provides a simple example of blocking
artifact. Here, first 8 rows and 9 columns of the same photo compressed with different
JPEG qualities is shown. As apparent, absolute difference between boundary pixels (pix-
els at 8th and 9th column) of (a) is 0. Same for (b) is 6. and for (c¢) is 14. These JPEG
blocking artifacts is another change brought into the image by the embedded camera
software and in common within the same model of cameras. In other words, this is an-
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Figure 3: JPEG blocking artifact. (a) shows pixels of rows 1 to 8 and columns 1 to 9 of
a RAW digital image. In (b) its JPEG 95% version is shown. In (¢) JPEG 65% version
of (a) is shown.

other source of false positive results when linking a photo to larger set of possible source
cameras of same model. Moreover, this is a quite common problem occurred in real-life
applications (for example, when inspecting Facebook photos or Youtube videos).

To understand why blocking artifacts occur, we need to understand how JPEG algo-
rithm does work. Although JPEG file can be encoded in various ways, the most common
algorithm is the following one.

Typically, the image is first converted from RGB to YCbCr, consisting of one lu-
minance component (Y), and two chrominance components (Cb and Cr). Mostly, the
resolution of the chroma components are reduced, usually by a factor of two. Then each
component is split into adjacent blocks of 8 x 8 pixels. Block values are shifted from un-
signed to signed integers. Each block of each of the Y, Cb, and Cr components undergoes
a discrete cosine transform (DCT). Let f(z,y) denote a pixel (x,y) of an 8 x 8 block. Its
DCT is:

F(u,v) = iC(U)C(v)
T < 2x + 1)um 2y 4+ Dvw (1)
Eozof(:c,y)co::*,( 16) cos(y16) ,
where
u,v € {0---T};
C(u),C(v) =1/V2 for u,v=0; (2)

C(u),C(v) =1 otherwise.

In the next step, all 64 F(u,v) coefficients are quantized. This is done by simply
dividing each component in the frequency domain by a constant for that component, and
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then rounding to the nearest integer. More formally, the quantization step is given by a
64-element quantization table (QT):

F(u,v)
QT (u, v)

where QT '(u, v) defines the quantization step for each DCT frequency u and v. Commonly,
there is one QT for Y and another, single QT for both Cb and Cr. In the final step,
entropy coding is carried out. This part is, typically, performed by employing run-length
encoding (RLE) and Huffman coding.

The JPEG decompression works in the opposite order: entropy decoding followed by
de-quantization step, inverse discrete cosine transform, etc.

Now, it is apparent that it is the quantization step in conjunction with splitting the
image into block 8 x 8 that bring into the decoded photo shown blocking artifacts.

FQT(u,v):round< ), u,ve{0---T}

4 Modeling and Extracting PRNU

Let us model the image acquisition process in the following way:

[7”] - I;?]—F[ZOJ Fz,] +T7,,] (3)

Here, I; ; denotes the image pixel at position (7, j) produced by the camera, I?; denotes
the noise-free image (perfect image of the scene), I'; ; denotes PRNU noise and T; ; stands
for all additive or negligible noise components.

Following the approach proposed by [3, 1], the PRNU component is estimated in the
following way. For a given camera, PRNU noise is estimated by averaging multiple images
Iy, k =1,--- N captured by this camera. This process is sped up by suppressing the
scene content from the image prior to averaging. This is achieved by using a de-noising
filter F' and averaging the noise residuals I¢ instead. In other words, PRNU of the camera

C' is computed by:
N
1 d
Cpryu = N kz_; Iy — I, (4)

Alternatively, maximum likelihood estimation (MLE) instead of simple averaging is em-
ployed.

In our work, we focus on multiplicative nature of PRNU component and analytically
derive its estimation. Specifically, denoting the digital image captured by the camera by
I, and the corresponding noise-free perfect image of the scene by I, then the fingerprint
of the camera can be calculated in the following way.

Given Eq. 3, let us divide both sides of this equation by /° and introduce a natural
logarithm operator:

L _ I+ 12Ty + T
i i
0 Tij
In(Z;) = (1)) = In(1+ Ts; + —2) (5)

i)j
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Having derived Eq. 5 and knowing that Taylor series expansions of the logarithmic

function In(1 + x) is

= B

In(1 —p— 4.
n(l+z)==x 2+3 4+5

we can simply derive the following:

T,
hl([z,]) — hl(]zo’]) = F ij + + cee

]O

For the sake of simplicity, in the rest of this paper we omit pixel indexes (7,j) in
our denotations. Now, having available N digital images captured by the same camera
and considering the deterministic behavior of the PRNU noise component of its sensor,
[sensor, we can derive the following:

T H sensor T To
N ¢ N &Iy

Assuming that T is a zero-mean noise component, we can conclude that

Ignoring higher order terms of Taylor expansion we can state that PRNU noise component
of the sensor under analysis, ['s.ns0r, can be estimated in the following way:

1 N
sensor - N Z Ik hl IO) (6)
k=1

So, considering ', as fingerprint of the camera’s sensor based on PRNU noise,
using FEq. 6 we can extract it from a set of image or even from one image. But, it is
apparent that as N — oo the more accurate estimate of I'y.,..,» we get. As stated before,
Eq. 6 we use the multiplication nature of PRNU component (recall that In(a) — In(b) =
In(3)).

Now, using simple a correlation we can measure similarity of different fingerprints.
For example, having available two different sensor fingerprints I'y, and I'y,, we measure
their similarity by employing a normalized correlation:

(FS1 B F_81) © (FS2 - F_Sz)
(HF81 - F81H) ’ (HFSQ - FSQH)

where X denotes mean of the vector X, ® stands for dot product of vectors defined as
XoY =31, X(k)X(k) and || X|| denotes L, norm of X defined as || X| = vX © X.

It has been shown in [3] that a good way of approximating I° is by de-noising I and
compute the residual of these two images:

corr(Ts,,Ts,) =

(7)

P~1-r1t (8)
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Figure 4: Problem of zooming camera by our approach.

Here, I denotes the de-noise image. While some studies were carried out about the
specific choice and effectiveness of de-noising filters (e.g., [4]), our experiments uncovered
that although a proper de-noising filter improves results of source identification, this part
usually does not play the most critical part in receiving accurate results. It happens that
in some cases (e.g., based on spatial distribution of the image) some filters work better
and some a bit worse.

5 Experiments

In this section we focus on testing the ultra-zoom camera Fujifilm FinePix S100fs for its
possibility of manual zooming and wide range of zoom. While we got the similar results
for other cameras.

5.1 Effect of optical zoom

We described in section 3.0.2, how strong influence has the optical zoom on the resulting
PRNU. Therefore, we took the same 25 images as in Figure 2 and calculated their PRNU
using our approach pointed out in section 4. Then we compared this PRNU with the
camera sensor’s fingerprint obtained by set of 50 photos captured with maximum focal
length of 400 mm. As shown in Figure 4a almost all testing images captured by the
different focal length exhibit higher correlation.

5.2 Effect of JPG compression

We captured 100 photos of different scene and store them with best quality of JPG
compression (mark them as 100%). Then we resaved them with different JPG quality
from 90% to 50%. The Figure 5 shows the results with state-of-the-art method, 5a, and
our method 5b .
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Figure 5: Problem of camera source identification caused by jpg compression.

Conclusion

A new approach of counting Photo-Response Non-Uniformity Noise was developed. The
standard method proposed by [3] assumes PRNU as the additive component of noise.

We

focused on multiplicative nature of PRNU component and analytically derived its

estimation. In the experimental section, we show the resulting correlations for the jpg
compression and zooming. Although, we need more tests with different camera settings
for better understanding of influences on PRNU, we took the next step to more accurate
identification of individual cameras in practice.
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Abstract. This paper discusses the present data acquisition system (DAQ) of the COMPASS
experiment at CERN and presents development of a new DAQ. The new DAQ must preserve
present data format and be able to communicate with FPGA cards. Parts of the new DAQ are
based on state machines and they are implemented in C++ with usage of the QT framework,
the DIM library, and the IPBus technology. Prototype of the system is prepared and commu-
nication through DIM between parts was tested. An implementation of the IPBus technology
was prepared and tested. The new DAQ proved to be able to fulfill requirements. Full version
of this contribution is available at http://arxiv.org/abs/1310.1308.

Keywords: data acquisition, FPGA, DIM

Abstrakt. Tento ¢lanek se vénuje sou¢asnému systému pro shér dat experimentu COMPASS v
CERN a popisuje dosavadni vyvoj nového systému. Novy systém musi zachovat stavajici format
dat a dale musi byt schopny komunikovat s FPGA kartami. Navrh jednotlivych ¢asti nového
systému je zaloZen na stavovych automatech. Tyto ¢asti jsou realizovany v programovacim jazyce
C++ s vyuzitim knihoven QT, DIM a IPBus. Prototyp navrhnutého systému je p¥ipraven a Casti
urcené ke komunikaci skrze DIM a IPBus byly tispésné otestovany. Diky testtum bylo prokazano,
7e novy systém dokéze splnit pozadavky na né&j kladené. Plna verze tohoto ptispévku je dostupna
na adrese http://arxiv.org/abs/1310.1308.
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Abstract. Kernel-based methods represent widely applicable branch of data mining algorithms.
This paper deals with usage of kernel-based principal component analysis (PCA) in diagnostics
of Alzheimer’s disease from SPECT images. In general, these images are high-dimensional data
which are not easy to classify. In order to solve this task, kernel based principal component
analysis was used to reduce the dimensionality of the images, and quadratic discriminant analysis
(QDA) was then used for classification.

Keywords: Alzheimer’s disease, diagnostics, Kernel PCA, whitening, QDA leave-one-out cross
validation, classification, MATLAB, object oriented programming

Abstrakt. Metody zaloZené na jadrovych funkcich predstavuji Siroce vyuzitelny pfistup k dolo-
vani znalosti z dat. V této praci je vyuzita jadrova varianta analyzy hlavnich komponent (PCA)
k diagnostice Alzheimerovy choroby ze SPECT snimkt. Tyto snimky predstavuji vysokodimen-
zionalni data, ktera se obecné obtizné klasifikuji. Problém dimenze obrazki byl feSen rozdélenim
jejich analyzy na dvé ¢asti. V prvni bylo pouzito jadrové analyzy hlavnich komponent ke sni-
zeni dimenze ulohy a v druhé ¢asti byla provedena klasifikace pomoci kvadratické diskriminac¢ni
analyzy (QDA).

Klicovd slova: Alzheimerova choroba, diagnostika, jadrova PCA, whitening, QDA, leave-one-out
kiizova validace, klasifikace, MATLAB, objektové orientované programovani

1 Uvod

Dolovéani dat je bouflivé se rozvijejici védecka disciplina, ktera stoji na pomezi tii oblasti;
matematiky, informatiky a aplika¢né zajimavé oblasti, jejiz data zpracovava.

K samotnému dolovani dat existuje celd fada riznych ptistupt, které si velmi c¢asto
berou inspiraci z matematiky. V tomto prispévku je stézejni pristup vyuzivajici teorii
jadrovych funkei [3] [5]. Model jadrové analyzy hlavnich komponent (PCA) je v ¢lanku
vyuzit k ilustraci pristupu, ktery jadrové metody k dolovani dat vyuzivaji.

Vyse uvedeny matematicky model je v praktické ¢asti prace pouzit pro analyzu 3D
snimkt mozkt s cilem vytvofit binarni klasifikator Alzheimerovy choroby. Pro tento tcel
je jadrova PCA vyuzita pro predzpracovani dat pro kvadratickou diskriminacni analyzu

(QDA) [2].

*Tato prace byla podpofena grantem SGS11/165/OHK4/3T /14 CVUT v Praze.

197



198 J. Palek

[l
iy
*p

& [ o)

Y

Obréazek 1: Vyuziti jadrovych funkei k modelovani

Samotné vypocty jsou realizoviny v prostiedi MATLAB v ramci vlastni objektové
orientované implementace vychazejici z [1].

2 Vyuzité matematické modely

Praktickym cilem préace je analyzovat 3D snimky mozku a vytvorit binarni klasifikdtor
rozliSujici zdravé a nemocné lidi.

Vzhledem k povaze dat (viz ¢ast 4) byla analyza rozdélena do dvou ¢asti; v prvni
byla data transformovana pomoci jadrové PCA, v druhé byla na tranformovana data
aplikovana kvadratickd diskriminac¢ni analyza.

2.1 Jadrovy pristup k modelim

Mgjme soubor pozorovani a modelované vlastnosti {(x1,41), .-, (Xn, ¥n) }, kde x; € X jsou
pozorovani, y; € ) je modelovana vlastnost a n € N. Klasickym pristupem je nasledné vy-
uziti vztahti mezi pozorovanimi v prostoru X a skrze tyto vztahy modelovat pozadovanou
vlastnost ).

Myslenka, kterou vyuzivaji jadrové funkce, je vlozit mezi prostor X a ) dalsi prostor;
oznacme jej ‘H. Prostor H je zaveden jako Hilbertiv prostor a obraz pozorovani x; v
prostoru H dostaneme pomoci zobrazeni ® jako x; = ®(x;). Takto ziskdme novy soubor
pozorovani {(x1,41), .-, (Xn, yn)} v prostoru H. Nyni, v prostoru H, budeme skrze vza-
jemné vztahy mezi pozorovani x; modelovat prostor ). V kontextu teorie jadrovych funkci
jsou vzajemné vztahy modelovany pomoci vzajemnych vzdalenosti vyjadienych pomoci
skalarniho soucinu (x;,x;). Cely tento postup je zndzornén schematicky na obrazku 1
pomoci tmavé sekvence Sipek.
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Protoze je prostor H volen bud jako vysokodimenzionélni prostor, nebo dokonce spo-
¢etnédimenziondlni prostor, je vyse uvedeny piistup technicky obtiZné realizovatelny, v
pripadé spocetnédimenzionalntho prostoru dokonce nerealizovatelny. Tento zasadni ne-
dostatek je odstranén tim, ze prostor H je konstruovan tak, aby bylo mozné skalarni
soucin (x;,X;) po¢itat pfimo z puvodnich pozorovani x; pomoci tzv. jadrové funkce k
jako k(x;,x;) = (x;,%;). Tento postup je znazornén na obrazku 1 pomoci svétlé sipky.
Vztahy mezi objekty muzeme shrnout nasledujicim zptisobem

k(xi, x5) = (xi,%5) = (P(x:), D(x;)).

Ptrimym dusledkem predchozi formulace je skutecnost, ze jednotlivé modely pro dolo-
vani dat zalozené na jadrovych funkcich piebiraji pozorovani ve formeé tzv. jadrové matice
K, ktera je definovana nasledujicim zplisobem

(K)Z] = k(Xi,Xj),\V/i,j € {L ,TL}

2.2 Priklady jadrovych funkci
Pro analyzu dat byla pouzita nasledujici jadra

e nehomogenni polynomialni jadro s posunem ¢ = 1 a parametrem d

k(x,y) = ((x,y) + o),

e exponencialni jadro s parametrem o

k(x,y) = exp(— =2,
e gaussovské jadro s parametrem o

lx—yl?

k(x,y) = exp(—5555).

2.3 Klasickda PCA

Analyza hlavnich komponent (PCA) [6] pfedstavuje u¢innou techniku pro ziskavani struk-
tur z vicedimenzionalnich soubort dat. Z matematického hlediska se jedna o takovou
ortogonalni transformaci soufadného systému, ktera minimalizuje korelaci mezi promén-
nymi.

Necht je dan soubor pozorovani X = (x, ..., x,,)’, x; € X = RP! ktery je vycentrovany,
tedy spliiuje

in = @p,h (1)
=1

potom hledani komponent piedstavuje problém nalezeni vlastnich ¢isel A a vlastnich
vektori v kovarian¢ni matice .
1
C= - Z XX (2)
i=1



200 J. Palek

Transformacni matice A pfechodu od pivodnich soutadnic X k novym soutfadnicim Z je
pak dana jako A = (vi,...,v,), kde pro vlastni ¢isla \; piislusejici k vlastnim vektorim
A\ plati )\1 Z )\2 Z Z /\p'

Tento koncept lze samoziejmé déle modifikovat. Mozné je na vstupu pouzit korela¢ni
matice misto matice kovarian¢ni. Vystup je zase mozné sférizovat pomoci nésledujici

transformacéni matice W = (vi/v/A1, ..., v /A /Ap).

2.4 Jadrova PCA

Zakladni myslenka vyuziti jddrovych funkci je uvedena v ¢asti 2.1. Rozsitit klasickou
analyzu hlavnich komponent tedy znamen4 provést ji v prostoru H [3] [5].

Lze ukéazat [5|, Ze provedeni analyzy hlavnich komponent v prostoru H odpovida
hledani vlastnich ¢isel jadrové matice K. Struc¢né feceno, postup je stejny jako v predchozi
kapitole, jen se misto matice (2) provadi s jadrovou matici K.

Pied klasickou PCA se vstupni data centralizuji pomoci vzorce (1). V prostoru H
reprezentuje podobnou tpravu tzv. whitening matice K, ktery je definovan jako

K=K-11,,K - IKL,, + 51, ,KL,,

Hledéani vlastnich cisel se potom provadi s matici K misto matice K.

+RESIC +JADRO
~ - f— \
+PCA +KS +KK +KR

Obrézek 2: Piehled implementovanych bali¢ku

2.5 Kvadraticka diskrimina¢ni analyza

Kvadratickd diskrimina¢ni analyza (QDA) [2]| pFedstavuje model klasifikace s u¢enim,
ktery aproximuje data z t¥id pomoci normalniho rozdéleni. Klasifikace nového pozorovani
je potom provedena tak, Ze se vypocita pravdépodobnost piislusnosti ke v§em tiidam a
pozorovani se nasledné prisoudi do tridy s nejvétsi pravdépodobnosti piislusnosti.

Méjme N tiid C; s rozdélenimi fi(x),x € X = R i € {1,..., N}. Ukolem je vytvorit
dekompozici prostoru X na N mnozin A; tak, aby platilo
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2. xe(Cy &xe A,
Nalezeni optimélntho feSeni pfedstavuje nalezeni minima funkcionélu

=3[ Snne ®)

3 ]:1

kde 7; je apriorni pravdépodobnost tiidy C; (napiiklad rovnomérné rozdéleni do t¥id). V
[2] je ukazano, 7e klasifika¢ni pravidlo 1. spolu s funkciondlem (3) lze pievést na nasledujici
klasifika¢ni pravidlo

x € C; & mfi(x) > m,fi(x),Vj #t.

V QDA se pouziva normani rozdéleni pravdépodobnosti f; ~ N(u;, X;).

C_JADRO C€_JADRO_POLYNOM_NEHOMOGENNI
+Hmeno +exponent
SUn
+vytvorkForcyklem(X) e
+yytworHSVCForcyklem(X, ¥) +C_JADRO_POLYMOM_MEHOMOGEMMI{parametr)
+yytworHSVC(X, ¥) +uytvork(X)
+yytworHSVCCeloForcyklem(X, ) +fi(x)
+vytvorHSVCPoloForcyklem(X, ) +HMaxar{x, v)
+uytworHSVR_EI(X) +HiMakaProW (X, v)
+uytworHSVR_G(X, C)
+uytworHSVR_G_PoloForcyklem(X, C)
+uytvorkPCAK) C_JADRO_TANH
Ho
+sigma
+C_JADRO TAMH({parametr)
+uytvork(x)
+fix)
Heaka (x, v)
+HMakatProW i, v)
C_JADRO_EXP C_JADRO_GAUSS C_JADRO_POLYNOM
+delta +delta +exponent
+C_JADRO_EXP{parametr) +C_JADRO_GAUSS(parametr) +C_JADRO_POLYMOM{parametr)
+uytvork(X) +wytvork(x) +vybvork(x)
+Hi(x) +i() +ilx)
+kMakay(x, y) +HMakay(x, v) +kMakay(x, v)
+MaxaProWw (X, v) HMakaProWw(x, v) +HMakaProWw(x, v)
ESEEPFS C_SPRAVCE_JADER

- menladroftypladra, parametr Jadra)

Obrazek 3: Schéma balicku +JADRO
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3 Implementace

Implementace se sklada s Sesti balicki. Jejich prehled je na obrazku 2. Struktura balicki,
popis jednotlivych metod a celkové pouziti je uvedeno v [1]. Oproti pavodni verzi z [1]
vSak byl vylepsen balicek pracujici s jadry. Jeho soucasna objektova struktura je uvedena
na obrazku 3.

Soucasna struktura vyrazné usnadihuje praci s jadrovymi funkcemi diky tiidé
C_SPRAVCE_JADER, ktera zastiesuje a jednotné zastupuje chovani jednotlivych jader.
Diky uvedené koncepci balicku je navic mozné velmi snadno rozsifovat stavajici portfolio
jadrovych funkei.

% —

1.5+ ¥ X R 1.5+

& ¥
] £ 5
—— -
é 1 o . . § 1t
2 <k 2 x
L X 2 *, .
g 0.5 Xx g 0.5 W< SR
" £
ﬁ 0 x’?;‘x % B M— oLt &x'x X 30
g ' g T B WLy
= x % = . x,:gé xR :
= -0.5} u = 0.5} : X S
- ] + X% o x
&= K N = x % By e
[~ 2N x = R —
) x x ) H x
% % LoX x x
-1.5¢+ B Kix -1.5¢
X x §
-5 -1 03 0 05 1 L5 -5 -1 05 0 0.5 1 15
Prvni hlavni komponenta Prvni hlavni komponenta

Obrazek 4: Jarova PCA: (vlevo) exponencialni jadro s parametrem o = 3900, (vpravo)
polynomialni jadro stupné tii

4 Analyza dat

Praktickym cilem bylo analyzovat 3D snimky mozki a vytvotit binarni klasifikator roz-
lisujici zdrave lidi a lidi s Alzheimerovou chorobou [4].

4.1 Popis dat

Ptredmétem analyzy byly 3D SPECT snimky mozkt lidi. Jednotlivé snimky jsou reprezen-
tovany matici o rozmérech 79x95x69. Snimky byly v ramci predzpracovani normalizovany
z hlediska intenzity.

Data se sklddala ze dvou skupin lidi. Prvni ¢ast piredstavovalo 56 snimki zdravych
lidi. Zdravotni stav byl zde urcovan jednak na zakladé snimkt jako takovych, jednak
na zakladé sady psychologickych testi. Druhd ¢ast dat obsahovala 38 lidi s diagndzou
Alzheimerovy choroby.
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4.2 Postup analyzy

Jak plyne z popisu snimkii, snimky jako data predstavuji vysokodimenzionalni objekty.
Proto byla analyza rozdélena na dvé ¢asti.

Nejprve byla na cely soubor dat aplikovana jadrovd PCA a ziskdny nové soufadnice
snimku. K tomu ucelu byly pouzity vSechny jadrové funkce z ¢asti 2.2. Vypocty byly pro-
vedeny pro Sirokou Skalu hodnot parametri jednotlivych jader, aby bylo mozné posoudit
robustnost vysledki. Priklady vystuptu pro dvé komponenty jsou uvedeny na obrézku 4,
kde kiizky reprezentuji zdravé pacienty a tecky reprezentuji nemocné pacienty.

Druhym krokem bylo uceni samotného klasifikacniho modelu. Pro tyto tcely byla po-
uzita kvadraticka diskrimina¢ni analyza. QDA byla aplikovana na data transformovana
vSemi tfemi pouzitymi jadry. V této fazi bylo cilem zkoumat zavislost vysledné chyby kla-
sifikace na typu jadra, parametru jadra a poctu vybranych komponent. Pro métreni chyby
klasifikace byla pouzita valida¢ni metoda "leave-one-out". Vysledky jsou znazornény na
obréazcich 5, 6 a 7. V8echny tyto obrazky maji stejnou strukturu; na ose x je parametr
pouzitého jadra, na ose y pocet pouzitych komponent a osa z znéazornuje klasifikacni
chybu.

Chyba klasifikace v QDA

Pocet hlavnich komponent

Stupeti polynomu jadra

Obrazek 5: QDA s jadrovou PCA vyuzivajici polynomialni jadro

4.3 Vysledky

Kvadratickd diskrimina¢ni analyza byla vybrana kvili svému Bayesovskému zakladu a
obecné pouzitelnosti. Dal$im divodem pro jeji volbu byla skute¢nost, ze z 2D a 3D
vystupt analyzy hlavnich komponent bylo usouzeno, 7e transformovanda data jsou kvad-
raticky separovatelna.
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Pocet hlavnich komponent
Chyba klasifikace v QDA

\r\\\ \\Tﬁ*l‘l"rﬁ\)l‘
2000

Parametr jadra

Obrazek 6: QDA s jadrovou PCA vyuzivajici exponencidlni jadro

Vsechny vysledky (viz obrazky 5, 6 a 7) jsou jiz p¥i prvnim piiblizeni smysluplné, pro-
toze ukazuji klesajici chybu klasifikace s rostoucim poc¢tem pouzitych komponent. Pokles
chybovosti je nejvyraznéjsi béhem prvnich ¢tyi komponent. Navic se u vSech testovanych
jader chybovost od sedmé komponenty ustaluje. Obecné lze tedy ucinit zavér, Ze pro
dosazeni dobrych klasifika¢nich vysledku staci pfiblizné osm dimenzi z jinak vysokodi-
menzionalniho objektu.

Nejhorsi vysledky s ohledem na volbu parametru vykazovalo polynomialni jadro (ob-
razek 5). Na druhou stranu jeho parametr je nejsnadnéji interpretovatelny a proto je
velmi snadné ucinit zavéry z provedené analyzy. Plyne z ni, Ze nejlepsich vysledki bylo
dosazeno pro polynom prvniho a druhého stupné a ze je potieba vzit v ivahu alespon tii
komponenty. Potom je chybovost mezi 0,096 a 0,138 s primérnou hodnotou 0,107.

Vysledek klasifikace s exponencidlnim jadrem (obrazek 6) obsahuje dvé zajimavé ob-
lasti. Prvni z nich je oblast zahrnujici volbu parametru o > 400 a pocet pouzitych kom-
ponent vétsi nez tii. V této, z hlediska nastaveni parametrii, rozsahlé oblasti se chybovost
stabilné pohybovala v rozmezi 0,096 az 0,191 s priumérnou hodnotou 0,143. Druhéa zaji-
mava oblast je definovana volbou parametru o v rozmezi 600 az 1300. Zde bylo dosazeno
chybovosti v rozmezi 0,181 az 0,213 s prumérnou hodnotou 0,191 jiz pro jednu pouzitou
komponentu.

Vysledky pro QDA s Gaussovskym jadrem (obrazek 7) jsou podobné vysledkim do-
sazenym v QDA s exponenciélnim jédrem Prvni zajimavé oblast je pro volbu parametru
bovosti 0,096, nejvyssi 0,213 a prumérné hodnoty 0,149. V druhé oblasti bylo jiz pro
jednu pouzitou komponentu dosazeno pro volbu parametru v rozmezi 600 < o < 1300
chybovosti mezi 0,181 a 0,191 s primérnou chybovosti 0,189.

Obecné nejmensi chybovosti 0,096 bylo dosazeno s kazdym testovanym jadrem. Vy-
hodou exponencidlniho a Gaussovského jadra je, ze davaji dobré vysledky pro Sirokou
skalu parametri. Navic existuje oblast parametri, pro kterou dévaji dobré vysledky jiz
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Chyba klasifikace v QDA

Pocet hlavnich komponent

4 000 Parametr jadra

Obrazek 7: QDA s jadrovou PCA vyuzivajici Gaussovské jadro

pro jednu komponentu.
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Abstract. This paper deals with simulation of soil-air pressure. For the simulations, we employ
a mathematical model that couples the continuity equation with the Darcy law; the problem
obtained is solved numerically by means of the method of lines using the Galerkin finite element
method and Runge-Kutta method. The results of our model are compared to experimental data
measured in a wind tunnel. In the final part of the article, some interesting results obtained by
simulating air flow in heterogeneous soil are presented.

Keywords: porous medium, soil-air pressure, Galerkin finite element method

Abstrakt. Tento prispévek se zabyva simulaci tlaku pidniho vzduchu. K simulacim je pouzivan
matematicky model, jenz spojuje rovnici kontinuity s Darcyho zédkonem, pficemz vznikla tloha
je TeSsena numericky, a sice metodou piimek, s vyuzitim Galerkinovy metody konecnych prvki
a Rungovy-Kuttovy metody. Viysledky naseho modelu jsou porovnévany s daty namérenymi
ve vétrném tunelu. V zavérecné Casti clanku jsou rovnéz prezentovany nékteré ze zajimavych
vysledki ziskanych p¥i simulaci proudéni vzduchu heterogenni ptidou.

Klicovd slova: porézni prostiedi, tlak pidniho vzduchu, Galerkinova metoda kone¢nych prvku

1 Introduction

Flow of gases or liquids in porous medium is a part of a variety of complicated natural
processes and, for this reason, it has been researched and simulated for years. In this
paper, we deal with a seemingly simple phenomenon — we simulate only air flow in soil.
This phenomenon proves, however, to be very complex and interesting as well.

