
DOKTORANDSKÉ
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Předmluva
Již osmý ročník workshopu Doktorandské dny se koná ve dnech 15. a 22. listopadu

2013 na katedře matematiky Fakulty jaderné a fyzikálně inženýrské ČVUT v Praze. Na
této konferenci, organizované s finanční podporou Studentské grantové soutěže ČVUT,
se každoročně představují doktorandi oboru Matematické inženýrství s příspěvky pokrý-
vajícími širokou škálu témat. Jedná se zejména o deterministické a stochastické modely
fyzikálních, medicínských a ekonomických procesů, tvorbu a analýzu výpočetních algo-
ritmů, ale i o témata základního výzkumu v teoretické informatice a matematické fyzice.

Možnost prezentace před odborným publikem nejen z řad školitelů a členů Oborové
rady je pro naše doktorandy neocenitelnou zkušeností, která je připravuje k účasti na
mezinárodních konferencích. Tento sborník je souborem příspěvků, který průběžně doku-
mentuje práci doktorandů a slouží jako podklad pro hodnocení studia.

Děkujeme všem, kteří se na zdárném průběhu této akce podílejí.

Editoři
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Abstract. Evolution operators of certain quantum walks posses, apart from the continuous
part, also point spectrum. The existence of eigenvalues and the corresponding stationary states
lead to partial trapping of the walker in the vicinity of the origin. This feature was found in the
three-state walk on a line with the Grover coin operator [1],[2], where the evolution operator
has one eigenvalue equal to unity. Similarly, Grover walk on a square lattice also has a point
spectrum [3]. We analyze the stability of this feature for three-state quantum walks on a line
subject to homogenous coin deformations. We �nd two classes of coin operators that preserve
the point spectrum. These new classes of coins are generalization of coins found previously by
di�erent methods [4] and shed light on the rich spectrum of coins that can drive discrete-time
quantum walks.

Keywords: quantum walk, localization

Abstrakt. U jistých typ· kvantových procházek m·ºe mít evolu£ní operátor, mimo spojitého
spektra, také spektrum bodové. Existence vlastních hodnot a p°íslu²ných stacionárních stav·
vede k £áste£nému uv¥zn¥ní chodce v okolí po£átku. Tato vlastnost byla nalezena pro Groverovu
procházku o t°ech moºných stavech posunu. Operátor £asového vývoje zde má vlastní hod-
notu rovnou jedné. Podobn¥ i Groverova procházka na £tvercové síti má bodové spektrum.
V na²í práci analyzujeme stabilitu této vlastnosti vzhledem k homogenním deformacím mince.
Zabýváme se p°itom kvantovou procházkou na p°ímce o t°ech moºných stavech. Výsledkem je
nalezení dvou t°íd mincí, které zachovávají bodové spektrum. Tyto nové t°ídy jsou zobecn¥ním
p°edchozích výsledk·, které v²ak byly nalezeny jinými metodami. Práce vrhá sv¥tlo na ²iroké
spektrum mincí, které mohou °ídit diskrétní kvantovou procházku.

Klí£ová slova: kvantová procházka, lokalizace
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Abstract. This paper focuses on a proposal of the new online database structure for the COM-

PASS experiment at CERN. Several incidents that happened during the 2012 COMPASS physics

run indicated that due to lack of hardware during the development of the current structure the

system is not safe in case of a critical failure of one of its components. However, as the new

FPGA-based data acquisition system for the COMPASS experiment is currently being devel-

oped, there is a possibility to use some of the computers from the old DAQ architecture for

di�erent purposes.

Keywords: CERN, COMPASS, database, MySQL

Abstrakt. Tento £lánek se zabývá návrhem nové architektury online databáze pro experiment

COMPASS v CERN. B¥hem fyzikálního programu experimentu COMPASS v roce 2012 do²lo

k n¥kolika incident·m, které poukázaly na to, ºe kv·li nedostatku dodaných hardwarových

komponent b¥hem implementace sou£asné databázové architektury není celý systém bezpe£ný v

p°ípad¥ výpadku jednoho z uzl·. Av²ak díky vývoji nového systému pro sb¥r dat, který po£ítá

s vyuºitím FPGA karet, bude moºné uvolnit n¥které po£íta£e pro jiné ú£ely.

Klí£ová slova: CERN, COMPASS, databáze, MySQL

1 Introduction

Modern particle physics experiments produce data in quantities never seen before. This
poses very strong requirements on the quality of data acquisition systems (both hardware
and software). A critial part of every data acquisition system is the online database. The
online database at the COMPASS experiment [1] uses the MySQL relational database
management system [2]. It contains meta-information about the run of the experiment.
These meta-information include beam parameters, detector con�guration, software logs,
and additional information recorded by the shift crews during the run of the experiment.

Information from this database are needed to be quickly retrieved during the data ac-
quisition and data analysis. This means that all the machines connected to the COMPASS
inner network should be able to write to the database and read from it at any time. To
ensure this, the database structure should withstand failures of its components without
limiting the access of clients.

3
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Figure 1: COMPASS spectrometer

2 CERN and COMPASS experiment

The European Organization for Nuclear Research (CERN) is an international scienti�c
organization situated in the northwerst suburbs of Geneva, Switzerland. It was founded
in 1954 by 12 European countries and as of 2013 has 20 member states and 7 observers.
Its main purpose is to operate the largest particle physics laboratory complex in the
world.

The main mission of CERN is to study the basic constituents of matter. The main
instruments used are particle accelerators, which boost beam of particles to high speeds
before they are made to collide with each other or with particles in �xed targets, and
detectors which detect and record results of these collisions. As of 2013 CERN operates
the largest particle accelerator in the world � the Large Hadron Collider (LHC).

COMPASS (Common Muon and Proton Apparatus for Structure and Spectroscopy)
is a �xed-target high-energy physics experiment located at the Super Proton Synchrotron
(SPS) particle accelerator. The main purpose of COMPASS is to investigate the nucleon
spin structure and hadron structure and spectroscopy using high intensity hadron and
muon beams.

During the long shutdown of CERN accelerators in 2013 and 2014 (LS1) the main
plans for the COMPASS experiment include development of the new data acquisition
system together with the upgrade of the online database structure.

The COMPASS experiment has around 250.000 detector channels along the 60m long
spectrometer setup (see Figure 1). Data from the detectors are produces via the frontend
electronics which feeds the data into 9U VME concentrator modules called CATCH or
into HGeSiCA boards. The readout is triggered by the Trigger control system (TCS).
The trigger decision is based on the energy deposited by charged particles on hadronic
and electromagnetic calorimeters and on signals from some other detectors.
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Figure 2: Current COMPASS DAQ system

3 COMPASS DAQ system

The data from CATCH and HGeSiCa boards are transfered through optical links to the
DAQ computers � readout bu�ers (ROB). ROB computers are equipped with spillbu�er
PCI cards that bu�ers the transmitted data. Last layer of computers (event builders)
then combines the detector data to complete blocks (events), prepare meta-information,
and after 24 hours transfers the data to the Central Data Recording System. The data
are then compressed and stored on magnetic tapes in a permanent storage (CASTOR �
CERN Advanced Storage) for further processing and analysis.

Several aspects of the experiment are constantly monitored (e.g. operation of the
frontend electronics, rate of di�erent triggers, and beam stability). The monitoring is
performed on the �y by the DAQ software.

The software for the COMPASS DAQ system is based on the DATE package [3]
written for the LHC experiment ALICE.

DATE performs data acquisition in a distributed environment. It provides framework
for the detector readout, software for run control, event building, information logging,
and event sampling. It also allows for the interactive con�guration.

After the physics program in 2011 the COMPASS experiment was approved for 6
more years and it was decided to build a new data acquisition system [5].

The new data acquisition system uses FPGA modules in two di�erent modes: 15 to
1 multiplexer to reduce the number of links from one hundred to 8 and 8x8 switch to
combine data belonging to one event. These custom made modules collect and build
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Figure 3: Current COMPASS database structure

complete events without use of any event building software and provide complete events
to the readout computers. Deployment of these modules signi�cantly reduces the amount
of components involved in the COMPASS DAQ chain, which allows for simpli�cation of
the software architecture.

3.1 Current COMPASS online database

The current COMPASS online database (Figure 3) was desinged and implemented by
Vladimir Jary in 2010 [4]. It uses three physical servers � all databases are stored on
two servers (named pccodb11 and pccodb12 ) which are synchronized using the master-
master replication, i.e. each query executed on pccodb11 is immediately executed also
on pccodb12 and vice versa. The third server (pccodb10 ) serves as a proxy server and is
accessible via pccodb00 virtual address.

The replication is implemented by three processes (one on the maser server and two
on slave server) that read and write binary log �les containing changes made to the
database tables. On the master server the process reads contents of the binary log and
sends updates to the slave server. On the slave server the �rst process connets to its
master server, receives the updates of the binary log, and writes them into a relay log.
The second process reads the modi�cation stored in the relay log and executes them.
The replication is an asynchronous process, the slave servers do not have to be connected
permanently.
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Pccodb10, pccodb11, and pccodb12 servers are located in the COMPASS experimental
hall in the French part of CERN and are connected to the COMPASS internal network. To
increase the safety of the data, pccodb11 is replicated also to the compass02 server which is
located in the CERN computing center. Compass02 is also replicated to computer centers
of participating institutes to provide a kind of geographical backup in case of problems
on the COMPASS internal network. All three servers have the same con�guration � 8
core Intel Xeon processor at 2.5GHz with 16GB of memory. They are running 64 bit
Scienti�c Linux CERN 5.4 and MySQL server version 5.1.45.

3.2 Nagios monitoring system

The Nagios monitoring software is used to watch over the database system. It is able
to monitor available resources on a remote host and present the results in a graphical
web interface. Furthermore, the Nagios system is able to perform a prede�ned action
in case of an accident. For example if Nagios detects that pccodb11 server is down, it
recon�gures the proxy server to redirect all clients to the pccodb12 server. It can notify
a system operator by an e-mail or a SMS.

Nagios is very �exible and customizable by plugins. Each Nagios plugin is a small
application or script that monitors a state of service or resource and returns an integer
value which represents the state itself. A plugin can also print multiple lines of text
describing the state in more detail. Nagios periodically executes the plugins and displays
the output in a graphical web interface.

3.3 Database incidents

3.3.1 May 2012 incident

A serious problem appeared in May 2012, just few hours before end of the winter shutdown
and start of the data taking, the pccodb11 has crashed as a result of hardware failure.
Database experts were noti�ed by the e-mail message sent by the Nagios system. After
the pccodb11 server had been restarted, the replication to the pccodb12 stopped working.
The same problem appeared also on the compass02 server.

After a short investigation following problem was identi�ed � the thread responsible
for storing events to the binary log on the pccodb11 machine was not running and the
�Client requested master to start replication from impossible position" error was reported.
Thus, the master server failed to write all events into its binary log before the crash and
after the restart and the slave server was trying to receive them. Several attempts were
made to force the slave process to skip the unwritten events, but it kept crashing.

To ensure the full synchronization, the replication process had to be restarted and data
synchronized manually. After the operation, the replication was started again without
any problems.

3.3.2 October 2012 incident

During the data taking in October 2012, the COMPASS DAQ system tried to execute
the following query during the night shift: UPDATE tb_run SET title="possibly ok". If
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Figure 4: Nagios monitoring system log during the October 2012 incident

executed, this query would rewrite the title information of all COMPASS runs to possibly
ok. While trying to execute the query, the replication process crashed and the query
was fortunately not executed at all. The Nagios system sent an e-mail noti�cation about
the replication process containing error messages Slave SQL Running No and Slave is

NULL seconds behind stating that the slave replication process was not running and
was unable to calculate the replication delay. As the replication was not working, there
was no redundancy during the night � i.e. the pccodb11 was processing queries but not
replicating them to pccodb12 nor to compass02. In the morning the query was manually
skipped, the replication to pccodb12 and compass02 was restored.

During further investigation a bug in the DATE software was found. The shift crew
operating the COMPASS spectrometer is responsible for log keeping and for evaluating
�nished runs. To do this the DATE software provides a graphical interface to �ll in
the comment and some speci�c �ags, the current run number is automatically pre-�lled.
However, it has been discovered that if the run number is erased and the comment saved,
the DATE software tries to apply the change to all the runs. This bug was immediately
�xed to prevent further problems.

3.3.3 Outcome of the incidents

After these two incidents, it was decided that the database structure should change to
provide more redundancy in case of a failure. With the current structure, when one
of the two servers fails, there is no backup until the problem is �xed. Also some more
serious problems might cause limitations during the data taking. For example when
the replication crashes in a similar manner as in May 2012, the full database backup is
needed which makes the database unavailable during the task, i.e. the data taking cannot
proceed. One of the possible solutions is to build the master→n slaves replication.

To increase the redundancy of the whole system, more nodes should be added and
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Figure 5: New COMPASS database structure proposal

the master→n slaves replication should be used (see Figure 5).

4 New database structure proposal

As in the current structure, all the clients access the MySQL proxy server located on
the pccodb10 machine via pccodb00 virtual address. The pccodb11 machine becomes the
only master node and every query executed on this node is then executed on all the slave
nodes (pccodb12, pccodb13, pccodb14 ) as well.

In case of a failure of one of the slave nodes, the master node keeps replicating to
the rest of the nodes. The problem of one node can then be �xed without causing any
limitations or without losing the backup.

In case of a failure of the master node, one slave node can immediately take its place
by redirecting the proxy server to it. Again, this process cuses no limitations during the
data taking.

This upgrade should be performed together with upgrading the Scienti�c Linux CERN
and MySQL to the most up-to-date versions on all the machines.
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5 Conclusion

The new database structure of the COMPASS online database was proposed and was
preliminarily approved on a meeting of COMPASS front-end group. The change should
be implemented as soon as required hardware is available (i.e. at the end of 2013 or
during 2014).
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Abstract. This paper introduces a tool which is able to recognize both the properties of a

code snippet and even its structure. This tool uses the Sripthon language to describe a snippet.

An abstract syntax tree is created from the given Java source, and it is compared with the

tree created from a Scripthon source code. During this process, many tree optimizations take

place. Therefore, the complete recognition process is very fast, and can be used to scan the large

programs.

Keywords: Java, graph matching, AST, Scripthon

Abstrakt. Tato práce p°edstavuje nástroj slouºící k detekci struktur zdrojového kódu a jejich

vlastností. K popisu vlastností je pouºit jazyk Scripthon. P°i porovnávání se pouºívá strom

abstraktní syntaxe získaný ze zdrojového kódu. Tento strom je porovnán se stromem, který

je vytvo°en ze zdrojového kódu jazyka Scripthon. B¥hem tohoto procesu dochází k mnoha

optimalizacím. Proto je vyhledávání velice rychlé a tedy i pouºitelné pro programy v¥t²í velikosti.

Klí£ová slova: Java, porovnávání grafu, strom abstraktní syntaxe, Scripthon

1 Introduction

It is an easy task to search the source code. Nevertheless, this applies only in the case of
a simple text or simple structure names. This feature is supported in most of the current
Java development environments. Some IDEs support an advanced searching with regular
expressions. But, what if a user wants to know, whether a program contains the singleton
design pattern? Or, whether the speci�c method (with three concrete parameters) is
somewhere in a program?
It is very di�cult to �nd such information; however, with using the mathematical and
programming knowledge, it is possible. When using the Scripthon language, these special
structures can be described very precisely. On the other side, by using the Java Compiler
API, the abstract syntax trees (hereinafter AST) can be obtained and compared with
the Scripthon's output. This paper is on the using these trees for searching the desired
code snippet. This task is similar to the graph matching and isomorphic subgraphs
�nding in a large set of trees. A number of solutions for all of these tasks have been
proposed [6], but they all su�er from the high computational complexity inherent to the
graph matching. An additional problem arises in the applications where an input graph
needs to be matched not only to another graph, but to an entire database of the graphs

11
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under the given matching paradigm. Therefore, some complexity reducing algorithms are
proposed in this paper.
The �rst section introduces necessary graph theory concepts. There can be found the
de�nitions of a graph, a subgraph and a graph isomorphism. The next two sections are
about the graphs generation, optimizations, and the comparison of the graphs generated
by the Compiler API. The Scripthon language is introduced brie�y in the next chapter.
Because the language has been described already in another paper [1], only the important
properties are mentioned here. Finally, some results are presented in the conclusion.

There are several reasons to consider graphs as a very advantageous tool for the
representation of a source code of some language. One the reason is, that there is no
unnecessary material like spaces, comments etc. Another reason is, that there are many
well described mathematical algorithms to work with graphs. Some of the algorithms are
known for decades. Representing a code as a graph has also the disadvantage: it has a
large demands on a computer power and memory; especially for larger programs.

2 Basic graph theory concepts

A graph is de�ned as a four-tuple g = (V, E, α, β), where V denotes a �nite set of nodes,
E ⊆ V× V is a �nite set of edges, α : V→ LV is a node labeling function, and β : E→ LE
is an edge labeling function. LV and LE are �nite of in�nite sets of node and edge labels,
respectively. All the graphs in this work are considered to be directed.
A subgraph gs = (Vs, Es, αs, βs) of a graph g is a subset of its nodes and edges, such that
Vs ⊆ V, Es = E ∩ (Vs × Vs)
Two graphs g and g, are isomorphic to each other if there exists a bijective mapping u

from the nodes of g to the nodes of g,, such that the structure of the edges as well as all
node and edge labels are preserved under u. Similarly, an isomorphism between a graph
g and a subgraph g,s of a graph g, is called subgraph-isomorphism from g to g,.
A tree is a connected and undirected graph with no simple circuits. Since a tree cannot
have a circuit, a tree cannot contain multiple edges or loops. Therefore, any tree must
be a simple graph. An undirected graph is a tree if and only if there is a unique simple
path between any two of its vertices.
The two graphs matching problem is actually the same as the �nding the isomorphism
between them. Moreover, matching the parts of a graph with a pattern is the same
challenge as the �nding the isomorphic subgraph.

3 Graph generation with Java Compiler API

The Java Compiler API is used to get a graph for the searching algorithm. This API is
free, and it is included in a Java distribution. Basically, the Java Compiler API serves
to the advanced control of a compilation process. This API uses AST in the form of
the visitor design pattern. Unfortunately, this design pattern is no so convenient for the
searching purposes. This is because the Scripthon language is unable to describe so many
structures, and also because the searching algorithm is di�cult to implement with the
visitor design pattern. Therefore, the more advanced graph is created from Java AST.
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Figure 1: Tree with optimizations

This graph is very similar to AST, but it has several bene�ts. The �rst bene�t is the
replacement of the visitor pattern with the classic approach. And the second one is the
enrichment of some additional information which signi�cantly facilitates the searching.
While browsing a source code, the tree with nodes enhanced by four numbers, is created.
These numbers are the natural numbers named left, right, level and level under. The
�rst and the second number (left, right) denotes the order index of a node after the tree
preorder traversal. The level number denotes the level in a tree hierarchy of vertices, and
the level under number denotes a number of levels under the current node. (Compare
with the method described in [4]). The following rules are valid for these values.
Suppose that x and y are two nodes from a tree.

• The y node is an ancestor of x and x is a descendant of y if y.left < x.left < y.right

• The y node is an parent of x and x is a child of y if 1) y.left < x.left < y.righ
and 2) y.level = x.level− 1

All these data are acquired during a single pass through the tree. Obtaining this infor-
mation is not a time consuming operation, because it is made during the tree production
process. On the other hand, the number of comparisons can be signi�cantly reduced with
these numbers. Moreover, while comparing the trees, it is very easy to detect:

• How many elements have a given structure

• If a node is a leaf

• How many sub-statements are included in a given structure

Without this information, the comparison of two trees becomes much more time consum-
ing operation. In summary, this information is used in the cases where the shape of the
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given structures and its coupling is considered more than its properties.
A line reference to a source code is an important information which is also added to
the tree as a metadata. Therefore, it is easy to link the results with the original source
position and show it to the user. There are some more elements in a node metadata. For
example, some of the other metadata information is a �lename of the source �le.
Because the number of the comparisons is a key indicator for the algorithm speed, it is
necessary to keep the number of nodes as small as possible. Therefore, while creating a
tree from a source code, only the supported structures and its properties are considered
. Thus, the same Scripthon de�nition set is used during the tree creation process. Other
elements are omitted.

4 Scripthon description

The Scripthon language is described in [1], [2]. The following text will present just the
summarized and important properties of this language. Scripthon is a simple-to-lean
language which is able to describe a Java source code structure. Because of its simple
syntax, it is very easy to learn. The syntax of the Scripthon language is similar to the
syntax of Java, and it is very intuitive. Basically, keywords represent the structures
in Java language. Thus, a Scripthon program is built only with these words and its
properties. Each keyword has a special set of own properties. For example, a class is
represented by the Class() keyword. The parameters of this structure can be in the
parentheses, however, if the brackets includes no parameters, each class is a candidate for
searching and each class of a given program corresponds to this structure. For example,
the following command:

Class(Name = ”Main”; Rest = public)

means that the wanted structure is a public class with the name Main. Each option of
all parameters is speci�ed in the Scripthon documentation. It is denoted only by the
line separators or by tabs, how the structures are nested together and how the searched
hierarchy looks like.

Meth(Rest = private; ParamsNum = 2)
Block()

Init(Type = int; Value = ””; Name = ”sum”)
Return(Value = ”sum”)

This example means that the searched structure is a private method with two parameters.
Inside the method is a block with two statements. The �rst statement is a variable named
sum of type int. The second statement is a return statement with a parameter of the
previously speci�ed variable.
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The big advance of the Scrithon language is that it is able to describe the elements with
a variable depth of details. It means, that the searched structures can be described in a
detail or very loosely. For example, this is a very detailed description:

Class(Name = ”TestDecompile”; Rest = public)
Meth(Name = ”main”; Ret = void; Rest = public)

Init(Name = ”toPrintValue”; Type = String)
MethCall(Name = ”System.out.println”)

The same script without details follows:

Class()
Meth()

Init()
MethCall()

Therefore, a searched subject can be found on the base of a very inaccurate description.
The results can be obtained with the iterative re�nement of the input conditions. In the
end, a user can get the better results.
The level of detail which can be described by the current version of Scripthon is up
to the expression. In addition, Scripthon can describe a lot of Java structures, but it
cannot describe the individual elements of an expression statement. For example, while
describing an if statement, it is possible to address the inner block, or the else block with
inner statements, however, the if expression in the parentheses cannot be described.
Moreover, Scripthon is not able to describe the mathematical operations. If a variable is
this way:

int i = a+ b/45;

The most accurate statement in Scripthon is, that �nds it, is:

Init(Name = ”i”; Type = int)

In the current version of the Scripthon language, nothing more cannot be described yet.
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5 Graph matching

The simple and many times described backtracking algorithm is used for the graph match-
ing. Basically, it is the problem of �nding an isomorphic tree to the given tree from a large
database of trees. The only di�erence is, that the node properties need to be considered
during the process.
The source trees are created from the corresponding classes. The classes and the trees
are mapped one-by-one. Each tree corresponds to exactly one class. In the �rst step,
the algorithm checks whether the shape of the structure match, and then the properties
are compared. This is because the properties matching is much more time consuming
operation than shape detection. Many structures are eliminated from the process very
quickly in the case that the shape does not �t.
If the shape of the structure corresponds to the required shape, the structure parameters
are compared. All the parameters of a given node must be met. The node properties are
provided by the Java compiler. Unfortunately, because of the backtracking algorithm,
each node needs to be compared one-by-one. It has O(N3) complexity (according to [3]).
On the contrary, with the above outlined optimizations, the number of node comparisons
is signi�cantly decreased. More on the graph matching techniques can be found in [5].

6 Conclusion

The used algorithm modi�cations substantially reduced the time needed to �nd the re-
quested Java structures. Moreover, also the time of the tree generation procedure has
been shortened. According to the measurements, the meta-information counting does not
signi�cantly a�ect the time of a graph creation.
The searching with optimization is much faster. The tables I-III show the measured time
results. The small program means a program consisting of approximately 20 to 30 classes,
while the larger program is a program with approximately 100 to 150 classes. There are
also the results before and after the described optimizations.
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Table 1: Graph creation
Program type Time

Small program (no optimizations) 412 ms

Larger program (no optimizations) 4 423 ms

Small program (optimized) 132 ms

Larger program (optimized) 337 ms

Table 2: Searching
Program type Time

Small program (no optimizations) 2 345 ms

Larger program (no optimizations) 11 236 ms

Small program (optimized) 753 ms

Larger program (optimized) 1 986 ms

Table 3: Total time
Program type Time

Small program (no optimizations) 2 757 ms

Larger program (no optimizations) 15 659 ms

Small program (optimized) 886 ms

Larger program (optimized) 2 323 ms

The measurements were performed on a quite common computer. The computer
con�guration was: 4GB of memory, an Intel Core I5 processor with a frequency of 2,4
GHz andWindows 7 as an operating system. The individual results represent the averages
of several consecutive measurements. The �rst column indicates the time needed to AST
generation, while the second one represents the time required to �nd a piece of the sample
code described by the Scripthon language. The last column is the sum of both times.
The lines represent the sizes of programs on which the measurements were performed.
As you can see from the tables, in the case of the small program, the graph assembling
is not signi�cantly di�erent. On contrary, better results can be obtained in the case of
larger programs. Probably, this is because the time needed for the overhead services
related to the starting and initializing the own search.
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Abstract. In this paper we study the expansions of real numbers in positive and negative real
base. In particular, we consider the sets Z+

β and Z−β of nonnegative β-integers and (−β)-integers
respectively. It is well known that, in numerous cases, Z−β can be completely unrelated to Z+

β .

We precisely describe all bases ±β ∈ R for which Z+
β and Z−β can be coded by in�nite words

which are �xed points of two conjugated morphisms.
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Abstrakt. Tento p°ísp¥k se zabývá rozvoji reálných £ísel v kladné a záporné bázi, konkrétn¥
mnoºinami Z+

β a Z−β nezáporných β-celých a (−β)-celých £ísel. Je známo, ºe mnoºiny Z+
β a

Z−β se obecn¥ mohou zna£n¥ li²it. P°esn¥ popíseme v²echny báze ±β ∈ R, pro které lze mnoºiny
Z+
β a Z−β kódovat nekone£nými slovy, které jsou pevnými body konjugovaných mor�sm·.

Nezkrácená verze tohoto p°ísp¥vku, Generating (±β)-integers by Conjugated Morphisms,
vy²la v Local Proceedings of WORDS 2013, [4].

Klí£ová slova: (−β)-rozvoje, (−β)-celá ²ísla, antimor�smus, konjugace

1 Introduction

Inspired by the work of Ito and Sadahiro [7], numerous papers have been recently dedi-
cated to the study of numeration systems with negative base from various perspectives.
Typically, properties of (−β)-expansions are examined in comparison with their well-
known positive base counterparts. The dynamical properties of (−β)-transformations
were studied for example in [3], [6] and [9]. For the results on the set of (−β)-integers,
see [2] and [15] while a related topic, arithmetics on (−β)-integers, was studied for instance
in [10]. Recently, an e�ort was made in identifying numbers β for which β- and (−β)-
numerations are the �most similar�. In particular, Kalle in [8] characterizes β ∈ (1, 2)
for which there exists a measurable isomorphism between β- and (−β)-transformations.
In [11], the authors focus on comparison of languages of in�nite words uβ and v−β coding

∗This work was supported by the Czech Science Foundation, grant GA�R 13-03538S and by the
Grant Agency of the Czech Technical University in Prague, grant No. SGS11/162/OHK4/3T/14.
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the β- and (−β)-integers, respectively, in case of quadratic β > 1. The present contribu-
tion extends the result of [11] by providing the characterization of numbers β for which
the languages of uβ and v−β coincide. For β ∈ (1, 2), this happens exactly for the class
of multinacci numbers, distinguished in [8].

2 Rényi β-expansions

In 1957, Rényi [13] de�ned the positional numeration system with positive (in general real)
base. Let β > 1, then any x ∈ [0, 1) has a unique expansion of the form dβ(x) = x1x2x3 · · ·
de�ned by

xi = bβT i−1β (x)c, where Tβ(x) = βx− bβxc .

For any x ∈ [0, 1) we then get an in�nite word, more precisely an element of AN =
{0, 1, . . . , dβe − 1}N. On the other hand, not every in�nite word over AN does play the
role of dβ(x) of some x ∈ [0, 1). Those who do, are called admissible (or β-admissible) and
their characterization is due to Parry [12]. He proved that a digit string x1x2 · · · ∈ AN is
admissible i� it ful�lls the lexicographic condition

0ω �lex xixi+1xi+2 · · · ≺lex d
∗
β(1) = lim

y→1−
dβ(y) for all i ≥ 1 . (1)

Here, ≺lex stands for standard lexicographic ordering and the limit is taken over the
usual topology on AN. Recall that the so-called Rényi expansion of unity is de�ned as

dβ(1) = d1d2d3 · · · , where d1 = bβc, d2d3 · · · = dβ(β − bβc) .

The in�nite Rényi expansion of unity d∗β(1) can then be obtained as

d∗β(1) =

{
(d1 · · · dm−1(dm − 1))ω if dβ(1) = d1 · · · dm0ω with dm 6= 0,

dβ(1) otherwise,

where the notation wω = www · · · stands for in�nite repetition of the word w. Let
us point out that the lexicographic ordering on admissible strings corresponds to the
ordering on the unit interval [0, 1), i.e. x < y ⇔ dβ(x) ≺lex dβ(y).

The notion of β-expansions can be naturally extended from [0, 1) to all reals.

De�nition 1. Let β > 1, x ∈ R+. Let k ∈ N be minimal such that x
βk ∈ [0, 1) and

dβ

(
x
βk

)
= x1x2x3 · · · . Then the β-expansion of x is de�ned as

〈x〉β =

{
x1 · · ·xk−1xk • xk+1xk+2 · · · if k ≥ 1,

0 • x1x2x3 · · · if k = 0,

where the symbol • separates integer and fractional parts of 〈x〉β. The β-expansion of a
negative real number is then de�ned as 〈x〉β = −〈|x|〉β.

As a natural generalization of Z, the set Zβ of β-integers can be de�ned using the
notion of 〈x〉β.
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De�nition 2. Let β > 1. Then the set of nonnegative β-integers is de�ned as

Z+
β = {x ∈ R : 〈x〉β = xk · · · x1x0 • 0ω} =

⋃
i≥0

βiT−iβ (0) .

The set of all β-integers is then obtained by symmetrization around zero,

Zβ = Z+
β ∪ (−Z+

β ) .

Recall that a number β > 1 is called a Parry number, if d∗β(1) is eventually periodic.
Note that every Parry number is necessarily an algebraic integer. If it is also purely
periodic (i.e. the Rényi expansion of unity dβ(1) is �nite), then it is called a simple Parry
number. The remaining Parry numbers are called non-simple Parry numbers.

Thurston [16] showed that the distances between consecutive elements of Zβ (let us
denote them as ∆0,∆1,∆2, . . .) are equal to

∆k =
∑
i≥1

di+k
βi

, k = 0, 1, 2, . . . , (2)

where d∗β(1) = d1d2d3 · · · . One can easily see that the set Zβ contains gaps of �nitely

many di�erent lengths i� β is a Parry number. Moreover, since ∆0 =
∑

i≥1
di
βi = 1 and

any su�x of d∗β(1) either ful�lls (1) or is equal to d∗β(1) itself, we get ∆k ≤ 1 for all k.
We can encode Z+

β by an in�nite word in the following manner. Starting with number

0 (which is always a β-integer) and continuing through all elements of Z+
β in increasing

order, encoding each gap between consecutive β-integers by a number ∆k → k (where
k is the greatest index, at which the β-expansions of the two neighbors di�er) will give
us an in�nite word uβ = u0u1u2 · · · over the in�nite alphabet N. We can generate this
encoding by a certain morphism, having uβ as its �xed point.

If β is a Parry number, the distances between consecutive elements of Z+
β take only

�nitely many values and it is known, that both uβ and ϕ can be projected onto a �nite
alphabet of the form {0, 1, . . . , n}. The explicit form of the morphism ϕ �xing uβ was
originally given by Fabre [5].

Theorem 1 ([5]). Let β > 1 be a Parry number. Then the morphism ϕ : {0, . . . , n}∗ →
{0, . . . , n}∗ encoding Z+

β has the following form:

� If β is a simple Parry number, dβ(1) = d1 · · · dk0ω (d∗β(1) = (d1 · · · dk−1(dk − 1))ω),
then n = k − 1 and

ϕ(i) = 0di+1(i+ 1) for i ≤ k − 2 ,

ϕ(k − 1) = 0dk .

� If β is a non-simple Parry number, dβ(1) = d∗β(1) = d1 · · · dk(dk+1 · · · dk+p)ω, then
n = k + p− 1 and

ϕ(i) = 0di+1(i+ 1) for i ≤ k + p− 2 ,

ϕ(k + p− 1) = 0dk+pk .
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3 Ito-Sadahiro (−β)-expansions
In 2009, Ito and Sadahiro [7] introduced an analogous numeration system to Rényi β-
expansions which uses a negative base, the so-called (−β)-expansions. Instead of de�ning
the expansions of numbers from [0, 1) �rst, the unit interval [`, `+ 1) with ` = −β

β+1
�xed

was chosen. Let −β < −1, then any x ∈ [`, ` + 1) has a unique expansion of the form
d−β(x) = x1x2x3 · · · de�ned by

xi = b−βT i−1−β (x)− `c, where T−β(x) = −βx− b−βx− `c .

As in Rényi numeration system, we get for any x ∈ [`, ` + 1) an in�nite word from
AN = {0, 1, . . . , bβc}N.

Another analogous concept is the (−β)-admissibility, which characterizes all digit
strings over A being the (−β)-expansion of some number. The lexicographic condition,
similar to the one by Parry, was also proved in [7]. Ito and Sadahiro proved that a digit
string x1x2x3 · · · ∈ AN is (−β)-admissible (or, if no confusion is possible, just admissible)
i� it ful�lls the lexicographic condition

d−β(`) �alt xixi+1xi+2 · · · ≺alt d
∗
−β(`+ 1) = lim

y→l+1−
d−β(y) for all i ≥ 1 . (3)

Here, ≺alt stands for alternate lexicographic ordering de�ned as follows:

u1u2 · · · ≺alt v1v2 · · · ⇔ (−1)k(uk − vk) < 0 for k smallest such that uk 6= vk .

The reference digit strings d−β(`) and d∗−β(`+ 1) play the same role for (−β)-expansions
as Rényi expansions of unity for β-expansions. While d−β(`) is obtainable directly from
the de�nition, the following rule (proved in [7]) is to be used for determining d∗−β(`+ 1):

d∗−β(`+ 1) =

{
(0l1 · · · lq−1(lq − 1))ω if d−β(`) = (l1l2 · · · lq)ω for q odd,

0d−β(`) otherwise.

In the rest of the paper, the notation d−β(`) = l1l2l3 · · · will be used. We can now
recall the de�nition of (−β)-expansions for all reals.

De�nition 3. Let −β < −1, x ∈ R. Let k ∈ N be minimal such that x
(−β)k ∈ (`, ` + 1)

and d−β

(
x

(−β)k

)
= x1x2x3 · · · . Then the (−β)-expansion of x is de�ned as

〈x〉−β =

{
x1 · · ·xk−1xk • xk+1xk+2 · · · if k ≥ 1,

0 • x1x2x3 · · · if k = 0.

De�nition 4. Let −β < −1. Then the set of (−β)-integers is de�ned as

Z−β = {x ∈ R : 〈x〉−β = xk · · ·x1x0 • 0ω} =
⋃
i≥0

(−β)iT−i−β(0) .
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In order to describe the distances between consecutive (−β)-integers, we will recall
some notation from [2]. Let

min(k) = min{ak−1 · · · a1a0 : ak−1 · · · a1a00ω is admissible} ,

where min is taken with respect to the alternate order on �nite strings. Similarly we
de�ne max(k). Furthermore, let γ be the �value function� mapping �nite digit strings to
real numbers,

xk−1 · · · x1x0 → γ(xk−1 · · ·x1x0) =
k−1∑
i=0

xi(−β)i .

With this notation we can recall the results concerning the distances in Z−β and, later
on, encoding of Z−β by in�nite words. It was shown in [2] that the distances between
consecutive elements x < y of Z−β take the values y − x ∈ {∆′k, k ∈ N} (not necessarily
pairwise distinct) with

∆′k :=
∣∣∣(−β)k + γ

(
min(k)

)
− γ
(

max(k)
)∣∣∣ , (4)

where k is the greatest index at which 〈x〉−β and 〈y〉−β di�er. In contrast with the result
of Thurston describing the distances in Zβ, it is di�cult to provide a similar explicit result
on Z−β, due to tedious discussions arising from the alternate ordering. Nevertheless, the
formula (4) will be su�cient for our needs.

If we want to encode Z−β by an in�nite word, the procedure is similar to the encoding
of Z+

β . But since Z−β contains both positive and negative numbers, we directly get a
biin�nite word

v−β = · · · v−3v−2v−1|v0v1v2 · · · , vi ∈ {0, 1, 2, . . .} ,

i.e. the letter vj = k means that the gap between j-th and (j + 1)-th (−β)-integer is ∆′k.
As the following theorem shows, there exists an antimorphism ψ (although not explicitly
given), which generates v−β as its �xed point, i.e. ψ(v−β) = v−β.

Theorem 2 ([2]). Let v−β be the word associated with (−β)-integers. There exists an
antimorphism ψ : N∗ → N∗ such that ψ2 is a non-erasing non-identical morphism and
ψ(v−β) = v−β.

Moreover, ψ is of the form

ψ(k) =

{
Sk(k + 1)R̃k for k even,

Rk(k + 1)S̃k for k odd ,

where ũ denotes the mirror image of the word u. The word Sk codes the distances be-
tween consecutive (−β)-integers in {γ(min(k)0), . . . , γ(min(k+ 1))} (in given order) and
similarly Rk in {γ(max(k)0), . . . , γ(max(k + 1))}.

Similarly to Parry numbers, another subclass of algebraic integers, the so-called Yrrap
numbers are de�ned. A real number β is an Yrrap number, if d−β(`) is eventually periodic.
Moreover, let us recall, that β is called a Pisot number, if it is an algebraic integer greater
than 1 with all algebraic conjugates less than 1 in modulus. From [6], [9], [14], it is
known that every Pisot number is both Parry and Yrrap, while the converse does not
hold. Moreover, the sets of Parry and Yrrap numbers do not coincide.



24 D. Dombek

Remark 1. Although both the encoding v−β of (−β)-integers and the antimorphism ψ
generating it were originally de�ned over the in�nite alphabet N, it is not di�cult to see
that whenever β is an Yrrap number, v−β and ψ can be projected to a �nite alphabet
as the distances of the same length can be coded by the same letter (periodic d−β(`) ⇒
periodic patterns in extremal strings min(k) and max(k) ⇒ periodic repetition of lengths
of distances in Z−β). Several examples of antimorphisms over �nite alphabet coding Z−β
are presented in [2] and [15].

4 Comparing the Structure of Z+
β and Z−β

A natural question to ask is: for given β > 1, are the sets Z+
β and Z−β similar in any way?

From our point of view, the �similarity� can be expressed by three properties (ordered in
such a way that each one implies all of the previous):

1. both Z+
β and Z−β contain only distances of length ≤ 1 (not true for Z−β in general)

2. the sets of distances in Z+
β and Z−β are the same

3. uβ and v−β are �xed points of conjugated morphisms (which implies that uβ and
v−β have the same language)

Given an in�nite word u (one- or two-directional), its language L(u) is the set of all
its factors. i.e. �nite words of the form ukuk+1 · · ·ul for some k, l ∈ Z. Note that we
cannot just compare maps ϕ and ψ generating uβ and v−β respectively, as one of them
is a morphism and the other an antimorphism. Nevertheless, if we take ϕ2 and ψ2 then
the comparison makes sense, as both are morphisms.

De�nition 5. Let A be an alphabet (�nite or in�nite) and π, ρ : A∗ → A∗ be morphisms
on A. We say that π and ρ are conjugated, if there exists a word w ∈ A∗ such that either

wπ(a) = ρ(a)w, for all a ∈ A , or π(a)w = wρ(a), for all a ∈ A .

We denote π ∼ ρ.

4.1 Observations for special Pisot Bases

Note that we consider only non-integer bases. The case β ∈ Z is contained in the main
result (Theorem 3) as a trivial subcase (integers are Pisot numbers of degree 1) which
can be easily proved separately. In Proposition 1 we recall results of [11] characterizing
quadratic bases for which both Z+

β and Z−β are encoded by in�nite words with the same
language.

Proposition 1. Let β > 1 be a quadratic Pisot number with minimal polynomial p(x).

1. If p(x) = x2 −mx−m, m ≥ 1:
the distances in Z+

β and Z−β are the same and ϕ2 ∼ ψ2.

2. In all other cases, Z−β contains distances > 1.
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In order to provide similar characterization for cubic Pisot units, and later for the
general result in Theorem 3, it is useful to consider the following lemma.

Lemma 1. Let β > 1, denote m = bβc. Then ∆′1 ≤ 1 implies that

d−β(`) = m02k−1l2k+1l2k+2 · · · (l2k+1 > 0) or d−β(`) = m0ω .

Note that the case d−β(`) = m0ω happens if β is a root of x2 − mx − m, which is
treated in Proposition 1. In the following proposition we use results of Akiyama [1] giving
characterization of cubic Pisot units.

Proposition 2. Let β > 1 be a cubic Pisot unit with minimal polynomial p(x) = x3 −
ax2 − bx− c, c = ±1.

1. If p(x) = x3 −mx2 −mx− 1, m ≥ 1:
the distances in Z+

β and Z−β are the same and ϕ2 ∼ ψ2.

2. If p(x) = x3 −mx2 + x− 1, m ≥ 2 or p(x) = x3 −mx2 + 1, m ≥ 3:
the distances in Z+

β and Z−β are the same but ϕ2 � ψ2.

3. In all other cases, Z−β contains distances > 1.

4.2 Main Result

Theorem 3. Let β > 1. Morphisms ϕ2 and ψ2 generating Z+
β and Z−β respectively are

conjugated i� β is a Pisot number with minimal polynomial xk −m(xk−1 + . . . + x) − n
with m ≥ n ≥ 1, such that k is odd or m = n.

Remark 2. Let β be a Pisot number of even degree k ≥ 2 with minimal polynomial
p(x) = xk −m(xk−1 + . . .+ x)− n, m > n ≥ 1. The sets of distances in Z+

β and Z−β do
not coincide, hence ϕ2 � ψ2. Nevertheless, certain level of similarity can still be found,
as was observed for k = 2 in [11]. Recall that v−β is an in�nite word coding Z−β. If we
take the longer distance in Z−β and �cut� it into ∆′k−1 = 1 + n

β
= ∆0 + ∆k−1, we are in

fact applying a morphism π(i) : {0, . . . , k − 1}∗ → {0, . . . , k − 1}∗ on v−β, where

π(i) =

{
i if i ∈ {0, . . . , k − 2},
0(k − 1) if i = k − 1.

Then one could use similar approach as in previous examples and as in [11] to verify that
the words uβ and π(v−β) have the same language. For uβ is a �xed point of ϕ2, π(v−β) is
a �xed point of ψ′2 (which is the unique morphism for which π ◦ψ = ψ′ ◦π) and ϕ ∼ ψ′2.
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Abstract. Non Destructive Testing (NDT) and harmonic medical imaging methods have been
widely developed thanks to the use of the symbiosis of Time Reversal (TR) based signal pro-
cessing tools and Nonlinear Elastic Wave Spectroscopy (NEWS) methods. Improvement of
TR-NEWS has been conducted with coded excitation using chirp frequency excitation and the
concept was presented and validated in the context of NDE imaging. The chirp-coded TR-
NEWS method uses TR for the focusing of the broadband acoustic chirp-coded excitation. The
method consist in the successive steps :

• emission of a linear frequency sweep signal (the chirp-coded excitation),

• recording of the response to the emitted signal (the chirp-coded coda),

• computation of the pseudo-impulse response, which is the correlation between the chirp-
coded excitation and its response,

• recording of the response to the time-revered emitted pseudo-impulse excitation (chirp-
coded TR-NEWS coda).

The resulting responses coming from nonlinearities in material are processed by means of sta-
tistical classi�cation methods and signal processing. The classi�cation of nonlinear vibrations
in this paper is performed by means of a fuzzy classi�cation method, in which parameters are
extracted from the ultrasonic response containing acoustic nonlinearities. Parameters based on
φ-divergence measure are used in this work. Because φ-divergence comes from theory of prob-
ability, the spectra are normalized in the sense that sum of the spectrum is always equal to 1.
For normalized spectrum Sp the φ-divergence Dφ is de�ned as

Dφ =
l∑

i=0

Sp(i)φ
(
Sreferp (i)Sp(i)

)
, (1)

∗This work is published in Proceedings of the ICSV20, International Institute of Acoustics and Vibra-
tion, 2013, ISSN 2329-3675, ISBN 978-616-551-682-2 and was presented on 20th International Congress
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Figure 1: Envelopes of the TR pseudo impulse responses extracted with Hilbert transform.
The response for system without source has quite good symmetry with respect to the
focusing located at tf = 3200/∆f = 1.6µs in comparison with the other signal, where
the left part di�ers from the right part of TR response.

where φ : (0,∞) → R is convex with φ(1) = 0. There are many possibilities for choosing of
fuction φ [10], Hellinger divergence [10] is used in this paper. The variable S̃refer denotes a nor-
malized reference spectrum S̃refer(f) =

∑m
i=1 |S̃i(f)|/m, where m is the number of observations

from one type of signals, S̃i(f) are individual realizations of the normalized spectrum S̃(f).
Two experiments are performed to verify suitability of the connection between TR-NEWS

process and the classi�cation technique. In the �rst one, di�erent sources of nonlinearity are
measured, analysed and classi�ed. In the second, the same source of nonlinearity is investigated,
but in di�erent positions. Consequently, the analysis and classi�cation is conducted in order
to reveal di�erent positions by means of the classi�cation. For signal responses (including TR
responses), a Hilbert envelop is performed in order to verify better a presence of nonlinearity.
Fig.1 shows dissymmetry in Hilbert envelops of TR signal responses when, in the system, either
no nonlinearity or di�erent sources of nonlinearity (bubbles or UCA) are presenting. Nonlin-
earities in the system can be revealed by means of TR-NEWS if the dissymetry is observed.
The classi�cation results in experiments were very satisfactory, because only by using simply
fuzzy method in combination with parameter φ-divergence coming from theory of probability,
separation of signals coming from di�erent scatterers or signals of scatter coming from di�erent
positions can be done very well. Hence, we are able to decide how many scatterers or positions
of scatterer there are in a system. A disadvantage of the fuzzy method is that the number of
clusters has to be adjusted previously and in presence of outliers there is possibility of misclas-
si�ed data. This can be eliminate by analysis of dependency between classi�cation and number
of clusters.

Keywords: time reversal, chirp excitation, fuzzy classi�cation, φ-divergence
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Abstrakt. Nedestruktivní testování (NDT) a léka°ské zobrazovací metody dosáhly zna£ného
rozvoje díky vyuºití spojení zpracování signálu zaloºeném na £asové reverzaci (TR) a metody
nelineární elastické vlnové spektroskopie (NEWS). Dal²í zlep²ení spojení TR-NEWS spo£ívá v
pouºití chirp excitace, jenº bylo ov¥°eno a prezentováno n¥kolikrát ve spojení s NDT zobra-
zováním. Metoda TR-NEWS s chirpov¥ kódovanou excitací se skládá z n¥kolika krok·:

• vyslání kmito£tov¥ rozmítaného signálu (chirp excitace),

• nahrání odezvy na vyslaný signál,

• výpo£et pseudo-impulsní odezvy, která p°edstavuje korelaci mezi chirp excitací a její
odezvou,

• nahrání odezvy na vyslanou £asov¥ reverzovanou psedo-impulsní excitaci.

Výsledné odezvy pocházející z nelinearit v materiálu jsou zpracovány pomocí statistických klasi-
�ka£ních metod a metod zpracování signálu. Klasi�kace nelineárních vibrací v tomto £lánku
je provedena pomocí metody fuzzy klasi�kace, ve které jsou parametry získány z ultrazvukové
odezvy obsahující akustické nelinearity. V tomto £lánku pouºíváme parametry zaloºené na φ-
divergen£ní mí°e mezi spektry. Protoºe φ-divergence pochází z teorie pravd¥podobnosti, jsou
spektra signál· normovaná v tom smyslu, ºe suma spektra je vºdy rovna 1. Pro normované
spektrum Sp je φ-divergence Dφ de�novaná jako

Dφ =
l∑

i=0

Sp(i)φ
(
Sreferp (i)Sp(i)

)
, (2)

kde φ : (0,∞)→ R je konvexní a φ(1) = 0. Výb¥r funkce φ je ²iroký [10], v tomto £lánku byla
pouºita Hellingerova divergence [10]. Prom¥nná S̃refer ozna£uje normované referen£ní spektrum
S̃refer(f) =

∑m
i=1 |S̃i(f)|/m, kdem po£et pozorování z jednoho typu signálu (nelinearity), S̃i(f)

jsou jednotlivé realizace normovaného spektra S̃(f). Pro ov¥°ení vhodnosti spojení TR-NEWS
metody a klasi�ka£ní techniky byly provedeny dva experimenty. V prvním byly nam¥°eny r·zné
typy nelinearit, které byly analyzovány a klasi�kovány. Ve druhém byla m¥°ena ta samá nelin-
earita, ale v r·zných pozicích v materiálu. Následn¥ byla provedena analýza a klasi�kace pro
odhalení r·zných pozic nelinearity. Aby se lépe ur£ila p°ítomnost odezvy nelinearity v signálu
byly pro signálové odezvy (v£etn¥ TR odezev) zkonstruovány Hilbertovy obálky, viz obrázek
1, kde je ukázanána nesymetrie Hilbertových obálek TR signál· v p°ípad¥ ºádné nelinearity a
r·zných typ· nelinearit (bublinek v kapalin¥ nebo UCA). Nelineratity v systému jsme schopni
odhalit pomocí TR-NEWS v p°ípad¥ výskytu jisté nesymetrie. Výsledky klasiface v provedených
experimentech byly velmi uspokojivé, protoºe pouze pomocí jednoduché fuzzy metody v kombi-
naci s parametrem φ-divergence se nám poda°ilo velmi dob°e klasi�kovat r·zné typy nelinearit
a rovn¥º r·zné pozice konkrétní nelinearity v materiálu. Tudíº jsme schopni rozhodnout na zák-
lad¥ vyuºití TR-NEWS a statistické klasi�kace o tom, kolik nelinearit je p°ítomno v materiálu
nebo na kolika místech se daná nelinearita vyskytuje. Nevýhodou fuzzy metody je nutnost apri-
orní znalosti po£tu shluk· (po£tu typ· nelinearit £i pozic) a dal²í nevýhodou metody je zna£né
ovlivn¥ní výsledk· odlehlými pozorováními. Tyto problémy mohou být eliminovány analýzou
závisloti mezi klasi�kací a po£tem shluk·.

Klí£ová slova: technika £asové reverzace, chirp excitace, fuzzy klasi�kace, φ-divergence
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Abstract. Software applications become more and more complicated, nowadays. The complex-
ity of the internal dynamics of a modern software application can be hard to maintain. Software
con�guration is one of the areas where the internal dynamics can become very complicated
because there usually exists a huge amount of states that the system can be in. Of course,
implementation of con�guration tools is a hard task, especially in imperative-style languages,
since the programmer must take into consideration all special combinations of states and im-
plement the appropriate behavior of the program for all of them. It is very easy to make a
mistake or to omit a special condition in such a code. There are two ways to solve this problem.
One is to use declarative programming which is suitable for these classes of problems (but the
programmer must be familiar with an unusual approach of this style of programming) or to use
system veri�ers to check whether the application behaves correctly under all circumstances.

In [1], a multi-platform con�guration tool Freeconf is described. This tool has di�erent
types of con�guration keys and for each key it uses an extra set of Boolean properties that
extend the semantics of the key [3]. The development of values of these semantic properties is
highly dynamic since the values change according to the user's actions and one change usually
propagates further and induce more changes. Freeconf in its core implements this dynamic
behavior in Python. The code is not very maintainable since it is complex and adding more
properties or changing some rules of propagation is particularly non-trivial.

In [2], attempts have been made to abstract away from Freeconf and design a formalism that
would allow us to describe the general dynamic processes in a compact way and to be able to
verify whether the implementation is sound and the model itself does not have any deadlocks.
In the paper, the con�guration hierarchical model is introduced and the propagation dynamics
in Freeconf is encoded in it. The model has two parts, one is a description of a static structure
of properties that must form a tree and the second is a list of propagation rules which have
the form of implications (i.e. condition-action rules). This compact declarative description is
then translated to UPPAAL, a powerful model-checking veri�cation software written in Java.
UPPAAL expects the to be veri�ed model in the form of a set of �nite-state machine automata
and provides a GUI for designing them. In section 5 of [2], some of the di�culties and work-
arounds of this encoding are mentioned. Soundness of the Freeconf instance of the hierarchical
model was successfully veri�ed in UPPAAL even though some errors in the propagation rules
were found and corrected rules were proposed. UPPAAL, however, turned out not to be the best
for verifying the con�guration hierarchical model because of its visual modeling. In the future,
the better way seems to be to use the Spin veri�er that uses the Promela language (similar to
C) to model the system.

Keywords: software, con�guration, hierarchy, model, veri�cation, UPPAAL
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Abstrakt. Komplexita softwarových aplikací v sou£asnosti stále roste. Implementace vnit°ní
dynamiky moderních aplikací se t¥ºko spravuje. Typickým p°íkladem jsou programy pro soft-
warovou kon�guraci, ve kterých je vnit°ní dynamika zpravidla velmi komplikovaná, nebo´ systém
m·ºe mít velké mnoºství r·zných stav·, mezi kterými p°echází. Programování takových nástroj·
je netriviální, zvlá²t¥ v imperativních jazycích, protoºe programátor musí vzít v úvahu v²echny
okrajové stavy systému a implementovat chování aplikace pro kaºdý z nich. Je velmi snadné
ud¥lat v takovém kódu chybu nebo vynechat n¥který speciální p°ípad. Existují dva p°ístupy k
°e²ení této situace. Za prvé je moºné programovat tyto nástroje v deklarativních jazycích, které
se zvlá²t¥ hodí pro tyto t°ídy úloh (i kdyº programátor musí p°ijmout zvlá²tní styl takového pro-
gramování). Za druhé je moºné pouºít tzv. systémové veri�kátory (system veri�er) pro kontrolu
toho, ºe se aplikace chová správn¥ za v²ech okolností.

V £lánku [1] je popsán multiplatformní kon�gura£ní nástroj Freeconf. Tento nástroj pouºívá
r·zné typy kon�gura£ních klí£· a pro kaºdý z nich udrºuje sadu booleovských prom¥nných
slouºících k zachycení sémantiky klí£e [3]. Vývoj hodnot t¥chto prom¥nných je zna£n¥ dynam-
ický, nebo´ závisí na akcích uºivatele a jedna zm¥na se £asto propaguje dále a zp·sobuje dal²í
zm¥ny. Jádro Freeconfu implementuje toto dynamické chování v Pythonu. Tato implementace
není p°íli² udrºitelná, protoºe je komplikovaná a nap°. p°idání nové dynamické prom¥nné nebo
zm¥na pravidel propagace je zna£n¥ netriviální.

V £lánku [2] je popsán pokus o abstrakci konkrétních dynamických proces· ve Freeconfu a
vytvo°ení formalismu, který by umoºnil zapsat v kompaktní podob¥ obecné dynamické procesy
a usnadnil veri�kaci implementace systému. �lánek zavádí tzv. kon�gura£ní hierarchický model

a popisuje jeho konkrétní instanci pro popis dynamiky Freeconfu. Model má dv¥ £ásti, a to popis
statické struktury sémantických prom¥nných, která musí tvo°it strom, a seznam propaga£ních
pravidel ve tvaru implikací (neboli pravidla typu podmínka-akce). Tento kompaktní zápis je
pak p°eveden do výkonného veri�kátoru model· UPPAAL, který je napsán v Jav¥. UPPAAL
o£ekává sv·j vstup v podob¥ mnoºiny kone£ných stavových automat· a poskytuje GUI pro jejich
zadávání. V sekci 5 £lánku [2] jsou popsány n¥které problémy p°i vytvá°ení vstupu UPPAALu.
Instance hierarchického modelu pro Freeconf byla poté úsp¥²n¥ ov¥°ena, i kdyº byly v pr·b¥hu
nalezeny n¥které chyby v propaga£ních pravidlech a byla navrºena oprava. UPPAAL se nicmén¥
ukázal jako ne p°íli² vhodný nástroj pro ov¥°ování kon�gura£ního hierarchického modelu, nebo´
vyºaduje vizuální modelování vstupu. V budoucnosti se zdá být výhodn¥j²í pouºití veri�kátoru
Spin, který o£ekává vstup v jazyku Promela, který je blízký jazyku C.

Klí£ová slova: software, kon�gurace, hierarchie, model, ov¥°ování, UPPAAL
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Abstract. The problem of constructing the GL(n)-invariant solutions of Yang�Baxter equation
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Abstrakt. Tento p°ísp¥vek se zabývá konstrukcí GL(n)-invariantních °e²ení Yang�Baxterovy

rovnice. Degenerace R-matic je vyuºita ke konstrukci nových °e²ení.
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1 Introduction

Let Vi, i = 1, 2, 3 be vector spaces. The Yang-Baxter equation (YBE) is the following
equation in the tensor product V1 ⊗ V2 ⊗ V3

R12(u)R13(u+ v)R23(v) = R23(v)R13(u+ v)R12(u). (1)

The basic object Rij(u) arising in eq. (1) is a canonical embedding of a parameter-
dependent linear operator acting in the tensor product of spaces Vi⊗Vj into V1⊗V2⊗V3.
The parameter u ∈ C is called the spectral parameter. The spaces Vi can be of arbitrary
dimension. Solutions of the Yang-Baxter equation are called R-matrices.

Let the spaces Vi be modules of representations Ti of a group G. Solutions of (1) are
called G-invariant, if the following equality is satis�ed

Ti(g)⊗ Tj(g)Rij(u) = Rij(u)Ti(g)⊗ Tj(g) (2)

for all g ∈ G. It turns out that (2) is a very restrictive constraint on the solutions of (1).

Proposition 1. Let Ti, Tj are representations of a group G. Let Ti⊗Tj is a completely re-
ducible representation with a Clebsch-Gordan decomposition containing no multiplicities.
Then

Rij(u) =
∑
k

ρk(u)PΛk

33
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where operators PΛk
are projectors on the k-th representation in the Clebsch-Gordan de-

composition of Ti ⊗ Tj and ρk(u) are corresponding eigenvalues depending on spectral
parameter u.

Proof is a simple application of the Schurr lemmas.
There is an unproved assertion about g-invariant solutions of the YBE (1) where g is

a Lie algebra: for each triplet of g-moduli V Λa , V Λb , V Λc the YBE

RΛaΛb
ab (u)RΛaΛc

ac (u+ v)RΛbΛc

bc (v) = RΛbΛc

bc (v)RΛaΛc
ac (u+ v)RΛaΛb

ab (u)

is satis�ed and the solution is unique up to a scalar factor.
Throughout this text, we are interested in GL(n)-invariant solutions of (1). The group

GL(n) has n2 generators, denoted eαβ, de�ned as a matrix identity, i.e.

(eαβ)ij = δiαδβj (3)

where α, β, i, j = i, . . . , n. These generators satisfy the following commutation relation

[eαβ, eµν ] = δβµeαν − δανeµβ. (4)

The fundamental space of GL(n) is Cn.
Let us take the simplest case and solve equation (1) in the tensor product of three

fundamental vector spaces V1⊗V2⊗V3. The R-matrix in Vi⊗Vj is called the fundamental
R-matrix and will be denoted as R11

ij (u). It can be proved that only two matrices satisfying
the invariance condition (2) for GL(n) are the identity matrix I and the permutation
matrix Pij which permutes vectors of the u-th and the j-th space in the tensor product
Vi ⊗ Vj. Therefore,

R11
12(u) = uI + P12. (5)

The lower indexes denote which space is dealing with. The upper will be explained below.
Let us denote Eαβ = T (eαβ) a representation of generators eαβ. Then, of course, the

operators Eαβ must satisfy the same commutation relation (4).

2 Constructing R-matrices

Remark 1. Let us explain the notation used throughout the text. A �nite-dimensional ir-
reducible representation TΛ of GL(n) is characterized by its highest weight Λ = (λ1, λ2, . . . , λn)
where λi are integers satisfying the dominance condition λ1 ≥ λ2 ≥ · · · ≥ λn. Using this
characterization we denote the space corresponding to the representation TΛ as V Λ. Up-
per indexes are reserved to denote which representation is used. Lower indexes will be
used for a better orientation on vector spaces, as a kind of coordinates.