The derivation of the mathematical model for the simulations is based on the ideas
presented in [1] and [2]. We assume that the air flow occurs in dried soil (e.g., dried sand)
which is represented by a bounded domain 2 C R2, and it obeys the continuity equation

dp

LV () = F, 1)

*This work is partly supported by the project “Numerical Methods for Multiphase Flow and Transport
in Subsurface Environmental Applications” number ME10009 of the Ministry of Education, Youth and
Sports of the Czech Republic and “Advanced Supercomputing Methods for Implementation of Mathe-
matical Models” number SGS11,/161/OHK4/3T/14.

fThe author would like to thank the following persons who kindly provided him experimental data:
Radek Fucik, Department of Mathematics, Faculty of Nuclear Sciences and Physical Engineering, CTU
in Prague; Paul Schulte and Kate Smits, Center for Experimental Study of Subsurface Environmental
Processes, Environmental Science and Engineering, Colorado School of Mines, Golden, Colorado, USA.
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where p [%] is the air density, ¢ [s] time and F [nfp,g_s

vector u = (uy, uz)" [2] stands for the Darcy velocity

| the source term of the air. The

= —%K (Vp - pg) (2)

ki ko
ks ks
tensor, p [Pa] pressure and g = (g1, 92)" [3] the gravitational acceleration vector. More-
over, the pressure and density are assumed to be related by the ideal gas equation of
state

of the air, where g [Ifl—gs} is the dynamic viscosity, K = ( ) [m?] the permeability

oy ®)
pP= pRTv
where M [X2] represents the molar weight of the air, R [=2-] the gas constant and T
[K] the thermodynamic temperature.
It follows from (1)—(3) that the air flow in €2 is governed by the equation

Op 1 M RT

— =-V-|--pKVp+ —p’K —F 4

5 ( PRVt o g>+M (4)
for the unknown pressure p = p(z,y,t), where z,y are spatial variables. This problem is
considered together with the initial condition

p(may70) :p()(xay)a ($7y) S Qv (5)
and the Dirichlet and Neumann boundary conditions
1
p’FDir = DPDir; - ;pKvP‘FNeu ‘11 = (Neu; (6)

where I'pi, UTyew = 092, I'piy N I'vew = 0, and n denotes the unit outward normal to I'yey.

2 Numerical Solution

The problem (4)—(6) is solved numerically, by means of the method of lines; for the spatial
discretization, the Galerkin finite element method is employed. The domain 2 is covered
with the triangulation depicted in Figure 1a, and the linear Lagrange elements are used.
Thus, the basis {; };Vzl of the finite dimensional space consists of the functions which are
linear on each triangle and take the value 1 at one node of the spatial mesh and vanish
at the other nodes. The components of K are assumed to be constant on each triangle.

Hence, substituting the approximation p = Zfil pi(t)&;, where N denotes the number
of the mesh nodes, into the weak formulation, we get the following system of ordinary
differential equations:

d N 1 N N
0 [ 66ude = 23S o) [ KVE) - (Vede = [ gyan- d

i=1 j=1 I'Neu

- 2% Z Zpi(t)Pj(t) /Q&'fk(vﬁj) - (Kg)dx

i=1 j=1
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NEEN 0.424688 0Qp;, (tunnel floor) airflow
N . N AN
\\\ \\\ ) - ) [m] \L g Q 8QNeu

(a) Spatial mesh used for the Galerkin finite 7 [m] 0.584200
element method. (b) Description of .

Figure 1: Description and triangulation of €.

for k=1,2,3,..., N.

Finally, the previous system is simplified by applying the method of lumped masses
(see [5]) and solved by means of the Runge-Kutta-Merson method with the adaptive time
step control (see [3]).

3 Simulation of Experimental Data

In order to verify our model, we simulated pressure distribution in the 12x9 sand tank
mounted in the CESEP wind tunnel, and we compared the numerical results with exper-
imental data obtained from P. Schulte.

The tank is block in shape. It is filled with Accusand #30/40, and 37 pressure ports
are distributed across the north face of the tank. The complete tank is mounted in a
wind tunnel so that the top side of the tank and sand are aligned with the floor of the
wind tunnel, and the changes in pressure in the tank due to a moving stream of air in the
tunnel are measured. This setup leads to the rectangular domain €) depicted in Figure 1b.

The following boundary conditions are considered:

e At the top of the tank (y = 0.424688 m), the Dirichlet boundary condition is consid-
ered (see Figure 1b); the values of pressure are obtained by the linear least squares
minimization of the data measured by the five ports located most closely to the
boundary.

e On the other three sides of 2, the Neumann boundary condition is prescribed (see
Figure 1b), specifically gney = 0.

The initial condition is given by

p(z,y,0) = prer — (0.424688 — ) pair g2,

where pef [Pa] denotes a reference pressure value and p,;; [kg - m™3] the density of air.

The interior of the tank is considered to be homogeneous, i.e., the components of K
are constant; the porosity of Accusand #30/40 was computed from the data in [4]. The
values of all of the parameters in equations (4)—(6) are summarized in Table 1a. On each
side of €2, there are 21 mesh nodes (see Figure 1a).
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parameter value unit

u 1.81-107° —

ky 1.5219-1071° m?

ko 0 m?

ks 0 m? parameter value unit
ks 1.5219-1071° | m? u 1.81-107° | X&
M 0.02896 — M 0.02896 -
R 8.3144621 - R 8.3144621 | =

293.15 T 288.15

g1 0 m-s 2 g1 0 m-s 2
g2 —9.81 m-s2 go —9.81 m-s?2
F 0 e F 0 e
Dret 82000 Pa Dref 101325 Pa
Dair 1.2047 kg -m—3 Dair 1.2047 kg - m—3
(a) Values used in Section 3. (b) Values used in Section 4.

Table 1: Values of parameters.

The numerical results are shown in Figure 2. Since the numerical solution seems to
steady in approximately one or two seconds, t > 2 is considered, and it is not indicated.
Further, in Figure 3, the results are compared to the experimental data. Clearly, they
do not agree with the experimental data. Although the experimental data attain the
maximum values in the left bottom corner of ) (the tank), the numerical solution exhibits
different behaviour; the pressure reaches the maximum values in the left upper corner.

It is worth mention that the numerical solution does not seem to be affected by a
significant change in the values of y, T, K and g and by refinement of the spatial mesh.
Similarly, the slight change in pp;, affects the solution only near I'p; (see Figure 4).

Finally, Figure 5 shows the numerical results obtained in case that the values of
pressure are prescribed for x = 0.068263 m (thus, the length of the tank is adjusted) as
well. Now, the results are much closer to the experimental data.

4 Simulation of Pressure in Heterogeneous Soil

Further, we simulated pressure distribution in heterogeneous soil.

In this case, the domain ©Q = (0.0,1.0) x (0.0,1.0) (the units are [m]) depicted in
Figure 6 is considered. On the upper side of €2 (y = 1.0m), the Dirichlet boundary con-
dition is prescribed; on the other three sides, the Neumann boundary condition gney = 0
is considered. The initial condition is given by

P(x,Y,0) = Pret + Y Pair G2,

where p,of denotes some reference pressure again.
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Figure 2: Pressure distribution in 2. The arrows indicate the direction and magnitude
of the pressure gradient at corresponding points. The lines are pressure isolines.
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Figure 3: Comparison between the numerical results and experimental data.
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Figure 4. Comparison between the numerical results produced in cases that pp;. is ob-
tained by GNU Octave library functions for the linear least squares minimization, linear
interpolation, cubic interpolation or cubic spline interpolation.
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Figure 5: Comparison between the numerical results and experimental data. The values
of pressure are prescribed for x = 0.068263 m as well.
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1.0 OQpir
Yy [m] l/ g Q aQNeu
0 x [m] 1.0

Figure 6: Description of ). The Dirichlet boundary condition is prescribed for y = 1.0 m.

The components of the permeability tensor K are chosen as follows: ky = 0, k3 = 0;
and ki, k4 (ki = k4) are spatial dependent; they will be specified later on. So will the
boundary condition pp;,. The values of the other parameters are summarized in Table 1b.
On each side of €2, there are 41 mesh nodes (see Figure 1a).

Several simulation were performed. In simulation 1, the domain €2 contained the spiral
region of low permeability which is depicted in Figure 7a, and the constant boundary
value pp;; = 151312.2677 Pa was prescribed. The time evolution of pressure is shown in
Figures 7b-7d. We can see how the pressure gradually rises in the interior of the spiral.

In simulation 2, the domain €2 contained several regions of low permeability depicted
in Figure 8a, and the constant boundary value pp;, = 151312.2677 Pa was prescribed.
The time evolution of pressure is shown in Figures 8b-8d.

5 Conclusions

It has been shown in Section 3 that the numerical results do not agree with the exper-

imental data. Nevertheless, it does not necessarily mean that the results or the model

employed are wrong because the experimental data do not correspond to physical intu-

ition whereas the numerical results do. This problem definitely requires further research.
The results presented in Section 4 illustrate the compressibility of soil-air.
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Figure 7: Simulation 1. Values of k1 [m?] and the time evolution of p [Pa]. The arrows
indicate the direction and magnitude of the Darcy velocity u defined by (2).



Numerical Simulation of Soil-Air Pressure 215

Pseudocolor Pseudocolor

Var k1 Var p
5.000e-09 161312.27
3.750e-09 138812.20
o 0.
25000.00 12631213
— 1.250e-09 — 11381207
—1.000e-14 —101312.00
Max: 5.000e-09 Max: 151312.27
Min: 1.000e-14 Min: 101321.69
w w - 3
K} . - e [ Ny -
El El e - - e .
7 0 - e N
o o B - P -
£ 0 v
0.4+ N K B N
B NN - .
N
Vector B - . -
Varu
-33.10 «
—24.00
1660 0-27
8.299
5.791e-07
Max: 33.19
Min: 5.791e-07
T T T T
0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8
X-Axis X-Axis
Pseudocolor Pseudocolor
Var p Var p
15131227 15131227
138812.20 138812.20
o o
126312.13 126312.13
— 11381207 — 11381207
—101312.00 —101312.00
Max: 151312.27 Max: 151312.27
Min: 101325.06. Min: 10632161

w w
B P
% %
< <
D D
B B
0.
Vector Vector
Varu Var u
—26.16 —0.04930
—19.62 —003697
13.08 oozaes O
6540 001232
3.4950-06 2.7656-09
Max: 26,16 Max: 0,04930
Min:' 3.495¢-06 Min: 276509
. 0.2 0.4 0.6 0.8
X-Axis X-Axis

(c) p at time t = 0.02 s. (d) p at time t = 0.5 s.

Figure 8: Simulation 2. Values of k1 [m?] and the time evolution of p [Pa]. The arrows
indicate the direction and magnitude of the Darcy velocity u defined by (2).
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Abstract. A new way to treat the problem of electricity markets analytically is proposed
here. We consider several electricity producers and a central authority of an independent system
operator (ISO). We model such conflict situation in a standard way as a bi-level non-cooperative
Nash game, where ISO is a leader player and producers are considered as followers. We present
a natural condition for uniqueness of a solution to the ISO problem, and moreover we find an
analytic formula for this solution. Such result is a key step towards a detailed analysis of the
problem of a producer. We note that the topology of the electricity dispatch network is not
considered at the moment.

Keywords: electricity markets, bi-level Nash games

Abstrakt. V této praci je predstaven novy piistup k modelovani trhu s elektfinou. Uvazujeme
nékolik producenti elekt¥iny a nezavislého systémového operatora (ISO). Tuto konfliktni situaci
modelujeme standardné jako dvoutroviiovou nekooperativni Nashovu hru, kde ISO je uvazovan
jako lidr a producenti jako jeho néasledovnici. Nagli jsme pFirozenou podminku pro jednoznaénost
feSeni ISO problému, a navic i analyticky vzorec pro toto FeSeni. Takovy vysledek je kli¢ovy pro
néslednou analyzu problému producenta. Poznamenavame, Ze topologie elektrické rozvodné sité
neni zde neni uvazovana.

Klicovd slova: trhy s elektfinou, dvoutiroviiové Nashovy hry

1 Introduction

The modelling of the electricity networks is a very current topic, since in the last two
decades they were privatized in many countries. The ultimate aim of such movement
was to enhance the effectiveness of electricity production and distribution, and so natu-
rally also electricity markets were founded, typically at the national level. Later, these
markets were consolidated; soon there will be just one pan-European electricity market.
Moreover, also an operational requirements of the so-called smart grids, i.e., electricity
dispatch networks with non-stable wind and solar power plants of various scales, are
newly considered. Thus, many practical and at the same time scientifically interesting
questions arose within this area.

Further, we consider only the electricity market itself, omitting all the problems con-
cerning electricity dispatch network. We may observe that such market can not run
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in the same way as, for instance, stock market. Indeed, electricity is a special kind of
commodity which is hard to store effectively. Thus, either all the produced electricity
is consumed at the very same moment, or we undergo high economic losses (either by
overproduction, or by possible black-out). On that account market has to be regulated
by an Independent System Operator (denoted by ISO in the sequel), which is typically
a state company. Then, all the electricity producers and consumers participating in the
market have to obey the decisions of ISO. This fact is the very novelty when modelling
such market and has important mathematical consequences.

From the point of view of producers and consumers, the electricity market may be
modelled as a non-cooperative Nash game. However, the presence of ISO makes this
problem much more complicated. In general, such bi-level problem is a special kind of
Equilibrium Problem with Equilibrium Constraint (EPEC), where the lower-level leader
problem, i.e., ISO problem in our case, is considered as an equilibrium constraint for
the upper-level problem, which is a Nash game of producers and consumers [4]. Since
this explicit dependence on the solution of ISO problem does not preserve any convexity,
we can not use the classical Nash theorem for existence of solution to EPEC in general.
Then, some more assumptions are needed [1], or only a more specific setting with just
two players may be considered [2].

In this article, we avoid the general problem of EPEC, and analyse the problem of
the electricity market directly. We show that under a very natural assumptions the ISO
problem possesses one solution on general, and moreover we find an analytic formula for
such solution. Then, we may substitute this solution of lower level problem directly into
the upper level problem, avoiding all these previously mentioned difficulties. However,
such analysis is beyond the scope of this article. Further, we denote

* D > 0 the overall energy demand.

* N be the set of producers (N being its cardinal, N > 1).

* ¢; > 0 represents the non-negative production of i-th producer, i € N
* a;,b; > 0 are coefficients of i-th producer bid function a;q; + b;q?

For ¢ € RY we denote by ¢_; € Rffl vector ¢y = (quy -+ Gic1, Gis1y - qN)-

2 ISO’s Problem

Based on the bids of all producers, the aim of the ISO is to minimize the total cost
of production, taking into account that the demand has to be satisfied. Each producer
provides to the ISO a quadratic bid function a;q; +b;¢? given by non-negative parameters
a;,b; > 0. This bid cost function may differ from the real cost function of producer i.
The ISO, knowing the bid vectors a = (a1,--- ,ay) € RY and b = (by,--- ,by) € RY
provided by producers, computes ¢ = (q1,...,qn) € ]Rf in order to minimize the total
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generation cost, that is to solve the following optimization problem

in D (aig; + biag)

iEN .
1SO(a,b) >0, Vie N
iEN

for positive overall demand D > 0. Then, it is a well-known fact that this problems
admits at least one solution. Nevertheless, the market problem can be ill-posed if the
solution set of ISO(a,b) contains more than one point, see e.g. [3]. In [1, 2] the uniqueness
of the response of the ISO(a,b) comes from the hypothesis that producers are bidding
true quadratic function with b; > 0, thus implying the strict convexity of the objective
function of ISO(a,b) problem. Since in our work, we allow linear bid of a producer, even
eventually of all of them, an additional assumption is needed to guarantee uniqueness of
solution of ISO(a,b) problem. On that account, we add equity property assumption

(H) (ai, b)) = (aj,b;) = q; = qj

which is supposed to hold for all 7,5 € N. This assumption acctualy formalize that
ISO makes no difference among producers. Let us remark that the optimization problem
ISO(a,b) assuming (H) is as follows

min Z(@i% + big})
I ieN
q; Z 0, Vi € N

(a;,b;) = (a;,b;) = ¢ = ¢;,Vi,j €N

Z%ZD

ieN

ISO(a,b)+(H)
s.t.

and therefore all the following results concerns this formulation of the problem, even
though we will speak about the problem ISO(a,b) and hypotesis (H) separately.
To analyse this problem further, we introduce index set mapping N, (\)

No(\) = {i € Nla; < A} C .

This set represents, for a given price ), the subset of producers being "in the money".
Then we define several critical parameters of ISO(a,b), namely a critical market price
AX(a,b), a critical value of the overall demand D¢(a,b), and a set of producers bidding
critical (linear) bids N¢(a,b) C N

/\C(a7b) = 'e}\l/’libn—oai
Ne(a,b) = {i e Nlai=X(a,b),b; = 0} (1)

DYab) = Y Marb) -

iEN (A (b)) 2b;
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For the case of NV (\°(a,b)) = 0, ie., a; > A°(a,b) for all i € N, we put D(a,b) = 0.
If there is not any producer bidding linear function, i.e., we have b; > 0 for all i € N,
we set \°(a,b) = D%(a,b) = +oo. For the cardinality of N“(a,b) we use the notation
N¢(a,b) = |N(a,b)|.

These critical parameters have clear economic meaning. First, A°(a,b) denotes the
minimum price such that at least one linearily bidding producer (b; = 0) will participate
in the market. Since such producer can provide arbitrary amount of electricity at this
price, X\°(a, b) is also the highest possible price in the market, cf. for instance (6). Then,
D¢(a,b) will be later identified with the overall amount of electricity produced by sub-
critical producers, i.e., those participating in the market having b; > 0, see the proof of
Theorem 2.3. Finally, N“(a,b) is the set of all the critical producers that may possibly
participate in the market.

Remark 2.1. Consider some (a,b) € R2V, then we have A\°(a,b) > 0 if and only if
a; +b; >0 for all i € N. In words, there is no producer offering electricity for free. This
natural assumption will be useful afterwards.

Next, we denote A, (a) = miney a; and define A = {(a,b,\) € RAV! |\, (a) < A < X(a,b)}
(considering sharp inequality for the case of A°(a,b) = 4+00) and function F': A — R, as

)\—ai
Flaby= Y 220 )
PENL(N) v

We note that for A > \°(a,b) formula (2) is ill-posed because there exists i € N(a,b) C
N, (X) such that b; = 0, and that by the definition of A we have N, (\) # 0.

Consider any (a,b) € R2V fixed. As an immediate consequence of the definition of F
we have

lim F(a,b,\) =0, ,

A—=Am(a)

)\lir}rq F(a,b,\) =400 if  Xa,b) = +o0,

F(a,b,X°(a,b)) = D°(a,b) if  Xa,b) < 400
Moreover, for any (a,b) € R* function A — F(a,b,\) is continuous and piece-wise
linear on [A;,(a), A°(a,b)[ and aditionally it possesses monotonicity property playing an
important role in the sequel.

Lemma 2.2. For any (a,b) € R?N function X\ — F(a,b,\) is strictly increasing.

Proof. Consider \,,(a) < A\; < Ay < X(a, b), since Ny(A;) C N (A\2) we have

)\1—ai )\2—(11' )\2—(11'
F(G, bv )\1) Z 2. < Z 2b; = Z sz F(Cl,b, AQ)

i€eNL (A1) ! IENL (A1) E IENL(A2)
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The previous lemma justifies the following definition of function A(a, b, D) : R2Y x]0, +-00[—
Ry
A €R, s.t. F(a,b,\) =D if D €]0, D%a,b)]

Ala,b, D) = { N(a,b) it D > De(a,b) (3)

For any (a,b) € R function A(a, b, D) is continuous and piece-wise linear in D owning
to the same properties of F(a,b, ). Next, we state a convenient implicit formula for the
unique solution ¢(a, b, D) to the convex minimization problem ISO(a,b) assuming (H).
Then, in the forthcoming Corollary 2.6 we show that for any fixed configuration of bids
of producers (a,b) € R?", function A(a, b, D) assign to each demand D > 0 the respective
market marginal price of the production.

Theorem 2.3. Let D > 0, then for (a,b) € R2N such that X\°(a,b) > 0, the regula-
tor’s problem ISO(a,b) admits a unique solution q(a,b) obeying the equity property (H).
Moreover, this optimal solution is given by

)\—CL,L' N
%, if a; < A

QZ<a7b>D): %WZL]EGZ:)\,Z%ZO (4)

04fa; >N\ ora;=Nb; >0
with A = Xa, b, D) determined by (3).

Proof. The proof will be as follows. First, we find all solutions of the convex optimization
problem ISO(a,b), i.e., we omit constraints (H) stemming from the equity property (H).
Based on this solution set, we show that there exists a unique solution ¢ of ISO(a,b)
satisfying (H).

Since ISO(a,b) is a convex optimization problem, its solution set coincides with the
solution set of the corresponding KKT system

0=a;+2big; — pr; — A
0<p L¢g=0 (5)
Dienti =D

where A € R and the first two equations are considered for all i« € A/. Let us first show
that for the Lagrange multiplier A we have

X €]0, A%(a, b)] (6)

Indeed, assume for a contradiction that A < 0 first. Since D > 0, there has to be some
j € N such that ¢; > 0 and thus also g; = 0. Then, however, a; + 2b;q; = A < 0
contradicts assumption \°(a,b) > 0, see Remark 2.1. Next, for any producer ¢ € N with
linear bid, that is b; = 0, the first equation of (5) gives A = a; — y; < a; and so we have
A < X(a,b) by the definition of A\°(a, b).

Now, we show that

{i € N =0} = {i € N|a; < A}
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Indeed, for all i € N such that u; = 0 we have

A =a; +2biq; > a; (7)
On the other hand, p; > 0 implies ¢; = 0 and thus also

A=a; — i < a;.

Consequently, the last equation of (5) involves only such i € N that a; < A\. We may

rewrite it as
Z q; + Z q; + Z g =D (8)

i€EN;a; <\ i€N;a;=X\,b;>0 i€N;a;=\,b;=0
Next, regarding (6) we observe that a; < A implies b; > 0 (we remark that A will be at the
end of the proof expressed as a function of a and b), and so we may substitute ¢; = AQ_b‘?i

into the first sum using (7). Based on the same formula, we may omit the second sum
since a; = A, b; > 0 implies ¢; = 0. To handle with the last sum, we observe that for each
i € N such that a; = X\ and b; = 0 we have \°(a,b) < q; since it is a linear bid. Next,
using (6), we obtain

A(a,b) < a; =\ < Xa,b) (9)

for such i, and so a; = \%(a,b), or, in other words, i € N¢(a,b). Now, if we treat all
critical producers i € N¢(a,b) together and use

Qc(a>b) = Z qi 2 O

ieEN¢(a,b)

for their overall production, formula (8) reduces to

S AN D Q) (10)

1ENL () 2b;

We will solve this equation in a full generality in two steps. We begin with such
solution of (10) that A < A\°(a,b). This way we avoid such i € N that a; = XA and b; =0
for the moment. For all i € N¢(a,b) we have

A=aqa; + 2szz — Wy = a; — Uy < )\C(OJ, b) = q; (11)

implying p; > 0 and thus also ¢; = 0. Then, Q°(a,b) = 0 and (10) reduces to F(a,b,\) =
D. Then, referring to Lemma 2.2 we deduce D < D(a,b), and so using (3), we equiv-
alently obtain A = A(a,b, D). Altogether, all the statements in (4) are either valid or
avoided provided A < A°(a,b). In this case, we did not consider equity property (H)
assumption at all since constraints (H) are directly implied by the first equation of (4).

The second step is A > A%(a, b), but regarding (6) we have to deal with A = X\(a, b)
only. For all i € N,(\%(a,b)), the first formula in (4) derived in the previous paragraph
is still valid. Thus, the overall production of this group of producers is given by

Z A(a,b) — a; _ D¥a.b)

iENL (A (a,b)) 2b;
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Now, for i € N(a,b) one immediately has A\°(a,b) = a; — p1; = A°(a, b) — p; and so p; = 0.
Then, we necessarily obtain Q°(a,b) = D — D(a,b) and thus also D > D¢(a,b). Hence,
we solved ISO(a,b) also for A = A\°(a, b) omitting the additional assumption (H), but the
solution with respect to production of critical producers i € N¢(a,b) is not unique. It
is unique only with respect to their overall production Q°(a,b). If N°(a,b) > 1 then
there are infinitely many ways how to divide Q°(a,b) among the participating producers
i € N¢a,b). Then, it is the right time to tackle (H) resulting to the unique solution
described by the second formula of (4). O

In general, \(a, b, D) is not a smooth function, but we may compute several directional
derivatives easily. First, we introduce the notation. Consider a function f : R® — R,

then we denote the right directional derivative of f(z1,...,x,) with respect to x; by
Tiyee Ty +T .00 2n) — J(X1,. ., T4y ..., Ty
a;f(xl,,a?n):hm f( 1, ) + ) f( 1 )
‘ t—0+ t
and analogously the left directional derivative 0 f(z1,...,zy,). Since A(a,b, D) is a piece-

wise linear function in D for any (a,b) € R?N, both directional derivatives with respect
to D are well defined. Let us denote m*(a, b, D) := 05\ (a, b, D)

Lemma 2.4. For fized (a,b) € R*" and D > 0 we have

1 1
_— = — if D < D¢
m~(a,b, D) 4 Z 2b; if D < D%a,b)
€N (X(a,b,D))
m~(a,b,D) = 0 if D > Da,b)
1

1 1

= —  f D < D%a,b

@D - m@hD T 2 oy ¥ (a5)
1€N;a;=X\(a,b,D)

m*(a,b,D)= 0 if D > D(a,b).

Proof. We separate (3) to three parts. For D < D(a,b) we have F(a,b, \(a,b, D)) = D,
and so we may apply calculus of derivatives to composition of functions to obtain
95 F(a,b, \a,b, D)) = 0 F(a,b,\(a,b, D)) 95\(a,b, D) =

and so m = 0y F(a,b, \(a,b, D)), which may be computed directly from (2). The
indices of the participating producers are N,(\(a,b, D)) in the case of m~(a,b, D), and
{i € Na; < A(a,b, D)} in the case of m™(a,b, D), respectively. For D > D¢(a,b) both
m*(a,b, D) = 0 since \(a,b, D) is constant with respect to D. Finally, we deduce the
respective values at D = D(a, b). O

Analogously, we derive the partial directional derivatives of A(a, b, D) with respect to
the bid variables of player ¢ € N.

Lemma 2.5. For D > 0 and (a,b) € R such that b; > 0, we have

*(a,b, D

0EN(a,b,D) = % (12)
Ma, b, D) — a;

Oy Ma,b,D) = Mmi(a,b,D)
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provided a; > 0 in the case 07 A(a,b, D) and 8;5)\(6%6, D), and a; > 0 in the case of
0, Ma,b, D).

Proof. For D < Da,b) we have F(a,b,A(a,b, D)) = D. Based on partial derivaive
calculus for composition of functions we immediately obtain

Oa F(a,b,\(a,b, D)) + 95 F(a,b,\(a,b, D)) 9; A(a,b, D) = 0.

We note that 05 F(a,b, M(a,b, D)) # 0 because N,(A(a,b, D)) # @ on the domain of F.
Thanks to (2.4) we may conclude, using Lemma 2.4,

(9;5F(a, b, \(a,b, D))

B a,b, D)
I F(a, b, \(a, b, D))

+ + mi(
= —m™(a,b, D)0, F(a,b, \(a,b, D)) = 55

9. Ma,b,D) =

For D > D¢(a,b) we have A(a, b, D) = A\°(a,b), and so having b; > 0 we see that A(a, b, D)
is constant with respect to a;. Thus we have 95 A(a, b, D) = 0, which corresponds to our
statement if we consider the appropriate equation in (2.4). Similarly, our statement
complies with (2.4) also for D = D¢(a,b). Finally, we note that the case of 85';)\(@ b, D)
is analogous. [

Since we know the formula for the unique minimizer of ISO(a,b)+(H), we may compute
the overall cost C(a,b, D) of production D defined as

Cla,b,D) = aiqi(a,b, D) + bigi(a, b, D)’

ieN

Corollary 2.6. Consider the setting of Theorem 2.3, than for C(a,b, D) we have

Aa,b, D)? — a?

C(a,b,D) = | > m if D < D%a,b) (13)
1ENG(A)
¢ b) — a: 2
Cla,b,D) = DX(a,b) — Y (e, 4;) W D < DYah).
€N (Ae(a,b)) ¢

Moreover, it holds 0,C(a,b, D) = A(a,b, D).

Proof. For D < D¢(a,b) we use A = A(a, b, D) for brevity. With regards to (4), we restrict
the sum in the definition of C'(a,b, D) to i € No(\) with ¢;(a,b, D) = 25*% obtaining

A —a; (A —a;)? A2 —a?
iENL(N) ! i iENL(N) !

For D > D¢(a,b) the way is analogous using formula (4) for ¢;(a,b, D) and splitting the
sum between linear and non-linear bidders

c 2 _ 42
C(a,b,D) = (D — D*(a,b)X°(a,0) + @ (a’fi?f :
i€Na(A(a,b)) '
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A¢(a,b)—a;
2b;

where we moreover substitute D(a,b) = >~ icnr xe(an) obtaining

c 2 2 c 2 c
C(a,b, D) = DX(a,b) + Z (A, 0))" — a; = 200%a,b))” + 2X*(a, b)a,
€N (A (a,b)) 4b:
directly giving the stated formula. We note that C'(a, b, D) computed using formulae (13)
is continuous at D = D¢(a,b). Finally, for the derivative 9,C(a,b, D) at D €]0, D(a, b)]
we have
Z 2X(a,b,D)m~(a,b, D)

J,C(a,b, D) = T

= Xa, b, D),
€N (A(a,b))

and the formula 0,C(a,b, D) = X°(a,b) = A(a,b, D) for D > D(a,b) is immediate. [

3 Conclusion

In this article we found a new way how to treat the modelling of the electricity markets.
We propose a natural assumptions called equity property stating that ISO does not make
any difference among producers, and we show that under such assumption we may solve
ISO problem analytically, see Theorem 2.3. We note that we obtain this result under a
general setting newly including truly linear bids (b; = 0) of producers here. Finally, we
show that the central quantity A(a, b, D) defined by (3) is indeed a market marginal price,
cf. Corollary 2.6. However, for us, all these results are mainly a workhorse to further
analyse the problem of producers. This is however beyond the scope of this article as we
already discussed.
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Abstract. We combined the density gradient theory (DGT) with the PC-SAFT and Peng-
Robinson equations of state to model the homogeneous droplet nucleation and compared it to
the classical nucleation theory (CNT) and experimental data. We also consider the effect of
capillary waves on the surface tension. DGT predicts nucleation rates smaller than the CNT
and slightly improves the temperature-dependent deviation of the predicted and experimental
nucleation rates.

Keywords: Nucleation, density gradient theory, PC-SAFT, capillary waves

Abstrakt. Zkombinovali jsme teorii gradientu hustoty se stavovymi rovnicemi PC-SAFT a
Pengovou-Robinsonovou, abychom modelovali homogenni nukleaci kapek. Tyto vysledky jsme
porovnali s klasickou nuklea¢ni teorii a experimentdlnimi daty. Také jsme uvazovali efekt
kapilarnich vin na povrchové napéti. Gradientni teorie predikuje mensi nuklea¢ni rychlosti nez
klasické a trochu vylepSuje odchylku teplotni zavislosti teoretickych a experimentalnich nuk-
lea¢nich rychlosti.

Klicovd slova: Nukleace, theorie gradientu hustoty, PC-SAFT, kapilarni viny

1 Introduction

The classical nucleation theory (CNT) is widely used to model the homogeneous droplet
nucleation. However due to the capillary approximation, even small molecular clusters
are treated as macroscopic droplets. This flaw is at least partially overcome in the density
gradient theory (DGT) [11, 2]. Unlike the CNT, this theory describes the surface tension
varying with the size of the cluster. In this work, we compare both nucleation theories.
We incorporate a physically based equation of state (EoS), the PC-SAFT |3, 5|, into the
DGT model and compare it with the classical cubic EoS, Peng-Robinson (PR). Another
problem of DGT is that it ignores the effect of capillary waves (CW) [1]. We attempt to
consider this effect.
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The nucleation process is described by the nucleation rate J. In this work, a modified
internally consistent (IC) [4] value is used,

PGPGooNA 205 ( AQ)

J =
1 pie Vo TP\ T

(1)

Here, subscript oo reffers to the saturated state, pg and pr, are the densities of the bulk
vapor and liquid of the system, N, is the Avogadro constant, o is surface tension, M is
molecular mass, kg is the Boltzmann constant, and A(2 is the work of formation of the
critical cluster.

The work of formation according to the DGT reads

C

AQ(p) = /0 h [Awhom(p) +e (5)2] smrdr, 2)

where Awpom can be found e.g. in [9], second term containing the density gradient and
influence parameter ¢ brings the inhomogeneity caused by the presence of the interface.
Using Eq. (2), an Euler-Lagrange equation can be derived,

d? 2d 1

o+ =L = ~Au(p), (3)
where Ay = 0Awpom/Ip. Including the boundary conditions p(r — o0) = pg, dp/dr(0) =
0, Eq. (3) defines a boundary value problem (BVP) that can be solved numerically.

The PC-SAFT EoS [3, 5] is based on the Statistical Associating Fluid Theory (SAFT)

combining important interatomic and intermolecular forces, such as covalent bonding, hy-
drogen bonding, Coulombic forces and can be used for very different shapes of molecules.
Due to the fact that the SAFT EoS works directly with the molecular structure of sub-
stances, it allows a more realistic modeling of fluids in the metastable region which is
needed in the DGT model.

2 Numerical computations and results

The simply looking BVP defined by (3) has two difficulties: density profile near the vapor
phase has a very sharp shape; its slope changes abruptly from the very steep decline to
an almost constant profile. Second problem is that for large droplets density profile in
the interior of the droplet changes only negligibly and is almost constant. This causes
a significant cumulation of numerical errors. This work is based on results of [9], in
which the shooting method was used instead of more sophisticated ones based on the
finite difference schemes. The reason is that it was easier to develop a convergent routine
algorithm in that way. To overcome many difficulties that arose during the solution
process, several original numerical methods were developed.

Nucleation rates were computed using both nucleation theories, DGT and CNT, and
two EoSs, the PC-SAFT and PR. Theoretical predictions were compared to experiments
[10, 6, 7, 12, 13].

The left-hand side of Fig. 1 shows the nucleation rate J as a function of supersat-
uration S for four temperatures, both nucleation theories and both EoSs compared to
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Figure 1. Left: Nucleation rates of n-nonane computed using the CNT (dashed line)
and DGT (solid lines), PR EoS (white symbols) and PC-SAFT Eos (grey symbols) for
temperatures 272 K, 284 K, 298 K, and 313 K. Right: Dependence of the supersaturation
S on the inverse reduced temperature 7'/T.. Lines correspond to values computed using
the GT-IC (solid lines) and CNT-IC (dashed lines) for n-heptane (C7), n-octane (C8),
n-nonane (C9), and n-decane (C10). As EoS was used only PC-SAFT.

the experimental nucleation rate data.The right-hand side of Fig. 1 shows supersatura-
tions S as functions of temperature at a constant nucleation rate J = 10°m™3s~! (close
to most experimental data range). These values were computed and compared for four
substances: n-heptane, n-octane, n-nonane, n-decane. Supersaturations of experimental
data were linearly interpolated to match the value of nucleation rate J = 105m=3s™!.
Data [13] are far from this value causing a disagreement with others.

As aforementioned, despite the DGT does not contain a CW effect, the influence
parameter ¢ in Eqgs. (2), (3) is determined using the experimental surface tension o, =
Oexp that includes it. We attempt to avoid this inconsistency by using Meunier’s mode-
coupling theory [8], the surface tension without the CW effect can be expressed as

3T 1
Onon—cw — OTexp <]- ) . (4)

* 87T, 2.552K

Here, T, is the critical temperature and x is the universal amplitude ratio determined by
experiments and simulations to be k = 0.39.

Figure 2 shows surface tension o as a function of the pressure difference Ap, and
nucleation rate J as a function of the supersaturation S for n-nonane computed using
the DGT at T'= 313 K. Two EoSs were used (PR, PC-SAFT), and both approaches are
incorporated: influence parameter ¢ is computed using ey, directly (grey symbols) and
with removing the CW effect using (4) (white symbols). The effect for the nucleation
rates is large which proves the importance of this procedure.
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Figure 2: Surface tensions ¢ as a functions of Ap (left) and nucleation rates J as a
functions of S (rights) computed using the DGT, PR EoS (squares) and PC-SAFT EoS
(circles) for n-nonane at 313 K. Influence parameter computed using the experimental
surface tension oey, (grey symbols) and using modified surface tension opon—cw are used.

3 Conclusions

Our computations show that the DGT predicts nucleation rates smaller than the CNT
because the surface tension predicted by the DGT for the critical clusters is lower than for
the planar phase interface. This effect is more pronounced at low temperatures and high
supersaturations where the critical clusters are smaller. The more realistic PC-SAFT
EoS predicts higher nucleation rates than the PR EoS. The influence of the capillary
waves significantly lowers the predicted nucleation rates. This effect, however, requires
further investigation. A large part of the temperature dependent deviation of theoretical
predictions from experimental data still remains unexplained.
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Abstract. The paper deals with the numerical solution of a compositional model describing
compressible two-phase flow of a mixture composed of several components in porous media with
species transfer between the phases. The mathematical model is formulated by means of the
extended Darcy’s laws for all phases, components continuity equations, constitutive relations,
and appropriate initial and boundary conditions. The splitting of components among the phases
is described using a new formulation of the local thermodynamic equilibrium which uses volume,
temperature, and moles as specification variables. The problem is solved numerically using a
combination of the mixed-hybrid finite element method for the total flux discretization and the
finite volume method for the discretization of transport equations. A new approach to numerical
flux approximation is proposed, which does not require phase identification and determination
of correspondence between the phases on adjacent elements. The time discretization is carried
out by the backward Euler method. The resulting large system of nonlinear algebraic equations
is solved by the Newton-Raphson iterative method. We provide seven examples of different
complexity to show reliability and robustness of our approach.

This work was presented at Interpore Conference 2013 in Prague (21.-24.5.2013) and
the full article has been submitted to the Journal of Computational Physics.

Keywords: compositional simulation without phase identification, mixed-hybrid finite element
method, finite volume method, phase-by-phase upwinding, constant-volume phase splitting,
pressure computation

Abstrakt. Clanek pojednava o numerickém modelovani kompozi¢niho modelu popisujiciho st-
lacitelné dvoufazového proudéni smési sloZzené z nékolika komponent v poréznich prostiedich
s latkovou vyménou mezi fazemi. Matematicky model je formulovin pomoci rozsifeného Dar-
cyho zakona, rovnic kontinuity pro slozky smési, konstitutivnich vztahi a vhodnych pocéatec¢nich
a okrajovych podminek. Rozdéleni komponent mezi fazemi je popsiano pomoci nové formu-
lace lokalni termodynamické rovnovihy pfi zadaném objemu, teploté a latkovych mnozstvich
jednotlivych komponent. Problém je feSen numericky za pouziti kombinace smiSené hybridnf

*This work has been supported by the project P105/11/1507 “Development of Computational Models
for Simulation of CO2 Sequestration” of the Czech Science Foundation, project KONTAKT IT LH 12064
“Computational Methods in Thermodynamics of Hydrocarbon Mixtures” of the Ministry of Education,
Youth and Sport of the Czech Republic, and project SGS11/161/OHK4/3T /14 “Advanced Supercom-
puting Methods for Implementation of Mathematical Models” of the Student Grant Agency of the Czech
Technical University in Prague.
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metody koneénych prvki pro diskretizaci celkového toku a metody koneénych objemt pro
diskretizaci transportnich rovnic. Je navrzen novy piistup k aproximaci numerického toku, ktery
nevyzaduje identifikaci fazf ani uréovani odpovidajicich si fazf mezi sousedicimi elementy. Casova
diskretizace je provedena zpétnou Eulerovou metodou. Vyslednd rozsahla soustava nelinedrnich
algebraickych rovnic je feSena Newtonovou-Raphsonovou itera¢ni metodou. Pro znazornéni sta-
bility a robustnosti naseho pfistupu uvadime sedm piikladd rtizného charakteru.

Tato prace byla prezentovana na konferenci Interpore 2013 v Praze (21.-24.5.2013) a cely
¢lanek je podan do ¢asopisu Journal of Computational Physics.

Klicovd slova: kompozi¢ni simulace bez fazové identifikace, smiSend hybridni metoda kone¢nych
prvki, metoda konecnych objemt, upwind po fazich, fazovy rozklad p¥i konstantnim objemu,
vypocet tlaku
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Abstract. This paper utilizes the experience from the field of software engineering to formu-
late a set of features for identifying known structures in the source code of software project.
Furthermore, a software tool for the analysis of project code is proposed.

Keywords: Java, software design, design patterns

Abstrakt. Tento ¢lanek vyuZziva poznatki z oblasti softwaroveho inzenyrstvi k sestaveni sady
priznaki pro rozpoznavani znamych struktur ve zdrojovém kédu softwarového projektu. Déle
predklada navrh softwarového nastroje pro analyzu projektového kodu.

Klicovd slova: Java, navrh softwaru, nadvrhové vzory

1 Introduction

According to the majority of contemporary software development methodologies [2, 10],
the design phase should precede the implementation stage during a software development
process. In order to be easily maintainable and reusable, it is expected that developed
software will be well designed, thus composed of interrelated objects, where each object is
responsible for a particular task. Design patterns [11] are a well known standard for soft-
ware design; however, once the implementation phase is over, it is difficult to determine
whether software uses these patterns, or if they were implemented properly. Therefore,
an effort is being made to create a tool for software quality assessment. In recent years,
various approaches have been explored; [6] have performed statistical analysis of code
smells [7] to suggest further refactoring techniques [5]. The authors of [4, 14] have fo-
cused directly on design patterns in order to determine which patterns are utilized in the
examined source code. While [4] use a statistical approach based on previously defined
predictors, [14] search for patterns using graph algorithms.

Our approach is to create a tool which will be able to detect well designed data
types in a given project code and separate them from noise (poorly designed data types);
we consider a data type to be well designed if it satisfies UML class stereotype [9] or
represents single class design pattern. Second, we want our tool to perform an analysis
of relationships among a project’s data types, to detect multi-class design patterns. This

*This work has been supported by the grants SGS 11/167/OHK4/3T /14 and LA08015
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paper focuses on the first phase, particularly on the definition of features for well designed
types.

2 Classes and features

2.1 Classes

As mentioned above, we are trying to detect well designed data types with usage of eleven
statistical classes (patterns) that are listed in Table 1.

Bean represents a storage type which holds attributes and provides access to them
through setters and getters. DAO stands for data access object, which mediates access to
a collection of data. The composite is a tree node of composite pattern. The constant is
composed of constant or immutable objects and represents a configuration of a particular
part of the application. A factory encapsulates methods for creation of new objects
based on given parameters. A builder manages and sets up a newly created object.
An adapter allows adaptation of an adaptee object from one interface to another. A
proxy object substitutes another object of the same interface and allows changing of the
implementation of some of its methods. A decorator adds additional properties to an
object of the same interface. A worker combines or uses other objects in order to perform
the main functions of a certain part of the application. An utility type manages static
methods of a similar purpose in order to separate mechanical work from worker types.

Table 1: Recognized data type patterns

‘ Name H Satisfies ‘ Represents ‘ Responsible for
Bean type stereotype crate pattern data storage/access
Composite composite pattern data storage/access
Constant utility stereotype data storage/access
DAO entity stereotype data storage/access
Builder builder pattern object creation
Factory factory method pattern | object creation
Adapter adapter pattern object manipulation
Decorator decorator pattern object manipulation
Proxy proxy pattern object manipulation
Worker focus stereotype object manipulation
Utility utility stereotype support

2.2 Features

Up to now, we have defined over forty different features; these features are divided into
four major categories: expression features, statement features, member features and re-
lation features. Expression and statement features are connected with expressions and
statements in the project code, a typical expression feature is, for instance, a number of
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instantiations within a definition of a data type weighted by total number of expressions
in the same data type. A typical member feature is, for example, a number of public,
non-static setters and getters in a selected data type weighted by total number of meth-
ods in the same data type. Relation features depict a relationship of a data type with
its surroundings; this kind of feature is, for instance, a logical value which is set to true
if the data type uses its direct parent type as an attribute. The explanation of selected
features follows.

2.2.1 Feature fm#amr

Feature fm#amr is represented by (1), where n is a number of non-abstract, non-static,
non-setter and non-getter methods of given data type, A is a number of non-static at-
tributes, and a; is a number of non-static attributes used in i-th method. Usage (in-
vocation) of a setter or getter for a local attribute counts as usage of this particular
attribute.

I )

This feature describes how much a given data type works with its own attributes. We
have estimated that an fm#famr value may be close to number one for worker class data

types.

2.2.2 Feature fm#mnew

Feature fm#mnew counts factory methods [11], thus public methods that contain in-
stantiation (new expression) of a local (non-attribute) variable and return it as a result.
Member methods that return invocation of factory methods also count as factory meth-
ods, this rule applies recursively. Member methods that return instance of same type as
the type they are a member of do not count as factory methods for this feature. The
resulting count of factory methods is weighted by the total number of member non-setter,
non-getter and non-abstract methods in the corresponding data type.

This feature represents the share of factory methods in the total number of methods
and might help to detect a factory class.

2.2.3 Feature fm#anew

Feature fm#fanew represents the number of attributes instantied within constructors and
non-static member methods, weighted by the total number of non-static attributes.

The feature tells how often the type’s attributes are instantiated within its member
methods and could be useful for builder class detection.

2.2.4 Feature fr2nsa

Value of fr2nsa equals to one if a given type is recursive; thus, holds a non-static attribute
of same type. Otherwise the value is equal to zero. This feature could help to find
composite, proxy or decorator types.



238 M. Rost

2.2.5 Feature fr2ia

Value of fr2ia equals to one if a given type has attributes of same type as its direct parent
is; otherwise the value is equal to zero. Similarly to fr2nsa, this feature could help in
finding composite, proxy or decorator types.

2.2.6 Feature fm#apc

Feature fm#apc represents number of public constant attributes of a given type weighted
by the total number of type’s attributes.

2.2.7 Feature fs#cyc

Value of fm#cyc holds number of cycle statement in a particular type weighted by the
total number of statements in the same type.

2.2.8 Feature fm#mmou

Let M be a set of all public, non-abstract, non-setter and non-getter member methods of
a particular data type. Then feature fm#mmou' is represented by (2), where n is the size
of M; csa; is the number of methods from M in that static method of i-th type is accessed;
cpu; is the number of methods from M in that parameter of same i-th non-trivial type
is used; cau; is the number of methods from M in that ¢-th attribute is accessed; cnv; is
the number of methods from M in that same i-th non-trivial type is instanced and used.

1
— - max {max csa;, max cpu;, max cau;, max cnuv; } (2)
n i i i i

We expect that this feature should be useful for separating DAO from other classes.
Since DAO is utilized for querying a specific datasource, there always has to be an object,
which mediates access to data. However, it is not known, if the object is passed to DAO’s
methods as a parameter, if it is an attribute of DAOQO, if it is singleton, utility type, or
if it is created directly within DAO’s methods. Therefore, fm#mmou chooses the most
probable from all mentioned possibilities.

3 Tool design

3.1 Requirements

Functional and non-functional requirements were collected, before the design of the pro-
posed tool was begun.

Functional requirements:
1. Manage features definitions and collect features data

2. Classify project code

!This feature has not been implemented yet.
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3. Manage classification results

4. Provide posterior analysis for classified data

Ad 1. Collect features from the project’s source code, store them in the corresponding
objects and provide access to these objects.

Ad 2. Provide various statistical classifiers; enable their configuration and classifica-
tion of the project’s data types with the chosen classifier. Consequently, obtain results for
all data types in the project and all the considered classes, where each result is represented
by a probability that a given data type belongs to one particular class.

Ad 3. Manage the project’s classification history, registered for all runs of all classifiers,
because results from one uniformly configured classifier can vary over time.

Ad 4. Provide additional operations in order to measure the quality of classifiers,
perform cross validations, or apply bilantion criteria to classification results.

Non-functional requirements:

1. Clean object design

2. OS independence

Ad 1. The application has to be separated into individual components that will pro-
vide their interfaces with the rest of the application. This allows easy interchangeability
of component implementation, or simply adding a new implementation.

Ad 2. Since Java is an OS independent framework, the designed tool is also required
to be OS independent in order to integrate it into Java IDEs in the future.

3.2 Components design

The four main components have been identified during the design phase: collector, clas-
sifier, validator and launcher (Figure 1).

The first component, the collector [13], is responsible for processing source codes and
the collection of features data. A source code is parsed and an abstract syntax tree (AST)
[1, 12] created as a result, consequently features are mined [13] from AST.

The second component, the classifier, is the core part of the whole application. Clas-
sifiers can be either simple or compound, where a compound classifier consists of two or
more other classifiers and a balance criterion. The balance criterion is a judge among the
sub classifiers and makes the final decision. The classifier is responsible for the identifi-
cation of which category an observation belongs to.

The third component, the validator, is used for regression model validation, partic-
ularly a k-fold cross validation. This is a process of determination how results of a
statistical analysis will affect independent data sets. During k-fold validation a project
observation (a set of features of each data type) is split into k disjoint subsets, then k -
1 subsets are utilized to train a classifier and one subset is used for validation (testing).
Cross validation is finished after all k subsets were used for validation.

The last component, the launcher, represents only the layer that performs top-level
operations over the classifier, validator and collector components. It will allow the user
to start classification or validation and configure their parameters.
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IFeatureCollector

<=component=:= I/" <=component=:=
Launcher g' @ Collector E
IProjectObservation

IClassifier f_l
Ia <<component== EI' . vee L.
k?/ Classifier IProjectClassification

IValidator l‘]
(7 < <component == EI' . S
@ Validator IProjectValidation

Figure 1: A component diagram of designed tool. Four main components have been
identified: collector, classifier, validator, and launcher.

4 'Training data

Four data sets were prepared in order to train our classifiers.

Mixed data set consists of java source files selected from different open source projects
or design pattern tutorials. These files contain various implementations of all classes from
Table 1; currently there are 175 types with at least fourteen representants of each class.

JaHoCa project (Java Home Cash) is a simple java application for monitoring per-
sonal incomes/expenses. There is a lack of design patterns in this project. Nevertheless,
it is rich in beans and utility classes.

Andengine is an open source graphic 2D /3D engine for the android operating system.
The project contains many workers, decorators, factories and utility classes.

JHotDraw is a simple java drawing/plotting tool, which is strongly based on design
patterns, with many adapters, factories, composites or decorators.

5 Results

Until now, the launcher, collector and validator components of the tool have been imple-
mented. Collected information about project’s sources are being exported to the CSV
format and passed to Matlab for subsequent analysis.

Table 2 shows results from analysis of the "Mixed data set" with £&-NN (k Nearest
Neighbours, k = 4 has proved to be optimal for this problem), LDA (Linear Discriminant
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Table 2: Success rates of classifiers for "Mixed data set".

| | kNN| LDA| SVM |
best submodel [ 0.87931 [ 0.93103 [ 0.82759
full model 0.82184 | 0.90805 | 0.77011

Table 3: Feature usage in 100 best sub-models.

| Feature || k-NN | LDA | SVM | | Feature | k-NN | LDA | SVM |
fr2nsa 100 | 100 100 fm#mps 50 | 100 92
fr2ia 100 | 100 100 fe#invm 53 92 95
fm#apc 98 | 100 96 fe#tinvo 54 97 88
fm#mnew 95| 100 98 fm#/mpna 46 | 100 92
fs#cyc 91 | 100 100 fs#elif 22| 100 100
fm#mase 91 93 99 fm#mpnn 19| 100 99
fm#mpnov 82 | 100 100 fm#anos 37 97 81
fm#mpnop 86 | 100 95 fm#mpngs 12 97 100
fm#mpars 87 97 97 fe#fnewm 14| 100 91
fm#anonp 7 98 98 fr2ssa 8 97 97
fs#switch 79 | 100 93 fm=mase 23| 100 78
fg2a 77 93 100 fm#anonn 99 0 100
fs#£sif 81 97 92 fm#/mn 10 92 90
fm=mpard 65 | 100 100 fm#mpara 8 95 88
fgtesr 62 | 100 97 fm+#anpn 87 4 99
fe#new 64 94 92 fm+#apn 10 93 83
fm#mpnoo 49 | 100 98 fm#famr 55 | 100 11
fe#inv 55 | 100 91 fm#anps 39 29 93
fm+#anew 45 | 100 100 fef£casto 23 97 36
fm#mpard 53 93 97 fm#mparcu 58 90 0

Analysis) and SVM (Support Vector Machines) classifiers [3]. Due to the large number
of features, sub-models have been utilized [8] and FSA heuristic has been used [8] for
finding the best sub-model; the heuristic has been applied ten times for each classifier
and ten best results from each run have been recorded.

Table 3 summarizes usage of features in 100 best sub-models found by the heuristic.
Features fr2nsa and fr2ia participated in all chosen sub-models, they successfuly separated
recursive types from others. Frequent usage of fm#apc can be caused by fact that public
attributes do not appear often in other classes than constant. Feature fm#mnew proved
to be good separator of factory class, on the other hand fm#amr has to be improved.
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6 Conclusion

The paper has focused on the problem of software quality measurement, and presented
our solution to detect well designed and implemented data types, based on a newly defined
set of features. Eight selected features were briefly explained; consequently, the tool for
feature collection and statistical classification over the source code was proposed. In the
future, we will continue to improve features and reduce their number. Moreover, we will
implement classifiers into the proposed tool. Last but not least, we will focus on defining
and collecting object relation features.
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Abstract. Cadabra system is used for implementation Fock method for finding conserved
Lorentz covariant stress-energy complexes. The method is developed for linear second-derivative
field equations and afterwords generalised for equations of motion containing non-derivative
terms. The results for linearized vacuum Einstein field equations (with particular gauge) and
Fierz-Pauli action are presented.

Keywords: stress-energy tensor, linearised gravity, conserved quantities, Fierz-Pauli action

Abstrakt. Systém Cadabra je pouzit pro implementaci Fockovy metody na hledani zachové-
vajicich se Lorentz kovariantnich komplext energie-hybnosti. Nejprve je vypracovina metoda
pro rovnice pole obsahujici linedrné druhé derivace a poté je zobecnéna pro pohybové rovnice
zahrnujici nederivované ¢leny. Prezentovany jsou vysledky pro linearizové Einsteinovy rovnice
ve vakuu (v konkrétn{ kalibraci) a pro Fierz-Pauliho akei.

Klicovd slova: tenzor energie-hybnosti, linearizovana gravitace, zachovavajici se veliciny, Fierz-
Pauliho akce

1 Introduction

The article is organised as follows. At the beginning the Fock method for finding conserved
stress energy tensors for massless! equation of motion for rank two covariant tensor fields
is presented. The important step in simplifying computations is to restrict ourselves only
to Lorentz covariant expressions which is no serious limitation for obtained results. The
method is then generalised for equations of motion containing non-derivative terms which
is the case of Fierz-Pauli action of massive gravity. The crucial part plays the usage of
symbolic tensor manipulation software Cadabra. Finally, the resulting tensors for field
theory of linearized gravity and of massive gravity are presented.

*This work was supported by the Grant Agency of the Czech Technical University in Prague, grant
No. SGS13/217/OHK4/3T /14
! Massless in the meaning that equation of motion lacks the non-derivative terms of field variable.
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2 Fock formulation

We would like to find stress-energy complex? T in the form of T% = ¢Weberstp b .
i.e. quadratic in the first derivatives of field, with ¢¥%“m" heing constant coefficients
symmetric in (a,b) and (m,n) and invariant with respect to the swap of triples (a, b, ¢)
and (r,s,t), that is conserved in the sense of equation TZJJ = 0, whenever equations of
motion of the form

PA — pAmnophmn,op =0 (1)

are satisfied (A being arbitrary multiindex). We can write our demands as a single
condition using Langrange multipliers as

T = Ny P?, (2)

i.e. it is required that divergence of stress-energy tensor is a linear combination of field
equations. Coefficients A’y can vary over the spacetime, so they are generally functions of
spacetime point — A\ (). As T has the form u'**"%Phyy Dy op, With u®-s given simply

fabemnop  —  ogipabemno - the [agrange multipliers will be of the following structure:

as u
= LE"hap.e.

Writing master equation (2) in terms of coefficients u® and L*® we have
iabcmnop Liabc Amnop h h -0 3
(U AP ) ab,c'mn,op — VY- ( )

This has to be satisfied for every field h, therefore terms hgp chpmn.op can be considered
as linearly independent (taking into account symmetry in indices (a, b), (m,n) and (o, p))
and thus symmetrized coefficients has to be zero identically

wiablemm(on) _ T Hab)ey Amm)on) _ (4)

Our task is to eliminate Lagrange multipliers L{*® using known coefficients p™°? to find
constants t74%mne (easily recovered from ufaemnop),

3 Covariant formulation

We can take a great advantage when we consider only Lorentz covariant expressions.
This step has the consequence of greatly reducing the number of unknowns in the mas-
ter equation (2). Let’s take a look at the different types of terms and their covariant
contributions to the master equation.

3.1 General form of stress energy tensor

We would like to seek the most general form of the second rank Lorentz covariant tensor
constructed from quadratic first derivatives of metric. So we need to find all different
(with respect to index symmetries) contractions to the term hgp, chge, r to produce tensor of
rank two. Raising and lowering indices is permitted via Minkowski metric. The resulting
terms are listed in table 1.

2As it need not to transform as a tensor with respect to arbitrary coordinate change.
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B; A; Term Abbr. B; A; Term Abbr.
Bia  Ar hip h™y Bio  Aur e I Pia, "D
Br Ay hioh®” hioh® || Bio Az higph®y

Bis Az hig"hi? Bis Az hpaph®,

Bz Ay higphi®? Bs A h%ihby hih
By As  hiaphi® Bis  Ais hapih®

Biz  As  hiaxh®™y By A nmih®aph® . mahph® .
Biy A7 hgaih®y Bs Az Digha,"h* .

Bs  As  hiaxhe®®  hiaxh® | Br o Aig mah%phSe’  nighph®
By Ay hpaile®™®  hgaih® | Bsja Avg MikhapchC

Bii Ao hia M’ s hiahy | Bas Ao Migha,chteC

Table 1: List of possible contractions in stress-energy tensor. A;-s denote coefficients of
linear combination used in this paper, B;-s are coefficients used in [1].

Therefore, the most general form of Lorentz covariant stress-energy tensor quadratic
in first derivatives of metric is of twenty parameters as follows
Tie = Athigah®™ b + Aghigoh® + Ashia “his” + Ashiashi™ + Ashia shi”® + Aghia 1 h™ 4+
A7hka,ihab,b + Aghig x ' + Aghig i 4+ Avohia, b, + A11hge “hi + Auhm,bhab,k-i-
A13hka,bhab,i + Avahihy + A15hab,ihab,k + Alﬁnikh,bhbc,c + Al?ﬂikhab,ahbc,c-i-
Arsnichph® + Argnicha,h® + Asomirhap . (5)

We will denote term standing at coefficient A, as A, (or, where the indices are not
important, as A, ), then the tensor and its divergence can be written in the form

20 20
T =Y Achair,  Ta = Achaa®. (6)
a=1 a=1

3.2 Two indices equation of motion P, =0

We will restrict ourselves here to the symmetric equations P, containing linearly field
hey with second derivatives®. The contribution to the master equation has the form
Afsq“bhm,anb. The demand of Lorentz covariance leaves us with six possibilities listed
below in table 2, naturally we consider P, to be Lorentz tensor as well and we take into
account all index symmetries. These terms will be denoted as L,; and corresponding
Lagrange multipliers \,.

3.3 One index equation P, =0

We consider only equations linearly consisting of first derivatives of the field. Contribu-
tions to the master equation is p; " Ry opPa leading to six covariant terms, labeled U, ;

with corresponding Lagrange multipliers i, see table 3.

3E.g. it is the case of linearised gravity as the Einstein or the Ricci tensor contains linearly the second
derivatives of metric perturbation.
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Term \°®P Explicitly Term ;""" Explicitly
El )\177Ts77qb5f hbb’apia ul Mlnmnnopdg hzza,bb-Pi
£2 )\2nrsnsq6§z hfab7bPia MQ M2nmonnp51q hab,abpi
L3 Xsojn* ™  hy'Pe Us  psd]"n™n"  hi P,
Ly Amsoin™ W' ,Pe Uy a0 0™ 0% higy P
Ls Ao n® kP Us  psn™ 6P ha "By
Ls  Aen™n6;  h™ Py Us  pen™n" 07 hapi" PP

Table 2: The list of possible covariant
terms for equation P, = 0.