The most important representation is the fundamental one with the carrying space Cn.
All the other highest weight representations can be obtained out of it. The highest weight
of fundamental representation is (1, 0, . . . , 0).

We use the following notation: the highest weight (m, 0, . . . , 0) will be denoted as m+

and (

m︷ ︸︸ ︷
1, 1, . . . , 1, 0, . . . , 0) asm−. For the fundamental representation we use (1, 0, . . . , 0) ≡

1+ ≡ 1− ≡ 1.
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As a consequence, a tensor product of k fundamental spaces V 1 can be denoted as

V

k︷ ︸︸ ︷
1⊗ 1⊗ · · · ⊗ 1 ≡ V ⊗k.
Using this notation we will denote a R-matrix acting in V Λa⊗V Λb as RΛaΛb

ab where the
indices a resp. b denote the �rst resp. the second space of the tensor product. Moreover,
if, for example, Λa = 2+ then index a has two components a = {a1, a2}.

The starting point of our construction will be the R-matrix in the product of two
fundamental spaces Vi ⊗ Vj, Vi = Vj = V 1 ≡ Cn. As mentioned above, it has to be of
the form R11

ij = uI + Pij. This R-matrix is invertible for all u ∈ C with two exceptions
u = ±1. In this case R11

ij degenerates to a multiple of the projectors P+ resp. P− on the
symmetric resp. the antisymmetric subspace of V ⊗ V

R11
ij (1) = 2P+ = 2

[
1

2
(I + P12)

]
, R11

ij (−1) = −2P− = −2

[
1

2
(I − P12)

]
.

Another solutions of the YBE (1) in bigger spaces than in the fundamental one can be
obtained using this degenerative property of R11

ij which, as we will see below, can be
generalized to more complicated R-matrices.

Let us solve the YBE in the space V ⊗2
12 ⊗ V3 ⊗ V4, i.e.

R⊗2,1
12,3 (u)R⊗2,1

12,4 (u+ v)R11
34(v) = R11

34(v)R⊗2,1
12,4 (u+ v)R⊗2,1

12,3 (u). (6)

We obtain the solution R⊗2,1
12,3 (u) = R11

13(u)R11
23(u) and R⊗2,1

12,4 (u+v) = R11
14(u+v)R11

24(u+v).
As known, the tensor product V1 ⊗ V2 can be decomposed into two subspaces corre-

sponding to two irreducible representations, called the symmetric resp. the antisymmet-
ric. The symmetric is denoted as V 2+ and the antisymmetric is denoted as V 2−. Here we
use the notation in accordance with remark 1. Let us denote the projectors projecting
on these spaces as P+ resp. P−. A simple idea how to obtain R-matrices acting on these
spaces is to restrict solutions of equation (6) R⊗2,1

12,3 (u) to the irreducible subspaces V 2+

resp. V 2− of V ⊗2.
Using this idea, the solution of YBE on the space V 2+

12 ⊗ V3 ⊗ V4

R2+,1
12,3 (u)R2+,1

12,4 (u+ v)R11
34(v) = R11

34(v)R2+,1
12,4 (u+ v)R2+,1

12,3 (u) (7)

should be easily obtained by restriction of solution of eq. (6) to its irreducible subspace
V 2+. But this does not work. A small modi�cation is needed. The solutions are

R2+,1
{12}3(u) = P12R

11
13(u+ 1)R11

23(u)P12

with only small change in the argument of R11
13 where instead of the term u appears u+1.

This small change in u is, in fact, very important for the success of this construction.
The essence of above mentioned construction is expressed in the following theorem

which is, in fact, much more general than special case above.

Theorem 1 (�on reproduction�, [2]). Let the YBE's

R12(u)R1c(u+ v)R2c(v) = R2c(v)R1c(u+ v)R12(u) (8)
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are satis�ed for c = 3, 4. Let the matrix R12(u) degenerates at the point u = x. Let

R12(x)P12 = R12(x), P2
12 = P12, R12(x)P⊥12 = 0, P⊥12 = I − P12

where P12 is the projector on the complementary space to the kernel of R12(x). Let the
following YBE's are satis�ed for a = 1, 2

Ra3(u)Ra4(u+ v)R34(v) = R34(v)Ra4(u+ v)Ra3(u).

Then the matrices acting in the spaces P12(V1⊗V2)⊗Vb resp. P⊥12(V1⊗V2)⊗Vb, b = 3, 4

R(12),b(u) = P12R1b(u+ x)R2b(u)P12

resp.
R<12>,b(u) = P⊥12R1b(u+ x)R2b(u)P⊥12

satisfy the YBE

R(12),3(u)R(12),4(u+ v)R34(v) = R34(v)R(12),4(u+ v)R(12),3(u)

resp.
R<12>,3(u)R<12>,4(u+ v)R34(v) = R34(v)R<12>,4(u+ v)R<12>,3(u).

Because R11
12 degenaretes in u = 1 into the projector P12 = 2P+ we immediately

obtain using this theorem solutions for YBE (7) in V 2+
12 ⊗ V3 ⊗ V4

R2+,1
12,3 (u) = P+R11

13(u+ 1)R11
23(u)P+

and simiralry for R2+,1
12,4 (u + v). At the same time, we obtain the solution of YBE in the

space V 2−
12 ⊗V3⊗V4 because of the fact that the projector P− onto V 2− is the complement

to P+ in V ⊗ V . The solution is the following

R2−,1
12,3 (u) = P−R11

13(u+ 1)R11
23(u)P−.

2.1 Generalization of the theorem on reproduction

There is a straightforward generalization of the reproduction theorem to the case of a
tensor product of several spaces. As we have seen, the R-matrix R11(±1) degenerates
into the projectors

P+
12 =

1

2
R11

12(1), P−12 = −1

2
R11

12(−1).

There is a more general form of this fact which can be proved using induction

P±1...m+1 = ± 1

m+ 1
P±1...mR11

1,m+1(±m)P±2...m+1, (9)

P±1...m+1 = (±)m
1

(m+ 1)!
R11
m,m+1(±1)R11

m−1,m+1(±2) . . . R11
1,m+1(±m)P±1...m, (10)

P±1...m+1 = (±)1/2m(m+1)

m∏
l=1

1

(l + 1)!

m∏
k=1

k∏
l=1

R11
m+1−l,m+2−k(±(1 + l − k)) (11)

= (±)1/2m(m+1)

m∏
l=1

1

(l + 1)!

m∏
k=1

m∏
l=k+1

R11
k,l(±(l − k)). (12)

We can generalize theorem 8 in this form
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Theorem 2. Let the generalization of YBE's (8) in V ⊗m ⊗ V
m∏
k=1

m∏
l=k+1

R11
kl (uk − ul)

m∏
j=1

R1,1
m+1−j,c(v + uj) =

m∏
j=1

R1,1
j,c (v + uj)

m∏
k=1

m∏
l=k+1

R11
kl (uk − ul)

is satis�ed for c = I, II. Here, u1 ≡ 0 is only an auxiliary variable. Let the matrix
Q1...m(u2, . . . , um) =

∏m
k=1

∏m
l=k+1 R

11
kl (uk − ul) degenerates at the point (u2, . . . , uk) =

(x2, . . . , xk)

Q1...m(x2, . . . , xk)P1...m = Q1...m(x2, . . . , xk), P2
1...m = P1...m,

Q1...m(x2, . . . , xk)P⊥1...m = 0, P⊥1...m = I − P1...m

where P1...m is the projector on the complementary space to the kernel of Q1...m(x2, . . . , xm).
Let the following YBE's are satis�ed for a = 1, 2, . . . ,m

Ra,I(u)Ra,II(u+ v)RI,II(v) = RI,II(v)Ra,II(u+ v)Ra,I(u).

Then the matrices acting in the spaces P1...m(V1 ⊗ V2 ⊗ · · · ⊗ Vm)⊗ Vb resp. P⊥1...m(V1 ⊗
V2 ⊗ · · · ⊗ Vm)⊗ Vb, b = I, II,

R(1...m),b(u) = P1...m

m∏
j=1

R1,1
m+1−j,c(v + xj)P1...m

resp.

R<1...m>,b(u) = P⊥1...m
m∏
j=1

R1,1
m+1−j,c(v + xj)P⊥1...m

satisfy the YBE

R(1...m),I(u)R(1...m),II(u+ v)RI,II(v) = RI,II(v)R(1...m),II(u+ v)R(1...m),I(u)

resp.

R<1...m>,I(u)R<1...m>,II(u+ v)RI,II(v) = RI,II(v)R<1...m>,II(u+ v)R<1...m>,I(u).

After this, we obtain the expression for the R-matrix in V m+ ⊗ V resp. V m− ⊗ V

Rm+,1
(1,...,m),a(u) = P+

1,...,mR
11
1a(u+m− 1) . . . R11

ma(u)P+
1...m, (13)

Rm−,1
(1,...,m),a(u) = P−1,...,mR11

1a(u− (m− 1)) . . . R11
ma(u)P−1...m. (14)

2.2 R-matrices of the form RΛ,1

Proposition 2. Let eαβ be the generators (3) of GL(n) in the fundamental representation
and Eαβ the same generators in an representation TΛ. Then the operator LΛ,1 in V Λ⊗V
de�ned by

LΛ,1(u) ≡ uPΛ ⊗ I +
n∑

α,β=1

Eαβ ⊗ eβα (15)

satis�es the YBE in V Λ ⊗ V ⊗ V where PΛ is the projector on the space V Λ.
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There is a beautiful statement joining the L-operator (15) with the results (13), (14)
obtained above for Λ = m±, cf. [1].

Proposition 3. If TΛ is an irreducible representation with the highest weight of the form
Λ = m± then the solution (15) coincides up to a scalar factor with the solutions (13),
(14)

LΛ,1(u) =
m−1∏
k=1

(u± k)−1Rm±,1(u). (16)

2.3 More general

Using the theorem 2, the same construction can be used to obtain Rm±,n±
(1...m)(1...n)(u). In fact,

the R-matrix Rm±,Λ for a general representation Λ can be obtained. It is evident that
the construction of the theorem 2 is independent on the spaces Vc, c = I, II, i.e. these
spaces can be arbitrary modules of the group GL(n). Therefore, if we take for Va = V Λ

in (13) and (14), we obtain general R-matrices Rm+,Λ resp. Rm−,Λ

Rm+,Λ
(1,...,m),a(u) = P+

1,...,mR
1Λ
1a (u+m− 1) . . . R1Λ

ma(u)P+
1...m, (17)

Rm−,Λ
(1,...,m),a(u) = P−1,...,mR1Λ

1a (u− (m− 1)) . . . R1Λ
ma(u)P−1...m. (18)

If Λ = (n, 0, . . . , 0), then using the R-matrix R1,n+(u) (13) we obtain

Rm+,n+
(1...m),(1...n)(u) = P+

1···R
1n+

1a (u+m− 1) . . . R1n+
ma (u)P+

1...m

= P+
1,...,mP+

1,...,nR
11
11(u+m+ n− 2) . . . R11

1n(u+ n− 1)

R11
21(u+m+ n− 3) . . . R11

2n(u+ n− 2)
...
R11
m1(u+m− 1) . . . R11

mn(u)P+
1...nP+

1...m (19)

All the R-matrices Rm+,n−(u), Rm−,n+(u), Rm−,n−(u) can be representaed in terms of
fundamental matrices in a similar way as (19).

3 Spectral decomposition of R-matrices

Let us consider arbitrary representations Λa,Λb of GL(n) and Λc = 1 and assume the
existence of corresponding R-matrices. Using explicit form of RΛ,1 (15) we obtain the
following YBE

RΛaΛb
ab (u)

(
u+ v +

n∑
i,j=1

Ea
ij ⊗ eji

)(
v +

n∑
i,j=1

Eb
ij ⊗ eji

)

=

(
v +

n∑
i,j=1

Eb
ij ⊗ eji

)(
u+ v +

n∑
i,j=1

Ea
ij ⊗ eji

)
RΛaΛb
ab (u). (20)
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Using the following notation

dij = Ea
ij − Eb

ij, d2
ij =

n∑
k=1

(Ea
ik − Eb

ik)(E
a
kj − Eb

kj), (21)

C2(E) =
n∑

i,j=1

EijEji (22)

and relation
n∑
k=1

(Ea
ikE

b
kj − Eb

ikE
a
kj) =

1

4
[C(Ea − Eb), d2

ij], (23)

and excluding matrices eij from YBE (20) we obtain the equation[
RΛaΛb
ab (u), udij −

1

2
d2
ij

]
=

1

4

{
[C(Ea − Eb), dij], R

ΛaΛb
ab (u)

}
(24)

where [ , ] is a commutator and { , } is an anticommutator.
The group invariance of RΛaΛb

ab (u) implies the spectral decomposition of the form

RΛaΛb
ab (u) =

∑
k

ρk(u)PΛk
(25)

where PΛk
is the projector on the space V Λk in the Clebsch-Gordan series V Λa ⊗ V Λb =∑

k V
Λk .

The equations (24) and (25) allow, in principle, to determine the eigenvalues ρk(u) up
to a scalar factor, cf. [1].

The spectral decomposition of R-matrices is of a great importance for construing
solutions of the YBE (1) because of theorem 1, on repreduction, where a partial knowledge
of spectral decomposition of R-matrices is necessary. Therefore, if we know a spectral
decomposition of some R-matrix, we are able to construct another solutions of YBE in
the spaces corresponding to the spectral decomposition.

4 Conclusions

In the paper [1], Kulish, Reshetikhin and Sklyanin were successful in constructing of all
GL(2)-invariant R-matrices for arbitrary representations Λa,Λb of GL(2).

In [1, 2] are shown many solutions of GL(3)-invariant R-matrices. The authors also
mention that GL(3)-invariant R-matrices can be constructed for all �nite-dimensional
irreducible representations but only special cases are shown.

Nevertheless, the method shown in section 2 cannot be directly applied to all repre-
sentations in the general case GL(n), n > 3, because of multiplicities in Clebsch-Gordan
series.

The set of relations (24) and (25) imposes big constraints on the eigenvalues of GL(n)-
invariant R-matrix. The spectral decomposition of Rm±,n±(u) were obtained in [1]. An-
other results were obtained in [2]. But, for general Λa,Λb is the system of equations (24)
and (25) overdetermined and the question of its consistency is under consideration.
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of temporal interpolation eigen coe�cients using a combination of piecewise linear approximation

and normal distribution sampling. The proposed method shows good performance, enables

compress signi�cantly the original data and extremely fast synthesis of arbitrarily long extension

of the original texture.

Keywords: Dynamic texture, texture analysis, texture synthesis, data compression, computer

graphics

Abstrakt. Vzhled mnoha skute£ných materiál· není statický, ale m¥ní se v £ase. V p°ípad¥

prostorov¥ a £asov¥ homogenních zm¥n m·ºe být materiál reprezentován pomocí dynamické

textury. Modelování dynamických textur p°edstavuje sloºitý problém. V tomto £lánku uvádíme

moºné °e²ení zaloºené na vlastní analýze vstupních dat a následném zpracování a modelování

£asových interpola£ních vlastních koe�cient· pomocí kombinace po £ástech lineární aproximace

a vzorkování z normálního rozd¥lení. Navrºená metoda dosahuje dobrých výsledk·, umoº¬uje

výraznou kompresi p·vodních dat a velmi rychlou syntézu libovoln¥ dlouhého roz²í°ení p·vodní

textury.

Klí£ová slova: Dynamická textura, analýza textur, syntéza textur, komprese dat, po£íta£ová

gra�ka

1 Introduction

Dynamic textures (DT) can be understood as spatially repetitive motion patterns exhibit-
ing homogenous temporal properties. Good examples might be smoke, �re or liquids. Also
waving trees or straws or some moving mechanical objects can be considered as dynamic
textures. A sequence of images which are called frames is a basic representation of DT.
Original data are always represented by �nite length sequence. This property may limit
the use of DTs in virtual reality systems so temporally unconstrained modelling of DT
is an interesting problem in research such as computer vision, pattern recognition and
computer graphics.

∗Pattern Recognition Department, Institute of Information Theory and Automation, ASCR.
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Already published works dealing with DTs can be divided according to the application
to: recognition, representation and synthesis [1]. The DT synthesis is apparently the most
di�cult task and there are only few papers on this topic available [2]. For example: spatio
temporal causal auto regressive model [7], auto regressive moving average model applied
on responses of dimensionality reduction �lter based on singular value decomposition [6],
generative mono spectral DT model based on moving object structure modelling and
trajectory modelling by means of dictionary containing Gabor bases for particle elements
and Fourier bases for wave elements [8], combination of spatial steerable pyramid and
temporal wavelet transformation [3]. All of them are limited by time consuming synthesis
algorithm. In addition method [7] requires some high level of temporal homogeneity of
the input and method [3] is restricted on monospectral DTs.

Another possibility is utilize so called video editing techniques, developed for general
video sequences originally, which can be used for DT synthesis as DT can be considered
as a special case of general video sequence. Several examples: video textures genera-
tion based on searching for transition points for looping with additional blending and
morphing [5], further extended in [4], or tree structured vector quantization [9]. These
techniques are also time demanding, but some of them produce very high visual quality
results [9].

The contribution of this paper is to propose straightforward colour DT modelling
method with low computational demands enabling extremely fast synthesis of arbitrarily
long DT sequence and in addition compression of original data. The method is based on
combination of input data dimensionality reduction using eigen analysis and modelling of
resulted temporal coe�cients by means of combination of piece wise linear interpolation
and uncorrelated noise sampling. It was inspired by the method described in [2] and
represents interesting alternative.

The rest of paper is organized as follows: Section 2 explains input data dimension-
ality reduction using eigen analysis, Section 3 describes temporal coe�cients modelling,
Section 4 deals with DT synthesis, Section 5 presents some achieved results and Section
6 summarizes the article with a discussion.

2 Dynamic Texture Eigen Analysis

The �rst step is so called normalization of analysed DT in which average frame from all
frames in the sequence is computed and then this frame is subtracted from each frame
in this sequence. Values corresponding to pixels intensities of individual frames from the
normalized sequence are arranged into column vectors forming (n× t) matrix C where n
is a number of values equals frame width × frame height × number of spectral planes in
the frames and t is a number of frames. Then a covariance (t× t) matrix A is computed
as: A = CTC . The matrix A is decomposed using singular value decomposition so that
A = UDUT where U is an orthogonal matrix of eigen vectors and D is a diagonal matrix
of corresponding eigen numbers.

Only k < t eigen vectors corresponding to eigen numbers representing the most of
the information are saved. The number k can be determined by several techniques. The
threshold selecting vectors which are not used may be computed from the values of the
eigen numbers. Assuming that the eigen numbers i.e. the elements D(i,i) are ordered by



Dynamic Textures Modelling with Temporal Mixing Coe�cients Approximation 43

their value then the threshold δ can be computed as for example:

δ =
1

t

t∑
i=1

D(i,i) or

δ = D(i,i) where i = argminj∈{1,...,k−1}(|D(j,j) −D(j+1,j+1)|) .

Only eigen vectors which ful�ll that their corresponding eigen number is higher than
the treshold δ are saved. The e�ects of selecting the threshold δ and therefore the number
of preserved vectors k and the other possibilities are further discussed in Section 5 and
Section 6.

Eigen images (n×k) matrix I is computed as: I = CT , where T is (t×k) matrix with

elements: T(i,j) =
U(i,j)√
D(j,j)

. Finally a matrix of temporal mixing coe�cients of individual

eigen images I for all frames from the sequence is computed as: M = ITC . The (k × t)
matrix M is a subject of further processing described in following section.

3 Temporal Mixing Coe�cients Processing

A threshold α is computed �rst: α = 1
k

∑k
i=1(σi) where

σj =

√√√√ 1

n− 1

n−1∑
i=1

(|M(j,i) −M(j,i+1)| − µj)(|M(j,i) −M(j,i+1)| − µj) ,

µj =
1

n− 1

n−1∑
i=1

(|M(j,i) −M(j,i+1)|) .

Then the matrixM is processed following manner: if j-th row ofM ful�ls σj > α then
mean µ̂j and dispersion σ̂j of normal distribution from elements of this row are estimated
as:

µ̂j =
1

t

t∑
i=1

M(j,i) , σ̂j =
1

t

t∑
i=1

(M(j,i) − µ̂j)
2 .

The row which is under σj ≤ α is disjoint into several sub intervals. We denote the
set of the indices representing end points of the rows as L . The right edge i1 of the
block is detected by the threshold µj applied to |M(j,i1) −M(j,i1+1)| so that at least one
row j0 ∈ L satis�es |M(j0,i1)−M(j0,i1+1)| > µj0 . Then values of M(j,i0) and M(j,i1) ∀j ∈ L,
where i0 is the left edge of the block, are saved instead of all values in corresponding
interval. In addition blocks with less than two elements are not saved at all. The set of
all saved blocks will be denoted as B . The division is driven by the row j∗ which both
ful�ls σj∗ ≤ α and the average value of all elements of this row is the higher than any

other such value of the rest of the rows j ∈ k̂ under σj ≤ α.
Another possibility is to disjoint rows into the sub intervals with the same length. The

length of intervals a�ects overall dynamics of the synthesized sequence and it appears
that each DT need di�erent division to achieve the best result. Although we have not
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developed any technique to detect this optimal division yet it is apparent that some semi
optimal division su�cient enough exists and it was veri�ed by many experiments that this
semi optimal length equals to two percents of the total length of the original sequence.

4 Synthesis

The goal of the synthesis is to create certain number of DT frames so that overall visual
appearance is close enough to the original. Unfortunately there does not exist any appli-
cable criterion to decide if the synthesized DT is close enough to the original as explained
in Section 5.

During the synthesis a matrix (k × t†) of temporal mixing coe�cients M †, where t†

is a length of the synthesized sequence, in general di�erent from t, is created block wise
from the blocks occurring the set B . Element M †

i,j is linearly interpolated if j ∈ L or
sampled from uncorrelated noise with mean µ̂j and dispersion σ̂j otherwise. Blocks may
be chosen even non deterministically but |Mi1,j −Mi0,j| < µj must hold for all j ∈ L, i1
is the right edge of previously used block and i0 is the left edge of the following one.

New DT sequence C† which is (n × t†) matrix can be then computed simply as:
C† = M †U . Final step is addition of the average frame to each frame in the synthesized
sequence. Since only matrix operations occur in this step it can be easily performed on
contemporary graphics hardware which considerably increases the synthesis speed.

5 Results

We used the dynamic texture data sets from DynTex texture database 1 as a source of
test data. Each dynamic texture from this sets is typically represented by a 250 frames
long video sequence, that is equivalent to ten second long video. An analysed DT is
processed frame by frame. Each frame is 400 × 300 RGB colour image. As a test DT
were chosen: smoke, steam, streaming water, sea waves, river, candle light, close shot of
moving escalator, sheet, waving �ag, leaves, straws and branches.

Some results can be seen on Figures 1 and 2, showing selected synthesized frames and
corresponding frames from original sequence. In this case the deterministic version of the
algorithm with �xed length intervals were use to reproduce the sequence.

From the shown results can be seen that although there are some di�erences between
original and synthesized frames the overall dynamic stayed preserved. Unfortunately it is
really hard to express this similarity exactly. Robust and reliable similarity comparison
between two static textures is still unsolved problem up to now. Moreover, when we switch
to the dynamic textures the complexity of comparison between original and synthesized
DT sequence increase even more.

In some cases the synthesized DT is visually similar to the original except for less
details (for example: river and straws on Figure 1, sea waves on Figure 2), sometimes
the moves in synthesized sequence are blurred (for example: waving leaves and sheet
on Figure 2). Less detailed appearance is mainly caused by information loss during the
dimensionality reduction phase when only about 15% of the original information is saved.

1http://www.cwi.nl/projects/dyntex/
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Figure 1: Original frames (odd rows) versus corresponding synthesized ones (even rows),
sequences: candle light, smoke, river, straws.
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Figure 2: Original frames (odd rows) versus corresponding synthesized ones (even rows),
sequences: sea waves, sheet, waving leaves, �ag.
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Figure 3: The synthesis of several textures (candle light, river, straws and waving leaves)
300th and 400th frames.

The approximation of coe�cients is re�ected in the blurring. The worst result is the �ag
sequence synthesis (Figure 2), maybe it is because this is not real DT but rather dynamic
scene and this method is limited to DTs.

Main advantage of this method to the solution published in [2], where Causal Auto
Regressive (CAR) model is used to process matrixM , is its stability in the synthesis step.
Another issue of using CAR model is that the overall dynamics of synthesized sequence
decreases with time which is serious problem in case of sequences longer than original
one. The general dynamic of the sequence is preserved in time in case of our method as
presented on some results on Figure 3 showing selected frames from synthesized sequence
longer than original one. The computational demands are identical for both methods.

6 Conclusion and discussion

We presented a novel method for fast synthesis of dynamic multispectral textures in this
article. The main part of the approach is based on modelling of temporal coe�cients
resulted from input data dimensionality reduction step. This solution enables extremely
fast synthesis of arbitrary number of multispectral DT frames, which can be even more
e�ciently performed by contemporary graphical hardware. There are still some unsolved
tasks. The detection of optimal number of component which should be saved is still
discussed, because this step is essential and a�ect overall performance and resulting visual
quality. The division of temporal matrix is not always the best solution and sometimes
the �xed length sub intervals serves as the universal semi optimal solution. On the other
we have not developed any method for optimal �xed sub interval length detection yet but
many experiments demonstrated that for most DTs 2% of the total length of the sequence
is su�cient. Although this method is still under development it represents interesting
alternative to the existing approaches.
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Abstract. For q ∈ R, q > 1, Erdős, Joó and Komornik study distances of the consecutive points
in the set

Xm(q) =
{ n∑
j=0

ajβ
j : n ∈ N, ak ∈ {0, 1, . . . ,m}

}
.

The Pisot numbers play a crucial role for properties of Xm(q).
We follow work of Zaïmi who consideres Xm(γ) with γ being a complex Pisot number. For

a class of cubic complex Pisot units we show that Xm(γ) is a Delone set in the plane C and for
γ the complex root of Y 3 + Y 2 + Y − 1 we determine two parameters of the Delone set Xm(γ)
which are analogous to minimal and maximal distance for the real case Xm(q).

Keywords: beta-numeration, Delone set, cut-and-project scheme

Abstrakt. Erdős, Joó a Komornik studují, pro zadané q ∈ R, q > 1, mezery mezi sousedy
v množině

Xm(q) =
{ n∑
j=0

ajβ
j : n ∈ N, ak ∈ {0, 1, . . . ,m}

}
.

Ukazuje se, že pisotovskost q má zásadní vliv na vlastnosti množiny Xm(q).
Navazujeme na práci Zaïmiho, který studuje množinu Xm(γ) pro complexní pisotovské

číslo γ. Pro jistou třídu kubických complexních pisotovských čísel jsme ukázali, že Xm(γ) je
delonovská množina v C. Pro komplexní kořen polynomu Y 3 + Y 2 + Y − 1 jsme určili dva
parametry delonovské množiny Xm(γ), které jsou obdobou minimální a maximální mezery
v reálném případě Xm(q).

Klíčová slova: beta-numerace, delonovská množina, průměty mřížky

1 Introduction
In articles [EJK, EJK′], Erdős, Joó and Komornik study the set

Xm(β) :=
{ n∑
j=0

ajβ
j : n ∈ N, ak ∈ {0, 1, . . . ,m}

}
,

∗This is an extract of the work [HP].
†This work was supported by the Grant Agency of the Czech Technical University in Prague grant

SGS11/162/OHK4/3T/14 and the ANR/FWF project “FAN – Fractals and Numeration” (ANR-12-IS01-
0002, FWF grant I1136).
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where β > 1. Clearly this set has no accumulation points, hence we can find an increasing
sequence

0 = x0 < x1 < x2 < · · · < xk < · · ·

such that Xm(β) = {xk : k ∈ N}. Their research aims to describe distances between
consecutive points of Xm(β), i.e. the sequence (xk+1− xk)k∈N. Properties of this sequence
depend on the valuem ∈ N. It is easy to show that whenm ≥ β−1, we have xk+1−xk ≤ 1;
and when m < β − 1, the distances xk+1 − xk can be arbitrarily large.

Properties of Xm(β) are dependent on β being a Pisot number (i.e. an algebraic integer
> 1 such that all its Galois conjugates are in modulus < 1). Bugeaud [B] showed that

`m(β) := lim inf
k→∞

(xk+1 − xk) > 0

for all m ∈ N if and only if the base β is a Pisot number. Recently, Feng [F] proved
a stronger result that the bound β − 1 for the alphabet size is crucial. In particular,
`m(β) = 0 if and only if m > β − 1 and β is not a Pisot number.

Therefore, let us focus on the case β Pisot and m > β − 1. From the approximation
property of Pisot numbers we know that for a fixed β and m > β − 1 the sequence
(xk+1 − xk) takes only finitely many values. Feng and Weng [FW] used this fact to
show that the sequence of distances (xk+1 − xk) is substitutive, roughly speaking, can be
generated by a system of rewriting rules over a finite alphabet. This allows, for a fixed β
and m, to determine values of all distances (xk+1 − xk). An algorithm for obtaining the
minimal distance `m(β) was as well proposed by Borwein and Hare [BH].

The first formula which determines the value of `m(β) for all m at once appeared
in 2000 where Komornik, Loreti and Pedicini [KLP] study the base golden mean. The
generalization of this result to all quadratic Pisot units was provided by Takao Komatsu
[K] in 2002.

Zaïmi [Z] started to study the set Xm(γ) where he considered γ a complex number of
modulus > 1, and he put

`m(γ) := inf
{
|x− y| : x 6= y, x, y ∈ Xm(γ)

}
.

He proved an analogous result to the one for real bases by Bugeaud, namely that `m(γ) > 0
for all m if and only if γ is a complex Pisot number, which is defined as a non-real algebraic
integer of modulus > 1 whose Galois conjugates except its complex conjugate are of
modulus < 1.

To study Xm(γ) in C, we need to define characteristics analogous to `m(β) and Lm(β)
for the real case. Let us inspire by the notions used in the definition of Delone sets.

We say that a set Σ is: uniformly discrete if there exists d > 0 such that |x− y| > d for
all distinct x, y ∈ Σ; relatively dense if there exists D > 0 such that every ball B(x,D/2)
of radius D/2 contains a point from Σ; and Delone if it is both uniformly discrete and
relatively dense.

Clearly, if `m(γ) is positive, then Xm(γ) is uniformly discrete and `m(γ) is the minimal
d in the definition of uniform discreteness.

Let us define

Lm(γ) := inf
{
D > 0 : B(x,D/2) ∩Xm(γ) 6= ∅ for all x ∈ C

}
.
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In particular, Lm(γ) = +∞ if and only if Xm(γ) is not relatively dense.
The question for which pairs (γ,m) the set Xm(γ) is uniformly discrete, and for which

(γ,m) it is relatively dense is far from being solved. It is not even clear what maximal
allowed digit m ensures the relative denseness.

The aim of this work is to study the sets Xm(γ) simultaneously for all m ∈ N, for a
certain class of cubic complex Pisot numbers with a positive conjugate γ′. For such γ
the Rényi expansions in the base 1/γ′ have nice properties which will be crucial in the
proofs. When the base 1/γ′ ∈ R has so-called Property (F), we show that Xm(γ) ⊆ C is
a cut-and-project set. Roughly speaking, Xm(γ) is formed by projections of points from
the lattice Z3 which lie in a sector bounded by two parallel planes in R3, see Theorem 3.1.
From that, we deduce the asymptotic behaviour of `m(γ) and Lm(γ):

Theorem 1.1. Let γ be a cubic complex Pisot unit such that it has a positive real conjugate
γ′, whose inverse 1/γ′ has Property (F). Then

`m(γ) = Θ(
√
m) and Lm(γ) = Θ(

√
m).

The method of inspection of Voronoi cells for a specific cut-and-project set, as estab-
lished by Masáková, Patera and Zich [MPZ, MPZ′, MPZ′′], enables us to give a general
formula for both `m(γ) and Lm(γ). In the case that γ is the complex Tribonacci constant,
i.e. the complex root of Y 3 + Y 2 + Y − 1, we get:

Theorem 1.2. Let γ = γT ≈ −0.771 + 1.115i be the complex root of the polynomial
Y 3 + Y 2 + Y − 1. Let m ∈ N. Find a maximal k ∈ Z such that m ≥ (1− γ′)

(
1
γ′

)k
, where

γ′ is the real Galois conjugate of γ. Then we have

`m(γ) = |γ|−k and Lm(γ) = A|γ|−k, where A = 2
√

1− (γ′)2

3− (γ′)2 .

The article is organized as follows. In the preliminaries, we recall certain notions from
algebraic number theory. In section 3 we prove that Xm(γ) is a cut-and-project set in
certain cases. In section 4 we provide algorithms for computing `m(γ) and Lm(γ), and
we prove Theorem 1.1. These algorithms are applied on the complex Tribonacci number
in section 5, providing the proof of Theorem 1.2. The conclusions are in section 6. We
should remark that we omit proofs of all statements.

2 Preliminaries
We will widely use the algebraic properties of cubic complex Pisot numbers γ. Such γ has
two Galois conjugates. One of them is the complex conjugate γ. The second one is real
and in modulus < 1, we will denote it γ′; we have either −1 < γ′ < 0 or 0 < γ′ < 1. In
general, for z ∈ Q(γ) we denote by z′ ∈ R its image under the Galois isomorphism that
maps γ 7→ γ′.

As usual, we denote Z[γ] the set of integer combinations of positive powers of γ.
When γ is a unit (i.e. the absolute term of its minimal polynomial is ±1), we know that
Z[1/γ] = Z[γ] = γZ[γ].
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We use some notions from β-expansions. For a real base β > 1, and for a number
x ≥ 0, there exist unique integer coefficients aN , aN−1, aN−2, . . . such that

0 ≤ x−
N∑
j=n

ajβ
j < βn for all n ≤ N

(unique up to leading zeros). Then the string aNaN−1 · · · a1a0.a−1a−2 · · · is called the
Rényi expansion of x in the base β. If only finitely many aj’s are non-zero, we speak about
finite Rényi expansions. The set of numbers ±x such that x has finite Rényi expansion is
denoted Fin(β). We say that β > 1 satisfies the Property (F) if Fin(β) is an algebraic
ring, i.e. Fin(β) = Z[β] + Z[1/β].

Akiyama [A] described the real cubic units having Property (F) in terms of the
coefficients of the minimal polynomial. From this result, and using Cardano’s formula to
determine whether a cubic polynomial has complex roots, we can deduce that a non-real
γ satisfies the hypothesis of Theorem 3.1 if and only if

γ3 + bγ2 + aγ − 1 = 0, where a, b ∈ Z satisfy:
a ≥ 0, −1 ≤ b ≤ a+ 1 and 18ab+ 4a3 − a2b2 − 4b3 + 27 > 0. (2.1)

In particular, the complex Tribonacci constant γT ≈ −0.771 + 1.115i (the root of Y 3 +
Y 2 + Y − 1) and the minimal cubic complex Pisot unit γM ≈ −0.877 + 0.744i (the root
of Y 3 + Y 2 − 1) fall into this scheme. More generally, for all a ≥ 0 and b = −1, 0, 1 the
polynomial Y 3 + bY 3 + aY − 1 is good.

3 Cut-and-project sets versus Xm(γ)
A cut-and-project scheme in dimension d+ e comprises two linear maps Ψ : Rd+e → Rd

and Φ : Rd+e → Re satisfying that Ψ(Rd+e) = Rd and restriction of Ψ to the lattice Zd+e

is injective and the set Φ(Zd+e) is dense in Re.
Let Ω ⊂ Re be a nonempty bounded set such that its closure equals the closure of its

interior, i.e. Ω = Ω◦. Then the set

Σ(Ω) :=
{
Ψ(v) : v ∈ Zd+e,Φ(v) ∈ Ω

}
⊆ Rd

is called cut-and-project set with the acceptance window Ω. Cut-and-project sets can be
defined in a slightly more general way, c.f. [M].

It is well known that Σ(Ω) is a Delone set with finite local complexity. Morover, in
case e = 1, the form of acceptance window Ω = [l, r) or Ω = (l, r] guarantees that Σ(Ω)
is repetitive, i.e. for every x ∈ Σ(Ω) and % > 0 the patch (Σ(Ω) − x) ∩ B(0, %) occurs
infinitely many times in Σ(Ω).

We will use the concept of cut-and-project sets for d = 2 and e = 1. With a slight
abuse of notation, we will consider Ψ : R3 → C ' R2. Then it is straightforward that for
a cubic complex number γ, the set defined by

Σγ(Ω) =
{
z ∈ Z[γ] : z′ ∈ Ω

}
, where Ω ⊆ R is an interval, (3.1)
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is a cut-and-project set; really, we have

Ψγ(v0, v1, v2) = v0 + v1γ + v2γ
2 and Φγ(v0, v1, v2) = v0 + v1γ

′ + v2(γ′)2.

We will often omit the index γ in the sequel.
The set Xm(γ) is described in terms of algebra, whereas the set Σ(Ω) has a geometric

description. We show that in certain cases, these sets coincide:

Theorem 3.1. Let γ be a cubic complex Pisot unit with a positive conjugate 0 < γ′ < 1.
Suppose that 1/γ′ has the Property (F). Let m ≥ γγ − 1 be an integer. Then Xm(γ) is a
cut-and-project set, namely

Xm(γ) = Σ(Ω) =
{
z ∈ Z[γ] : z′ ∈ Ω

}
with Ω =

[
0,m/(1− γ′)

)
. (3.2)

In general, the cut-and-project sets are not self-similar. However, in our special case
(3.1), we can prove a nice self-similarity property that will be useful later:

Proposition 3.2. Let γ be a cubic non-real unit. Then we have

Σ
(
(γ′)kΩ

)
= γkΣ(Ω) for any interval Ω and any k ∈ Z.

4 Voronoi tessellation of Xm(γ)
In a Delone set Σ, the Voronoi cell of a point x ∈ Σ is the set of points that are closer to
x than to any other point in Σ, formally

T (x) =
{
z ∈ C : |z − x| ≤ |z − y| for all y ∈ Σ

}
.

The cell is a convex polygon having x as an interior point. For every cell T (x) we define
two characteristics:

• δ(T (x)) is the maximal diameter d > 0 such that B(x, d/2) ⊆ T (x);

• ∆(T (x)) is the minimal diameter D > 0 such that T (x) ⊆ B(x,D/2).

These δ and ∆ allow us to compute the values of `m(γ) and Lm(γ), namely

`m(γ) = inf
x
δ
(
T (x)

)
and Lm(γ) = sup

x
∆
(
T (x)

)
, (4.1)

where x runs the whole set Xm(γ).
A protocell of a point x is the set T (x)− x. We can define δ,∆ analogously for the

protocells. The set of all protocells of the tessellation of Σ(Ω) is called palette of Σ(Ω)
and is denoted Pal(Ω).

Cut-and-project sets have finite local complexity. This means there are only finitely
many protocells, i.e. the palette is finite. For any y ∈ Σ(Ω), the local configuration of size
L around y is

Σ(Ω) ∩B(y, L) = y + Σ(Ω− y′) ∩B(0, L). (4.2)
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Therefore, there exists L > 0 such that if Σ(Ω − y′1) ∩ B(0, L) = Σ(Ω − y′2) ∩ B(0, L),
then the protocells of y1 and y2 are identical. From the theory of Voronoi tessellations we
know that L = supx∈Σ(Ω) ∆(T (x)) is a good estimate. In the rest of the section, we will
consider L with such property.

Since Σ(Ω) is repetitive in our case, we have that `m(γ) = δ(T (x)) for infinitely many
x ∈ Xm(γ), and Lm(γ) = ∆(T (x)) for infinitely many x ∈ Xm(γ).

The algorithm to compute all protocells of the set Σ(Ω) for Ω = [0, c) is based on the
following claim about them. Not only that the palette is final, we are even able to arrange
the points of Σ(Ω) by their protocell:

Lemma 4.1. Let Ω = [0, c) be an interval. Then there exists a finite set Ξ = {ξ0 < ξ1 <
· · · < ξN−1} ⊂ (0, c) such that the protocell of y ∈ Σ(Ω) as a function

[0, c) ∩ Z[γ′]→ Pal(Ω), y′ 7→ T (y)− y

is constant on each of the intervals [0, ξ0), [ξ0, ξ1), . . . , [ξN−2, ξN−1), [ξN−1, c).

The proof is constructive and gives

Ξ :=
({
x′ : x ∈ Σ(Ω) ∩B(0, L)

}
∪
{
c− x′ : x ∈ Σ(Ω) ∩B(0, L)

})
\ {0}. (4.3)

The lemma allows us to compute all the protocells of the Voronoi tessellation of Σ(Ω)
for a fixed Ω = [0, c):

Algorithm 4.2. Input: γ satisfying (2.1), Ω = [0, c), L ≥ 0.
Output: The pallete of Σ(Ω).

1. Compute the set Ξ = {ξ0 < ξ1 < · · · < ξN−1} given by (4.3).
2. Choose abritrary points y0, . . . , yN ∈ Σ(Ω) such that 0 ≤ y0 < ξ0 ≤ y1 < · · · ≤
yN−1 < ξN−1 ≤ yN < c.

3. Compute the local configuration of size L around each yj.
4. Compute the corresponding protocells to each of these points.
5. Remove possible duplicates in the list of protocells.

Remark. In the real algorithm, we do not need to get the points yj , we can consider directly
ξj as the value of y′j and compute the local neighborhood as Σ([ξj, ξj + c)) ∩B(0, L).

The output of this algorithm for γ = γT ≈ −0.771 + 1.115i, the complex Tribonacci
constant, and for X2(γ) = Σ(Ω), where Ω = [0, 2/(γ′ − 1)), can be seen in Figure 1.

The self-similararity property (cf. Proposition 3.2) allows us, when we study Σ(Ω) with
Ω = [0, c), to fix aribtrary c0 > 0 and consider only values of c such that γ′c0 ≤ c < c0.

Lemma 4.3. Let us fix c0 > 0. Then there exists a finite set Θ = {θ0 < θ1 < · · · <
θN−1} ⊆ (γ′c0, c0) such that the pallete Pal([0, c)) as a function

c 7→ Pal
(
[0, c)

)
is constant on each of the intervals (γ′c0, θ0), (θ0, θ1), . . . , (θN−2, θN−1), (θN−1, c0).
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Figure 1: Voronoi protocells for X2(γT ) = ΣγT

(Ω), where Ω = [0, 2/(1− γ′T )). For a given
point x ∈ Σ(Ω), its protocell T (x)− x is determined by the value of x′.

As in the previous lemma, the proof is constructive and leads

Θ := (Π0 − Π0) ∩ (γ′c0, c0), where Π0 := Π ∩ (−c0, c0)
and Π :=

{
x′ : x ∈ Σ(R) ∩B(0, L)

}
. (4.4)

The lemma gives us all possible cut-points of the interval [γ′c0, c0) into sub-intervals
on which the palette is stable. However, unlike Lemma 4.1, this one gives no clue on what
happens directly at the cut-points, and the cases c ∈ Θ have to be studied seperately.
Therefore, we can find all the palettes by the following algorithm:

Algorithm 4.4. Input: γ satisfying (2.1), c0 > 0, L > 0.
Output: All possible palettes Pal(Ω) of Σ(Ω) for Ω = [0, c) and γ′c0 ≤ c < c0.

1. Compute the set Θ = {θ0 < θ1 < · · · < θN−1}.
2. Choose abritrary points y0, . . . , yN ∈ R such that γ′c0 < y′0 < θ0 < y′1 < · · · <
y′N−1 < θN−1 < y′N < c0.

3. Using Algorithm 4.2, compute the palettes Pal(Ω) for all Ω = [0, c) with c =
γ′c0, θ0, . . . , θN−1, y0 . . . , yN . (We need 2N + 2 steps.)

4. Remove possible duplicates in the list of palettes.

The output of this algorithm in a certain case is in the section 5, namely in Table 1.
In the previous, we assumed that we know an estimate L ≥ supx∈Σ(Ω) ∆(T (x)), and

we have yet not provided a way how to find such number. The following procedure enables
to find a good estimate:

Algorithm 4.5. Input: γ satisfying (2.1), Ω = [0, c0).
Output: An upper bound L such that L ≥ supx∈Σ(Ω) ∆(x).
We will denote L̃ := 2|γ|p, where p is minimal such that =(γp) and =γ have the opposite
signs.
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Interval for c The palette of Σ(Ω), where Ω = [0, c)

β2

(β2, 2β)

(2β, β + 2)

(β + 2, β2 + 1)

(β2 + 1, 2β + 1)

(2β + 1, β2 + β)

(β2 + β, β2 + 2)

(β2 + 2, 2β + 2)

(2β + 2, β3)

Tile 1
γ
T4 T1 1

γ
T5 T2 T3 1

γ
T8 T4 T5 T6 T7 T8 1

γ
T10 T9 T10

Value of δ β−1 β−1 β−1 β−1 β−1 β−1 β−
1
2 β−

1
2 β−

1
2 β−

1
2 β−

1
2 β−

1
2 β−

1
2 1

Value of ∆ (a) A B A B B A B B B B B A B B

(a)A = 2
√

β2−1
3β2−1 , B = A

√
β.

Table 1: The protocells for the complex Tribonacci system for abritrary alphabets. For
m ∈ N get minimal k ∈ Z such that c := βk+1m/(β − 1) ≥ β2, where β = 1/γ′. Take the
corresponding row in the table. Then the protocells of Xm(γ) are tiles in this row deflated
(and rotated) by the factor 1/γk. Each but the last tile in the list appears rotated by
180° as well, we omit these to make the table shorter. We omitted the palettes for the
cut-points. However, a palette for a cut-point is the intersection of the palettes for the
surrounding intervals, i.e., for instance Pal([0, β2 + 1)) = {T2, T6, T8, T9}.

1. Compute the ‘palette’ P of Σ(Ω̃), where Ω̃ = [0, 2), using Algorithm 4.2, where we
input L̃ in the algorithm.

2. For this palette, compute the maximal value of ∆ and denote it L1 := maxT ∈P ∆(T ).
3. Let k be minimal integer such that c0(γγ)k ≥ c̃.
4. Output L := |γ|kL1.

All the above considerations lead to Theorem 1.1.

5 Complex Tribonacci number exploited
In this section, we will describe the details of the proposed workflow on an example –
the complex Tribonacci base γ = γT . We aim at the proof of Theorem 1.2. We put
β := γγ = 1/γ′ in the sequel.
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Figure 2: Part of the Voronoi tessellation of X2(γ), where γ = γT is the complex Tribonacci
constant. The point 0 is encircled, tiles of the same shape are drawn in the same colour.
The case m = 2 is one of the special cases when c = 2/(1− γ′) hits a cut-point, namely

2
1−γ′ = (γ′)−2 + 1. The palette of X2(γ) is the intersection of the 4th and the 5th row of
Table 1.

We will choose c0 = β3. Algorithm 4.5 gives for L̃ = 2|γ|2 = 2β ≈ 3.6786 a value
L1 = β

√
β2−1
3β2−1 ≈ 1.8774. We have that c0/β > 2 > c0/β

2, therefore k = 1 and we get an
estimate L =

√
β
√

β2−1
3β2−1 ≈ 1.3843.

Using this L, we run Algorithm 4.4. This gives Θ of size 14. The number of cases in
step 3 of this algorithm is then 31.

This means that we have to run Algorithm 4.2 exactly 31 times to obtain all the
possible palettes. Amongst these 31 cases, there are many duplicates, and we end with
only 18 cases. Moreover, we observe that for cut-points θi, the palette is the intersection
of palletes of the two surrounding intervals. All the palette for the intervals are depicted
in Table 1.

At the bottom of the table, the values of δ(T ) and ∆(T ) are written out for each
protocell. It turns out that every row of the table but the special case c = β2 has minimal
value of δ equal to 1/β and maximal value of ∆ equal to

√
β
√

β2−1
3β2−1 . However, it cannot

happen that m/(1− γ′) = (γγ)k.
Theorem 1.2 summarizes the results in this section.

6 Conclusions and open problems
In this paper, we prove that

`m(γ) = Θ(
√
m) and Lm(γ) = Θ(

√
m)

for a wide class of cubic complex Pisot numbers. For a given γ satisfying (2.1), we give
an algorithm for computing `m(γ) and Lm(γ) simultaneously for all m.

The question whether this asymptotic behaviour is true for all complex Pisot γ
remains open, as well as the question which is the minimal m (depending on γ) such that
Lm(γ) < +∞.
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Abstract. This article is focusing on automatic electronic chip classi�cation depending on

their quality directly after fabrication. The mass production of chips can not be 100% e�cient,

therefore the defects on chip may occur. These defects are usually not random and could be

divided into classes. The aim of the method proposed in this article is to explore these classes

of defects and automatically recognize them.

Keywords: chip classi�cation, Timepix detector, clusterization, principal component analysis

Abstrakt. Tento £lánek se zabývá automatickým roz°azováním elektronických £ip· do skupin

v závislosti na jejich kvalit¥. Masová produkce £ip· nem·ºe zabezpe£it 100% výt¥ºnost, a tak

musí být po£ítáno s tím, ºe n¥které z £ip· budou defektní. Tyto defekty v²ak typicky nebývají

náhodné a jsou pozorovány opakovan¥. Cílem popisované metody je odhalit tyto £asté defekty,

roz°adit je do t°íd a automaticky je rozpoznávat.

Klí£ová slova: klasi�kace £ip·, detektor Timepix, shluková analýza, principal component anal-

ysis

1 Introduction

In microelectronics industry, integrated chips are produced on a thin circular slices of
semiconductor called wafer. The wafer serves as a basis for microchip fabrication on
which photolitographic, ion implantation and etching operations are performed. Finalized
semiconductor chips of one or more designs (so called MPW - Multi-Project Wafer) are
placed side by side, and �nally before packaging ther are diced into individual electronic
circuits.

During these production phases, many defects can arise, mainly because of imperfec-
tions in wafer processing or impurities such as dust particles. Some defects are fatal for
the �nal chip, while others do not signi�cantly in�uence the operation of a chip. There-
fore it is necessary to test (probe) the chips before distributing them and then use the
results of the test to classify them into categories depending on their quality.

In this article, we present the method of fast and e�cient chip classi�cation using
patterns which utilizes digital-to-analog converter voltage trends and the knowledge of
commonly occurring defects and their impact on the quality of the chip. The results
of this method is a set of patterns which is often observed and which may be used for
assigning a chip to a de�ned quality class. Although we are focusing solely on the Timepix

59
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chip in the following text, the method is general enough to be applied to an arbitrary
integrated circuit which is produced with speci�c structural elements.

Figure 1: On the left side, there is an example of a silicon wafer. Timepix chip bounded
on a probe card can be seen on the right side.

2 Timepix chip and its characteristics

The Timepix chip is a member of Medipix2 chip family developed at CERN. It is a
hybrid pixel detector consisting of 256 × 256 pixel matrix, with pixel size 55 × 55µm2.
The chip is designed in 0.25µm CMOS technology and is intended for medical diagnostics,
defectoscopy, etc.

The main characteristics determining the chip quality after fabrication are its 13
digital analog converters (DACs). Five of them convert voltage, the remaining eight
current. The Timepix chip contains special testing structures which allow to measure
responses of the DACs to input current, resp. voltage directly on the wafer. The testing
is performed using probe station which is able to precisely connect each chip on the wafer
with special needles.

In our measurement, the responses of all 13 DACs from chips on 3 wafers were collected
and analysed. Each wafer contains 107 chips, i.e. totally we have 107 · 3 · 13 = 4173 data
sets. In table 1, detailed technical properties of 13 DACs are shown.

For further information on the Timepix chip, please refer to [4] and [5].

3 Mathematical tools

In this section, the mathematical methods and algorithms used for chip classi�cation will
be brie�y described.

3.1 Principal component analysis

The Principal component analysis (PCA) is a mathematical method used to reduce the
dimensions of data set in order to simplify further data processing while keeping as much
information as possible. It is based on linear transformations performed in a way that the
resulting data sets have the most variability in the �rst coordinate, second most in the
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DAC Range Bits Mid range value V/I LSB size Values

IKrum 0-40nA 8 20nA→1.497V I 157pA 26
Disc 0-1.67µA 8 840nA→1.005V I 6.57nA 26
Preamp 0-2µA 8 1.0µA→966.4mV I 7.89nA 26
Bu�AnalogA 0-10.2µA 8 5.04µA→924.1mV I 39.4nA 26
Bu�AnalogB 0-391µA 8 197µA→1.168V I 1.54µA 26
Hist 0-200nA 8 100nA→582mV I 780pA 26
THL 0-2.2V 10+4 1.16V V 398µV 102
Vcas 0-2.2V 8 1.16V V 398µV 2
FBK 0-2.2V 8 1.18V V 9.19mV 26
GND 0-2.2V 8 1.18V V 9.19mV 26
THS 0-40nA 8 20nA→1.47V I 156pA 26
BiasLVDS 0-382µA 8 197µA→1.603V I 1.54µA 26
RefLVDS 0-817mV 8 417mV V 3.19mV 26

Table 1: Detailed electronical characteristics of the Timepix DACs. In the last column,
a number of measured values for each chip is presented.

second coordinate, etc. This allows us to cut o� the data sets and continue the analysis
with signi�cantly reduced amount of data.

More precisely, given data vectors ordered in a matrix X by rows (each row represents
one data set), we are looking for such a matrix transformation Y = X ·WT that vary1

is maximal, vary2 is maximal while y1 and y2 are uncorrelated, and similarly for other
components, varyk is maximal while keeping the condition yk is uncorrelated to yi, i =
1, 2, . . . k − 1.

It can be shown [1] that this problem is equivalent to �nding eigenvalues and eigen-
vectors of a sample covariance matrix C = (X − x · 1T

n )
T · (X − x · 1T

n ) of data sets, i.e.
solving the equation

Cv = λv , ‖v‖ = 1 ,

ordering the resulting eigenvalues λi in descending order, and setting the rows of the
matrix W as

W =


v1

v2
...
vn

 ,

where vi is eigenvector corresponding to i-th largest eigenvalue and n is dimension of
data samples.

Furthermore, when we de�ne the set of variables

φk =

∑k
i=1 λi∑n
i=1 λi

· 100 for k = 1, 2, . . . , n ,
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we obtain the percentages of variability contained in �rst k components. This allows us
to decide how many components are su�cient to use for further analysis.

For more detailed information on PCA, please see [1] or [3].

3.2 Hierarchical cluster analysis

Cluster analysis is an important statistical method for data classi�cation. Since the
term cluster can not be precisely de�ned, there are many approaches to perform cluster
analysis, each giving di�erent results. Therefore the appropriate algorithm must be care-
fully chosen, according to the speci�c application. The one chosen for our purposes is
hierarchical clustering using Ward's criterion [2].

Hierarchical clustering is a class of algorithms based on recursive agglomeration, resp.
division of data into clusters. In our case, agglomerative clustering was used starting with
n clusters formed by n experimental samples. In each step of the algorithm, two clusters
are merged together. To determine which two clusters are going to be merged in step i,
Ward's criterion

min
k,l∈Ci

δkl = min
k,l∈Ci

nk · nl

nk + nl

· ‖xk − xl‖2

is evaluated. Ci denotes the set of clusters in step i, nk and nl are the number of points in
clusters k and l respectively, xk and xl are the centroid coordinates of clusters computed
with respect to the Euclidean distance of data sets in cluster.

Algorithm ends after n−1 steps when all points are forming one cluster. The result is
often presented as dendrogram, a tree diagram illustrating the process of merging clusters.
by selecting the level k of the tree, division into k classes can be obtained.

−2 −1 0 1 2
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Figure 2: Example of hierarchical clustering. In this model case two Gaussian distributed
clusters consisting of 15 points were created around points [0, 0] and [1.5, 1.5] with di�erent
variance. After performing Ward's clustering, all but three points were properly matched.
The plot on the right represents the resulting dendrogram.
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4 Method proposal

The presented method of chip classi�cation involves two steps. First, the signi�cant
trends are extracted from su�ciently large amount of experimental data. After that,
the trends are assigned to chip quality classes and the desired patterns are used for chip
classi�cation.

4.1 Signi�cant trend extraction

For signi�cant trend extraction, the PCA and hierarchical clustering discussed in section 3
are used. The PCA is performed on all of the DACs data sets (i.e. 13 times for each DAC
separately). Then, it is su�cient to analyse just a few of the transformed components
(in our case, 2 or 3). With these reduced data sets, hierarchical clustering is performed.
The number of resulting clusters should be chosen experimentally. However, assuming
that statistically the most of chips are without defects, the number of clusters can be
relatively high in order to achieve �ner resolution. This approach has a little drawback,
since many of clusters would contain a small number of outlying points (i.e. defected in
the worst way), but these points can be omitted. The most interesting clusters are those
with high of points � we can select these clusters as signi�cant trends.

After trends extraction, detailed discussion with competent electronics designers is
necessary. Some trends may be non-defective, some DACs may be more important than
others, etc. Finally, the patterns are assigned to the quality classes, eventually other
criteria can be set.

4.2 Chip classi�cation

To obtain a speci�c pattern for each DAC, all points from a cluster are averaged, even-
tually �tted with a curve.

To perform a chip classi�cation, the PCA of the selected patterns is computed. Chips
under test are then identi�ed with quality class, if their characteristics are close enough
to speci�c patterns, e.g. with respect to the Euclidean distance in the PCA transformed
coordinates.

5 Results

In this section, an example of the proposed method usage is presented. The measured
13 DACs of Timepix chips were used as data sets. Alltogether, data from 321 chips
were used. Data corresponding to each DAC were analyzed separately using the PCA
and cluster analysis of their �rst two components. In this special case, the variability
included in the �rst two components was approximately 95%, which turned out to be
satisfactory.

Each DAC data set was divided into 12 clusters. Everytime, minimum of two or three
distinctive clusters with large amount of data appeared. Furthermore, we assumed that
the cluster with the most members is the optimal class (however, it is not always the
case). To illustrate how the exact patterns can be determined, we took the cluster with
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Fit of Preamp Fit of Bu�AnalogA Fit of Bu�AnalogB

a 0.8759 0.9445 5.04
b 0.01279 0.005273 -1.976
c -0.4078 -0.3934 1.531
d -0.2632 -0.1678 -0.02372

Table 2: Computed coe�cients for exponential �tting averaged 'ideal' patterns of Preamp,
Bu�AnalogA, Bu�AnalogB DACs.

the maximal number of elements and declared it as the 'ideal' behavior. These ideal
clusters were averaged and, in three cases (Preamp, Bu�AnalogA, Bu�AnalogB), �tted
with exponential function

f(x) = a · eb·x + c · ed·x .

This step was necessary due to the fact that the averaged curves were not smooth enough,
possibly because of the relatively small data set of 321 chips. The list of the computed
coe�cients for these �ts can be seen in table 2.

6 Conclusions

In this article, we have introduced the method for automatic recognizing of commonly
occurring defects in silicon chips. The results using Timepix chip were presented. It was
shown that this method is e�cient and that it could be used in real application. In present
time, the chip classi�cation is complicated task which could be performed often only by
experienced electronics designers. The presented method could be useful for acceleration
of the process of de�ning and recognizing chip quality classes.
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Figure 3: Example of the Vcas DAC trend exploration. As can be seen, two major groups
are dominant � 12 and 4 with number of points in the cluster of 215, resp. 86. The group
12 was used for ideal DAC computing. Most of the other groups are outliers, e.g. 6 or 7
and should be treated as absolutely insu�cient.
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Abstract. Dynamical decoupling is a known and successful method of eliminating undesired

environmental e�ects on quantum systems. We present another application of the dynamical

decoupling by Pauli pulses, namely using it to eliminate a speci�c additional coupling added to

a working linear qubit network. We assume the additional coupling to arise from bending the

network, which is a step towards more dimensional arrangements than one dimensional linear

networks.

Keywords: dynamical decoupling, quantum networks and spin chains

Abstrakt. Dynamical decoupling je známá, úsp¥²n¥ pouºívaná metoda pro eliminaci neºá-

doucích efekt· prost°edí na kvantové systémy. Ukáºeme dal²í aplikaci dynamical decoupling

pomocí Pauliho puls· a to eliminaci neºádoucí interakce v jinak fungující kvantové síti. P°ed-

pokládáme, ºe p°í£inou p°idané interakce je fyzické p°iblíºení qubit· p°i ohybu lineárního °etízku

qubit·. Ohyb sít¥ je první krok k sítím fungujícím ve více dimenzích neº jedné.

Klí£ová slova: dynamical decoupling, kvantové sít¥ a spinové °etízky

1 Introduction

Quantum communication was �rst introduced by means of transfer of a qubit quantum
state between the two ends of a linear spin chain by Bose, Nikolopoulos et al., and Chri-
standl et al. independently [1, 2, 3], but for a fully operational quantum computer more
advanced techniques of quantum information manipulation are needed [4]. It is natural
to assume two dimensional arrangements are the next possible step towards constructing
an operational quantum computer.

In this article we consider a general formalism summarized for example in [5], which
is independent of the speci�c physical implementation of a quantum network at hand and
is, therefore, very general. The advantage of the formalism is that one can describe all
the qubits in the network with Hilbert spaces C2 and the respective Hamiltonians can be

∗This work was supported by the Grant Agency of the Czech Technical University in Prague, grant
No. SGS13/217/OHK4/3T/14.
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expressed using only the Pauli matrices

σx = σ1 =

(
0 1
1 0

)
, (1a)

σy = σ2 =

(
0 −i
i 0

)
, (1b)

σz = σ3 =

(
1 0
0 −1

)
, (1c)

and the identity

I = σ0 =

(
1 0
0 1

)
. (1d)

The method of dynamical decoupling by Pauli pulses that we are going to use has
been described in great detail in [6]. We will be giving a brief summary of the method in
Sec. 3. In order to use the method, we have to assume that the individual systems can
be manipulated by very fast, even instantaneous, operations � the assumption of the so
called bang-bang control. The premiss of the bang-bang control enables us to represent
the manipulation by a set of unitary operators.

2 Formalism

We will be using the dynamical decoupling to eliminate the e�ect of an unwanted part of
the Hamiltonian H and turn it into Hideal, which we assume is one of the Hamiltonians
known to facilitate the perfect state transfer [5]. Without the loss of generality we assume
the Hideal to be a Heisenberg Hamiltonian.

Let us assume the network consists of N qubits, with the Hilbert space (C2)
⊗N

and
the Hamiltonian Hideal being some general Heisenberg Hamiltonian

Hideal =
∑
i

Biσ
z
i −

∑
i,j

Ji,j
(
σxi σ

x
j + σyi σ

y
j

)
, (2)

which, however, facilitates the transfer of a single excitation (that is a condition on
choosing the appropriate Ji,j). The situation we are investigating can be then described
by the Hamiltonian

H = Hideal + g
(
σxα−1σ

x
α+1 + σyα−1σ

y
α+1

)
, (3)

where g ∈ R and α ∈ {2, . . . , N − 1} is an index of the corner site under consideration
from Figure 1.

We expect the interaction between the qubits to have some sort of spatial dependence
and the additional interaction g then to arise in the system naturally. It makes good sense
to study g from 0 to the interaction magnitude between the corner site and its neighbors
only, otherwise the additional interaction could not be considered a perturbation. This
type of perturbation and its e�ects have been previously studied in [7] and it has been
shown that the interaction has a severe negative e�ect on the performance of the network.
It is therefore of interest to us to attempt to eliminate the perturbation via the dynamical
decoupling method.
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Figure 1: Bent network and additional interaction

3 Methods

The dynamical decoupling we will be using divides the time evolution over time t governed
by the Hamiltonian H into m sub-intervals ∆t. Before and after each interval we apply
an instantaneous unitary operation. The goal of the procedure is to eliminate the e�ect
of the undesired part of the Hamiltonian after time t by chosing a suitable sequence of
the unitaries.

Let the sequence of the unitary operations be denoted by p0, . . . , pm, if ~ = 1, the
time evolution is

U (m ·∆t) = pme
−iH∆tpm−1e

−iH∆t . . . p1e
−iH∆tp0, (4)

where
pi = σk1i ⊗ . . .⊗ σ

kN
i , (5)

kj ∈ {0, . . . , 3} . (6)

We can then introduce new operators derived from pi by

gk = pk · pk−1 · . . . · p0. (7)

If we now notice that
pk = gkg

†
k−1, (8)

we can rewrite the time evolution into the form

U (m ·∆t) = gm

(
g†m−1e

−iH∆tgm−1

)
. . .
(
g†0e
−iH·tg0

)
(9)

= gme
−i(g†m−1Hgm−1)∆t . . . e−i(g

†
0Hg0)∆t, (10)

where in (10) we have used the fact that gi are unitary. We would now like to use the
Magnus expansion [9], in order to do that we identify the time evolution with the one
resulting from an average Hamiltonian H

U(m∆t) = gme
−iHm·∆t.

The operator gm can be chosen to be the identity and then it is possible to perform the
Magnus expansion in

H = H(0)
+H(1)

+ . . . , (11)
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to �nd in the lowest order

H(0)
=

1

m

m−1∑
i=0

g†iHgi. (12)

If we can choose the sequence pi so that

H(0)
=

1

m

m−1∑
i=0

g†iHgi! =
1

D
Hideal, (13)

where we allow for the scaling factor D, just by rescaling the time we would e�ectively
eliminate the additional coupling from the system. That is in the lowest order, one needs
to remember that the dynamical decoupling is only an approximate method.

4 Decoupling Scheme

We propose a decoupling scheme in Table 1.

σi1⊗ . . . σiα−1⊗ σiα⊗ σiα+1⊗ . . . σiN

g0 I I I I I I I
g1 σx σx σx I I I I
g2 I I I I σy σy σy

g3 alter σz and I σz σx I alter σz and I

Table 1: Decoupling scheme

That the scheme is actually a decoupling scheme can be easily shown by direct calcu-
lation of the condition (13) for m = 4 and D = 2 if one uses the properties of the Pauli
matrices.

The procedure goes as follows:

1. Let the system evolve for 1
4
t, where t is the time of the unperturbed state transfer.

2. Apply the σx Pauli pulse to all the qubits in front of the bending, repeat Step 1.

3. Apply the (σx)† Pauli pulse to all the qubits in front of the bending and σy on all
the qubits behind the bending.

4. Repeat Step 1 and apply (σy)† to all the qubits behind the bending.

5. Apply the altering sequence of σz and I to all the qubits but the corner, where you
should apply σx, repeat Step 1.

6. Apply the altering sequence of (σz)† and I to all the qubits but the corner, where
you should apply (σx)†.

7. Repeat Steps 1-6.
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The procedure was derived using equation (8) de�ning the Pauli pulses from gi. The
repetition of the decoupling scheme is necessary because of the scaling factor 1

2
.

Usually, the intermediate state during the process is not considered, as it is assumed
to change rapidly. However, this scheme uses the σx and σy matrices on many of the
qubits and these matrices create excitations in the sites they act on. For that reason,
during the procedure many excitations are created and annihilated. It is an important
question of stability of the system that arises and should be answered.

5 Conclusions

We were able to �nd a decoupling scheme that eliminates in the �rst order the additional
coupling introduced into the system by bending the network. We hope this is a �rst step
toward manipulation of information in more dimensions.

Because the procedure may excite the network to a great extent, simulations need to
be performed in the future to �nd out if � on average � it is an issue or not. Simulations
are also desirable because the procedure is imperfect, it is working only in the �rst order
and it might be the case that the remaining terms in the expansion are too large to
neglect.

The method we propose is one that relies on being able to instantly apply Pauli
matrices to all the qubits in a very rapid sequence. On various systems this could be
done di�erently, but it is a question that needs to be addressed for every computational
system individually. On trapped ions, for example, the sequence of σx pulses can be
achieved by illuminating all the ions with an electromagnetic pulse.
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Abstract. This extended abstract serves as a summary of the study of microscopic behavior
of interacting particle systems published in [1], [2], and to be published in [3], [5], which extend
works [4], [6]. The aim of the study is the time- and distance- headway distribution of interacting
particle systems used for tra�c modeling. A class of models is introduced, for which a mapping
to zero-range processes is a useful tool to obtain the analytical derivation of stated quantities
using car oriented mean �eld approximation.

Keywords: headway distribution, TASEP, zero-range process

Abstrakt. Tento roz²í°ený abstrakt slouºí jako shrnutí studie mikroskopického chování systém·
interagujících £ástic prezentovaných v [1], [2] a v p°ijatých £láncích [3], [5]. Tato studie roz²i°uje
£lánky [4], [6]. Cílem studie jsou £asové a prostorové rozestupy v systémech interagujících £ástic
uºívaných pro modelování dopravy. Je p°edstavena t°ída model·, jejichº zobrazení na zero-range
procesy je uºite£ným nástrojem pro analytické odvození zmín¥ných veli£in p°i poºití tzv. car
oriented mean �eld aproximace.

Klí£ová slova: rozd¥lení rozestup·, TASEP, zero-range proces

1 Introduction

This extended abstract introduces a concept of interacting particle systems which are
used for tra�c modeling. The study focuses on exclusion processes [4], [6], [1] and zero-
range processes [2], [5] mainly. The goal is tu study the headway distributions, which
is considered to be a microscopic characteristics of tra�c-like models. To derive such
quantities analytically, it is useful to follow the concept of car oriented mean �eld ap-
proximation. For the Totally asymmetric simple exclusion process (TASEP) this has been
done in [4], [6]. The idea is to use the grand-canonical measures P •

% (n) = Pr[◦ • • • ◦],
P ◦

% (m) = Pr[• ◦ ◦ ◦ •] of the system on an in�nite line for investigation of the system
on a large system of L � 1 sites and b%Lc particles. The �rst measure is referred to as
probability of a cluster of size n, the second as probability of a gap of length m.

∗This work was supported by the grant SGS12/197/OHK4/3T/14 and the research program MSM
6840770039.
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2 Model background

This article focuses on these measurers as it is the �rst step for headway analyzes. The
use of zero-range processes for this purpose is motivated by the simplicity of the steady
state probability measure, which has factorized form

P (n1, . . . , nM) =
1

Z

M∏
k=1

f(nk) , (1)

where nk ∈ N0 is the number of particles in site k, M is the number of sites, and Z
the normalization constant. The dynamics of considered ZRP models is given by the
hopping rates g(n), denoting the intenzity of a particle to hop from a cluster of size n
to the neighboring site. As we consider the totally asymmetric processes, the particle in
site x hops to x + 1 with intenzity g(nx). In such case, the marginal measure f can be
calculated as

f(n) =
k∏

k=1

g(k)−1 . (2)

This means, that the hopping rates are crucial for investigating the steady state of the
system. Moreover, the marginal measure f(n) is closely related to the measures P •

% (n) =
Pr[◦•••◦] and P ◦

% (m) = Pr[•◦◦◦•]. A particle hopping model as depicted in Figure1 can
be understood as the ZRP in two di�erent ways. Both of them are depicted in Figure 2.
Firstly, the sites (containers) of ZRP are associated with empty sites (denoted by numbers
in Figure 1). The state of each container corresponds to the number of particles in the
compact block behind the empty site. Analogically, we can associate the containers with
particles (denoted by letters in Figure 1) and the state variable denotes the number of
empty sites in front of the particle.

1 A B 2 C 3 4 5 D E

Figure 1: Particle-hopping process with periodic boundary. 5 particles A, B, C, D, E are
moving along the lattice of 10 sites; 5 empty sites 1, 2, 3, 4, 5 are �moving� in opposite
direction

1 2 3 4 5 A B C D E

Figure 2: Two di�erent mappings of particle-hopping process from Figure 1 to the ZRP.

The aim of the study to be published in [5] was to investigate the possibilities of
extracting appropriate hopping rates from the �real� system. As a reference model, the
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car-following Intelligent driver model (IDM) with randomized velocity, acceleration pa-
rameter, and deceleration parameter has been used.

3 Results

The simulation experiment showed that the mapping of IDM to the particle hopping
model of the �rst type is not applicable, because the repulsive force between particles
disables the particles to form a cluster in the sense of ZRP. The mapping to the zero range
process of the second type, i.e., the process associated with hopping holes in opposite
direction, is more straightforward.

As will be shown in [5], resulting hopping rates g(n) for the corresponding ZRP are
presented in the Figure 3.
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Figure 3: The experimental hopping rates of ZPR in tra�c.

The temporal and headway distribution for various densities obtained via simulations
of corresponding ZRP are given in Figure 4. Such distribution qualitatively correspond
to those observed in real tra�c.
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Abstract. Mechanical behavior of human skin is of great interest in dermatology, plastic
surgery, regenerative therapies, and cosmetics. Small changes in viscoelastic properties of skin
are very sensitively re�ecting some skin- and also internal diseases. This work deals with ultra-
sonic noninvasive investigation of viscoelastic properties of human skin under stepwise tensile
loading in-vivo. A small skin-loading device with built-in ultrasonic transmitting and recei-
ving probes [4] is used to observe elastic wave propagation changes during the complex short
time step loading and relaxation history. Chirp coded ultrasonic signals of variable amplitude
in the frequency range 0.1 - 1 MHz are transmitted along the forearm of several all-aged persons.
Ultrasonic wave propagation along the human skin tissue is in�uenced by many external factors,
for example by temperature, humidity, etc. Moreover, mechanical properties of the skin depend
on the whole time history of loading. Linear ultrasonic parameters like velocity and attenuation
are evaluated from direct propagating waves, and Time Reversal (TR) procedure is used to
reveal amplitude-dependent spectral changes and nonlinear e�ects during the wave propagation
at di�erent loading and relaxation stages. Instantaneous complex elastic modules are obtained
from ultrasonic measurements, and viscoelastic 5-element rheologic model parameters are eval-
uated from relaxation curves. The in�uence of external factors like local temperature, humidity,
and others (gender-, age-dependency) on resulting skin characteristics have been discussed in our
previous work [2]. TR signal reconstruction helps to partial elimination of dispersion e�ects.
Further, we investigate the anisotropic behavior of the skin using a small multi-axial device
which is equipped with ultrasonic transmitting and receiving probes [3]. In our previous work
[6] we investigated locally the anisotropic behavior of the forearm and back skin in-vivo. Ba-
sic anisotropy characteristics are determined from temporal changes of ultrasonic velocity and
attenuation after de�ned skin loading in various directions, and compared with viscoelastic prop-
erties of the skin evaluated from tensile test curves. Using those methods, [5] and [6], we expect
to detect some nonlinearities which refer to a pathological behaviour of the skin tissue. Con-
trary to current state-of-the art, e.g. [1], [7], a great merit of this approach is the possibility
to measure instantaneous changes caused by relaxation behavior of biopolymers, including skin.

∗This work has been supported by grants SGS12/197/OHK4/3T/14of the Czech Ministry of Educa-
tion, IT ASCR No. 904150 and with institutional support RVO: 61388998 (Ultrasonic testing of a me-
chanically loaded human skin tissue - experiments and modeling).
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Partial results of this work were presented at International Congress on Ultrasonics 2013 [2],
Human Skin Engineering and Reconstructive Surgery 2013 [3], POSTER 2013 - 17th Interna-
tional Student Conference on Electrical Engineering [5] and Stochastic and Physical Monitoring
Systems 2013 [6]. The whole text will be published in the Ultrasonics journal.

Keywords: Anisotropy, in-vivo methods, ultrasonic testing, viscoelasticity, time-reversal method

Abstrakt. Znalost mechanického chování lidské koºní tkán¥ je d·leºitá pro oblasti jako der-
matologie, plastická chirurgie, regenerativní terapie a kosmetika. Malé zm¥ny ve viskoelastic-
kých vlastnostech velmi citliv¥ odráºejí n¥která koºní a také vnit°ní onemocn¥ní. Tato práce
se zabývá ultrazvukovým neinvazivním vy²et°ováním viskoelastických vlastností lidské koºní
tkán¥ p°i skokovitém tahovém zat¥ºování in-vivo. K vy²et°ování pouºíváme malý p°ípravek
na zat¥ºování k·ºe, který je opat°ený ultrazvukovými sondami [4], jednou p°ijímací a dv¥ma
vysílacími. Pomocí n¥j m·ºeme sledovat zm¥ny v ²í°ení elastických vln k·ºí b¥hem komplexních
cykl· zat¥ºování a relaxace v krátkých £asových krocích. Ultrazvukové pulzy typu Chirp s r·z-
nou amplitudou a frekvencí 0,1 � 1 MHz jsou vysílány podél p°edloktí n¥kolika dobrovolník·
r·zného v¥ku. �í°ení ultrazvuku podél lidské koºní tkán¥ je ovlivn¥no mnoha vn¥j²ími faktory,
nap°íklad teplotou, vlhkostí, atd. Mechanické vlastnosti k·ºe navíc zavisí na celém pr·b¥hu
zat¥ºování. Z ²í°ení ultrazvukových vln vyhodnocujeme lineární ultrazvukové parametry jako
rychlost ²í°ení a útlum. K vyhodnocení £asové závislosti spektrálních zm¥n a nelineárních efekt·
p°i r·zných zat¥ºovacích a relaxa£ních stavech pouºíváme metodu £asové reverzace (TR). Z ul-
trazvukových m¥°ení získáme okamºité komplexní elastické moduly. Z relaxa£ních k°ivek jsou
vyhodnoceny viskoelastické parametry reologického 5-prvkového modelu. V na²í p°edchozí práci
[2] je diskutován vliv vn¥j²ích faktor· jako teplota, vlhkost a jiných (závislost na pohlaví, v¥ku)
na charakteristiky k·ºe. Rekonstrukce TR signál· pomáhá £áste£né eliminaci disperzních efekt·.
Dále vy²et°ujeme anizotropní chování k·ºe pomocí malého kruhového p°ístroje opat°eného ul-
trazvukovými vysílacími a p°ijímacími sondami [3]. V na²í p°edchozí práci [6] jsme zkoumali
lokální anizotropní chování k·ºe zad a p°edloktí in-vivo. Základní charakteristiky anizotropie
jsou ur£eny z £asových zm¥n rychlosti a útlumu ultrazvuku p°i ur£itém zatíºení a v r·zných
sm¥rech. Následn¥ jsou porovnány s viskoelastickými vlastnostmi k·ºe získanými z k°ivek
namáhání v tahu. Pouºitím t¥chto metod, [5] a [6], p°edpokládáme zji²t¥ní nelinearit, které
budou poukazovat na patologické chování koºní tkán¥. Oproti sou£asnému stavu v tomto oboru,
nap°. [1], [7], je p°ínos této práce v moºnosti m¥°it okamºité zm¥ny zp·sobené relaxa£ním
chováním biopolymer·, tedy i k·ºe.

�áste£né výsledky této práce byly prezentovány na konferencích International Congress
on Ultrasonics 2103 [2], Human Skin Engineering and Reconstructive Surgery 2013 [3], POSTER
2013 - 17th International Student Conference on Electrical Engineering [5] and Stochastic
and Physical Monitoring Systems 2013 [6]. Celý text bude publikován v £asopise Ultrasonics.

Klí£ová slova: Anizotropie, metody in-vivo, ultrazvukové testování, viskoelasticita, metoda
£asové reverzace
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Abstract. This paper deals with principal component analysis in sphere of economic data. The

aim is not to deal primary with principal component analysis but to introduce the possible use

in interpreting economic indicators. As it is well known principal component analysis reduce

the dimensionality of origin data set. The input for this research is simple, statistic data about

economic situation of more than thirty states during twenty two years. Paper present three ways

of interpreting these data as input to principal component analysis and show the results.

Keywords: principal component, analysis, economic time series, objects

Abstrakt. P°ísp¥vek se zabývá analýzou hlavní komponenty v oblasti ekonomických dat. Cílem

p°ísp¥vku není se primárn¥ zabývat samotnou analýzou hlavní komponenty, ale její aplikací na

data z ekonomické oblasti. Cílem analýzy hlavní komponenty je sníºení dimenze p·vodního

souboru s daty. Vstupem analýzy pro tento ú£el jsou statistická data popisující ekonomickou

situaci ve více neº t°iceti zemích po dobu dvaceti dvou let. Cílem je prezentace t°í p°ístup· k

analýze hlavní komponenty t¥chto ekonomických £asových °ad.

Klí£ová slova: hlavní komponenta, analýza, ekonomické £asové °ady, objekty

1 Introduction

The contribution is focused on principal component analysis (PCA). The aim is not to
describe the principal component analysis itself in detail. The main idea of principal
component analysis is reduction of dimensionality of some data set that consists of a
large number of interrelated variables. The reduction retains as much as possible of the
variation present in the data set. The aim is achieved by transforming to a new set of
variables called the principal components. These principal components are uncorrelated
and ordered so that the �rst few retain most of the variation present in all of the original
variables. [2] In this research is the aim the reduction to two principal components (PC1
and PC2).

Paper deals with the basic economic data and shows the ways of possible interpreta-
tion to serve as input for principal component analysis. The aim is to search the main
indicators, monitor the potential trend of concrete objects and �nding objects having
something in common. It goes hand in hand with principal component analysis goal
de�ned by Abdi and Williams � extracting the important information from the table to
represent it as a set of new orthogonal variables called principal components and to dis-
play the pattern of similarity of the observations and of the variables as points in maps.
[1]
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Paper presents three basic ways of using principal component analysis to interpret
economic data. The way means to interpret the data set as objects. As the reason for
doing such research can be also trying to predict the future development of some country
and �nd the position of state if we know the basic economic prediction. There is also
very interesting to capture some progress in time.

1.1 Used data

To do such research play the key role the input data set. As already said it should be
some economic time series. Used economic data has been selected from Statistical Annex
of European Economy presented by European Commission in spring 2013. [3]

As input to analysis serve the thirty �ve countries from the whole world, majority
are the European countries. The observation take place in years 1993 to 2014. Selected
indicators are the total population, unemployment rate, gross domestic product at cur-
rent market prices, private �nal consumption expenditure at current prices, gross �xed
capital formation at current prices, domestic demand including stocks, exports of goods
and services, imports of goods and services and gross national saving. So totally nine
indicators are monitored. As the time series go to year 2014 it is clear that years 2013
and 2014 represent predictions.

2 State in year as object

As �rst possible interpretation of the data set is the object represented by a state in a
given year. So the number of objects is relatively high. The total number of object is
in this case seven hundred and eighty, it represents number of states multiplied by the
number of observed years.

As the number of object is high, the origin data set dimensionality is relatively small.
It is created just by nine indicators. The result of principal component analysis is that
two principal components are created mainly by combination of population and gross
domestic product as shown the indicators weights in table 1.

Table 1: PCA � State in Year as Object

Indicator PC1 PC2
Total population -1,106 1,683

Unemployment rate -0,000 0,025
Gross domestic product -0,113 -16,492

Private �nal consumption expenditure -0,000 0,013
Gross �xed capital formation 0,000 -0,021

Domestic demand including stocks -0,000 0,004
Exports of goods and services -0,000 -0,062
Imports of goods and services -0,000 -0,060

Gross national saving 0,000 -0,026
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Figure 1: PCA � State in Year as Object

The �gure 2 shows that main points are concentrated by vertical axis. As representa-
tive state of vertical line can be selected for example Germany. As the state represented
by movement also in horizontal line can be mentioned for example France. Because the
number of objects is quite high, for better interpretation there are the objects grouped
by the same colour for a given year in �gure ??. The weights of components are in table
1. The �rst principal component explains almost all of the variance.

The detailed view on values of principal components for three selected countries is
shown in table 2. As already mentioned Germany is represented by points in vertical line
as can be seen in �gure 3.

In case of France there is the result of principal component analysis shown in �gure
4 from which is evident that growing gross domestic product is connected with growing
population. So in this case the growing gross domestic product goes hand in hand with
growing population. That is the di�erent between France and Germany, where the gross
domestic product is growing in conditions of almost the same population.

The example of Czech Republic shows that the population is almost constant as in
case of Germany, but the potential to grow the gross domestic product is much smaller.
The di�erences between years are very small.

3 States as objects

In second case of possible use of principal component analysis there are the object rep-
resented by each state. So the properties are made of indicators in selected years. The
number of object is thirty �ve.

In comparison to �rst case of use the number of objects is dramatically fallen down.
So the representation will be very simple and it will be clear which states are closed to
each other. From graphic representation are easily noticed the groups of states. When
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Figure 2: PCA � State in Year as Object with legend

Table 2: Values of principal components of selected countries

Year CZ - PC1 CZ - PC2 DE - PC1 DE - PC2 FR - PC1 FR - PC2
1993 0,0067 0,2861 0,2827 1,9173 1,0522 0,7847
1994 0,0050 0,2647 0,2052 1,5870 0,9852 0,6696
1995 0,0063 0,2370 0,1282 1,1589 0,9195 0,5430
1996 0,0110 0,1980 0,0564 1,3097 0,8555 0,4740
1997 0,0144 0,1865 0,0091 1,4556 0,7919 0,4969
1998 0,0170 0,1607 0,0148 1,2527 0,7238 0,3324
1999 0,0206 0,1501 -0,0047 1,0328 0,6289 0,2273
2000 0,0235 0,1200 -0,0371 0,8603 0,5009 0,0847
2001 0,0383 0,0600 -0,0854 0,6842 0,3648 0,0330
2002 0,0450 -0,0031 -0,1299 0,6133 0,2278 0,0244
2003 0,0446 -0,0073 -0,1421 0,5579 0,0936 0,0207
2004 0,0429 -0,0389 -0,1377 0,3294 -0,0474 -0,0789
2005 0,0342 -0,0848 -0,1273 0,1840 -0,1925 -0,1445
2006 0,0236 -0,1322 -0,1000 -0,2735 -0,3284 -0,3074
2007 0,0060 -0,1683 -0,0720 -0,8476 -0,4502 -0,5334
2008 -0,0275 -0,2207 -0,0296 -1,1202 -0,5596 -0,5795
2009 -0,0458 -0,1366 0,0486 -0,7816 -0,6633 -0,2043
2010 -0,0540 -0,1618 0,0810 -1,3902 -0,7716 -0,2752
2011 -0,0481 -0,1983 0,0712 -1,8237 -0,8814 -0,3854
2012 -0,0523 -0,1764 0,0276 -1,9930 -0,9842 -0,3722
2013 -0,0549 -0,1612 -0,0166 -2,1568 -1,0835 -0,3459
2014 -0,0566 -0,1736 -0,0425 -2,5564 -1,1822 -0,4637
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Figure 3: PCA � State in Year as Object � Germany

Figure 4: PCA � State in Year as Object � France
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Figure 5: PCA � State in Year as Object � Czech Republic

one point represent one state there is very easily seen the groups of states with similar
type of economy. The result of principal component analysis is shown in �gure 6. The
�rst principal component explains almost ninety nine percent of variance in origin data
set. The values of principal components of each state are summarized in table 3.

The principal components are in this case counted from nearly two hundred indicators.
So the reduction of dimensionality is high in this case. These values are created by the nine
economy indicators in twenty two years. As in the �rst case of using principal component
analysis also here are the biggest weights on gross domestic product and population. In
case of �rst principal component is the population values included with bigger weight
than in case of gross domestic product. Second principal component is preferring the
values of gross domestic product in years.

The values of �rst principal component are in most cases very close to zero, following
the weights that implies that the population is without big changes having a�ect to
component values. Second principal component is mostly counted from gross domestic
product values. There also apparent the bigger range in values.

4 Years as objects

The third kind of data interpretation is by objects representing calendar year. So there is
only twenty four objects in this case. As the number of objects is decreasing, the number
of properties of each object is increasing. The total number of indicators of each object
is created by number of countries mal number of describing properties. The number of
properties is totally over three hundreds. The result showing principal component values
is shown in �gure 7. The �rst principal component explains almost ninety nine percent
of variance in origin data set.

The advantages of such approach is the very clearly seen the progress in time. The
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Table 3: PCA � States as objects

State PCA 1 PCA 2
Belgium 0,195 0,376
Germany 0,258 -0,115
Estonia 0,317 0,090
Ireland 0,179 0,044
Greece 0,223 -0,118
Spain -0,547 -0,509
France -0,443 0,558
Italy -0,202 1,178
Cyprus 0,279 0,075

Luxembourg 0,290 0,061
Malta 0,299 0,020

Netherlands 0,148 0,089
Austria 0,239 0,141
Portugal 0,230 -0,205
Slovenia 0,296 0,062
Slovakia 0,296 0,047
Finland 0,267 0,129
Bulgaria 0,431 -0,001

Czech Republic 0,280 0,240
Denmark 0,262 0,090
Latvia 0,356 0,022

Lithuania 0,377 -0,032
Hungary 0,347 0,067
Poland 0,279 0,388
Romania 0,468 0,333
Sweden 0,219 0,361

United Kingdom -0,318 1,921
France 0,324 0,118

F.Y.R. of Macedonia 0,294 0,016
Iceland 0,297 0,022
Turkey -1,189 -4,953

Montenegro 0,304 0,021
Serbia 0,322 -0,169

United States -5,431 1,033
Japan 0,056 -1,400
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Figure 6: PCA � States as objects

Figure 7: PCA � Years as objects
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Figure 8: PCA � Years as objects � Czech Republic

next possible use of this approach is to do the analysis just for national data and see the
development of separate country. Example of Czech Republic is shown in �gure 8. In
this case explains the �rst principal component almost ninety three percent of variance
in origin data set. Both principal components explain almost all variance in origin data
set.

5 Summary

It was shown that principal component analysis can be also very useful in interpreting the
economic data. It represents some other way of interpreting time series and shows how
the states position in comparison to others. To fully interpret the results there is need to
study the weights of principal components to know what stands behind the components
values. The third case of use � the years as objects � gives very clear representation of
changing economic situation.
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Abstract. EEG signal of healthy patient can be recognized as output of a chaotic system. There

are many measures of chaotic behavior: Hurst and Lyapunov exponents, various dimensions

of attractor, various entropy measures, etc. We prefer permutation entropy of equidistantly

sampled data. The novelty of our approach is in bias reduction of permutation entropy estimates,

memory decrease, and time complexities of permutation analysis. Therefore, we are not limited

by EEG signal and permutation sample lengths. This general method was used for channel

by channel analysis of Alzheimer diseased (AD) and healthy (CN) patients to point out the

di�erences between AD and CN groups.

Keywords: EEG, Alzheimer's disease, permutation entropy, unbiased estimation, hash table

Abstrakt. EEG sinály zdravých pacient· jsou podobné chaotickému systému. Existuje mnoho

m¥r pro chaotické chování: Hurst·v a Lyapun·v exponent, attraktory, entropie atd. V tomto

£lánku preferujeme permuta£ní entropii ekvidistantn¥ vzdálených dat. Výhodou tohoto nového

postupu je redukce vychýlení odhadu permuta£ní entropie, sníºení pam¥´ové a £asové náro£nosti.

Díky tomu nejsme limitováni délkou EEG signálu a délkou permuta£ního vzorku. Tato metoda

byla pouºita pro analýzu jednotlivých kanál· EEG u pacient· s Alzheimerovou chorobou (AD)

a zdravých jedinc·. Nasledn¥ byly tyto dv¥ skupiny porovnány.

Klí£ová slova: EEG, Alzheimerova choroba, permuta£ní entropie, nestranný odhad, ha²ovací

tabulka

1 Introduction

Alzheimer's disease (AD) is the most common form of dementia, which gradually destroys
the host's brain cells. Recent �ndings estimate that 35 million people worldwide currently
su�er from AD. Clinically, AD manifests itself as a slowly progressing impairment of men-
tal functions whose course lasts several years prior to the death of the patient. Structural
changes in AD are related to the accumulation of amyloid plaques between nerve cells
in the brain and with the appearance of neuro�brillary tangles inside nerve cells, par-
ticularly in the hippocampus and the cerebral cortex. Although a de�nite diagnosis is
possible only by necropsy, a di�erential diagnosis with other types of dementia and with
major depression should be attempted. Magnetic resonance imaging and computerized
tomography can be normal in the early stages of AD, but a di�use cortical atrophy is the
main sign in brain scans. Mental status tests are also useful. Electroencephalography

∗This work has been supported by the grant SGS11/165/OHK4/3T/14
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(EEG) is a non-invasive technique that was �rst used by Hans Berger in 1929 to record
electrical activity of the human brain. The EEG has been used as a tool for investigating
dementias for several decades. The conventional spectral analysis of EEG has mainly
been concerned with spectral features in several frequency bands. Although the spectral
analysis has been successful in AD studies, nonlinear dynamic analysis is crucial if trying
to capture higher order dynamic properties of the brain. In particular, several authors
have analyzed the EEG in AD patients with non-linear methods. It has been shown that
AD patients have lower correlation dimension (D2) values as a measure of the underlying
system dimensional complexity - than control subjects [9]. Furthermore, AD patients
also have signi�cantly lower values of the largest Lyapunov (λ1) exponent than controls
in almost all EEG channels. However, estimating the non-linear dynamic complexity of
physiological data using measures such as D2 and λ1 is problematic, as the amount of
data required for meaningful results in their computation is beyond the experimental
possibilities for physiological data [10]. One alternative solution lies in computing the
entropy of the EEG [8]. The concept of entropy has achieved a large consensus as an
indicator of complexity of nonlinear signals [7], [11]. Dauwels et al. [12] and many other
authors have shown that Alzheimer's disease increases power in the delta and theta-bands
in the case of EEG analysis in frequency domain but the power spectrum is a global char-
acteristics of EEG signal which disables to study local events in the signal. A number of
variants of this notion have been proposed in the literature which show di�erent degrees
of �exibility, relevance to di�erent problems, e�ciency in their computation, as well as
theoretical foundations. This work investigates the potential of complexity analysis of
multidimensional EEG as indicator of AD onset through permutation entropic modeling.

2 Permutation entropy

2.1 Shanon entropy and its estimation

De�nition. Shannon entropy [5] HS of a discrete random variable X with possible values
x1, ..., xm and probability mass function p(X) is de�ned as

HS = −
m∑

i=1

pi ln pi, (1)

where pi = p(xi).

If the probability function is unknown for an experimental data set, and the number of
possible values is �nite for random variable X, we estimate probalility function pi by
relative frequency pj,N and number of events kN as

pj,N =
nj

n
, (2)

kN =
∑
nj>0

1 ≤ k, (3)
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where nj is the number of occurrences xi of random variable X, and n the total number
of measurement results. Then we get naive estimate of Shannon entropy as

HN = −
kN∑
j=1

pj,N ln pj,N. (4)

This estimate is biased, and therefore it has a systematic error.

Miller [2] modi�ed naive estimate HN using �rst order Taylor expansion, which produces
better estimation

HM = HN +
kN − 1

2n
. (5)

2.2 Application to permutation analysis

Entropy estimates can be easily applied to permutation event analysis [3],[4]. Method-
ology from [2] estimates a smaller bias. Let time series be {ak}

T
k=1 and sliding window

{bk}
w
k=1 of length w, then we can substitute signal values bk in the window with their

orders and then obtain permutation pattern {πk}
w
k=1. The process of pattern conversion

is depicted in Fig. 1.

The universe of random variable X is a set of all permutation of length w. Therefore,
the number of possible permutations is

m = w!, (6)

but the number of various permutations in given signal cannot exceed the number of
sliding samples as

kn ≤ n = T − w + 1. (7)

The number of occurences of jth permutation pattern corresponds with nj, and n is the
total number of samples. Now, we can directly use (4) and calculate the biased naive
estimation HN as in [5]. Our methodology is based on Miller's approach [2] and direct
application of (5) to permutation patterns. The di�erence between estimates (4) and (5)
varies according to number of distinct patterns and time series length.

3 Permutation analysis for large samples

The main disadvantage of the original procedure of permutation analysis [3] is in its mem-
ory and time complexities. They realized permutation memory as a matrix of w columns
and w! rows together with counter vector of length w!. It enables permutation analy-
sis only for w < 13 on a typical computer. The time complexity of single permutation
counting is also w!, in the worst case. Therefore, we decided to use more sophisticated
data structure for permutation analysis. There are many data structures and algorithms
for realizing of look-up table as a kind of memory with fast access. Our memory has to
be optimized only for two operations: FIND and INSERT. We used hash table with open
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addressing and linear probe strategy [6] as a model, which is easy to realize. Let P > n
be the optional prime number. Then the loading factor is de�ned as a ratio α = n/P < 1.
The mean number of permutation vector comparisons during successful FIND operation
was determined [6] as

ETOPT =
1

2

(
1 +

1

1− α

)
. (8)

In the case of unsuccessful FIND operation and INSERT operation, the mean number of
permutation vector comparisons is higher [6] than in the previous optimistic case

ETPES =
1

2

(
1 +

1

(1− α)2

)
. (9)

Our tiny and fast implementation of permutation memory is a matrix of occurred permu-
tations with w columns and P > n rows together with counter vector of length P . The
time complexity of single permutation counting is constant and dependent only on load-
ing factor in the best (8) and worst (9) cases. It enables very fast permutation analysis for
higher sample length w and long EEG sequences. The last implementation detail is how
to realize hash function index = h(π) for given permutation pattern π. By substracting
vector of units from vector π, we obtain digital form y = π − 1 in the �rst step. Let
R = w be the base of digital system. In the second step, we calculate the value v of y
according to base R. The resulting index into hash table has a value index = v mod P .
In the case of Matlab environment, we must increase the index by one. In the case when
P > 3n, we have α < 1/3 and then the mean number of trials is less than 1.25 in the
optimistic case (8) and less than 1.625 in the pessimistic (9).

4 Application to EEG

Permutation entropy was applied to EEG signals obtained from two groups of patients. In
our prospective study, EEG data were obtained during examinations of 10 patients with
moderate dementia (MMSE score 10-19). All subjects underwent brain CT, neurological
and neuropsychological examinations. The other group is a control set consisting of 10
age-matched, healthy subjects who had no memory or other cognitive impairments. The
average MMSE of the AD group is 16.2 (SD of 2.1). The ages of the two groups are
69.4 ± 9.2 in Alzheimer's group and 68.7 ± 7.7 in normal group, respectively. The �rst
group included 5 men and 5 women, the second group 4 men and 6 women. Informed
consent was obtained from all included subjects and the study was approved by the local
ethics committee. All recordings were performed under similar standard conditions. The
subjects were in a comfortable position, on a bed, with their eyes closed. Electrodes
were positioned according to the 10-20 system of electrode placement; the recording was
conducted on a 21-channel digital EEG setup (TruScan 32, Alien Technik Ltd., Czech
Republic) with a 22-bit AD conversion and a sampling frequency of 200 Hz. The linked
ears were used as references. Stored digitized data were zero-phase digitally �ltered using
a bandpass FIR �lter (100 coe�cients, Hamming window) of 0.5-60 Hz and a bandstop
�lter of 49-51 Hz [6]. The analysis started by manual artifact removal. Time series length
T varies between 70000 and 120000. We tried to separate these two groups of patients
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by two-sample t-test with null hypotheses and alternative hypothesis as

H0 : EĤ(AD) = EĤ(CN), (10)

HA : EĤ(AD) 6= EĤ(CN). (11)

The window length w is the only one parameter of permutation entropy evaluation. We
investigated its in�uence in the case of 8th channel in the range w = 4 to 13. Results
are collected in Tab. 1 related to the separation power in two-sampled t-test and its
p-value. Optimum value of window length (embedded dimension) is w = 14 which is
in contradiction to statistical conventions. Our interpretation is based on supposition
that EEG permutation patterns are not as diverse as they theoretically should be. This
hypothesis is illustrated on Fig. 2 where ten most frequent permutation patterns of two
patients are added into two distinct plots. Locally monotonic behavior of EEG signal has
relatively high probability on the case of AD, while CN exhibits rather chaotic behavior.
This phenomenon is di�cult to investigate using shorter window or performing analysis
in frequency domain.

The �nal results for permutation entropy estimators HN and HM are in Tabs. 2 and 3.

First, we evaluated separation ability of naive estimate HN of Shannon etropy HS. Using
False Discovery Rate (FDR) [1] methodology of multiple testing for 19 channels and
α = 0.05 together with t-test, we obtained αFDR = 0.0413 from pvalue in the Tab. 2.
But the di�erences are signi�cant over the whole front and medial part of the skull for
ch < 18 in the sense of FDR.

Then we evaluated separation ability of Miller estimate HM of Shannon etropy HS. Using
the same method as above, we obtained αFDR = 0.0216 from pvalue in Tab. 3 and the
di�erences are signi�cant mostly over the front half of the skull for ch = 1..12, 14, 17.

The di�erence between naive and Miller estimates is not constant because both EEG
signal length and the number of occurring patterns vary within patient groups. Therefore,
Miller estimate of permutation entropy causes results which di�er from naive approach.
Fortunately, novel estimate generates results with more clear biomedical interpretation.
Separation power of permutation entropy is depicted on Fig. 3 for 8th channel and
optimum pattern length w = 14 for naive (left) and Miller (right) approaches.

5 Conclusion

Using Miller's approach instead of direct calculation of Shannon's entropy from permu-
tation frequencies, we have developed a novel method of ECG analysis via permutation
entropy. The second advantage of our method is in its very fast permutation analysis
and low consumption of computer memory which enables analysis of large time series
with greater length of permutation patterns. When the method was applied to diagnose
Alzheimer's disease from 19 channel EEG, we recommended pattern length w = 14 and
Miller estimate of permutation entropy to achieve the best separation between AD and
CN groups in standard two-sided two-sampled t-test.
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Table 1: Naive estimate of permutation entropy for 8th channel
Window Mean HN pvalue

AD CN
4 2.6227 2.6763 0.289642
5 3.7898 3.8901 0.245163
6 5.0485 5.2067 0.210272
7 6.3754 6.6048 0.178109
8 7.7024 8.0207 0.136442
9 8.8811 9.3133 0.070555
10 9.7614 10.2749 0.022015
11 10.3455 10.8547 0.004363
12 10.6971 11.1372 0.001093
13 10.8891 11.2568 0.001305

Table 2: Naive estimate of permutation entropy (w = 14)
Channel Mean HN pvalue

AD CN
1 10.9509 11.2344 0.016177
2 10.9288 11.2340 0.008799
3 10.9993 11.2730 0.013094
4 10.9439 11.2670 0.006146
5 10.9060 11.2483 0.004253
6 10.9520 11.2611 0.005397
7 10.9841 11.2793 0.009685
8 10.9866 11.3035 0.003957
9 10.9596 11.2858 0.005039
10 10.9461 11.2645 0.005418
11 10.9514 11.2629 0.009163
12 11.0033 11.2973 0.011947
13 10.9875 11.2294 0.041253
14 10.9350 11.2227 0.017088
15 10.9433 11.2043 0.032689
16 10.9311 11.1979 0.038126
17 10.9410 11.2494 0.013556
18 10.9690 11.1694 0.132795
19 10.9643 11.1649 0.120322
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Table 3: Miller estimate of permutation entropy (w = 14)
Channel Mean HM pvalue

AD CN
1 11.4235 11.7096 0.018250
2 11.3954 11.7084 0.008843
3 11.4808 11.7570 0.013002
4 11.4095 11.7476 0.005664
5 11.3629 11.7228 0.003964
6 11.4196 11.7390 0.004630
7 11.4621 11.7632 0.009132
8 11.4643 11.7943 0.002798
9 11.4278 11.7702 0.003966
10 11.4110 11.7424 0.004780
11 11.4184 11.7399 0.009315
12 11.4858 11.7863 0.011526
13 11.4636 11.6979 0.053263
14 11.3966 11.6882 0.021538
15 11.4063 11.6662 0.045093
16 11.3920 11.6574 0.054132
17 11.4048 11.7225 0.015627
18 11.4407 11.6232 0.203424
19 11.4349 11.6188 0.193535
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Figure 1: Permutation analysis of EEG: original EEG (top), windowed signal for w = 14
(middle), permutation pattern(bottom)

Figure 2: Ten most frequent permutation patterns as union plot for 8th EEG channel and
w = 14 for typical AD patient (left) and CN patient (right)
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Figure 3: Permutation entropies for AD and CN (w=14, ch=8): naive (left) and Miller
(right) approaches
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Abstract. We consider a generalized Schrödinger operator in L2(R2) with an attractive strongly

singular interaction of δ′ type characterized by the coupling parameter β > 0 and supported by

a C4-smooth closed curve Γ of length L without self-intersections. It is shown that in the strong

coupling limit, β → 0+, the number of eigenvalues behaves as 2L
πβ +O(| lnβ|), and furthermore,

that the asymptotic behaviour of the j-th eigenvalue in the same limit is − 4
β2 +µj +O(β| lnβ|),

where µj is the j-th eigenvalue of the Schrödinger operator on L2(0, L) with periodic boundary

conditions and the potential −1
4γ

2 where γ is the signed curvature of Γ.
This paper was published in Journal of Physics A: Mathematical and Theoretical within the

volume 46, number 34 and it was presented at the conference Mathematical result in Quantum

Mechanics QMath12 in Berlin from September 10th to 13th, 2013.

Keywords: quantum graphs, singular interactions of δ′ type, point spectrum

Abstrakt. V této práci se zabýváme Schrödingerými operátory p·sobícími na L2(R2) popisu-

jícími singulární interakce typu δ′ charakterizované vazebným parametrem β > 0 lokalizované

na C4-hladké uzav°ené prosté k°ivce Γ o délce L. Je spo£teno chování bodového spektra v

limit¥ silné vazby, která odpovídá situaci β → 0+. Po£et vlastních hodnot lze spo£íst jako
2L
πβ + O(| lnβ|). Dále j-tá vlastní hodnota v rámci stejné limity silné vazby lze zapsat pomocí

výrazu − 4
β2 +µj+O(β| lnβ|), kde µj je j-tá vlastní hodnota Schrödingera operátoru na prostoru

L2(0, L) s periodickými hrani£ními podmínkami a s potenciálem ve tvaru −1
4γ

2, kde γ je k°ivost

k°ivky Γ.
Plná verze p°ísp¥vku byla oti²t¥na v £asopise Journal of Physics A: Mathematical and The-

oretical within the volume 46, number 34 a byla p°ednesena na konferenci Mathematical result

in Quantum Mechanics QMath12 in Berlin from September 10th to 13th, 2013.
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Abstract. We study the phenomena associated with the solar wind protons re�ections on

the lunar surface. We perform several two-dimensional global hybrid simulations with proton

particles and �uid electrons. The ambient interplanetary magnetic �eld is perpendicular to the

simulation plane. The results show the formation of a wake structure behind the obstacle with

plasma depleted cavity in the center surrounded by low-frequency waves propagating away from

the cavity. The properties and generating mechanism of these waves are discussed. We also

study the dynamics of re�ected protons and its in�uence to lunar plasma environment.

Keywords: solar wind, Moon, hybrid simulations

Abstrakt. Studujeme jevy spojené s odrazy proton· slune£ního v¥tru na m¥sí£ním povrchu.

Provádíme n¥kolik dvourozm¥rných globálních simulací s protony jako £ásticemi a elektrony jako

kontinuem. Meziplanetární magnetické pole je kolmé na simula£ní rovinu. Výsledky ukazují

vznik struktury lunárního chvostu za p°ekáºkou, s dutinou bez plazmatu uprost°ed obklopenou

nízkofrekven£ními vlnami ²í°ícími se sm¥rem od dutiny. Popisujeme vlastnosti a mechanismus

vzniku t¥chto vln. Zabýváme se také dynamikou odraºených proton· a jejich vlivem na prost°edí

plasmatu v okolí M¥síce.

Klí£ová slova: slune£ní vítr, M¥síc, hybridní simulace

1 Introduction

The Moon has no atmosphere nor signi�cant global dipolar magnetic �eld. Therefore
the solar wind particles directly impact its surface forming a lunar wake structure on the
nightside of the Moon. Studying the interaction between the solar wind and the Moon is
important for understanding the lunar plasma environment.

The beginning of the research of lunar plasma environment is, naturally, associated
with �rst �ights of space satellites. First in-situ data from the lunar wake were based on
the measurements made by Explorer 35 trough the years 1967 � 1973 [6]. Also the Apollo
surface and orbital experiments [10] made some measurements of the lunar wake, but, as
in the case of Explorer 35, with a very low resolution. However, all these experiments
were able to detect a signi�cant depletion of solar wind density behind the Moon.

∗This work has been supported by the Grant Agency of the Czech Technical University in Prague,
grant No. SGS13/146/OHK4/2T/14

105



106 M. Jílek

Simulation run Ambient magnetic �eld Re�ection model

a B =
(√

2/2,
√

2/2, 0
)

no re�ections
b B = (0, 0, 1) no re�ections
c B = (0, 0, 1) specular
d B = (0, 0, 1) inverting

Table 1: List of performed simulations.

Then several decades passed with relatively little interest in lunar research. On De-
cember 27, 1994, the WIND spacecraft used the Moon for a gravitational assist. It passed
at a distance of 6.5 lunar radii through the lunar wake and made several measurements
in this area with all its instruments switched on. The data showed a number of interest-
ing plasma physical processes. They were described in many papers published mostly in
1996 [2, 8]. Several numerical simulations were performed to explain observed phenomena
[1, 12]. Until then, it has been believed, that all particles hitting the Moon are absorbed
by the lunar surface.

A systematical research of the lunar plasma environment started in 2007 by Japanese
spacecraft SELENE (Kaguya) [7, 9] followed by Indian spacecraft Chandrayaan-1 [4, 13].
Their measurements have indicated that the simpli�ed picture of the Moon as a passive
solar wind absorber is incomplete. The instruments onboard these spacecrafts detected
solar wind ions re�ected on the lunar dayside surface. These ions were also detected
inside the near lunar wake. Let us note that Apollo 12 and 14 experiments observed
energetic ion �uxes at the nightside surface [3].

In fact, the lunar plasma environment seems to be more complicated. Chandrayaan-
1 discovered that up to 20% of the impinging solar wind protons are re�ected from the
lunar surface back to space as neutral hydrogen atoms [13]. Moreover, the bomboardment
of the lunar surface by charged particles may also lead to charging and mobilization of
lunar dust. In this paper we present results from global hybrid simulation in the plane
perpendicular to IMF. We focus to periodic kinetic e�ects caused by ion gyration and
generated wave structure.

The Japanese spacecraft Kaguya was orbiting the Moon at ∼ 100 km altitude. The
low energy up-going ions measurements by MAP-PACE onboard discovered that about
one percent of SW ions is scattered at the lunar surface [9] In situ observations during
one revolution was presented in [7]. The trajectory plane was perpendicular to IMF. The
autors explain the unexpected detection of upgoing positive ions deep in nightside using
simple numerical model - particle trajectory calculations in prescripted magnetic �eld. In
order to get more realistic picture of lunar wake, we implement proton re�ections on the
surface into global simulation. Then we compare the data from virtual spacecraft �ight
through the simulation plane with real in-situ observations from [7].

2 Simulations

We have performed four simulations with di�erent conditions. A 2.5-D version of the
hybrid code is used [5]. It has 2 spatial dimensions and 3 velocity dimensions. We use
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Figure 1: Illustrations of the two di�erent re�ection models used in simulations.

selenocentric coordinate system in the simulation X - Y plane, where the x-axis points
tailward.

At the beginning of the simulation, the Moon represented by a disk of radius RL is
surrounded by isotropic Maxwellian protons with the constant solar wind speed vsw =
5vA. The initial ambient magnetic �eld is also introduced in the simulation plane. It is
scaled to one, and its orientation di�ers in di�erent simulation runs. Since the electric
�eld is proportional to the factor 1/ρ, we must avoid the plasma density dropping out
below the value nmin = 0.05.

The simulation units are derived from the properties of unperturbed plasma. The
time is given in inversed proton gyrofrequency, Ω−1

p = ω−1
gp . The unit of space distances is

proton inertial length, Λp = c/ωpp. It follows that the velocities are scaled by the Alfvén
velocity vA. The values of protonic and electronic betas are chosen to be βp = βe = 1.

We use spatial resolutions ∆x = ∆y = 0.2Λp and the temporal resolution ∆t =
0.01Ω−1

p . For calculations of electromagnetic �elds we use substepping ∆tB = ∆t/10.
The simulation plane contains Nx = 3200 meshpoints in x-direction and Ny = 2100
meshpoints in y-direction. We use 200 superparticles per cell. Total simulation time
is ttot = 90Ω−1

p . Since the proton gyroradius rgp = 2
√
βp/πΛp = 1.13Λp, the selected

space resolution 0.2Λp is su�cient to exhibit e�ects of proton gyromotion. Assuming the
density np = 5cm−3, the proton inertial length is Λp = 102 km. Since the Moon radius is
1738 km, we can set RL = 17Λp. Note that it is possible to model the solar wind-Moon
interaction on real scales. This is not true for example in Mercury simulations [11], where
the ratio between the planet radius and λp is much higher and scaling down of the sizes
is needed. The total sizes of our simulation box are Lx = 38RL and Ly = 25RL.

Up to here, the simulation parameters are the same for all con�gurations. The list of
performed simulations is given in Table 1. We denote di�erent simulation runs by letters
a, b, c, and d. They di�er in the orientation of the ambient magnetic �eld and in the
behavior of proton superparticles that hit the lunar surface.

In simulation a the vectors of the ambient magnetic �eld B lie in the simulation plane
(B = (

√
2/2,
√

2/2, 0)). Thus the angle between B and solar wind velocity vsw is 45◦.
Such con�guration was widely investigated [12] and we present it in this thesis only in
the reason of comparison. All other simulations (b, c, and d) have been performed with
the ambient magnetic �eld perpendicular to the X - Y plane, i. e., B = (0, 0, 1).

When the superparticle in simulations a or b hit the lunar surface, it is removed from
the simulation. In fact, it is removed with the probability 1 − nmin = 0.95 in order to
avoid very low plasma densities resulting to singularities of the electric �eld, as discussed
above. Simulations c and d are extended by implementation of proton re�ections. Thus,
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Figure 2: Proton density plots for various simulation runs: Panel a represents the case
with ambient magnetic �eld vectors lying in the simulation plane (i.e. initially Bz = 0).
Other panels show the situation with ambient magnetic �eld vectors perpendicular to the
simulation plane (i.e. initially Bx = By = 0) and di�erent re�ection models: without
re�ection (b), specular (c), and inverting (d). Right panel shows the corresponding scale.
Overlaid curves denote several pro�les of the density in arbitrary units.

when the superparticle hit the surface of the Moon, it is re�ected with the probability
fR = 0.01. We assume no velocity loss during re�ection. The proportion of particles not
removed from the simulation remains unchanged, i. e., nmin = 0.05.

The dependence of re�ection angle on the incidence angle is still unknown. Moreover,
since it probably depends on the microstructure of the lunar surface, it can also vary in
time. We use two extremal re�ection models (Figure 1).

Simulation c use a specular model, which assumes the Moon to be an ideal sphere.
The incidence and re�ection angle are equal in this case. Another model, which we have
called inverting, is used in simulation d. The superparticle hitting the surface changes
the sign of all velocity components. This model corresponds to very uneven surface.

3 Results

3.1 Densities

Let us start with the distribution of the proton density (Figure 2). In all cases, we can see
a vacuum region formed downstream the Moon. It is surrounded by waves propagating
away from the center and forming edges of lunar tail structure. At both edges of the tail,
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Figure 3: Fourier analysis of the magnetic �uctuations δB in region 15RL < x < 25RL,
−6RL < y < −1RL and time interval 80ω−1

qp < t < 110ω−1
qp The left panel shows the

�uctuations as a function of kx and ky (averaged over all frequencies ω). The right panel
shows the �uctuations as a function of kx and ω (averaged over all ky). The frequency is
given in the plasma rest frame.

large rare�ed plasma regions are observed.

Although the overall structure of the lunar wake is similar in all con�gurations, the
in�uence of the ambient magnetic �eld orientation on the lunar wake environment is
crucial. In case a, plasma re�lls the cavity along magnetic �eld lines. Thus, the cavity is
re�lled relatively fast.

When the ambient magnetic �eld is perpendicular to the simulation plane (cases b,
c, and d), the situation is absolutely di�erent. The plasma particles cannot move across
magnetic �eld lines and the plasma-depleted cavity is of larger size as compared with the
previous case (see Figure 2b-d). The waves propagating away from the cavity will be
discussed in separate Section 3.2.

Introduction of proton re�ections on the lunar surface leads to further changes in the
lunar wake environment. Let us focus �rst on the specular model (Figure 2c). We observe
a dense plasma region at the bottom edge of the lunar wake followed by a rare�ed plasma
region, which is larger than in previous cases. Another di�erence is the compression of
bottom wave-dominated region in y-direction.

Using the inverting model (Figure 2d) leads to further changes in lunar wake. Namely,
the region with relatively high density at the bottom edge of the wake is larger. Thus, the
selected re�ection model in�uences the global plasma environment. In other words, the
global solar wind - Moon interaction is in�uenced by changes in the local microphysics
of the re�ection process.

3.2 Waves

In Figure 2 we observe low-frequency waves propagating away from the lunar cavity.
In order to process Fourier analysis of these waves, we have performed the simulation
d (the most realistic one, as we will see in Section 3.4) with a longer total time, ttot =
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110ω−1
qp . The reason of such a long time is that we need to analyze larger waves-dominated

rectangular area for longer time. We study the waves in the solar wind rest frame, in
the bottom part of the lunar wake. Namely, we get the region 15RL < x < 25RL,
−6RL < y < −1RL and the time interval 80ω−1

qp < t < 110ω−1
qp . The time resolution is

chosen to be 0.5ω−1
qp .

The results of the analysis are shown in Figure 3. Left panel shows the �uctuations
δB as a function of kx and ky averaged over all frequencies ω. The dependence of the
�uctuations on kx and the frequency ω is plotted in the right panel. The plot is averaged
over all ky. It follows that the frequency and the wavenumber of observed low-frequency
waves are ω ≈ 0.19ωgp and k ≈ 0.14, respectively. The resulting phase velocity ω/k ≈
1.35vA and the fact that the waves propagate perpendicular to the magnetic �eld enable
us to assume that the waves are magnetosonic waves with dispersion relation

ω2 = (v2
s + v2

a)k2, (1)

where vs is the speed of ion acustic wave which in simulation units is

vs =

√
kB Te

mp

= 1. (2)

Thus, the phase speed of magnetosonic waves is ω/k =
√

2vA. It corresponds to the
results of the Fourier analysis.

The generating mechanism is related to Larmor radius and thus it is a kinetic e�ect.
We will describe it from the view of the rest frame. For illustration, let us focus on the
protons having the guiding center at the level y = −RL. According to the phase of the
Larmor motion, the proton is at the given moment located above or below this level.
This location is important at the position x = 0 of the proton trajectory. Whereas the
protons located here above the guiding center hit the lunar surface and are removed from
the simulation, another protons continue in the motion. Note that the process is, in fact,
more complex, because the Moon is placed not only at the position x = 0.

This Larmor phase �ltering e�ect of the obstructing Moon leads to formation of a
periodic strucure along the cavity boundaries with the period 2πvsw. This periodicity
leads to propagation of magnetosonic waves.

The wavenumber can be expressed by

k =

√
2

4πvA

. (3)

The components of wavevector k are then

kx =
1

2πvsw

, ky =

√
2

4πvA

√
1− 2v2

A

v2
sw

(4)

and the angle between equiphase lines of propagating waves and the x-axis

cosϑ =

√
2vA

vsw

. (5)
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Figure 4: The re�ected protons density for specular (a, c) and inverting (b, d) model.
The values are scaled to the SW proton density.

If we put the parameters of our simulation to these relations, we get k = 0.12, k =
(0.032, 0.11), and ϑ = 16.4◦. These values corespond almost exactly to to the simulation
data (see Figure 3). Note that from the rest frame, view the waves look stationary and
they do not propagate.

3.3 Proton re�ections

As explained in section 2, we have implemented proton re�ections on the lunar surface.
One percent of the protons impacting the lunar dayside are re�ected without loss of
kinetic energy (in the rest frame). Two di�erent models prescribing how the re�ection
angle depends on the incidence angle were used. Let us now focus on the re�ections in
more detail.

Figure 4 shows the distribution of the density of re�ected protons in both re�ection
models. There are signi�cant di�erences in these plots according to used model. We see
that the protons enter the near Moon wake and give rise to a strong asymmetry in this
region. Whereas the southern hemisphere of the near-Moon wake is dominated by the
re�ected protons, they cannot reach the northern part. Note the cloud with a relatively
high density of re�ected protons approximately at the position [RL,−RL]. The formation
of this region is explained below.

The dynamics of the re�ected protons can be described in the following way. For
simplicity, we assume the re�ection at the equator, in the direction normal to the surface.
First we look at the situation from the rest frame. The proton moves in the solar wind
with the velocity of vsw. Then it is re�ected on the lunar dayside surface (without loss of
energy) and its velocity changes to −vsw. In the plasma frame, the velocity of its motion
is equal to −2vsw and the proton starts to gyrate counterclockwise with rg = (vsw/vA)Λp.
At the bottom part of its gyration, it has the velocity of 2vsw. If we now return to the
rest frame, the velocity in that area reaches 3vsw. Thus, the re�ected protons obtain 9
times the original kinetic energy at this position.

When the proton reach the �rst loop of the trajectory, the magnitude of its velocity
is minimal. This leads to the creation of regions with relatively high density of re�ected
protons observed in Figure 4.

There are three possible destinations of re�ected protons depending on the position
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Figure 5: Comparison of experimental data from Kaguya with simulation data. Energetic
ion spectrum taken during one revolution by Kaguya (a) (adopted from [7]). Simulation
data taken along a virtual spacecraft orbit for specular (b) and inverting (c) re�ection
model.

and the angle of the re�ection: they can hit the dayside again, or they can impact the
nightside, or, �nally, they can continue in gyro-motion with the solar wind bulk speed.

3.4 Comparison with in-situ data

In order to verify the relevance of our simulation model, we let a virtual spacecraft �y
through our simulation plane at ∼ 100 km ≈ 1Λp altitude and measure up-going protons.
Then we compare the resulting data with real in-situ observations. In fact, we take a
ring of inner radius Λp and outer radius 1.4Λp and divide it into 220 slices. We sum all
protons in each slice and sort it according to their kinetic energy.