Table 3: The list of possible covariant
terms for equation P, = 0.

3.4 Scalar equation P =0

Our linearity condition essentially restricts us to the only possible choices: P = h,*

or P = h,*,". Nevertheless in the master equation we have £ *h,s,P leading to two
covariant terms, named K, ; with multipliers k., shown in table 4.
Term k™ Explicitly
’Cl Klégnsq hia’ap
ICQ Hgnmég haa7iP

Table 4: The list of possible covariant terms for equation P = 0.

3.5 Covariant form of master equation

The most general form of master equation is the following

20 6 6 2
ZAa-Aaik’k — Z /\ﬂﬁgi — Zﬂﬂuﬁi — Z Iiﬁngi = 0, (7)
a=1 ps=1 ps=1 p=1

however there can be fewer terms depending on the type(s) of an equation(s) of motion
used. Now we have equation for unknowns A,, Ag, i and kg which has to hold for
every field h;;. Essentially we rewrite it in the form of (3) and because of the linear
independence of the field terms hab,chmwp4 the linear equations for unknown variables
are extracted. This extraction is done by Cadabra software as described in section 5.

4 Generalization of motion equation

In previous sections we considered equations of motion containing solely and linearly
second derivatives of the field.

Now we will modify the procedure allowing non-differentiated field to be present
linearly in equations of motion as in for example 0,0%h,.s +m?h,, = 0.

4But now appearing only as Lorentz covariant terms, hence at greatly reduced numbers!
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At first, let’s focus on the stress-energy tensor. If our demand is the tensor to be
consisted of quadratic terms containing at most first derivatives of metric tensor then we
should include also terms of the form hgpheq and hgpheq.. We can omit the latter one,
because it is not possible to contract it to form second rank tensor. On the contrary the
term free of derivatives produces four more Lorentz covariant terms, see table 5. The
generalised tensor will be of the form

20 4
T, = Z A Ak + Z CsCgik,
a=1 B=1

where we denoted terms corresponding to coefficient Cz as Cgp.

C; Term Abbr.

Cy  hight hih Term pm"2 Term
02 hia h,z Vl n 77mn5§1 haapi
Cs  mixhlhl  niph? Vs va0;"n"  h* P,

Cy  Nighaph®

Table 6: The list of additional covariant
Table 5: Contractions of non- terms for equation P, = 0.
differentiated terms.

Why didn’t we consider these Cg-terms in the previous section? Because of the Fock
procedure, they would vanish anyway — the equations of motion consist of only the second
derivatives and choosing whatever form of Lagrange multipliers A\* will never produce
terms hgpheqe occuring in Tl,f

Let’s have a look at the equation of motion. Now it contains also non-differentiated
terms, so we need to modify relation (1) into

PA _ p?mnophmn,op + pémnhmn —0. (8)

What is then the form of Lagrange multipliers in the case of our new equation of motion
and new stress-energy tensor? To answer this look at the terms occurring in the master
equation (2). On the left side there are terms of type Ay, thmn and Ay thmnop. On the
right side we have from the equation of motion terms A, and A, .. Consequently,
the only needed and the only possible choice is to consider \yy = \{*'h,,. The different
choices wouldn’t find pairing partners on the left side of master equation and would be
condemned to vanish.

In the segment of Lagrange multipliers we need to reconsider only equations of the
type P, = 0 where in the case of presence of non-differentiated terms we get additional
contribution to the master equation — v/""*h,,,, P, leading to two more covariant terms, la-
beled V, with multipliers v,, see table 6. In the master equation there appears additional

2
term » . _ Vo Vai.

5 Cadabra

With Cadabra software it is extremely easy to obtain equations for coefficients A; (and
Ci, Aiy-..). As was already said, it is needed to extract coefficients standing at the distinct
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covariant terms. This is rather tedious task doing by hand because of the different
naming of dummy indices, symmetry of tensor h, raising and lowering indices and last
but not least the overwhelming number of terms (even though massively reduced by
Lorentz covariance). Cadabra is asked to convert each term into its canonical form by
the following set of commands:

@distribute! (%) : @prodsort! (%) :
@eliminate_metric! (%) : @canonicalise! (%) :
@eliminate_kr! (%) : @rename_dummies! (%) ;

The concrete canonical appearance of every term depends on the internal working of
Cadabra algorithms and the way of storing tensorial structures. Grouping the canonical-
ized terms and collecting their coefficients is done with the command

@factor_in!'(%){ ... list of coefficients to collect ... };

In order to satisfy master equation, it is necessary each collected group of coefficients to
vanish, hence we get the set of linear equation which are fairly easy to solve (by hand or
by arbitrary symbolic manipulation software such as Mathematica).

6 Some results

In this section a few examples of obtained results are presented. We begin with strongly
conserved complex, continue with complex of linearized gravity in arbitrary gauge and
also in particular gauge and end with conserved tensor for Fierz-Pauli action.

6.1 Strong conservation T/} =0

If we impose condition of vanishing divergence for arbitrary (gravitational) field, we
obtain one parameter family with all constants A; vanishing except for « = A; = — A3 =
—2A17 = 245 and the resulting tensor (which is not symmetrical) is

1 1
Ty =« (hka,ihab,b — Rpaph®; — 577ikhab,ahbc,c + 577ikhab,chbc’a) . 9)

6.2 Linearised vacuum Einstein equations 7% = \"* R,

Now we allow the divergence to be linear combination of linearized vacuum Einstein
field equations. The resulting tensor depends on four parameters (o, ag, az, ay) and the
dependence of A;-s on «a;-s can be seen below.

ay=A; = —Az3 = Ay = A = — A, Qg = Ay,
az = A7 = —2Ay7, ay = Ag = A5 = =24y,
0= As = Ag, ap+ag —ag = —Ay = A = A,
—ay — ag = Ag, —az — 204 = Az,

1 1
—0p — g+ 5(14 = Aig, 5043 + ay = Ag. (10)
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And the explicit expression is

Tire = o1 (hieah®™ b — hia, his,” + Piaphi™ — Rig kh® + hig B — Bia,“hy — g ph™ o +
hihg 4 nihph™ ¢ — nixhph®) +
%) (hik,ahya - h’ia,kh/a — hk:a,ah,i + h,ih,k + nikh’bhbcyc — nikh,bh’b) -+

1 1
Qs (hka,ihab,b - hka,bhab,i - énikhab,ahbc,c + 577ikhab,chbc’a) +

g (Pga i + higa, " — 2hiaph™ ; — hihg + hapih® ) — ixh ph" .+
1 1

577¢kh,bh’b - iﬁz‘khab,chab’c + Th'khab,chbc’a) . (11)

Now we want to find symmetric tensors — this condition will impose some restrictions
on coefficients «;. So the demand is Tj, = Ty; or T = 0. Omitting terms in T3, which
are already symmetric itself, we are left with

—hig b 4 hio, "R g — hia, "R — Rigph® k)
ia kh - hka,ah,i>

(
az (—h
g (Pyaih™ p — hiaph® ;)
g (hka il + by, *h; — 2hka,bhab,i) : (12)

Ti =

For this leftover to be symmetric we obtain the conditions
-t =, g —m =, —ap = —ag — 20y, (13)

with the one parameter solution (being merely a multiplicative constant) oy = 2a, ag =
—3a, az3 =0, ay = .

To obtain correspondence with parametrization (81, 82, 83, 34) used in [1]° we need
the following linear transformation

ap = —[a, ay = [+ 285 + B, a3 = —2f4, ay = 203. (14)

We can also consider "complete" linearized Einstein equations G, = 0 and solve
problem with defining equation T} = A"*G,,. The results won’t change, because the
following identity holds A"*G,, = N R,; with \icd = \irs ((5‘35d 277Ts776d), i.e. the only
change is the linear tranformation of Lagrange coefficients (it can be easily checked that
the transformation is regular).

6.3 Linearized gravity with gauge condition h* ) = %h’“

In order to find conserved tensor for gravitational field satisfying gauge condition hflbb =
$h* (which is gauge condition required in [2]) we can follow this procedure — impose
condition (by converting all terms of form hfbb into %h“) on the general stress-energy

°In paper [1] parameters are labeled & instead of B; — this relabelling is used to avoid confusion in
notation used here.
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tensor and general Einstein equations and plunge the resulting quantities into our F.-C.
machinery.
At first we get the following term equalities in stress-energy tensor

241 = Ay, 4A3 =2A50 = 2411 = Ay, 246 = As, 247 = Ay, 245 = 4A17 = A,
(15)

Because of these equalities we simply make these redundant terms vanish via correspond-
ing coeflicients Ai, i.e. Al = Ag = AlO = All = Aﬁ = A7 = A16 = A17 =0. AddlthIlaHy
we need to apply the gauge condition on divergence of stress-energy tensor once again —
divergence produces terms of the type hq.®® which can be further converted into %h,ab.

Ricci tensor reduces simply into 2Ry, = —hg . = 0 and Ricci scalar into 2R = —h .,
hence the Einstein tensor is 2Go, = —hgp° + %nabh’cc. As a result of F.-C. procedure, we
get five-parameter tensor

1
ay = Ay, ay = Ay = — Ay, az = Ay = —51413 = Ay, ay = Ay,
1 1

as = A5 = =241, Ag=—a;— 502 Ag = 2 (a1 + a3+ 20y) . (16)

Explicitly

zk_al

1
zk a - za tha - Z’r/ikh,bh’b)

za bhk b hza bhab kK — _hza kh )

’ 4

1
(hka zhya - Qhka bh + nikhab,chbqa - _nik’h,bh’b)

h hk —Uzkhbh )

1
(03] <hab,z'h'ab,k - kahab,chab’c) . (17)
Butcher’s tensor is obtained after choosing a; =0, as =0, a3 =0, ay = —%, a5 = }L.
In this case conditions of symmetry are as follows
1
—502 — 1 = as, —g = —2az3, (18)
with the result a; = 2a, as = —2a, a3 = a and ay, as arbitrary.

6.4 Fierz-Pauli action

We will start with Fierz-Pauli action describing linearised massive gravity or massive spin
2 particle (see [3])

1 ) . ) 1 1 y
Spp = / —éakhija’fh” + ;b0 B — ;1" 9;h + §8khakh— 5m? (hiih" — h*) d'z. (19)

6F.-C. a.k.a. Fock-Cadabra
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Equations of motion are then obtained as variational derivative of action with respect to
the field variables h;;

05
0hi

= akkhw — 8klh§ — &th + ’I]ijakghka + auh — nljﬁkkh — m2 (h” — nljh) =0. (20)
It can be easily shown that equations (20) are equivalent to the following set of equations
(0" —m?) hyj =0, d'hij = 0, h=0. (21)

6.4.1 Results using equation (20)

Table showing nonvanishing coefficients follows.

ay =A7 = =247,

2 2
ag =Ag = Ann = —An = Ais = — Ay = 2415 = 24190 = — Ay = —— Au,
m m
Az = — a1 — 2009,
1
AQO :§Oé1 + Q. (22)
Explicitly
ab ab 1 a,be 1 be,a
Tiy = o | e ih™ b — hiaph™ i — §nikhab, h . + §nikhab,ch )+
a% (hka,ih’a 4 P, “hi — 2hiaph® i — hihg 4 hayih® g — nich ph% o+
1 1 1 1
577¢kh,bh’b — imkhab,chab’c + Digchap h" + §m27h‘kh2 — §m27]ikhabhab> . (23)

This tensor cannot be made symmetric for any choice of parameters. However we can
additionaly apply the second and the third equation from the set (21) (which are linearly
independent of the original equation (20)) and get the tensor

1
Tir = (_hka,bhab,i + 577ikhab,chbc’a> +

1 1
%) (_Qhka,bhab,i + hab,ihab,k - kahab,chab’c + Thkhab,chbc’a - §m2nikhabhab> ) (24)

which can be made symmetrical by the choice a = ay = —%al obtaining unique (up to a
multiplicative constant) tensor

_ 1 1
T, =« (hab,ihab,k - 577ikhab,chab’c — §m2nikhabhab) : (25)
6.4.2 Results using equations (21)

We use the same procedure as in subsection (6.3), i.e. at first equations h®;, = 0 and
h = 0 are applied on stress-energy tensor — only nonvanishing terms are then A4, As,
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Aia, A1z, Ais, Arg, Asg, Co and Cy4. Of course, the vanished terms can be arbitrarily add
to the resulting tensor, since their divergence also vanishes, but if it is considered only
on-shell situation then there is really no benefit of adding them.

The result of F.-C. procedure is a three-parameter tensor,

1
ap =Ap=—A,= ——202,
m
ay = A3 = —2Ay,
2
az =Ais = —2A19 = ——Cy; (26)
m
explicitly
Ti = o (_hia,bhka’b + Riaph®™ j — m2hmhka) +

1
Qg <hka,bhab,i - §7hkhab,chbc’a) +

1 1
Qa3 <hab,z’h(lb,k - §U¢khab,chab’c - Emznikhabhab) . (27)

Condition of symmetry yields a; = as.

7 Conclusion

We presented a method for finding conserved Lorentz covariant stress-energy complexes
for a certain class of equations of motion. The result for linearized gravity presented in
[1] was reproduced. The requirement of particular gauge in [2] lead to a wider class of
complexes, unlike the unique result obtained by specific procedure in [2]. Finally, the
generalization of F.-C. method lead to computing of complexes for Fierz-Pauli action,
one of the model of massive gravity.
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Abstrakt. Clanek uvadi metodu pro sbér priznaki ze zdro jového kodu softwarovych projekti
pro ucely klasifikace a rozpoznavani vzori. Je prezentovin navrh komponenty implementujici
samotny sbér dat a ukazka piiznaku charakterizjictho navrhovy vzor Tovarna.
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1 Introduction

The main domain of classification and recognition lays in an image processing, where
pattern recognition of common objects on camera pictures is the most common task of
this branch of machine learning. The idea is to emulate a process of a person, who looks
at an unknown picture and instantly recognises and classifies various objects, other people
and all the things that the person encounter earlier. Similar process takes places when
an experienced software engineer looks at an unfamiliar source code. Such person orients
itself in the code by way of identifying familiar structures or patterns, not by survey of
functionality. This lead to a question, why not to apply principles from image processing
to source code patterns recognition. Traditional approach to pattern recognition in a
source code is by the means of graphs isomorphism and similarity scoring [1]. This is
natural as the source code can be easily represented as a tree (abstract syntax tree)
or as a graph (abstract semantic graph). This paper, on the other hand, deals with an
application of more traditional classification methods like discriminant analysis, k nearest
neighbours, naive bayes, neural networks and support vector machines, and specifically
with the method of feature collection to support this methods.

*This paper was supported by grants SGS11/167/0OHK4/3T /14 and LA08015.
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2 Feature Space and Classes

Feature in machine learning is a measurable property which describes some quality of
observed phenomena. Features used by the methods mentioned in the introduction have
a numeric form and are typically used as a whole set called feature vector. Features in
the feature vector should be independent and should discriminate the recognized patterns
or classes from each other. Specifically in image recognition, features should ideally be
invariant to translation and rotation, as a cat is a cat whether it is climbing a tree or
laying on a grass.

Source code, and specifically source code of programs written in object oriented pro-
gramming language, offers certainly many properties which can be measured: code length
in the number of lines, class lengths, method lengths, number of methods, number of at-
tributes, and so on. But these primitive features are not suited for recognizing such
patterns as UML class stereotypes Focus, Auxiliary, Type, Utility, Entity, Boundary and
Control [2]. A class (in the sense of data type) designated by stereotype Focus is meant
to hold the core logic of the component or control flow of auxiliary classes. On the other
hand, Auxiliary class takes a role of a supporting class for the fundamental core repre-
sented by the Focus classes and implements secondary logic or control flow. These classes
are usually connected to Focus class by dependency relationship. Type classes represent
domain objects and Utility classes are a special type of auxiliary classes that contains
only static attributes and operations. Entity classes represent some, usually persistent,
business or system information. Boundary class is a system boundary with its neighbor-
hood, like user interface or system service. Finally, the Control class is an object used to
model system or user workflow or some coordination in a system behaviour [2]. Another
non-trivial patterns, which can be recognized in source code, are well-known design pat-
terns like Factory, Proxy, Builder and others [3]. Completely different level represents
recognition of enterprise integration patterns [4] in projects of large information systems.

To recognize such complex patterns, more sophisticated features have to be designed.
For example, to support recognition of Factory design pattern, feature like this is re-
quired: a ratio of public methods that contain instantiation and return the result of this
instantiation, where call of a member method (public or private) that returns a result
of instantiation count as an instantiation, and where result of instantiation is not of the
same type as covering class, and where returning object is not stored in covering class
attribute |5]. To support recognition of Builder design pattern feature like this can help
a lot: ratio of non-primitive non-static attributes, which are instantiated in within a
member non-static method or constructor [5].

3 Method of Feature Collection

Features like the ones mentioned in the previous chapter can be collected on two levels.
The first level is a textual representation of the source code. This approach leads in most
cases to employment of some pattern matching mechanism like regular expressions. To
implement feature collection from a textual representation of source code is very tedious
and error-prone task as an implementer has to deal with all the syntactic sugar of the
language. This is why the feature collector presented in the paper is implemented on
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more abstract level, on the abstract syntax tree. Abstract syntax tree (AST) is a tree
representation of the source code syntactic structure. The tree is called abstract, because
it omits some details appearing in the real language syntax [6]. AST can be in many
cases obtained as a result of a compilation process, where the source code is parsed and
concrete syntax tree (CST) is created. Abstract syntax tree is then obtained by contextual
analysis and information enrichment of the original tree. Again, pattern matching could
be employed to implement feature collection in more elegant fashion then in the first
case. Features are understood as mapping F' : A — R, where A is a tree and R is the
set of real numbers. A set of collected data Dg for a feature space S can be defined as
Dg ={F(A)|F € S}. The F should be from an interval < 0,1 >, but it is not a necessity
as data are typically normalized before further use [7].

Presented feature collector is based on an idea that the AST of an object oriented
code can be viewed upon as a hierarchical database of data types, attributes, methods,
statements and expressions. It is then natural to think of some query language like SQL to
query the database. Implementation of the first feature (factory) written in such pseudo
query language could look like this:

define is-factory-method(method): boolean
J st € method/statements | st/type = return-statement
A (
J expr € st/expression | expr/type = class-instance-creation
V 3 expr € st/expression | expr/type = name
A not exists f from method/type/field | f/name = expr/name
A exists ei € method/expression | ei = variable-assignment
A (ei/right-side = class-instance-creation
V ei/right-side = method-invocation
A is-factory-method(ei/right-side/method))

select count(method) € type/method | is-factory-method(method)

The query in the pseudo query language is composed of two parts:

e a definition of recursive boolean function that return boolean value true only if
the passed method definition return result of an instantiation that is not stored in
object’s attribute,

e a query that is using the defined function to restrict the set of all methods to
methods that could imply the presence of the factory class.

4 Collector Implementation

To implement collector as designed in the previous chapter several challenges have to be
overcome. The first problem is parsing of source code and abstract syntax tree creation.
This can be usually done by compiler of the language considered. To parse a Java code,
parser from the Eclipse platform can be employed. The advantage is that the parser
provides the tree in object form.
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ASTParser parser = ASTParser.newParser (AST.JLS4);
parser.setKind (ASTParser .K_COMPILATION_UNIT);
parser.setSource(source.toCharArray());

CompilationUnit cu = (CompilationUnit) parser.createAST(null);

On the first line, parser object is created for parsing the Java source code according
to Java Language Specification version 4 (JLS4). The second line states that the parser
should expect whole compilation unit (whole class definition with package specification
and import statements). Other possibilities are to parse only a statement or an expression.
The fourth line is a creation of the AST, where CompilationUnit object is a root of the
tree.

Now, the abstract syntax tree is available, but in a form which is own only to Java.
Thus, implementing the query language directly on the Java AST would lead to a platform
specific query language and platform specific feature definition. The intention is to have
the feature definition platform independent and applicable to a whole family of relative
languages. To achieve this goal, the AST has to be converted to a different form. The
most used platform independent hierarchical structure is definitely XML, it is thus natural
choice to convert the Java AST to XML form. But, XML just define the form not
the content, so set of mapping rules has to be created to convert the AST to XML
representation, specifying which nodes are mapped to which elements, attributes, and
text values.

As was mentioned earlier, features are in fact mappings from tree to set of real num-
bers, so some mechanism of XML manipulation is required. In the world of XML technolo-
gies exist several possibilities when it comes to XML manipulation. Extensible Stylesheet
Language Transformations (XSLT) is a language for transforming XML documents into
various formats. XSLT is based on ideas of functional languages and text-based pat-
tern matching languages [8]. XSLT could handle the required transformation of XML
representation of AST, but it was not designed as a query language. XML Path Lan-
guage (XPath) is query and computation language to easily select specific nodes in XML
documents and carry out simple computations [9]. Despite being query language, it is
too simple to cover the required functionality as was outlined in the example imple-
mentation of Factory feature in a pseudo query language. The finalist is thus XQuery,
a functional programming language designed originally as a query language for XML
databases. XQuery is in fact a superset of the XPath language. XPath in XQuery is used
as an addressing mechanism of XML nodes, while XQuery provides additional features
like the FLWOR construct [10]:

e ' =FOR, specify a temporary variable, in which is stored currently processed node,
e L = LET, enable to specify additional variables during the query,

e W = WHERE, restriction of the queried set,

O = ORDER BY, specify the sequence of result,

R = RESULT, specify the form of a result.
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5 Features implementation

Implementation of proposed features in XQuery is not such straightforward as in the
example, because some details were omitted on purpose. First, some helper functions have
to be defined. The find-method function is used to find a method in a type specified by
name and number of arguments. Name and number of arguments might not be sufficient
information to positively identify method definition because of methods overloading. In
the case of overloaded methods, data types of all arguments would be required to identify
positively. Identify arguments data types from a method invocation is quite a difficult
task during static analysis of source code, thus this case is simplified in the function body

declare function local:find-method($name as xs:string,
$argnum as xs:integer,
$type as element(type)) as element(method)* {

let $methods := $type//method[./name/text() = $name]
return
if (count($methods) = 1)
then $methods
else
if (count ($methods) > 1)
then($methods [count (./arguments/*) = $argnum]) [0]
else ()
3

Next function just verify that an instantiation expression is not using data type of
covering class.

declare function local:is-proper-instantiation(
$inst as element(expression)*) as xs:boolean {

let $res :=
for $ins in $inst
return not($ins/variable-type/name/text ()
= $inst/ancestor: :type/name/text())
return true() = $res

};

That is all for helper functions and the main function, that verify whether the method
could be a method of a factory, can be defined. The main problem is to identify all
possibilities how could be a result of instantiation returned from the method.

declare function local:is-factory-method($m as element(method))
as xs:boolean {
let $field-names := $m/ancestor::type//field/name/text ()
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Function takes method definition as argument and returns boolean value indicating
whether the method is a factory method. Local variable holding all names of attributes
defined in the covering class is created.

let $var-declarations := $m//statement[
Ostatement-type = ’variable-declaration’
and count(./initializer//expression
[@expression-type = ’class-instance-creation’]) > 0
and local:is-proper-instantiation(./initializer/expression
[@expression-type = ’class-instance-creation’])
1/name

Variable containing names of all newly declared variables in the method body, which
are also initialized by instantiation, is defined.

let $var-assignments := $m/body//expressionl[
Q@expression-type = ’assignment’
and count(./right-operand/expression
[@expression-type = ’class-instance-creation’]) > 0
and local:is-proper-instantiation(./right-operand/expression
[@expression-type = ’class-instance-creation’])
1/left-operand/name/text ()

Another way of variable initialization is by the assignment, so all assignments, where
on the right side is instantiation, are stored in another local variable.

let $return-statements := $m/body//statement[@statement-type = ’return’]
let $rs-new := $return-statements[
count (./expression

[@expression-type = ’class-instance-creation’]) > 0
and local:is-proper-instantiation(./expression
[@expression-type = ’class-instance-creation’])
]
let $rs-var := $return-statements[
count(./name) = 1
and (
not (./name/text() = $field-names)
and ./name/text() = $var-assignments
)
or ./name/text() = $var-declarations
]
let $rs-meth := $return-statements[
let $is-inv := count(./expression

[@expression-type = ’method-invocation’]) = 1
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let $meth :=
if ($is-inv and not(./expression
[@expression-type = ’method-invocation’]
/name/text () = $m/name/text()))
then local:find-method(./expression
[@expression-type = ’method-invocation’]/name/text(),
count (./expression[Q@expression-type = ’method-invocation’]
/arguments/expression), $m/ancestor::type)
else ()
return
if ($is-inv and count($meth) = 1)
then local:is-factory-method($meth)
else false()

The core of the function is composed of return statements analysis. Three types of
return statements are detected:

1. Return statement where the returned expression is instantiation.

2. Return statement where the returned expression is a simple name. The name must
not be a name of an attribute and there has to exist an assignment where the right
side is an instantiation.

3. Return statement where the returned expression is a method invocation. The in-
voked method must comply to the same rules. This is ensured by recursive call of
the is-factory-method function.

return count($rs-new) > 0 or count($rs-var) > 0 or count($rs-meth)

};

The examined method is declared as a factory method if there is any of presented
return statements.

6 Conclusion

The paper introduced an uncommon but effective method of feature collection for classi-
fication and pattern recognition in source code. Due to the conversion of abstract syntax
tree to XML, the XQuery language could be employed as a query language and thus
platform independent feature definition language. An extensive example of feature defi-
nition was given. The presented feature is important for classification of Factory design
pattern. Besides the presented feature, over forty additional features have been proposed
and implemented.
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Abstract. This contribution deals with a transport of water in polymer membrane, which serves
as an electrolyte in a hydrogen fuel cell. Special attention is paid to the electro-osmotic drag —
phenomena, that has a significant influence on the humidification of whole membrane. The values
of electro-osmotic drag coefficient obtained from different measurements are discussed. The value
of this coefficient is obtained by simple model based on linear irreversible thermodynamic and
it is compared with the experimental values.
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Abstrakt. Tento piispévek se zabyva transportem vody v polymerni membrané, ktera slouzi
jako elektrolyt ve vodikovém palivovém ¢lanku. Velkad pozornost je vénovana elektro-osmotickému
strhavani — jevu, ktery ma podstatny vliv na zavodnéni celé membriany. Hodnoty koeficientu
elektro-osmotického strhavani{ ziskané z riznych méreni jsou diskutovany. Hodnota tohoto koe-
ficientu je vypoditana pomoci jednoduchého modelu, ktery je zalozeny na lineadrni nerovnovazné
termodynamice, a tato hodnota je srovnana s hodnotami experimentalnimi.

Klicovd slova: vodikovy palivovy ¢lanek, transport vody, elektroosmotické strhévant

1 Introduction

A fuel cell is defined as an electrochemical device, that converts the chemical energy of the
fuel to the electrical energy. Unlike storage cells, fuel cells can produce electrical energy
indefinitely, if we continuously feed them with a fuel and remove the reaction products.
There are many types of fuel cells, but we will be interested only in hydrogen fuel cell
with Nafion membrane as an electrolyte.

The basic operation of hydrogen fuel cell is quite simple. It is a reversed electrolysis of
water. Hydrogen gas is driven to the anode, where it comes into contact with a platinum
catalyst on the electrode surface. Then hydrogen ionizes to electron and proton.

2H2 —~4H™" + 4e” (1)

The produced electrons pass through the external electrical circuit to the cathode due to
an electrical potential gradient, creating thus required electrical current. Protons create

*This work has been supported by the grants CZ.1.07/2.3.00/20.0107 and SGS13/217/0OHK4/3T/14.
"This work has been done in colaboration with Michal Pavelka and Petr Sedlak, NTC University of
West Bohemia.

263



264 L. Strmiskové

a bond with a water molecule from the membrane surface and in the form of hydronium
ion H3O™ pass to the electrolyte and then they move to the cathode.

The cathode is fed by oxygen, usually in the form of air. Oxygen reacts with the
electrons from the cathode and with the protons taken from the electrolyte and forms
water.

Oy +4e” +4H" — 2H,0 (2)

The total oxidation-reduction reaction in the hydrogen fuel cell is thus

The reaction (1) is slightly endothermic, but the reaction (2) is highly exothermic so
as a result, heat is produced within the cell.

Polymer membrane serves as an electrolyte and plays a vital role in fuel cells. It has
to prevent mixing of reactant gases and provide good transport of protons from the anode
to the cathode with as little resistance as possible. On the other hand, the resistance
for the electron transport should be as high as possible. If electrons could pass through
electrolyte, we will not gain the required electrical current.

The membrane also has to have high chemical and thermal stability and low produc-
tion cost.

None of the currently developing materials satisfy all the requirements laid on the
electrolyte. The most closed to the requirements and therefore the most common material
used for the membrane is a material known under its commercial name Nafion, which was
developed by DuPont company in the late 1960s. The biggest disadvantage of Nafion is
its high price.

Nafion consists of a polytetrafluoroethylene backbone with the randomly attached per-
fluorinated side chains ending by a sulfonate acid group (—SO3H). The structure of side
chains varies for different types of Nafion and also for different membrane manufactures.
The bonds between fluorine and carbon make Nafion very durable and chemical-resistant,
they also provide high operating temperature.

Nafion is very good proton conductor, when it is sufficiently wet. So for good fuel cell
operation, we need to keep membrane fully and uniformly humidified all the time. We
will show in the next section, how difficult aim is it and which problems are necessary to
overcome in order to ensure good Nafion humidification.

2 Role of water in Nafion

As we have said, it is well observed, that Nafion is a good proton conductor only if it
is sufficiently wet. The conductivity of dry membrane is almost six orders of magnitude
lower than the conductivity of fully humidified membrane. Insufficient water level inside
the membrane does not lead only to the poor proton conductivity and thus to lower fuel
cell performance, but dry membrane is also more prone to the pinhole formation and the
degradation process is more fast or even membrane failure can occur.