The results are plotted in Figure 5. Top panel shows the real in-situ measurement of
Kaguya. The �ight of our virtual spacecraft begins above the equator on the dayside and
continues to the north. Here it detects only protons re�ected from the surface. Around
the north pole, the solar wind protons are detected. Therefore there is a growth of the
measured particles number. No particles reach the north part of the nightside. Then,
below the equator, the spacecraft starts to detect protons re�ected on the dayside and
accelerated by the motional electric �eld. The detection of solar wind protons around the
south pole follows again. In the south part of sunward side we can see both the protons
re�ected from the surface and those re�ected further north from the detection place and
accelerated by the electric �eld.

Middle panel corresponds to the specular re�ection model. We observe a detection of
low-energy protons in the left part of the spectrum plot. Such protons are not present
in real measurement. It indicates that the inverting re�ection model (bottom panel) is
more realistic than the specular one.

4 Conclusions

We have studied the phenomena associated with the solar wind proton re�ections on the
lunar surface using di�erent initial and boundary parameters. We have performed several
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numerical simulations using a two-dimensional hybrid code. The results provide a global
view to the in-situ observations.

We have demonstrated the in�uence of the magnetic �eld direction upon the shape of
the lunar wake. Some interesting physical e�ects are exhibited in simulation results. We
observe the creation of waves propagating away from the center of the lunar wake. The
Fourier analysis showed that the wavenumber k = 0.13 and the frequency ω = 0.18ωqp.
Since the waves propagate perpendicular to the magnetic �eld lines with the velocity
≈
√

2vA, we expect that they are magnetosonic waves.
We have described the generating mechanism of the waves. It is related to the Lar-

mor phase �ltering e�ect by the obstructing Moon. It results in the periodic structure
of plasma along the borders of plasma-depleted cavity downstream the Moon. Such a
con�guration is unstable and leads to energy dissipation through magnetosonic waves.
We have derived the expected wavenumber k =

√
2/(4πvA) = 0.12 and the angle between

equiphase lines of propagating waves and the x-axis ϑ = arccos(
√

2vA/vsw) = 16.4◦.
In other two simulations we have implemented to the code proton re�ections on the

lunar surface. One percent of the impacted protons is re�ected without loss of energy.
We used two re�ection models: the specular model and the inverting model. The former
assumes that the Moon behaves like an ideal sphere, whereas in the latter all protons are
re�ected contrary to the incidence direction.

We have showed that the introduction of the proton re�ections changes the shape
of the lunar wake. The re�ected protons are picked-up by the solar wind, accelerated
by the motional electric �eld to obtain up to 9 times the original kinetic energy, and
then they penetrate into the near-Moon wake, leading to asymmetry of the lunar plasma
environment. We observe a region with relatively high density of re�ected protons below
the nightside sub-solar point associated with a trajectory loop. We have demonstrated
that the protons re�ected to the south of the equator may hit the lunar nightside surface.

We have compared the simulation data with in-situ observations of Japanese space-
craft Kaguya. The comparison of two re�ection models with real data follows that the
inverting model is more realistic than the specular one.

There are several directions how to extend the research of lunar wake. First of all, the
full three-dimensional model will give more realistic results. We can also include alpha
particles into the simulation, which were neglected in present thesis. It will be interesting
to verify the simulation results with real data from ARTEMIS mission, in which two
spacecrafts orbit at various altitudes. In order to �t the simulation to the real data, the
more appropriate re�ection model will be required.
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Abstrakt. Tento p°ísp¥vek si klade za cíl p°iblíºit souvislost mezi roz²í°eními Lieových algeber

a jejich kohomologiemi. Ta je následn¥ vyuºita k reformulaci na²ich hypotéz a jejich £áste£nému

dokázání.
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1 Úvod

Lieovy algebry mají nezanedbatelnou roli v moderní matematické fyzice. Objevují se v
mnoha oblastech výzkumu, od teorie strun, p°es symetrie diferenciálních rovnic, aº po
kvantovou mechaniku. P°es jejich nesmírnou d·leºitost je²t¥ zdaleka nejsou klasi�kovány
a prozkoumány. Jediná oblast, která je pom¥rn¥ podrobn¥ zmapovaná, jsou poloprosté
Lieovy algebry. Na druhou stranu °e²itelné algebry, které jsou díky Leviho teorému [3]
druhou podstatnou £ástí d·leºitou ke klasi�kaci Lieových algeber, jsou klasi�kovány kom-
pletn¥ pouze pro dimenze n < 10.

Alternativou k podrobné vý£tové klasi�kaci je p°ístup Pavla Winternitze, Libora �no-
bla a dal²ích autor· (namátkou t°eba [5�7]), kte°í zvolili konstruk£ní p°ístup. Vybrali si
posloupnost nilpotentních algeber a nalezli v²echna jejich °e²itelná roz²í°ení. Tím se sa-
moz°ejm¥ nezíská kompletní vý£et °e²itelných algeber, ale dostaneme jich velké mnoºství,
a to má své výhody. Nap°íklad jsme si mohli v pr·b¥hu klasi�kace v²imnout zajímavých
vlastností, které m¥ly v²echny tyto °e²itelné algebry spole£né, a vyslovit n¥kolik hypotéz.

Roz²í°ení Lieových algeber má velkou souvislost s jejich kohomologiemi. Nap°íklad
druhá komologická grupa má p°ímou souvislost s centrálními roz²í°eními (viz nap°. [1]).
Proto jsme se rozhodli, ºe se pokusíme p°eformulovat ná² problém do °e£i kohomologií, s
£ímº nám velmi pomohl £lánek [4].

Struktura tohoto p°ísp¥vku je následující. P°edpokládáme, ºe £tená° má základní zna-
losti Lieových algeber a jejich kohomologií (pokud ne, jdou nalézt t°eba v [1,2]). V sekci
1 popí²eme souvislost roz²í°ení algeber s kohomologiemi. V následující sekci up°esníme
obecnou konstrukci pro ná² p°ípad °e²itelného roz²í°ení. Poté se krátce zastavíme u toho,

∗Tato práce byla podpo°ena grantem SGS10/295/OHK4/3T/14 ze Studentské grantové sout¥ºe
�VUT.
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jak klasi�kace roz²í°ení souvisí s exaktními posloupnostmi. Nakonec, v sekci 4, formu-
lujeme dv¥ hypotézy, podíváme se na n¥ pomocí aparátu kohomologií, coº nám pom·ºe
zjistit, pro£ jedna z nich platila pro na²e p°ípady.

1 Konstrukce roz²í°ení na direktním sou£tu algeber

1.1 Operátor pseudokohranice

Pro kaºdou Lieovu algebru máme následující exaktní posloupnost.

0 −→ C(g)
i−→ g

ad−→ Der(g)
π−→ Out(g) −→ 0, (1)

Kde Out(g) := Der(g) / Inn(g), i je inkluzivní zobrazení a π je kanonická projekce na
faktorprostor.

Chceme roz²í°it algebru g pomocí algebry h. K tomu nám poslouºí zobrazení θ : h→
Out(g), po kterém chceme, aby to byl homomor�smus Lieových algeber.

Ke kaºdému takovému θ lze zvolit °ez σ, t.j. lineární zobrazení (obecn¥ to nebude
homomor�smus algeber) takové, ºe π ◦ σ = θ.

0 C(g) g Der(g) Out(g) 0

h

............................................................................................................................... ............ ............................................................................................................................... ............
i

................................................................................................................ ............
ad

..................................................................................... ............
π

............................................................................................................... ............

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

.................

............

θ

.......
.......

.......
.......

.......
.......

.......
.......

.......
.......

.......
.......

.......
.......

.......
..........................

σ
(2)

P°estoºe σ není obecn¥ homomor�smus, a tedy negeneruje reprezentaci na g, m·ºeme
derivace zúºit na centrum (t.j. σ(·) �C(g)) vytvo°it tak h-modul z C(g). Navíc tento h-
modul nezávisí na volb¥ °ezu σ, protoºe r·zné °ezy se li²í pouze o vnit°ní derivaci, která
je na centru nulová. Podobn¥ £ást o kterou °ez σ není homomor�smus také vymizí na
centru. Máme tedy reprezentaci ρθ na C(g).

ρθ(x)v := σ(x)v, (3)

pro libovolný °ez σ.
Pro kaºdý °ez σ jde de�novat zobrazení dσ : Cn(h, g)→ Cn+1(h, g) pomocí �kohrani£ního

p°edpisu�.

(dσ ω)(x0, . . . , xn) :=
n∑
i=0

(−1)iσ(xi)ω(x0, . . . , x̂i, . . . , xn)+

+
∑
i<j

(−1)i+jω([xi, xj], x0, . . . , x̂i, . . . , x̂j, . . . , xn).
(4)

Toto zobrazení nazveme operátor pseudokohranice.
Zobrazení dσ je nilpotentní (t.j. d2

σ = 0) práv¥ tehdy, kdyº σ je homomor�smus. V
kaºdém p°ípad¥, pokud se omezíme pouze na formy s hodnotami v centru g, v²echna
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zobrazení dσ splynou do jednoho operátoru kohranice (zna£it ho budeme dρθ
nebo dθ) a

vytvo°í nám komplex (C∗(h,C(g)), dθ), nebo´ σ �C(g) uº homomor�smus je.

1.2 Obstrukce roz²í°ení

Zobrazení σ sice obecn¥ není homomor�smus, ale m·ºeme �zm¥°it�, jak moc se od n¥j li²í.
Pro kaºdou dvojici vektor· x, y z h musí totiº platit, ºe σ([x, y])− [σ(x), σ(y)] je n¥jaká
vnit°ní derivace. Pro kaºdou σ m·ºeme tímto zp·sobem zvolit γσ : h ∧ h→ g, tak aby

[σ(x), σ(y)]− σ([x, y]) =: adγσ(x,y) . (5)

Pomocí dvojice σ a γσ lze de�novat algebru na E := hu g.

[〈0; e1〉, 〈0; e2〉] := 〈0; [e1, e2]〉,
[〈x; 0〉, 〈0; e〉] := 〈0;σ(x)e〉,
[〈x; 0〉, 〈y; 0〉] := 〈[x, y]; γσ(x, y)〉.

(6)

Zbytek relací se dode�nuje tak, aby bylo násobení lineární a antisymetrické. Zbývá
ov¥°it, zda platí Jacobiho identity pro r·zné volby vektor· ei ∈ g a x, y, z ∈ h.

• Jacobiho identita pro libovolnou trojici e1, e2, e3 je spln¥na, nebo´ platí i pro g.

• Jacobiho identita pro libovolnou trojici e1, e2, x je spln¥na díky faktu, ºe σ je
derivace.

• Jacobiho identita pro libovolnou trojici e, x, y je spln¥na z de�nice γσ v (5).

• Jacobiho identita pro libovolnou trojici x, y, z neplatí automaticky, ale je spln¥na
práv¥ tehdy, kdyº dσ γσ = 0.

De�nujme obstrukci fσ,γσ := dσ γσ a prozkoumejme ji. Na za£átku víme, ºe se jedná

o zobrazení fσ,γσ :
3∧

h→ g.

V¥ta 1.1. Pro v²echny °ezy σ a kompatibilní volby γσ má fσ,γσ hodnoty v C(g). A tedy
fσ,γσ ∈ C3(h,C(g)).

Proof. Plyne z de�nice γσ v (5).

V¥ta 1.2. Pro v²echny °ezy σ a kompatibilní volby γσ je obstrukce fσ,γσ kocyklus.

Proof. Aº na krok (∗), kde je nutno rozepsat del²í algebraický výraz, je d·kaz p°ímo£arý.

fσ,γσ ∈ Z3(h,C(g); ρθ) ⇔ 0 = dθ f
σ,γσ = dθ dσ γσ = dσ dσ γσ

(∗)
= [γ(x0, x1), γ(x2, x3)] + cyklus v x0, . . . , x3.
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Jiº víme, ºe pro dané zobrazení θ jsou obstrukce vºdy kocykly. Následující tvrzení
ukáºou, ºe dokonce pokrývají práv¥ jednu t°ídu v H3(h,C(g); ρθ).

V¥ta 1.3. Pro libovolnou kompatibilní dvojici σ, γσ a libovolný dal²í °ez σ′ existuje
γ′ ∈ C2(h, g) kompatibilní s σ′ a zachovávající obstrukci, t.j.

fσ,γσ = fσ
′,γ′

dσ γσ = dσ′ γ
′.

(7)

Proof. Pro σ′(x) = σ(x) + adA(x) lze volit

γ′(x, y) := γ(x, y) + A([x, y]) + σ(x)A(y)− σ(y)A(x) + [A(x), A(y)],

= γ(x, y) + dσ A(x, y) + [A(x), A(y)]
(8)

V¥ta 1.4. Pro dané θ se libovolné dv¥ obstrukce fσ1,γ1 , fσ2,γ2 li²í o kohranici.

Proof. Nejprve vyuºijeme p°edchozí v¥ty a najdeme γ′ takové, ºe fσ1,γ1 = fσ2,γ′ a poté
ukáºeme, ºe γ′ − γ2 je hledaná kohranice.

Nyní víme, ºe v²echny obstrukce pat°í do jedné t°ídy ekvivalence. Následující v¥ta
ukazuje, ºe tato t°ída ekvivalence je tímto zp·sobem úpln¥ pokryta.

V¥ta 1.5. Pro libovolnou obstrukci fσ,γσ a libovolný ekvivalentní kocykl g platí, ºe g je
také obstrukce.

Proof. Ukáºeme, ºe g = fσ,γσ+β, kde β je prvek jehoº kohranice je rozdíl g − f . Snadno
se ukáºe, ºe γσ + β je kompatibilní se σ.

Jelikoº obstrukce pokrývají práv¥ jednu kohomologickou t°ídu, m·ºeme de�novat
�globání obstrukci�

fθ := [fσ,γσ ] (9)

a shrnout na²e poznatky v následujícím tvrzení.

V¥ta 1.6. Roz²í°ení g pomocí h
θ→ Out(g) existuje práv¥ tehdy, kdyº fθ = 0.

Proof. Pokud roz²í°ení existuje, odpovídá mu jedna nulová obstrukce, takºe t°ída ekviva-
lence fθ musí být nutn¥ nulová. Pokud je globální obstrukce nulová mohu vzít libovolnou
obstrukci fσ,γσ , ta je nutn¥ ekvivalentní 0 a pomocí postupu ve v¥t¥ 1.5 najdeme nulovou
obstrukci.
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2 �e²itelné roz²í°ení

V sekci 1 jsme rozebrali, jak lze de�novat struktura lineární algebry na direktním sou£tu
h u g. V této sekci de�nujeme, co se myslí obecným roz²í°ením a poté se omezíme na
roz²í°ení °e²itelná.

De�nice 2.1. Roz²í°ení algebry g o algebru h je uspo°ádaná trojice (i,E, π), taková, ºe

1. π : E→ h je homomor�smus algeber,

2. i : g→ E je homomor�smus algeber

3. krátká posloupnost

0 g E h 0........................................................................................ ............ ........................................................................................ ............
i

........................................................................................ ............
π

........................................................................................ ............ (10)

je exaktní krátkou posloupností (SES).

Tato de�nice v sob¥ zahrnuje fakt, ºe g lze interpretovat jako ideál algebry E, nebo´ z
exaktnosti posloupnosti (10) plyne, ºe g je isomorfní jádru zobrazení π. Navíc lze korektn¥
sestrojit homomor�smus algeber θ : h → Out(g) p°edpisem θ(x) := i−1 ◦ adπ−1x ◦i, coº
není nic jiného, ºe se vezme libovolný π-vzor x, najde se odpovídající vnit°ní derivace a
ta se zúºí na g.

D·sledky de�nice v p°edchozím odstavci, spolu s faktem, ºe E je jako vektorový
prostor isomorfní hug ukazují, ºe postupem v sekci 1 opravdu vytvo°íme roz²í°ení algebry
g o algebru h. (Dokonce takto dostaneme, aº na isomor�smus SES, v²echna roz²í°ení.)

�e²itelné roz²í°ení g je speciální p°ípad roz²í°ení algebry, ve kterém E je °e²itelná
a g je jejím nilradikálem. Poºadavek nilradikality nám dá n¥kolik podmínek. Zaprvé
g musí být nilpotentní, potom, jelikoº h ' E / g, vyºadujeme po algeb°e h, aby byla
abelovská a do t°etice chceme, aby h p·sobilo na g nilindependentn¥. To znamená, ºe
pokud zvolíme libovolný nenulový vektor x z dopl¬ku g do E, tak vnit°ní derivace adx
nesmí být nilpotentní (jinak by x také pat°ilo do nilradikálu).

3 Klasi�kace

Te¤, kdyº víme, ºe roz²í°ení nejsou nic jiného neº krátké exaktní posloupnosti (SES),
m·ºeme je klasi�kovat. Na mnoºin¥ roz²í°ení algebry g o algebru h se zavádí dv¥ relace
ekvivalence, první je de�nována pomoci isomor�e SES a druhá, jemn¥j²í, pomocí ekviva-
lence SES.

De�nice 3.1 (Isomor�e SES). Dv¥ krátké exaktní posloupnosti (SES)

0 Ai Bi Ci 0........................................................................................ ............ ........................................................................................ ............
αi

........................................................................................ ............
βi

........................................................................................ ............ (11)
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jsou isomorfní, práv¥ kdyº existuje trojice isomor�sm· (a, b, c) takových, ºe diagram

0 A1 B1 C1 0

0 A2 B2 C2 0

...................................................................................................................................................... ............ ...................................................................................................................................................... ............
α1

...................................................................................................................................................... ............
β1

...................................................................................................................................................... ............

...................................................................................................................................................... ............ ...................................................................................................................................................... ............
α2

...................................................................................................................................................... ............
β2

...................................................................................................................................................... ............
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
...............
............
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b
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........

........

........
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........
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........

........

........

........

........

...............

............

c (12)

komutuje.

Poºadavky v de�nici lze samoz°ejm¥ zeslabit. Z existence isomor�sm· a, b plyne exis-
tence isomor�smu c, stejn¥ jako z existence isomor�sm· b, c plyne existence a. P°ípadn¥
takzvaná v¥ta o t°ech mor�smech °íká, ºe pokud a, c jsou isomor�smy a existuje homo-
mor�smus b, tak b je také isomor�smus.

Krom¥ isomor�e krátkých exaktních posloupností se je²t¥ de�nuje jejich ekvivalence.

De�nice 3.2 (Ekvivalence SES). Dv¥ krátké exaktní posloupnosti (SES), pro které A1 =
A2 a C1 = C2 jsou ekvivalentní, pokud existuje homomor�smus Ξ : B2 → B1 takový, jsou
isomorfní pomocí trojice (1,Ξ,1). Neboli komutuje diagram

0 A B1 C 0

0 A B2 C 0

...................................................................................................................................................... ............ ...................................................................................................................................................... ............
α1

...................................................................................................................................................... ............
β1

...................................................................................................................................................... ............

...................................................................................................................................................... ............ ...................................................................................................................................................... ............
α2

...................................................................................................................................................... ............
β2
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1
(13)

Je vid¥t, ºe se jedná o siln¥j²í podmínku, neº isomor�smus, protoºe �xujeme první a
t°etí homomor�smus na identitu.

Ob¥ relace ekvivalence mají své výhody. Hrub²í relace se pouºívala ve [2�4], nebo´
platí následující v¥ta.

V¥ta 3.3. M¥jme dv¥ °e²itelná roz²í°ení (iε,Eε, πε), kde ε = 1, 2. Algebry E1 a E2 jsou
isomorfní práv¥ tehdy, kdyº jsou roz²í°ení (iε,Eε, πε) isomorfní jako SES.

Proof. Sm¥r zprava doleva plyne z de�nice isomor�e SES. Pro opa£ný sm¥r musíme nalézt
automor�smus a z de�nice (3.1), za p°edpokladu, ºe známe b. Existence c je pak zaru£ena.
Vyuºijeme faktu, ºe obraz iε(g) je nilradikálem g, protoºe uvaºujeme °e²itelná roz²í°ení.
Nilradikál je jednozna£n¥ ur£en a m·ºeme tedy korektn¥ sloºit a := i−1

1 ◦ b ◦ i2. Snadno
je vid¥t, ºe levý £tverec v (12) komutuje.

Pokud nás tedy zajímají kolik máme t°íd neisomorfních algeber, jeº jsou °e²itelnými
roz²í°eními zadaného g, sta£í nám zajímat se o neisomorfní SES. Na druhou stranu ek-
vivalence roz²í°ení nám pomocí následující v¥ty, kterou ponecháme bez d·kazu, umoºní
zapojit kohomologické metody.

V¥ta 3.4. Pro pevné θ : h→ Out(g) jsou t°ídy neekvivalentních roz²í°ení (pokud alespo¬
jedno roz²í°ení existuje) 1-1 k H2(h,C(g), ρθ).
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V této sekci jsme se dozv¥d¥li, ºe abychom klasi�kovali °e²itelná roz²í°ení algebry g o
k vektor·, je pot°eba vzít v²echny homomor�smy θ : ak → Out(g), kde ak je abelovská
algebra o dimenzi k. Pro dané pevné θ je pot°eba vybrat libovolný °ez σ : a → Der(g)
a nejprve zkontrolovat nilindependenci, t.j. podívat se, zda jediný nilpotentní operátor v
σ(a) je ten nulový. Následn¥ vybereme libovolné γ : h∧ h→ g kompatibilní podle vzorce
(5). Pokud je obstrukce fσ,γ = 0 mod B3(a,C(g), ρθ), pak roz²í°ení existuje a mnoºinu
neekvivalentních roz²í°ení s daným θ lze parametrizovat pomocí H2(a,C(g), ρθ).

4 Hypotézy

V této sekci budeme prezentovat dv¥ hypotézy, které jsme vyvodili z výsledk· z [2�4] a
dal²ích, v nich citovaných, £lánk·.

Hypotéza 1a �e²itelné roz²í°ení s maximální dimenzí je jednozna£né ve smyslu, ºe pro
daný °ez σ existuje práv¥ jedno kompatibilní γ.

Hypotéza 2a Pokud pro dané θ existuje alespo¬ jedno roz²í°ení, lze zvolit σ tak, ºe jeho
hodnoty jsou v centru C(g).

Nyní m·ºeme vyuºít na²ich de�nic a p°eformulovat na²e hypotézy do °e£i kohomologií
a krátkých exaktních posloupností. V té má první hypotéza obzvlá²t¥ jednoduchý tvar.

Hypotéza 1b Pro roz²í°ení s maximální dimenzí, které je dané zobrazením θ, jeH2(a,C(g), ρθ) =
0.

Hypotéza 2b Pokud pro dané θ existuje alespo¬ jedno roz²í°ení, existuje roz²í°ení (i,E, π)
takové, ºe π má levou inverzi (takzvané splittable roz²í°ení).

Nyní lze snadno odvodit hlub²í d·vod, pro£ první hypotéza platila pro na²e zkoumané
p°íklady. K tomu pouºijeme v¥tu, kterou lze najít dokázanou nap°íklad v [1].

V¥ta 4.1. Nech´ a je nilpotentní algebra, ρ reprezentace této algebry na b. Potom jsou
následující t°i tvrzení ekvivalentní.

1. H0(a, b, ρ) = 0.

2. H1(a, b, ρ) = 0.

3. Hn(a, b, ρ) = 0, ∀n ∈ N.

Tuto v¥tu nyní pouºijeme. Algebra a bude abelovská algebra, kterou roz²i°ujeme,
roli b bude hrát C(g) a reprezentace bude ρθ. Ve v²ech p°ípadech maximálního roz²í°ení,
které jsme zkoumali byl °ez σ vºdy regulární, t.j. operátory σ(x) pro x ∈ a nem¥ly
netriviální spole£né jádro. Tím více nemají spole£né jádro, kdyº je zúºíme na C(g). A
tvrzení, ºe σ(a)�C(g) nemají spole£né jádro není nic jiného neº p°eformulované tvrzení, ºe
H0(a,C(g), ρθ) = 0. A z v¥ty 4.1 pak plyne, ºe kohomologická grupa H2(a,C(g), ρθ) = 0,
a to je tvrzení na²í hypotézy.

Z v¥ty 4.1 plyne také pomocí podobné úvahy, ºe pro libovolné nilindependentní reg-
ulární θ roz²í°ení existuje (H3(a,C(g), ρθ) = 0) a je jednozna£né (aº na ekvivalenci).
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Tyto úvahy nám toho samoz°ejm¥ ne°íkají moc o tom, pro£ bylo pro maximální
roz²í°ení θ regulární. To je p°edm¥tem na²eho dal²ího zkoumání, coº platí i pro na²i
druhou hypotézu.

References

[1] D. W. Barnes. On the cohomology of soluble Lie algebras. Math. Z. 101 (1967),
343�349.

[2] L. �nobl and D. Karásek. Classi�cation of solvable Lie algebras with a given nilradical

by means of solvable extensions of its subalgebras. Linear Algebra Appl. 432 (2010),
1836�1850.

[3] L. �nobl and P. Winternitz. A class of solvable Lie algebras and their Casimir invari-

ants. J. Phys. A 38 (2005), 2687�2700.

[4] L. �nobl and P. Winternitz. All solvable extensions of a class of nilpotent Lie algebras

of dimension n and degree of nilpotency n− 1. J. Phys. A 42 (2009), 105201, 16 pp.



Algebraic Multigrid on GPU

Vladimír Klement

3rd year of PGS, email: wlada@post.cz
Department of Mathematics
Faculty of Nuclear Sciences and Physical Engineering, CTU in Prague

advisor: Tomá² Oberhuber, Department of Mathematics
Faculty of Nuclear Sciences and Physical Engineering, CTU in Prague

Abstract. This article deals with the method of algebraic multigrid and its parallelization on
GPU. Algebraic multigrid is a sparse matrix iterative solver, which �nds the solution by solving
also restricted versions of the original problem. The main di�erence from more widely known
geometric multigrid is that it can create the restricted problems without any knowledge about
the matrix origin and therefore it can be used for larger range of problems. The article farther
presents possibilities how to parallelize this algorithm on multicore CPU architecture and on
GPU. Finally it also shows speedup obtained by the GPU parallelization.

Keywords: GPU, Algebraic Multigrid, Parallelization

Abstrakt. Tento £lánek se zabývá metodou algebraického multigridu a její paralelizací na GPU.
Algebraický multigrid je itera£ní metoda pro °e²ení soustav rovnic s °ídkou maticí, vyuºívající k
°e²ení restrikce problému na men²í soustavy. Na rozdíl od geometrického multigridu nepot°ebuje
k vytvo°ení podproblém· znalost p·vodní úlohy, ze které matice pochází, coº jej £iní mnohem
více univerzálním. �lánek se dále zabývá moºnostmi paralelizace tohoto algoritmu a to jednak
pro vícejádrové proceseory a druhak pro gra�cké karty. V záv¥ru je p°edstaveno zrychlení,
kterého bylo paralelizací na GPU dosaºeno.

Klí£ová slova: GPU, Algebraický Multigrid, Paralelizace

1 Introduction

Multigrid methods are a group of algorithms for solving di�erential equations using a
hierarchy of discretizations, they can be used as solvers as well as preconditioners. Con-
vergence analysis shows that many standard iterative solvers can quickly eliminate high-
frequency parts of errors, but not the low-frequency ones. The main idea of multigrid
methods is therefore to solve problem also on hierarchy of coarser grids, where formerly
low-frequency parts of error become high-frequency ones. The solution from coarser grids
can be then used to improve solution on the original grid, which should yield a signi�-
cant improvement in convergence speed. The typical application for multigrid is in the
numerical solution of elliptic partial di�erential equations in two or more dimensions.

Main class of this method (the so called geometric multigrid methods) has the issue
that coarser grids and transition operators between them must be provided as part of the
original problem and are de�ned based on the used discretization shceme and geometry.
This restricts the use of geometric multigrid as black-box solver and limits the types of
problems it can be used for.
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Algebraic multigrid methods (AMG), on the other hand, construct their hierarchy
of operators directly from the system matrix, and the levels of the hierarchy are simply
subsets or aggregations of original unknowns without any geometric interpretation. Thus,
AMG methods can be used as true black-box solvers for sparse matrices, however their
are mostly little less e�ective, that their geometric counterpart.

As with all iterative methods if solution of really big problems is desired some kind of
parallelization must be used. This article deals with parallelization of multigrid methods
on multi-core architecture with shared memory, speci�cally on multi-core CPUs and
GPUs. GPU (graphical processing unit) is a special piece of hardware designed to improve
visual quality of computer games. It has highly parallel architecture and outperforms
processors both in computational power and memory bandwidth, which makes it very
suitable for e�cient numerical programming.

2 Algebraic multigrid

Main part of AMG is the creation of coarser version of the original problem. This is
achieved through following steps:

• Selecting variables which will form coarser grid

• De�ning transition operators

• Creating coarse problem matrix

Once the problem hierarchy is created the main iteration is same as in the case of ge-
ometric multigrid and so any standard multigrid cycle can be used to obtain the �nal
solution.

2.1 Coarse/Fine grid splitting

First part is to choose unknowns which will form the coarser grid. There are two require-
ments on the coarser grid:

1. Must correctly approximate the problem.

2. Must have substantially fewer points.

First requirement is however quite general so it will have to be explained a bit more.
For coarser grid to correctly approximate the �ner one it is needed that all unknowns
which aren't in the coarser grid can be approximately calculated from the ones that are
in the coarser grid. The problem matrix A describes how each of the unknowns depend
on it's own value (we expect A to be M-matrix so the diagonal entry should be dominant)
and on the values of other unknowns (non-diagonal entries). Therefore it is logical the
expect that some good approximation of the missing unknowns can be obtained if one
knows the values of unknown which the missing ones depend upon. Let us de�ne strong
dependence.
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De�nition 1: Given a threshold value 0 < θ ≤ 1, the variable (unknown) ui strongly

depends on the variable uj if

−ai,j ≥ θmaxk 6=i(−aik). (1)

This means that variable ui strongly depends on the variable uj if the coe�cient aij

is comparable in magnitude to the largest o�-diagonal coe�cient in the ith equation. We
can state this also from inverse perspective.

De�nition 2: If the variable ui strongly depends on the variable uj, then the variable
uj strongly in�uences the variable ui.

Let us denote C as the set of all unknowns which will be chosen for coarse grid, F as
all unknowns that won't and Si all unknowns, that strongly in�uence unknown i. Then
given the previous de�nitions we can more exactly specify coarse grid requirements as

1. For each unknown i ∈ F , every unknown j ∈ Si (that strongly in�uence i) either
should be in the C or should strongly depend on at least one point in C

2. The set of coarse unknowns C should be a maximal subset of all unknowns with
the property that no unknown i ∈ C strongly depends on any other unknown
j ∈ C, j 6= i.

It is not always possible to enforce both these rules. In such cases we prefer to ful�ll
the �rst one. While this choice may lead to larger coarse grids than necessary, experience
shows that this trade-o� between accuracy and expense is generally worthwhile[1].

The basic coarsening algorithm can look as follows:

1. Evaluate all unknowns, based on the number of other variables they strongly in�u-
ence

2. Take one with biggest score (in case there is more than one, select any of them)
and put in C

3. Put all unknowns that strongly depend on it to F

4. Reevaluate all a�ected unknowns

5. Repeat from 2

2.2 De�ning transition operators

When the coarse grid has been selected, the next goal is to de�ne transition operators.
Starting with the interpolation one Ih

2h(although physical grids may not be present, we
continue to denote �ne-grid quantities by h and coarse-grid quantities by 2h) we require
that the ith component of Ih

2he be given by

(Ih
2he)i =

{
ei if i ∈ C∑

j∈Ci
wijej if i ∈ F (2)
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where the interpolation weights are de�ned, according to [1] by

wij = −
aij +

∑
m∈Ds

i

(
aimamjP
k∈Ci

amk

)
aii +

∑
n∈Dw

i
ain

, (3)

where Ci is the set of the coarse-grid unknowns j ∈ C that strongly in�uence i, Ds
i is the

set of the neighboring unknowns k ∈ F that strongly in�uence i, and Dw
i is the set of all

neighboring unknowns that do not strongly in�uence i.
Restriction operator can be then constructed from the interpolation one by simple

transpose:
I2h
h = (Ih

2h)
T , (4)

and restricted matrix is produced by

A2h = I2h
h AhIh

2h. (5)

2.3 Multigrid cycle

Main iteration multigrid cycle is same for both algebraic and geometric multigrid. It
expects to have the coarse problem matrices and transition operators de�ned and it �nds
the solution of given problem by iterative process. Classical V-cycle multigrid cycle looks
as follows:

1. Start with initial approximate solution xh
0

2. Relax (do few smoother iterations) the current solution to get new guess xh

3. Compute the �ne-grid residual rh = bh − Ahxh

4. Restrict residual to the coarse grid r2h = I2h
h rh

5. Solve A2he2h = r2h

6. Interpolate error correction to �ne grid by eh = Ih
2he

2h

7. Correct current solution xh = xh + eh

8. Repeat from 2 (if needed)

This was case of two grid hierarchy, if more grids are to be used, simply replace the direct
solution of the coarse-grid problem with a recursive call to this algorithm on all grids
except the coarsest one.

3 Multigrid parallelization

Main part of the computational time is normally spent in iteration cycle. This cycle as
was already described, consist of transition operators and some relaxation, which is the
most critical part of whole algorithm, therefore it's parallelization will be described �rst.
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3.1 Relaxation scheme

As smoother we use either damped Jacobi method or Gauss-Seidel method. Jacobi
method is quite easy to parallelize as it doesn't have any dependence in calculation of
new unknown values, each thread can be used to calculate any number of them. Gauss-
Seidel on the other hand is inherently sequential and thus cannot be directly parallelized.
Therefore it was needed to switch to its Red-Black version, which is easily parallelizable
even though it has the disadvantage, that it can't be used for general matrices. This can
be solved by multi-color coloring, but that wasn't implemented yet.

3.2 Transition operators

Simple Matrix-vector multiplication is used to convert quantities from one grid to another.
So it can be easily parallelized over unknowns,

void Mult ( const mat & A, const a r r & x , a r r & r e s )
{
#pragma omp p a r a l l e l f o r schedu le ( s t a t i c )
f o r ( i n t r = 0 ; r < A. getRowsCount ( ) ; r++)
{
r e s [ r ] = 0 ;
f o r ( i n t i = 0 ; i < A. getRowSize ( r ) ; i++)

r e s [ r ] += A. getRowValue ( r , i ) ∗ x [A. getColIndex ( r , i ) ] ;
}

}

3.3 Coarsening

Most challenging part to paralelize is the coarsening algorithm. It needs to select many
coarse unknowns at once but also ensure that there aren't strong dependencies between
them. 2 standard strategies exist.

Grid decomposition Which divides the grid to smaller ones and each thread splits
one of these sub-grids and afterwards boundaries are solved in some less parallel way. This
version is however not really suitable for architectures with large number of threads (e.g.
graphic cards), because then processing boundary points becomes the main computational
part.

Noise adding Adds random values to score of each unknown, which creates local
maxims, which can be chosen for coarse grid in parallel. However there are number of
disadvantages to this system:

• Obtained results are random and will di�er each time.

• More complicated structure for storing point scores must be created.

• Still di�cult to paralelize e�ectively.

Because none of the method seems to be easily usable this part of the algorithm wasn't
parallelized yet and will be dealt with later if it starts to hinder the computations.
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4 GPU programming

GPU is shared memory parallel architecture so all threads that run on it use the same
memory. Unlike multi-core programming where there are typically 2-32 computational
cores running at once, GPU can spawn hundreds of concurrently running threads. These
threads are, however, not completely independent and all run the same function (called
kernel) so it is the SIMD (simple instruction multiple data) type of architecture.

There are several technologies, that allow programmer to create application for GPU,
but most important are [6]:

• OpenGL - It is cross-platform graphical API so basic knowledge about computer
graphics is needed and general problems have to be inconveniently masked as a
graphical ones. This was the �rst way how graphics card could be used to solve
general problems, but nowadays it is once again used only for graphics.

• CUDA - Is a technology from NVidia company designed speci�cally for general
purpose computing on graphics cards, main disadvantage is that it only works with
NVidia graphics cards. Advantages are that it is being rapidly developed and there
exist a lot of example and documentation for it.

• OpenCL - Newest technology for general computation on graphics card, it is an
industry standard and so it can be used for almost all new devices ranging from
graphics cards to cell phones.

For the purpose of this article CUDA was used rather than OpenCL. However core parts
of both these technologies are very similar, the main di�erence is only in the naming of
the API functions.

4.1 GPU speci�cs

There are some key principles which must be taken into account when creating program
for GPU, which come from the type of calculations graphics cards were designed for. The
most important are:

Limited communication Computational threads form a two layer hierarchy. On
�rst one threads are grouped to blocks, and on second all blocks create the so called grid.
Number of blocks in the grid is completely up to the programmer and it should match
the size of the solved problem. Size of the block can be also chosen, however it must be
less than 513. The reason for this two level hierarchy is that only threads that are in
the same block can communicate between each other. This means that blocks have to be
completely independent.

Branching Threads on the GPU aren't completely independent, groups of 32 threads
in the same block forms the so called warp. Threads in the warp has to always execute
same instruction at the same time or wait, so if the kernel contains divergent branches
and not all threads in the warp take the same one, complete computational time for each
thread will be equal to the sum of all taken branches.
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Coalescing Very important feature for numerical computation on GPU is the coa-

lescing. Graphics card have much bigger bandwidth than standard RAM when reading
blocks of data. More precisely when half warp (16 consecutive threads) try to read or
write continuous block of data it can be coalesced into single operation and so whole
block can be loaded more than ten times faster. Since most numerical applications are
limited by memory accesses, utilizing this feature is absolutely crucial when implementing
numerical problems on GPU. There are several ways how coalescing can be achieved even
when data aren't naturally read in right order:

• Best solution, if it is possible, is to reorder data so that access to them will be
coalesced. One classic example is to use structure of arrays instead of array of
structures (i.e. group data by type, not by the thread they belong to).

• Threads in the same block can pre-fetch data to shared memory (shared within
block), even random accesses to this memory are very cheap. This is especially
useful when needed data form a continuous region, but are accessed randomly.

• If data are needed to be ordered di�erently in di�erent kernels they can be dupli-
cated (unless memory is a strong concern) this can be especially useful in the case
of constant data (for example data describing mesh on which problem is solved).

Transports between GPU and CPU memory GPU don't use same memory as
CPU, it has its own video RAM (VRAM). This isn't issue when problem is completely
solved on GPU, but in case of converting only most computational demanding parts on
GPU and doing rest of the work on processor, constant copying can cause a signi�cant
overhead.

4.2 GPU implementation

GPU implementation of the parallel algorithm was quite straightforward, only needed
change was that if Red-Black Gauss-Seidel method is to be used, data must be reorder so
that coalescing can occur during Red/Black phase (i.e. they must be reordered according
to colors). Apart from that all parts of algorithm were easily parallelized by the manner
that each unknown is handled by one thread and there is no communication between
threads. This means:

• In matrix-vector multiplication each thread multiply one row of matrix with the
given vector and write one value of �nal vector

• In Jacobi/Gauss-Seidel iteration each thread actualize one unknown

• In computation of residuum each thread computes one value of �nal vector (similar
to matrix-vector multiplication).

One notable thing is that GPU isn't well suited for restriction operations like sum or
min/max search. Algorithm however needs to compute L2 norm of residuum which is a
sum type operation. To accomplish this e�cient algorithm from [5] was used:
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__global__ void Norm2Kernel ( double ∗ in , double ∗ out , i n t N)
{

__shared__ f l o a t sdata [CUDA_SUM_BLOCK_SIZE] ;
const unsigned i n t t i d = threadIdx . x ;
sdata [ t i d ] = 0 ;

f o r ( i n t i = t i d ; i < N; i+=CUDA_SUM_BLOCK_SIZE)
{

sdata [ t i d ] += in [ i ]∗ in [ i ] ;
}
__syncthreads ( ) ;

f o r ( unsigned i n t s = blockDim . x/2 ; s > 0 ; s >>= 1 )
{

i f ( t i d < s ) sdata [ t i d ] += sdata [ t i d + s ] ;
__syncthreads ( ) ;

}

i f ( t i d == 0 ) out [0 ]= sdata [ 0 ] ;
}

and residuum was calculated only once each 10 smoother iterations.
All these operations are relatively undemanding on arithmetic computations, so their

bottleneck is the memory bandwidth. Therefore coalescing became crucial for e�cient
implementation. Fortunately apart from red/black reordering it was quite easy to achieve
it without too much added code complexity.

Also RAM/VRAM data transfers, don't create any issue because whole multigrid
cycle is implemented on the gpu. So the problem is only once copied to VRAM and after
the computation �nal result is copied back.

5 Results

The computations were done on the system equipped by Intel Core 2 Duo 2.6Ghz CPU
and Nvidia Geforce GTX480 GPU. All simulations were computed in double precision.

First table (Tab 1) compares classical iterative solvers with both multigrid methods.
It clearly shows that multigrid methods are faster by the order of magnitude and that
geometric multigrid is faster than the more general algebraic one, but the di�erence isn't
too big.

Second table (Tab 2) shows the same problem, this time it compares multigrid methods
implemented on CPU and GPU.

Last table (Tab 3) shows again comparison of CPU and GPU version of multigrid but
for a larger problem. Interesting fact, that should be noted here, is that GPU speed-up
is worse than for the smaller problem. This is strange because GPU normally performs
better for larger problems as the e�ect of GPU overhead becomes negligible. This issue
should be looked into in the future.
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Time Rel. Speed-up
Jacobi 1419 s 1
Gauss-Seidel 952 s 1.5
Geometric-Multigrid 87 s 16.3
Algebraic-Multigrid 113 s 12.6

Table 1: Comparison of di�erent CPU solvers. For the 2D Laplace equation with 65 000
degrees of freedom

Time Speed-up
Geometric-multigrid 87 s
GPU Geometric-multigrid 7 s 12.4
Algebraic-Multigrid 113 s
GPU Algebraic-Multigrid 18 s 6.2

Table 2: Comparison of multigrid solvers on CPU and GPU. For the 2D Laplace equation
with 65 000 degrees of freedom

Also because multicore architectures are quite common nowadays it would be good the
compare GPU version also with version parallelized over OpenMP or similar technology.
This was tested, however the obtained speed-up was quite insigni�cant (about 20% for 4
core CPU), so we suspect that there was some fundamental �aw and so we won't compare
GPU implementation with this version until further testing.

Time Speed-up
Geometric-multigrid 1218 s
GPU Geometric-multigrid 143 s 8.5
Algebraic-Multigrid 1538 s
GPU Algebraic-Multigrid 276 s 5.6

Table 3: Comparison of multigrid solvers on CPU and GPU. For the 2D Laplace equation
with 262 000 degrees of freedom

6 Summary

This article presented key principles of Algebraic multigrid and its parallelization as
well as basics of GPU programming. The algebraic multigrid algorithm was successfully
implemented and parallelized on GPU. It was proven that AMG is suitable for GPU
implementation and it can be accelerated more than �ve times. In the future we would like
to create also proper OpenMP implementation to compare it with the GPU version, test
di�erent coarsening strategies and use the AMG solver in our program for incompressible
�ow simulations.
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Abstract. This contribution deals with the numerical simulation of dislocation dynamics.

Dislocations are line defects in crystalline lattice causing the disturbance of the regularity of the

crystallographic arrangement of atoms. From a mathematical point of view, the dislocations are

de�ned as smooth closed or open planar curves which evolve in time. The motion itself is only

two-dimensional and is driven by the equation for the mean curvature �ow. We describe the

evolving curves by parametric approach and the model is numerically solved it by means of semi-

implicit �nite di�erences and �owing �nite volumes method. However, numerical experiments

show this model exhibits unintended behaviour, since during the evolution, the grid points are

accumulated in certain segments. We overcome this problem by adding the tangential velocity

to the model, which does not a�ect the shape of the curve.

Keywords: dislocations, mean curvature �ow, tangential redistribution

Abstrakt. Tento p°ísp¥vek se zabývá simulací disloka£ní dynamiky. Dislokace jsou £árové

poruchy v krystalové m°íºce zp·sobující nepravidelnost v uspo°ádání atom·. Z mamematického

hlediska jsou dislokace popsány jako hladké uzav°ené nebo otev°ené planární k°ivky, které se

vyvíjejí v £ase. Jejich pohyb je popsán rovnicí pro pohyb k°ivek °ízený jejich st°ední k°ivostí.

Pohybující se k°ivky jsou de�novány parametrickým popisem a model je numericky °e²en semi-

implicitní metodou zaloºenou na metod¥ kone£ných diferencí nebo plovoucích kone£ných objem·.

Numerické experimenty v²ak ukazují, ºe tento model vykazuje defektní chování v podob¥ toho,

ºe v pr·b¥hu £asového vývoje se uzlové body k°ivky nahromadí v jistých segmentech. Tento

necht¥ný jev je °e²en dodáním te£né sloºky rychlosti do modelu.

Klí£ová slova: dislokace, pohyb k°ivek °ízený st°ední k°ivostí, redistribuce

1 Introduction

Dislocations are line defects of the crystalline lattice. They acts in such a way that the
crystallographic arrangement of atoms is disturbed along the dislocation line. Theoretical
framework about the dislocations theory is extensivelly discussed in literature such as [1,
2]. From the mathematical point of view, the dislocations can be represented as a closed
(inside the crystal) or open (ending on a surface of the crystal) curves, which can evolve in
time and space. At a certain physical conditions, e.g. at low homologous temperatures,
the dislocations can move only along so called slip planes, i.e. some crystallographic
planes with the highest density of atoms.

∗This work has been supported by the grant Two scales discrete-continuum approach to dislocation
dynamics, project No. P108/12/1463 of the Grant Agency of the Czech Republic.
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2 Curve Evolution in Plane

The dimensionless mathematical model of evolving dislocation curve Γt can be described
by the equation for the mean curvature �ow, which reads as

v = −kΓ + F, (1)

where v is the normal velocity, kΓ is the mean curvature and F is the force term acting
on the curve Γt in the normal direction. Our goal is to �nd a family {Γt : t ∈ [0, Tmax]} of
closed or open curves in R2, whose normal velocity is proportional to the mean curvature,
i.e. satisfying the equation for the mean curvage �ow (1). Nowadays, there exist sev-
eral approaches to treat the equation (1). Very popular methods come from the family
of interface-tracking approaches, such as the phase-�eld method [5, 6] or the level set
method [3, 4]. It is often re�ered, that their main advantage is the ability to deal with
the topological changes like merging or splitting with almost no di�culties. Hovewer,
when considering to use such approaches for a dislocation dynamics problems, where
is often required a longer time evolution, one might to experience some di�culties in
the computational costs since in the case of a planar curve, it is required to solve the
two-dimensional problem to obtain the curve, which is an one-dimensional object.

Very fast method for the time evolution of curves is provided by the parametric (some-
times referred as direct or Lagrangian) approach [7]. The curve Γt can be parametrized
either by some �xed interval or directly by its length (so called arc-length parametriza-
tion). The parametric approach, hovewer, can not deal with the topological changes on
its own, thus it requires development of separate algorithms to treat such changes.

In this contribution, we focus on the parametric approach. In this case, the planar
curve Γt is given as the following set

Γt = {X(u, t) = (X1(u, t), X2u, t) : u ∈ Iu},

where the curve is described by the spatially and time dependent vector function called
parametrization

X : Iu × It → R2,

where Iu = [0, 1] is the �xed interval for the parameter u and It = [0, T ] is the time
interval. The unit tangential vector t is de�ned as t = ∂uX/|∂uX|. The unit normal
vector n1 is de�ned as n = ∂uX

⊥/|∂uX|, where the X⊥ is vector perpendicular to the
X, and hence the relation t · n = 0 holds. The normal velocity v is de�ned as the time
derivative of X projected into the normal direction

v = ∂tX ·
∂uX

⊥

|∂uX|
.

According to the Frenet formulae, one can determine the curvature kΓ from the following
relation

1

|∂uX|
∂ut = −kΓ

∂uX
⊥

|∂uX|
. (2)

1in the case of closed curve, the outer normal vector is considered; in the case of open curve, there is
a selected pre-de�ned direction
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Di�erentiating the left-hand side of (2) and using the perpendicularity condition, one can
derive the formula for the curvature as the following

−kΓ =
∂uuX

|∂uX|2
· ∂uX

⊥

|∂uX|
.

To obtain the parametric equations, we can substitute the previous relations into the
equation for the mean curvature �ow (1) and multiply it by n

∂tX =
∂uuX

|∂uX|2
+ F (X, t)

∂uX
⊥

|∂uX|
. (3)

The equation (3) is complemented with some initial condition

X|t=0 = Xini

and appropriate boundary conditions. In the case of a closed curve, the periodic boundary
condition is set

X|u=0 = X|u=1.

For the open curves we choose the �xed ends boundary condition, i.e.

X|u=0 = X0,X|u=1 = X1.

3 Tangential Redistribution of the Grid Points

It is known when tracking a curve motion, the tangential terms do not a�ect its shape (see
[11], Proposition 2.4) and hence it is su�cient for the analysis to take into the account only
the terms in the normal direction to the curve. Hovewer, numerical experiments show that
the parametric equations (3) are not apropriate for the numerical computation. Since the
curve is discretized by a certain number of grid points, except the perfectly symmetric and
uniform situations with constant curvature, like a shrinking circle, we can observe that
during the evolution, the grid (discretized) points are accumulated somewhere and, on
the other hand, very sparse somewhere else. One possible way to overcome this problem
is to employ some kind of tangential redistribution, i.e. to complement the equation (3)
with a term standing for the tangential velocity

∂tX =
∂uuX

|∂uX|2
+ α

∂uX

|∂uX|
+ F (X, t)

∂uX
⊥

|∂uX|
. (4)

The term α, usually called redisribution coe�cient, is a function of curvature (and hence
position) and time, thus α = α(k, t) = α(X, t). Generally, the tangential terms a�ect
the discretization points and move them along the curve without a�ecting its shape. If
correctly chosen, the numerical algorithm is more stable and has higher accuracy. On
the other hand, wrong choice of tangential terms can lead to the errors and in the worst
case, to the failure of the algorithm.

The problem of tangential redistribution has been extensivelly studied by many au-
thors. We use the curvature adjusted tangential redistribution proposed by D. �ev£ovi£
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Figure 1: The impact of the tangential redistribution. On the left �gure there is a case
without the tangential velocity, the curve on the right �gure was computed with the usage
of the uniform redistribution.

and S. Yazaki in [12], in which one can also �nd a brief overview and a critical discussion
of redistribution methods. The impact of the tangential redistribution is shown on the
Figure 1.

According to the [12], the tangential component of the velocity has been proposed as
the soluton of the following problem

∂s(ϕ(k)α) = f − ϕ(k)

〈ϕ(k)〉
〈f〉+ ω

(
Lt

|∂uX|
〈ϕ(k)〉 − ϕ(k)

)
, (5)

where ∂s denotes the derivative with respect to the arc-length, i.e. ∂sX = ∂uX/|∂uX|
and ds = |∂uX|du. The quantity Lt is the curve length in time t and ω is a given positive
constant. The other factors in the problem (5) are as follows

ϕ(k) = 1− ε+ ε
√

1− ε+ ε2,

f = ϕ(k)k(k + F )− ϕ′(k)(∂2
sk + ∂2

sF + k2(k + F )),

〈F (·, t)〉 =
1

Lt

∫
Γt

F (s, t)ds.

To get the unique solution α of the equation (5), the following additional condition must
be considered

〈α(·, t)〉 = 0.

The function ϕ(k) plays important role because it is proposed to control the redistribution
on the grid points. The special choice ϕ(k) = 1 produces the uniform redistribution for
ω = 0 and asymptotically uniform redistribution for ω > 0. The function ϕ = |k| was
proposed for the crystalline curvature �ow. Choosing ε ∈ (0, 1), we obtain curvature
adjusted redistribution [12].

4 Physical Model

Generally, there are several possibilities how to describe the motion of dislocations. We
consider the model proposed by Kratochvíl and Sedlá£ek [8], which enables to describe
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the dislocation motion law by the mean curvature �ow

Bv = TkΓ + F, (6)

where the B denotes the drag coe�cient equals to B = 10−5 Pa·s, T denotes the line
tension and F is the sum of all forces acting on the dislocation except the dislocation
self-force, which is approximated by the mean curvature. The force term reads as the
following

F = b(τapp + τwall + τint − τfr), (7)

where b is the magnitude of the Burger's vector~b � vector which represents the magnitude
and the direction of the lattice distorsion of dislocation in a crystal lattice. The particular
force terms are caused by various stresses

• τapp is the shear stress applied on the crystal,

• τwall is the stress from so called PSB channel, where the dislocation moves in,

• τint is the stress caused by mutual interaction between the dislocations,

• τfr is the stress caused by crystal lattice resistance, which slows down the movement
of dislocation.

The value of τapp is usually chosen in the range of 20 − 70 MPa, the τfr is chosen as
5 MPa.

The quantity L is the dislocation line tension. This term is anisotropic and causes
straightening of the dislocation curve. According to the [1], it can be approximated as

L ≈ E(e)(1− 2ν + 3ν cos2 ζ),

where E(e) is the dislocation edge energy and ν is the Poisson's ratio. The quantity ζ is
the angle between the Burger's vector and the segment of the dislocation line.

The motion of dislocation itself is considered within co called PSB (persistent slip
band) channel [1, 2, 7]. Generally, it is a patterm consisting of ares with high densities
of dislocations (channel walls) and low densities of dislocations (channel itself). This
structure usually arises from cyclic loading of a crystal. The behavior of the channel
stress �eld τwall can be described by the one-dimensional function in the Figure 2.

The problem of mutual interaction was theoreticaly solved by Devincre [9], Devincre's
fomula (8) provides the 3D stress tensor �eld τA = τA

ij at a location x generated by the
dislocation half line from the grid point A to in�nity

τA
ij =

G

4π

1

R(U +R)

[
(~b× ~Y )itj + (~b× ~Y )jti −

1

1− ν
((~b× ~t)iYj + (~b× ~t)jYi)

−
~b · (~%× ~t)

1− ν

[
δij + titj +

(%itj + %jti + Utitj)(U +R)

R2
+
%i%j(2 + U/R)

R(U +R)

]]
,

(8)

where the meaning of the parameters is as follows
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Figure 2: Wall force function, the x-axis is in nm, the y-axis is in N.

~t tangential vector of the dislocation segment,
~R = (R1, R2, R3)T vector to the location x from A,
R =

√
R2

1 +R2
2 +R2

3,
U = ~R · ~t,
Yi = Ri +Rti,
% = ~R− U~t normal component of R to the dislocation segment,
G shear modulus.

The stress tensor generated by a straight dislocation segment AB is then given as a
di�erence of tensors τA and τB, i.e.

τint = τA − τB.

In this contribution, we consider the Burger's vector ~b = (b, 0, 0)T parallel with x-axis
and slip planes, where dislocation moves, parallel with xz-plane in mutual distance h.
Generally, to compute the forces acting on the dislocation exposed to a stress �eld τint

generated by other dislocations can be used so called Peach-Koehler formula [10], which
reads as

~Fint = (τint
~b)× ~t. (9)

Using the formula (9) greatly simpli�es the problem, since for the considered model
problem of parallel slip planes and Burger's vector parallel with the x-axis it is su�cient
to compute only the component τ12 of the stress tensor τint.
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5 Numerical Schemes

For the numerical computations we use the fully discrete semi-implicit numerical scheme
based on �nite di�erences method

Xk+1
j − τ

Xk+1
uu,j

Q2(Xk
u,j)
− ταk+1

j

Xk+1
u,j

Q(Xk
u,j)

= Xk
j + τF

X⊥,k
u,j

Q(Xk
u,j)

,

where Xk
j ≈ X(jh, kτ) for the spatial step h and the time step τ , Q(X) =

√
X2

1 +X2
2 + ε2

serving as the regularization term since we want to avoid dividing by zero. The symbols
Xk

u,j and Xk
uu,j denote the �rst and the second central di�erences. We also use the semi-

implicit scheme based on �owing volumes method proposed by D. �ev£ovi£ and S. Yazaki
[12]

−ak+ 1
2

j τXk+1
j−1 + (1 + b

k+ 1
2

j τ)Xk+1
j − ck+ 1

2
j τXk+1

j+1 = Xk
j + τF

X⊥,k
u,j

Q(Xk
u,j)

,

where

a
k+ 1

2
j =

2

rk
j + rk

j+1

(
1

rk
j

−
αk+1

j

2

)
, c

k+ 1
2

j =
2

rk
j + rk

j+1

(
1

rk
j

+
αk+1

j

2

)
, b

k+ 1
2

j = a
k+ 1

2
i + c

k+ 1
2

i

for the quantity rk
j = |Xk

j −Xk
j−1| � line segment representing the control volume.

6 Computational Results

We present the results of the two numerical experiments , when we deal with the inter-
action of two dislocations on nearby parallel slip planes in the PSB channel. We suppose
there are two initial dislocation lines with �xed points in the channel walls, driven by
the forces (7) with opposite signs. Each dislocation is located in a di�erent slip plane h
apart.

In the �rst experiment on the Figure 3, the distance between the slip planes is h = 65
nm. The interaction force is attractive and speeds up the motion. When the dislocations
overlap, the interaction force become repulsive. In this case of a relatively long distance
h, the force generated by channel walls and applied stress is greater than the repulsive
force and the dislocations continue to glide.

In the second experiment on the Figure 4, the distance between the slip planes is
h = 35 nm. The interaction force also attracts the dislocations. However, since the
slip planes distance is smaller, the interaction force is bigger and when overlapping, the
repulsive force stops the movement at a certain position and the dislocations remain in
steady state.

7 Conclusion

We have presented the mathematical model of evolving curves based on the parametric
approach. The discussed disadvantage of this approach was treated by adding the tan-
gential velocity to the model, which proved to be very useful technique for stabilizing the



140 M. Kolá°

algorithm. We have also introduced the physical model of evolving dislocations based
on the equation for the mean curvature �ow and described several force terms acting
on the dislocations. The presented results of numerical simulations show the motion of
dislocations in PSB channel and their mutual interaction.
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Figure 3: Time evolution of two dislocation curves with the distance h = 65 nm. During
the passing, the dislocations slightly change their shape. All axes are in nm.
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Figure 4: Time evolution of two dislocation curves with the distance h = 35 nm. At
a certain position, the repulsive force is too high and the dislocations stop moving. All
axes are in nm.
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Abstract. We show that a number of realistic �nancial time series can be well mimicked by

multiplicative multifractal cascade processes. The key observation is that the multi-scale be-

havior in �nancial progressions �ts well the multifractal cascade scaling paradigm. Connections

with Kolmogorov's idea of multiplicative cascade of eddies in the well developed turbulence are

brie�y discussed. To put some �esh on a bare bones we compare volatility time series for S &

P 500 stock index with a simulated multiplicative multifractal cascade processes. Qualitative

agreement is surprisingly good. Salient issues, such as Codimension functions or Multifractal

Di�usion analysis and its role in scaling identi�cation are also discussed.

This article has been presented and is part of proceedings of the International symposium on

complex systems held in Prague, 10.�13. September, 2013.

Keywords: Multiplicative cascades, Rényi entropy, Multifractal volatility

Abstrakt. Zna£ná £ást reálných £asových °ad m·ºe být dob°e popsána procesy zaloºenými na

multifraktálních kaskádách. Klí£ové pozorování je, ºe více-²kálové chování p°i vývoji £asových

°ad se shoduje s koncepcí multifraktálních kaskád. V £lánku jsou také diskutovány spojitosti s

p·vodní Kolmogorovou my²lenkou multifraktálních kaskád jako sob¥-podobných turbulen£ních

vír·. Pro ilustraci tohoto p°ístupu srovnáme £asovou °adu volatility burzovního indexu Standard

and Poor's 500 (S&P 500) s £asovou °adou, která byla vytvo°ena jako multifraktální kaskáda.

Kvalitativnní shoda t¥chto dvou °ad je velmi dobrá. Dal²í typické problémy, jako nap°. multifrak-

tální kodimenze nebo metoda MF-DEA pro ur£ení ²kálovacích exponent· jsou také diskutovány.

Tento £lánek byl prezentován a je obsaºen ve sborníku konference International symposium on

complex systems held in Prague, 10.�13. September, 2013.

Klí£ová slova: Multiplikativní kaskády, Rényiho entropie, Multifraktální volatilita
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Abstract. Di�usion-driven (or Turing) instability of the standard reaction-di�usion system is
only achievable under the well-known and rather restrictive conditions on both the di�usion
rates and the kinetic parameters. In this study we generalize the standard model by letting
the reactants bind to a substrate and investigate the in�uence of such binding on the Turing
parameter space. The idea that binding of the self-activator to a substrate may e�ectively
reduce its di�usion rate and thus destabilize a steady state that would otherwise be stable was
formulated in an article by Lengyel and Epstein [4], where the authors reduce the original system
of three linear partial di�erential equations to a two-dimensional reaction-di�usion system under
the assumption that the bound state evolves on a fast timescale. We, however, analyse the full
system outside this limit. Our results obtained from the full model are in agreement with
the results by Lengyel and Epstein [4] in the sense that Turing instability does not require
the reactants to di�use at di�erent rates. We show that, unlike the reduced system, the full
system allows relaxing the standard kinetic constraints on Turing instability, particularly two
self-activators to generate a pattern.

Keywords: Di�usion-driven instability, interacting substrate

Abstrakt. Difuzí zp·sobené (neboli Turingovy) nestability standardního reak£n¥-difuzního sys-
tému lze docílit pouze za známých a pom¥rn¥ restriktivních podmínek jak na difuzní konstanty,
tak na parametry chemické kinetiky. V tomto p°ísp¥vku uvaºujeme o n¥co obecn¥j²í model
sestávající ze dvou chemických látek, které difundují a navzájem spolu reagují, p°i£emº jedna z
nich se navíc navazuje na nepohyblivý substrát. Následn¥ studujeme vliv rychlosti navazování
na velikost Turingova prostoru. My²lenku, ºe navazování na substrát m·ºe sníºit efektivní
rychlost difuze a tím destabilizovat jinak stabilní stacionární stav, zformulovali jiº Lengyel a
Epstein [4] a toto tvrzení demonstrovali na systému dvou reak£n¥-difuzních rovnic, který získali
asymptotickou redukcí p·vodního systému t°í rovnic za p°edpokladu, ºe kinetika navazování je
výrazn¥ rychlej²í neº ostatní d¥je. V tomto £lánku analyzujeme p·vodní (neredukovaný) systém,
coº nám umoºní popsat chování, které pomocí redukovaného systému nelze postihnout. Na²e
poznatky jsou v souladu s výsledky, které obdrºeli Lengyel a Epstein [4] v tom smyslu, ºe pro
vznik Turingovy nestability není pot°eba, aby chemické látky difundovaly s rozdílnou rychlostí.
Navíc dokáºeme, ºe na rozdíl od redukovaného systému lze v tom neredukovaném rozvolnit i
podmínky na kinetické parametry. Jako ilustraci dokládáme p°íklad systému obsahujícího dv¥
sebeaktivující látky, který pro vhodnou volbu parametr· vykazuje Turingovu nestabilitu.

∗Results contained in this article were presented at the conference BIOMATH 2013 in So�a, Bulgaria
and the article is going to be submitted to The Bulletin of Mathematical Biology. We are grateful for
being supported by the grant SGS12/198/OHK4/3T/14.

145



146 K. Korvasová

Klí£ová slova: Nestabilita zp·sobená difuzí, navazování na substrát

Summary

Di�usion-driven instability is an interesting phenomenon that was �rst formulated by
Alan Turing [8] in 1952. The idea that di�usion can destabilize a system and generate
a stationary pattern, i.e. a spatially non-homogeneous stationary solution, seemed to be
revolutionary and inspiring for many researchers. From the mathematical point of view,
a typical setting for such a study consists of a system of two reaction-di�usion equations
that describe the time evolution of concentrations of two chemicals that both participate
in a chemical reaction1 and di�use. In order to distinguish instability caused by di�usion
from other types of instabilities, we assume that the trivial steady state of the system of
ordinary di�erential equations

ut = fuu + fvv,

vt = guu + gvv,
(R)

that describes the time evolution2 of concentrations u and v of two chemicals that only
react but do not di�use, is asymptotically stable. Additionally, if the corresponding
system of partial di�erential equations

ut = Du∆xu + fuu + fvv,

vt = Dv∆xv + guu + gvv,
(RD)

that has been derived from (R) by adding di�usion terms, is unstable, the system (RD) is
said to exhibit Turing instability or di�usion-driven instability (DDI) [7, 2, 4, 6, 5]. The
set of parameter values that permit Turing instability (meaning that for a suitable choice
of domain the system exhibits DDI) is often referred to as Turing parameter space.

In this paper we consider a generalization of the system (RD) where we let one of the
chemicals bind to a substrate, for example to an extra-cellular matrix. We distinguish
two states of the chemical that is allowed to bind: bound and unbound. Let us denote the
concentration of the binding chemical in the unbound state by u and its concentration in
the bound state by w. The concentration of the second chemical that is not allowed to
bind is denoted by v. The corresponding system of reaction-di�usion equations reads

ut = Du∆xu + (fu − hu)u + fvv − hww,

vt = Dv∆xv + guu + gvv,

wt = huu + hww.

(RDB)

Note that the third equation in (RDB) governing the time evolution of w does not
contain a di�usion term. This is an important fact that enables two chemicals with
identical di�usion rates to generate a pattern (see Klika et al. [3] for further reference). On
the other hand, Mincheva and Roussel [6] have shown (using a graph-theoretic method)

1In this paper we restrict ourselves to linear reaction kinetics that allows us to use simple algebraic
tools for stability analysis.

2We denote by ut, resp. vt, the derivative of u, resp. v, with respect to t and by ∆x the laplacian
with respect to x.
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that if all the equations of the system contain a di�usion term, then the di�usion rates
must be di�erent in order for a pattern to emerge.

The system (RDB) has already been studied by I. Lengyel and I. R. Epstein [4] who
consider an asymptotic reduction of the full model to a system of two reaction-di�usion
equations. We provide an additional discussion on consistency of this reduction with the
asumption of asymptotic stability of the trivial steady state of the corresponding system
(R) without di�usion terms.

Furthermore, we employ methods of linear stability analysis to derive necessary and
su�cient conditions for DDI in the full system (RDB). We show that, as opposed to the
standard system (RD) [7, 2] and the reduced system considered by Lengyel and Epstein
[4], the full system allows DDI even if the parameters fu and gv are both positive. This
is a signi�cant relaxation of the constraints on chemical kinetics. We also con�rm the
results by Lengyel and Epstein in the sense that in the full system RDB equal di�usion
coe�cients do not preclude DDI. Moreover, if DDI occurs for a particular choice of
parameters with Du = Dv, it automatically occurs for the same kinetic parameters and
di�usion of any magnitude, as long as the di�usion constants are identical. We remark
that identical di�usion constants are in contradition with DDI in the standard system
(RD), see [7, 2] for further details.

To illustrate the results and to show that no �ne parameter-tuning is needed in order to
�nd an example of a system that exhibits Turing instability and violates the conditions
for DDI in standard reaction-di�usion equations without binding [7, 2], we perform a
simple sensitivity analysis of a concrete system with Du = Dv, fu > 0 and gv > 0. We
also plot a few slices of the Turing parameter space that were obtained numerically.

To summarize, we have shown that binding of the reacting chemicals to a non-di�using
substrate can signi�cantly relax the constraints that DDI imposes on the model param-
eters. In particular, a system with binding allows two chemicals that di�use at the same
rates as well as two self-activators to generate a pattern due to di�usion.
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Abstract. The article focuses on the application of a segmentation algorithm based on the
numerical solution of the Allen-Cahn non-linear di�usion partial di�erential equation. This
equation is related to the motion of curves by mean curvature. It exhibits several suitable math-
ematical properties including stable solution pro�le. This allows the user to follow accurately
the position of the segmentation curve by bringing it quickly to the vicinity of the segmented
object and by approaching the details of the segmentation curve. The purpose of the article is to
indicate how the algorithm parameters are set up and to show how the algorithm behaves when
applied to the particular class of medical data. We describe in detail the algorithm parameters
in�uencing the segmentation procedure, namely the force term allowing the segmentation curve
to quickly move towards the segmented object, choice of the gradient control and the stopping
criterion. The algorithm itself is easy to implement and its parallelization is possible. The
left ventricle volume estimated by the segmentation of scanned slices is evaluated through the
cardiac cycle. Consequently, the ejection fraction which serves as a medical information is eval-
uated. This approach allows the user to process cardiac cine MR images in an automated way
and represents, therefore, an alternative to other commonly used methods. Based on the phys-
ical and mathematical background, the presented algorithm exhibits the stable behavior in the
segmentation of MRI test data, it is computationally e�cient and allows the user to perform
various implementation improvements.

This article has been published in Kybernetika ([1]).

Keywords: cardiac MRI, co-volume method, image segmentation, level set method, PDE

Abstrakt. Tento £lánek se zabývá aplikací segmenta£ního algoritmu zaloºeném na numerickém
°e²ení Allenovy-Cahnovy parciální diferenciální rovnice. Pomocí této rovnice lze popsat po-
hyb k°ivek, který je závislý na jejich k°ivosti. Tato vlastnost dovoluje pohybovat segmenta£ní
k°ivkou tak, ºe popí²e segmentovaný objekt. Hlavním obsahem této práce je popis výpo£etních
parametr·, jejich nastavení a vlastnosti algoritmu aplikovaného na segmentaci medicínských
dat. Podrobn¥ jsou popsány parametry ovliv¬ující pr·b¥h segmentace. Pouºitý algoritmus je
aplikován na segmentaci levé srde£ní komory ze série snímk· obsahující celý srde£ní cyklus.
Díky tomu lze vy£íslit tzv. ejek£ní frakci. Tento p°ístup uºivateli umoº¬uje zpracovat snímky
z magnetické rezonance automaticky a m·ºe slouºit jako alternativa ke stávajícím segmenta£ním
algoritm·m.

Tento £lánek byl publikován v £asopise Kybernetika ([1]).

∗This work has been supported by the grant No. SGS11/161/OHK4/3T/14.
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Abstract. Processing data in distributed environment has found its application in many �elds of
science (Nuclear and Particle Physics (NPP), astronomy, biology to name only those). E�ciently
transferring data between sites is an essential part of such processing. The implementation of
caching strategies in data transfer software and tools, such as the Reasoner for Intelligent File
Transfer (RIFT) being developed in the STAR collaboration, can signi�cantly decrease network
load and waiting time by reusing the knowledge of data provenance as well as data placed in
transfer cache to further expand on the availability of sources for �les and data-sets. Though, a
great variety of caching algorithms is known, a study is needed to evaluate which one can deliver
the best performance in data access considering the realistic demand patterns.

Records of access to the complete data-sets of NPP experiments were analyzed and used as
input for computer simulations. Series of simulations were done in order to estimate the possible
cache hits and cache hits per byte for known caching algorithms. The simulations were done
for cache of di�erent sizes within interval 0.001 - 90% of complete data-set and low-watermark
within 0-90%. Records of data access were taken from several experiments and within di�erent
time intervals in order to validate the results. In this paper, we will discuss the di�erent data
caching strategies from canonical algorithms to hybrid cache strategies, present the results of
our simulations for the diverse algorithms, debate and identify the choice for the best algorithm
in the context of Physics Data analysis in NPP. While the results of those studies have been
implemented in RIFT, they can also be used when setting up cache in any other computational
work-�ow (Cloud processing for example) or managing data storages with partial replicas of the
entire data-set.

Keywords: data transfer, cache, optimization, algorithm

Abstrakt. Zpracování dat v distribuovaném prost°edí nachází své uplatn¥ní v mnoha oblastech
v¥dy (nap°. v jaderné a £ásticové fyzice (NPP), astronomii, biologii). Efektivní p°enos dat mezi
sít¥mi je nedílnou sou£ástí takového zpracování. Implementace strategií ke²ování v softwaru pro
p°enos dat a v nástrojích, jako je nap°. Reasoner for Intelligent File Transfer (RIFT), který byl
vyvinut v rámci experimentu STAR, m·ºe výrazn¥ sníºit zatíºení sít¥ a £ekací doby vyuºitím
znalostí o p·vodu dat, stejn¥ jako data v p°enosové mezipam¥ti, k dal²ímu roz²í°ení dostupnosti
zdroj· soubor· a dat. P°estoºe je známo velké mnoºství r·zných ke²ovacích algoritm·, je nutné
prozkoumat a vyhodnotit, který z nich m·ºe podávat nejlep²í výkon v p°ístupu k dat·m p°i
zváºení realistických model· poºadavk·. Záznamy o p°ístup do kompletních datových sad ex-
periment· v NPP byly analyzovány a pouºity jako vstup pro po£íta£ové simulace. �ady simulací
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byly provedeny za ú£elem odhadu moºných zásah· ke²e a zásah· ke²e na bajt pro známé algo-
ritmy. Simulace byly provedeny pro cache r·zných velikostí v intervalu 0,001-90 V tomto £lánku
budeme diskutovat r·zné strategie ke²ování dat, od kanonických algoritm· po hybridní ke²o-
vací strategie, budeme prezentovat výsledky na²ich simulací pro r·zné algoritmy, rozebereme a
ur£íme výb¥r nejlep²ího algoritmu v souvislosti s fyzikální analýzou dat v NPP. Výsledky t¥chto
studií byly za£len¥ny do RIFT, mohou v²ak být pouºity také pro nastavení cache v jakémkoli
jiném výpo£etní prost°edí (nap°. zpracování v cloudu) nebo °ízení datových úloºi²´ s £áste£nými
replikami celé sady dat.

Klí£ová slova: p°enos dat, mezipam¥´, plánování, algoritmus

1 Introduction

E�cient usage of available cache space is important for transferring and accessing data in
computational grids. Though, a great variety of caching algorithms is known, a study is
needed to evaluate which one can deliver the best performance in data access considering
the realistic demand patterns.
Cache cleaning algorithms can be applied to keep in the cache of data-transfer tools �les
that may be reused. The size of those cache is small (several percent of the entire dataset)
and the clean up has to take place regularly to make space for further transfers. Another
task can, for example, be to delete a part of local data replica if no longer in use or
requested. The problem posed by cache cleanup is to select and delete �les which are the
least likely to be used again. An investigation to �nd the most appropriate algorithm is
required.

In this study, all the caching algorithm were implemented following the concept known
as "water-marking". Water-marking is an approach where thresholds are set for the
cache cleanup starts and stops. It considers the current disk space occupied by the data
in cache and the high-mark and the low-mark for cache size are externally set up and
can be adjusted as needed. When the used cache size exceeds the high-mark, the cache
clean-up starts, and �les are deleted until the used cache size gets below the low-mark.
The time interval between clean-ups depends on combination of high/low marks, cache
size and data-�ow.Therefore with watermarking concept more computational demanding
algorithms can be implemented as the cleanup may be independent of the data transfers.

2 Access patterns

Several data access patterns were extracted from log �les of data management systems
at sites of HEP/NPP experiments in order to simulate caching. Three di�erent access
patterns were used as input for our simulations:

STAR1: the pattern was extracted from Xrootd [8] logs taken from the STAR
experiment's Tier-0 site of RHIC Computing Facility at Brookhaven National Lab-
oratory (RCF@BNL), it consist of records made during a 3 months period (June-
August 2012) of all datasets available in STAR.
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Figure 1: Distribution of �les by size for three datasetst: a - STAR1, b - STAR2, c -
GOLIAS.

STAR2: the pattern was extracted from Xrootd [8] logs of Tier-0 site of STAR ex-
periment (RCF@BNL), it consist of records made during a 7 months period (August
2012 - February 2013) under similar conditions.

GOLIAS farm is a part of regional computing center for particle physics at the In-
stitute of Physics (FZU) in Prague, and is part of a Tier-2 site for the CERN/ATLAS
experiment. The facility also performs data processing for another experiment -
AUGER, which makes less than 1% of the total requests. The pattern was ex-
tracted from DPM [9] logs for a 3 months period (November 2012 - February 2013).

The usage of access patterns corresponding to di�erent time periods and experiments
helps to verify the results of our simulations. As input of our simulations, we tried to
focus on a few characteristic access patter. The key parameters we came up with for
the three access patterns are given in Table 1. Both STAR access patterns have similar
parameters. It is noteworthy to mention that the �rst one was taken right before the
Quark Matter 2012 conference and the second one, right after. This is important as the
access to data is intensi�ed before a conference and without veri�cation, it would be
doubtful if our �ndings would be stable across time. The number of �les requested only
once during the period, is less than 10% in both cases.

The FZU/GOLIAS access pattern is taken from another experiment with di�erent
data-storage structure, DPM is used here within a Tier-2 data access context (user anal-
ysis). This access pattern is much less uniform and di�ers from the other two: the size
of �les is not explicitly limited and can reach 18 GB, the number of requests for a �le
varies from 1 up to 94260, with an average 5. 44% of �les were requested only once.

When analyzing an access pattern one can subtract a set of unique �lenames. It is a
set of all �les requested at least ones during the period of consideration. The following
histograms at the Figure 1 represents the distribution of those unique �les by size for
each data-set. Here one can see that �lesize distribution at GOLIAS is more dispersed
than in STAR. Also, as it can be observed at the histograms, at STAR maximal �lesize is
limited to 5.3 GB (the �les of larger size are splitted into several �les). This fact explains
the second peak at the histograms for STAR1 and STAR2 datasets. At GOLIAS there
is no limitation for �lesize, to peaks at the histogram can be explained with the presence
of �les with di�erent types of data.

The timing characteristics of an access pattern can be pictured as a distribution of a
time interval between two consequent requests for the same �le. This histograms are given
at Figure 2. In both STAR access patterns the distribution is close to log-normal with the
peak time interval corresponds to 24 hours. This can be explained by the users behavior,
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Figure 2: Distribution of time intervals between sequential requests for the same �le.
This distribution helps to understand the timing characteristics of access. Three di�erent
access patterns are presented: a - STAR1, b - STAR2, c - GOLIAS.

Table 1: Summary of three user access patterns used as input for simulations. The
selection of two time sequence in STAR and one from a di�erent experiment aims at
verifying stability of our result and �ndings.

STAR1 STAR2 GOLIAS
Time period months 3 7 3
Number of requests ×106 33 52 21
Data transferred PB 50 80 10
Maximal number of requests for one �le − 192 203 94260
Average number of requests per �le − 19 15 5
Number of unique �les ×106 1.8 1.7 3.8
Total size of dataset PB 1.45 2 1
Maximal �le size GB 5.3 5.3 18
Average �le size GB 0.8 1 0.3

one can imagine a situation when a scientist checks a result of computational job in the
morning, edits the code and then resubmits the analysis on the same dataset, and the
new output will be available only next working day. The GOLIAS access pattern is less
regular. This can be explained with the large amount of jobs submitted automatically
with di�erent periods, and probably smaller average time of job running.

3 Cache simulation

Selection of cache policy depends on the user access pattern and the disk space available.
The e�ciency of caching can be estimated by two quantities, the cache hits H(1) and
cache hits per megabyte of data Hd(cache data hits) (2):

H =
Ncache

Nreq −Nset

(1)

Hd =
Scache

Sreq − Sset

(2)
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where Nreq is the total number of requests, Sreq -the total amount of transferred data in
bytes, Nset -the number of unique �lenames, Sset - the size of storage in bytes, Ncache -
the number of �les transferred from cache, Scache - the amount of data transferred from
cache in bytes.

By maximizing the cache hits H one reduces the number of �les transferred from
external sources and thus reduces the overall make-span due to transfer startup overhead
for each �le. By maximizing the cache data hits Hd one reduces the network load, since
more data is reused from the local cache.

If the access pattern is completely random, the expected cache hit and cache data
hits would be equal to cache size/storage size, so it can be useful to compare the actual
cache performance to this estimation.

Altogether 27 di�erent caching algorithms were simulated. But the majority of studied
algorithms did not bring any improvements over the simplest one (FIFO). Only the
algorithms that appeared to be the most e�cient are discussed in this paper:

- First-In-First-Out (FIFO): evicts �les in the same order they entered the cache.
Performance of this trivial algorithm provide a good comparison benchmark against
more sophisticated ones which can demand signi�cant computational resources.

© Least-Recently-Used (LRU): evicts the set of �les which were not used for the
longest period of time.

• Least-Frequently-Used (LFU): evicts the set of �les which were requested less
times since they entered the cache.

F Most Size (MS): evicts the set of �les which have the largest size.

+ Adaptive Replacement Cache (ARC)[5]: splits cached �les into two lists: L1 -
�les with access count = 1, and L2 - �les with access count > 1. LRU is then ap-
plied to both list, the self adjustable parameter p = cache hits in L1/cache hits in L2
de�nes the number of cached �les in each list. The general idea is to invest more
into the list which delivers more hits.

∗ Least Value based on Caching Time (LVCT)[4]: Deletes �les with the smallest
value of the Utility Function:

UtilityFunction =
1

CachingT ime× FileSize
(3)

where Caching Time of a �le F is total size of all �les accessed after the last
request for the �le F.

5 Improved-Least Value based on Caching Time (ILVCT)[3]: Deletes �les
with the smallest value of the Utility Function:

UtilityFunction =
1

NumberOfAccessedF iles× CachingT ime× FileSize
(4)

where Caching Time is the same as for LVCT and Number Of Accessed Files
is a number of �les requested after the last request for selected �le.
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4 Results

Three series of simulations with three access patterns were performed for each algorithm
(90 simulations in total for each algorithm):

• 10 simulations with cache size 1-90 % of storage with �xed low-mark 75% and high-
mark 95%. Those simulations aim to understand what would happen if we have
large storage cache. Those cases are aligned with a DPM and Xrootd use where
most (if not all) the dataset(s) are in the system.

• 10 simulations with cache size 1.2 - 0.0025% of storage with �xed low-mark 75%
and high-mark 85%. We used those simulations to understand the behavior of cache
cleanup if the cache size is by several orders less than the dataset size. This is in
fact a most common case for transfer cache on data transfer nodes.

• 10 simulations with �xed cache size 10% of storage,�xed high-mark 95% and variable
low mark within 0-90%. We performed those simulations to better understand the
e�ect of data retention on cache (delete the least in hope of re-use).

In order to compare one algorithm against another an average improvement can be
calculated in a following way:

Average improvement =

∑n
i=1

value2i−value1i

value1i

n
, (5)

where n is the total amount of simulations with equal parameters for both algorithms,
i is the number of the simulation,value1 - cache hits or cache data hits of a reference
algorithm (FIFO), value2 - cache hits or cache data hits of a compared algorithm.

Table 2 contains the results of comparison of all the algorithms represented in this
paper against FIFO. Results of simulation series 1 and 2 were used to calculate the average
improvement (60 values for each algorithm). According our results, the LFU algorithm
does not bring any improvement over FIFO due to its well known �aw - it accumulates
�les which were popular for a short period of time, and those �les prevent newer ones
from staying in cache. The ARC algorithm was developed as an improvement to LRU,
and not surprisingly, it outperforms LRU by ∼5% in cache hits and ∼7% in cache data
hits. Therefore, LFU and LRU algorithms could be excluded from the further analysis
in our case studies.

The graphical detailed results of simulations for all 3 series are given at Figures 3-5.
The performance of FIFO and 3 algorithms appeared to be the most e�cient (MS, ACR
and LVCT) is presented at the plots.

Di�erence between Tier-2 and Tier-0 access patterns leads to distinct cache perfor-
mance. Only the data dedicated for the ongoing analysis is placed at the Tier-2 site,
while at the Tier-0 site all the experimental data is stored. As a result � the access pat-
tern at the Tier-2 site has stronger access locality. STAR1 and STAR2 access patterns
correspond to Tier-0 site and GOLIAS to a Tier-2 site. Thus, any particular algorithm
at the plots delivers higher cache hits and cache data hits for GOLIAS access pattern
than for STAR1 and STAR2.



Distributed Data Processing in High-Energy Physics 157

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
cache hits

cache size / storage size
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ca
ch

e 
da

ta
 h

its

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
cache data hits

patterns:
STAR1
STAR2
GOLIAS
random

algorithms:

ARC

FIFO

LVCT

MS

Figure 3: Results of simulation. Performance of algorithms for cache of larger size can
be compared. For all of the simulations on this plot the following parameters were �xed:
low mark = 0.75, high mark = 0.95

The behavior of algorithms is similar within each dataset that is, their respective
performance ordering is the same. This observation implies that if one of the algorithm
appears to be most e�cient for one of the datasets it is also the most e�cient for the
other datasets. This statement is also true for the rest of simulated algorithms not
present on our �gure. Though the communities represented by the STAR and GOLIAS
access patterns are somewhat similar, this result is slightly surprising as our case studies
represent two time sequence within the same usage and totally uncorrelated experiments.
It would be interesting to study those algorithms in a di�erent experimental context
(outside the HEP/NPP communities) but this study is outside the scope of our paper.

The MS algorithm has shown outstanding cache hits, but the lowest cache data hits.
At the same time the LVCT has cache hits comparable to the MS while cache data hits
are 2% improved over the FIFO. This algorithm could be an optimal when the cache hits
is the target optimization parameter. The ARC algorithm has shown the highest cache
data hits for studied access patterns.

The dependence of algorithms performance on low mark is presented at Figure 5.
With higher low mark the number of clean-ups increases and that is why the di�erence
between algorithms becomes more notable. Performance of e�cient algorithms (FIFO,
LRU, ARC and LVCT) increases steadily with the low mark. One should be careful when
setting up a cache low mark at a particular site, since a higher low mark can increase
cache performance signi�cantly, but at the same time it can result in running cache clean-
ups too often, consuming signi�cant computational resources (and potentially increasing
the chance to interfere with data transfers hence, degrading transfer performances if
delete/writes/read overlap).
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Figure 4: Results of simulation. Performance of algorithms for cache of smaller size can
be compared. For all of the simulations on this plot the following parameters were �xed:
low mark = 0.75, high mark = 0.85
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Table 2: Average improvement of algorithms over FIFO.
Algorithm cache hits cache data hits
MS 116 % -20 %
LRU 8 % 5 %
LFU -27 % -18 %
ARC 13 % 11 %
LVCT 86 % 2 %
ILVCT 28 % 2 %

5 Conclusion

Performance of cache algorithms implemented with watermarking concept was simulated
for a wide range of cache sizes and low marks. Three access patterns from Tier-0 and
Tier-2 sites of 2 di�erent experiments were used as input for simulations. Regardless of
the cache size, Tier-level and speci�city of experiment the LVCT and ARC appeared to
be the most e�cient caching algorithms for the communities we investigated. While we
found the result surprising at �rst, we attribute this result to an access pattern which
is intrinsically similar in nature. An extension of this work could be the investigation
of this result in a di�erent experiment context which is a work beyond our initial goal.
LVCT and ARC could certainly be safely implemented in tools such as RIFT.

• If the goal is to minimize makespan due to a transfer startup overhead the LVCT
algorithm should be selected.

• If the goal is to minimize the network load the ARC algorithm is an option.
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Abstract. This paper summarizes known facts about zero-range processes focused on conden-

sation phenomenon. A brief summary on Markov semi-groups is given to develop satisfactory

tools for building a Markov process on an in�nite state space. Due to the known Markov gen-

erator, we are able to develop an appropriate Markov process and to �nd out its stationary

measures. De�ning a condensation phenomenon in probability sense we are able to describe

phase transitions. Finally, we will give some insight into the dynamics of condensation.

Keywords: Condensation; zero range processes; interacting particle system

Abstrakt. Tento p°ísp¥vek shrnuje základní poznatky jevu kondenzace v zero-range procesech.

Teorie Markovských semi-grup umoº¬uje vytvo°it pot°ebné nástroje pro konstrukci Markovského

procesu na nekone£ném stavovém prostoru a ur£ení stacionární míry. De�nováním jevu kon-

denzace v pravd¥podobnostním smyslu, jsme schopni popsat fázové p°echody odpovídajícího

Markovského procesu a podat krátký p°ehled dynamiky kondenzace.

Klí£ová slova: Kondenzace; zero range proces; interacting particle system

1 Introduction

We are interested in the conservative interacting particle systems which are Markov pro-
cesses with continuous time and discreet state space. The goal of the research is to study
tra�c phenomena, and in this article, we focus on known facts about a condensation
phenomenon of the zero range process.

We will denote a state space as S = EΛ, where Λ ⊆ Zd, and E will be a local
state space. For all x ∈ Λ, η(x) will denote the number of particles occupying x, thus
η(x) ∈ E will be local state of the system on a position x ∈ Λ. Whole con�guration
of the system is denoted by η = (η(x))x∈Λ. In order to simply but correctly outline the
process construction considered in section 2, we �rstly consider the local state space to be
of �nite size, i.e. E = {0, 1, ..., ηmax}, where ηmax ∈ N. And we assume product topology
on S, thus (S, σ(S)) is a compact measurable space with Borel σ-algebra.

161
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2 Interacting particle systems

2.1 Construction of the process and dynamics

We will use a canonical construction of the process. Population Ω is the set of all right-
continuous functions with left limits η(·) on [0,∞) with values in S, so called trajectories.
A random variable is projective mapping

Y : Ω× R+ 7→ S; Y (η(·), t) = η(t) ,

σ-algebra is a canonical one

F =
⊗

t∈[0,∞)

B(Yt) = σ(Yt, t ≥ 0) ,

and we de�ne canonical �ltration (Ft)t∈[0,∞) on (Ω,F), which is the system of σ-algebras
{Ft, t ≥ 0} such that Fs ⊂ Ft ⊂ F for all 0 ≤ s ≤ t and for which Y (η(·), s) is
Fs-measurable.

To have de�ned Markov process on the state space S, we need either the system of
probability measures Pη or transition probability Pt(η, A)1, where η ∈ S and A ∈ σ(S).
Using the transition probabilities or the family of probability measures respectivly, we
can de�ne the remaining object by the following formula

Pt(η, A) = Pη{Yt ∈ A} , (1)

where Yt = Y (η(·), t) = η(t). It means, that the process Y which started in state η will
be in time t in the set A.

Based on known probability measures Pη, we de�ne Markov process2 as a quadru-
ple (Ω, (Ft), Y,Pη). Then the transition probabilities {Pt, t ≥ 0} de�ned by (1) form
(Markov)3 semi-group of one parameter bounded linear operators on (Cb(S;R), || · ||),
where (Cb(S;R), || · ||) is Banach space of bounded continuous real functions on S with a
supreme norm.

An in�nitesimal operator of a semi-group Pt is de�ned by the formula:

Lf(η) = lim
t↘0+

∫
S
Pt(η, dξ)f(ξ)− f(η)

t
= lim

t↘0+

Ptf(η)− f(η)

t
, f ∈ DL , η ∈ S .

DomainDL of this operator are functions for which the limit exits, and L : DL 7→ Cb(S;R).
For every f ∈ DL, function Ptf is di�erentiable, hence we have got the evolution equation

d(Ptf)

dt
= L(Ptf) = Pt(Lf) , P0f = f , (2)

for which function Ptf is unique solution4. It is convenient to look on Pt as a "time-
evolution" operator of observable f , which could be for example the number of particles
occupying position x: f(η) = η(x).

1We assume homogeneous processes, and expect a homogeneous transition probability.
2Such quadruple must ful�l some assumptions imposed on its objects. Proper de�nition of the Markov

process can be found in every monograph concerning Markov processes. For example see [3], chp.3.1.
3"Markov" designates that the semi-group is conservative, normal, positive contraction semi-group.
4See chp. 2.2 in [3] for more information concerning in�nitesimal generator and uniqueness theorems.
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We consider system without explosions, which means, that in any arbitrary bounded
time-interval only �nite number of jumps of particles could happen. If the length of the
time-interval decreases to 0 we assume that only one jump happens. This one jump will
be considered as an "in�nitesimal transition".

Let us denote by P(S) the space, which is de�ned as the totality of �nite, countable
additive functions π(·) on σ(S); especially it consists of all probability measures. Spaces
(Cb(S;R), || · ||) and P(S) are naturally connected by the scalar product5

(f, π) =

∫
S

f(ξ)π(dξ) .

Thus, it could be shown, that the space (Cb(S;R), || · ||) is regarded as a subspace of P#,
i.e. a dual-space to P .

If we know the initial distribution π ∈ P(S) of the system, the time dependent
distribution of the process denoted by πPt ∈ P(S) is uniquely de�ned through the formula∫

S

Ptfdπ =

∫
S

fd(πPt) , f ∈ Cb(S;R) .

We are interested in the long-term behavior of the transition probability6. It requires
solving equation (2) to �nd out behavior of the observable f in time. However, that
problem can be transformed to the dual-space of measures, thus we are looking for the
long-term behavior of the distribution of the particles on the lattice; i.e. a stationary
distribution, such that

πPt = π , ∀t ≥ 0 .

It is worth noting, that by integrating equation (2) through S with respect to some
stationary measure π ∈ P(S), the left-hand side of the equation vanishes and we obtain
a new equation to be solved in the form∫

S

Lfdπ = 0 , ∀f ∈ C0(S;R) , (3)

where C0(S;R) ⊂ C(S;R) denotes the set of cylindric functions.

2.2 Dynamics of particles

The in�nitesimal operator (called Markov generator) for an interacting particle system
on a lattice with the additional assumption that particles do not appear nor disappear is
given by

Lf(η) =
∑
x,y∈Λ

c(x, y,η)[f(ηx→y)− f(η)] , f ∈ C0(S;R),η ∈ S ,

where c(x, y,η) denotes the in�nitesimal transition rate with the meaning of the transition
of one particle from a position x ∈ Λ to a position y ∈ Λ with the current con�guration

5More precise is to say, that they are connected by duality pairing.
6Which describes the long-term behavior of the system
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η. The c(x, y,η) is assumed7 to be non-negative, continuous in η, c(·, ·,η) is assumed
to be irreducible8, and the total rate of particles jumping to a position y is uniformly
bounded; i.e. supy∈Λ

∑
x∈Λ supη∈S c(x, y,η) <∞. If Λ is a �nite lattice, the in�nitesimal

transition rates can be expressed as

Pt(η,η
x→y) = Pη(Yt = ηx→y|η) = c(x, y,η)t+ o(t) , for t↘ 0 ,

where ηx→y is the con�guration with one particle less on the position x and one particle
more on the position y then the con�guration η had.

The assumptions imposed on the in�nitesimal transition rates c(x, y,η) de�ning the
in�nitesimal operator L are reasonable due to the fact, that L generates strongly con-
tinuous Markov semi-group Pt on Cb(S;R), which means, that Pt maps Cb(S;R) to itself,
being stochastically continuous. For S being a compact space9, Hille-Yoshida10 theorem
gives us the unique solution to equation (2); i.e. functions Ptf ∈ Cb, for all f ∈ DL.

2.3 Canonical & Grand-canonical measures

For the �nite sized lattice ΛL of size L ∈ N, we have the corresponding state space SL.
Considering the system is closed11, the number of particles in state η,∑

L(η) :=
∑
x∈ΛL

η(x) ∈ N ,

is conserved in time for every η ∈ SL, i.e.
∑

L(Y (η(·), 0)) =
∑

L(Y (η(·), t)) ,∀t > 0.
State space SL is composed of non-communicating subsets

SL,N = {η ∈ SL|
∑

L(η) = N} , N ∈ {0, 1, ..., L · ηmax} .

This leads to non-uniqueness of the stationary measure on the whole state space. How-
ever, on each subset SL,N , the process is irreducible and have the unique stationary
measure µL,N , so-called canonical. All stationary canonical measures µL,N are exactly
the extremal points of the set of stationary measures for a closed system12,

Ie = {µL,N |N ∈ {0, 1, ..., L · ηmax}} ,

i.e. they are extremal points of convex hull of all stationary measures for the closed
system, they are called pure phases. On contrary, for an open system, the number of
particles is not conserved as they enter and leave the system and the process is irreducible
on SL and have one unique stationary measure; meaning |Ie| = 1.

7For the reasons behind these assumptions, see [7] Theorem I.3.9.
8So that a particle from arbitrary position can reach every position within a �nite time.
9This concept was covered by Ligget, for the proof, see [7].
10Obtaining Markov process from in�nitesimal generator is nicely covered by Kuo in [6], chp.10.9. with

comparison to another approach using Kolmogorov equations and Itô theory.
11The particles in the system do not enter nor leave.
12For the more rigorous statement and its proof, see [7], proposition 1.1.8 .
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For the closed system, we can de�ne one measure for the whole state space SL as a
convex combination of the canonical measures13

µLφ = Z(L, φ)−1

L·ηmax∑
N=0

φNZ(L,N)µL,N ,

where Z(L, φ) =
∑L·ηmax

N=0 φNZ(L,N). Measure µLφ is so-called grand-canonical measure.
It is easy to see that µL,N(·) = µLφ(·|

∑
L(·) = N). Because ηmax < ∞, it is well de�ned

for all φ ∈ [0,∞).
For the system on in�nite lattice, for instance consider Λ = Zd, the set of the ex-

tremal stationary measures become more complicated due to uncountable state space.
Sometimes14 there exists a one-parameter family of stationary measures µρ for every
"density"15 ρ ∈ [0, ηmax], where these measures are the only extremal measures, i.e.

Ie = {µρ|ρ ∈ [0, ηmax]} .

Parameter ρ could be comprehended in the similar way as in the �nite system, i.e. as the
density of particles in system (N

L
in the �nite system).

We are interested, on the contrary, if for some ρ there exist more then one extremal
stationary measure (pure phase), then we say, that the system exhibit phase transition,
and if there is no extremal measure beyond a critical density16, we say, that the system
is in condensation.

3 Zero-range processes

3.1 De�nition and construction

Now we consider state space with the number of particles not bounded on each position,
i.e. the local state space E = N0 and a state space S = NΛ

0 .
We are interested �rst of all in zero-range processes. A zero range process is de�ned

by its in�nitesimal transition rates c(x, x + y,η), which are dependent solely on the
con�guration at the position x ∈ Λ.17 The transition means that the number of particles
η(x) on a position x ∈ Λ decreases by one with the rate g(η(x)) and the leaving particle
jumps to the position x+y with probability p(y) of �nite range, i.e. p(y) = 0 , |y| > R ∈ N.
The in�nitesimal transition rates are given by

c(x, x+ y,η) = g(η(x)) · p(y) .

Note that we assume only translation invariant probabilities on the lattice Λ.

13For more information, see any book concerning statistical physic. Brief summary could also be found
in [5].

14Usually assuming certain monotonicity property, see [7], chp. II.2 and for example see [1].
15In the sense of the number of particles on the position.
16Proper de�nition of critical density will be given later.
17Not being concerned of the position, where the particle jumps in, but being concerned of the state

on the position the particle jumps from, gives the model its name - it has zero range of scope.
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Because of the state space not being compact, the construction of a Markov process
corresponding to a given semi-group of operators, as it was outlined in section 2.1, is not
true without any additional assumptions. Moreover, it is not obvious, if on such state
space with given in�nitesimal generator there exists a semi-group of bounded operators
assigned to that generator.

However, it could be shown18, that if we constrain the state space S on

S̃ = {η ∈ NΛ
0 , ||η||α <∞} ,

where ||η||α =
∑

x∈Λ η(x)α(x) and α : Λ 7→ (0,∞) is some suitable function such that

∑
y∈Λ

α(y) <∞ ,

−R∑
y=−R

p(y)α(x+ y) ≤M α(x) ,∀x ∈ Λ ,

for some M > 0, and we assume that

sup
k∈N
|g(k + 1)− g(k)| =: g <∞ , g(k) > g(0) = 0 ,∀k ∈ N , (4)

then in�nitesimal generator L:

Lf(η) =
∑
x,y∈Λ

c(x, y,η)[f(ηx→y)− f(η)]

de�ned for Lipschitz functions f ∈ Lip(S̃;R), generates semi-group Pt of the operators
on Lip(S̃;R) with

|Ptf(η)− Ptf(ζ)| ≤ lfe
g(M+2)t||η − ζ||α , (5)

for all η, ζ ∈ S̃ and for all f ∈ Lip(S̃;R), and where lf is Lipschitz constant for f .

It is worth to note, that Pt is de�ned for f ∈ Lip(S̃;R) ⊂ C(S̃;R) and it is not
strongly continuous on C(S̃;R); however, the property (5) of the semi-group Pt assures
that Pη{Yt ∈ S̃} = 1, thus being conservative and de�ning process Y (η(·), t) for η(·) ∈ Ω
and t ≥ 0.

Since, in what follows, we will often consider only a �nite lattice Λ, note that the zero
range process is in this case a countable state space Markov process and as such it is well
de�ned by rates only.

3.2 Stationary measures of zero range processes

Now we consider a �nite lattice ΛL = (Z/LZ) with the periodic boundary; i.e. particles
jump from "the last position" to "the �rst position". It is known19, that the zero range
process on S = NΛL

0 de�ned above has stationary product measures µLφ(·) =
∏

x∈Λ ν
1
φ(x, ·),

with one-point marginal

ν1
φ(x, k) = ν1

φ{η(x) = k} =
1

Z(φ)
W (k)φk , (6)

18See Andjel [1], Theorem 1.4 .
19This basic result can be found for example in [1], [4] or [5].
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with weight W (k) =
∏k

i=1
1
g(i)

, fugacity φ ∈ [0,∞), and Z(φ) =
∑∞

k=0W (k)φk as a
normalization constant. Fugacity is connected with the chemical potential α of the system
via the formula eα = φ, thus being an "objective" variable. Then one-point marginals (6)
de�ne the grand-canonical product measure µLφ and the corresponding canonical measures
given by µL,N(·) = µLφ(·|

∑
L(·) = N) with arbitrary φ ∈ [0,∞) as

µL,N(η) =
1

Z(L,N)

∏
x∈ΛL

W (η(x)) δ(
∑

L(η), N) , (7)

where δ(·, ·) is Kronecker delta. For the quantitative description of condensation, we
de�ne the expected particle density per position

ρ = EµLφη(x) =
∑
k

kµLφ{η(x) = k} =
∑
k

kν1
φ(k) =: R(φ) ,

which is position independent and which is a function of fugacity φ. We say, that the
system is at critical density if the fugacity goes to a critical value φc, i.e.

ρc = lim
φ↗φc

R(φ) ,

will denote the critical density. The measures µLφ are well de�ned for all φ ∈ Dφ ⊂ [0,∞),
which is determined by the radius of convergence of the series Z(φ). Often Dφ = [0, φc),
and the range of R(φ) is Dρ = R(Dφ) = [0,∞), i.e. the critical density ρc diverges

20. We
are more interested in the case when Dφ = [0, φc], and Dρ = [0, ρc] for some ρc <∞. In
such case, the system exhibits condensation. It is achieved for slowly decaying tail of the
rates g(k) for large k, which introduces attraction between particles.

3.3 Generic model for condensation

Considering the rates of the following form21 (8), we can obtain a borderline for rates for
which condensation is observed: γ < 1 and b > 0 or γ = 1 and b > 2

g(k) = a+
b

kγ
, a, γ > 0 , b ∈ R , (8)

otherwise the condensation phenomenon does not appear. We will consider transition
rates of the form (8), however, following theorems were proved for general rates, which
are uniformly bounded away from zero and which are either uniformly bounded from
above or there exists limk→∞ g(k) in (0,∞].

One would expect, that for a large system size L, N = bρLc → ∞ with a �xed particle
density ρ, the canonical measure should be close to the grand-canonical measure in some
sense. An important question arises, what happens with the grand-canonical measure if
the limit of canonical measures is considered under a particle density ρ > ρc.

20For example in the case of non-decreasing rates g(k); see [4].
21Introduced by Evans, see [4], studied further by Grosskinsky, see [5].
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The convergence of canonical measures µL,bρLc to the grand-canonical product mea-
sure νΦ(ρ) was proved

22 in the weak sense, and later also the convergence in the norm was
proved23 when we eliminate the most occupied position in the system, i.e. argmaxx∈Λ η(x).

The former result is based on the following theorem considering only the n-point
marginal and thus not consisting of the most occupied position.

Theorem 1. 24 Let Φ(ρ) be de�ned by

Φ(ρ) =

{
R−1(ρ), for ρ < ρc
φc, for ρ ≥ ρc

.

Then the relative entropy of n-point marginals µnL,bρLc and ν
n
Φ(ρ) asymptotically vanishes,

i.e.
lim
L→∞

H(µnL,bρLc|νnΦ(ρ)) = 0 ,

for every n ∈ N and ρ ∈ [0,∞).

The following result concers the most occupied position in the case, when the chosen
ρ is above the critical value ρc.

Theorem 2. 25 Let ν1
φc

(k) have a monotonic decreasing power law tail (write ν1
φc

(k) '
k−b) with b > 2 and �nite �rst moment ρc. Then for every ρ > ρc the normalized
maximum occupation number satis�es a weak law of large numbers, namely it converges
in probability as

1

(ρ− ρc)L
max
x∈ΛL

η(x)
µL,bρLc−−−−→ 1 , for L→∞ ,

where (ρ− ρc)L is the number of all excess particles in the system.

So far we know, that the typical con�guration in the limit L → ∞ has all positions
except one, which is randomly chosen, distributed according to νΦc , and all excess particles
are gathered on the one position forming the condensate.

3.4 Relaxation dynamics of ZRP

In this section we brie�y describe results of simulations. We are interested in the relax-
ation time needed for the system to relax into the stationary state. Also, we are interested
in dynamics of condensates; for the purpose of this work, we assume the rates g(k) to
be one of form (8), which are non-decreasing and allowing condensations. We start with
the �nite number of positions, ΛL = {1, ..., L}, with N ∈ N particles. By analyzing the
normalization function Z(φ) and the particle density R(φ) near criticality26, i.e. in the
limit φ→ φc, we could �nd out the critical density

ρc =

{
∞ for b ≤ 2
1
b−2

for b > 2
.

22For the proof see [5].
23For a proof see [2].
24Cite from [5], Theorem 5.2 .
25Cite from [5], Theorem 5.5 .
26By expanding proper hypergeometric function.
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The initial con�guration of the system is set to be "uniform", meaning all positions
contain the same number of particles N

L
= ρ > ρc and the system contain (ρ − ρc)L

excess particles. Each position containing at least a α-fraction of the number of all excess
particles, will be denoted as cluster. The coe�cient α is from interval (0, 1) and should
be small enough.

The behavior of the system can be divided into 3 phases as could be seen from Figure 1:

1. Nucleation - particles are gathering on few positions, so-called clusters. This phase
is very unstable (in the terms of time spent in this phase) and it is not physically
interesting.

2. Coarsening - clusters exchange their particles and grow at the expense of the smaller
ones, which �nally leads to the saturation.

3. Saturation - when only one cluster survives with all (ρ−ρc)L excess particles. This
is the stationary distribution for the �nite systems

For a further description of these phases some natural assumptions are needed (they
arose from heuristic analysis of the process); the assumptions27 of separation of time scales
and independence of excess particles in the bulk express the average time a particle needs
to move from one condensate to another one and that all positions except the clusters
behave as a homogeneous medium, where excess particles move independently.

Based on these assumptions, it can be derived28, that a typical condensate size grows
with time according to

m(t) ∼ tβ , where β ∈ [
1

2
, 1] .

As simulations demonstrate, clusters exchange particles until only few of clusters
survive. The saturation regime starts when only two clusters are surviving and exchanging
particles. We would like to know the dynamics of exchanging. Let us describe it by the
master-equation for condensate size m

∂tq(m, t) = −q(m, t)
[

1
m
M

+
1

1− m
M

]
+ q(m− 1, t)

1

1− m−1
M

+ q(m+ 1, t)
1

m+1
M

, (9)

where M = (ρ− ρc)L are all excess particles in the system, q(m, t) is the probability to
�nd m particles on one condensate and M −m particles on the other one at time t.

For any initial condition the solution of (9) tends to the inverse binomial distribution
q∗(m) = 1/

(
M
m

)
, with the two extreme occupation numbers m = 0 and m = M , which

are most probable in the limit L→∞. Both with the probability 1/2 of occurring.

4 Discussion

The goal of this paper was to lay some basic facts about zero range processes as the base
for further research, to get familiar with the underlying Markov processes and to get some

27For a further explanation of these assumptions, see [5], chp. 6.2.1 .
28See [5].
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Figure 1: Relaxation dynamics in ZRP. This �gure was taken from the [5].

insight into relaxation dynamics through simulations of zero range processes. This paper
does not aim to summarizes the all know facts, which is not possible on a few pages.
However, we restricted ourself on the periodic boundaries of lattice our motivation of this
research is comparison between this simple model with results from tra�c data.
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Abstract. This paper introduces searching process as a means for analysis of discrete optimiza-

tion heuristic algorithms. Performance of a searching process on a task with �nite number of

states is studied via Markov chain. Using this approach a thorough comparison of three di�erent

time complexity measures, which are introduced in the paper as well, is performed. According

to the output of the measures on three di�erent tasks the Q∞ measure seems to provide most

reasonable results for heuristic performance analysis.

Keywords: Integer optimization, heuristic algorithm, time complexity measure, Markov chain

Abstrakt. Táto práca predkladá preh©adávací proces ako prostriedok na analýzu heuristick-

ých algoritmov pre celo£íselnú optimalizáciu. Výkonnos´ preh©adávacieho procesu na úlohe s

kone£ným po£tom stavov je analyzovaná s vyuºitím Markovových re´azcov. Týmto prístupom

je vykonaná dôkladná analýza troch rôznych mier £asovej náro£nosti, ktoré su taktieº prezento-

vané v práci. Na základe výstupov mier na troch rôznych úlohách je doporu£ovaná miera Q∞,
ktorá sa javí, ºe poskytuje najprimeranej²ie výsledky pre analýzu výkonnosti heuristiky.

K©ú£ové slová: Celo£íselná optimalizácia, heuristika, miera £asovej náro£nosti, Markovov re´azec

1 Introduction

Researchers dealing with optimization problems and/or developing their own optimization
heuristics are interested in time complexity measures since they can be used to determine
the di�culty of distinct optimization problems and also to evaluate the suitability of
given optimization heuristic for given task.

When dealing with discrete optimization task using a heuristic approach, the algorithm
searches through the space of feasible solutions, or states, to �nd any of the goal states,
which are optimal, or sub-optimal, solutions of the given problem. More formally, let U
be a non-empty set of states. Let G ⊂ U be a non-empty set of goals. Any state x ∈ G
is called a solution of the searching task 〈U,G〉. Let N ∈ N be the maximum number
of searching steps. Any algorithm generating the sequence of (x1, x2, . . . , xN) ∈ UN is
called a searching process (SP). The number of searching steps (time complexity of SP)
is de�ned as n = min{k ∈ N | xk ∈ G}, i.e. in the case of successful search. Should the
search end with a failure we set n = +∞.

∗This paper has been supported by the grant OHK4-165/11 CTU in Prague
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To make a relevant example, a typical discrete instance of Optimization Problem (OP)
de�ned as the minimization of an objective function f: D → R where D = {x ∈ Zn |
a ≤ x ≤ b} is an appropriate integer domain may be regarded as searching task 〈U,G〉
where G = {x ∈ U | f(x) ≤ fopt} with fopt = min{f(x) | x ∈ U}.
We may quite realistically suppose that the SP is produced by a stochastic algorithm and
the complexity n is a stochastic variable with the domain of DSP = {1, 2, . . . , N,+∞}
and densities pn ≥ 0,∀n ∈ DSP satisfying

∑
pn = 1. The value of pn for n ≤ N may be

interpreted as the probability of �nding the solution in n-th step of the SP. Moreover,
we may de�ne psucc =

∑N
n=1 pn as the probability of success and p∞ = 1 − psucc as the

probability of failure in a single run of SP. In the following we will be studying SP with
psucc > 0 only.

2 Traditional Approach to Time Complexity Measures

To study the behaviour of a SP we may use three widely used, e.g. by Yang and Deb [1],
basic characteristics:

• psucc as reliability of the SP,

• En = p−1
succ

∑N
n=1 n pn as mean number of searching steps in the case of successful

search,

•
√

Dn = p
−1/2
succ (

∑N
n=1 (n− En)2 pn)

1/2
as standard deviation of the searching step

number in the case of successful search.

To address the fundamental problem of measuring SP time complexity and thus perfor-
mance, as long as the SP has reliability of psucc = 1, a very straightforward criterion of
mean number of steps En is frequently used. On the other hand, for 0 < psucc < 1 we
have to adjust the value of En due to decreased reliability of the SP.

An example of adjusted time complexity evaluation is based on the Feoktistov criterion
[2],

FEO =
En

psucc

. (1)

Other authors use similar criterion as well, for example [6] de�nes time complexity mea-
sure SP1 as

SP1 =
ET sA
ps

, (2)

where ps ∈ (0, 1] is probability of success and T sA number of evaluations for a run of an
heuristic algorithm. Therefore SP1 = FEO.

Following the traditional approach we are able to search for optimal value of FEO,

FEOopt = min{FEO |N ∈ N} , (3)

and more importantly to �nd the minimal number of steps that guarantee optimal quality,
NFEO,opt,

NFEO,opt = min{N ∈ N |FEO = FEOopt} , (4)

after which the SP should be terminated.
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3 Extended Searching Process Measure

The recommendation of optimal running and even restarting strategy may be performed
via analysis of the Extended Searching Process (XSP) time complexity analysis.

XSP is based on the idea of following trivial, but very practical habit � if the SP is
successful in the �rst run, then the searching task is done. Otherwise, should the process
end with a failure, we continue to repeat new runs until succeeding.

Let k ∈ N be the index of an SP run. Let j = 1, 2, . . . , N be the searching step index
inside the individual SP run. The distinct runs of SP are supposed to be independent
and, therefore, the XSP successfully terminates in the n−th step with probability

p∗n = p∗N(k−1)+j = (1− psucc)
k−1pj . (5)

We can directly calculate

En∗ =
∞∑
n=1

n p∗n = (6)

=
∞∑
k=1

(1− psucc)
k−1

N∑
j=1

(N(k − 1) + j)pj =
N psucc (1− psucc)

p2
succ

+
psucc En

psucc

. (7)

Hence, the relationship between time complexities of the XSP and the original SP is

En∗ = En+N · 1− psucc

psucc

. (8)

Finally, this formula can be used directly to build up the quality criterion of XSP and,
as has been noted, of SP time complexity, the Q∞ measure:

Q∞ = En+N · (p−1
succ − 1) . (9)

Despite using di�erent statistical reasoning similar approach was proposed by [6]:

SP2 = (
1− ps
ps

)FEmax + ET sA , (10)

where FEmax is the maximum number of function evaluations and therefore: SP2 = Q∞.

It is obvious that the this criterion is quite similar to the Feoktistov's one. In fact, there
is a very clear relation between the two. Starting from the inequality of n ≤ N we obtain
En ≤ N and then Q∞ ≥ En+En ·(p−1

succ−1) = En/psucc = FEO .We can conclude that
Feoktistov's criterion is the lower bound of the novel criterion of SP time complexity.

Again, this way we are able to search for optimal value of Q∞,

Q∞,opt = min{Q∞ |N ∈ N} , (11)

and more importantly to �nd the minimal number of steps that guarantee optimal quality,
Nopt,

NQ,opt = min{N ∈ N |Q∞ = Q∞,opt} , (12)

after which the XSP should be terminated.
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4 Random Shooting Envelope Measure

Another measure can be based on the rather trivial idea of random shooting heuristic
algorithm. Let µ be number of states and ν be number of goal states. Then pHIT = ν/µ is
probability of goal hitting by a single random shot and number of evaluations has geometric
distribution with probability density function (PDF) and cumulative distribution function
(CDF) as follows:

pn = pHIT · (1− pHIT)n−1 , (13)

Fn = 1− (1− pHIT)n . (14)

De�ning time constant as

T =
1

− ln(1− pHIT)
> 0 , (15)

we can reformulate CDF of random shooting as

Fn = 1− exp(−n/T ) . (16)

Random shooting is the only one heuristic which can be restarted without any change
on CDF. That is why we have decided to compare random shooting CDF with CDF of
given searching heuristics.

First, we de�ne upper bound (envelope) of given CDF by condition:

∀n ∈ N : Fn ≤ 1− exp(−n/T ) . (17)

After inequality rearrangement we obtain upper bound for time constant

∀n ∈ N : T ≤ n

− ln(1− Fn)
(18)

which is the same as

T ≤ min{ n

− ln(1− FN)
|N ∈ N} . (19)

This motivates us to de�ne random shooting time:

TRS =
N

− ln(1− FN)
(20)

as third time complexity measure and to �nd its optimum value

TRS,opt = min{TRS |N ∈ N} (21)

and corresponding optimum interruption time as

NRS,opt = min{N ∈ N |TRS = TRS,opt} . (22)
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5 Finite Time Horizon

Let N be number of searching steps in as single run, H be the number of independent
serial runs, and M be constrain of total step number. In such case we have to minimize
failure probability

pfail = 1− psucc = (1− FN)H (23)

subject to H ·N ≤M . This constrained integer minimization task with two independent
variables H,N can be converted to

Φ = − ln pfail = max (24)

withH = bM/Nc. Therefore, we obtain one-dimensional optimization task with unknown
N as

Φ = −bM/Nc · ln(1− FN) = max . (25)

If M is large, we can approximate

Φ ≈ −M
N

ln(1− FN) =
M

TRS

= max . (26)

Therefore, maximization of Φ is approximately minimization of TRS, which is equivalent
to random shooting envelope if M →∞, what can be written exactly as

TRS = lim
M→∞

M

Φ
= min . (27)

There is also relationship between Φ criterion and QM measure as

QM = sk−1
N · sj ≈ skN = (1− FN)k = (1− FN)bM/Nc , (28)

where sj stands for failure probability sj = 1−
∑j

k=1 pk for j = 0, 1, . . . , N .
Therefore

lim
M→∞

M

− lnQM

= TRS = min . (29)

Finally, we recognize the equality of �nite time horizon, random shooting envelope, and
QM approaches which is a support argument for TRS complexity measure and it suppresses
individual examination of Φ and QM measures.

6 Searching Process Analysis via Hypothetical Search-

ing Process

Having three time complexity measures FEOopt, Q∞,opt and TRS,opt, we would like to
compare their properties via hypothetical and real-world scenarios. First, we de�ne three
hypothetical searching processes with parameters n0 ∈ N and 0 < psucc ≤ 1. Their
common characteristics are identical reliabilities psucc and maximum running times n0.
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Degenerated Search (DES) has CDF

Fn =

{
0, n < n0

psucc, n ≥ n0 .
(30)

Trimmed Linear Searching Process (TLS) has CDF

Fn = min(
n · psucc

n0

, psucc) . (31)

Trimmed Random Shooting (TRS) has CDF

Fn = min(1− exp(−n/T ∗), psucc) (32)

where
T =

n0

− ln(1− psucc)
. (33)

If we terminate DES, TLS, TRS after N = n0 steps, we obtain identical reliabilities psucc,
but di�erent values of En:

EnDES = n0 , (34)

EnTLS =
(n0 + 1)

2
, (35)

EnTRS =
(1− psucc)

1/n0

1− (1− psucc)1/n0
· 1− (1− psucc) · (1− psucc)

1/n0

psucc

. (36)

It is easy to prove EnTRS ≤ EnTLS ≤ EnDES for n0 ≥ 2. Therefore, TRS is the fastest
and DES is the slowest with the same reliabilities.

Applying three time complexity measures FEOopt, Q∞,opt and TRS,opt, we can compare
their decisive power. General results are collected in Tab. 1 except the case of FEOopt

for TRS which has to be investigated numerically. The dependency of measure values on
reliability psucc is demonstrated in Tab. 2 for n0 = 1000.

Table 1: General comparison of measures
Process FEOopt Q∞,opt TRS,opt NFEO,opt NQ,opt NRS,opt

DES n0

psucc

n0

psucc

n0

− ln(1−psucc)
n0 n0 n0

TLS n0+1
2psucc

n0

psucc
− n0−1

2
n0

− ln(1−psucc)
n0 n0 n0

TRS numerically (1− (1− psucc)
1/n0)−1 n0

− ln(1−psucc)
numerically 1 1

For n0 ≥ 2 we observed:

FEOopt,TRS < FEOopt,TLS < FEOopt,DES , (37)

Q∞,opt,TRS < Q∞,opt,TLS < Q∞,opt,DES , (38)

TRS,opt,TRS = TRS,opt,TLS = TRS,opt,DES . (39)

Therefore, TRS,opt measure of time complexity does not re�ect the di�erences among
DES, TLS, and TRS. Remaining measures FEOopt ≤ Q∞,opt are of same importance,
but we prefer Q∞,opt for its relationship to XSP and also because Q∞,opt advocates serial
repetition of the searching process.
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Table 2: Numerical comparison of measures for n0 = 1000
psucc Process DES TLS TRS

FEOopt 10000.00 5005.00 4802.11
0.1 Q∞,opt 10000.00 9500.50 9491.72

TRS,opt 9491.22 9491.22 9491.22
FEOopt 3333.33 1668.33 1432.66

0.3 Q∞,opt 3333.33 2833.83 2804.17
TRS,opt 2803.67 2803.67 2803.67
FEOopt 2000.00 1001.00 743.53

0.5 Q∞,opt 2000.00 1500.50 1443.20
TRS,opt 1442.70 1442.70 1442.70
FEOopt 1111.11 556.11 229.43

0.9 Q∞,opt 1111.11 611.61 434.79
TRS,opt 434.29 434.29 434.29

7 Markovian Simulation

The rather simple and straight-forward, but sometimes also very e�ective, heuristic we
will use for experimental case study is the well-known Shoot and Go (SG) or Iterated
Local Search (ILS) algorithm [4]. In our implementation the random solution is improved
iteratively via local search in its neighbourhood. E�ectiveness of this approach based
on steepest descent is dependent mainly on the neighbourhood shape and size. General
neighbourhood of x ∈ D can be de�ned as Rp,ρ(x) = {y ∈ D | ||x− y||p ≤ ρ} , where p is
norm parameter and ρ is neighbourhood radius. In our experimental study we will apply
Manhattan (p = 1) and Hamming norm (p = 'HAMM') and a small neighbourhood size
(ρ = 1, 2). Periodic extension of D is also possible but it is useful only in combination
with Manhattan norm.