On the other hand, if the level of water is too high, the excess water blocks the pores
in gas diffusion or catalyst layers and the mass transport is limited, which leads to higher
voltage losses|4|. Because of this, the design of catalyst layers has to ensure, that product
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water is repelled from transport pores and that it is pulled to the membrane, where it
increases the membrane conductivity.

The secret of a high proton conductivity of Nafion membrane is in its morphology,
although the exact morphology of Nafion is not known, despite the fact, that it has been
investigated extensively since the early 1970s.

The main difficulties are the facts, that the polytetrafluoroethylene chains has no
uniform length, but their length is randomly distributed along the average length. Also
the side sulphonated chains are not placed to exact place on the polytetrafluoroethylene
backbone, but their placement is more or less random.

Despite this randomness, there are several generally accepted statements about Nafion
membrane morphology. The most significant property is that the membrane is separated
to into distinct hydrophobic and hydrophilic regions.

The bond between HT and SO;~ is ionic and there is a strong mutation between
the positive and negative ion of each molecule, therefore the side chains tend to cluster
within Nafion. And because the polytetrafluoroethylene backbone is hydrophobic, while
the suplphonated side chains are highly hydrophilic, these side chains clusters attract the
water presented in membrane, so we have the structure composed from hydrated and dry
regions. Protons inside these hydrated regions are able to move almost freely. For good
proton membrane conductivity, these hydrated regions have to be as large as possible
and there should be a connection between them.

The connecting path between these hydrated regions is really observed, when Nafion
is sufficiently humidified, and protons move there almost like in fully aqeous environment.
When membrane dries out, these channels are becoming narrower and the proton transfer
is decelerated by the attractive forces of the surface of these channels.

There are four main causes of water transport inside the membrane: diffusion, electro-
osmotic drag, pressure driven hydraulic permeation and capillary effect.

The pressure driven hydraulic permeation is negligible in comparison with drag and
diffusion, if the operating temperature is under 70 C. But for higher temperatures, this
factor can also highly affect water balance [2].

Water is created at the cathode by the oxygen reduction. Part of the generated water
is removed by the air flow, but the rest diffuses to the anode due to the concentration
gradient or differences in water activity.

Protons travel from the anode to the cathode, but isolated proton without electron
cloud can exist freely in solutions only shortly, so when such proton meets a water
molecule, it bounds to it forming thus hydronium ion H3;OT. The higher ions H50;
(Zundel ion) and HoOf (Eigen ion) can be also created. These aggregates of water
molecule and excess proton continue in the earlier proton direction to the cathode. This
phenomena is called electro-osmotic drag.

There are two competing mechanisms of proton transfer in Nafion membrane: vehic-
ular mechanism and Grothuss mechanism. The differences between both mechanisms are
depicted in figure 1.

The vehicular mechanism is a diffusion of hydrated proton (H*(H20),) due to gra-
dient of electrochemical potential.

The Grotthuss mechanism is sometimes called as hopping. The produced proton
sticks to the water molecule presented in the catalyst-membrane interface creating thus
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Figure 1: The mechanisms of proton transfer in Nafion membrane. Vehicle mechanism is
in the top, Grothuss mechanism is in the bottom. [6]

the hydronium ion H30". When this ion is close to another water molecule, proton hops to
it. Original ion turns again into water molecule and water molecule changes to hydronium
ion. This way, proton hopping continues until it reaches cathode. Grotthuss mechanism
is achieved through a local reorientation of water molecules and shuffling of hydrogen
bonds and it was found, while trying to understand, why is the proton conductivity in
water 5 — 8 times higher than the conductivity of other cations.

At higher current densities, the produced protons thus do not allow water to reach
the anode and although the cathode side of the membrane is flooded, the anode side can
be completely dry. Humidifying of the anode is a solution, but it is no so easy, because
excessive liquid water can block the pores and limited mass transport leads to significant
voltage losses, so the level of hydration of the feed gases should be managed very carefully.

Maintaining the proper water level is not easy also because the membrane should
stay optimally hydrated while varying power output. Another difficulty is the fact, that
the reactants are not distributed homogeneously, some regions will be abundant to the
fuel, some regions will be insufficiently supplied by the fuel. Therefore there will be large
variations in local current. The distribution of the produced Joule heat will approximately
correspond to the current distribution. The heat can form pinholes in the membrane and
lead thus to the higher fuel crossover. It can also dry out the membrane and increase
thus the membrane resistance.

The proper water management seems to be a key point in designing a fuel cell and
many engineers and researchers are trying to find the ideal solution of it. The deep under-
standing of the electro-osmotic drag is necessary for solving the problem. Unfortunatelly
the systematic experimental data on this phenomena are still missing.

It is generally known, that proton drags water molecules during its journey to the
cathode. The average number of water molecules dragged by proton is called electro-
osmotic drag coefficient. Tts value is obtained from the experiments. The problem is, that
different experimental techniques gives us significantly different values of this coefficient
(between one and five water molecules per proton, see the figure 2 )[2].

One need to know the electro-osmotic drag coefficient while modeling the transport
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Table 1 - Comparison of the selected EOD coefficients in PEMFCs.

Researchers Measurement PEM T (°C) EOD coefficient

Fuller at al. [64] Concentrated cell Nafion™ 117 25 1.4 (vapor equilibrated) Decreased slowly as the
membrane was dehydrated, falling sharply
toward zero as the concentration of water
approached zero.

Zawodzinski et al. (53]  Electro-osmaotic Nafion® 117 Recast 30 Nafion™ 117, 4 = 22: 2.5-2.9 Nafion" 117,
drag cell Nafion membrane 4=11: 0.9 Recast Nafion membrane: 2.9-3.4
Zawodzinski et al. [58]  Electro-osmotic Nafion” 117 Dow Nafion™ 117, 4 = 22: 20-2.9 Nafion™ 117, 1=11: 0.9
drag cell XUS Membrane C Dow Membrane: 14-2.0 Membrane C: 2.6-4.0
Zawodzinski et al. [59]  Electro-osmotic 1.0 (vapor equilibrated) 2.5 (liquid equilibrated)
drag cell Independent of water content over 1 =1.4-14

(vapor equilibrated). Not significantly dependent on
details of membrane microstructure

Ren etal [61] DMFC analysis Nafion® 117 60, BO 3.16 @ 80 °C, 2.82 bar BP 2.86 @ 60 “C, 2.82 bar BP
Ge et al. [67] Water flux Nafion” 117 30, 50,80 i< 4, temperature had no influence on the ECD.
measurement 4> 4, the EOD coefficient increased with

increasing temperature. 1.1 for the water
activity = 1.0. Linearly increased from 1.8 to
2.7 at 15-85 "C {liquid equilibrated). Keep constant
at0.05-1.0 A/em® current densities at75°C.

Ise et al. [65] NMR Nafion®™ 117 30-80 ECD coefficient increased with increasing
temperature and water content (4= 11-20). 2 =13,
17@22°Cand 25 @79°C

Yan etal. [7] Water flux Nafion™ 117 B0 1526
measurement
Takaichi et al. [62] Inserted Pt potential Nafion™ 211 B0 The ratio of EOD coefficient to BD coefficient
probes was constant irrespective of the current density
{0.2-200 mAfcm * at 20,40, or 60% RH feed gases)
Ye et al. (2] Hydrogen pumping cell GORE-SELECT" B0 1.07 (40 and 95% RH)
membranes
Husar et al, [8] Water flux measurement  Nafion™ 115 40, 60 0.25-0.4 (0.3-0.8 Afcm®) at 40 °C 0.65-1.05

(0.3-1.0 Afcm®) at 60 °C

Figure 2: The values of electro-osmotic drag coefficient. |2]

phenomena in the membrane. But such a scattering of experimental data have to make
one desperate. There is also a big question, why is the range of data so wide.

In most of models, electro-osmotic drag coefficient is expected to be a constant. But it
depends on state variables (temperature, pressure, thickness of the membrane). Different
experimental methods show different values of drag coefficient even in same states. So it
seems, that the choise of experimental technique has an influence on the measured data,
although this is the situation, that should not occur in experimental physics.

But they are same common points in all measurements. It seems, for instance, that
electro-osmotic drag coefficient linearly increases with the increasing temperature.

3 Thermodynamic constraint of electro-osmotic drag
coefficient

In this section, the classical linear non-equilibrium thermodynamics will be used for
determining the constraint of electro-osmotic drag coefficient.

The linear non-equilibrium thermodynamics describes the system, which is sufficiently
close to the equilibrium [5]. There are no thermodynamic fluxes and forces, when the
system is in the equilibrium. When the system is leaving the equilibrium, the forces and
fluxes will smoothly grow. The Taylor expansion around the equilibrium can be done.
There is a region, which is described by linear part of this expansion with high accuracy.
This region is called linear region and thermodynamics valid in this region is called linear
non-equilibrium thermodynamics.
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In the linear region, the relation between thermodynamic fluxes (j;) and thermody-
namic forces (X;) is simple.

N
Ji = Z Lip X, (4)
=1

where the coefficients L;; are called phenomenological coefficients. The phenomenolog-
ical coefficients are constants independent on thermodynamic forces Xy, but they are
functions of state variables of a thermodynamic system.

Phenomenological thermodynamics has no tool for determining the values of these
coefficients. Their values are generally determined experimentally. But thermodynamics
put some constraints on their values. According to the second law of thermodynamics,
the entropy production is not negative.

N N
o(8) =) jiXi=> LuX:Xy>0, (5)
i=1

ik=1

so the phenomenological coefficients have to fulfill Sylvester conditions.
Moreover, these coefficients are not independent, but they have to obey the Onsager
relations of reciprocity [5].
Lix = Ly (6)

The linear non-equilibrium thermodynamics will be used now for describing the trans-
port of protons and water inside the Nafion membrane. The membrane is assumed to
be a homogeneous space, where diffusivity and proton conductivity are constants, that
depend only on state variables.

According to the linear non-equilibrium thermodynamics, the constitutive relations
for the transport of protons and water inside the membrane are as follows.

Jao+ = Lpvg+Xp+ + L+, X, (7)
jw = LwH+XH++waXw7 (8)

where jg+ is the flux of protons and j, is the flux of water. The thermodynamic force
X,, corresponds to the gradient of water chemical potential and Xy+ to the gradient
of electrochemical potential. The other forces like temperature, pressure gradient or
capillarity forces are considered to be negligibly small in comparison with the forces X,
and XH+.

The phenomenological coefficients L;; have to satisfy Onsager relations of reciprocity,
ie.,

LH+w - LwH"‘a

so there are only three independent coefficients. In order to gain the physical interpreta-
tion of these coefficients, the equations (7), (8) are rewritten into the following form

jH+ = O'H+XH+—|—Kjw7 (9)
jo = OwXe+ g (10)
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The coefficient & = (jj—+> is previously discussed electro-osmotic drag coefficient.
/) X,y=0

The coefficient K is defined similarly as K = <JH—+> )
Jw ) X =0

Water cannot drag different protons than protons, that are present in the membrane,
so the following inequality for the coefficient K must be valid.

K- (JH) < (11)
Xp+=0

Jw Cuw

The relation between the coefficient £ and K and the phenomenological coefficients
follows from the original equations (7), (8). The force X, in the equation (7) is substituted
for the force X,, expressed from the equation (8). The same process is analogously done
for the force Xy+ and the following set of the equations is thus gained.

. _ LwwLlpypy+—L, g+ L+ L, g+ -

jHJr o waw wXH+ + EU}U} ]w7 (12)
; — waLH+H+_LwH+LH+wX L+ 13
]w - LH+H+ w _'_ LH+H+]H+‘ ( )

The relation between coefficients £ and K is obvious from these equations.

L

K =3, (14)
L

£ = —L;+H;+. (15)

The coefficient of electro-osmotic drag can be rewritten using the coefficient K, which
fulfills the inequality (11).

52 LH+w _ wa LH+w S wa CH+ (16)
LH+H+ LH"'H“' wa LH+ H+ Cyu
The Nernst-Einstein relations
oy =t o = A (17)

where D,,, Dy+ is the diffusivity of water and protons respectively, are used for further
arranging of the equations.

The value of the electro-osmotic drag coefficient is thus limited only with the ratio of
diffusivity coefficients of water and protons.

c< Do

The diffusivity coefficients for the examinated operating temperature and pressure
can be found elsewhere in the literature. The diffusivity coefficients sugested by Choi et
al. [1] will be put into the inequality just to have an estimation, how the inequality (19)
limits the values of electro-osmotic drag coefficient.

=22 —03 (19)
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This value is much lower than the experimental values. We have a strong suspicion,
that the electro-osmotic drag is not so significant inside the membrane as it is generally
thought. We think, that the surface and bulk properties of Nafion are different and that
the electro-osmotic drag coefficient from experiments is so high, because it is high on the
surface.

This idea is supported by the fact, that different measurement techniques give different
values even at the same conditions. It seems, that each measurement technique slightly
changes the surface of the membrane, changing thus also its properties and consequently
the value of the electro-osmotic drag coefficient.

Moreover if the value of drag coefficient would be so high, the hydrogen fuel cell will be
not able to work without external hydration of feed gases for long time. Benziger showed
(|3]), that it is possible to run fuel cell without hydration without any significant changes
of the membrane. So his experiments also support the idea, that the electro-osmotic drag
should be smaller, than is measured.
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Abstract. We argue that the Witten’s loop mechanism for the right-handed Majorana neu-
trino mass generation identified originally in the SO(10) grand unification context [8] can be
successfully adopted to the class of the simplest flipped SU(5) models [4, 5, 6]. In such a frame-
work, the main drawback of the SO(10) prototype, in particular, the generic tension among the
gauge unification constraints and the absolute neutrino mass scale is alleviated and a simple
yet potentially realistic and testable scenario emerges. Indeed, the perturbative baryon number
violating processes such as proton decay are allowed in the flipped SU(5) model, in particular,
the partial proton decay widths are calculable (see [7] where also comparison with ordinary
SU(5) is given), and may be subjected to future experiments [1, 2, 3]. Firstly, the generic prop-
erty of the simplest flipped SU(5) models is I'(p — K*7) = 0. Next, the loop generation of
the right-handed neutrino mass induces a tight correlation of the proton decay widths with the
neutrino sector which results in predictions on the decay channels to neutral mesons. Accord-
ing to our analysis, I'(p — 7%u*) is bounded from above, whereas a lower bound on the sum
I(p — 7)) + T'(p — 7°u™) occurs.

Keywords: Witten’s loop, flipped SU(5), proton decay.

Abstrakt. Wittentiv mechanismus pro generovini majoranovskych hmot pravotocivych neutrin
byl piivodné implementovan v teorii velké unifikace s kalibra¢ni grupou SO(10) (viz ¢lanek [8]),
av8ak v této praci ukazujeme, Ze jej lze pouzit i pro t¥idu modeli zndmych pod oznacenim
flipovana SU(5) [4, 5, 6]. Jednou z nevyhod pouziti Wittenovy smycky v SO(10) je nesrovnalost
mezi absolutni §kdlou hmot neutrin a omezenim plynoucim z podminky unifikace — ukazuje se,
7e v tomto pifpadé parametry modelu nelze nastavit tak, aby model odpovidal realité. Tento
problém mizi ve flipované SU(5), nebot podminky unifikace jsou zde mnohem slabsi — jsou
kladeny pouze na vazbové konstanty ptislusné neabelovskym kalibra¢nim grupam, dostavame
tak realisticky a potencialné testovatelny model. Experimentalni ovéfeni modelt velké unifikace
poskytuji zejména procesy, kde se nezachoviva baryonové ¢islo a které tedy ve standardnim
modelu nejsou dovoleny (neuvazujeme-li neporuchové efekty). Ve flipované SU(5) lze velmi
dobte vypocitat diléi rozpadové &itky pro rozpad protonu (tyto vypocty a jejich srovnani se
situaci v béznych SU(5) modelech jsou provedeny napi. v publikaci |7]), které mohou byt v
budoucnu zméfeny experimenty jako [1, 2, 3]. Typickym rysem flipované SU(5) je absence
rozpadu protonu na K a antineutrino (I'(p — KT7) = 0). Na§ model je navic specificky
silnou korelaci mezi rozpadovymi §itkami protonu a neutrinovym sektorem, kterd vznika kvili
smyckovému generovan{ hmot pravotocivych neutrin a kterd umoziuje pfesnéji vypocitat rozpad

*The full paper written in cooperation with M. Malinsky and Carolina Arbeldez Rodriguez is available
at http://arxiv.org/abs/1309.6743. Publication in a peer-reviewed periodical is expected.

"The work of H.S. is supported by the Grant Agency of the Czech Technical University in Prague,
grant No. SGS13/217/0OHK4/3T /14
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protonu na neutraln{ mezony a nabité leptony. Nase analyza ukazuje, Ze lze nalézt horni odhad
pro rozpadovou §fiku I'(p — 70u™), zatimco pro soucet I'(p — 70%t) +T'(p — 7%ut) existuje
dolni odhad.

Klicovd slova: Wittenova smycka, flipovana SU(5), rozpad protonu.
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Abstract. This contribution is concerned with the possibility of making the learning process of
neural network with switching units more parallel. Nvidia CUDA architecture will be used for pa-
ralelization of the learning process. This architecture serves for speedup of various computations
due to huge number of CUDA cores which are available on GPU.

Keywords: CUDA, NNSU, MAGMA

Abstrakt. Tento ptispévek se zabyva moznosti paralelizace uc¢iciho procesu neuronové sité s pre-
pinacimi jednotkami. Pro paralelizaci bude pouzita architektura Nvidia CUDA slouzici k urych-
leni nejriznéjsich vypoctu diky velkému podétu vypocetnich jader dostupnych na grafickych pro-
cesorech.

Klicovd slova: CUDA, NNSU, MAGMA

1 Uvod

Neuronova sit s pfepinacimi jednotkami (NNSU) je nastroj uréeny k separaci dat ¢i k apro-
ximaci funkci. Tento ¢lanek je sbirkou poznatki o této neuronové siti a o moznosti dalsi
optimalizace uciciho procesu. Optimalizace bude spoc¢ivat v nahrazeni sériového algo-
ritmu FeSeni soustavy lineadrnich rovnic algoritmem paralelizovanym na GPU. K podpofe
paralelizace na grafickém procesoru bude vyuzita architektura Nvidia CUDA [9)].

2 Neuronova sit s prepinacimi jednotkami

Neuronova sit s prepinacimi jednotkami je tvorena bloky zietézenych tzv. neuronu s pre-
pinaci jednotkou (NSU). Uceni takovéto sité probihd na dvou tdrovnich. Prvni droven
uceni v sobé skryva optimalizaci architektury celé NNSU pomoci genetickych algoritmii,
zatimco na druhé urovni dochéazi k uceni jednotlivych NSU. Pro pfedstavu je na obrazku
1 vidét architektura NNSU.

Tedy neurony NNSU jsou slozeny ze zietézenych NSU. NSU vzdy obsahuje pirepi-
naci jednotku SU a tzv. vypocetni uzly. Uvnitf prepinaci jednotky dochazi k rozdélovani
vstupnich vektori do podmnozin, které prepinaci jednotka posila na konkrétni vypocetni
uzel. Vypocetni uzel je vlastné obycejny perceptron.

*Tato prace byla podpofena granty SGS11/167/OHK4/3T/14 a GA TA CR TA01010490.
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B4 NSU2

NSU1

NSU2

NSU3

Obrazek 1: Leva ¢ast obrazku zobrazuje jednoduchou celou NNSU. Ve stiedni ¢asti je roz-
kreslen blok 4, ktery je slozen ze t¥i neuront s prepinaci jednotkou. Prava ¢ast vykresluje
priklad, jak mize vypadat struktura neuronu s prepinaci jednotkou.

2.1 Genetické algoritmy v NNSU

Architektura NNSU Ize jednoduse popsat jako acyklicky graf. O vysledné usporadéani hran
a uzld se stard optimalizace pomoci genetickych algoritmi [3|. Aby bylo vibec mozné po-
uzit genetickou optimalizaci bylo nutné najit vhodnou reprezentaci acyklického grafu.
Nakonec byla zvolena kombinace dvou metod: PST (Program Symbol Trees [1]) a Rea-
dovy linearni kody [10]. Roman Kalous ve své disertaci nazval tuto reprezentaci IP kod
(Instruction-Parameter Code). Tato metoda dokaze serializovat uzly a hrany NNSU. Po-
moci PST je reprezentovana architektura ve tvaru stromu a Readovy kody tuto strukturu
prevadéji na celo¢iselné fady. Vice informaci o IP kodu najdete v [3].

2.2 Uceni NSU

Pti ucéeni NSU je nutné naucit jak pfepinaci jednotku tak jednotlivé vypocetni uzly. Piepi-
naci jednotka se u¢i pomoci Forgyho metody (varianta k-means algoritmu) pro shlukovou
analyzu. Uceni vypocetni jednotky spociva ve vyteSeni soustavy linearnich rovnic. Vektor
pravych stran je tvoren pouze prvky -1, 1. Matice soustavy je specifikovana vstupnimi
vektory. Reseni dané soustavy urci vahy pro vstupy do vypocetni jednotky. Jelikoz vét-
Sinou vstupy dané vypocetni jednotky nejsou lineadrni kombinaci vah, je tfeba provést
odhad metodou nejmensich ¢tverci.

Zatimco genetické algoritmy pro urceni architektury sité NNSU jsou jiz implemen-
tovany paralelné, feSeni soustav linedrnich rovnic se stile spousti sériové. Nagi snahou
je presunout feSeni soustav linedrnich rovnic na grafickou kartu s vyuzitim architektury
CUDA (Compute Unified Device Architecture).
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3 CUDA

Nvidia CUDA je technologie umoznujici vyvojafi vyuzit potencial paralelni architektury
grafickych ¢ipi od firmy Nvidia. Alternativni technologie pro paralelizaci vypoc¢ti na libo-
volné vicejadrové architektute (véetné GPU) je oznacovana jako OpenCL. Pro nage ucely
byla vybrana CUDA z duvodu lepsi dostupnosti studijnich materiali a piehlednéjsiho
APL

Jednou z nevyhod pouziti architektury CUDA je, Ze neni podporovana grafickymi
Cipy jinych vyrobct. Diky této skutecnosti, v§ak nemusi jeji rozhrani obsahovat mnozstvi
prepinac¢i podle riznych ¢ipu, na kterych bude vysledna aplikace spousténa, coz vede
k prehlednéjsimu kodu.

3.1 Zakladni informace

Programovéani grafickych karet s vyuzitim CUDA je velmi podobné psani kodu v C nebo
C++. Jde pouze o rozsifeni syntaxe jazyka C, o ¢emz svédéi také zpusob, jakym byl
vytvoren pieklada¢. Zakladni balik CUDA SDK obsahuje mimo jiné pieklada¢ nazvany
NVCC [6], ktery rozsifuje b&zné pouzivany piekladac¢ gee.

Kdyz programétor pro¢ita navody nebo dokumentaci setkd se s pojmy jako wldkno,
warp, kernel atd. Nyni si predstavime nejcastéji pouzivané pojmy pii CUDA programo-
vani.

K rozliseni typu procesort, na kterych mé& byt provadén kod, se pouzivid oznaceni
device pro CPU resp. host pro GPU. Funkci volané z CPU, jejiz kod ma byt spustén na
GPU, se fikd kernel. Termin vldkno oznacuje ¢ast dat, zpracovavanou na jednom z CUDA
jader. VlIdkna je mozné strukturovat do bloki a bloky do tzv. gridu, pficemz bloky i grid
mohou byt az 3 dimenzionalni. Piiklad takového rozdéleni vldken znézoriuje obrazek 2.

Je tfeba poznamenat, ze GPU nemiize pracovat s daty uloZenymi v paméti CPU.
Ma-li program zpracovat urcitd data, musi programéator zajistit jejich prekopirovani do
paméti GPU pred volanim daného kernelu. Kopirovani mezi pamétmi je ¢asové pomérné
naroc¢na operace. Dalsi omezeni spoc¢iva v tom, ze GPU neumoziuje spustit napi. pouze
jedno vlakno. Pro jednu instrukci se vidy spousti skupinky po 32 vlaknech tzv. warpy, i
kdyz vysledek ze zbylych 31 neni podstatny. Pii implementaci algoritmii je tfeba na toto
myslet, aby byla karta vzdy co nejvice zatizena. Jen tak je mozné vyvazit ¢as potiebny
na zkopirovani dat z paméti CPU do vnitini paméti GPU a zpét.

Na obrazku 2 je také vidét nékteré typy paméti, které ma vyvojar na grafické karté
k dispozici. Hlavni, nejvétsi a zaroven nejpomalejsi paméti GPU je tzv. globalni pamét.
Jeji velikost se dnes pohybuje v tfadech gigabajtii a ma& do ni piistup libovolné bézici
vlakno. Dalsi typ paméti je pamét sdilena, jejiz velikost se pohybuje v fadu desitek kilo-
bajti. Tato je mnohem rychlejsi nez globalni, ale pristup do ni je omezen pouze pro vlakna
Kazdé vldkno ma svij vlastni registr, do kterého jsou uklddany jeho lokélni proménné.
Vice o CUDA architektufe naleznete v [5].
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3.2 Knihovny a vyvojové prostiedi

Firma Nvidia dodava v SDK spolu s pieklada¢em NVCC také multiplatformni vyvojové
prostfedi Cuda Parallel Nsight [8] a nékolik knihoven. Mimo jiné jde o knihovny Cublas
|4] nebo Cusparse [7]. Prvni jmenované poskytuje programatorovi zékladni operace z li-
nearni algebry jako tfeba maticové nasobeni a knihovna Cusparse je zaméfena na operace
s fidkymi maticemi.

Kromé knihoven dodavanych od firmy Nvidia existuji uzitecné knihovny od tietich
stran. Pro nasSe ucely jsou velice uzite¢né GPU implementace bézné pouzivané knihovny
LAPACK. Existuji jak komerc¢ni tak i oteviené projekty. Piikladem komeréni implemen-
tace funkef z knihovny LAPACK mize byt CuLa Tools (http://www.culatools.com), na-
opak piiklad oteviené knihovny je MAGMA (http://icl.cs.utk.edu,/magma).

4 Integrace CUDA do projektu

Projekt NNSU je naprogramovany objektové v jazyce C+-+ a jeho pieklad je fizen sys-
témem make soubort. Jednim z podtkolu bylo integrovat podporu vypocti na GPU do
stavajiciho projektu. Vzhledem k tomu, Ze NNSU podporuje paralelni spousténi systé-
mem Open MPI, obsahuje zdrojové soubory, které nemohou byt prelozeny obyc¢ejnym gcc
prekladacem, ale musi byt pouzit obalovy pieklada¢ mpixx. Vice informaci o paralizaci
NNSU pomoci Open MPT naleznete v [2]. Situace s piekladem zdrojovych soubori CUDA
je podobnéa. Pro ty je nutné pouzit preklada¢ NVCC.

Bylo tedy nutné najit odpovidajici make soubory a doplnit do nich cesty k piekladaci
NVCC, knihovnam a hlavickovym souborim, coz bylo vzhledem k chybéjici dokumentaci
znacné obtizné.

4.1 Provedené prace

Nakonec se podafilo identifikovat vSechny dulezité make soubory a vhodny adresai pro
umisténi zdrojovych souboru pro GPU implementaci uceni vypocetnich jednotek z NSU,
o kterém byla fe¢ v kapitole 2.2.

Byl vytvoren testovaci soubor cuda_useful.cu obsahujici pouze kernel, ktery zatim
jen ovéiuje funkénost spusténi kodu na GPU. Tento soubor zaroven obsahuje funkci, v niz
se kopiruji testovaci data do a z paméti grafické karty a vola kernel.

V pribéhu prace byl vytvoren mensi samostatny projekt na vyzkouSeni prace s ote-
vienou knihovhou MAGMA, o které byla zminka v sekci 3.2.

5 Zbyvajici prace

Nyni je potfeba vyuzit zkusenosti s knihovnou MAGMA z mensiho projektu pfi paraleli-
zaci u¢eni NSU. V kodu bude zanesena kontrola, zda je k dispozici odpovidajici graficka
karta. V kladném piipadé budou piekopirovana nutna data do paméti GPU, spusti se
kernel a po jeho dobéhnuti budou data zkopirovana zpatky pro dalsi zpracovavani na
CPU.
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Navic by bylo dobré, kdyby se podafrilo najit mezni velikost ucici tlohy, od které se
vyplati fesit tuto ulohu na grafické karté, aby ¢as potfebny na pfenos dat neptresahl dobu
vypoc¢tu na CPU.
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Abstract. A brief summary of results recently published in [2, 3] is presented in this article.
Both papers are devoted to spectral analysis of operators with tridiagonal matrix representation.
Results concerning spectral properties of operators under investigation are expressed with the
aid of hypergeometric series and their g-analogues.
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Abstrakt. V tomto pfispéku jsou shrnuty hlavni vysledky publikované letos v ¢lancich |2, 3].
Obé prace jsou vénovany spektralni analyze operatori s tridiagonalni maticovou reprezentaci.
Spektrilni vlastnosti studovanych operatori jsou popsany pomoci hypergeometrickych fad a
jejich g-analogii.

Klicovd slova: Jacobiho matice, tridiagonalni operator, characteristickd funkce, specidlni funkce,
hypergeometricka funkce

1 Summary

We provide a review of some results taken from [2, 3]. The main contribution and the
scope of the work is pointed out. However, we do not state theorems in their full and
exact form and we omit many details, for the sake of simplicity. An interested reader is
referred to papers [1, 2, 3|.

In [2], we define a complex function F'7, called characteristic function associated with
a Jacobi matrix J of the form

)\1 w1
w1 )\2 Wa
j = Wy /\3 W3 ) (1)

*This work has been partially supported from the following grants: Grant No. 201/09/0811 of the
Czech Science Foundation, Grant No. LC06002 of the Ministry of Education of the Czech Republic, and
Grant No. GA13-11058S of the Czech Science Foundation.