The resulting SP can be studied as a Markov chain [5] with a �nite number of states
as long as the p1, p2, . . . , pN probabilities can be calculated for given N . The numerical
study was performed for following three problems.

Weighted Sum Problem having objective function f(x) =
∑d

k=1wkxk, where 0 ≤ xk ≤ R,
R ∈ N, wk = a1/k, a > 1 is a relatively uncomplicated integer objective function with
minimum at 0. Study for d = 5 and R = 3 was performed and results are collected in
Tab. 3. We may clearly see that all criteria tend to prefer smaller neighbourhood size
and the results suggest to proceed with searching in a relatively long runs (Q∞,opt and
TRS,opt) � in other words, this criteria "trust" the heuristic.

Knapsack Problem having objective function f(x) = −
∑d

k=1 πkxk+λ·max(0,
∑d

k=1wkxk−
w∗), 0 ≤ xk ≤ R, R ∈ N, πk, wk, w∗, λ > 0 with both weights w and item values π coming
from geometrical sequence could be considered a more intricate integer objective function.
Results of a study for d = 5 and R = 3 are collected in Tab. 4. As opposed to the �rst
example, smaller neighbourhood is preferred only for the Manhattan norm. Smaller N
advised by all criteria re�ects increased di�culty of this problem as well.

Clerc's Zebra3 problem is a non-trivial binary optimization problem and part of discrete
optimization benchmark problems [3]. Objective function value f is the sum of the result



180 M. Mojze²

Table 3: Weighted sum problem simulation results
Norm Extension ρ FEOopt Q∞,opt TRS,opt NFEO,opt NQ,opt NRS,opt

Manhattan
None

1 25.3971 25.5177 6.5342 49 225 225
2 40.6063 43.2484 25.2317 69 833 768

Periodic
1 29.4557 29.9991 10.9 55 362 363
2 60.1713 70.958 55.1548 85 1712 1538

Hamming None
1 29.7584 30.9355 15.1241 53 500 501
2 86.4279 116.3463 104.9813 92 3045 2716

Table 4: Knapsack problem results
Norm Extension ρ FEOopt Q∞,opt TRS,opt NFEO,opt NQ,opt NRS,opt

Manhattan
None

1 159.74 261.12 258.44 30 21 21
2 204.44 360.26 358.01 43 29 28

Periodic
1 175.27 297.51 295.52 26 18 18
2 221.15 399.94 398.26 44 29 29

Hamming None
1 206.11 350.82 349.09 23 16 16
2 189.38 337.07 334.77 66 48 48

of applying the function (40) to consecutive groups of three components each, if the rank
of the group is even, or (41) otherwise. The maximum value is d/3, where d is dimension
of the problem. We may use the value of d/3 − f as modi�ed objective function and
search for its optimum, 0. Results of a study for d = 12 are collected in Tab. 5. In the
case of Clerc's Zebra3 problem only more appropriate Hamming norm is presented, since
the Manhattan one is practically the same (both with or without periodic extension).
Results for ρ = 1 indicate the hardest problem of the three with minimal suggested N .
Nevertheless, it may be of interest that by increasing the neighbourhood size we are able
to signi�cantly simplify the problem and advance with the search in much longer run.

f1(x) =


0.9 |y| = 0
0.6 |y| = 1
0.3 |y| = 2
1.0 |y| = 3

(40) f2(x) =


0.9 |y| = 3
0.6 |y| = 2
0.3 |y| = 1
1.0 |y| = 0

(41)

Table 5: Clerc's Zebra3 problem results
Norm Extension ρ FEOopt Q∞,opt TRS,opt NFEO,opt NQ,opt NRS,opt

Hamming None
1 1597.17 2682.56 2681.71 10 7 7
2 536.03 970.44 967.46 68 46 46

8 Conclusions

Even a very well designed heuristic should be terminated in the right moment and re-
started in order to improve its chances of success. To accomplish this goal, the researcher
should examine multiple runs of the heuristic. According to observed probabilities of
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�nding the optimum in distinct number of evaluations, the investigator should apply
their preferred complexity measure and plan optimal termination and re-starting strategy
accordingly. It may be useful also to get feedback on deliberation of the algorithm
� instance with higher termination point can be regarded as more trusted to �nd the
solution in one run. This way, one could also identify sophisticated heuristics in terms of
their ultimate results and not based on their computational complexity.

In this paper, we have compared three di�erent criteria that can examine performance
of given heuristic algorithm on given problem. Using this criteria while studying the
results of presented Markovian simulation and also performance of our own heuristics we
suggest that the Q∞ measure is worth using. While TRS is a rather extreme criterion
and FEO well-known and relevant criterion, we propose the Q∞ measure for being more
appropriately sensitive to performance of given heuristic on given problem and thus can
provide important and suitable feedback when tuning algorithms.
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Abstract. There are two essential tasks in image forensics. Integrity veri�cation (genuineness

analysis) of digital images and image ballistics. In image ballistics we address the problem of

linking digital images under investigation to either a group of possible source imaging devices

or to one particular source imaging device which has been used to capture these photos. The

latter one is the main topic of this paper. Speci�cally, we develop a novel method to identify

the source camera of a digital image by using its sensor unevenness caused by Photo-Response

Non-Uniformity (PRNU).

Keywords: image forensics, PRNU, source camera identi�cation

Abstrakt. Ve forenzní analýze obrazu existují dv¥ základní úlohy. Ov¥°ení integrity (auten-

ti£nosti) digitálního obrazu a obrazová balistika. V obrazové balistice °e²íme problém nalezení

typu záznamového za°ízení, nebo konkrétního fotoaparátu, který byl pouºit k zachycení snímku.

Tato druhá úloha je hlavním tématem na²eho p°ísp¥vku. Konkrétn¥ jsme vyvinuli novou metodu,

jak identi�kovat u digitálního obrazu zdrojové za°ízení pomocí jeho senzorové nekonzistence zp·-

sobené PRNU.

Klí£ová slova: forenzní analýza obrazu, PRNU, identi�kace fotoaparátu

1 Introduction

Since image ballistics makes possible to di�erentiate between source cameras of the same
make and model, it became especially useful in the forensic, law enforcement, insurance,
and media industries. Insurance companies, for example, often need to know whether
or not claim-substantiating photos were taken by the person looking for compensation.
Law enforcement agencies are also tasked with �nding the source camera when criminal
activity is discovered in digital images (e.g. child pornography, etc).

Although in past researchers mainly were focused on data hiding and digital water-
marking approach to carry out digital image integrity veri�cation and image ballistics,
today there is a relatively new approach called passive one which does not need embed-
ding any secondary data into the image. So, in contrast to active methods, the passive
approach does not need any prior information about the image being analyzed. There

∗This work has been supported by the grants GA�R 13-28462S and VG20102013064
†Institute of Information Theory and Automation, AS CR
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Figure 1: A typical digital camera system.

have been developed methods to detect image splicing, traces of non-consistencies in color
�lter array interpolation, traces of geometric transformations, cloning, computer graphics
generated photos, JPEG compression inconsistencies, etc. Typically, pointed out meth-
ods are based on the fact that digital image editing brings speci�c detectable statistical
changes into the image.

Our aim in this paper is to uncover some important drawbacks of existing source
identi�cation methods and analytically develop a novel way to identify particular source
cameras by employing their sensor properties [1, ?]. Speci�cally, we will use the mul-
tiplicative nature of PRNU noise component present in digital images. Moreover, we
also will deal with artifacts brought into the image by vignetting, JPEG, and embed-
ded camera software. E�ectiveness of proposed analytical concept will be experimentally
measured and compared to state-of-the-art.

2 Fingerprints of Di�erent Camera Components

A typical camera is consisted of several di�erent components (see Fig. 1). As pointed out
in [2], the core of every digital camera is the imaging sensor. The image sensor (typically,
CCD or CMOS) is consisted on small elements called pixels that collect photons and
covert them into voltages that are subsequently sampled to a digital signal in an A/D
converter. Generally, before the light from the scene which is being photographed reaches
the sensor it also passes through the camera lenses, an antialiasing (blurring) �lter, and
then through a color �lter array (CFA).

The CFA is a mosaic of tiny color �lters placed over the pixel of an image sensor to
capture color information. Color �lters are needed because typical consumer cameras only
have one sensor which cannot separate color information. The color �lters �lter the light
by wavelength range, such that the separate �ltered intensities include information about
the color of light. Most commonly, Bayer color �lter is used. Here, each pixel captures
intensity of one of the red, green, or blue color information. This output is further
interpolated (demosaicked) using color interpolation algorithms to obtain all three basic
color channels for each pixel.

The resulting signal is then further processed using color correction and white balance
adjustment. Additional processing includes gamma correction to adjust for the linear re-
sponse of the imaging sensor, noise reduction, and �ltering operations to visually enhance
the �nal image. Finally, the digital image might be compressed stored and stored in a
speci�c image format like JPEG.

What is important in sense of forensic analyzes of digital images is that di�erent
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components of camera leave di�erent kind of artifacts or �ngerprints useful for integrity
veri�cation of photos or ballistics analysis. Typically, �ngerprints left by CFA, post
processing, and compression parts are in common for cameras of same make and model.
In other words, assuming that we know their value and behavior for a particular camera
make and model and based on the fact that digital image editing (e.g., photoshopping)
change these values (�ngerprints), they can be employed for veri�cation of the originality
of digital images .

On the other hand, each camera has its own unique sensor consisted on millions of
pixels each of unique properties. Thus, if we are able to �nd such an information brought
into image by the sensor and which will remain stable and present in all images captured
by that sensor and cannot be fount in no image captured by any other sensor, then we
can call it �ngerprint of that sensor or camera. Such a �ngerprint can be employed to
link digital images to particular digital cameras which captured them.

2.1 Sensor as a Camera Fingerprint

Image sensors su�er from several fundamental and technology related imperfections re-
sulting in their performance limitations and noise. As pointed out in [2], if we take a
picture of an absolutely evenly lit scene, the resulting digital image will still exhibit small
changes in intensity among individual pixels which is partly because of pattern noise,
readout noise or shot noise.

While readout noise or shot noise are random components, the pattern noise is deter-
ministic and remain approximately the same if multiple pictures of the same scene are
taken. As a result, pattern noise can be the �ngerprint of sensors which we are searching
for.

Pattern Noise (PN) is consisted of two components called Fixed Pattern Noise (FPN)
and photo response nonuniformity (PRNU). FPN is independent of pixel signal, it is an
additive noise, and some high-end consumer cameras can suppress it. The FPN also
depends on exposure and temperature.

PRNU is formed by varying pixel dimensions and inhomogeneities in silicon resulting
in pixel output variations. It is a multiplicative noise. Moreover, it is not dependent on
temperature and seems to be stable over time.

The values of PRNU noise increases with the signal level (it is more visible in pixels
showing light scenes). In other words, in very dark areas PRNU noise is suppressed.
Moreover, PRNU is not present in completely saturated areas of an image. Thus, such
images should be ignored when searching for PRNU noise.

Despite the fact that there are not a lot of studies analyzing the PRNU noise in deeper
details (probably due to physical limitations and no signi�cant demand for it so far), it
can be shown that it has dominant presence in the pattern noise component. This made
possible Fridrich et al. [3, 1] to employ it in order to identify source cameras. In other
words, PRNU noise is employed as the �ngerprint of camera sensors.
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3 Motivation

Generally, it can be claimed that state-of-the-art source identi�cation methods are mostly
based on methods proposed by Jessica Fridrich et al. (e.g., [3, 1]). There have been pub-
lished some additional papers by other authors (e.g., [4, ?]) aiming to improve accuracy
of results. Generally, they bring modi�cations to the original paper of Jessica Fridrich et
al. [3, 1] based on some theoretical or empirical �ndings. Nonetheless, the key concept
of measuring sensor's �ngerprint remained unchanged.

Nonetheless, having available a larger set of cameras of same and di�erent models
and a large set of ground-truth digital images captured by these devices, one can simply
run an experiment to measure the e�ectiveness and fragileness of existing methods. By
performing such an experiment, it is quite easy to notice that state-of-the-art source
identi�cation methods su�er of a number of essential non�perfections.

Below we discuss three important drawbacks speci�cally caused by optical zoom,
JPEG, and embedded software in cameras.

3.0.1 Impact of optical zoom

When applying typical PRNU-based camera identi�cation methods (e.g., [3, 1]) on dig-
ital images acquired by cameras having available rich optical zoom possibility then they
typically fail. Let us demonstrate the problem with by carrying out a simple experiment
using Fuji�lm FinePix S100fs camera. The focal length of this camera can be changed
from 28 mm to 400 mm. We captured 50 images of blue skye for each of the following
focal lengths Z ∈ {28, 50, 100, 200, 400} and used them to calculate camera sensor's �n-
gerprint using the algorithm pointed out in [1]. In other words, 5 di�erent �ngerprints of
the same camera have been obtained. Moreover, we took 5 images of a natural scene for
each of mentioned focal lengths to carry a basic source identi�cation task.

Figure 2 demonstrates results of 25 test images and 5 �ngerprints. First image shown
in Figure 2 demonstrates results of testing test images with sensor �ngerprint of Fuji�lm
FinePix S100fs obtained by photos captured with focal length of 28 mm. Five test images
captured by the same focal length exhibit high correlations (in other words, source camera
has been found correctly). Nonetheless, all other test images captured by the same camera
but di�eren focal lengths exhibited very low correlations (in other words, source camera
has not been identi�ed). Second image shown in Figure 2 shows result of testing test
images with sensor �ngerprint obtained by photos captured with focal length of 50 mm.
Five test images captured by the same the focal length exhibit high correlation. Again,
all other test images failed. Other images shown in Figure 2 uncovers the same problem
under scenarios of using other focal lengths in Z.

We also carried out the same experiment with other cameras such as Nikon Coolpix
L23, Canon PowerShot A495, Pentax Optio P80, etc. with very similar results. Ap-
parently, this is a serious drawback as it is very di�cult to create a stable �ngerprint
for a cameras having rich focal length. To cover all focal lengths, one should create one
�ngerprint per each available focal length, [5], which is very time consuming and almost
impossible in real-life applications.

The question is why this problem happens? The reason behind this is, so called,
vignetting which causes a change of PRNU values at di�erent zoom levels. There are
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Figure 2: Problem of camera source identi�cation caused by optical zoom. Fuji�lm
FinePix S100fs is a camera having di�erent possibilities of focal lengths. Shown results
demonstrate that correctness of source identi�cation test is dependent on particular sensor
reference images and corresponding focal length.

several types of vignetting such as mechanical, optical, natural or pixel vignetting [6].
Some types of vignetting can be completely covered by lens settings (using special �lters),
but most digital cameras use built-in image processing to compensate with vignetting
when converting raw sensor data to standard image formats such as JPEG or TIFF.
Typically, vignetting is stronger at the non-central parts of the photo.

3.0.2 Impact of embedded camera software

Assume we have 100 pieces of di�erent iPhone 3 devices. Moreover, we have a digital
image captured by one of these iPhones and our aim is to identify the particular source
device. In other words, we need to have such a �ngerprint of each device that distinguish
it uniquely and eliminate features in common for these devices.

On the other hand, there is an embedded software in digital consumer cameras which
perform operations like color �lter array (CFA) interpolation, white balancing, gamma
correction, color enhancement, interpolation (digital zoom), etc. Because of the fact
that this embedded software is typically in common in cameras/smartphones of the same
model, it brings into digital images of cameras of same model very similar changes. This
is a serious problem which occurs in higher rate of false positives when having a higher
number of source imaging devices of same model under investigation.

3.0.3 Impact of heavy JPEG

Let us assume the example with iPhone 3 mentioned before. Assume that this digital
camera produces heavily compressed JPEG images. As it is known, highly JPEG com-
pressed images exhibit blocking artifacts. Figure 3 provides a simple example of blocking
artifact. Here, �rst 8 rows and 9 columns of the same photo compressed with di�erent
JPEG qualities is shown. As apparent, absolute di�erence between boundary pixels (pix-
els at 8th and 9th column) of (a) is 0. Same for (b) is 6. and for (c) is 14. These JPEG
blocking artifacts is another change brought into the image by the embedded camera
software and in common within the same model of cameras. In other words, this is an-
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Figure 3: JPEG blocking artifact. (a) shows pixels of rows 1 to 8 and columns 1 to 9 of
a RAW digital image. In (b) its JPEG 95% version is shown. In (c) JPEG 65% version
of (a) is shown.

other source of false positive results when linking a photo to larger set of possible source
cameras of same model. Moreover, this is a quite common problem occurred in real-life
applications (for example, when inspecting Facebook photos or Youtube videos).

To understand why blocking artifacts occur, we need to understand how JPEG algo-
rithm does work. Although JPEG �le can be encoded in various ways, the most common
algorithm is the following one.

Typically, the image is �rst converted from RGB to YCbCr, consisting of one lu-
minance component (Y), and two chrominance components (Cb and Cr). Mostly, the
resolution of the chroma components are reduced, usually by a factor of two. Then each
component is split into adjacent blocks of 8× 8 pixels. Block values are shifted from un-
signed to signed integers. Each block of each of the Y, Cb, and Cr components undergoes
a discrete cosine transform (DCT). Let f(x, y) denote a pixel (x, y) of an 8× 8 block. Its
DCT is:

F (u, v) =
1

4
C(u)C(v)

7∑
x=0

7∑
y=0

f(x, y) cos
(2x+ 1)uπ

16
cos

(2y + 1)vπ

16
,

(1)

where

u, v ∈ {0 · · · 7};
C(u), C(v) = 1/

√
2 for u, v = 0;

C(u), C(v) = 1 otherwise.

(2)

In the next step, all 64 F (u, v) coe�cients are quantized. This is done by simply
dividing each component in the frequency domain by a constant for that component, and
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then rounding to the nearest integer. More formally, the quantization step is given by a
64-element quantization table (QT):

FQT (u, v) = round

(
F (u, v)

QT (u, v)

)
, u, v ∈ {0 · · · 7}

whereQT (u, v) de�nes the quantization step for each DCT frequency u and v. Commonly,
there is one QT for Y and another, single QT for both Cb and Cr. In the �nal step,
entropy coding is carried out. This part is, typically, performed by employing run-length
encoding (RLE) and Hu�man coding.

The JPEG decompression works in the opposite order: entropy decoding followed by
de-quantization step, inverse discrete cosine transform, etc.

Now, it is apparent that it is the quantization step in conjunction with splitting the
image into block 8× 8 that bring into the decoded photo shown blocking artifacts.

4 Modeling and Extracting PRNU

Let us model the image acquisition process in the following way:

Ii,j = Io
i,j + Io

i,j · Γi,j + Υi,j (3)

Here, Ii,j denotes the image pixel at position (i, j) produced by the camera, Io
i,j denotes

the noise-free image (perfect image of the scene), Γi,j denotes PRNU noise and Υi,j stands
for all additive or negligible noise components.

Following the approach proposed by [3, 1], the PRNU component is estimated in the
following way. For a given camera, PRNU noise is estimated by averaging multiple images
Ik, k = 1, · · · , N captured by this camera. This process is sped up by suppressing the
scene content from the image prior to averaging. This is achieved by using a de-noising
�lter F and averaging the noise residuals Id

k instead. In other words, PRNU of the camera
C is computed by:

CPRNU =
1

N

N∑
k=1

Ik − Id
k (4)

Alternatively, maximum likelihood estimation (MLE) instead of simple averaging is em-
ployed.

In our work, we focus on multiplicative nature of PRNU component and analytically
derive its estimation. Speci�cally, denoting the digital image captured by the camera by
I, and the corresponding noise-free perfect image of the scene by I0, then the �ngerprint
of the camera can be calculated in the following way.

Given Eq. 3, let us divide both sides of this equation by Io and introduce a natural
logarithm operator:

Ii,j
Io
i,j

=
Io
i,j + Io

i,j · Γi,j + Υi,j

Io
i,j

ln(Ii,j)− ln(Io
i,j) = ln(1 + Γi,j +

Υi,j

Io
i,j

) (5)



190 A. Novozámský

Having derived Eq. 5 and knowing that Taylor series expansions of the logarithmic
function ln(1 + x) is

ln(1 + x) = x− x2

2
+
x3

3
− x4

4
+
x5

5
· · ·

we can simply derive the following:

ln(Ii,j)− ln(Io
i,j) = Γi,j +

Υi,j

Io
i,j

+ · · ·

For the sake of simplicity, in the rest of this paper we omit pixel indexes (i, j) in
our denotations. Now, having available N digital images captured by the same camera
and considering the deterministic behavior of the PRNU noise component of its sensor,
Γsensor, we can derive the following:

1

N

N∑
k=1

ln(Ik)− ln(Io
k) = Γsensor +

1

N

N∑
k=1

Υk

Io
k

+ · · ·

Assuming that Υ is a zero-mean noise component, we can conclude that

lim
n→∞

1

N

N∑
k=1

Υk

Io
k

= 0

Ignoring higher order terms of Taylor expansion we can state that PRNU noise component
of the sensor under analysis, Γsensor, can be estimated in the following way:

Γsensor =
1

N

N∑
k=1

ln(Ik)− ln(Io
k) (6)

So, considering Γsensor as �ngerprint of the camera's sensor based on PRNU noise,
using Eq. 6 we can extract it from a set of image or even from one image. But, it is
apparent that as N →∞ the more accurate estimate of Γsensor we get. As stated before,
Eq. 6 we use the multiplication nature of PRNU component (recall that ln(a)− ln(b) =
ln(a

b
)).
Now, using simple a correlation we can measure similarity of di�erent �ngerprints.

For example, having available two di�erent sensor �ngerprints Γs1 and Γs1 , we measure
their similarity by employing a normalized correlation:

corr(Γs1 ,Γs2) =
(Γs1 − Γs1)� (Γs2 − Γs2)

(‖Γs1 − Γs1‖) · (‖Γs2 − Γs2‖)
(7)

where X denotes mean of the vector X, � stands for dot product of vectors de�ned as
X � Y =

∑N
k=1X(k)X(k) and ‖X‖ denotes L2 norm of X de�ned as ‖X‖ =

√
X �X.

It has been shown in [3] that a good way of approximating I0 is by de-noising I and
compute the residual of these two images:

I0 ≈ I − Id (8)
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(a) Same images as in the Figure 2 (b) Images from others 10 cameras.

Figure 4: Problem of zooming camera by our approach.

Here, Id denotes the de-noise image. While some studies were carried out about the
speci�c choice and e�ectiveness of de-noising �lters (e.g., [4]), our experiments uncovered
that although a proper de-noising �lter improves results of source identi�cation, this part
usually does not play the most critical part in receiving accurate results. It happens that
in some cases (e.g., based on spatial distribution of the image) some �lters work better
and some a bit worse.

5 Experiments

In this section we focus on testing the ultra-zoom camera Fuji�lm FinePix S100fs for its
possibility of manual zooming and wide range of zoom. While we got the similar results
for other cameras.

5.1 E�ect of optical zoom

We described in section 3.0.2, how strong in�uence has the optical zoom on the resulting
PRNU. Therefore, we took the same 25 images as in Figure 2 and calculated their PRNU
using our approach pointed out in section 4. Then we compared this PRNU with the
camera sensor's �ngerprint obtained by set of 50 photos captured with maximum focal
length of 400 mm. As shown in Figure 4a almost all testing images captured by the
di�erent focal length exhibit higher correlation.

5.2 E�ect of JPG compression

We captured 100 photos of di�erent scene and store them with best quality of JPG
compression (mark them as 100%). Then we resaved them with di�erent JPG quality
from 90% to 50%. The Figure 5 shows the results with state-of-the-art method, 5a, and
our method 5b .
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(a) Old Approach (b) Our Approach

Figure 5: Problem of camera source identi�cation caused by jpg compression.

6 Conclusion

A new approach of counting Photo-Response Non-Uniformity Noise was developed. The
standard method proposed by [3] assumes PRNU as the additive component of noise.
We focused on multiplicative nature of PRNU component and analytically derived its
estimation. In the experimental section, we show the resulting correlations for the jpg
compression and zooming. Although, we need more tests with di�erent camera settings
for better understanding of in�uences on PRNU, we took the next step to more accurate
identi�cation of individual cameras in practice.
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Abstract. This paper discusses the present data acquisition system (DAQ) of the COMPASS
experiment at CERN and presents development of a new DAQ. The new DAQ must preserve
present data format and be able to communicate with FPGA cards. Parts of the new DAQ are
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Abstrakt. Tento £lánek se v¥nuje sou£asnému systému pro sb¥r dat experimentu COMPASS v
CERN a popisuje dosavadní vývoj nového systému. Nový systém musí zachovat stávající formát
dat a dále musí být schopný komunikovat s FPGA kartami. Návrh jednotlivých £ástí nového
systému je zaloºen na stavových automatech. Tyto £ásti jsou realizovány v programovacím jazyce
C++ s vyuºitím knihoven QT, DIM a IPBus. Prototyp navrhnutého systému je p°ipraven a £ásti
ur£ené ke komunikaci skrze DIM a IPBus byly úsp¥²n¥ otestovány. Díky test·m bylo prokázáno,
ºe nový systém dokáºe splnit poºadavky na n¥j kladené. Plná verze tohoto p°ísp¥vku je dostupná
na adrese http://arxiv.org/abs/1310.1308.

Klí£ová slova: sb¥r dat, FPGA, DIM
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Abstract. Kernel-based methods represent widely applicable branch of data mining algorithms.

This paper deals with usage of kernel-based principal component analysis (PCA) in diagnostics

of Alzheimer's disease from SPECT images. In general, these images are high-dimensional data

which are not easy to classify. In order to solve this task, kernel based principal component

analysis was used to reduce the dimensionality of the images, and quadratic discriminant analysis

(QDA) was then used for classi�cation.

Keywords: Alzheimer's disease, diagnostics, Kernel PCA, whitening, QDA, leave-one-out cross

validation, classi�cation, MATLAB, object oriented programming

Abstrakt. Metody zaloºené na jádrových funkcích p°edstavují ²iroce vyuºitelný p°ístup k dolo-

vání znalostí z dat. V této práci je vyuºita jádrová varianta analýzy hlavních komponent (PCA)

k diagnostice Alzheimerovy choroby ze SPECT snímk·. Tyto snímky p°edstavují vysokodimen-

zionální data, která se obecn¥ obtíºn¥ klasi�kují. Problém dimenze obrázk· byl °e²en rozd¥lením

jejich analýzy na dv¥ £ásti. V první bylo pouºito jádrové analýzy hlavních komponent ke sní-

ºení dimenze úlohy a v druhé £ásti byla provedena klasi�kace pomocí kvadratické diskrimina£ní

analýzy (QDA).

Klí£ová slova: Alzheimerova choroba, diagnostika, jádrová PCA, whitening, QDA, leave-one-out

k°íºová validace, klasi�kace, MATLAB, objektov¥ orientované programování

1 Úvod

Dolování dat je bou°liv¥ se rozvíjející v¥decká disciplína, která stojí na pomezí t°í oblastí;
matematiky, informatiky a aplika£n¥ zajímavé oblasti, jejíº data zpracovává.

K samotnému dolování dat existuje celá °ada r·zných p°ístup·, které si velmi £asto
berou inspiraci z matematiky. V tomto p°ísp¥vku je st¥ºejní p°ístup vyuºívající teorii
jádrových funkcí [3] [5]. Model jádrové analýzy hlavních komponent (PCA) je v £lánku
vyuºit k ilustraci p°ístupu, který jádrové metody k dolování dat vyuºívají.

Vý²e uvedený matematický model je v praktické £ásti práce pouºit pro analýzu 3D
snímk· mozk· s cílem vytvo°it binární klasi�kátor Alzheimerovy choroby. Pro tento ú£el
je jádrová PCA vyuºita pro p°edzpracování dat pro kvadratickou diskrimina£ní analýzu
(QDA) [2].

∗Tato práce byla podpo°ena grantem SGS11/165/OHK4/3T/14 �VUT v Praze.
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Obrázek 1: Vyuºití jádrových funkcí k modelování

Samotné výpo£ty jsou realizovány v prost°edí MATLAB v rámci vlastní objektov¥
orientované implementace vycházející z [1].

2 Vyuºité matematické modely

Praktickým cílem práce je analyzovat 3D snímky mozk· a vytvo°it binární klasi�kátor
rozli²ující zdravé a nemocné lidi.

Vzhledem k povaze dat (viz £ást 4) byla analýza rozd¥lena do dvou £ástí; v první
byla data transformována pomocí jádrové PCA, v druhé byla na tranformovaná data
aplikována kvadratická diskrimina£ní analýza.

2.1 Jádrový p°ístup k model·m

M¥jme soubor pozorování a modelované vlastnosti {(x1, y1), ..., (xn, yn)}, kde xi ∈ X jsou
pozorování, yi ∈ Y je modelovaná vlastnost a n ∈ N. Klasickým p°ístupem je následné vy-
uºití vztah· mezi pozorováními v prostoru X a skrze tyto vztahy modelovat poºadovanou
vlastnost Y .

My²lenka, kterou vyuºívají jádrové funkce, je vloºit mezi prostor X a Y dal²í prostor;
ozna£me jej H. Prostor H je zaveden jako Hilbert·v prostor a obraz pozorování xi v
prostoru H dostaneme pomocí zobrazení Φ jako xi = Φ(xi). Takto získáme nový soubor
pozorování {(x1, y1), ..., (xn, yn)} v prostoru H. Nyní, v prostoru H, budeme skrze vzá-
jemné vztahy mezi pozorování xi modelovat prostor Y . V kontextu teorie jádrových funkcí
jsou vzájemné vztahy modelovány pomocí vzájemných vzdáleností vyjád°ených pomocí
skalárního sou£inu 〈xi, xj〉. Celý tento postup je znázorn¥n schematicky na obrázku 1
pomocí tmavé sekvence ²ipek.
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Protoºe je prostor H volen bu¤ jako vysokodimenzionální prostor, nebo dokonce spo-
£etn¥dimenzionální prostor, je vý²e uvedený p°ístup technicky obtíºn¥ realizovatelný, v
p°ípad¥ spo£etn¥dimenzionálního prostoru dokonce nerealizovatelný. Tento zásadní ne-
dostatek je odstran¥n tím, ºe prostor H je konstruován tak, aby bylo moºné skalární
sou£in 〈xi, xj〉 po£ítat p°ímo z p·vodních pozorování xi pomocí tzv. jádrové funkce k
jako k(xi,xj) = 〈xi, xj〉. Tento postup je znázorn¥n na obrázku 1 pomocí sv¥tlé ²ipky.
Vztahy mezi objekty m·ºeme shrnout následujícím zp·sobem

k(xi,xj) = 〈xi, xj〉 = 〈Φ(xi),Φ(xj)〉.

P°ímým d·sledkem p°edchozí formulace je skute£nost, ºe jednotlivé modely pro dolo-
vání dat zaloºené na jádrových funkcích p°ebírají pozorování ve form¥ tzv. jádrové matice
K, která je de�novaná následujícím zp·sobem

(K)ij = k(xi,xj),∀i, j ∈ {1, ..., n}.

2.2 P°íklady jádrových funkcí

Pro analýzu dat byla pouºita následující jádra

• nehomogenní polynomiální jádro s posunem c = 1 a parametrem d

k(x,y) = (〈x,y〉+ c)d,

• exponenciální jádro s parametrem σ

k(x,y) = exp(−‖x−y‖
σ

),

• gaussovské jádro s parametrem σ

k(x,y) = exp(−‖x−y‖
2

2σ2 ).

2.3 Klasická PCA

Analýza hlavních komponent (PCA) [6] p°edstavuje ú£innou techniku pro získávání struk-
tur z vícedimenzionálních soubor· dat. Z matematického hlediska se jedná o takovou
ortogonální transformaci sou°adného systému, která minimalizuje korelaci mezi prom¥n-
nými.

Nech´ je dán soubor pozorování X = (x1, ...,xn)′,xi ∈ X = Rp,1, který je vycentrovaný,
tedy spl¬uje

n∑
i=1

xi = Op,1, (1)

potom hledání komponent p°edstavuje problém nalezení vlastních £ísel λ a vlastních
vektor· v kovarian£ní matice

C =
1

n

n∑
i=1

xix
′
i. (2)
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Transforma£ní matice A p°echodu od p·vodních sou°adnic X k novým sou°adnicím Z je
pak dána jako A = (v1, ...,vp), kde pro vlastní £ísla λi p°íslu²ející k vlastním vektor·m
vi platí λ1 ≥ λ2 ≥ ... ≥ λp.

Tento koncept lze samoz°ejm¥ dále modi�kovat. Moºné je na vstupu pouºít korela£ní
matice místo matice kovarian£ní. Výstup je zase moºné sférizovat pomocí následující
transforma£ní matice W = (v1/

√
λ1, ...,vp/

√
λp).

2.4 Jádrová PCA

Základní my²lenka vyuºití jádrových funkcí je uvedena v £ásti 2.1. Roz²í°it klasickou
analýzu hlavních komponent tedy znamená provést ji v prostoru H [3] [5].

Lze ukázat [5], ºe provedení analýzy hlavních komponent v prostoru H odpovídá
hledání vlastních £ísel jádrové matice K. Stru£n¥ °e£eno, postup je stejný jako v p°edchozí
kapitole, jen se místo matice (2) provádí s jádrovou maticí K.

P°ed klasickou PCA se vstupní data centralizují pomocí vzorce (1). V prostoru H
reprezentuje podobnou úpravu tzv. whitening matice K, který je de�nován jako

K̃ = K− 1
n
In,nK− 1

n
KIn,n + 1

n2 In,nKIn,n

Hledání vlastních £ísel se potom provádí s maticí K̃ místo matice K.

Obrázek 2: P°ehled implementovaných balí£k·

2.5 Kvadratická diskrimina£ní analýza

Kvadratická diskrimina£ní analýza (QDA) [2] p°edstavuje model klasi�kace s u£ením,
který aproximuje data z t°íd pomocí normálního rozd¥lení. Klasi�kace nového pozorování
je potom provedena tak, ºe se vypo£ítá pravd¥podobnost p°íslu²nosti ke v²em t°ídám a
pozorování se následn¥ p°isoudí do t°ídy s nejv¥t²í pravd¥podobností p°íslu²nosti.

M¥jme N t°íd Ci s rozd¥leními fi(x),x ∈ X = Rp,1, i ∈ {1, ..., N}. Úkolem je vytvo°it
dekompozici prostoru X na N mnoºin Ai tak, aby platilo

1. ∪Ni=1Ai = X ,
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2. x ∈ Ci ⇔ x ∈ Ai.

Nalezení optimálního °e²ení p°edstavuje nalezení minima funkcionálu

L =
N∑
i=1

∫
Ai

N∑
j=1

πjfj(x), (3)

kde πi je apriorní pravd¥podobnost t°ídy Ci (nap°íklad rovnom¥rné rozd¥lení do t°íd). V
[2] je ukázáno, ºe klasi�ka£ní pravidlo 1. spolu s funkcionálem (3) lze p°evést na následující
klasi�ka£ní pravidlo

x ∈ Ct ⇔ πtft(x) > πjfj(x),∀j 6= t.

V QDA se pouºívá normání rozd¥lení pravd¥podobnosti fj ∼ N(µj,Σj).

Obrázek 3: Schéma balí£ku +JADRO
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3 Implementace

Implementace se skládá s ²esti balí£k·. Jejich p°ehled je na obrázku 2. Struktura balí£k·,
popis jednotlivých metod a celkové pouºití je uvedeno v [1]. Oproti p·vodní verzi z [1]
v²ak byl vylep²en balí£ek pracující s jádry. Jeho sou£asná objektová struktura je uvedena
na obrázku 3.

Sou£asná struktura výrazn¥ usnad¬uje práci s jádrovými funkcemi díky t°íd¥
C_SPRAVCE_JADER, která zast°e²uje a jednotn¥ zastupuje chování jednotlivých jader.
Díky uvedené koncepci balí£ku je navíc moºné velmi snadno roz²i°ovat stávající portfolio
jádrových funkcí.

Obrázek 4: Járová PCA: (vlevo) exponenciální jádro s parametrem σ = 3900, (vpravo)
polynomiální jádro stupn¥ t°i

4 Analýza dat

Praktickým cílem bylo analyzovat 3D snímky mozk· a vytvo°it binární klasi�kátor roz-
li²ující zdravé lidi a lidi s Alzheimerovou chorobou [4].

4.1 Popis dat

P°edm¥tem analýzy byly 3D SPECT snímky mozk· lidí. Jednotlivé snímky jsou reprezen-
továny maticí o rozm¥rech 79x95x69. Snímky byly v rámci p°edzpracování normalizovány
z hlediska intenzity.

Data se skládala ze dvou skupin lidí. První £ást p°edstavovalo 56 snímk· zdravých
lidí. Zdravotní stav byl zde ur£ován jednak na základ¥ snímk· jako takových, jednak
na základ¥ sady psychologických test·. Druhá £ást dat obsahovala 38 lidí s diagnózou
Alzheimerovy choroby.
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4.2 Postup analýzy

Jak plyne z popisu snímk·, snímky jako data p°edstavují vysokodimenzionální objekty.
Proto byla analýza rozd¥lena na dv¥ £ásti.

Nejprve byla na celý soubor dat aplikovaná jádrová PCA a získány nové sou°adnice
snímk·. K tomu ú£elu byly pouºity v²echny jádrové funkce z £ásti 2.2. Výpo£ty byly pro-
vedeny pro ²irokou ²kálu hodnot parametr· jednotlivých jader, aby bylo moºné posoudit
robustnost výsledk·. P°íklady výstup· pro dv¥ komponenty jsou uvedeny na obrázku 4,
kde k°íºky reprezentují zdravé pacienty a te£ky reprezentují nemocné pacienty.

Druhým krokem bylo u£ení samotného klasi�ka£ního modelu. Pro tyto ú£ely byla po-
uºita kvadratická diskrimina£ní analýza. QDA byla aplikována na data transformovaná
v²emi t°emi pouºitými jádry. V této fázi bylo cílem zkoumat závislost výsledné chyby kla-
si�kace na typu jádra, parametru jádra a po£tu vybraných komponent. Pro m¥°ení chyby
klasi�kace byla pouºita valida£ní metoda "leave-one-out". Výsledky jsou znázorn¥ny na
obrázcích 5, 6 a 7. V²echny tyto obrázky mají stejnou strukturu; na ose x je parametr
pouºitého jádra, na ose y po£et pouºitých komponent a osa z znázor¬uje klasi�ka£ní
chybu.

Obrázek 5: QDA s jádrovou PCA vyuºívající polynomiální jádro

4.3 Výsledky

Kvadratická diskrimina£ní analýza byla vybrána kv·li svému Bayesovskému základu a
obecné pouºitelnosti. Dal²ím d·vodem pro její volbu byla skute£nost, ºe z 2D a 3D
výstup· analýzy hlavních komponent bylo usouzeno, ºe transformovaná data jsou kvad-
raticky separovatelná.
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Obrázek 6: QDA s jádrovou PCA vyuºívající exponenciální jádro

V²echny výsledky (viz obrázky 5, 6 a 7) jsou jiº p°i prvním p°iblíºení smysluplné, pro-
toºe ukazují klesající chybu klasi�kace s rostoucím po£tem pouºitých komponent. Pokles
chybovosti je nejvýrazn¥j²í b¥hem prvních £ty° komponent. Navíc se u v²ech testovaných
jader chybovost od sedmé komponenty ustaluje. Obecn¥ lze tedy u£init záv¥r, ºe pro
dosaºení dobrých klasi�ka£ních výsledk· sta£í p°ibliºn¥ osm dimenzí z jinak vysokodi-
menzionálního objektu.

Nejhor²í výsledky s ohledem na volbu parametru vykazovalo polynomiální jádro (ob-
rázek 5). Na druhou stranu jeho parametr je nejsnadn¥ji interpretovatelný a proto je
velmi snadné u£init záv¥ry z provedené analýzy. Plyne z ní, ºe nejlep²ích výsledk· bylo
dosaºeno pro polynom prvního a druhého stupn¥ a ºe je pot°eba vzít v úvahu alespo¬ t°i
komponenty. Potom je chybovost mezi 0,096 a 0,138 s pr·m¥rnou hodnotou 0,107.

Výsledek klasi�kace s exponenciálním jádrem (obrázek 6) obsahuje dv¥ zajímavé ob-
lasti. První z nich je oblast zahrnující volbu parametru σ > 400 a po£et pouºitých kom-
ponent v¥t²í neº t°i. V této, z hlediska nastavení parametr·, rozsáhlé oblasti se chybovost
stabiln¥ pohybovala v rozmezí 0,096 aº 0,191 s pr·m¥rnou hodnotou 0,143. Druhá zají-
mavá oblast je de�novaná volbou parametru σ v rozmezí 600 aº 1300. Zde bylo dosaºeno
chybovosti v rozmezí 0,181 aº 0,213 s pr·m¥rnou hodnotou 0,191 jiº pro jednu pouºitou
komponentu.

Výsledky pro QDA s Gaussovským jádrem (obrázek 7) jsou podobné výsledk·m do-
saºeným v QDA s exponenciálním jádrem. První zajímavá oblast je pro volbu parametru
σ > 1100 a po£et komponent v¥t²í neº t°i. V této oblasti bylo dosaºeno nejniº²í chy-
bovosti 0,096, nejvy²²í 0,213 a pr·m¥rné hodnoty 0,149. V druhé oblasti bylo jiº pro
jednu pouºitou komponentu dosaºeno pro volbu parametru v rozmezí 600 < σ < 1300
chybovosti mezi 0,181 a 0,191 s pr·m¥rnou chybovostí 0,189.

Obecn¥ nejmen²í chybovosti 0,096 bylo dosaºeno s kaºdým testovaným jádrem. Vý-
hodou exponenciálního a Gaussovského jádra je, ºe dávají dobré výsledky pro ²irokou
²kálu parametr·. Navíc existuje oblast parametr·, pro kterou dávají dobré výsledky jiº
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Obrázek 7: QDA s jádrovou PCA vyuºívající Gaussovské jádro

pro jednu komponentu.
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Abstract. This paper deals with simulation of soil-air pressure. For the simulations, we employ

a mathematical model that couples the continuity equation with the Darcy law; the problem

obtained is solved numerically by means of the method of lines using the Galerkin �nite element

method and Runge-Kutta method. The results of our model are compared to experimental data

measured in a wind tunnel. In the �nal part of the article, some interesting results obtained by

simulating air �ow in heterogeneous soil are presented.

Keywords: porous medium, soil-air pressure, Galerkin �nite element method

Abstrakt. Tento p°ísp¥vek se zabývá simulací tlaku p·dního vzduchu. K simulacím je pouºíván

matematický model, jenº spojuje rovnici kontinuity s Darcyho zákonem, p°i£emº vzniklá úloha

je °e²ena numericky, a sice metodou p°ímek, s vyuºitím Galerkinovy metody kone£ných prvk·

a Rungovy-Kuttovy metody. Výsledky na²eho modelu jsou porovnávány s daty nam¥°enými

ve v¥trném tunelu. V záv¥re£né £ásti £lánku jsou rovn¥º prezentovány n¥které ze zajímavých

výsledk· získaných p°i simulaci proud¥ní vzduchu heterogenní p·dou.

Klí£ová slova: porézní prost°edí, tlak p·dního vzduchu, Galerkinova metoda kone£ných prvk·

1 Introduction

Flow of gases or liquids in porous medium is a part of a variety of complicated natural
processes and, for this reason, it has been researched and simulated for years. In this
paper, we deal with a seemingly simple phenomenon � we simulate only air �ow in soil.
This phenomenon proves, however, to be very complex and interesting as well.

The derivation of the mathematical model for the simulations is based on the ideas
presented in [1] and [2]. We assume that the air �ow occurs in dried soil (e.g., dried sand)
which is represented by a bounded domain Ω ⊂ R2, and it obeys the continuity equation

∂ρ

∂t
+∇ · (ρu) = F, (1)

∗This work is partly supported by the project �Numerical Methods for Multiphase Flow and Transport
in Subsurface Environmental Applications� number ME10009 of the Ministry of Education, Youth and
Sports of the Czech Republic and �Advanced Supercomputing Methods for Implementation of Mathe-
matical Models� number SGS11/161/OHK4/3T/14.
†The author would like to thank the following persons who kindly provided him experimental data:

Radek Fu£ík, Department of Mathematics, Faculty of Nuclear Sciences and Physical Engineering, CTU
in Prague; Paul Schulte and Kate Smits, Center for Experimental Study of Subsurface Environmental
Processes, Environmental Science and Engineering, Colorado School of Mines, Golden, Colorado, USA.
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where ρ [ kg
m3 ] is the air density, t [s] time and F [ kg

m3·s ] the source term of the air. The
vector u = (u1, u2)T [m

s
] stands for the Darcy velocity

u = − 1

µ
K (∇p− ρg) (2)

of the air, where µ [ kg

m·s ] is the dynamic viscosity, K =

(
k1 k2

k3 k4

)
[m2] the permeability

tensor, p [Pa] pressure and g = (g1, g2)T [m
s2

] the gravitational acceleration vector. More-
over, the pressure and density are assumed to be related by the ideal gas equation of
state

ρ = p
M

RT
, (3)

where M [ kg

mol
] represents the molar weight of the air, R [ J

K·mol
] the gas constant and T

[K] the thermodynamic temperature.
It follows from (1)�(3) that the air �ow in Ω is governed by the equation

∂p

∂t
= −∇ ·

(
− 1

µ
pK∇p+

M

RTµ
p2Kg

)
+
RT

M
F (4)

for the unknown pressure p = p(x, y, t), where x, y are spatial variables. This problem is
considered together with the initial condition

p(x, y, 0) = p0(x, y), (x, y) ∈ Ω, (5)

and the Dirichlet and Neumann boundary conditions

p|ΓDir = pDir, − 1

µ
pK∇p|ΓNeu · n = qNeu, (6)

where ΓDir∪ΓNeu = ∂Ω, ΓDir∩ΓNeu = ∅, and n denotes the unit outward normal to ΓNeu.

2 Numerical Solution

The problem (4)�(6) is solved numerically, by means of the method of lines; for the spatial
discretization, the Galerkin �nite element method is employed. The domain Ω is covered
with the triangulation depicted in Figure 1a, and the linear Lagrange elements are used.
Thus, the basis {ξj}Nj=1 of the �nite dimensional space consists of the functions which are
linear on each triangle and take the value 1 at one node of the spatial mesh and vanish
at the other nodes. The components of K are assumed to be constant on each triangle.

Hence, substituting the approximation p =
∑N

i=1 pi(t)ξi, where N denotes the number
of the mesh nodes, into the weak formulation, we get the following system of ordinary
di�erential equations:

d

dt

N∑
i=1

pk(t)

∫
Ω

ξiξk dx = − 1

µ

N∑
i=1

N∑
j=1

pi(t)pj(t)

∫
Ω

ξi(K∇ξj) · (∇ξk) dx−
∫
∂ΓNeu

qNeun · dS

− 2
M

RTµ

N∑
i=1

N∑
j=1

pi(t)pj(t)

∫
Ω

ξiξk(∇ξj) · (Kg) dx

(7)



Numerical Simulation of Soil-Air Pressure 209

(a) Spatial mesh used for the Galerkin �nite

element method.

x [m]

y [m]

∂ΩDir (tunnel �oor)

∂ΩNeuΩ↓ g

0 0.584200

0.424688 air�ow←−−−−−

(b) Description of Ω.

Figure 1: Description and triangulation of Ω.

for k = 1, 2, 3, . . . , N .
Finally, the previous system is simpli�ed by applying the method of lumped masses

(see [5]) and solved by means of the Runge-Kutta-Merson method with the adaptive time
step control (see [3]).

3 Simulation of Experimental Data

In order to verify our model, we simulated pressure distribution in the 12x9 sand tank
mounted in the CESEP wind tunnel, and we compared the numerical results with exper-
imental data obtained from P. Schulte.

The tank is block in shape. It is �lled with Accusand #30/40, and 37 pressure ports
are distributed across the north face of the tank. The complete tank is mounted in a
wind tunnel so that the top side of the tank and sand are aligned with the �oor of the
wind tunnel, and the changes in pressure in the tank due to a moving stream of air in the
tunnel are measured. This setup leads to the rectangular domain Ω depicted in Figure 1b.

The following boundary conditions are considered:

• At the top of the tank (y = 0.424688m), the Dirichlet boundary condition is consid-
ered (see Figure 1b); the values of pressure are obtained by the linear least squares
minimization of the data measured by the �ve ports located most closely to the
boundary.

• On the other three sides of Ω, the Neumann boundary condition is prescribed (see
Figure 1b), speci�cally qNeu = 0.

The initial condition is given by

p(x, y, 0) = pref − (0.424688− y) ρair g2,

where pref [Pa] denotes a reference pressure value and ρair [kg ·m−3] the density of air.
The interior of the tank is considered to be homogeneous, i.e., the components of K

are constant; the porosity of Accusand #30/40 was computed from the data in [4]. The
values of all of the parameters in equations (4)�(6) are summarized in Table 1a. On each
side of Ω, there are 21 mesh nodes (see Figure 1a).
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parameter value unit

µ 1.81 · 10−5 kg

m·s
k1 1.5219 · 10−10 m2

k2 0 m2

k3 0 m2

k4 1.5219 · 10−10 m2

M 0.02896 kg

mol

R 8.3144621 J
K·mol

T 293.15 K

g1 0 m · s−2

g2 −9.81 m · s−2

F 0 kg

m3·s
pref 82000 Pa
ρair 1.2047 kg ·m−3

(a) Values used in Section 3.

parameter value unit

µ 1.81 · 10−5 kg

m·s
M 0.02896 kg

mol

R 8.3144621 J
K·mol

T 288.15 K

g1 0 m · s−2

g2 −9.81 m · s−2

F 0 kg

m3·s
pref 101325 Pa
ρair 1.2047 kg ·m−3

(b) Values used in Section 4.

Table 1: Values of parameters.

The numerical results are shown in Figure 2. Since the numerical solution seems to
steady in approximately one or two seconds, t > 2 is considered, and it is not indicated.
Further, in Figure 3, the results are compared to the experimental data. Clearly, they
do not agree with the experimental data. Although the experimental data attain the
maximum values in the left bottom corner of Ω (the tank), the numerical solution exhibits
di�erent behaviour; the pressure reaches the maximum values in the left upper corner.

It is worth mention that the numerical solution does not seem to be a�ected by a
signi�cant change in the values of µ, T , K and g and by re�nement of the spatial mesh.
Similarly, the slight change in pDir a�ects the solution only near ΓDir (see Figure 4).

Finally, Figure 5 shows the numerical results obtained in case that the values of
pressure are prescribed for x = 0.068263m (thus, the length of the tank is adjusted) as
well. Now, the results are much closer to the experimental data.

4 Simulation of Pressure in Heterogeneous Soil

Further, we simulated pressure distribution in heterogeneous soil.
In this case, the domain Ω = (0.0, 1.0) × (0.0, 1.0) (the units are [m]) depicted in

Figure 6 is considered. On the upper side of Ω (y = 1.0m), the Dirichlet boundary con-
dition is prescribed; on the other three sides, the Neumann boundary condition qNeu = 0
is considered. The initial condition is given by

p(x, y, 0) = pref + y ρair g2,

where pref denotes some reference pressure again.
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Figure 2: Pressure distribution in Ω. The arrows indicate the direction and magnitude
of the pressure gradient at corresponding points. The lines are pressure isolines.
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Figure 3: Comparison between the numerical results and experimental data.
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Figure 4: Comparison between the numerical results produced in cases that pDir is ob-
tained by GNU Octave library functions for the linear least squares minimization, linear
interpolation, cubic interpolation or cubic spline interpolation.
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Figure 5: Comparison between the numerical results and experimental data. The values
of pressure are prescribed for x = 0.068263m as well.
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x [m]

y [m]

∂ΩDir

∂ΩNeuΩ↓ g

0 1.0

1.0

Figure 6: Description of Ω. The Dirichlet boundary condition is prescribed for y = 1.0m.

The components of the permeability tensor K are chosen as follows: k2 = 0, k3 = 0;
and k1, k4 (k1 = k4) are spatial dependent; they will be speci�ed later on. So will the
boundary condition pDir. The values of the other parameters are summarized in Table 1b.
On each side of Ω, there are 41 mesh nodes (see Figure 1a).

Several simulation were performed. In simulation 1, the domain Ω contained the spiral
region of low permeability which is depicted in Figure 7a, and the constant boundary
value pDir = 151312.2677 Pa was prescribed. The time evolution of pressure is shown in
Figures 7b�7d. We can see how the pressure gradually rises in the interior of the spiral.

In simulation 2, the domain Ω contained several regions of low permeability depicted
in Figure 8a, and the constant boundary value pDir = 151312.2677 Pa was prescribed.
The time evolution of pressure is shown in Figures 8b�8d.

5 Conclusions

It has been shown in Section 3 that the numerical results do not agree with the exper-
imental data. Nevertheless, it does not necessarily mean that the results or the model
employed are wrong because the experimental data do not correspond to physical intu-
ition whereas the numerical results do. This problem de�nitely requires further research.

The results presented in Section 4 illustrate the compressibility of soil-air.
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(a) Values of k1. (b) p at time t = 0.01 s.

(c) p at time t = 0.04 s. (d) p at time t = 0.1 s.

Figure 7: Simulation 1. Values of k1 [m2] and the time evolution of p [Pa]. The arrows
indicate the direction and magnitude of the Darcy velocity u de�ned by (2).
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(a) Values of k1. (b) p at time t = 0.01 s.

(c) p at time t = 0.02 s. (d) p at time t = 0.5 s.

Figure 8: Simulation 2. Values of k1 [m2] and the time evolution of p [Pa]. The arrows
indicate the direction and magnitude of the Darcy velocity u de�ned by (2).
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Abstract. A new way to treat the problem of electricity markets analytically is proposed

here. We consider several electricity producers and a central authority of an independent system

operator (ISO). We model such con�ict situation in a standard way as a bi-level non-cooperative

Nash game, where ISO is a leader player and producers are considered as followers. We present

a natural condition for uniqueness of a solution to the ISO problem, and moreover we �nd an

analytic formula for this solution. Such result is a key step towards a detailed analysis of the

problem of a producer. We note that the topology of the electricity dispatch network is not

considered at the moment.

Keywords: electricity markets, bi-level Nash games

Abstrakt. V této práci je p°edstaven nový p°ístup k modelování trhu s elekt°inou. Uvaºujeme

n¥kolik producent· elekt°iny a nezávislého systémového operátora (ISO). Tuto kon�iktní situaci

modelujeme standardn¥ jako dvouúrov¬ovou nekooperativní Nashovu hru, kde ISO je uvaºován

jako lídr a producenti jako jeho následovníci. Na²li jsme p°irozenou podmínku pro jednozna£nost

°e²ení ISO problému, a navíc i analytický vzorec pro toto °e²ení. Takový výsledek je klí£ový pro

následnou analýzu problému producenta. Poznamenáváme, ºe topologie elektrické rozvodné sít¥

není zde není uvaºována.

Klí£ová slova: trhy s elekt°inou, dvouúrov¬ové Nashovy hry

1 Introduction

The modelling of the electricity networks is a very current topic, since in the last two
decades they were privatized in many countries. The ultimate aim of such movement
was to enhance the e�ectiveness of electricity production and distribution, and so natu-
rally also electricity markets were founded, typically at the national level. Later, these
markets were consolidated; soon there will be just one pan-European electricity market.
Moreover, also an operational requirements of the so-called smart grids, i.e., electricity
dispatch networks with non-stable wind and solar power plants of various scales, are
newly considered. Thus, many practical and at the same time scienti�cally interesting
questions arose within this area.

Further, we consider only the electricity market itself, omitting all the problems con-
cerning electricity dispatch network. We may observe that such market can not run
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in the same way as, for instance, stock market. Indeed, electricity is a special kind of
commodity which is hard to store e�ectively. Thus, either all the produced electricity
is consumed at the very same moment, or we undergo high economic losses (either by
overproduction, or by possible black-out). On that account market has to be regulated
by an Independent System Operator (denoted by ISO in the sequel), which is typically
a state company. Then, all the electricity producers and consumers participating in the
market have to obey the decisions of ISO. This fact is the very novelty when modelling
such market and has important mathematical consequences.

From the point of view of producers and consumers, the electricity market may be
modelled as a non-cooperative Nash game. However, the presence of ISO makes this
problem much more complicated. In general, such bi-level problem is a special kind of
Equilibrium Problem with Equilibrium Constraint (EPEC), where the lower-level leader
problem, i.e., ISO problem in our case, is considered as an equilibrium constraint for
the upper-level problem, which is a Nash game of producers and consumers [4]. Since
this explicit dependence on the solution of ISO problem does not preserve any convexity,
we can not use the classical Nash theorem for existence of solution to EPEC in general.
Then, some more assumptions are needed [1], or only a more speci�c setting with just
two players may be considered [2].

In this article, we avoid the general problem of EPEC, and analyse the problem of
the electricity market directly. We show that under a very natural assumptions the ISO
problem possesses one solution on general, and moreover we �nd an analytic formula for
such solution. Then, we may substitute this solution of lower level problem directly into
the upper level problem, avoiding all these previously mentioned di�culties. However,
such analysis is beyond the scope of this article. Further, we denote

* D > 0 the overall energy demand.

* N be the set of producers (N being its cardinal, N > 1).

* qi ≥ 0 represents the non-negative production of i-th producer, i ∈ N

* ai, bi ≥ 0 are coe�cients of i-th producer bid function aiqi + biq
2
i

For q ∈ RN
+ we denote by q−i ∈ RN−1

+ vector q−i = (q1, . . . , qi−1, qi+1, . . . , qN).

2 ISO's Problem

Based on the bids of all producers, the aim of the ISO is to minimize the total cost
of production, taking into account that the demand has to be satis�ed. Each producer
provides to the ISO a quadratic bid function aiqi+ biq

2
i given by non-negative parameters

ai, bi ≥ 0. This bid cost function may di�er from the real cost function of producer i.
The ISO, knowing the bid vectors a = (a1, · · · , aN) ∈ RN

+ and b = (b1, · · · , bN) ∈ RN
+

provided by producers, computes q = (q1, . . . , qN) ∈ RN
+ in order to minimize the total
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generation cost, that is to solve the following optimization problem

ISO(a,b)

min
q

∑
i∈N

(aiqi + biq
2
i )

s.t.


qi ≥ 0, ∀i ∈ N∑
i∈N

qi = D

for positive overall demand D > 0. Then, it is a well-known fact that this problems
admits at least one solution. Nevertheless, the market problem can be ill-posed if the
solution set of ISO(a,b) contains more than one point, see e.g. [3]. In [1, 2] the uniqueness
of the response of the ISO(a,b) comes from the hypothesis that producers are bidding
true quadratic function with bi > 0, thus implying the strict convexity of the objective
function of ISO(a,b) problem. Since in our work, we allow linear bid of a producer, even
eventually of all of them, an additional assumption is needed to guarantee uniqueness of
solution of ISO(a,b) problem. On that account, we add equity property assumption

(H) (ai, bi) = (aj, bj) =⇒ qi = qj

which is supposed to hold for all i, j ∈ N . This assumption acctualy formalize that
ISO makes no di�erence among producers. Let us remark that the optimization problem
ISO(a,b) assuming (H) is as follows

ISO(a,b)+(H)

min
q

∑
i∈N

(aiqi + biq
2
i )

s.t.


qi ≥ 0, ∀i ∈ N
(ai, bi) = (aj, bj)⇒ qi = qj,∀i, j ∈ N∑
i∈N

qi = D

and therefore all the following results concerns this formulation of the problem, even
though we will speak about the problem ISO(a,b) and hypotesis (H) separately.

To analyse this problem further, we introduce index set mapping Na(λ)

Na(λ) = {i ∈ N|ai < λ} ⊂ N .

This set represents, for a given price λ, the subset of producers being "in the money".
Then we de�ne several critical parameters of ISO(a,b), namely a critical market price
λc(a, b), a critical value of the overall demand Dc(a, b), and a set of producers bidding
critical (linear) bids N c(a, b) ⊂ N

λc(a, b) = min
i∈N ,bi=0

ai

N c(a, b) = {i ∈ N| ai = λc(a, b), bi = 0} (1)

Dc(a, b) =
∑

i∈Na(λc(a,b))

λc(a, b)− ai
2bi
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For the case of Na(λc(a, b)) = ∅, i.e., ai ≥ λc(a, b) for all i ∈ N , we put Dc(a, b) = 0.
If there is not any producer bidding linear function, i.e., we have bi > 0 for all i ∈ N ,
we set λc(a, b) = Dc(a, b) = +∞. For the cardinality of N c(a, b) we use the notation
N c(a, b) = |N c(a, b)|.