279



280 F. Stampach

where sequences {\,}>2, € C and {w,}>, € C\ {0} satisfy following convergence

condition:
D

2.

n=1

2

Wy,

()‘n - Z)()‘n—i—l - Z)

< 0, (2)

for at least one z € C. Function Fl7 is defined with the aid of function § which has
been introduced in [1], for the first time. Therein, algebraic and combinatorial properties
of function § has been studied in detail and several other results can be found in [2].

Function § is of independent interest and, besides its importance concerning charac-
teristic function of a Jacobi matrix, it is closely related also with orthogonal polynomials,
continued fractions, solutions of bilateral second order difference equation, or hypergeo-
metric functions and their g-analogues.

With matrix J one associates maximal domain operator Jy,, acting on KQ(N). The
main result of work [2]| then states the part of the spectrum of Jy,ax out of the set of finite
accumulation points of diagonal sequence {\,}5°; coincides with the set of zeros of the
characteristic function F'7. With the only exception of the obstacle with limit points of the
diagonal of matrix J, this is familiar situation from (finite-dimensional) linear algebra.
Further, we provide explicit formulas for corresponding eigenvectors, their {2:-norm (in
the real case), even the Green function, and the Weyl m-function, in particular.

As an application, we present several examples of concrete Jacobi matrices where
general results can be further simplified, see the illustrating example at the end of this
paper. Usually, the spectrum as well as eigenvectors are described in terms of of special
functions and their zeros (Bessel, Ramanujan ¢-Airy). Special attention is paid on prop-
erties of zeros of the Bessel function v — J,(z) considered as a function of its order. In
particular, a new asymptotic formula for these zeros has been found.

Realizing the occurrence of special function of hypergeometric type or their g-analogues,
we present even more concrete examples of Jacobi matrices with solvable spectral problem
in paper [3]. However, in this paper, we go even beyond the scope of the characteristic
function indicated above. There appears operator for which convergence condition (2)
is violated. Moreover, the spectral analysis of an operator with doubly-infinite tridiago-
nal matrix representation is involved. Further, we derive several asymptotic or summa-
tion formulas with special functions (Jackson g-Bessel function, confluent hypergeometric
function 1 F, and its g-version 1¢1).

To illustrate a typical result we recall the following example from [3].

Proposition 1. For0 < q¢< 1,0 €R, andy > —1, let J = J(o,7) be the Jacobi matrix
operator in (*(N) defined by (1) where

1
Wy, = 5 sinh(a)q("—V—l)/z /1 — qn—&-'y’ A\, = qn—l' (3)

Then z # 0 is an eigenvalue of J(o,7) if and only if

(cosh®(0/2)27" q) 0o 161 (¢ 7 cosh®(0/2)27"; cosh?(0/2)2"; ¢, — sinh*(c/2)27") = 0.
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Moreover, if z # 0 solves this characteristic equation then the sequence {v,},—,, with
v, = g ey sinb’ (o) (22) 7" <q" cosh? (f) 7Y (])oo
(@ @)oo 2

X 101 (q’7 COShZ(%> 27t g™ cosh? <%) 27t g, —¢" sinh? <%> z’1> , (4)

s a corresponding eigenvector.
In the particular case v = 0 the characteristic equation simplifies to the form
(cosh?®(0/2)27"; q) oo (— sinh*(0/2)27 "5 ¢) oo = 0.
Hence in that case, apart from z = 0, one knows the point spectrum fully explicitly,
spec(J(0,0)) \ {0} = {¢" cosh®(c/2); k =0,1,2,...} U{—¢"sinh*(5/2); k=0,1,2,...}.

This example is particularly interesting since it gives rise to a new class of orthogonal
polynomials with interesting properties, as is non-uniqueness of the orthogonality mea-
sure, providing ranges of involved parameters are chosen conveniently. This is studied by
the author at present.
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Abstract. The problem of dynamic medical image sequence separation is studied. We intro-
duced the state of the art algorithms for medical sequence decomposition together with those
that are proposed by us. The validation and the comparison of the algorithms are nontrivial
and challenging task. We propose to use a synthetic data where a ground truth is available
80 it is possible to compute a significant statistics for comparison reason. Moreover, we pro-
posed a comparison on 99 real data from renal scintigraphy where relative renal functions are
automatically computed and compared with those obtained by physician.

Keywords: blind source separation, deconvolution, scintigraphy, medical image sequence

Abstrakt. Tento pfispévek se zabyva zpracovianim dynamickych dat ziskanych metodou nuk-
learn{ mediciny, scintigrafie. State of the art algoritmy spole¢né s témi, které predklddame my,
jsou predstaveny a diskutovany. Validace a srovnani téchto algoritmi je netrividlni iiloha. Ne-
jprve navrhujeme srovnani pomoci generovanych dat, kde jsou k dispozici zdrojova data, diky
kterym je moZno napocitat zdkladni statistické ukazatele vysledki. Pfedkladame i srovnéani algo-
ritmd pomoci 99 realnych studif ze scintigrafie ledvin. Na téchto studiich automaticky pocitame
relativni renalni funkci, kterda mutze byt srovnana s vysledky ziskanymi zkuSenym lékafem.

Klicovd slova: slepa separace, dekonvoluce, scintigrafie, obrazova sekvence

1 Introduction

Medical data postprocessing and analysis is important step in diagnostic medical exam-
ination. In many imaging modalities such as scintigraphy, the activity of tissues can be
observed only via observing of the particles coming from radiopharmaceutical applied to
the body. It can be seen the activity during the time in the respective tissues or part
of the body using the method; however, several issues must be considered. Since the
scintigraphical camera observed the body from one direction, the resulting image pixel is
a sum of all underlying tissues. As a result, we observe a superposition of all tissues in
respective region of interest (ROI). The task of medical image processing is to reconstruct
the original sources of signal, i.e., tissues and their time-activity curves (TACs).

The problem is called blind source separation (BSS) and it is well described in a liter-
ature. The current methods used in practice is typically based on manual or semi-manual
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selection of ROIs of the examined tissues and subtraction of the background activity [13].
More automated models can be based on model of a factor analysis (FA), [8, 7]; however,
the solution of the FA is ambiguous and biological meaningfulness is not guaranteed.
Other approach is based on modeling of fluid flow using compartment models such as in
[5]; however, this could be too strict for biological processes and suffers from artifacts and
computation tractability. In recent years, we proposed a number of probabilistic models
based on FA model and solved using Variational Bayes (VB) method, [15]. The models
are based on modeling both, images and TACs. We proposed (i) a modeling of TACs as
results of convolutions of common input function and restricted convolution kernels, [10],
(ii) modeling a probability mask on images reflecting that activity do not cover the whole
image but only relatively small area [9], and (iii) model combining the advantages from
both forcoming model and using the automatic relevance determination (ARD), [1], as a
general principle, [11].

This paper summarize mentioned methods and focus on theirs validation and compar-
ison methodology. The issue with validation of models is in no ground truth, no golden
standard. Even physician have very different results in scintigraphy on each patient |3|
or using different methodology [4]. The synthetic data can be used as an indicator of
feasibility but it never reflects the nature. Comparison with physician results can be done
but with consideration that manual results suffers from inaccuracy. We propose a com-
parison on a data from renal scintigraphy where relative renal function is automatically
computed.

2 Mathematical Models

We summarize the used mathematical models in our study. All selected methods provides
automatic results so they are comparable without biased interpretation.

The objective is to analyze a sequence of n images obtained at time ¢t = 1,...,n
and stored in vectors d; with pixels stacked columnwise. The number of pixels in each
image is p, thus d; € RP. The important assumption is that every observed image is
a linear combination of r factor images, stored in vectors a, € RP, k = 1,...,r, using
the same order of pixels as in d;. The dimensions of the problem are typically ordered
as r < n < p. Each source image has its respective time-activity curve stored in vector
x, € R, k=1,...,r, X4 = [T14,...,Tng), X' denotes transpose of vector x.

We propose probabilistic formulations of this problem using several probabilistic mod-
els. The models are solved using Variational Bayes approximation [15]. The Bayes rule
is given as

p(0]D) = p(0.D) _ p(DI0)p(0) (1)
p(D)  [p(D|0)p(0)do’
where D are observed data and 6 are parameters of p(D|0) with prior knowledge p(6).
Approximation of the Bayes rule via VB approximation can be reached as

p(0;) x exp (Ep(g/i) (In(p (6, D)))) i=1,...,n (2)

Here, 6/; denotes the complement of 6; in 6 and E,)(g(f)) denotes expected value of
function ¢(f) with respect to distribution p(f). Equation (2) forms a set of implicit
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Figure 1: Hierarchical models of BSS+ (left) and FAROI (right).
equations which has to be solved iteratively.

2.1 Blind Source Separation Based on Factor Analysis

The described data sequence can be rewritten in terms of superposition, [7], as
dt = AXt, (3)

where A is matrix of tissue images stored a; as its columns. It is appropriate to set
biologically motivated assumption such as (i) the observed data d, are positive, (ii) the
expected tissue images a, and TACs x;, are also positive, (iii) the data d; is strongly
affected by a noise, and (iv) the number of relevant tissues, r, is unknown and should be
estimated during the estimative procedure. These assumptions can be rewritten into the
probabilistic model as:

f(di|A, X, w) = tN(Ax;,w ', ® I,,), (4)

f(w) = G(Do, po), (5)

f(xklor) = tN(0, 1, v ' I), (6)

f([vlv <o 7UT]) = H G<O‘k,07ﬁk,0)7 (7)
k=1

flag) = tN(0p1, 1), (8)

where tN() denotes truncated normal distribution to positive values, G() denotes gamma
distribution, I, denotes identity matrix of the respective size, and symbol ® denotes
Kronecker product. The hierarchical model of this model is in Figure 1, left. The model
will be denoted as the Blind Source Separation model with positivity constraints (BSS+).

2.2 Regions of Interest in Blind Source Separation

This model adopts the assumptions from section 2.1; however, it reflects the simple fact
that tissues do not cover the whole scanned area but only a limited number of pixels.
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Hence, we proposed a masking of each tissues image using indicator i of the same size as
tissue image, [9]. This affects the model from section 2.1 as follows:

Fasilisn, &) = U(0, 154N (0, & 1) 1), (9)
f(&r) = G(r,0, Yr0), (10)
f (i, k) = tExp(Air0, (0, 1]), (11)

where tExp() is truncated exponential distribution. The hierarchical model of this model
is in Figure 1, right. The probabilistic masks i, are estimated together with other pa-
rameters during the estimative procedure in VB method. This model will be denoted as
the FAROI model (Factor Analysis with integrated ROI).

2.3 Convolution in Blind Source Separation

This model reflects the fact that each time-activity curve arise as a convolution of common
input function and tissue-specific kernel, [6], such as

Xk :b*uk, (12)

where b € R™! is input function, u, € R™! is convolution kernel of the kth tissue,
and * denotes convolution. Both b and u; are modeled as increases as vectors g and wy,
respectively. This can be rewritten into the probabilistic model as [10, 12]:

FWilé) = tN(My,, &), (13)
J(&k) = G(Kro, Vk0), (14)
f(gl¥) = tN(0n1, ¥~ 1), (15)
f(@) = G(Cosm0), (16)

where M,,, is obtained in each iteration using clustering algorithm. The hierarchical
model of this model is in Figure 2, left. This model will be denoted as the CFA model
(Convolution with Factor Analysis).
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2.4 Sparsity in Blind Source Separation and Deconvolution

Our latest model adopts ideas from the previous models from sections 2.1, 2.2, and 2.3.
However, the assumptions of probabilistic masks, i.e. sparsity of tissue images, and of
convolution are not so strict here. We use the Automatic Relevance Determination (ARD)
principle, [1], to adopt the sparsity in both, tissue images and convolution kernels respec-
tively. ARD principle is based on observation that variance of the redundant parameter
tends to zero in VB solution.

The model can be written as [11]:

p(az|€z> = tN(Ol,’m diag(gi)_l)v Z = 17 Ry 2 (17)
(&) = H G(dir,0, Vir0), (18)

k=1
p(bl¢) = tN(0,¢7'1,,), 19

p(s
p(ug|vg

p(vjik

G(Coﬂ?o)
( n,1, dlag<vk>_l)7

)
) =
) =
) = G(ajkp, Biko), j=1,...,n,
where diag() denotes matrix with argument vector on its diagonal and zeros otherwise.
The hierarchical model of this model is in Figure 2, right. This model will be denoted as
the S-BSS-DC model (Sparsity in Blind Source Separation and Deconvolution).

2.5 CAM-CM algorithm

A complex compartment model for fMRI tumors imaging was described in [5] based on
pharmacokinetic modeling using identifying representative pure pixels from each com-
partment in corners of cluster simplex. The algorithm is available online and is denoted
as the CAM-CM algorithm.

3 Validation on Synthetic Data

Validation on synthetic data is widely used in cases when data with known ground truth
are not available. This is the classical issue in the field of dynamic medical imaging
including renal scintigraphy.

We propose synthetic data based on [5]. We adopt the image sources and generate our
own TACs. It contains 3 image sources modeling the overlapping of all sources pairwise
and shared overlap in the center. The size of images is 50 x 50 pixels; hence, p = 2500.
The length of the generated sequence is 50 time steps; hence, n = 50. The image sources
and theirs related TACs are in Figure 3, left.

We run each algorithm on this dataset. The number of expected tissues r is set to
3; hence, r = 3. The number of iteration is set to 100 which is reasonable for reach the
convergence.
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Figure 3: Results from the algorithms on synthetic dataset.

3.1 Results

The results from all algorithms are shown in Figure 3. The ground truth data are on
the left and then results from algorithms (from left): BSS+, FAROI, CAM-CM, CFA,
S-BSS-DC. The image sources are in the first column and the TACs are in the second.
The dashed lines denotes ground truth and the full lines TACs estimated by algorithms.
Note that the results are normed with respect to the activities of ground truth; hence,
we study shapes, not amplitudes.

Since we have ground truth TACs, we can compute Mean square error (MSE), Mean
absolute error (MAE), and Maximum error. The results is shown in Table 1. Tt can
be seen that the computed statistics have significant explanatory value with S-BSS-DC
algorithm being the best.

4 Validation on Real Data

Validation on real data is much more challenge then validation on synthetic data. Gen-
erally, we have no ground truth; hence, we can not compare results from algorithms with
it. In renal scintigraphy, we have two main choices.

First, skilled operator can manually select regions contained each tissue and plot
activities of the selected regions. Note that overlaps must be carefully considered. This
task is extremely subjective and using of these types ground truths should be done with
respect of this fact.

Second, diagnostic coefficients may be computed by a physician from the data. In
renal scintigraphy, this task is very subjective too [3]. We are focused on computing of
relative renal function (RRF) [2] which is a percentage of function of the left kidney and
the right kidney. The RRF is estimated from the sum of activity in the left (L) and in the
right (R) parenchyma during the uptake time. Then, RRF} = HLR x 100 % and RRFpg
can be computed analogically, both weighted by their time activity curves. Historically,
the activity is taken only from the uptake time, the time when kidney accumulates activity
only.

We propose a comparison on dataset [14] where RRF is computed by experienced
physician. We select the sequences where both kidneys are present, i.e. 99 cases. The five
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Mean Square Error |

Algorithm
Tissue no. | BSS+ | FAROI | CAM-CM | CFA | S-BSS-DC
1 0.0061 | 0.0033 0.05 0.0135 0.0033
2 0.0047 | 0.0037 0.0205 | 0.0056 0.002
3 0.0455 | 0.0133 0.1420 | 0.0643 0.0095

Mean Absolute Error \

Algorithm
Tissue no. | BSS+ | FAROI | CAM-CM | CFA | S-BSS-DC
1 0.0432 | 0.0416 0.1515 | 0.1017 | 0.0429
2 0.0321 | 0.0285 0.0363 | 0.0716 0.0374
3 0.1448 | 0.0737 0.2663 | 0.2208 0.0656

Maximum Error ‘

Algorithm
Tissue no. | BSS+ | FAROI | CAM-CM | CFA | S-BSS-DC
1 0.4595 | 0.2827 0.7897 | 0.1684 0.2385
2 0.2651 | 0.2444 0.9516 0.1190 0.1589
3 0.5489 | 0.3569 0.8527 | 0.4362 0.2519

Table 1: Comparison of the algorithms on synthetic dataset is shown. The MSE, Mean
error, and Maximum error are computed.
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RRF estimation
Algorithm | <5% <10% = 10%
BSS+ 57.6% T78.8% 21.2%
FAROI 58.6% 83.8% 16.2%
CAM-CM | 47.9% 63.8% 36.2%
CFA 59.6% 82.8% 17.2%
S-BSS-DC | 68.7% 86.9% 13.1%

Table 2: Cumulative histogram of RRFs.

described algorithms will be compared via difference of their results of RRF computation
from those provided by the experienced physician as a reference value. We will consider
the automatic method that is closer to his results to be better [12].

4.1 Results

The results will be compared for BSS+, FAROI, CAM-CM, CFA, and S-BSS-DC algo-
rithms. We use comparison over the cumulative histogram, see Table 2.

The results suggest the similar conclusion as results on synthetic data. The S-BSS-DC
algorithm seems to outperform the other algorithms.

5 Conclusion

We study possibilities of comparison of algorithms for blind source separation of medical
data sequence in this paper. We revise possible algorithms based on probabilistic mod-
eling from base to more complex ones with additional assumptions. We discuss the way
how to compare a performance of the algorithms. The synthetic data is proposed which
provide a ground truth. It is possible to compute significant statistics using comparison
of results with this ground truth. Comparison of the algorithms on real data from renal
scintigraphy is more challenging task since no ground truth is available. We propose a
comparison based on relative renal functions computation and comparison with those
obtained from experienced physician.

We shown that the S-BSS-DC algorithm outperform other proposed algorithms in
both synthetic and real data. In a future, we will prepare a comparison on directly
manually selected tissue-images and related time-activity curves. It should prove the
feasibility of algorithms in the best imaginable way.
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Abstract. The article presents selected options of the Monte Carlo algorithm application to
study signals obtained by electroencephalographic examination (EEG). Using simulation algo-
rithms considering the EEG signal within each measured channel as a chaotic system, there
could be a faster and more efficient computation. Functionality of the Monte Carlo method is
verified on the existing known systems. One of the goals is to find the appropriate characteristics
and statistically significant indicators, applicable in the diagnosis of Alzheimer’s disease.

Keywords: Monte Carlo method, chaotic system, EEG, Alzheimer’s disease

Abstrakt. Clanek piinasi vybrané moznosti aplikace algoritmii metody Monte Carlo pfi studiu
signalu ziskanych elektroencefalografickym vySetfenim (EEG). Uzitim simula¢niho algoritmu
pohliZzejiciho na signdl EEG v ramci jednotlivych méfenych kanélt jako na chaoticky systém,
dochézi ke zrychleni a zefektivnéni vypoctu. Funkénost metody Monte Carlo je ovéfena na
stavajicich znamych systémech. Jednim z cild je nalézt vhodné charakteristiky a statisticky
vyznamné ukazatele, aplikovatelné v diagnostice Alzheimerovy choroby.

Klicovd slova: Monte Carlo, chaoticky systém, EEG, Alzheimerova choroba

1 Introduction

There are many possibilities how to analyse EEG time series. Frequency analysis is the
most popular methodology here. Another possibility is to analyse fractal properties of
the time series. One of the possible characteristics of chaotic behaviour is called corre-
lation dimension, which is based on calculations of correlation sum. In the case of EEG
signal there are very large time series. Therefore, the time complexity of the correlation
sum evaluation is unacceptable in real application. The novelty of this approach is in
simultaneous and approximated calculations of correlation sums which makes the method
applicable to real data.

*This work has been supported by the grant SGS11/165/0OHK4/3T/14.
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Figure 1: Hénon Discrete Dynamic System

2 Discrete Dynamic Systems

Let n € N be system dimension. Let 7 € R" be system state. Discrete dynamic system
(DDS) can be driven by deterministic dynamics

Try1 = [ (@) (1)

where f: R" — R" is continuous mapping.

Previous formula is useful for theoretical investigation and simulation of DDS. In the
case of real data analysis, the state variable z; cannot be directly observed. According
to Whitney [6] and Takens [5], any state variable y, = x;; could be sampled and then
the state space reconstruction calculated

5; = (ym, ey yk,Dq) (2)

where D € N is embedding dimension of given DDS.

Having a knowledge of system dimension n, Whitney’s theorem could be applied and
directly set D = 2n 4+ 1. When fractal dimension of DDS attractor D is known, more
optimistic estimate D > 2D according to Takens’ theorem could be obtained.

2.1 Hénon Map

Hénon system [1] is driven by formulas

2
Tpy11 = 1—axp; +bryp
Trt12 = Tk, (3)
where usual parameters are a = 1.4 and b = 0.3.

Trajectory of Hénon DDS for 7y = (0,0.9)T is depicted on Fig. 1. According to [4],
fractal dimension of attractor is Dy = 1.25827.
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Figure 2: Holmes Discrete Dynamic System

2.2 Holmes Cubic Map

Holmes system [2] is driven by formulas

Tr+11 = Tg2

3
Thy12 = —aTp1+0rpo — 2742 (4)

where usual parameters are a = 0.2 and b = 2.77.
Trajectory of Holmes DDS for %, = (1.6,0)7 is depicted on Fig. 2. According to [4],
fractal dimension of attractor is Dp = 1.26977.

2.3 Lozi Map

Lozi system [3] is driven by formulas

Tk+11 = 1—a |l’k71’ + bl’k’g

Thp12 = T (5)

where usual parameters are a = 1.7 and b = 0.5.
Trajectory of Lozi DDS for &y = (—0.1,0.1)7 is depicted on Fig. 3. According to [4],
fractal dimension of attractor is Dp = 1.40419.

2.4 Multichannel EEG Data

Electroencephalography (EEG) represents a basic electrophysiological method for exam-
ination of brain activity. The essential part of EEG registers spatio-temporal changes
of brain biopotentials resulting from the continuous activity of excitatory membranes at
synapses of columnarly arranged neural populations. The positive and negative charges
create dipoles which are generally perpendicular to the surface of the cerebral. Sensing
electrodes register the differences between particular areas.
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Figure 3: Lozi Discrete Dynamic System
Most frequently used scheme of electrode placement is called 10-20, whose name cor-

responds to the ratio of the distances between particular electrodes. This diagram is
shown in Fig. 4.

Figure 4: 10-20 scheme

3 Correlation Dimension

Correlation dimension Dy is important characteristic of fractal structures. Their value
lies between topological and Hansdorff dimensions according to inequalities

Dy < Dy < Dy (6)
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Correlation dimension is determined by using correlation sum

9 N N
C(r) = NN =1 YN ek —my) (7)

j=1 i=j+1

where r > 0, O is Heaviside function, r; ; = ||z; — || or r;; = ||& — ||, respectively and
N is a number of data points.
Correlation dimension is then defined as

1
Dy = Tim 1im 108C0)
r—0N—oco dlogr
For finite N, D5 can be estimated via LSQ method using linearized model

logC(r) = A + Dologr. (9)
The main disadvantages of these approach are:

1. Unacceptable time complexity of C(r) calculations for large N,

2. unacceptable bias of Dy estimate for small N.

Therefore, the original methodology of Dy estimation is unacceptable in the case of
EEG data analysis.

4 Numeric Experiments

4.1 Hénon Discrete Dynamic System

Monte Carlo approach was applied to Hénon DDS with #, = (0,0.9)7. Time series of
{p1}, for N = 10° was used in state space reconstruction for D = 5 with M =
10%,10°,10° repetitions. Repeating approximations of C(r) are depicted on Fig. 5. Nu-
meric estimates of capacity dimension are collected and compared with theoretical value
Dy* = 1.220 in Tab. 1.

M | ED, S z= EDQT_DZ* p-value
10% | 1.2237 | 0.0404 0.9163 0.3617
105 | 1.2138 | 0.0140 -4.4075 2.6554x107°
105 | 1.2155 | 0.0050 -9.1118 9.5479x 10715

Table 1: Correlation dimension for Hénon DDS

4.2 Holmes Discrete Dynamic System

Holmes DDS was approached with Z, = (1.6,0)”. Time series of {xy}_, for N = 10°
was used in state space reconstruction for D = 5 with M = 10%,10%, 10° repetitions too.
Repeating approximations of C(r) are depicted on Fig. 6. Numeric estimates of capacity
dimension are collected and compared with theoretical value Dy* = 1.260 in Tab. 2.
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M | ED, S z= EDQT_D?* p-value
10 | 1.2455 | 0.0770 -1.8834 0.0626
10° | 1.2536 | 0.0248 -2.5733 0.0116
10° | 1.2564 | 0.0076 -4.7804 6.0912x107¢

Table 2: Correlation dimension for Holmes DDS

4.3 Lozi Discrete Dynamic System

Lozi DDS was approached with 7y = (—0.1,0.1)". Time series of {1}, for N = 106
was used in state space reconstruction for D = 5 with M = 10%,10°,10° repetitions.
Repeating approximations of C(r) are depicted on Fig. 7. Numeric estimates of capacity
dimension are collected and compared with theoretical value Dy* = 1.384 in Tab. 3.

M | ED, S z = EDQT_DQ* p-value

10* | 1.3490 | 0.0636 -4.5001 2.9737x1072
105 | 1.3508 | 0.0212 -8.6321 1.4892x1076
105 | 1.3670 | 0.0101 -12.8742 7.9621x10710

Table 3: Correlation dimension for Lozi DDS

5 Case Study: Alzheimer’s Disease Diagnosis

For the case study, a group of 165 patients has been used, from which 24 were affected by
Alzheimer’s disease (AD) and 139 were with control normal (CN). The data was recorded
using the standard 10-20 scheme, thus values of 19 channels were obtained. The sampling
frequency was 200 Hz and patients were measured for 5 minutes.

Dy values of each channel for all AD and CN patients were studied. The model
parameters were M = 10° repetitions, D = 19 for state space reconstruction, p,,in —
0.59, ppar = 0.6, and minimum sample distance A = 200.

Tab. 4 summarizes final results. The best pyawe = 0.0049 was obtained for second
channel and pyaue = 0.0306 for sixth channel which correspond to frontal electrodes. The
result confirms former research results that significant differences between AD and CN
groups could be recognized in the case of frontal electrodes.
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Q
=

D, CN Dy AD Pralue
mean std mean std
1.4121 | 0.3922 | 1.2535 | 0.4540 | 0.0669
1.3829 | 0.3715 | 1.1492 | 0.4419 | 0.0049
1.4158 | 0.3698 | 1.4877 | 0.4557 | 0.3828
1.5757 | 0.3915 | 1.5150 | 0.4245 | 0.4752
1.6267 | 0.3742 | 1.4752 | 0.4439 | 0.0678
1.6090 | 0.3812 | 1.4227 | 0.4894 | 0.0306
1.4712 | 0.4206 | 1.3994 | 0.4745 | 0.4353
1.6114 | 0.4834 | 1.6329 | 0.5124 | 0.8365
1.7073 | 0.3872 | 1.6653 | 0.4539 | 0.6223
1.6895 | 0.4074 | 1.6035 | 0.4792 | 0.3381
1.6950 | 0.3990 | 1.6408 | 0.4389 | 0.5321
1.6654 | 0.5035 | 1.5828 | 0.5583 | 0.4519
1.6001 | 0.3848 | 1.6117 | 0.4267 | 0.8900
1.6459 | 0.3641 | 1.6027 | 0.4522 | 0.5942
1.6541 | 0.3456 | 1.5928 | 0.5132 | 0.4465
1.6450 | 0.3534 | 1.6354 | 0.4307 | 0.9019
1.6015 | 0.3911 | 1.6038 | 0.5378 | 0.9797
1.5791 | 0.3722 | 1.5076 | 0.4729 | 0.3913
1.5855 | 0.3560 | 1.5942 | 0.4405 | 0.9128

o b b e e e
O 0D AR W RO © PR WD

Table 4: Comparison of D5 value of AD and CN patients
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Abstract. We study arithmetical aspects of [to-Sadahiro number systems with negative base.
We present an effective algorithm for addition when the base is —y where 7 > 1 is the tribonacci
constant, the root of 23 — 2% —x — 1. In particular, we show that addition can be done by a finite
state transducer. As a consequence of the structure of the transducer, we show that + posseses
the so-called finiteness property. Moreover, we determine the maximal number of fractional
digits arising from addition of two (—<)-integers.

Keywords: negative base, number system, tribonacci

Abstrakt. Prispévek se zabyva aritmetickymi vlastnostmi ¢iselnych soustav se zdpornym zék-
ladem. Ptredvedeme efektivni s¢itaci algoritmus pro pfipad, Ze zdkladem je —v, kde v > 1 je
takzvana tribonacciho konstanta, kofen 2% — x? — x — 1. Pfesnéji feCeno, ukdzeme, Ze s¢itani
mize byt provedeno koneénym prekladacdem. Nasledné pak, jako dusledek struktury prekladace,
ukazeme, ze v ma takzvanou vlastnost (-F). Navic uré¢ime pocet zlomkovych mist vznikajicich
pii s¢itani dvou (—v)-celych ¢isel.

Klicovd slova: zapornéd baze, numeracni systém, tribonacci

1 Introduction

Numeration systems with negative non-integer base received a non-negligible attention
since the paper [5] of Ito and Sadahiro in 2009. Since then there have been written several
papers concerning arithmetical aspects of such number systems with a Pisot base (see
6, 171, [1]).

It has been shown in [1] that the negative base number system posseses interesting
properties when the base is taken to be root of

k k—1

" —ma" " —---—mx—n, m>n>1 and m =n for k even. (1)

The most interesting of those properties is that the set of (—f)-integers coincides with
the set

X(-B) = {Zax—w | a; €{0,1,..., 8]},

*This work was supported by the Grant Agency of the Czech Technical University in Prague grant
SGS11/162/0OHK4/3T /14 and Czech Science Foundation grant 13-03538S.
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i.e. the set of linear combinations of non-negative powers of (—/3) with coefficients in
the canonical alphabet, even though the string a,a,_1...ao may be forbidden in the
corresponding number system. An analogous result for positive based number systems
comes from Ch. Frougny [3|. Another interesting result from [4] is that roots of (1) posses
the so-called Property (F), namely that the set Fin(5) of numbers with finite expansion
forms a ring.

As we will see, unlike in S-expansions, roots of (1) do not have Property (-F) with the
exception of roots of 2?**1 — ma? — ... — mz — m. In particular the set Fin(—/3) is not
closed under addition. In this work we show that the tribonacci constant, i.e. the positive
root of #3 — 2> — x — 1 has Property (-F). The proof is done by providing an algorithm
for addition which is probably the first effective arithmetical algorithm for negative base
number systems.

2 Preliminaries

The [to-Sadahiro number system is a numeration system analogous to Rényi S-expansions
which uses a negative base. Instead of defining the expansions of numbers from [0, 1) first,
the unit interval [(, ¢ 4 1) with ¢ = ﬁ_—fl was chosen. For —f < —1, any x € [(,{+ 1) has
a unique expansion of the form d_g(z) = z2925 - - - defined by

T; = L—BTZ;(:U) — L], where T_g(z) = =Pz — |—px —{].

For any x € [(, £+ 1) we obtain an infinite word from AN = {0,1,..., 8]}

Another analogous concept is the (—f)-admissibility, which characterizes all digit
strings over A being the (—f)-expansion of some number. The lexicographic condition,
similar to the one by Parry, was also proved in [5]. Tto and Sadahiro proved that a digit
string z1z9z3 - - - € AV is (—3)-admissible (or, if no confusion is possible, just admissible)
if and only if it fulfills the lexicographic condition

d_g(0) Rait TiTiy1Tiy2 - <aw d g({+1) = lim d_g(y) forall i > 1. (2)
y—l+1_
Here, the limit is taken over the product topology on AN and <, stands for alternate
lexicographic ordering defined as follows:

Uity - -+ < V12 - & (—=1)%(u — vg) < 0 for k smallest such that wuy, # vy, .

In analogy with S-numeration, the alternate ordering corresponds to the ordering on reals
in[(,0+1),ie z<y & d_g(z) <a d_p(y).

The reference digit strings d_g(¢) and d* 5(¢+1) play the same role for (—3)-expansions
as Rényi expansions of unity for S-expansions. While d_z(¢) is obtainable directly from
the definition, the following rule (proved in [5]) is to be used for determining d* 4(¢ + 1):

(Ol -+ Ly (I, — 1)) if d_g(6) = (Ihly -~ 1,)* for ¢ odd,
0d_g(0) otherwise.

d 40+ 1) :{

We can now recall the definition of (—/)-expansions for all reals.



Arithmetical Aspects of a Number System with Negative Tribonacci Base 303

Definition 1. Let —3 < —1, z € R. Let k € N be minimal such that hF € (6, 0+1)
and d_g <#) = z129x3- - -. Then the (—B)-expansion of x is defined as

B Ty Tp—1T) ® Ty 1Tk " " * Zf k Z 17
(T)—p = if k=
0exixoxs--- if k= 0.

Similarly as in a positive base numeration, the set of (—/)-integers Z_z can now be
defined using the notion of (x)_g. Since the base is negative, we can now represent any
real number without the need of a minus sign.

Definition 2. Let § > 1. Then the sets of (—f)-integers and of numbers with finite
(—pB)-expansions are defined as

Zs={e €R | &)y = -mroe 0} = |J(~BYTH0).

i>0

Fin(—8) = {z €R | (&) g =ap- - mmpea_y...2_,0} = | J(=B)"Zs.

i>0
We say that B has Property (-F) if Fin(—=p) is a ring.

3 Arithmetics in Ito-Sadahiro number systems

Let us recall that it has been shown in [1] that

Z*ﬁ:{zai(_ﬁ)i ’ aiE{O,l,...,Lﬂj}}, (3)

if and only if £ is a root of

k k—1

" —mz" " —---—mxr—n, m>n>1 and m = n for k even. (4)

Such bases are promising candidates for having Property (-F). For it suffices to show
that z + 1 € Fin(—p) for any = € Fin(—p), and that —1 € Fin(—/). Because of the
property (3), it means one has to show that any admissible string with +1 added to the
position where maximal digit lies can be rewritten as a finite string over the alphabet
{0,1,...,15]}.

However, there are examples that this procedure is not possible for almost all roots
of (4). We have

L.
(m+1)_g = 1m0 & 0**11m [0**~*110]"

2%k—1 _

for 3 root of 22¢ — ma Cee—mx — My

(B+m+1)=(m-n+1)(m—-—n+1)1(n+1)*

2

for B root of ® — ma? — mx — n, and
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(—B+m+1)_5=000*"(m—n+1)(m—n+1)0[0""1(n+ 1)n]”

2k+1 _ 2k

for 8 root of x mx® —---—mxr—n, n<m,k > 2.

In case of 8 being of odd degree and n = m, we have no counterexample. Later we will
show that there is no such example for the root of 3 — 22 —x — 1, the tribonacci constant.
We provide a transucer whose input is a digit-wise sum of x,y € Fin(—/) and output is
a representation of x + y over {0, 1}.

Theorem 3. Let v > 1 be the root of x> — x* — x — 1. Then for any x,y € Fin(—p)
the computation of a representation of x + y over the alphabet {0,1} can be done by a
finite-state transducer.

Proof. We define a tranducer (S, sg, 3, A, T") where
o S C{2,1,0,1,2,3}3 is the set of states;
o 59 = 000 is the initial state;
o ¥ =1{0,1,2} U{0,1,2}?* is the input alphabet;
o A=1{0,1} U{0,1}? is the output alphabet;

o T :5x % — A xS is the transition function defined by the transitions in the list
below.

The notation s;|a — b|sy means that the machine is in the state s; and reads symbol(s)
a from the input tape, then it switches to the state s and writes symbol(s) b onto the
output tape. In fact, the machine reads the digit-wise sum of two numbers from the left
side, looks only at four or five symbols wide window, and, if needed, adds a representation
of zero. Then it moves the window to the right.

One can verify that the transition function defined bellow does not change the numeri-
cal value of the string since each image is obtained by adding or subtracting representation
of zero, namely 0 = 1111 which follows from the minimal polynomial for . Here @ stands
for —a. Moreover, with one exception, the transitions from any state are defined for any
input symbol from >. The exception is the state 101 that cannot be escaped by reading
symbol 0. However, the only path to the state 101 leads from 131 by reading 202 on the
input (see Figure 1). Reading 2020 would mean that both z and y contain forbidden
string 1010 that can be avoided (we have d_g(¢) = 101¥). Hence we assume that at least
one summand does not contain 1010.

000]0 — 0[000 001]2 — 0[012 003|1 — 1]122
000[1 — 0]001 002]0 — 1]111 0032 — 1]123
000]2 — 0[002 002|1 — 1]112 00T]0 — 0[0T0
00100 — 00]100 002|21 — 11]131 00T|1 — 0[0T1
00101 — 11]011 002[22 — 11]132 00T|2 — 0[012
001]02 — 11]012 002|20 — 00[220 0110 — 0[110
0011 — 0[011 003]0 — 1]121 011]1 — 0[111
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011]2 — 0[112

012]0 — 0]120

012|1 — 0]121

012[2 — 0]122
013]00 — 00]21T
013]01 — 11]120
01302 — 11]121
013]1 — 0[131

013]2 — 0]132

023]0 — 0]230

023|1 — 0]231

023]2 — 0]232

010]0 — 1|011

010|1 — 1|012
01020 — 00]111
010]21 — 00]112
010[22 — 11]023
011]0 — 1]001

011|1 — 1]002

011]2 — 1]003

0120 — 1|011

012[1 — 1]012

012]2 — 1/013
011]00 — 00[0T1
011]01 — 00]012
011]02 — 11]103
0111 — 0111

011]2 — 0[112

100]0 — 1]000

100/1 — 1]001

100[2 — 1]002

101|1 — 1]011
101|2 — 1]012
101]0 — 1010
10T|1 — 1]011
101|2 — 1]012
110]0 — 1100
110[10 — 00]100
110[11 — 11011
11012 — 11|012
110[2 — 0]011
111]0 — 1110
1111 — 1111
1112 — 1|12
112]0 — 1120
12|11 — 1]121
1122 — 1]122
111]0 — 0]001
1111 — 0]000
111|2 — 0]001
112]0 — 0j01T
112|1 — 0[010
112|2 — 0]011
120/0 — 0]11T
120|1 — 0[110
120[2 — 0[111
121/00 — 00[10T
12101 — 00[100
121]02 — 11011
121]1 — 0120
121]2 — 0]121
122]0 — 1/220

Figure 1: Transitions leading to the state 101

122|110 — 00|211
122|111 — 11120
122[12 — 11121
122[2 — 0]131
123|0 — 1[230
123|1 — 1]231
123[2 — 1]232
1210 — 0]101
1211 — 0]100
121]2 — 0]101
131]0 — 0]221
131]1 — 0]220
131]2 — 0]221
132[0 — 0]231
132[1 — 0]230
132[2 — 0]231
211]0 — 1|001
211]1 — 1]000
211]2 — 1/001
2200 — 1[11T
220[1 — 1[110
220[2 — 1|111
22110 — 1[121
221]1 — 1]120
221]2 — 1]121
221]0 — 1[101
221|1 — 1]100
221120 — 00]100
221]21 — 11]011
221]22 — 11]012
230[10 — 00[101
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230/11 — 00100 23122 — 11]121 103|1 — 0]122
230[12 — 11|011 232|0 — 1]231 103]2 — 0[123
230/0 — 1[211 232|1 — 1]230 1110 — 0[001
230|2 — 0]120 232[2 — 1]231 111|1 — 0]002
231|0 — 1]221 231|0 — 0[112 111]2 — 0[003
2311 — 1]220 2311 — 0[111 1120 — 0[011
231|120 — 00]211 231|2 — 0[110 112|1 — 0[012
231|121 — 11120 1030 — 0[121 112]2 — 0[013

O

Remark 4. It follows from the proof that algorithm can be extended to adding of more
than two numbers with finite expansion by adding numbers consecutively. However, we
always have to add an admissible string since the automaton may not accept the string
2020.

Also, an extension to periodic expansions is possible. Since the digit-wise of two
periodic representations is also periodic, the period of the result can be recognized by
looking at the states in which the transducer is when the repetition of the period is being
read.

The proof of Theorem 3 gives us two important consequences. The first is that v pos-
seses Property (-F). Closeness of Fin(—/) under addition can be seen from the subgraph
of the transducer on Figure 2. It shows that when infinite repetition of zeros is on the
input, the infinite repetition of zeros eventually appears also on the output. Although the
representation obtained from the transducer may not be admissible, property (3) ensures
that the expansion is also finite. Moreover, subtraction can be represented as addition
since 1e = 11 # 001. This leads to the following theorem.

Theorem 5. The tribonacci constant has Property (-F).

Often observed property is the number of fractional points arising from addition of
two (—/)-integers. We can determine this number again from Figure 2. One can see that
when reading only zeros, the last nonzero digit is sent to the output at ninth position, i.e.
six positions after the franctional point. For example, 112 e 0“ = 100 ¢ 0110010%. Since
the latter representation is admissible, this also shows that this bound can be reached.

Theorem 6. Let S be the tribonacci constant. Then the number of fractional points
arising from additon of two (—v)-integers is at most 6. This bound is strict.
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view. We argue that the equivalence between the commutative and semiclassically noncommu-
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Abstrakt. V ¢lanku se zaobirame nekomutativni kalibracni{ teorii z pohledu zobecnéné geome-
trie. UkaZeme, 7e ekvivalence komutativni a semiklasicky nekomutativn{ DBI akce je pfirozené
zakédovana v zobecnéné geometrii D-bran.

Klicovd slova: Zobecnéné geometrie, nekomutativni kalibracni teorie, zobecnéna metrika, efek-
tivn{ akce

1 Introduction

Generalized geometry [14, 13| recently appeared to be a powerful mathematical tool for
the description of various aspects of string and field theories. Here we mention only few
instances of its relevance that are more or less directly related to the present paper. Topo-
logical and non-topological Poisson sigma models are known to be intimately related to a
lot of interesting differential, in particular generalized, geometry. For instance, the topo-
logical Poisson sigma models are of interest for the integration of Poisson manifolds (and
Lie algebroids) [7] and are at the heart of deformation quantization [9]. Field equations
of (topological) Poisson sigma models can be interpreted as Lie algebroid morphisms [4]
and as such can further be generalized in terms of generalized (complex) geometry [20],
[19]. Poisson sigma models can be twisted by a 3-form H-field [18] and also general-
ized to Dirac sigma models [19], where the graph defined by the corresponding (possibly
twisted) Poisson structure is replaced by a more general Dirac structure. In turn, at least
in some instances, D-branes can be related to Dirac structures [22], [2], or coisotropic
submanifolds [8]. In [1], it has been observed that the current algebra of sigma models
naturally involves structures of generalized geometry, such as the Dorfman bracket and
Dirac structures.

*Excerpts from the paper published with Branislav Jur¢o and Peter Schupp.
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2 Generalized geometry

2.1 Fiberwise metric, generalized metric

In this section we recall some basic facts regarding generalized geometry, see, e.g., [13],
[5]. Although most of the involved objects can be defined in a more general framework,
we focus on a particular choice of vector bundle. Namely, let M be a smooth manifold
and E = TM & T*M. A fiberwise metric (-,-) on F is a C°°(M)-bilinear map (-,-) :
['(E) x I'(E) — C*(M), such that for each p € M, (-,-), : E, X E, — R is a symmetric
non-degenerate bilinear form. There exists a canonical fiberwise metric (-, -) on F, defined
as

(V+EW +n) =iv(n) +aw(8), (1)

for every (V +¢&),(W +n) € I'(E). This fiberwise metric has signature (n,n), where n is
a dimension of M. Hence, we denote by O(n,n) the set of vector bundle automorphisms
preserving this fiberwise metric. That is

O(n,n) ={0 € T'(Aut(E)) | (Ver,e2 € I'(E)) ((Oey, Oeq) = (€1, €2))}. (2)

There are three important examples of O(n,n) transformations, which we will use in the
sequel. Let B € Q*(M) be a 2-form on M. In this paper we will always denote the
induced vector bundle morphism from T'M to T*M by the same letter, i.e., we define

for all V € X(M). Correspondingly, the map e? is given as
PV +E=V+E+BV). (4)

()= )(5), 0

for all (V + &) € T'(F). Similarly, let § € A2X(M) be a bivector. The induced vector
bundle morphism is again denoted by the same letter, that is

In the block matrix form

0(¢) := —ig = 0(-,€), (6)
for all ¢ € QY(M). Correspondingly, we have e’
SV +E=V+E+0(E). (7)

In the block matrix form

()= )% i

for all (V +¢) € I'(E). Finally, let N : TM — TM be any invertible smooth vector
bundle morphism over identity. We define the map Oy as

On(V +€) = N(V)+ N (8), (9)
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where N7 : T*M — T*M denotes the map transpose to N~!. In the block matrix form

(D)-(F (%)

Any O(n,n) transformation with the invertible upper-left block can be uniquely decom-

posed as a product of the form
e BOye™. (11)

More explicitly, for < ﬁll im ) in O(n,n),ie., AL Ay +AT Ay =0, AL Agp+ AL Ay =
21 Aa

0 and AL Ay + AT Agy =1, we find N = Ay, 0 = —A[' Al and B = —Ay AL}
Let now 7 : I'(E) — T'(E) be a C°°(M)-linear map of sections, such that 7 = 1. For
e1, e € ['(E), we put
(e1,6€2)r := (T(e1), €2). (12)

If such (.,.), defines a positive definite fiberwise metric, we refer to it as a generalized
metric on E. From now on, we will always assume that this is the case. Since (-,-), is
symmetric, 7 is a symmetric map, that is,

(1(e1), e2) = (e1,7(e2)), (13)

for all e;,eo € T(E). Also, because 72 = 1, it is orthogonal and thus 7 € O(n,n).
Moreover, from 72 = 1, we get two eigenbundles V. and V_, corresponding to +1 and
—1 eigenvalues of 7, respectively. Using the fact that (-,-), is positive definite, we get
that (-,-) is positive definite on I'(V,) and negative definite on I'(V_). Finally, we can
observe that Vj = V_ with respect to (-,-) and vice versa, and using the knowledge of
the signature of (-, -), we get the direct sum decomposition

E=V,®V.. (14)

Conversely, for any subbundle V' of E of rank n, on which (-,-) is positive definite, set
Tly = +1 and 7|;,. = —1 to get a generalized metric on FE.

From positive definiteness on V., we have V, NTM =0 and V, NT*M = 0, and the
same for V_. This means that V, and V_ can be viewed as graphs of invertible smooth
vector bundle morphisms:

Vo= {V+AV)|VeTM}={AY &) +¢| €T M), (15)

Vo={V+AWV) | VeTM})={A &+ | €T MY, (16)

where A, A" : TM — T*M, respectively. We can view A as covariant 2-tensor field on M,
and write uniquely A = g+ B, where ¢ is a symmetric part of A and B a skew-symmetric
part of A. From the positive definiteness of V., we get that g is a Riemannian metric on
M, whereas B can be an arbitrary 2-form on M. Using the orthogonality of V. and V_,
we see that A = —g + B. From this equivalent formulation, i.e. using g and B, we can
uniquely reconstruct 7. This will give

TV+& =(g—Bg 'B)(V)—g 'B(V)+Bg (&) +g (), (17)
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for all (V +¢&) € T'(E). In the block matrix form,

()= (% an ) (0): 19

The corresponding fiberwise metric (-, ), can then be written in the block matrix form
T
\%4 g—Bg'B Bg! ) ( w )
V+EW+n), = = ~ . 19

The important observation is that the block matrix in formula (19) can be written as
a product of simpler matrices. Namely,

(2" -G DE (B @

Note the important fact that the 2-form B does not have to be closed, and this will
remain true throughout the whole paper. Nevertheless, we assume that B is globally
defined, i.e. H = dB globally.! We thus consider only the models with trivial H-flux.
The case of the non-trivial H-flux will be discussed elsewhere.

There exists a natural action of the group O(n,n) on the space of generalized metrics.
For each O € O(n,n) and given 7 define 7/ = O~170. Clearly 72 = 1 and

(T'(e1), e2) = (1(O(e1)), O(e2)) = (O(e1), O(e2))-

Hence (-, ), is again a generalized metric. We may use the notation (-,-). = O(, ).

2.2 Factorizations of generalized metric, open-closed relations

Let us start with a (different) generalized metric H, described by a Riemannian metric
G and a 2-form ®. Hence

n(20)(5 &) (%)

Let 6 be a 2-vector field on M. The action of the O(n,n) map e~? on the generalized
metric H gives us a new generalized metric G, which has the form

(NGHEMGOGT) @

By the previous discussion, there exists a unique Riemannian metric g and a 2-form B,

such that 5
(1 g 0 1 0
o=(o V) (5 ) B0 )

Comparing the two expressions (22) and (23) of G, we get the matrix equations

g—Bg 'B=G - oG9, (24)

'More precisely, we assume that the corresponding integral cohomology class [H] is trivial.
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Bg ' =0G™! — (G — G D)0, (25)

which can be uniquely solved for G and ®. Since e~ is invertible, we can proceed the

other way around as well. We also know how the corresponding endomorphism 7y is
changed by e?. Namely, we have

TG = 697'1-1676. (26)
From that, we can easily find the relation between 41 eigenbundles:
VE =V (27)

Since
VE={{+(g+B)(9 | £ eT" M},

and
VE={¢+(G+2)71(¢) | £ e T" M},

we get using the above formula that
(9+B) ' =0+ (G+ )" (28)

Formulae (24) and (25) are the symmetric and antisymmetric parts of (28). If 6 is Poisson,
(28) is the Seiberg-Witten formula? relating closed and open string backgrounds in the
presence of a noncommutative structure represented by 6. In particular, for given g, B
and 0, we can find a unique G and ®, and conversely, for given GG, ® and 6, there exists
a unique pair g and B.

For & = 0 the open-closed relations can be given a slightly more geometric interpre-
tation [2]. Consider the inverse G™' of the generalized metric G. If we exchange the
tangent and cotangent bundles TM and T* M, respectively, G~! has the same properties
as G. Obviously, G™! and G have identical graphs as well as &1-eigenbundles. The
open-closed relations, for ® = 0, is a simple consequence of that.

2.3 Dorfman bracket, Dirac structures, D-branes

Here we briefly recall some relevant facts concerning the Dorfman bracket and Dirac
structures, see, e.g., [11], [13], [5]. Our vector bundle E = TM @& T*M can be equipped
with a structure of a Courant algebroid. The corresponding Courant bracket is the
antisymmetrization of the Dorfman bracket:

V+&EW +nlp = [V, W]+ Lv(n) — iw(dE), (29)

for all (V +¢) € T'(F). The corresponding pairing is the canonical fiberwise metric (1).

A Dirac structure is a (smooth) subbundle L of E, which is maximally isotropic with
respect to (-, -) and involutive under the Dorfman bracket (29).

Let 0 be a rank-2 contravariant tensor field on M. As before, define a vector bundle
morphism 6 : T*M — TM by 0(¢) = 0(-,£). Define a subbundle Gy of E as its graph,
that is

Go={{+0(5) | £eT"M}. (30)

2For an earlier appearance of this type of formulae in the context of duality rotations see [12].
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It is known that Gy is a Dirac structure with respect to the Dorfman bracket, if and only
if 6 is a Poisson bivector. Similarly, let B be any rank-2 covariant tensor field on M.
Define B(V) = B(V,-) and its graph G as

Gp={V+B(V)|VeTM}. (31)

Again, one can show that G is a Dirac structure, if and only if B is a closed 2-form on
M.
Furthermore, for any closed B € Q?(M), one has

PV +EW +nlp =[P (V +£),e" (W +1)lp, (32)

and
(eP(V+€),e”(W+n) = (V+EW +0), (33)

for all (V +&),(W +n) € T'(E). In the other words, e is an automorphism of the
corresponding Courant algebroid. Note that (32) is no longer true for e, where 6 €
A2X(M), but (33) holds.

Generally, a Dirac structure L provides a singular foliation of M by presympletic
leaves, which is generated by its image p(L) of the Dirac structure under the anchor map.
We refer to [2]| for arguments in favor of the identification “D-branes ~ leaves of foliations
defined by Dirac structures". In the case we will consider later, L will be given as a graph
of a Poisson tensor 6 and the corresponding foliation of M will be the foliation generated
by Hamiltonian vector fields, i.e., by symplectic leaves of . Hence, in this case we will
identify the symplectic leaves and D-branes.

3 Gauge field as an orthogonal transformation of the
generalized metric

Let us start with a given Riemannian metric g and 2-form B. Further, let ' be a 2-
form (at this point an arbitrary one®). The gauge transformation defines new 2-form
B’ = B+ F. To the pair (g, B) corresponds the generalized metric G, see (23). The
generalized metric G’ corresponding to the pair (g, B+ F') has the following block matrix

e (G (B () e

that is, G’ is related to G by the O(n,n) transform e~¥. As shown before, we can always
get G by action of O(n,n) transformation e~ on the generalized metric H, where H is
described by fields G and ®, see (21).

One may ask, if there is a bivector §’ on M, such that we get G’ by the action of e~
on the generalized metric H', which is described by the same G as H, but by gauged 2-
form ® = &+ F” for some gauge field F’. This can be achieved under some assumptions,

3Later, when discussing DBI action, F' will be closed and defined only on a submanifold of M sup-
porting a D-brane. In which case, all expression involving F' will make sense only when considered on
the D-brane.



On the Generalized Geometry Origin of Noncommutative Gauge Theory 315

however, only up to a certain additional O(n,n) action. In particular, there exists a
vector bundle morphism N : T"M — T M, such that

(00T (TG
(2)(8 (41

Indeed, examine the block matrix decomposition:

(3 (EDE (L (5D

It suffices to consider the three rightmost matrices in the above expression. Since we
want to modify ® to ® + F”, we may proceed by inserting 1 = e~ e’

()G ) (alm D))

Now it is enough to note that the product of the last three matrices, can be uniquely
decomposed into a product of a diagonal and an upper triangular block matrix—of course,
only if we assume that (1+ 6F) is invertible. For this, use the decomposition of e~%e~% €
O(n,n) according to (11) as

where

ele M = e Ope ™, (36)

with F' € Q*(M),0 € A2°X(M) and N € T'(Aut(TM)). What we find are the following
expression for ¢/, F' and N:

0 =(1+0F)"'0=001+F0)*, (37)
F'=FQ1+6F)"= (14 F§)7'F, (38)
N =1+0F. (39)
Comparing (34) and (35), we get the equalities
g— (B+F)g B+ F)=N'(G— (®+F)G(®+F))N (40)
and
(B+F)g'=N'(®+F)G'NT - NG~ (o4 F)G (D + F))N?'. (41)

Taking the determinant of (40), we find that
det(g — (B+ F)g Y (B+ F)) = det(N)? - det(G — (® + F')G™1(® + F)). (42)

This equality will play the central role when later discussing the DBI action.
Furthermore, following the same type of arguments leading to (28) we see that the
equations (40) and (41) can equivalently be written as

(g+B+F)'=0+(N(G+®+F)N)™ (43)
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Finally, let us examine the objects F’ and ¢ using the tools described in subsection
2.3. We will concentrate on the case important for the discussion of the DBI action and
noncommutative gauge theory. Therefore, in the rest of this section, we assume that 6 is
Poisson and F' is closed. 0 is a bivector on M. For the graphs of 6 and 6’ we have

€FG9 = Gel. (44)
Since ef' is an automorphism of Dorfman bracket, Gy has to be again a Dirac structure

of E. Hence, # is a Poisson bivector. Similarly, one can see that

’Gr = Gpr. (45)

4 Seiberg-Witten map

For an approach to the non-abelian case, using cohomological methods akin to the ones
of Zumino’s famous decent equations [23], see [6, 10]. Here we follow the approach of
[15], [16], [17], where it was shown that the Seiberg-Witten field redefinition from the
commutative to the non-commutative setting has its origin in a change of coordinates
given by a map p : M — M, such that p*(¢') = 6.* This map can be derived using a
generalization of Moser’s lemma: Consider the family of Poisson bivectors

0, =0(1+tFo)™! (46)

parameterized by ¢ € [0,1]. Of course, we have to presume that the formula is well-
defined. To see that these 0; are indeed Poisson for all ¢, simply observe that Gy, = e'f'Gy
holds for the respective graphs.® Partial differentiation of (46) with respect to ¢ leads to
the differential equation

00y = —0,F6,.

For F' = dA, this can be rewritten as
010y = — Lo, ()0,

with a vector field 6,(A) := 6,(-, A), with initial condition 6y = 6. This differential
equation can be integrated to a flow ¢;, such that ¢;(6;) = 6. Thus p = ¢;. Obviously,
p explicitly depends on the choice of gauge potential A, hence we shall use the notation
pa. To avoid possible confusion, we will for a moment notationally distinguish between
the tensor itself and its components in coordinates. Therefore we introduce the matrix

()9 := 0. Also, denote J) = %. We have

We thus get that
det p*(0") = J* det 6. (47)

*As said before, here we assume only topologically trivial [H]-flux. The interested reader may find
some relevant discussion concerning nontrivial H and the related non-commutative gerbe in [3].
5Let us note again that e¥’'Gy is a bona-fide Dirac structure even for non-invertible (1 + ¢tF'6).
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Let us assume for a moment that 6 is invertible. From (37) we see that so is p0’. We
immediately have that

J72 =det (8(p7,6") 7). (48)

For degenerate 6 and hence also ¢ the formula (48) still makes sense and we can argue as
follows: Since the map p4 is infinitesimally generated by the vector field 6;(A), and the
kernels of all 8;’s are the same, we see that p4 only changes coordinates on the symplectic
leaves (of #). We can thus restrict ourselves to the non-degenerate case in order to carry
out the computation of the Jacobian.

5 Noncommutative gauge theory and DBI action

In the previous sections we have described all ingredients needed for our discussion of
noncommutativity of D-branes as a consequence of their generalized geometry. Namely,
we have seen that the relations (24), (25), (40) and the (semiclassical) Seiberg-Witten
have their root in generalized geometry. Actually, it is know for quite some time |[17] that
the equivalence of the commutative and (semiclassically) noncommutative DBI actions
follows once one has established (24), (25), (40) and has understood the (semiclassical)
Seiberg-Witten map as a (local) D-brane diffeomorphism. Nevertheless, according to our
best knowledge, the direct relation to generalized geometry is new.

Assume that we have a D-brane D of dimension d, i.e, a submanifold of target space-
time M equipped with a line bundle with a connection A and corresponding field strength
F. Also, consider the restrictions (pullbacks) of the background fields (open and closed
ones) to D. While describing the Seiberg-Witten map in the previous section, we have
seen that it is quite natural to assume that there is a relation between the D-brane and
the Poisson tensor 6.° Namely, assume that our D-brane is of a particular kind, i.e., one
which comes as symplectic leaf of the Poisson structure 6.7 As argued before, under this
assumption, the Seiberg-Witten map is a D-brane diffeomorphism.

Before we turn to the discussion of the DBI action and its commutative and noncom-
mutative description, we discuss the relation between the effective closed and open string
coupling constants g5 and Gy, respectively [21]. These are related as

det(G + @))1/2

R
s = O det(g + B)

A most intriguing relation is obtained from (?7?) and the relation (40), again using the

above mentioned formula for the determinant of a sum of a symmetric and an antisym-

metric matrix:

1 1
—det'*(g+ B+ F) = o det'?(1 + OF) det'?*(G + ® + F). (49)

Js s

6Recall, in accordance with our above discussion of the open-closed relations, here we start from a
given closed background (g, B), pick a 6 and determine uniquely the open variables (G, ®).