These critical parameters have clear economic meaning. First, λc(a, b) denotes the
minimum price such that at least one linearily bidding producer (bi = 0) will participate
in the market. Since such producer can provide arbitrary amount of electricity at this
price, λc(a, b) is also the highest possible price in the market, cf. for instance (6). Then,
Dc(a, b) will be later identi�ed with the overall amount of electricity produced by sub-
critical producers, i.e., those participating in the market having bi > 0, see the proof of
Theorem 2.3. Finally, N c(a, b) is the set of all the critical producers that may possibly
participate in the market.

Remark 2.1. Consider some (a, b) ∈ R2N
+ , then we have λc(a, b) > 0 if and only if

ai + bi > 0 for all i ∈ N . In words, there is no producer o�ering electricity for free. This
natural assumption will be useful afterwards.

Next, we denote λm(a) = mini∈N ai and de�ne ∆ =
{

(a, b, λ) ∈ R2N+1
+ |λm(a) < λ ≤ λc(a, b)

}
(considering sharp inequality for the case of λc(a, b) = +∞) and function F : ∆→ R+ as

F (a, b, λ) =
∑

i∈Na(λ)

λ− ai
2bi

, (2)

We note that for λ > λc(a, b) formula (2) is ill-posed because there exists i ∈ N c(a, b) ⊂
Na(λ) such that bi = 0, and that by the de�nition of ∆ we have Na(λ) 6= ∅.

Consider any (a, b) ∈ R2N
+ �xed. As an immediate consequence of the de�nition of F

we have

lim
λ→λm(a)

F (a, b, λ) = 0, ,

lim
λ→+∞

F (a, b, λ) = +∞ if λc(a, b) = +∞,

F (a, b, λc(a, b)) = Dc(a, b) if λc(a, b) < +∞

Moreover, for any (a, b) ∈ R2N
+ function λ → F (a, b, λ) is continuous and piece-wise

linear on [λm(a), λc(a, b)[ and aditionally it possesses monotonicity property playing an
important role in the sequel.

Lemma 2.2. For any (a, b) ∈ R2N
+ function λ→ F (a, b, λ) is strictly increasing.

Proof. Consider λm(a) < λ1 < λ2 < λc(a, b), since Na(λ1) ⊂ Na(λ2) we have

F (a, b, λ1) =
∑

i∈Na(λ1)

λ1 − ai
2bi

<
∑

i∈Na(λ1)

λ2 − ai
2bi

≤
∑

i∈Na(λ2)

λ2 − ai
2bi

= F (a, b, λ2).
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The previous lemma justi�es the following de�nition of function λ(a, b,D) : R2N
+ ×]0,+∞[→

R+

λ(a, b,D) =

{
λ ∈ R+ s.t. F (a, b, λ) = D if D ∈]0, Dc(a, b)[

λc(a, b) if D ≥ Dc(a, b)
(3)

For any (a, b) ∈ R2N
+ function λ(a, b,D) is continuous and piece-wise linear in D owning

to the same properties of F (a, b, λ). Next, we state a convenient implicit formula for the
unique solution q(a, b,D) to the convex minimization problem ISO(a,b) assuming (H).
Then, in the forthcoming Corollary 2.6 we show that for any �xed con�guration of bids
of producers (a, b) ∈ R2N

+ , function λ(a, b,D) assign to each demand D > 0 the respective
market marginal price of the production.

Theorem 2.3. Let D > 0, then for (a, b) ∈ R2N
+ such that λc(a, b) > 0, the regula-

tor's problem ISO(a,b) admits a unique solution q(a, b) obeying the equity property (H).
Moreover, this optimal solution is given by

qi(a, b,D) =


λ−ai

2bi
if ai < λ

D−Dc(a,b)
Nc(a,b)

if ai = λ, bi = 0

0 if ai > λ, or ai = λ, bi > 0

(4)

with λ = λ(a, b,D) determined by (3).

Proof. The proof will be as follows. First, we �nd all solutions of the convex optimization
problem ISO(a,b), i.e., we omit constraints (H) stemming from the equity property (H).
Based on this solution set, we show that there exists a unique solution q of ISO(a,b)
satisfying (H).

Since ISO(a,b) is a convex optimization problem, its solution set coincides with the
solution set of the corresponding KKT system

0 = ai + 2biqi − µi − λ
0 ≤ µi ⊥ qi ≥ 0∑

i∈N qi = D
(5)

where λ ∈ R and the �rst two equations are considered for all i ∈ N . Let us �rst show
that for the Lagrange multiplier λ we have

λ ∈]0, λc(a, b)] (6)

Indeed, assume for a contradiction that λ ≤ 0 �rst. Since D > 0, there has to be some
j ∈ N such that qj > 0 and thus also µj = 0. Then, however, aj + 2bjqj = λ ≤ 0
contradicts assumption λc(a, b) > 0, see Remark 2.1. Next, for any producer i ∈ N with
linear bid, that is bi = 0, the �rst equation of (5) gives λ = ai − µi ≤ ai and so we have
λ ≤ λc(a, b) by the de�nition of λc(a, b).

Now, we show that

{i ∈ N|µi = 0} = {i ∈ N|ai ≤ λ}.
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Indeed, for all i ∈ N such that µi = 0 we have

λ = ai + 2biqi ≥ ai (7)

On the other hand, µi > 0 implies qi = 0 and thus also

λ = ai − µi < ai.

Consequently, the last equation of (5) involves only such i ∈ N that ai ≤ λ. We may
rewrite it as ∑

i∈N ;ai<λ

qi +
∑

i∈N ;ai=λ,bi>0

qi +
∑

i∈N ;ai=λ,bi=0

qi = D (8)

Next, regarding (6) we observe that ai < λ implies bi > 0 (we remark that λ will be at the
end of the proof expressed as a function of a and b), and so we may substitute qi = λ−ai

2bi
into the �rst sum using (7). Based on the same formula, we may omit the second sum
since ai = λ, bi > 0 implies qi = 0. To handle with the last sum, we observe that for each
i ∈ N such that ai = λ and bi = 0 we have λc(a, b) ≤ ai since it is a linear bid. Next,
using (6), we obtain

λc(a, b) ≤ ai = λ ≤ λc(a, b) (9)

for such i, and so ai = λc(a, b), or, in other words, i ∈ N c(a, b). Now, if we treat all
critical producers i ∈ N c(a, b) together and use

Qc(a, b) =
∑

i∈N c(a,b)

qi ≥ 0

for their overall production, formula (8) reduces to∑
i∈Na(λ)

λ− ai
2bi

= D −Qc(a, b) (10)

We will solve this equation in a full generality in two steps. We begin with such
solution of (10) that λ < λc(a, b). This way we avoid such i ∈ N that ai = λ and bi = 0
for the moment. For all i ∈ N c(a, b) we have

λ = ai + 2biqi − µi = ai − µi < λc(a, b) = ai (11)

implying µi > 0 and thus also qi = 0. Then, Qc(a, b) = 0 and (10) reduces to F (a, b, λ) =
D. Then, referring to Lemma 2.2 we deduce D < Dc(a, b), and so using (3), we equiv-
alently obtain λ = λ(a, b,D). Altogether, all the statements in (4) are either valid or
avoided provided λ < λc(a, b). In this case, we did not consider equity property (H)
assumption at all since constraints (H) are directly implied by the �rst equation of (4).

The second step is λ ≥ λc(a, b), but regarding (6) we have to deal with λ = λc(a, b)
only. For all i ∈ Na(λc(a, b)), the �rst formula in (4) derived in the previous paragraph
is still valid. Thus, the overall production of this group of producers is given by∑

i∈Na(λc(a,b))

λc(a, b)− ai
2bi

= Dc(a, b)



New Approach to Electricity Markets: Analytic Solution of ISO Problem 223

Now, for i ∈ N c(a, b) one immediately has λc(a, b) = ai−µi = λc(a, b)−µi and so µi = 0.
Then, we necessarily obtain Qc(a, b) = D −Dc(a, b) and thus also D ≥ Dc(a, b). Hence,
we solved ISO(a,b) also for λ = λc(a, b) omitting the additional assumption (H), but the
solution with respect to production of critical producers i ∈ N c(a, b) is not unique. It
is unique only with respect to their overall production Qc(a, b). If N c(a, b) > 1 then
there are in�nitely many ways how to divide Qc(a, b) among the participating producers
i ∈ N c(a, b). Then, it is the right time to tackle (H) resulting to the unique solution
described by the second formula of (4).

In general, λ(a, b,D) is not a smooth function, but we may compute several directional
derivatives easily. First, we introduce the notation. Consider a function f : Rn → R,
then we denote the right directional derivative of f(x1, . . . , xn) with respect to xi by

∂+
xi
f(x1, . . . , xn) = lim

t→0+

f(x1, . . . , xi + t, . . . , xn)− f(x1, . . . , xi, . . . , xn)

t

and analogously the left directional derivative ∂−xi
f(x1, . . . , xn). Since λ(a, b,D) is a piece-

wise linear function in D for any (a, b) ∈ R2N , both directional derivatives with respect
to D are well de�ned. Let us denote m±(a, b,D) := ∂±Dλ(a, b,D)

Lemma 2.4. For �xed (a, b) ∈ R2N and D > 0 we have

1

m−(a, b,D)
=

∑
i∈Na(λ(a,b,D))

1

2bi
if D ≤ Dc(a, b)

m−(a, b,D) = 0 if D > Dc(a, b)
1

m+(a, b,D)
=

1

m−(a, b,D)
+

∑
i∈N ;ai=λ(a,b,D)

1

2bi
if D < Dc(a, b)

m+(a, b,D) = 0 if D ≥ Dc(a, b).

Proof. We separate (3) to three parts. For D < Dc(a, b) we have F (a, b, λ(a, b,D)) = D,
and so we may apply calculus of derivatives to composition of functions to obtain

∂±DF (a, b, λ(a, b,D)) = ∂±λ F (a, b, λ(a, b,D)) ∂±Dλ(a, b,D) = 1

and so 1
∂±Dλ(a,b,D)

= ∂±λ F (a, b, λ(a, b,D)), which may be computed directly from (2). The

indices of the participating producers are Na(λ(a, b,D)) in the case of m−(a, b,D), and
{i ∈ N|ai ≤ λ(a, b,D)} in the case of m+(a, b,D), respectively. For D > Dc(a, b) both
m±(a, b,D) = 0 since λ(a, b,D) is constant with respect to D. Finally, we deduce the
respective values at D = Dc(a, b).

Analogously, we derive the partial directional derivatives of λ(a, b,D) with respect to
the bid variables of player i ∈ N .

Lemma 2.5. For D > 0 and (a, b) ∈ R2N
+ such that bi > 0, we have

∂±ai
λ(a, b,D) =

m±(a, b,D)

2bi
(12)

∂±biλ(a, b,D) =
λ(a, b,D)− ai

2b2i
m±(a, b,D)
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provided ai ≥ 0 in the case ∂+
ai
λ(a, b,D) and ∂±biλ(a, b,D), and ai > 0 in the case of

∂−ai
λ(a, b,D).

Proof. For D < Dc(a, b) we have F (a, b, λ(a, b,D)) = D. Based on partial derivaive
calculus for composition of functions we immediately obtain

∂±ai
F (a, b, λ(a, b,D)) + ∂±λ F (a, b, λ(a, b,D)) ∂±ai

λ(a, b,D) = 0.

We note that ∂±λ F (a, b, λ(a, b,D)) 6= 0 because Na(λ(a, b,D)) 6= ∅ on the domain of F .
Thanks to (2.4) we may conclude, using Lemma 2.4,

∂±ai
λ(a, b,D) = −

∂±ai
F (a, b, λ(a, b,D))

∂±λ F (a, b, λ(a, b,D))
= −m±(a, b,D) ∂±ai

F (a, b, λ(a, b,D)) =
m±(a, b,D)

2bi

For D > Dc(a, b) we have λ(a, b,D) = λc(a, b), and so having bi > 0 we see that λ(a, b,D)
is constant with respect to ai. Thus we have ∂

±
ai
λ(a, b,D) = 0, which corresponds to our

statement if we consider the appropriate equation in (2.4). Similarly, our statement
complies with (2.4) also for D = Dc(a, b). Finally, we note that the case of ∂±biλ(a, b,D)
is analogous.

Since we know the formula for the unique minimizer of ISO(a,b)+(H), we may compute
the overall cost C(a, b,D) of production D de�ned as

C(a, b,D) =
∑
i∈N

aiqi(a, b,D) + biqi(a, b,D)2

.

Corollary 2.6. Consider the setting of Theorem 2.3, than for C(a, b,D) we have

C(a, b,D) =
∑

i∈Na(λ)

λ(a, b,D)2 − a2
i

4bi
if D < Dc(a, b) (13)

C(a, b,D) = Dλc(a, b)−
∑

i∈Na(λc(a,b))

(λc(a, b)− ai)2

4bi
if D ≤ Dc(a, b).

Moreover, it holds ∂−DC(a, b,D) = λ(a, b,D).

Proof. For D < Dc(a, b) we use λ = λ(a, b,D) for brevity. With regards to (4), we restrict
the sum in the de�nition of C(a, b,D) to i ∈ Na(λ) with qi(a, b,D) = λ−ai

2bi
obtaining

C(a, b,D) =
∑

i∈Na(λ)

ai
λ− ai

2bi
+ bi

(λ− ai)2

4b2i
=

∑
i∈Na(λ)

λ2 − a2
i

4bi
.

For D ≥ Dc(a, b) the way is analogous using formula (4) for qi(a, b,D) and splitting the
sum between linear and non-linear bidders

C(a, b,D) = (D −Dc(a, b))λc(a, b) +
∑

i∈Na(λc(a,b))

(λc(a, b))2 − a2
i

4bi
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where we moreover substitute Dc(a, b) =
∑

i∈Na(λc(a,b))
λc(a,b)−ai

2bi
obtaining

C(a, b,D) = Dλc(a, b) +
∑

i∈Na(λc(a,b))

(λc(a, b))2 − a2
i − 2(λc(a, b))2 + 2λc(a, b)ai

4bi

directly giving the stated formula. We note that C(a, b,D) computed using formulae (13)
is continuous at D = Dc(a, b). Finally, for the derivative ∂−DC(a, b,D) at D ∈]0, Dc(a, b)]
we have

∂−DC(a, b,D) =
∑

i∈Na(λ(a,b))

2λ(a, b,D)m−(a, b,D)

4bi
= λ(a, b,D),

and the formula ∂−DC(a, b,D) = λc(a, b) = λ(a, b,D) for D > Dc(a, b) is immediate.

3 Conclusion

In this article we found a new way how to treat the modelling of the electricity markets.
We propose a natural assumptions called equity property stating that ISO does not make
any di�erence among producers, and we show that under such assumption we may solve
ISO problem analytically, see Theorem 2.3. We note that we obtain this result under a
general setting newly including truly linear bids (bi = 0) of producers here. Finally, we
show that the central quantity λ(a, b,D) de�ned by (3) is indeed a market marginal price,
cf. Corollary 2.6. However, for us, all these results are mainly a workhorse to further
analyse the problem of producers. This is however beyond the scope of this article as we
already discussed.
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Abstract. We combined the density gradient theory (DGT) with the PC�SAFT and Peng-

Robinson equations of state to model the homogeneous droplet nucleation and compared it to

the classical nucleation theory (CNT) and experimental data. We also consider the e�ect of

capillary waves on the surface tension. DGT predicts nucleation rates smaller than the CNT

and slightly improves the temperature-dependent deviation of the predicted and experimental

nucleation rates.

Keywords: Nucleation, density gradient theory, PC-SAFT, capillary waves

Abstrakt. Zkombinovali jsme teorii gradientu hustoty se stavovými rovnicemi PC�SAFT a

Pengovou-Robinsonovou, abychom modelovali homogenní nukleaci kapek. Tyto výsledky jsme

porovnali s klasickou nuklea£ní teorií a experimentálními daty. Také jsme uvaºovali efekt

kapilárních vln na povrchové nap¥tí. Gradientní teorie predikuje men²í nuklea£ní rychlosti neº

klasické a trochu vylep²uje odchylku teplotní závislosti teoretických a experimentálních nuk-

lea£ních rychlostí.

Klí£ová slova: Nukleace, theorie gradientu hustoty, PC-SAFT, kapilární vlny

1 Introduction

The classical nucleation theory (CNT) is widely used to model the homogeneous droplet
nucleation. However due to the capillary approximation, even small molecular clusters
are treated as macroscopic droplets. This �aw is at least partially overcome in the density
gradient theory (DGT) [11, 2]. Unlike the CNT, this theory describes the surface tension
varying with the size of the cluster. In this work, we compare both nucleation theories.
We incorporate a physically based equation of state (EoS), the PC�SAFT [3, 5], into the
DGT model and compare it with the classical cubic EoS, Peng�Robinson (PR). Another
problem of DGT is that it ignores the e�ect of capillary waves (CW) [1]. We attempt to
consider this e�ect.
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The nucleation process is described by the nucleation rate J . In this work, a modi�ed
internally consistent (IC) [4] value is used,

JIC =
ρGρG∞NA

ρL∞

√
2σ∞
πM

exp

(
−∆Ω

kBT

)
. (1)

Here, subscript ∞ re�ers to the saturated state, ρG and ρL are the densities of the bulk
vapor and liquid of the system, NA is the Avogadro constant, σ is surface tension, M is
molecular mass, kB is the Boltzmann constant, and ∆Ω is the work of formation of the
critical cluster.

The work of formation according to the DGT reads

∆Ω(ρ) =

∫ ∞
0

[
∆ωhom(ρ) +

c

2

(
dρ

dr

)2]
4πr2dr, (2)

where ∆ωhom can be found e.g. in [9], second term containing the density gradient and
in�uence parameter c brings the inhomogeneity caused by the presence of the interface.
Using Eq. (2), an Euler�Lagrange equation can be derived,

d2ρ

dr2
+

2

r

dρ

dr
=

1

c
∆µ(ρ), (3)

where ∆µ = ∂∆ωhom/∂ρ. Including the boundary conditions ρ(r →∞) = ρG, dρ/dr(0) =
0, Eq. (3) de�nes a boundary value problem (BVP) that can be solved numerically.

The PC�SAFT EoS [3, 5] is based on the Statistical Associating Fluid Theory (SAFT)
combining important interatomic and intermolecular forces, such as covalent bonding, hy-
drogen bonding, Coulombic forces and can be used for very di�erent shapes of molecules.
Due to the fact that the SAFT EoS works directly with the molecular structure of sub-
stances, it allows a more realistic modeling of �uids in the metastable region which is
needed in the DGT model.

2 Numerical computations and results

The simply looking BVP de�ned by (3) has two di�culties: density pro�le near the vapor
phase has a very sharp shape; its slope changes abruptly from the very steep decline to
an almost constant pro�le. Second problem is that for large droplets density pro�le in
the interior of the droplet changes only negligibly and is almost constant. This causes
a signi�cant cumulation of numerical errors. This work is based on results of [9], in
which the shooting method was used instead of more sophisticated ones based on the
�nite di�erence schemes. The reason is that it was easier to develop a convergent routine
algorithm in that way. To overcome many di�culties that arose during the solution
process, several original numerical methods were developed.

Nucleation rates were computed using both nucleation theories, DGT and CNT, and
two EoSs, the PC�SAFT and PR. Theoretical predictions were compared to experiments
[10, 6, 7, 12, 13].

The left-hand side of Fig. 1 shows the nucleation rate J as a function of supersat-
uration S for four temperatures, both nucleation theories and both EoSs compared to
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Figure 1: Left: Nucleation rates of n-nonane computed using the CNT (dashed line)
and DGT (solid lines), PR EoS (white symbols) and PC�SAFT Eos (grey symbols) for
temperatures 272 K, 284 K, 298 K, and 313 K. Right: Dependence of the supersaturation
S on the inverse reduced temperature T/Tc. Lines correspond to values computed using
the GT�IC (solid lines) and CNT�IC (dashed lines) for n-heptane (C7), n-octane (C8),
n-nonane (C9), and n-decane (C10). As EoS was used only PC�SAFT.

the experimental nucleation rate data.The right-hand side of Fig. 1 shows supersatura-
tions S as functions of temperature at a constant nucleation rate J = 106m−3s−1 (close
to most experimental data range). These values were computed and compared for four
substances: n-heptane, n-octane, n-nonane, n-decane. Supersaturations of experimental
data were linearly interpolated to match the value of nucleation rate J = 106m−3s−1.
Data [13] are far from this value causing a disagreement with others.

As aforementioned, despite the DGT does not contain a CW e�ect, the in�uence
parameter c in Eqs. (2), (3) is determined using the experimental surface tension σ∞ ≡
σexp that includes it. We attempt to avoid this inconsistency by using Meunier's mode-
coupling theory [8], the surface tension without the CW e�ect can be expressed as

σnon−cw = σexp

(
1 +

3

8π

T

Tc

1

2.552κ

)
. (4)

Here, Tc is the critical temperature and κ is the universal amplitude ratio determined by
experiments and simulations to be κ ∼= 0.39.

Figure 2 shows surface tension σ as a function of the pressure di�erence ∆p, and
nucleation rate J as a function of the supersaturation S for n-nonane computed using
the DGT at T = 313 K. Two EoSs were used (PR, PC�SAFT), and both approaches are
incorporated: in�uence parameter c is computed using σexp directly (grey symbols) and
with removing the CW e�ect using (4) (white symbols). The e�ect for the nucleation
rates is large which proves the importance of this procedure.
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Figure 2: Surface tensions σ as a functions of ∆p (left) and nucleation rates J as a
functions of S (rights) computed using the DGT, PR EoS (squares) and PC�SAFT EoS
(circles) for n-nonane at 313 K. In�uence parameter computed using the experimental
surface tension σexp (grey symbols) and using modi�ed surface tension σnon−cw are used.

3 Conclusions

Our computations show that the DGT predicts nucleation rates smaller than the CNT
because the surface tension predicted by the DGT for the critical clusters is lower than for
the planar phase interface. This e�ect is more pronounced at low temperatures and high
supersaturations where the critical clusters are smaller. The more realistic PC-SAFT
EoS predicts higher nucleation rates than the PR EoS. The in�uence of the capillary
waves signi�cantly lowers the predicted nucleation rates. This e�ect, however, requires
further investigation. A large part of the temperature dependent deviation of theoretical
predictions from experimental data still remains unexplained.
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Abstract. The paper deals with the numerical solution of a compositional model describing
compressible two-phase �ow of a mixture composed of several components in porous media with
species transfer between the phases. The mathematical model is formulated by means of the
extended Darcy's laws for all phases, components continuity equations, constitutive relations,
and appropriate initial and boundary conditions. The splitting of components among the phases
is described using a new formulation of the local thermodynamic equilibrium which uses volume,
temperature, and moles as speci�cation variables. The problem is solved numerically using a
combination of the mixed-hybrid �nite element method for the total �ux discretization and the
�nite volume method for the discretization of transport equations. A new approach to numerical
�ux approximation is proposed, which does not require phase identi�cation and determination
of correspondence between the phases on adjacent elements. The time discretization is carried
out by the backward Euler method. The resulting large system of nonlinear algebraic equations
is solved by the Newton-Raphson iterative method. We provide seven examples of di�erent
complexity to show reliability and robustness of our approach.

This work was presented at Interpore Conference 2013 in Prague (21.�24.5.2013) and
the full article has been submitted to the Journal of Computational Physics.

Keywords: compositional simulation without phase identi�cation, mixed-hybrid �nite element
method, �nite volume method, phase-by-phase upwinding, constant-volume phase splitting,
pressure computation

Abstrakt. �lánek pojednává o numerickém modelování kompozi£ního modelu popisujícího st-
la£itelné dvoufázového proud¥ní sm¥si sloºené z n¥kolika komponent v porézních prost°edích
s látkovou vým¥nou mezi fázemi. Matematický model je formulován pomocí roz²í°eného Dar-
cyho zákona, rovnic kontinuity pro sloºky sm¥si, konstitutivních vztah· a vhodných po£áte£ních
a okrajových podmínek. Rozd¥lení komponent mezi fázemi je popsáno pomocí nové formu-
lace lokální termodynamické rovnováhy p°i zadaném objemu, teplot¥ a látkových mnoºstvích
jednotlivých komponent. Problém je °e²en numericky za pouºití kombinace smí²ené hybridní

∗This work has been supported by the project P105/11/1507 �Development of Computational Models
for Simulation of CO2 Sequestration� of the Czech Science Foundation, project KONTAKT II LH 12064
�Computational Methods in Thermodynamics of Hydrocarbon Mixtures� of the Ministry of Education,
Youth and Sport of the Czech Republic, and project SGS11/161/OHK4/3T/14 �Advanced Supercom-
puting Methods for Implementation of Mathematical Models� of the Student Grant Agency of the Czech
Technical University in Prague.
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metody kone£ných prvk· pro diskretizaci celkového toku a metody kone£ných objem· pro
diskretizaci transportních rovnic. Je navrºen nový p°ístup k aproximaci numerického toku, který
nevyºaduje identi�kaci fází ani ur£ování odpovídajících si fází mezi sousedícími elementy. �asová
diskretizace je provedena zp¥tnou Eulerovou metodou. Výsledná rozsáhlá soustava nelineárních
algebraických rovnic je °e²ena Newtonovou-Raphsonovou itera£ní metodou. Pro znazorn¥ní sta-
bility a robustnosti na²eho p°ístupu uvádíme sedm p°íklad· r·zného charakteru.

Tato práce byla prezentována na konferenci Interpore 2013 v Praze (21.�24.5.2013) a celý
£lánek je podán do £asopisu Journal of Computational Physics.

Klí£ová slova: kompozi£ní simulace bez fázové identi�kace, smí²ená hybridní metoda kone£ných
prvk·, metoda kone£ných objem·, upwind po fázích, fázový rozklad p°i konstantním objemu,
výpo£et tlaku
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Abstract. This paper utilizes the experience from the �eld of software engineering to formu-

late a set of features for identifying known structures in the source code of software project.

Furthermore, a software tool for the analysis of project code is proposed.
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Abstrakt. Tento £lánek vyuºívá poznatk· z oblasti softwaroveho inºenýrství k sestavení sady

p°íznak· pro rozpoznávání znamých struktur ve zdrojovém kódu softwarového projektu. Dále

p°edkládá návrh softwarového nástroje pro analýzu projektového kódu.

Klí£ová slova: Java, návrh softwaru, návrhové vzory

1 Introduction

According to the majority of contemporary software development methodologies [2, 10],
the design phase should precede the implementation stage during a software development
process. In order to be easily maintainable and reusable, it is expected that developed
software will be well designed, thus composed of interrelated objects, where each object is
responsible for a particular task. Design patterns [11] are a well known standard for soft-
ware design; however, once the implementation phase is over, it is di�cult to determine
whether software uses these patterns, or if they were implemented properly. Therefore,
an e�ort is being made to create a tool for software quality assessment. In recent years,
various approaches have been explored; [6] have performed statistical analysis of code
smells [7] to suggest further refactoring techniques [5]. The authors of [4, 14] have fo-
cused directly on design patterns in order to determine which patterns are utilized in the
examined source code. While [4] use a statistical approach based on previously de�ned
predictors, [14] search for patterns using graph algorithms.

Our approach is to create a tool which will be able to detect well designed data
types in a given project code and separate them from noise (poorly designed data types);
we consider a data type to be well designed if it satis�es UML class stereotype [9] or
represents single class design pattern. Second, we want our tool to perform an analysis
of relationships among a project's data types, to detect multi-class design patterns. This

∗This work has been supported by the grants SGS 11/167/OHK4/3T/14 and LA08015
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paper focuses on the �rst phase, particularly on the de�nition of features for well designed
types.

2 Classes and features

2.1 Classes

As mentioned above, we are trying to detect well designed data types with usage of eleven
statistical classes (patterns) that are listed in Table 1.

Bean represents a storage type which holds attributes and provides access to them
through setters and getters. DAO stands for data access object, which mediates access to
a collection of data. The composite is a tree node of composite pattern. The constant is
composed of constant or immutable objects and represents a con�guration of a particular
part of the application. A factory encapsulates methods for creation of new objects
based on given parameters. A builder manages and sets up a newly created object.
An adapter allows adaptation of an adaptee object from one interface to another. A
proxy object substitutes another object of the same interface and allows changing of the
implementation of some of its methods. A decorator adds additional properties to an
object of the same interface. A worker combines or uses other objects in order to perform
the main functions of a certain part of the application. An utility type manages static
methods of a similar purpose in order to separate mechanical work from worker types.

Table 1: Recognized data type patterns
Name Satis�es Represents Responsible for

Bean type stereotype crate pattern data storage/access
Composite composite pattern data storage/access
Constant utility stereotype data storage/access
DAO entity stereotype data storage/access
Builder builder pattern object creation
Factory factory method pattern object creation
Adapter adapter pattern object manipulation
Decorator decorator pattern object manipulation
Proxy proxy pattern object manipulation
Worker focus stereotype object manipulation
Utility utility stereotype support

2.2 Features

Up to now, we have de�ned over forty di�erent features; these features are divided into
four major categories: expression features, statement features, member features and re-

lation features. Expression and statement features are connected with expressions and
statements in the project code, a typical expression feature is, for instance, a number of
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instantiations within a de�nition of a data type weighted by total number of expressions
in the same data type. A typical member feature is, for example, a number of public,
non-static setters and getters in a selected data type weighted by total number of meth-
ods in the same data type. Relation features depict a relationship of a data type with
its surroundings; this kind of feature is, for instance, a logical value which is set to true
if the data type uses its direct parent type as an attribute. The explanation of selected
features follows.

2.2.1 Feature fm#amr

Feature fm#amr is represented by (1), where n is a number of non-abstract, non-static,
non-setter and non-getter methods of given data type, A is a number of non-static at-
tributes, and ai is a number of non-static attributes used in i-th method. Usage (in-
vocation) of a setter or getter for a local attribute counts as usage of this particular
attribute.

1

n · A
·

n∑
i=1

ai (1)

This feature describes how much a given data type works with its own attributes. We
have estimated that an fm#amr value may be close to number one for worker class data
types.

2.2.2 Feature fm#mnew

Feature fm#mnew counts factory methods [11], thus public methods that contain in-
stantiation (new expression) of a local (non-attribute) variable and return it as a result.
Member methods that return invocation of factory methods also count as factory meth-
ods, this rule applies recursively. Member methods that return instance of same type as
the type they are a member of do not count as factory methods for this feature. The
resulting count of factory methods is weighted by the total number of member non-setter,
non-getter and non-abstract methods in the corresponding data type.

This feature represents the share of factory methods in the total number of methods
and might help to detect a factory class.

2.2.3 Feature fm#anew

Feature fm#anew represents the number of attributes instantied within constructors and
non-static member methods, weighted by the total number of non-static attributes.

The feature tells how often the type's attributes are instantiated within its member
methods and could be useful for builder class detection.

2.2.4 Feature fr2nsa

Value of fr2nsa equals to one if a given type is recursive; thus, holds a non-static attribute
of same type. Otherwise the value is equal to zero. This feature could help to �nd
composite, proxy or decorator types.
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2.2.5 Feature fr2ia

Value of fr2ia equals to one if a given type has attributes of same type as its direct parent
is; otherwise the value is equal to zero. Similarly to fr2nsa, this feature could help in
�nding composite, proxy or decorator types.

2.2.6 Feature fm#apc

Feature fm#apc represents number of public constant attributes of a given type weighted
by the total number of type's attributes.

2.2.7 Feature fs#cyc

Value of fm#cyc holds number of cycle statement in a particular type weighted by the
total number of statements in the same type.

2.2.8 Feature fm#mmou

Let M be a set of all public, non-abstract, non-setter and non-getter member methods of
a particular data type. Then feature fm#mmou1 is represented by (2), where n is the size
of M ; csai is the number of methods from M in that static method of i-th type is accessed;
cpui is the number of methods from M in that parameter of same i-th non-trivial type
is used; caui is the number of methods from M in that i-th attribute is accessed; cnvi is
the number of methods from M in that same i-th non-trivial type is instanced and used.

1

n
·max {max

i
csai, max

i
cpui, max

i
caui, max

i
cnvi} (2)

We expect that this feature should be useful for separating DAO from other classes.
Since DAO is utilized for querying a speci�c datasource, there always has to be an object,
which mediates access to data. However, it is not known, if the object is passed to DAO's
methods as a parameter, if it is an attribute of DAO, if it is singleton, utility type, or
if it is created directly within DAO's methods. Therefore, fm#mmou chooses the most
probable from all mentioned possibilities.

3 Tool design

3.1 Requirements

Functional and non-functional requirements were collected, before the design of the pro-
posed tool was begun.

Functional requirements:

1. Manage features de�nitions and collect features data

2. Classify project code

1This feature has not been implemented yet.
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3. Manage classi�cation results

4. Provide posterior analysis for classi�ed data

Ad 1. Collect features from the project's source code, store them in the corresponding
objects and provide access to these objects.

Ad 2. Provide various statistical classi�ers; enable their con�guration and classi�ca-
tion of the project's data types with the chosen classi�er. Consequently, obtain results for
all data types in the project and all the considered classes, where each result is represented
by a probability that a given data type belongs to one particular class.

Ad 3. Manage the project's classi�cation history, registered for all runs of all classi�ers,
because results from one uniformly con�gured classi�er can vary over time.

Ad 4. Provide additional operations in order to measure the quality of classi�ers,
perform cross validations, or apply bilantion criteria to classi�cation results.

Non-functional requirements:

1. Clean object design

2. OS independence

Ad 1. The application has to be separated into individual components that will pro-
vide their interfaces with the rest of the application. This allows easy interchangeability
of component implementation, or simply adding a new implementation.

Ad 2. Since Java is an OS independent framework, the designed tool is also required
to be OS independent in order to integrate it into Java IDEs in the future.

3.2 Components design

The four main components have been identi�ed during the design phase: collector, clas-
si�er, validator and launcher (Figure 1).

The �rst component, the collector [13], is responsible for processing source codes and
the collection of features data. A source code is parsed and an abstract syntax tree (AST)
[1, 12] created as a result, consequently features are mined [13] from AST.

The second component, the classi�er, is the core part of the whole application. Clas-
si�ers can be either simple or compound, where a compound classi�er consists of two or
more other classi�ers and a balance criterion. The balance criterion is a judge among the
sub classi�ers and makes the �nal decision. The classi�er is responsible for the identi�-
cation of which category an observation belongs to.

The third component, the validator, is used for regression model validation, partic-
ularly a k-fold cross validation. This is a process of determination how results of a
statistical analysis will a�ect independent data sets. During k-fold validation a project
observation (a set of features of each data type) is split into k disjoint subsets, then k -
1 subsets are utilized to train a classi�er and one subset is used for validation (testing).
Cross validation is �nished after all k subsets were used for validation.

The last component, the launcher, represents only the layer that performs top-level
operations over the classi�er, validator and collector components. It will allow the user
to start classi�cation or validation and con�gure their parameters.
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Figure 1: A component diagram of designed tool. Four main components have been
identi�ed: collector, classi�er, validator, and launcher.

4 Training data

Four data sets were prepared in order to train our classi�ers.

Mixed data set consists of java source �les selected from di�erent open source projects
or design pattern tutorials. These �les contain various implementations of all classes from
Table 1; currently there are 175 types with at least fourteen representants of each class.

JaHoCa project (Java Home Cash) is a simple java application for monitoring per-
sonal incomes/expenses. There is a lack of design patterns in this project. Nevertheless,
it is rich in beans and utility classes.

Andengine is an open source graphic 2D/3D engine for the android operating system.
The project contains many workers, decorators, factories and utility classes.

JHotDraw is a simple java drawing/plotting tool, which is strongly based on design
patterns, with many adapters, factories, composites or decorators.

5 Results

Until now, the launcher, collector and validator components of the tool have been imple-
mented. Collected information about project's sources are being exported to the CSV
format and passed to Matlab for subsequent analysis.

Table 2 shows results from analysis of the "Mixed data set" with k-NN (k Nearest
Neighbours, k = 4 has proved to be optimal for this problem), LDA (Linear Discriminant
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Table 2: Success rates of classi�ers for "Mixed data set".

k-NN LDA SVM

best submodel 0.87931 0.93103 0.82759
full model 0.82184 0.90805 0.77011

Table 3: Feature usage in 100 best sub-models.

Feature k-NN LDA SVM

fr2nsa 100 100 100
fr2ia 100 100 100
fm#apc 98 100 96
fm#mnew 95 100 98
fs#cyc 91 100 100
fm#mase 91 93 99
fm#mpnov 82 100 100
fm#mpnop 86 100 95
fm#mpars 87 97 97
fm#anonp 77 98 98
fs#switch 79 100 93
fg2a 77 93 100
fs#sif 81 97 92
fm=mpard 65 100 100
fg#esr 62 100 97
fe#new 64 94 92
fm#mpnoo 49 100 98
fe#inv 55 100 91
fm#anew 45 100 100
fm#mpard 53 93 97

Feature k-NN LDA SVM

fm#mps 50 100 92
fe#invm 53 92 95
fe#invo 54 97 88
fm#mpna 46 100 92
fs#elif 22 100 100
fm#mpnn 19 100 99
fm#anos 37 97 81
fm#mpngs 12 97 100
fe#newm 14 100 91
fr2ssa 8 97 97
fm=mase 23 100 78
fm#anonn 99 0 100
fm#mn 10 92 90
fm#mpara 8 95 88
fm#anpn 87 4 99
fm#apn 10 93 83
fm#amr 55 100 11
fm#anps 39 29 93
fe#casto 23 97 36
fm#mparcu 58 90 0

Analysis) and SVM (Support Vector Machines) classi�ers [3]. Due to the large number
of features, sub-models have been utilized [8] and FSA heuristic has been used [8] for
�nding the best sub-model; the heuristic has been applied ten times for each classi�er
and ten best results from each run have been recorded.

Table 3 summarizes usage of features in 100 best sub-models found by the heuristic.
Features fr2nsa and fr2ia participated in all chosen sub-models, they successfuly separated
recursive types from others. Frequent usage of fm#apc can be caused by fact that public
attributes do not appear often in other classes than constant. Feature fm#mnew proved
to be good separator of factory class, on the other hand fm#amr has to be improved.
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6 Conclusion

The paper has focused on the problem of software quality measurement, and presented
our solution to detect well designed and implemented data types, based on a newly de�ned
set of features. Eight selected features were brie�y explained; consequently, the tool for
feature collection and statistical classi�cation over the source code was proposed. In the
future, we will continue to improve features and reduce their number. Moreover, we will
implement classi�ers into the proposed tool. Last but not least, we will focus on de�ning
and collecting object relation features.
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Abstract. Cadabra system is used for implementation Fock method for �nding conserved

Lorentz covariant stress-energy complexes. The method is developed for linear second-derivative
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terms. The results for linearized vacuum Einstein �eld equations (with particular gauge) and
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Abstrakt. Systém Cadabra je pouºit pro implementaci Fockovy metody na hledání zachová-

vajících se Lorentz kovariantních komplex· energie-hybnosti. Nejprve je vypracována metoda

pro rovnice pole obsahující lineárn¥ druhé derivace a poté je zobecn¥na pro pohybové rovnice
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1 Introduction

The article is organised as follows. At the beginning the Fock method for �nding conserved
stress energy tensors for massless1 equation of motion for rank two covariant tensor �elds
is presented. The important step in simplifying computations is to restrict ourselves only
to Lorentz covariant expressions which is no serious limitation for obtained results. The
method is then generalised for equations of motion containing non-derivative terms which
is the case of Fierz-Pauli action of massive gravity. The crucial part plays the usage of
symbolic tensor manipulation software Cadabra. Finally, the resulting tensors for �eld
theory of linearized gravity and of massive gravity are presented.

∗This work was supported by the Grant Agency of the Czech Technical University in Prague, grant
No. SGS13/217/OHK4/3T/14

1Massless in the meaning that equation of motion lacks the non-derivative terms of �eld variable.
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2 Fock formulation

We would like to �nd stress-energy complex2 T ij in the form of T ij = tijabcrsthab,chrs,t,
i.e. quadratic in the �rst derivatives of �eld, with tijabcmno being constant coe�cients
symmetric in (a, b) and (m,n) and invariant with respect to the swap of triples (a, b, c)
and (r, s, t), that is conserved in the sense of equation T ij,j = 0, whenever equations of
motion of the form

PA = pAmnophmn,op = 0 (1)

are satis�ed (A being arbitrary multiindex). We can write our demands as a single
condition using Langrange multipliers as

T ij,j = λiAP
A, (2)

i.e. it is required that divergence of stress-energy tensor is a linear combination of �eld
equations. Coe�cients λiA can vary over the spacetime, so they are generally functions of
spacetime point � λiA(x). As T ij,j has the form uiabcmnophab,chmn,op, with u

•-s given simply

as uiabcmnop = 2tipabcmno, the Lagrange multipliers will be of the following structure:
λiA = LiabcA hab,c.

Writing master equation (2) in terms of coe�cients u• and L• we have

(uiabcmnop − LiabcA pAmnop)hab,chmn,op = 0. (3)

This has to be satis�ed for every �eld hab, therefore terms hab,chmn,op can be considered
as linearly independent (taking into account symmetry in indices (a, b), (m,n) and (o, p))
and thus symmetrized coe�cients has to be zero identically

ui(ab)c(mn)(op) − Li(ab)cA pA(mn)(op) = 0. (4)

Our task is to eliminate Lagrange multipliers LiabcA using known coe�cients pAmnop to �nd
constants tijabcmno (easily recovered from uiabcmnop).

3 Covariant formulation

We can take a great advantage when we consider only Lorentz covariant expressions.
This step has the consequence of greatly reducing the number of unknowns in the mas-
ter equation (2). Let's take a look at the di�erent types of terms and their covariant
contributions to the master equation.

3.1 General form of stress energy tensor

We would like to seek the most general form of the second rank Lorentz covariant tensor
constructed from quadratic �rst derivatives of metric. So we need to �nd all di�erent
(with respect to index symmetries) contractions to the term hab,chde,f to produce tensor of
rank two. Raising and lowering indices is permitted via Minkowski metric. The resulting
terms are listed in table 1.

2As it need not to transform as a tensor with respect to arbitrary coordinate change.
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Bi Ai Term Abbr. Bi Ai Term Abbr.
B12 A1 hik,ah

ab
,b B10 A11 hka,

ahb
b
,i hka,

ah,i
B7 A2 hik,ah

b
b,
a

hik,ah
,a B19 A12 hia,bh

ab
,k

B15 A3 hia,
ahkb,

b B18 A13 hka,bh
ab
,i

B17 A4 hia,bhk
a,b B6 A14 haa,ih

b
b,k h,ih,k

B20 A5 hia,bhk
b,a B16 A15 hab,ih

ab
,k

B13 A6 hia,kh
ab
,b B2 A16 ηikh

a
a,bh

bc
,c ηikh,bh

bc
,c

B14 A7 hka,ih
ab
,b B3 A17 ηikhab,

ahbc,c
B8 A8 hia,khb

b,a hia,kh
,a B1 A18 ηikh

a
a,bh

c
c,
b ηikh,bh

,b

B9 A9 hka,ihb
b,a hka,ih

,a B5/4 A19 ηikhab,ch
ab,c

B11 A10 hia,
ahb

b
,k hia,

ah,k B4/5 A20 ηikhab,ch
bc,a

Table 1: List of possible contractions in stress-energy tensor. Ai-s denote coe�cients of
linear combination used in this paper, Bi-s are coe�cients used in [1].

Therefore, the most general form of Lorentz covariant stress-energy tensor quadratic
in �rst derivatives of metric is of twenty parameters as follows

Tik = A1hik,ah
ab
,b + A2hik,ah

,a + A3hia,
ahkb,

b + A4hia,bhk
a,b + A5hia,bhk

b,a + A6hia,kh
ab
,b+

A7hka,ih
ab
,b + A8hia,kh

,a + A9hka,ih
,a + A10hia,

ah,k + A11hka,
ah,i + A12hia,bh

ab
,k+

A13hka,bh
ab
,i + A14h,ih,k + A15hab,ih

ab
,k + A16ηikh,bh

bc
,c + A17ηikhab,

ahbc,c+

A18ηikh,bh
,b + A19ηikhab,ch

ab,c + A20ηikhab,ch
bc,a. (5)

We will denote term standing at coe�cient Aα as Aα ik (or, where the indices are not
important, as Aα), then the tensor and its divergence can be written in the form

Tik =
20∑
α=1

AαAα ik, T ik,
k =

20∑
α=1

AαAα ik,k. (6)

3.2 Two indices equation of motion Pab = 0

We will restrict ourselves here to the symmetric equations Pab containing linearly �eld
hab with second derivatives3. The contribution to the master equation has the form
λrsqabi hrs,qPab. The demand of Lorentz covariance leaves us with six possibilities listed
below in table 2, naturally we consider Pab to be Lorentz tensor as well and we take into
account all index symmetries. These terms will be denoted as Lα i and corresponding
Lagrange multipliers λα.

3.3 One index equation Pa = 0

We consider only equations linearly consisting of �rst derivatives of the �eld. Contribu-
tions to the master equation is µmnopai hmn,opPa leading to six covariant terms, labeled Uα i
with corresponding Lagrange multipliers µα, see table 3.

3E.g. it is the case of linearised gravity as the Einstein or the Ricci tensor contains linearly the second
derivatives of metric perturbation.
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Term λrsqabi Explicitly
L1 λ1η

rsηqbδai hb
b,aPia

L2 λ2η
rsηsqδai hab,bPia

L3 λ3δ
r
i η

sqηab hib
,bP a

a

L4 λ4η
rsδqi η

ab hb
b
,iP

a
a

L5 λ5δ
r
i η

saηqb hi
a,bPab

L6 λ6η
raηsbδri hab,iPab

Table 2: The list of possible covariant
terms for equation Pab = 0.

Term µmnopa
i Explicitly

U1 µ1η
mnηopδai ha

a
,b
bPi

U2 µ2η
moηnpδai hab

,abPi
U3 µ3δ

m
i η

noηpa hia
,abPb

U4 µ4δ
m
i η

naηop hia,b
bP a

U5 µ5η
mnδoi η

pa ha
a
,i
bPb

U6 µ6η
mpηnaδoi hab,i

aP b

Table 3: The list of possible covariant
terms for equation Pa = 0.

3.4 Scalar equation P = 0

Our linearity condition essentially restricts us to the only possible choices: P = ha
a

or P = ha
a
,b
b. Nevertheless in the master equation we have κqrsi hrs,qP leading to two

covariant terms, named Kα i with multipliers κα, shown in table 4.

Term κqrsi Explicitly
K1 κ1δ

r
i η

sq hia
,aP

K2 κ2η
rsδqi ha

a
,iP

Table 4: The list of possible covariant terms for equation P = 0.

3.5 Covariant form of master equation

The most general form of master equation is the following

20∑
α=1

AαAα ik,k −
6∑

β=1

λβLβ i −
6∑

β=1

µβUβ i −
2∑

β=1

κβKβ i = 0, (7)

however there can be fewer terms depending on the type(s) of an equation(s) of motion
used. Now we have equation for unknowns Aα, λβ, µβ and κβ which has to hold for
every �eld hij. Essentially we rewrite it in the form of (3) and because of the linear
independence of the �eld terms hab,chmn,op

4 the linear equations for unknown variables
are extracted. This extraction is done by Cadabra software as described in section 5.

4 Generalization of motion equation

In previous sections we considered equations of motion containing solely and linearly
second derivatives of the �eld.

Now we will modify the procedure allowing non-di�erentiated �eld to be present
linearly in equations of motion as in for example ∂a∂

ahrs +m2hrs = 0.

4But now appearing only as Lorentz covariant terms, hence at greatly reduced numbers!
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At �rst, let's focus on the stress-energy tensor. If our demand is the tensor to be
consisted of quadratic terms containing at most �rst derivatives of metric tensor then we
should include also terms of the form habhcd and habhcd,e. We can omit the latter one,
because it is not possible to contract it to form second rank tensor. On the contrary the
term free of derivatives produces four more Lorentz covariant terms, see table 5. The
generalised tensor will be of the form

Tik =
20∑
α=1

AαAα ik +
4∑

β=1

CβCβ ik,

where we denoted terms corresponding to coe�cient Cβ as Cβ ik.

Ci Term Abbr.
C1 hikh

a
a hikh

C2 hiah
a
k

C3 ηikh
a
ah

b
b ηikh

2

C4 ηikhabh
ab

Table 5: Contractions of non-
di�erentiated terms.

Term νmna
i Term

V1 ν1η
mnδai ha

aPi
V2 ν2δ

m
i η

na hi
aPa

Table 6: The list of additional covariant
terms for equation Pa = 0.

Why didn't we consider these Cβ-terms in the previous section? Because of the Fock
procedure, they would vanish anyway � the equations of motion consist of only the second
derivatives and choosing whatever form of Lagrange multipliers λ• will never produce
terms habhcd,e occuring in T ik,k .

Let's have a look at the equation of motion. Now it contains also non-di�erentiated
terms, so we need to modify relation (1) into

PA = pAmnop2 hmn,op + pAmn0 hmn = 0. (8)

What is then the form of Lagrange multipliers in the case of our new equation of motion
and new stress-energy tensor? To answer this look at the terms occurring in the master
equation (2). On the left side there are terms of type hrs,thmn and hrs,thmn,op. On the
right side we have from the equation of motion terms hmn and hmn,op. Consequently,
the only needed and the only possible choice is to consider λiA = λirstA hrs,t. The di�erent
choices wouldn't �nd pairing partners on the left side of master equation and would be
condemned to vanish.

In the segment of Lagrange multipliers we need to reconsider only equations of the
type Pa = 0 where in the case of presence of non-di�erentiated terms we get additional
contribution to the master equation � νmnai hmnPa leading to two more covariant terms, la-
beled Vα with multipliers να, see table 6. In the master equation there appears additional
term

∑2
α=1 ναVα i.

5 Cadabra

With Cadabra software it is extremely easy to obtain equations for coe�cients Ai (and
Ci, λi,...). As was already said, it is needed to extract coe�cients standing at the distinct
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covariant terms. This is rather tedious task doing by hand because of the di�erent
naming of dummy indices, symmetry of tensor h, raising and lowering indices and last
but not least the overwhelming number of terms (even though massively reduced by
Lorentz covariance). Cadabra is asked to convert each term into its canonical form by
the following set of commands:

@distribute!(%):

@eliminate_metric!(%):

@eliminate_kr!(%):

@prodsort!(%):

@canonicalise!(%):

@rename_dummies!(%);

The concrete canonical appearance of every term depends on the internal working of
Cadabra algorithms and the way of storing tensorial structures. Grouping the canonical-
ized terms and collecting their coe�cients is done with the command

@factor_in!(%){ ... list of coefficients to collect ... };

In order to satisfy master equation, it is necessary each collected group of coe�cients to
vanish, hence we get the set of linear equation which are fairly easy to solve (by hand or
by arbitrary symbolic manipulation software such as Mathematica).

6 Some results

In this section a few examples of obtained results are presented. We begin with strongly
conserved complex, continue with complex of linearized gravity in arbitrary gauge and
also in particular gauge and end with conserved tensor for Fierz-Pauli action.

6.1 Strong conservation T ik,k = 0

If we impose condition of vanishing divergence for arbitrary (gravitational) �eld, we
obtain one parameter family with all constants Ai vanishing except for α = A7 = −A13 =
−2A17 = 2A20 and the resulting tensor (which is not symmetrical) is

Tik = α

(
hka,ih

ab
,b − hka,bhab,i −

1

2
ηikhab,

ahbc,c +
1

2
ηikhab,ch

bc,a

)
. (9)

6.2 Linearised vacuum Einstein equations T ik,k = λirsRrs

Now we allow the divergence to be linear combination of linearized vacuum Einstein
�eld equations. The resulting tensor depends on four parameters (α1, α2, α3, α4) and the
dependence of Ai-s on αj-s can be seen below.

α1 = A1 = −A3 = A4 = A10 = −A12, α2 = A2,

α3 = A7 = −2A17, α4 = A9 = A15 = −2A19,

0 = A5 = A6, α1 + α2 − α4 = −A11 = A14 = A16,

−α1 − α2 = A8, −α3 − 2α4 = A13,

−α1 − α2 +
1

2
α4 = A18,

1

2
α3 + α4 = A20. (10)
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And the explicit expression is

Tik =α1

(
hik,ah

ab
,b − hia,ahkb,b + hia,bhk

a,b − hia,kh,a + hia,
ah,k − hka,ah,i − hia,bhab,k +

h,ih,k + ηikh,bh
bc
,c − ηikh,bh,b

)
+

α2

(
hik,ah

,a − hia,kh,a − hka,ah,i + h,ih,k + ηikh,bh
bc
,c − ηikh,bh,b

)
+

α3

(
hka,ih

ab
,b − hka,bhab,i −

1

2
ηikhab,

ahbc,c +
1

2
ηikhab,ch

bc,a

)
+

α4

(
hka,ih

,a + hka,
ah,i − 2hka,bh

ab
,i − h,ih,k + hab,ih

ab
,k − ηikh,bhbc,c +

1

2
ηikh,bh

,b − 1

2
ηikhab,ch

ab,c + ηikhab,ch
bc,a

)
. (11)

Now we want to �nd symmetric tensors � this condition will impose some restrictions
on coe�cients αi. So the demand is Tik = Tki or T[ik] = 0. Omitting terms in Tik which
are already symmetric itself, we are left with

T̃ik =α1

(
−hia,kh,a + hia,

ah,k − hka,ah,i − hia,bhab,k
)

α2 (−hia,kh,a − hka,ah,i)
α3

(
hka,ih

ab
,b − hka,bhab,i

)
α4

(
hka,ih

,a + hka,
ah,i − 2hka,bh

ab
,i

)
. (12)

For this leftover to be symmetric we obtain the conditions

−α1 − α2 + α4 = α1, −α1 − α2 = α4, −α1 = −α3 − 2α4, (13)

with the one parameter solution (being merely a multiplicative constant) α1 = 2α, α2 =
−3α, α3 = 0, α4 = α.

To obtain correspondence with parametrization (β1, β2, β3, β4) used in [1]5 we need
the following linear transformation

α1 = −β2, α2 = β1 + 2β3 + β2, α3 = −2β4, α4 = 2β3. (14)

We can also consider "complete" linearized Einstein equations Grs = 0 and solve
problem with de�ning equation T ik,k = λirsGrs. The results won't change, because the

following identity holds λirsGrs = λ′icdRcd with λ
′icd = λirs

(
δcrδ

d
s − 1

2
ηrsη

cd
)
, i.e. the only

change is the linear tranformation of Lagrange coe�cients (it can be easily checked that
the transformation is regular).

6.3 Linearized gravity with gauge condition hab,b = 1
2h

,a

In order to �nd conserved tensor for gravitational �eld satisfying gauge condition hab,b =
1
2
h,a (which is gauge condition required in [2]) we can follow this procedure � impose

condition (by converting all terms of form hab,b into 1
2
h,a) on the general stress-energy

5In paper [1] parameters are labeled
i
α instead of βi � this relabelling is used to avoid confusion in

notation used here.
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tensor and general Einstein equations and plunge the resulting quantities into our F.-C.6

machinery.
At �rst we get the following term equalities in stress-energy tensor

2A1 = A2, 4A3 = 2A10 = 2A11 = A14, 2A6 = A8, 2A7 = A9, 2A16 = 4A17 = A18.
(15)

Because of these equalities we simply make these redundant terms vanish via correspond-
ing coe�cients Ai, i.e. A1 = A3 = A10 = A11 = A6 = A7 = A16 = A17 = 0. Additionally
we need to apply the gauge condition on divergence of stress-energy tensor once again �
divergence produces terms of the type hac

,cb which can be further converted into 1
2
h,a

b.
Ricci tensor reduces simply into 2Rab = −hab,cc = 0 and Ricci scalar into 2R = −h,cc,

hence the Einstein tensor is 2Gab = −hab,cc + 1
2
ηabh,c

c. As a result of F.-C. procedure, we
get �ve-parameter tensor

α1 = A2, α2 = A4 = −A12, α3 = A9 = −1

2
A13 = A20, α4 = A14,

α5 = A15 = −2A19, A8 = −α1 −
1

2
α2, A18 = −1

4
(α1 + α3 + 2α4) . (16)

Explicitly

Tik = α1

(
hik,ah

,a − hia,kh,a −
1

4
ηikh,bh

,b

)
α2

(
hia,bhk

a,b − hia,bhab,k −
1

2
hia,kh

,a

)
α3

(
hka,ih

,a − 2hka,bh
ab
,i + ηikhab,ch

bc,a − 1

4
ηikh,bh

,b

)
α4

(
h,ih,k −

1

2
ηikh,bh

,b

)
α5

(
hab,ih

ab
,k −

1

2
ηikhab,ch

ab,c

)
. (17)

Butcher's tensor is obtained after choosing α1 = 0, α2 = 0, α3 = 0, α4 = −1
8
, α5 = 1

4
.

In this case conditions of symmetry are as follows

−1

2
α2 − α1 = α3, −α2 = −2α3, (18)

with the result α1 = 2α, α2 = −2α, α3 = α and α4, α5 arbitrary.

6.4 Fierz-Pauli action

We will start with Fierz-Pauli action describing linearised massive gravity or massive spin
2 particle (see [3])

SFP =

∫
−1

2
∂khij∂

khij +∂ihjk∂
jhik−∂ihij∂jh+

1

2
∂kh∂

kh− 1

2
m2
(
hijh

ij − h2
)
d4x. (19)

6F.-C. a.k.a. Fock-Cadabra
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Equations of motion are then obtained as variational derivative of action with respect to
the �eld variables hij

δS

δhij
= ∂k

khij − ∂kihki − ∂kjhki + ηij∂kσh
kσ + ∂ijh− ηij∂kkh−m2 (hij − ηijh) = 0. (20)

It can be easily shown that equations (20) are equivalent to the following set of equations(
∂k

k −m2
)
hij = 0, ∂ihij = 0, h = 0. (21)

6.4.1 Results using equation (20)

Table showing nonvanishing coe�cients follows.

α1 =A7 = −2A17,

α2 =A9 = A11 = −A14 = A15 = −A16 = 2A18 = −2A19 =
2

m2
A23 = − 2

m2
A24,

A13 =− α1 − 2α2,

A20 =
1

2
α1 + α2. (22)

Explicitly

Tik =α1

(
hka,ih

ab
,b − hka,bhab,i −

1

2
ηikhab,

ahbc,c +
1

2
ηikhab,ch

bc,a

)
+

α2

(
hka,ih

,a + hka,
ah,i − 2hka,bh

ab
,i − h,ih,k + hab,ih

ab
,k − ηikh,bhbc,c +

1

2
ηikh,bh

,b − 1

2
ηikhab,ch

ab,c + ηikhab,ch
bc,a +

1

2
m2ηikh

2 − 1

2
m2ηikhabh

ab

)
. (23)

This tensor cannot be made symmetric for any choice of parameters. However we can
additionaly apply the second and the third equation from the set (21) (which are linearly
independent of the original equation (20)) and get the tensor

T̃ik =α1

(
−hka,bhab,i +

1

2
ηikhab,ch

bc,a

)
+

α2

(
−2hka,bh

ab
,i + hab,ih

ab
,k −

1

2
ηikhab,ch

ab,c + ηikhab,ch
bc,a − 1

2
m2ηikhabh

ab

)
, (24)

which can be made symmetrical by the choice α = α2 = −1
2
α1 obtaining unique (up to a

multiplicative constant) tensor

T̄ik = α

(
hab,ih

ab
,k −

1

2
ηikhab,ch

ab,c − 1

2
m2ηikhabh

ab

)
. (25)

6.4.2 Results using equations (21)

We use the same procedure as in subsection (6.3), i.e. at �rst equations hab,b = 0 and
h = 0 are applied on stress-energy tensor � only nonvanishing terms are then A4, A5,
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A12, A13, A15, A19, A20, C2 and C4. Of course, the vanished terms can be arbitrarily add
to the resulting tensor, since their divergence also vanishes, but if it is considered only
on-shell situation then there is really no bene�t of adding them.

The result of F.-C. procedure is a three-parameter tensor,

α1 =A12 = −A4 = − 1

m2
C2,

α2 =A13 = −2A20,

α3 =A15 = −2A19 = − 2

m2
C4; (26)

explicitly

Tik =α1

(
−hia,bhka,b + hia,bh

ab
,k −m2hiahk

a
)

+

α2

(
hka,bh

ab
,i −

1

2
ηikhab,ch

bc,a

)
+

α3

(
hab,ih

ab
,k −

1

2
ηikhab,ch

ab,c − 1

2
m2ηikhabh

ab

)
. (27)

Condition of symmetry yields α1 = α2.