It is straight-forward to modify everything to the case where the D-brane is a submanifold, such
that the restriction of 8 to it defines a regular Poisson structure, i.e. a Poisson structure having constant
rank.
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Integrating over the D-brane world-volume

1 1
/ddx— det'?(g+ B+ F) = /dda;E det'/?(1 4 0F) det'/?(G + & + F'), (50)
recalling (48), and performing the change of coordinates according to the Seiberg-Witten
map, we finally obtain a relation between the commutative and semiclassically noncom-
mutative DBI actions
c d 1 1/2 d 1 1/2 é 1/2(A s nl nc
Sep = [ diz—det2(g+ B+ F) = [ dz— det (5> det2(G+ & + F') = 75,
5 (51)
The hat ~ has the following meaning: On matrix elements of 6 it is defined as 67 :=
p5(09), and similarly for the other objects. As a result of this definition, F’ is the
semiclassically noncommutative field strength, which under the gauge transformation
0A = d) transforms semiclassically noncommutatively, i.e.,

6Fz,j = {FL/]7 )‘}7

N 0:(A) 4+ 0)™ (A
A:Z( t(A) +0)"(N)
(n+1)!
Here, the curly bracket is the Poisson bracket corresponding to the Poisson tensor ¢ and
A is the (semiclassical) noncommutative gauge parameter.

|t=0-
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Abstract. This article describes a general implementation of the finite element method for the
heat equation. The implementation allows for using domains of arbitrary dimensions and various
types of finite elements. In addition, it is easily extensible to other partial differential equations.
The main goal of this article is to analyze the finite element method from the implementational
point of view while not ignoring its mathematical background.

Keywords: FEM, heat equation

Abstrakt. Tento piispévek popisuje obecnou implementaci metody koneénych prvk pro rovnici
vedeni tepla. Popisovana implementace umoziuje pouziti domén libovolné dimenze a ruznych
typt konecnych prvki. Navic je jednoduse rozifitelna i na jiné parcialni diferencialni rovnice.
Hlavnim cilem tohoto ¢lanku je analyzovat metodu kone¢nych prvka z implementa¢niho pohledu
a pfitom zohlednit jeji matematickou stranku.

Klicovd slova: metoda kone¢nych prvki, rovnice vedent tepla

1 Introduction

A long-term goal of our work is to create a GPU solver for the incompressible Navier—
Stokes equations in 3D using unstructured meshes. Because we have experience with
the finite element method for the Navier—Stokes equations in 2D, we intended to extend
our original 2D implementation into 3D. However, this task proved to be difficult. The
original implementation would have to be completely rewritten in order to include 3D
computations. Thus, we decided to create a new implementation of the finite element
method from scratch. Our requirements on the new implementation include its extensi-
bility to other computational problems and its suitability for the adaptation to GPUs.
Another option would be to use an existing finite element library, e.g., DUNE-FEM [4],
DUNE-PDELab [5] or ViennaFEM [7]. Nevertheless, although such libraries are rather
universal, they do not support computations on the GPU.

This article deals with the finite element method for the heat equation from two
perspectives. First, it briefly summarizes the mathematical background of the method.

*This work has been supported by the grant No. SGS11/161/OHK4/3T /14 of the Student Grant
Agency of the Czech Technical University in Prague and the project No. TA01020871 of the Technological
Agency of the Czech Republic
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And second, it attempts to describe a way of implementing the method generally, i.e.,
independently of the type of the finite elements and of the domain dimension. Moreover,
the implementation should also, with slight modifications, be applicable to some other
partial differential equations than the heat equation. The heat equation was chosen as
an example for its simplicity.

2 FEM for the heat equation

Let Q C R™ be a Lipschitz-continuous domain and 0f2 its boundary. The heat equation
for an unknown function u = u(x, t) of the spatial coordinates x € {2 and the time variable
t € (0,7), supplemented with a Dirichlet boundary condition and an initial condition,
takes the following form:

% = Au in Q2 x (0,7, (1a)
Ul 5 = UDir on 092 x (0,7), (1b)
Ul,_y = Uini in Q, (1c)

where upy, = upi(z,t) and wp; = uii(z) are given functions and A denotes the Laplace
operator. It is a second-order parabolic partial differential equation.

The first step of the finite element method consists of converting problem (1) into its
corresponding weak formulation. This is accomplished by multiplying equation (1la) by
a test function v € V', where V' is a suitable function space, and integrating over (2

%vdxz/Auvdx. (2)
Q Q

Here the usual choice of V' is the set of all functions in the Sobolev space W1%(Q) with
zero trace on 0f). Applying Green’s theorem on the right-hand side of (2) and using the
fact that the trace of v is zero on 0f2, the weak formulation of (1) is obtained:

—vdx:—/Vu-Vvdx for allv € V. (3)
0

The solution u = u(z, t) might be thought of as a function u : (0,7) — W12(Q) mapping
t €(0,T) to u(-,t) € WH3(Q). Additional assumptions on u are that it is differentiable
with respect to ¢, that %(-,¢) € L?(Q) for all t € (0,T) and that u(-,¢)|sq = upi in the
sense of traces for all t € (0,7).

2.1 Spatial discretization

In order to discretize (3) spatially by means of the finite element method, the function
u(-,t) € WhH3(Q) is for all t € (0,7) decomposed as

u(e,t) = uo(+, t) + up, (4)
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where ug(-,t) € V and up € WH*(Q) such that up|yg = upi in the sense of traces.
Furthermore, we assume such up exists and is known. Substituting (4) into (3) gives:

%waz—/VUO'Vvdx_/VUD'VUdJC forallv e V. (5)
Q Q

Q

Now let V}, be a finite dimensional subspace of V. The semi-discrete weak formulation of
(1) is to find wuy, : (0,7) — V}, satisfying
é?uh
— v, dz = — | Vu, -V, dz — [ Vup - Vo, dz for all v, € V},. (6)
Q

ot

Q Q

Denoting by ® = {¢1,...,on} a basis for V},, the function u,(-,t) can be expressed
for each t € (0,7) as a linear combination of the basis functions:

up(+,t) = Zuj(t) P (7)

where the coefficients u;, j = 1,..., N, are real functions of time. Plugging (7) into (6)
and taking v, = ¢;, 1 = 1,..., N, leads to the following system of N ordinary differential
equations:

N N
Zu;(t) /gpj p; do = —Zuj(t)/Vgpj -V, do — /VUD -V, dz (8)
J=1 Q j=1 Q Q

with the initial condition w;(0), j = 1,..., N, given by a projection of wy; onto V.

Equations (8) can be rewritten in a more compact form using matrices M (mass) and S
(stiffness), whose elements are

Mi,j = /QOZ ©j dz and Si,j = /V(,OZ : VQDJ d(L’, (9)
Q Q
and vector f composed of components
Q
Then system (8) becomes:
Mu'(t) = —Su(t) + f (11)

with the initial condition u(0), where u(t) is a vector comprising components u;(t) and
u/(t) its time derivative.

In the finite element method, the space V}, is chosen so that it contains continuous,
piecewise polynomial functions on a triangulation of 2. The support of the basis func-
tions 1, ..., N usually consists of only several cells of the triangulation. Hence, the
matrices M and S are sparse. Accordingly, a finite element is determined by a cell of the
triangulation and by the restriction of the basis functions to the cell.
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2.2 Time discretization

We employ the backward Euler method for the time discretization of (11). We introduce a
time step 7 > 0 and the notation u* for u(k7). The time derivative u’(t) is approximated
by a difference quotient:

u'(t) ~ % (12)

The time discretization of (11) is performed in an implicit manner, which results in the
following system of linear equations for u® at the time level k = 1,2, .. .:

(M + 7S) u” = Mu"! + f. (13)

Vector u® represents the initial condition.

3 Implementation

The algorithm of the finite element method for the heat equation is divided into the
following four basic steps:

triangulation of computational domain (2,
evaluation of integrals in (9) and (10),
assembly of matrices M and S and of vector f,
solution of linear system (13).

==

3.1 Triangulation of the computational domain

In the presented implementation, the computational domain € is triangulated prior to
the start of the main program using an external application, e.g., Gmsh [6] or NETGEN
|8]. The output of these applications is a conforming unstructured mesh representing the
triangulation; i.e., the triangulation is the set of the mesh cells. The term conforming
mesh means that neighboring mesh cells are required to meet face-to-face, edge-to-edge
and vertex-to-vertex. In other words, if two mesh cells intersect, their intersection is
always an entire face, edge or vertex of both of the cells.

We assume that €2 has piecewise linear boundary and so can be triangulated exactly.
Thus, denoting the triangulation by 7y,

0= J K. (14)
Keﬁz
3.2 Evaluation of integrals

Given a mesh for the computational domain €2 and denoting by 7; the set of its cells, the
integrals over  in (9) and (10) can be expressed by the sum of integrals over the mesh

e / de =) / dz. (15)

Q KeTn
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A common way of computing such integrals over K € 7Ty, is to transform them to integrals
over the corresponding reference element and evaluate them using quadratures.

Each cell K € T, together with the set Wy = {t1,...,9¥y} of so-called local basis
functions associated with the cell form a finite element. The local basis functions ; are
nonzero functions from K to R satisfying that for each v; € Wk there exists a basis
function ¢; € ® such that ¢;|,, = ;. Moreover, if ¢;|, # 0 for some ¢, € ®, then
¢l € Vk. Hence, we never need the global basis functions ¢, € ® because the local
basis functions 1; € Vg hold all the necessary information. Note that the local basis
functions depend on K although this dependance is not reflected in the notation.

3.2.1 Reference elements

A reference element is a specific finite element from which all finite elements of the

corresponding type are derived by transformation. It is given by its geometric shape K
and the set of local basis functions U = {wl, .. wM} where ; : K — R for all ¢; € .
The usual geometric shapes of reference elements are as follows:

line segment Ky, = Conv {(0), (1)} C R,
triangle Kui = Conv {(0,0),(1,0),(0,1)
quadrilateral K u.q = Conv {(0,0), (1,0), (1,1)
tetrahedron  Kyera = Conv {( ), (1,0,0), (
hexahedron — Kp = Conv {( ), (1,0,0), (

(0,0,1),(1,0,1),(

where Conv{-} is the convex hull of a set of points.

There are many ways to choose the reference basis functions; see, e.g., [3|. For exam-
ple, the P1 reference element on the triangle K is given by the following reference basis
functions:

} C R
(0,1)} CR?,
1
1
1

0,0
0,0
0,0,0
0,0,0
0,0,1

Y

Y ? ) (07 07 1)} C R37

,1,0),(0,1,0),
,1,1),(0,1,1)} C R,

Y

0
1
1

Y

D) =1—81— Ty,  0a(@) =01,  U3(d) =3y (16)
for all & = (i1, &) € Ky C R2.

3.2.2 Transformation of the reference element

The transformation of the reference element to a finite element is based on a bijective
mapping g : K — K, ie., from the geometric shape of the reference element to the
geometric shape of the ﬁmte element. Obviously, the reference basis functions ¢; € ¥
must be transformed as well. For the case of scalar basis functions, the relation between
zﬁi and the corresponding 1); € U is:

vi(g(2)) =i(z)  forallz € K. (17)

Considering the geometric shapes of the reference elements introduced in Section 3.2.1,
the usual mappings g comprise affine, bilinear and trilinear transformations.

Affine transfgrmation. Affine transformatioqs are used to map f(lin to an arbitrary
line segment, Ki; to an arbitrary triangle and Ky, to an arbitrary tetrahedron. The
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general form of an affine transformation g is:
9(Z) = LT + s, (18)

where L is a matrix representing a linear transformation and s is a vector. The Jacobian
matrix J, of such transformation is equal to L:

J,(%) = L. (19)

When transforming Kiin to an arbitrary line segment AB with endpoints A and B, the
parameters L and s in (18) can be given as follows:

L=B-A, s =A. (20)

Similarly, when transforming Ky, to an arbitrary triangle ABC, the columns of L would
be B— A and C' — A:
L=(B-AC-A), s= A, (21)

and in the same way for f(tetra and an arbitrary tetrahedron ABCD:

L=(B-AC-AD-4), s=A (22)

Bilinear transformation. A bilinear transformation maps the reference quadrilateral
shape Kquaa to an arbitrary convex quadrilateral:

9(Z) = po + T1p1 + Topa + T1T2p1a, (23)

where & = (Z1,7) € f(quad and pg, p1, p2 and pio are column vectors. Its two-column
Jacobian matrix is given by:

Jy(Z) = (p1 + T2p12,p2 + T1p12) - (24)

To transform f(quaid to an arbitrary convex quadrilateral ABC'D (with vertices labeled in
accordance with Kqu.q as defined in Section 3.2.1), the parameters in (23) should be set
as follows:

p():A, plzB—A, pQID—A, plng—B+C—D (25)

Trilinear transformation. Using a trilinear transformation, the reference hexahedral
shape K. is mapped to an arbitrary convex, quadrilaterally-faced hexahedron:

9(Z) = po + Tap1 + Tope + T3ps + T1Top12 + ToZspas + T3T1ps1 + T1T2T3P12s. (26)
The corresponding Jacobian matrix has three columns:
Jo(Z) = (p1 + Tapra + T3ps1 + ToT3pros,

P2 + T1p12 + T3pas + T1T3p123, (27)
P34 Tapas + T1ps1 + T1Z2P1as).
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An arbitrary convex, quadrilaterally-faced hexahedron ABCDEFGH is obtained from
Kyex by g defined in (26) with the following parameters:

pOIAJ plIB_Aa pQID_Au p3:E_A7
po=C—-D—-B+ A, ps=H—F—D+ A, ppn=F—-B—-—E+ A, (28)
p123:G—F+E—H—C+D+B—A.

Again, the vertices of the hexahedron should be labeled in accordance with f(hex as defined
in Section 3.2.1.

3.2.3 Transformation of integrals to the reference element

Let g : K — K be a bijective mapping from the reference element shape K to K € Ty
as described in Section 3.2.2. Then, using integration by substitution and the fact that
9(K) = K,

[te) iste) do = [ (@) v3{o(@) et ()] . (20)

where 1;,1; € Vg and J,(Z) denotes the Jacobian matrix of g at point € K. Using
(17) we can rewrite (29) as

/ $i() () d = / Ji() () |det J,(7)] d. (30)

In a similar manner, integrals involving gradients of the basis functions are trans-
formed; for example:

[ V@) Viste) dr = [ Vulala) - Vs (o(@) e s @) a6

Since V;(x) is equal to the transposed Jacobian matrix of ¢;(z) and the notation using
Jacobian matrices is more general, we consider the following form of (31):

/ V() - Vi (x) de = / Joo(9(8)) Jy, (9(2)) |det Jy(7)] . (32)

K

Differentiating the transformation formula of the basis functions (17) with respect to &
and writing the result in terms of the Jacobian matrices yields:

Jiog(T) = J5,(T). (33)
Application of the chain rule to the left-hand side of (33) leads to:
‘]1112' (g<i'>) Jg(‘%) = JJ;Z(:Z')? (34)

which is equivalent to
~ ~ ~\—1
Ju(9(2)) = J5,(2) Jy(2) (35)
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It follows that

/ Vipi(z) - Vo, () do = / R GIAG (Jg(:i)—l)TJ%(:z)T\det Jy(%)] di.  (36)

K

Owing to (10), we also need to compute integrals involving up which cannot be ex-
pressed as a linear combination of the basis functions:

~ ~—I\T ~ ~ ~
/VUD(x) V() doe = / Jup (9(2)) (J4(2) 1) Jd;i(x)T |det J,(z)] dz,  (37)
K K
where J,;, (9(Z)) is the Jacobian matrix of up with respect to z at point g(z).
Formulas (30), (36) and (37) cannot be used when transforming reference element
shapes to mesh cells in a higher-dimensional space. This is the case of, e.g., surface

meshes in 3D. Because the Jacobian matrix of g is not square, its determinant and
inverse do not exist. However, |det .J;| can be replaced with a volume element [2]:

|det Jy| ~ y/det (J," ;) (38)

and the inverse with a left inverse:

1

o~ (T T,) T, (39)

3.2.4 Quadratures
The integrals on the right-hand side of (30), (36) and (37) are of the form

/ f(@)dz, (40)
K
where f is some real function. Such integrals over a reference element shape K are

evaluated using quadratures; i.e., the integrals are approximated by a weighted sum of
f(z;) at certain points z; € K:

/ f@)dz = Y wifw) (41)

K

The points #; € K and weights w; € R are chosen so that the quadrature rule (41)
yields exact results for polynomial functions f up to a certain degree. For examples of
quadrature rules on the reference elements, see, e.g., [3].

3.3 Assembly of the finite element matrices and vector

The matrices M and S and the vector f are assembled from the contributions from
each finite element. Given a finite element represented by a cell K € 7T, and a set
Uy = {11,...,¥u} of local basis functions, we can construct the so-called local matrices
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Mg and Sk and the local vector fix. The matrices Mg and Sk are composed of elements
(Mk); ; and (Sk),; ; computed using (30), (36), (38) and (39) as:

(MK)” = /W 1/)1' = /152 sz \V det (JgTJ9)> (42)
K K
(Sk);; = / V), - Vb = / Jj, (1, J,) " Iy, T/ det (Jy" ) (43)
K K

for 4,5 =1,..., M. Similarly, the components (fx), of fx are computed using (37), (38)
and (39) as:

(fx), = — / Vup - Vi = — / unJy (J,7T)) " T T/ det (J,7J,) (44)

fori=1,..., M, where J,, is understood as the Jacobian matrix of up with respect to
x at point ().

The elements of M and Si and the components of fx are distributed to the global
matrices M and S and the global vector f. Let us recall that for each ); € Uy there
exists ¢; € ® such that ¢, = 1, as stated in Section 3.2. This statement defines a map
from {1,..., M} to {1,..., N} mapping i to [. Denoting the map by 7x, we can assert
that ¢, ()| = i for each ¢; € V. Consequently, each element (M), ; of My is added
to M., i)~ (j) of the global matrix M, and in the same manner S and f are assembled.

To construct mapping v, global information about the mesh is necessary. Typically,
each basis function ¢; € ® is associated with a mesh entity, e.g., a vertex, an edge or a
cell, and the global index of this entity within the mesh determines the index [ of ;. On
the element level, the local index i of ¥; € U is determined using the local index of the
associated mesh entity within the cell K. Thus, the mapping vk is usually based on the
local-to-global index mappings of the corresponding mesh entities.

3.4 Solution of the linear system
Equation (13) represents a system of N linear equations which can be written in the form
Ax = b, (45)

where x = uF is the unknown vector, A = M + 7S and b = Mu*~! + 7f. The coefficient
matrix A is symmetric positive definite and sparse. The system (13) can be solved by
any method for the solution of linear systems, e.g., the conjugate gradient method.

4 Conclusion
We implemented the finite element method for the heat equation in C+—+. The imple-

mentation is based on the unstructured mesh library presented in our last year’s article
[1]. The mesh library enables the implementation to operate on various types of meshes,
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e.g., triangular, quadrilateral, tetrahedral and hexahedral, in an arbitrary dimensional
space. Furthermore, it was designed with its future adaptation to GPUs in mind. The
implementation of the finite element method is general. It supports several types of finite
elements, and it could be used for the numerical solution of various problems.
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Abstract. This contribution deals with two scale approaches to the mechanical manifestation
modeling of freezing saturated soils. The first approach involves a macro-scale description of
the problem. The mathematical model of two-dimensional two-phase system is designed. It
comprises the modified heat equation involving the phase change of the pore water and the
system of the Navier equations describing deformations of the body. Both equation types are
coupled with the term which is related to the phase transition and which springs from the
empirical considerations. Computational studies of the model for the control of the structural
conditions within the mechanical heterogenious soil medium loaded by a concrete structure are
presented. The second approach represents the pore-scale description of the problem. Several
basic ideas regarding the local conditions of balance and mechanisms of the causes of the soil
heaving inception under the thermal gradient are summed up. The preliminary simulations of
the pore-scale freezing dynamics are shown.
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Abstrakt. Tento piispévek pojednavad o dvojim ptistupu k modelovan{ mechnickych pro-
jevi zamrzjicich saturovanych zemin. Prvni z pfistupt popisuje v makro méfitku dvoudimen-
zionalni termoelasticky model dvoufazového systému. Model zahrnuje modifikovanou rovnici
tepla popisujici fazovy prechod vody v poérech pudniho materidlu a déale systém Navierovych
rovnic popisujici deformaci télesa. Oba typy rovnic jsou provazany Clenem, ktery je vztazeny k
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médiu zatizeném betonovou konstrukeci. Druhy ptistup pfedstavuje problém na trovni porézn{
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1 Introduction

During the temperature shifts of ground surface around 0°C, several qualitative property
changes of upper soil layer can occur as a consequence of the phase change of water in
pores. They include both mechanical and thermal property changes, and their range is
substantial after a sufficient amount of the pore water, which is usually over 80 % of the
soil porosity, is reached. Therefore, the saturated soil model is a convenient simplification
for describing soil freezing problems. This model is used in our consideration as well.

One of the phenomena associated with the freezing of the high water content soil is
the upward movement of the frozen ground. It is called the frost heave (|2],[6], [7]) and is
caused by the formation of ice structures in the soil , which tend to grow as the freezing
descends and which generate extra stresses affecting significantly the mechanical behavior
of the soil.

One of our objectives is modeling the way how the freezing processes, including the
frost heave, affect soil mechanical properties in macro-scale under various condition and
heterogeneous properties.

2 Macro-scale model

Since the pore water interacts with the structure of porous medium, the water freezing
conditions vary locally in the pore-scale, and water does not exhibit the phase transition
all at once in a pore. For this reason taking approach from [8], it is convenient to define
a function useful in describing the frozen state of soil:

1 T >T,

¢(T) = "77}": . T<T. ) (1)

where T is the soil temperature in °C, T}, T, < 0°C, is the freezing point depression (the
freezing point of the pore water), 7 is the soil porosity, and b is a positive soil parameter.
The function ¢ describes liquid water content in the pores, and its shape is supported
with a number of experiments.

Heat balance reflecting the phase transition can be expressed by

0 0
C=T+ Ln—o(T)=V-(A\VT 2
where C'is the volumetric heat capacity of soil and A is the effective thermal conductivity.

They can be further related to the frozen water content as follows

C=Cil—0)+Cud, A=A\N (3)
CVf = 03(1_77)+Cz77, Cu 205(1—77)+Cl77 (4)
A =N A=A (5)

where subscripts f, u, s, 7, and [ denote heat capacity and thermal conductivity of frozen
soil, unfrozen soil, solid particles, ice, and liquid water, respectively.
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To cover the mechanical manifestations during the soil freezing, the soil is viewed as
continuum, and the relation between the displacement vectors u, v and the temperature
is proposed. Including the Navier equations in the model (2) and adding a linking term,
the following governing system is applied

_ - . . 5
82
Popl + 0 +V.I'=0 (6)
o2
p@v 0
where
—)\QT : —)\QT
ox oy
(1-— I/)Qu + I/ﬁ’v
r— Or Oy opy, ——£ (2,9, (7)
(14+v)(1—2v) T 2(14v)\dy  Ox ’
5 P 5 v—u+ (1 —v)—v
—— | =—u+ v ,— O %y +&(T)
L 2(14+v)\0y Oz (14+v)(1—2v) |

§T) =xd(T.=T),

FE is Young’s modulus, v is Poisson’s ratio, ¢ stands for the Heaviside step function, and
X is the internal stress rate. The linking term & represents an intuitive switch function
of internal stress between frozen and unfrozen soil material, and its more exact design
will be objective of further development. It is supposed to be derived from the pore-scale
considerations.

However, the occurrence of such a component can be justified by an analogy to the
linear constitutive equation derivation process as follows. Let X stand for the deformation
potential, which is given as the product of the mass density of undeformed body and the
free energy density for a deformable body, i.e.

(e, T) = pof (e, T), 9)

where ¢e;; denotes the strain tensor. Then, the stress tensor is expressed as

_pOx
Lo aeij .

0ij (10)
To obtain a linear dependence on e;;, ¥ can be assumed to be written in the following
form

1
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Analogously to the process of incorporation of the linear thermal expansivity term and
springing from the inspiration in the abrupt volume change of pure materials during
freezing, the linear coefficient in (11) can be expressed as

Assuming small deformations, the density ratio reads

p . 1 .
L 13
Po 1 + exidw CHOK (13)
and (10) transforms into
Jij = (1 — eklakl) (af)j — ﬁwﬁ (T* — T) + El-jklekl) . (14)

Dropping products of functions of 7" and e, and assuming no initial stress in undeformed
unfrozen body, i.e. af =0, (14) gives

oij = —=PBi0 (T = T) + Bijren - (15)
Multiplying the previous equation by the inverse tensor Ei_jil, it is possible to state the

meaning to the coefficients. It is clear that the volumetric expansion coefficients of freezing
and the elastic coefficients are

_ dojj
leiilr, = BiiSim = an (87;;) = Xijki » (16)
T

respectively. Considering the material to be isotropic, the number of the independent
coefficients in (15) decreases and the coefficient tensors reads

Ev FE
A g (S5 S. 5. 1
lekl (1 n l/)(]. — 2V) 51]5kl + 2(1 n V) (6zk5]l + 5'Ll6]k) ) ( 7)
oF
L = Qg Bij = m%’ = X0ij - (18)

When involved (15) with isotropic coefficients (17) and (18) in the dynamic balance
equation, the Navier equations are obtained in the form as in (6).

The model given by (6) is used for preliminary quality studies of freezing ground situ-
ations, which involve investigations of the stress distribution through soil heterogeneities
or assessments of the effect of the frost heave on building structures. Latter situation
simulation is shown in Figure 4. It represents a cross-section of a simple concrete build-
ing constructed on freezing heterogenious ground (see Figure 1b) and shows mechanical
processes within the structure when the soil heat leaks through the surface to the sur-
roundings.
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3 Pore-scale modeling

The soil mechanical property changes are a result of complex dynamic processes between
the freezing pore water and the solid skeleton. Due to a force of attraction that water
experiences in very close surroundings of a solid layer, a thin water film appears on the
walls of the skeleton even within the frozen soil. When the solid skeleton is continuous
under local pressure conditions, the film creates a continuous liquid net connected with
unfrozen water reservoir below freezing soil. This enables water to flow through freezing
zone until a discontinuity in the liquid net is reached. It occurs at a level, where the
effective stress, o., of the skeleton is fully supported by the stress produced by pore
content reaction, o,,. At the level, the solid particles are no more pressed horizontally to
each other; the discontinuity appears, and cumulating water freezes and initiates an ice
lens.
The basic force balance in the considered soil volume is expressed by the Terzaghi
equation
P=o.+0,, (19)
where P stands for the overburden pressure. As the phases are assumed to be continuous,
o, is given by
on=Cpr+ (1= CQ)pis (20)
where ( is the stress partition function (0 < ¢ <1, ( =1 when pores are filled only with

water), p; is the gage pressure of the pore ice, and p; is the gage pressure of the pore
water.

Figure 1: (a) Scheme of the ice propagation under the vertical thermal gradient at the
pore-scale level. Angles mark out the asymmetric areas. (b) Cross-section of soil ground
with a structure on it. A, B, C, D stand for different soil types; E stands for concrete.

Stress o, is increasing through the freezing zone as the result of an asymmetric in-
teractions of the film and the propagating pore ice. The ice propagation can be related
to the temperature by the Clapeyron equation, which can be derived from free energy
consideration (for more detail see [4]) in the following form:

T
bo_ b (21)

popi To
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Figure 2: Pore-scale simulation of ice (grey) propagation under vertical thermal gradient
through freezing water (dark) in pores around solid particles (white).

where [ is the specific latent heat of freezing of water, p; is the ice density, p; is the
water density, and T, is the absolute temperature. At thermodynamic equilibrium, the
ice pressure equals to the gage pressure of water, however, if the ice-water interface is
curved, p; and p; differ. The difference is

DL — Di = 0Ouk, (22)

where o;; is the surface tension of an ice-water interface and  is the mean curvature
of the interface. From above equation it can be seen that the pressure conditions are
determined by the interface curvature, i.e. by the geometry, and by the temperature.
When the balance of forces on an inner solid particle of a static column in the freezing
zone (see Figure la) is considered, it follows from (21) and the temperature gradient
that the areas of the film pressure action on the upper and lower hemisphere are not
symmetric, and thus there is a downward component of force. The film pressure p; is
given by
20'2'1

_ 23
tmr (23)

Pfr = Di
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Figure 3: Pore-scale simulation of ice (grey) propagation under vertical thermal gradient
through freezing water (dark) in pores around solid particles (white). Progress without

curvature in menisci. Last figure illustrates the resultant surface force acting on the
middle particle.

where R is the radius of the supposed particle and 7 is the film thickness. In addition to

this component, an another can by derived from a vertical gradient of p; on the symmetric
parts of the areas. If R >> 7, it is

Opy  Opi _ —pl OT
9ps _ 9pi _ ol 24
dy 0y Ty Oy’ (24)

and the gradient is positive. Therefore, the component acts again downward.

The downward forces acting on every particle within the freezing zone represent the
distributed force on the solid skeleton. This force is associated with an equal and oppo-
sitely distributed force on the pore content, which tend the ice body to move against the
thermal gradient.

The process of new ice lens initiation is allowed when o, fully supports the load at
some level, i.e. 0, = P or equivalently o0, = 0. The pore water pressure at this level is
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minimal. Therefore, the water flows from below to the level, where it cumulates, freezes,
and makes the ice lens to grow. This remain until another lens is created below. This
mechanism is described in more detail in [3], [5].

Several computational studies of the pore-scale ice propagation and its effect on the
single particle have been performed and their result are in Figures 2 and 3.

4 Conclusions

The presented macro-scale model includes a basic heat and force balance and has been
designed for the purpose of a preliminary study of structural changes in saturated soils
caused by the phase transition of the water content due to alternations of climatic con-
ditions. Although the model is based on the continuum approach and built on simplified
relations, the produced simulations reflect adequately common empirical knowledge of
the soil freezing and thawing process and the related mechanical manifestations. Further
development will involve an application of more sophisticated and descriptive relations
based on dynamical structure of freezing soil.

To fulfill this objective, the pore-scale structure modeling has been summed up, and
numerical studies of the local balance conditions has begun.
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Figure 4: Strain evolution of the concrete construction during ground soil freezing