7 Conclusion

We presented a method for �nding conserved Lorentz covariant stress-energy complexes
for a certain class of equations of motion. The result for linearized gravity presented in
[1] was reproduced. The requirement of particular gauge in [2] lead to a wider class of
complexes, unlike the unique result obtained by speci�c procedure in [2]. Finally, the
generalization of F.-C. method lead to computing of complexes for Fierz-Pauli action,
one of the model of massive gravity.
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Abstract. The paper presents method of feature collection for the purpose of classi�cation
and pattern recognition in source codes of software projects. Design of a collector component
is introduced, and an example implementation of a speci�c feature for recognition of Factory
design pattern is given.
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Abstrakt. �lánek uvádí metodu pro sb¥r p°íznak· ze zdrojového kódu softwarových projekt·
pro ú£ely klasi�kace a rozpoznávání vzor·. Je prezentován návrh komponenty implementující
samotný sb¥r dat a ukázka p°íznaku charakterizjícího návrhový vzor Továrna.
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1 Introduction

The main domain of classi�cation and recognition lays in an image processing, where
pattern recognition of common objects on camera pictures is the most common task of
this branch of machine learning. The idea is to emulate a process of a person, who looks
at an unknown picture and instantly recognises and classi�es various objects, other people
and all the things that the person encounter earlier. Similar process takes places when
an experienced software engineer looks at an unfamiliar source code. Such person orients
itself in the code by way of identifying familiar structures or patterns, not by survey of
functionality. This lead to a question, why not to apply principles from image processing
to source code patterns recognition. Traditional approach to pattern recognition in a
source code is by the means of graphs isomorphism and similarity scoring [1]. This is
natural as the source code can be easily represented as a tree (abstract syntax tree)
or as a graph (abstract semantic graph). This paper, on the other hand, deals with an
application of more traditional classi�cation methods like discriminant analysis, k nearest
neighbours, naive bayes, neural networks and support vector machines, and speci�cally
with the method of feature collection to support this methods.

∗This paper was supported by grants SGS11/167/OHK4/3T/14 and LA08015.
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2 Feature Space and Classes

Feature in machine learning is a measurable property which describes some quality of
observed phenomena. Features used by the methods mentioned in the introduction have
a numeric form and are typically used as a whole set called feature vector. Features in
the feature vector should be independent and should discriminate the recognized patterns
or classes from each other. Speci�cally in image recognition, features should ideally be
invariant to translation and rotation, as a cat is a cat whether it is climbing a tree or
laying on a grass.

Source code, and speci�cally source code of programs written in object oriented pro-
gramming language, o�ers certainly many properties which can be measured: code length
in the number of lines, class lengths, method lengths, number of methods, number of at-
tributes, and so on. But these primitive features are not suited for recognizing such
patterns as UML class stereotypes Focus, Auxiliary, Type, Utility, Entity, Boundary and
Control [2]. A class (in the sense of data type) designated by stereotype Focus is meant
to hold the core logic of the component or control �ow of auxiliary classes. On the other
hand, Auxiliary class takes a role of a supporting class for the fundamental core repre-
sented by the Focus classes and implements secondary logic or control �ow. These classes
are usually connected to Focus class by dependency relationship. Type classes represent
domain objects and Utility classes are a special type of auxiliary classes that contains
only static attributes and operations. Entity classes represent some, usually persistent,
business or system information. Boundary class is a system boundary with its neighbor-
hood, like user interface or system service. Finally, the Control class is an object used to
model system or user work�ow or some coordination in a system behaviour [2]. Another
non-trivial patterns, which can be recognized in source code, are well-known design pat-
terns like Factory, Proxy, Builder and others [3]. Completely di�erent level represents
recognition of enterprise integration patterns [4] in projects of large information systems.

To recognize such complex patterns, more sophisticated features have to be designed.
For example, to support recognition of Factory design pattern, feature like this is re-
quired: a ratio of public methods that contain instantiation and return the result of this
instantiation, where call of a member method (public or private) that returns a result
of instantiation count as an instantiation, and where result of instantiation is not of the
same type as covering class, and where returning object is not stored in covering class
attribute [5]. To support recognition of Builder design pattern feature like this can help
a lot: ratio of non-primitive non-static attributes, which are instantiated in within a
member non-static method or constructor [5].

3 Method of Feature Collection

Features like the ones mentioned in the previous chapter can be collected on two levels.
The �rst level is a textual representation of the source code. This approach leads in most
cases to employment of some pattern matching mechanism like regular expressions. To
implement feature collection from a textual representation of source code is very tedious
and error-prone task as an implementer has to deal with all the syntactic sugar of the
language. This is why the feature collector presented in the paper is implemented on
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more abstract level, on the abstract syntax tree. Abstract syntax tree (AST) is a tree
representation of the source code syntactic structure. The tree is called abstract, because
it omits some details appearing in the real language syntax [6]. AST can be in many
cases obtained as a result of a compilation process, where the source code is parsed and
concrete syntax tree (CST) is created. Abstract syntax tree is then obtained by contextual
analysis and information enrichment of the original tree. Again, pattern matching could
be employed to implement feature collection in more elegant fashion then in the �rst
case. Features are understood as mapping F : A → R, where A is a tree and R is the
set of real numbers. A set of collected data DS for a feature space S can be de�ned as
DS = {F (A)|F ∈ S}. The F should be from an interval < 0, 1 >, but it is not a necessity
as data are typically normalized before further use [7].

Presented feature collector is based on an idea that the AST of an object oriented
code can be viewed upon as a hierarchical database of data types, attributes, methods,
statements and expressions. It is then natural to think of some query language like SQL to
query the database. Implementation of the �rst feature (factory) written in such pseudo
query language could look like this:

define is-factory-method(method): boolean

∃ st ∈ method/statements | st/type = return-statement

∧ (

∃ expr ∈ st/expression | expr/type = class-instance-creation

∨ ∃ expr ∈ st/expression | expr/type = name

∧ not exists f from method/type/field | f/name = expr/name

∧ exists ei ∈ method/expression | ei = variable-assignment

∧ (ei/right-side = class-instance-creation

∨ ei/right-side = method-invocation

∧ is-factory-method(ei/right-side/method))

)

select count(method) ∈ type/method | is-factory-method(method)

The query in the pseudo query language is composed of two parts:

• a de�nition of recursive boolean function that return boolean value true only if
the passed method de�nition return result of an instantiation that is not stored in
object's attribute,

• a query that is using the de�ned function to restrict the set of all methods to
methods that could imply the presence of the factory class.

4 Collector Implementation

To implement collector as designed in the previous chapter several challenges have to be
overcome. The �rst problem is parsing of source code and abstract syntax tree creation.
This can be usually done by compiler of the language considered. To parse a Java code,
parser from the Eclipse platform can be employed. The advantage is that the parser
provides the tree in object form.
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ASTParser parser = ASTParser.newParser(AST.JLS4);

parser.setKind(ASTParser.K_COMPILATION_UNIT);

parser.setSource(source.toCharArray());

CompilationUnit cu = (CompilationUnit) parser.createAST(null);

On the �rst line, parser object is created for parsing the Java source code according
to Java Language Speci�cation version 4 (JLS4). The second line states that the parser
should expect whole compilation unit (whole class de�nition with package speci�cation
and import statements). Other possibilities are to parse only a statement or an expression.
The fourth line is a creation of the AST, where CompilationUnit object is a root of the
tree.

Now, the abstract syntax tree is available, but in a form which is own only to Java.
Thus, implementing the query language directly on the Java AST would lead to a platform
speci�c query language and platform speci�c feature de�nition. The intention is to have
the feature de�nition platform independent and applicable to a whole family of relative
languages. To achieve this goal, the AST has to be converted to a di�erent form. The
most used platform independent hierarchical structure is de�nitely XML, it is thus natural
choice to convert the Java AST to XML form. But, XML just de�ne the form not
the content, so set of mapping rules has to be created to convert the AST to XML
representation, specifying which nodes are mapped to which elements, attributes, and
text values.

As was mentioned earlier, features are in fact mappings from tree to set of real num-
bers, so some mechanism of XML manipulation is required. In the world of XML technolo-
gies exist several possibilities when it comes to XML manipulation. Extensible Stylesheet
Language Transformations (XSLT) is a language for transforming XML documents into
various formats. XSLT is based on ideas of functional languages and text-based pat-
tern matching languages [8]. XSLT could handle the required transformation of XML
representation of AST, but it was not designed as a query language. XML Path Lan-
guage (XPath) is query and computation language to easily select speci�c nodes in XML
documents and carry out simple computations [9]. Despite being query language, it is
too simple to cover the required functionality as was outlined in the example imple-
mentation of Factory feature in a pseudo query language. The �nalist is thus XQuery,
a functional programming language designed originally as a query language for XML
databases. XQuery is in fact a superset of the XPath language. XPath in XQuery is used
as an addressing mechanism of XML nodes, while XQuery provides additional features
like the FLWOR construct [10]:

• F = FOR, specify a temporary variable, in which is stored currently processed node,

• L = LET, enable to specify additional variables during the query,

• W = WHERE, restriction of the queried set,

• O = ORDER BY, specify the sequence of result,

• R = RESULT, specify the form of a result.
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5 Features implementation

Implementation of proposed features in XQuery is not such straightforward as in the
example, because some details were omitted on purpose. First, some helper functions have
to be de�ned. The �nd-method function is used to �nd a method in a type speci�ed by
name and number of arguments. Name and number of arguments might not be su�cient
information to positively identify method de�nition because of methods overloading. In
the case of overloaded methods, data types of all arguments would be required to identify
positively. Identify arguments data types from a method invocation is quite a di�cult
task during static analysis of source code, thus this case is simpli�ed in the function body.

declare function local:find-method($name as xs:string,

$argnum as xs:integer,

$type as element(type)) as element(method)* {

let $methods := $type//method[./name/text() = $name]

return

if (count($methods) = 1)

then $methods

else

if (count($methods) > 1)

then($methods[count(./arguments/*) = $argnum])[0]

else ()

};

Next function just verify that an instantiation expression is not using data type of
covering class.

declare function local:is-proper-instantiation(

$inst as element(expression)*) as xs:boolean {

let $res :=

for $ins in $inst

return not($ins/variable-type/name/text()

= $inst/ancestor::type/name/text())

return true() = $res

};

That is all for helper functions and the main function, that verify whether the method
could be a method of a factory, can be de�ned. The main problem is to identify all
possibilities how could be a result of instantiation returned from the method.

declare function local:is-factory-method($m as element(method))

as xs:boolean {

let $field-names := $m/ancestor::type//field/name/text()
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Function takes method de�nition as argument and returns boolean value indicating
whether the method is a factory method. Local variable holding all names of attributes
de�ned in the covering class is created.

let $var-declarations := $m//statement[

@statement-type = 'variable-declaration'

and count(./initializer//expression

[@expression-type = 'class-instance-creation']) > 0

and local:is-proper-instantiation(./initializer/expression

[@expression-type = 'class-instance-creation'])

]/name

Variable containing names of all newly declared variables in the method body, which
are also initialized by instantiation, is de�ned.

let $var-assignments := $m/body//expression[

@expression-type = 'assignment'

and count(./right-operand/expression

[@expression-type = 'class-instance-creation']) > 0

and local:is-proper-instantiation(./right-operand/expression

[@expression-type = 'class-instance-creation'])

]/left-operand/name/text()

Another way of variable initialization is by the assignment, so all assignments, where
on the right side is instantiation, are stored in another local variable.

let $return-statements := $m/body//statement[@statement-type = 'return']

let $rs-new := $return-statements[

count(./expression

[@expression-type = 'class-instance-creation']) > 0

and local:is-proper-instantiation(./expression

[@expression-type = 'class-instance-creation'])

]

let $rs-var := $return-statements[

count(./name) = 1

and (

not(./name/text() = $field-names)

and ./name/text() = $var-assignments

)

or ./name/text() = $var-declarations

]

let $rs-meth := $return-statements[

let $is-inv := count(./expression

[@expression-type = 'method-invocation']) = 1
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let $meth :=

if ($is-inv and not(./expression

[@expression-type = 'method-invocation']

/name/text() = $m/name/text()))

then local:find-method(./expression

[@expression-type = 'method-invocation']/name/text(),

count(./expression[@expression-type = 'method-invocation']

/arguments/expression), $m/ancestor::type)

else ()

return

if ($is-inv and count($meth) = 1)

then local:is-factory-method($meth)

else false()

]

The core of the function is composed of return statements analysis. Three types of
return statements are detected:

1. Return statement where the returned expression is instantiation.

2. Return statement where the returned expression is a simple name. The name must
not be a name of an attribute and there has to exist an assignment where the right
side is an instantiation.

3. Return statement where the returned expression is a method invocation. The in-
voked method must comply to the same rules. This is ensured by recursive call of
the is-factory-method function.

return count($rs-new) > 0 or count($rs-var) > 0 or count($rs-meth)

};

The examined method is declared as a factory method if there is any of presented
return statements.

6 Conclusion

The paper introduced an uncommon but e�ective method of feature collection for classi-
�cation and pattern recognition in source code. Due to the conversion of abstract syntax
tree to XML, the XQuery language could be employed as a query language and thus
platform independent feature de�nition language. An extensive example of feature de�-
nition was given. The presented feature is important for classi�cation of Factory design
pattern. Besides the presented feature, over forty additional features have been proposed
and implemented.
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Abstract. This contribution deals with a transport of water in polymer membrane, which serves

as an electrolyte in a hydrogen fuel cell. Special attention is paid to the electro-osmotic drag �

phenomena, that has a signi�cant in�uence on the humidi�cation of whole membrane. The values

of electro-osmotic drag coe�cient obtained from di�erent measurements are discussed. The value

of this coe�cient is obtained by simple model based on linear irreversible thermodynamic and

it is compared with the experimental values.

Keywords: hydrogen fuel cell, water transport, electro-osmotic drag

Abstrakt. Tento p°ísp¥vek se zabývá transportem vody v polymerní membrán¥, která slouºí

jako elektrolyt ve vodíkovém palivovém £lánku. Velká pozornost je v¥nována elektro-osmotickému

strhávání � jevu, který má podstatný vliv na zavodn¥ní celé membrány. Hodnoty koe�cientu

elektro-osmotického strhávání získané z r·zných m¥°ení jsou diskutovány. Hodnota tohoto koe-

�cientu je vypo£ítána pomocí jednoduchého modelu, který je zaloºený na lineární nerovnováºné

termodynamice, a tato hodnota je srovnána s hodnotami experimentálními.

Klí£ová slova: vodíkový palivový £lánek, transport vody, elektroosmotické strhávání

1 Introduction

A fuel cell is de�ned as an electrochemical device, that converts the chemical energy of the
fuel to the electrical energy. Unlike storage cells, fuel cells can produce electrical energy
inde�nitely, if we continuously feed them with a fuel and remove the reaction products.
There are many types of fuel cells, but we will be interested only in hydrogen fuel cell
with Na�on membrane as an electrolyte.

The basic operation of hydrogen fuel cell is quite simple. It is a reversed electrolysis of
water. Hydrogen gas is driven to the anode, where it comes into contact with a platinum
catalyst on the electrode surface. Then hydrogen ionizes to electron and proton.

2H2 → 4H+ + 4e− (1)

The produced electrons pass through the external electrical circuit to the cathode due to
an electrical potential gradient, creating thus required electrical current. Protons create

∗This work has been supported by the grants CZ.1.07/2.3.00/20.0107 and SGS13/217/OHK4/3T/14.
†This work has been done in colaboration with Michal Pavelka and Petr Sedlák, NTC University of

West Bohemia.

263



264 L. Strmisková

a bond with a water molecule from the membrane surface and in the form of hydronium
ion H3O

+ pass to the electrolyte and then they move to the cathode.
The cathode is fed by oxygen, usually in the form of air. Oxygen reacts with the

electrons from the cathode and with the protons taken from the electrolyte and forms
water.

O2 + 4e− + 4H+ → 2H2O (2)

The total oxidation-reduction reaction in the hydrogen fuel cell is thus

2H2 +O2 → 2H2O. (3)

The reaction (1) is slightly endothermic, but the reaction (2) is highly exothermic so
as a result, heat is produced within the cell.

Polymer membrane serves as an electrolyte and plays a vital role in fuel cells. It has
to prevent mixing of reactant gases and provide good transport of protons from the anode
to the cathode with as little resistance as possible. On the other hand, the resistance
for the electron transport should be as high as possible. If electrons could pass through
electrolyte, we will not gain the required electrical current.

The membrane also has to have high chemical and thermal stability and low produc-
tion cost.

None of the currently developing materials satisfy all the requirements laid on the
electrolyte. The most closed to the requirements and therefore the most common material
used for the membrane is a material known under its commercial name Na�on, which was
developed by DuPont company in the late 1960s. The biggest disadvantage of Na�on is
its high price.

Na�on consists of a polytetra�uoroethylene backbone with the randomly attached per-
�uorinated side chains ending by a sulfonate acid group (−SO3H). The structure of side
chains varies for di�erent types of Na�on and also for di�erent membrane manufactures.
The bonds between �uorine and carbon make Na�on very durable and chemical-resistant,
they also provide high operating temperature.

Na�on is very good proton conductor, when it is su�ciently wet. So for good fuel cell
operation, we need to keep membrane fully and uniformly humidi�ed all the time. We
will show in the next section, how di�cult aim is it and which problems are necessary to
overcome in order to ensure good Na�on humidi�cation.

2 Role of water in Na�on

As we have said, it is well observed, that Na�on is a good proton conductor only if it
is su�ciently wet. The conductivity of dry membrane is almost six orders of magnitude
lower than the conductivity of fully humidi�ed membrane. Insu�cient water level inside
the membrane does not lead only to the poor proton conductivity and thus to lower fuel
cell performance, but dry membrane is also more prone to the pinhole formation and the
degradation process is more fast or even membrane failure can occur.

On the other hand, if the level of water is too high, the excess water blocks the pores
in gas di�usion or catalyst layers and the mass transport is limited, which leads to higher
voltage losses[4]. Because of this, the design of catalyst layers has to ensure, that product



Notes on Electro-Osmotic Drag Coe�cient 265

water is repelled from transport pores and that it is pulled to the membrane, where it
increases the membrane conductivity.

The secret of a high proton conductivity of Na�on membrane is in its morphology,
although the exact morphology of Na�on is not known, despite the fact, that it has been
investigated extensively since the early 1970s.

The main di�culties are the facts, that the polytetra�uoroethylene chains has no
uniform length, but their length is randomly distributed along the average length. Also
the side sulphonated chains are not placed to exact place on the polytetra�uoroethylene
backbone, but their placement is more or less random.

Despite this randomness, there are several generally accepted statements about Na�on
membrane morphology. The most signi�cant property is that the membrane is separated
to into distinct hydrophobic and hydrophilic regions.

The bond between H+ and SO3
− is ionic and there is a strong mutation between

the positive and negative ion of each molecule, therefore the side chains tend to cluster
within Na�on. And because the polytetra�uoroethylene backbone is hydrophobic, while
the suplphonated side chains are highly hydrophilic, these side chains clusters attract the
water presented in membrane, so we have the structure composed from hydrated and dry
regions. Protons inside these hydrated regions are able to move almost freely. For good
proton membrane conductivity, these hydrated regions have to be as large as possible
and there should be a connection between them.

The connecting path between these hydrated regions is really observed, when Na�on
is su�ciently humidi�ed, and protons move there almost like in fully aqeous environment.
When membrane dries out, these channels are becoming narrower and the proton transfer
is decelerated by the attractive forces of the surface of these channels.

There are four main causes of water transport inside the membrane: di�usion, electro-
osmotic drag, pressure driven hydraulic permeation and capillary e�ect.

The pressure driven hydraulic permeation is negligible in comparison with drag and
di�usion, if the operating temperature is under 70 C. But for higher temperatures, this
factor can also highly a�ect water balance [2].

Water is created at the cathode by the oxygen reduction. Part of the generated water
is removed by the air �ow, but the rest di�uses to the anode due to the concentration
gradient or di�erences in water activity.

Protons travel from the anode to the cathode, but isolated proton without electron
cloud can exist freely in solutions only shortly, so when such proton meets a water
molecule, it bounds to it forming thus hydronium ion H3O

+. The higher ions H5O
+
2

(Zundel ion) and H9O
+
4 (Eigen ion) can be also created. These aggregates of water

molecule and excess proton continue in the earlier proton direction to the cathode. This
phenomena is called electro-osmotic drag.

There are two competing mechanisms of proton transfer in Na�on membrane: vehic-
ular mechanism and Grothuss mechanism. The di�erences between both mechanisms are
depicted in �gure 1.

The vehicular mechanism is a di�usion of hydrated proton (H+(H2O)x) due to gra-
dient of electrochemical potential.

The Grotthuss mechanism is sometimes called as hopping. The produced proton
sticks to the water molecule presented in the catalyst-membrane interface creating thus
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Figure 1: The mechanisms of proton transfer in Na�on membrane. Vehicle mechanism is
in the top, Grothuss mechanism is in the bottom. [6]

the hydronium ionH3O
+.When this ion is close to another water molecule, proton hops to

it. Original ion turns again into water molecule and water molecule changes to hydronium
ion. This way, proton hopping continues until it reaches cathode. Grotthuss mechanism
is achieved through a local reorientation of water molecules and shu�ing of hydrogen
bonds and it was found, while trying to understand, why is the proton conductivity in
water 5− 8 times higher than the conductivity of other cations.

At higher current densities, the produced protons thus do not allow water to reach
the anode and although the cathode side of the membrane is �ooded, the anode side can
be completely dry. Humidifying of the anode is a solution, but it is no so easy, because
excessive liquid water can block the pores and limited mass transport leads to signi�cant
voltage losses, so the level of hydration of the feed gases should be managed very carefully.

Maintaining the proper water level is not easy also because the membrane should
stay optimally hydrated while varying power output. Another di�culty is the fact, that
the reactants are not distributed homogeneously, some regions will be abundant to the
fuel, some regions will be insu�ciently supplied by the fuel. Therefore there will be large
variations in local current. The distribution of the produced Joule heat will approximately
correspond to the current distribution. The heat can form pinholes in the membrane and
lead thus to the higher fuel crossover. It can also dry out the membrane and increase
thus the membrane resistance.

The proper water management seems to be a key point in designing a fuel cell and
many engineers and researchers are trying to �nd the ideal solution of it. The deep under-
standing of the electro-osmotic drag is necessary for solving the problem. Unfortunatelly
the systematic experimental data on this phenomena are still missing.

It is generally known, that proton drags water molecules during its journey to the
cathode. The average number of water molecules dragged by proton is called electro-
osmotic drag coe�cient. Its value is obtained from the experiments. The problem is, that
di�erent experimental techniques gives us signi�cantly di�erent values of this coe�cient
(between one and �ve water molecules per proton, see the �gure 2 )[2].

One need to know the electro-osmotic drag coe�cient while modeling the transport
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Figure 2: The values of electro-osmotic drag coe�cient. [2]

phenomena in the membrane. But such a scattering of experimental data have to make
one desperate. There is also a big question, why is the range of data so wide.

In most of models, electro-osmotic drag coe�cient is expected to be a constant. But it
depends on state variables (temperature, pressure, thickness of the membrane). Di�erent
experimental methods show di�erent values of drag coe�cient even in same states. So it
seems, that the choise of experimental technique has an in�uence on the measured data,
although this is the situation, that should not occur in experimental physics.

But they are same common points in all measurements. It seems, for instance, that
electro-osmotic drag coe�cient linearly increases with the increasing temperature.

3 Thermodynamic constraint of electro-osmotic drag

coe�cient

In this section, the classical linear non-equilibrium thermodynamics will be used for
determining the constraint of electro-osmotic drag coe�cient.

The linear non-equilibrium thermodynamics describes the system, which is su�ciently
close to the equilibrium [5]. There are no thermodynamic �uxes and forces, when the
system is in the equilibrium. When the system is leaving the equilibrium, the forces and
�uxes will smoothly grow. The Taylor expansion around the equilibrium can be done.
There is a region, which is described by linear part of this expansion with high accuracy.
This region is called linear region and thermodynamics valid in this region is called linear
non-equilibrium thermodynamics.
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In the linear region, the relation between thermodynamic �uxes (ji) and thermody-
namic forces (Xi) is simple.

ji =
N∑
i=1

LikXk, (4)

where the coe�cients Lik are called phenomenological coe�cients. The phenomenolog-
ical coe�cients are constants independent on thermodynamic forces Xk, but they are
functions of state variables of a thermodynamic system.

Phenomenological thermodynamics has no tool for determining the values of these
coe�cients. Their values are generally determined experimentally. But thermodynamics
put some constraints on their values. According to the second law of thermodynamics,
the entropy production is not negative.

σ(S) =
N∑
i=1

jiXi =
N∑

i,k=1

LikXiXk ≥ 0, (5)

so the phenomenological coe�cients have to ful�ll Sylvester conditions.
Moreover, these coe�cients are not independent, but they have to obey the Onsager

relations of reciprocity [5].

Lik = Lki (6)

The linear non-equilibrium thermodynamics will be used now for describing the trans-
port of protons and water inside the Na�on membrane. The membrane is assumed to
be a homogeneous space, where di�usivity and proton conductivity are constants, that
depend only on state variables.

According to the linear non-equilibrium thermodynamics, the constitutive relations
for the transport of protons and water inside the membrane are as follows.

jH+ = LH+H+XH+ + LH+wXw, (7)

jw = LwH+XH+ + LwwXw, (8)

where jH+ is the �ux of protons and jw is the �ux of water. The thermodynamic force
Xw corresponds to the gradient of water chemical potential and XH+ to the gradient
of electrochemical potential. The other forces like temperature, pressure gradient or
capillarity forces are considered to be negligibly small in comparison with the forces Xw

and XH+ .
The phenomenological coe�cients Lij have to satisfy Onsager relations of reciprocity,

i.e.,

LH+w = LwH+ ,

so there are only three independent coe�cients. In order to gain the physical interpreta-
tion of these coe�cients, the equations (7), (8) are rewritten into the following form

jH+ = σH+XH+ +Kjw, (9)

jw = σwXw + ξjH+ . (10)
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The coe�cient ξ =
(

jw
jH+

)
Xw=0

is previously discussed electro-osmotic drag coe�cient.

The coe�cient K is de�ned similarly as K =
(

jH+

jw

)
XH+=0

.

Water cannot drag di�erent protons than protons, that are present in the membrane,
so the following inequality for the coe�cient K must be valid.

K =

(
jH+

jw

)
XH+=0

≤ cH+

cw
. (11)

The relation between the coe�cient ξ and K and the phenomenological coe�cients
follows from the original equations (7), (8). The forceXw in the equation (7) is substituted
for the force Xw expressed from the equation (8). The same process is analogously done
for the force XH+ and the following set of the equations is thus gained.

jH+ =
LwwLH+H+−LwH+LH+w

Lww
XH+ +

LwH+

Lww
jw, (12)

jw =
LwwLH+H+−LwH+LH+w

LH+H+
Xw +

LwH+

LH+H+
jH+ . (13)

The relation between coe�cients ξ and K is obvious from these equations.

K =
LwH+

Lww
, (14)

ξ =
LwH+

LH+H+
. (15)

The coe�cient of electro-osmotic drag can be rewritten using the coe�cient K, which
ful�lls the inequality (11).

ξ =
LH+w

LH+H+

=
Lww

LH+H+

LH+w

Lww

≤ Lww

LH+H+

cH+

cw
(16)

The Nernst-Einstein relations

σw =
cwDw

R
, σH+ =

cH+DH+

R
, (17)

where Dw, DH+ is the di�usivity of water and protons respectively, are used for further
arranging of the equations.

The value of the electro-osmotic drag coe�cient is thus limited only with the ratio of
di�usivity coe�cients of water and protons.

ξ ≤ Dw

DH+

(18)

The di�usivity coe�cients for the examinated operating temperature and pressure
can be found elsewhere in the literature. The di�usivity coe�cients sugested by Choi et
al. [1] will be put into the inequality just to have an estimation, how the inequality (19)
limits the values of electro-osmotic drag coe�cient.

ξ ≤ Dw

DH+

=
2.26

7.22
= 0.3 (19)
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This value is much lower than the experimental values. We have a strong suspicion,
that the electro-osmotic drag is not so signi�cant inside the membrane as it is generally
thought. We think, that the surface and bulk properties of Na�on are di�erent and that
the electro-osmotic drag coe�cient from experiments is so high, because it is high on the
surface.

This idea is supported by the fact, that di�erent measurement techniques give di�erent
values even at the same conditions. It seems, that each measurement technique slightly
changes the surface of the membrane, changing thus also its properties and consequently
the value of the electro-osmotic drag coe�cient.

Moreover if the value of drag coe�cient would be so high, the hydrogen fuel cell will be
not able to work without external hydration of feed gases for long time. Benziger showed
([3]), that it is possible to run fuel cell without hydration without any signi�cant changes
of the membrane. So his experiments also support the idea, that the electro-osmotic drag
should be smaller, than is measured.
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Abstract. We argue that the Witten's loop mechanism for the right-handed Majorana neu-
trino mass generation identi�ed originally in the SO(10) grand uni�cation context [8] can be
successfully adopted to the class of the simplest �ipped SU(5) models [4, 5, 6]. In such a frame-
work, the main drawback of the SO(10) prototype, in particular, the generic tension among the
gauge uni�cation constraints and the absolute neutrino mass scale is alleviated and a simple
yet potentially realistic and testable scenario emerges. Indeed, the perturbative baryon number
violating processes such as proton decay are allowed in the �ipped SU(5) model, in particular,
the partial proton decay widths are calculable (see [7] where also comparison with ordinary
SU(5) is given), and may be subjected to future experiments [1, 2, 3]. Firstly, the generic prop-
erty of the simplest �ipped SU(5) models is Γ(p → K+ν) = 0. Next, the loop generation of
the right-handed neutrino mass induces a tight correlation of the proton decay widths with the
neutrino sector which results in predictions on the decay channels to neutral mesons. Accord-
ing to our analysis, Γ(p → π0µ+) is bounded from above, whereas a lower bound on the sum
Γ(p→ π0e+) + Γ(p→ π0µ+) occurs.

Keywords: Witten's loop, �ipped SU(5), proton decay.

Abstrakt. Witten·v mechanismus pro generování majoranovských hmot pravoto£ivých neutrin
byl p·vodn¥ implementován v teorii velké uni�kace s kalibra£ní grupou SO(10) (viz £lánek [8]),
av²ak v této práci ukazujeme, ºe jej lze pouºít i pro t°ídu model· známých pod ozna£ením
�ipovaná SU(5) [4, 5, 6]. Jednou z nevýhod pouºití Wittenovy smy£ky v SO(10) je nesrovnalost
mezi absolutní ²kálou hmot neutrin a omezením plynoucím z podmínky uni�kace � ukazuje se,
ºe v tomto p°ípad¥ parametry modelu nelze nastavit tak, aby model odpovídal realit¥. Tento
problém mizí ve �ipované SU(5), nebo´ podmínky uni�kace jsou zde mnohem slab²í � jsou
kladeny pouze na vazbové konstanty p°íslu²né neabelovským kalibra£ním grupám, dostáváme
tak realistický a potenciáln¥ testovatelný model. Experimentální ov¥°ení model· velké uni�kace
poskytují zejména procesy, kde se nezachovává baryonové £íslo a které tedy ve standardním
modelu nejsou dovoleny (neuvaºujeme-li neporuchové efekty). Ve �ipované SU(5) lze velmi
dob°e vypo£ítat díl£í rozpadové ²í°ky pro rozpad protonu (tyto výpo£ty a jejich srovnání se
situací v b¥ºných SU(5) modelech jsou provedeny nap°. v publikaci [7]), které mohou být v
budoucnu zm¥°eny experimenty jako [1, 2, 3]. Typickým rysem �ipované SU(5) je absence
rozpadu protonu na K+ a antineutrino (Γ(p → K+ν) = 0). Ná² model je navíc speci�cký
silnou korelací mezi rozpadovými ²í°kami protonu a neutrinovým sektorem, která vzniká kv·li
smy£kovému generování hmot pravoto£ivých neutrin a která umoº¬uje p°esn¥ji vypo£ítat rozpad

∗The full paper written in cooperation with M. Malinský and Carolina Arbeláez Rodríguez is available
at http://arxiv.org/abs/1309.6743. Publication in a peer-reviewed periodical is expected.
†The work of H.�. is supported by the Grant Agency of the Czech Technical University in Prague,

grant No. SGS13/217/OHK4/3T/14
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protonu na neutrální mezony a nabité leptony. Na²e analýza ukazuje, ºe lze nalézt horní odhad
pro rozpadovou ²í°ku Γ(p → π0µ+), zatímco pro sou£et Γ(p → π0e+) + Γ(p → π0µ+) existuje
dolní odhad.

Klí£ová slova: Wittenova smy£ka, �ipovaná SU(5), rozpad protonu.
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Abstract. This contribution is concerned with the possibility of making the learning process of

neural network with switching units more parallel. Nvidia CUDA architecture will be used for pa-

ralelization of the learning process. This architecture serves for speedup of various computations

due to huge number of CUDA cores which are available on GPU.

Keywords: CUDA, NNSU, MAGMA

Abstrakt. Tento p°ísp¥vek se zabývá moºností paralelizace u£ícího procesu neuronové sít¥ s p°e-

pínacími jednotkami. Pro paralelizaci bude pouºita architektura Nvidia CUDA slouºící k urych-

lení nejr·zn¥j²ích výpo£t· díky velkému po£tu výpo£etních jader dostupných na gra�ckých pro-

cesorech.

Klí£ová slova: CUDA, NNSU, MAGMA

1 Úvod

Neuronová sí´ s p°epínacími jednotkami (NNSU) je nástroj ur£ený k separaci dat £i k apro-
ximaci funkcí. Tento £lánek je sbírkou poznatk· o této neuronové síti a o moºnosti dal²í
optimalizace u£ícího procesu. Optimalizace bude spo£ívat v nahrazení sériového algo-
ritmu °e²ení soustavy lineárních rovnic algoritmem paralelizovaným na GPU. K podpo°e
paralelizace na gra�ckém procesoru bude vyuºita architektura Nvidia CUDA [9].

2 Neuronová sí´ s p°epínacími jednotkami

Neuronová sí´ s p°epínacími jednotkami je tvo°ena bloky z°et¥zených tzv. neuron· s p°e-
pínací jednotkou (NSU). U£ení takovéto sít¥ probíhá na dvou úrovních. První úrove¬
u£ení v sob¥ skrývá optimalizaci architektury celé NNSU pomocí genetických algoritm·,
zatímco na druhé úrovni dochází k u£ení jednotlivých NSU. Pro p°edstavu je na obrázku
1 vid¥t architektura NNSU.

Tedy neurony NNSU jsou sloºeny ze z°et¥zených NSU. NSU vºdy obsahuje p°epí-
nací jednotku SU a tzv. výpo£etní uzly. Uvnit° p°epínací jednotky dochází k rozd¥lování
vstupních vektor· do podmnoºin, které p°epínací jednotka posílá na konkrétní výpo£etní
uzel. Výpo£etní uzel je vlastn¥ oby£ejný perceptron.

∗Tato práce byla podpo°ena granty SGS11/167/OHK4/3T/14 a GA TA �R TA01010490.
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Obrázek 1: Levá £ást obrázku zobrazuje jednoduchou celou NNSU. Ve st°ední £ásti je roz-
kreslen blok 4, který je sloºen ze t°í neuron· s p°epínací jednotkou. Pravá £ást vykresluje
p°íklad, jak m·ºe vypadat struktura neuronu s p°epínací jednotkou.

2.1 Genetické algoritmy v NNSU

Architektura NNSU lze jednodu²e popsat jako acyklický graf. O výsledné uspo°ádání hran
a uzl· se stará optimalizace pomocí genetických algoritm· [3]. Aby bylo v·bec moºné po-
uºít genetickou optimalizaci bylo nutné najít vhodnou reprezentaci acyklického grafu.
Nakonec byla zvolena kombinace dvou metod: PST (Program Symbol Trees [1]) a Rea-
dovy lineární kódy [10]. Roman Kalous ve své disertaci nazval tuto reprezentaci IP kód
(Instruction-Parameter Code). Tato metoda dokáºe serializovat uzly a hrany NNSU. Po-
mocí PST je reprezentována architektura ve tvaru stromu a Readovy kódy tuto strukturu
p°evád¥jí na celo£íselné °ady. Více informací o IP kódu najdete v [3].

2.2 U£ení NSU

P°i u£ení NSU je nutné nau£it jak p°epínací jednotku tak jednotlivé výpo£etní uzly. P°epí-
nací jednotka se u£í pomocí Forgyho metody (varianta k -means algoritmu) pro shlukovou
analýzu. U£ení výpo£etní jednotky spo£ívá ve vy°e²ení soustavy lineárních rovnic. Vektor
pravých stran je tvo°en pouze prvky -1, 1. Matice soustavy je speci�kována vstupními
vektory. �e²ení dané soustavy ur£í váhy pro vstupy do výpo£etní jednotky. Jelikoº v¥t-
²inou vstupy dané výpo£etní jednotky nejsou lineární kombinací vah, je t°eba provést
odhad metodou nejmen²ích £tverc·.

Zatímco genetické algoritmy pro ur£ení architektury sít¥ NNSU jsou jiº implemen-
továny paraleln¥, °e²ení soustav lineárních rovnic se stále spou²tí sériov¥. Na²í snahou
je p°esunout °e²ení soustav lineárních rovnic na gra�ckou kartu s vyuºitím architektury
CUDA (Compute Uni�ed Device Architecture).
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3 CUDA

Nvidia CUDA je technologie umoº¬ující vývojá°i vyuºít potenciál paralelní architektury
gra�ckých £ip· od �rmy Nvidia. Alternativní technologie pro paralelizaci výpo£t· na libo-
volné vícejádrové architektu°e (v£etn¥ GPU) je ozna£ována jako OpenCL. Pro na²e ú£ely
byla vybrána CUDA z d·vod· lep²í dostupnosti studijních materiál· a p°ehledn¥j²ího
API.

Jednou z nevýhod pouºití architektury CUDA je, ºe není podporována gra�ckými
£ipy jiných výrobc·. Díky této skute£nosti, v²ak nemusí její rozhraní obsahovat mnoºství
p°epína£· podle r·zných £ip·, na kterých bude výsledná aplikace spou²t¥na, coº vede
k p°ehledn¥j²ímu kódu.

3.1 Základní informace

Programování gra�ckých karet s vyuºitím CUDA je velmi podobné psaní kódu v C nebo
C++. Jde pouze o roz²í°ení syntaxe jazyka C, o £emº sv¥d£í také zp·sob, jakým byl
vytvo°en p°eklada£. Základní balík CUDA SDK obsahuje mimo jiné p°eklada£ nazvaný
NVCC [6], který roz²i°uje b¥ºn¥ pouºívaný p°eklada£ gcc.

Kdyº programátor pro£ítá návody nebo dokumentaci setká se s pojmy jako vlákno,
warp, kernel atd. Nyní si p°edstavíme nej£ast¥ji pouºívané pojmy p°i CUDA programo-
vání.

K rozli²ení typu procesor·, na kterých má být provád¥n kód, se pouºívá ozna£ení
device pro CPU resp. host pro GPU. Funkci volané z CPU, jejíº kód má být spu²t¥n na
GPU, se °íká kernel. Termín vlákno ozna£uje £ást dat, zpracovávanou na jednom z CUDA
jader. Vlákna je moºné strukturovat do blok· a bloky do tzv. gridu, p°i£emº bloky i grid
mohou být aº 3 dimenzionální. P°íklad takového rozd¥lení vláken znázor¬uje obrázek 2.

Je t°eba poznamenat, ºe GPU nem·ºe pracovat s daty uloºenými v pam¥ti CPU.
Má-li program zpracovat ur£itá data, musí programátor zajistit jejich p°ekopírování do
pam¥ti GPU p°ed voláním daného kernelu. Kopírování mezi pam¥´mi je £asov¥ pom¥rn¥
náro£ná operace. Dal²í omezení spo£ívá v tom, ºe GPU neumoº¬uje spustit nap°. pouze
jedno vlákno. Pro jednu instrukci se vºdy spou²tí skupinky po 32 vláknech tzv. warpy, i
kdyº výsledek ze zbylých 31 není podstatný. P°i implementaci algoritm· je t°eba na toto
myslet, aby byla karta vºdy co nejvíce zatíºená. Jen tak je moºné vyváºit £as pot°ebný
na zkopírování dat z pam¥ti CPU do vnit°ní pam¥ti GPU a zp¥t.

Na obrázku 2 je také vid¥t n¥které typy pam¥tí, které má vývojá° na gra�cké kart¥
k dispozici. Hlavní, nejv¥t²í a zárove¬ nejpomalej²í pam¥tí GPU je tzv. globální pam¥´.
Její velikost se dnes pohybuje v °ádech gigabajt· a má do ní p°ístup libovolné b¥ºící
vlákno. Dal²í typ pam¥ti je pam¥´ sdílená, jejíº velikost se pohybuje v °ádu desítek kilo-
bajt·. Tato je mnohem rychlej²í neº globální, ale p°ístup do ní je omezen pouze pro vlákna
b¥ºící v jednom bloku. Krom¥ globální a sdílené pam¥ti je²t¥ stojí za zmínku registry.
Kaºdé vlákno má sv·j vlastní registr, do kterého jsou ukládány jeho lokální prom¥nné.
Více o CUDA architektu°e naleznete v [5].
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Obrázek 2: Obrázek zobrazuje p°íklad, jak mohou být rozd¥lena vlákna.
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3.2 Knihovny a vývojové prost°edí

Firma Nvidia dodává v SDK spolu s p°eklada£em NVCC také multiplatformní vývojové
prost°edí Cuda Parallel Nsight [8] a n¥kolik knihoven. Mimo jiné jde o knihovny Cublas
[4] nebo Cusparse [7]. První jmenovaná poskytuje programátorovi základní operace z li-
neární algebry jako t°eba maticové násobení a knihovna Cusparse je zam¥°ena na operace
s °ídkými maticemi.

Krom¥ knihoven dodávaných od �rmy Nvidia existují uºite£né knihovny od t°etích
stran. Pro na²e ú£ely jsou velice uºite£né GPU implementace b¥ºn¥ pouºívané knihovny
LAPACK. Existují jak komer£ní tak i otev°ené projekty. P°íkladem komer£ní implemen-
tace funkcí z knihovny LAPACK m·ºe být CuLa Tools (http://www.culatools.com), na-
opak p°íklad otev°ené knihovny je MAGMA (http://icl.cs.utk.edu/magma).

4 Integrace CUDA do projektu

Projekt NNSU je naprogramovaný objektov¥ v jazyce C++ a jeho p°eklad je °ízen sys-
témem make soubor·. Jedním z podúkol· bylo integrovat podporu výpo£t· na GPU do
stávajícího projektu. Vzhledem k tomu, ºe NNSU podporuje paralelní spou²t¥ní systé-
mem Open MPI, obsahuje zdrojové soubory, které nemohou být p°eloºeny oby£ejným gcc
p°eklada£em, ale musí být pouºit obalový p°eklada£ mpixx. Více informací o paralizaci
NNSU pomocí Open MPI naleznete v [2]. Situace s p°ekladem zdrojových soubor· CUDA
je podobná. Pro ty je nutné pouºít p°eklada£ NVCC.

Bylo tedy nutné najít odpovídající make soubory a doplnit do nich cesty k p°eklada£i
NVCC, knihovnám a hlavi£kovým soubor·m, coº bylo vzhledem k chyb¥jící dokumentaci
zna£n¥ obtíºné.

4.1 Provedené práce

Nakonec se poda°ilo identi�kovat v²echny d·leºité make soubory a vhodný adresá° pro
umíst¥ní zdrojových soubor· pro GPU implementaci u£ení výpo£etních jednotek z NSU,
o kterém byla °e£ v kapitole 2.2.

Byl vytvo°en testovací soubor cuda_useful.cu obsahující pouze kernel, který zatím
jen ov¥°uje funk£nost spu²t¥ní kódu na GPU. Tento soubor zárove¬ obsahuje funkci, v níº
se kopírují testovací data do a z pam¥ti gra�cké karty a volá kernel.

V pr·b¥hu práce byl vytvo°en men²í samostatný projekt na vyzkou²ení práce s ote-
v°enou knihovnou MAGMA, o které byla zmínka v sekci 3.2.

5 Zbývající práce

Nyní je pot°eba vyuºít zku²enosti s knihovnou MAGMA z men²ího projektu p°i paraleli-
zaci u£ení NSU. V kódu bude zanesena kontrola, zda je k dispozici odpovídající gra�cká
karta. V kladném p°ípad¥ budou p°ekopírována nutná data do pam¥ti GPU, spustí se
kernel a po jeho dob¥hnutí budou data zkopírována zpátky pro dal²í zpracovávání na
CPU.
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Navíc by bylo dobré, kdyby se poda°ilo najít mezní velikost u£ící úlohy, od které se
vyplatí °e²it tuto úlohu na gra�cké kart¥, aby £as pot°ebný na p°enos dat nep°esáhl dobu
výpo£tu na CPU.
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Abstrakt. V tomto p°ísp¥ku jsou shrnuty hlavní výsledky publikované letos v £láncích [2, 3].
Ob¥ práce jsou v¥novány spektrální analýze operator· s tridiagonální maticovou reprezentací.
Spektrální vlastnosti studovaných operátor· jsou popsány pomocí hypergeometrických °ad a
jejich q-analogií.

Klí£ová slova: Jacobiho matice, tridiagonální operátor, characteristická funkce, speciální funkce,
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1 Summary

We provide a review of some results taken from [2, 3]. The main contribution and the
scope of the work is pointed out. However, we do not state theorems in their full and
exact form and we omit many details, for the sake of simplicity. An interested reader is
referred to papers [1, 2, 3].

In [2], we de�ne a complex function FJ , called characteristic function associated with
a Jacobi matrix J of the form

J =


λ1 w1

w1 λ2 w2

w2 λ3 w3

. . . . . . . . .

 , (1)

∗This work has been partially supported from the following grants: Grant No. 201/09/0811 of the
Czech Science Foundation, Grant No. LC06002 of the Ministry of Education of the Czech Republic, and
Grant No. GA13-11058S of the Czech Science Foundation.
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where sequences {λn}∞n=1 ∈ C and {wn}∞n=1 ∈ C \ {0} satisfy following convergence
condition:

∞∑
n=1

∣∣∣∣ w 2
n

(λn − z)(λn+1 − z)

∣∣∣∣ <∞, (2)

for at least one z ∈ C. Function FJ is de�ned with the aid of function F which has
been introduced in [1], for the �rst time. Therein, algebraic and combinatorial properties
of function F has been studied in detail and several other results can be found in [2].

Function F is of independent interest and, besides its importance concerning charac-
teristic function of a Jacobi matrix, it is closely related also with orthogonal polynomials,
continued fractions, solutions of bilateral second order di�erence equation, or hypergeo-
metric functions and their q-analogues.

With matrix J one associates maximal domain operator Jmax acting on `2(N). The
main result of work [2] then states the part of the spectrum of Jmax out of the set of �nite
accumulation points of diagonal sequence {λn}∞n=1 coincides with the set of zeros of the
characteristic function FJ . With the only exception of the obstacle with limit points of the
diagonal of matrix J , this is familiar situation from (�nite-dimensional) linear algebra.
Further, we provide explicit formulas for corresponding eigenvectors, their `2-norm (in
the real case), even the Green function, and the Weyl m-function, in particular.

As an application, we present several examples of concrete Jacobi matrices where
general results can be further simpli�ed, see the illustrating example at the end of this
paper. Usually, the spectrum as well as eigenvectors are described in terms of of special
functions and their zeros (Bessel, Ramanujan q-Airy). Special attention is paid on prop-
erties of zeros of the Bessel function ν 7→ Jν(x) considered as a function of its order. In
particular, a new asymptotic formula for these zeros has been found.

Realizing the occurrence of special function of hypergeometric type or their q-analogues,
we present even more concrete examples of Jacobi matrices with solvable spectral problem
in paper [3]. However, in this paper, we go even beyond the scope of the characteristic
function indicated above. There appears operator for which convergence condition (2)
is violated. Moreover, the spectral analysis of an operator with doubly-in�nite tridiago-
nal matrix representation is involved. Further, we derive several asymptotic or summa-
tion formulas with special functions (Jackson q-Bessel function, con�uent hypergeometric
function 1F1, and its q-version 1φ1).

To illustrate a typical result we recall the following example from [3].

Proposition 1. For 0 < q < 1, σ ∈ R, and γ > −1, let J = J(σ, γ) be the Jacobi matrix
operator in `2(N) de�ned by (1) where

wn =
1

2
sinh(σ)q(n−γ−1)/2

√
1− qn+γ , λn = qn−1. (3)

Then z 6= 0 is an eigenvalue of J(σ, γ) if and only if(
cosh2(σ/2)z−1; q

)
∞ 1φ1

(
q−γ cosh2(σ/2)z−1; cosh2(σ/2)z−1; q,− sinh2(σ/2)z−1

)
= 0.
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Moreover, if z 6= 0 solves this characteristic equation then the sequence {vn}∞n=1, with

vn = q−
1
2
γn+ 1

4
n(n−3) sinh

n(σ) (2z)−n√
(qγ+n; q)∞

(
qn cosh2

(σ
2

)
z−1; q

)
∞

× 1φ1

(
q−γ cosh2

(σ
2

)
z−1; qn cosh2

(σ
2

)
z−1; q,−qn sinh2

(σ
2

)
z−1
)
, (4)

is a corresponding eigenvector.

In the particular case γ = 0 the characteristic equation simpli�es to the form(
cosh2(σ/2)z−1; q

)
∞
(
− sinh2(σ/2)z−1; q

)
∞ = 0.

Hence in that case, apart from z = 0, one knows the point spectrum fully explicitly,

spec(J(σ, 0)) \ {0} =
{
qk cosh2(σ/2); k = 0, 1, 2, . . .

}
∪
{
−qk sinh2(σ/2); k = 0, 1, 2, . . .

}
.

This example is particularly interesting since it gives rise to a new class of orthogonal
polynomials with interesting properties, as is non-uniqueness of the orthogonality mea-
sure, providing ranges of involved parameters are chosen conveniently. This is studied by
the author at present.
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Abstract. The problem of dynamic medical image sequence separation is studied. We intro-

duced the state of the art algorithms for medical sequence decomposition together with those

that are proposed by us. The validation and the comparison of the algorithms are nontrivial

and challenging task. We propose to use a synthetic data where a ground truth is available

so it is possible to compute a signi�cant statistics for comparison reason. Moreover, we pro-

posed a comparison on 99 real data from renal scintigraphy where relative renal functions are

automatically computed and compared with those obtained by physician.

Keywords: blind source separation, deconvolution, scintigraphy, medical image sequence

Abstrakt. Tento p°ísp¥vek se zabývá zpracováním dynamických dat získaných metodou nuk-

leární medicíny, scintigra�e. State of the art algoritmy spole£n¥ s t¥mi, které p°edkládáme my,

jsou p°edstaveny a diskutovány. Validace a srovnání t¥chto algoritm· je netriviální úloha. Ne-

jprve navrhujeme srovnání pomocí generovaných dat, kde jsou k dispozici zdrojová data, díky

kterým je moºno napo£ítat základní statistické ukazatele výsledk·. P°edkládáme i srovnání algo-

ritm· pomocí 99 reálných studií ze scintigra�e ledvin. Na t¥chto studiích automaticky po£ítáme

relativní renální funkci, která m·ºe být srovnána s výsledky získanými zku²eným léka°em.

Klí£ová slova: slepá separace, dekonvoluce, scintigra�e, obrazová sekvence

1 Introduction

Medical data postprocessing and analysis is important step in diagnostic medical exam-
ination. In many imaging modalities such as scintigraphy, the activity of tissues can be
observed only via observing of the particles coming from radiopharmaceutical applied to
the body. It can be seen the activity during the time in the respective tissues or part
of the body using the method; however, several issues must be considered. Since the
scintigraphical camera observed the body from one direction, the resulting image pixel is
a sum of all underlying tissues. As a result, we observe a superposition of all tissues in
respective region of interest (ROI). The task of medical image processing is to reconstruct
the original sources of signal, i.e., tissues and their time-activity curves (TACs).

The problem is called blind source separation (BSS) and it is well described in a liter-
ature. The current methods used in practice is typically based on manual or semi-manual
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selection of ROIs of the examined tissues and subtraction of the background activity [13].
More automated models can be based on model of a factor analysis (FA), [8, 7]; however,
the solution of the FA is ambiguous and biological meaningfulness is not guaranteed.
Other approach is based on modeling of �uid �ow using compartment models such as in
[5]; however, this could be too strict for biological processes and su�ers from artifacts and
computation tractability. In recent years, we proposed a number of probabilistic models
based on FA model and solved using Variational Bayes (VB) method, [15]. The models
are based on modeling both, images and TACs. We proposed (i) a modeling of TACs as
results of convolutions of common input function and restricted convolution kernels, [10],
(ii) modeling a probability mask on images re�ecting that activity do not cover the whole
image but only relatively small area [9], and (iii) model combining the advantages from
both forcoming model and using the automatic relevance determination (ARD), [1], as a
general principle, [11].

This paper summarize mentioned methods and focus on theirs validation and compar-
ison methodology. The issue with validation of models is in no ground truth, no golden
standard. Even physician have very di�erent results in scintigraphy on each patient [3]
or using di�erent methodology [4]. The synthetic data can be used as an indicator of
feasibility but it never re�ects the nature. Comparison with physician results can be done
but with consideration that manual results su�ers from inaccuracy. We propose a com-
parison on a data from renal scintigraphy where relative renal function is automatically
computed.

2 Mathematical Models

We summarize the used mathematical models in our study. All selected methods provides
automatic results so they are comparable without biased interpretation.

The objective is to analyze a sequence of n images obtained at time t = 1, . . . , n
and stored in vectors dt with pixels stacked columnwise. The number of pixels in each
image is p, thus dt ∈ Rp. The important assumption is that every observed image is
a linear combination of r factor images, stored in vectors ak ∈ Rp, k = 1, . . . , r, using
the same order of pixels as in dt. The dimensions of the problem are typically ordered
as r < n � p. Each source image has its respective time-activity curve stored in vector
xk ∈ Rn, k = 1, . . . , r, xk = [x1,k, . . . , xn,k]

′, x′ denotes transpose of vector x.
We propose probabilistic formulations of this problem using several probabilistic mod-

els. The models are solved using Variational Bayes approximation [15]. The Bayes rule
is given as

p (θ|D) =
p (θ,D)

p (D)
=

p (D|θ) p (θ)∫
p (D|θ) p (θ) dθ

, (1)

where D are observed data and θ are parameters of p(D|θ) with prior knowledge p(θ).
Approximation of the Bayes rule via VB approximation can be reached as

p(θi) ∝ exp
(
Ep(θ/i) (ln (p (θ,D)))

)
, i = 1, . . . , n (2)

Here, θ/i denotes the complement of θi in θ and Ep(θ)(g(θ)) denotes expected value of
function g(θ) with respect to distribution p(θ). Equation (2) forms a set of implicit
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dt

ak xk

υk

ω

α0, β0

ϑ0, ρ0

k = 1, . . . , r

dt

ai,k xk

ξkii,k υk

ω

λ0 φ0, ψ0 α0, β0

ϑ0, ρ0

i = 1, . . . , p

k = 1, . . . , r

Figure 1: Hierarchical models of BSS+ (left) and FAROI (right).

equations which has to be solved iteratively.

2.1 Blind Source Separation Based on Factor Analysis

The described data sequence can be rewritten in terms of superposition, [7], as

dt = Axt, (3)

where A is matrix of tissue images stored ak as its columns. It is appropriate to set
biologically motivated assumption such as (i) the observed data dt are positive, (ii) the
expected tissue images ak and TACs xk are also positive, (iii) the data dt is strongly
a�ected by a noise, and (iv) the number of relevant tissues, r, is unknown and should be
estimated during the estimative procedure. These assumptions can be rewritten into the
probabilistic model as:

f(dt|A,X, ω) = tN(Axt, ω
−1Ip ⊗ In), (4)

f(ω) = G(ϑ0, ρ0), (5)
f(xk|υk) = tN(0n,1, υ

−1
k In), (6)

f([υ1, . . . , υr]) =
r∏

k=1

G(αk,0, βk,0), (7)

f(ak) = tN(0p,1, Ip), (8)

where tN() denotes truncated normal distribution to positive values, G() denotes gamma
distribution, Ip denotes identity matrix of the respective size, and symbol ⊗ denotes
Kronecker product. The hierarchical model of this model is in Figure 1, left. The model
will be denoted as the Blind Source Separation model with positivity constraints (BSS+).

2.2 Regions of Interest in Blind Source Separation

This model adopts the assumptions from section 2.1; however, it re�ects the simple fact
that tissues do not cover the whole scanned area but only a limited number of pixels.
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dt

ak xk

υk

ω

wk

ξk

g

ψ

α0, β0

ϑ0, ρ0

κ0, ν0

ζ0, η0

k = 1, . . . , r

dt

ai uk
b

ξi υk
ς

ω

φ0, ψ0 α0, β0
ζ0, η0

ϑ0, ρ0

i = 1, . . . , p

k = 1, . . . , r

Figure 2: Hierarchical models of CFA (left) and S-BSS-DC (right).

Hence, we proposed a masking of each tissues image using indicator i of the same size as
tissue image, [9]. This a�ects the model from section 2.1 as follows:

f(ai,k|ii,k, ξk) = U(0, 1)ii,ktN(0, ξ−1
k )(1−ii,k), (9)

f(ξk) = G(φk,0, ψk,0), (10)
f(ii, k) = tExp(λik,0, 〈0, 1]), (11)

where tExp() is truncated exponential distribution. The hierarchical model of this model
is in Figure 1, right. The probabilistic masks ik are estimated together with other pa-
rameters during the estimative procedure in VB method. This model will be denoted as
the FAROI model (Factor Analysis with integrated ROI).

2.3 Convolution in Blind Source Separation

This model re�ects the fact that each time-activity curve arise as a convolution of common
input function and tissue-speci�c kernel, [6], such as

xk = b ∗ uk, (12)

where b ∈ Rn×1 is input function, uk ∈ Rn×1 is convolution kernel of the kth tissue,
and ∗ denotes convolution. Both b and uk are modeled as increases as vectors g and wk

respectively. This can be rewritten into the probabilistic model as [10, 12]:

f(wk|ξk) = tN(Mwf
, ξ−1
k In), (13)

f(ξk) = G(κk,0, νk,0), (14)
f(g|ψ) = tN(0n,1, ψ

−1In), (15)
f(ψ) = G(ζ0, η0), (16)

where Mwf
is obtained in each iteration using clustering algorithm. The hierarchical

model of this model is in Figure 2, left. This model will be denoted as the CFA model
(Convolution with Factor Analysis).
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2.4 Sparsity in Blind Source Separation and Deconvolution

Our latest model adopts ideas from the previous models from sections 2.1, 2.2, and 2.3.
However, the assumptions of probabilistic masks, i.e. sparsity of tissue images, and of
convolution are not so strict here. We use the Automatic Relevance Determination (ARD)
principle, [1], to adopt the sparsity in both, tissue images and convolution kernels respec-
tively. ARD principle is based on observation that variance of the redundant parameter
tends to zero in VB solution.

The model can be written as [11]:

p(ai|ξi) = tN(01,r, diag(ξi)
−1), i = 1, . . . , p, (17)

p(ξi) =
r∏

k=1

G(φik,0, ψik,0), (18)

p(b|ς) = tN(0, ς−1In), (19)
p(ς) = G(ζ0, η0), (20)

p(uk|υk) = tN(0n,1, diag(υk)
−1), (21)

p(υj,k) = G(αjk,0, βjk,0), j = 1, . . . , n, (22)

where diag() denotes matrix with argument vector on its diagonal and zeros otherwise.
The hierarchical model of this model is in Figure 2, right. This model will be denoted as
the S-BSS-DC model (Sparsity in Blind Source Separation and Deconvolution).

2.5 CAM-CM algorithm

A complex compartment model for fMRI tumors imaging was described in [5] based on
pharmacokinetic modeling using identifying representative pure pixels from each com-
partment in corners of cluster simplex. The algorithm is available online and is denoted
as the CAM-CM algorithm.

3 Validation on Synthetic Data

Validation on synthetic data is widely used in cases when data with known ground truth
are not available. This is the classical issue in the �eld of dynamic medical imaging
including renal scintigraphy.

We propose synthetic data based on [5]. We adopt the image sources and generate our
own TACs. It contains 3 image sources modeling the overlapping of all sources pairwise
and shared overlap in the center. The size of images is 50 × 50 pixels; hence, p = 2500.
The length of the generated sequence is 50 time steps; hence, n = 50. The image sources
and theirs related TACs are in Figure 3, left.

We run each algorithm on this dataset. The number of expected tissues r is set to
3; hence, r = 3. The number of iteration is set to 100 which is reasonable for reach the
convergence.
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 Ground Truth
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Figure 3: Results from the algorithms on synthetic dataset.

3.1 Results

The results from all algorithms are shown in Figure 3. The ground truth data are on
the left and then results from algorithms (from left): BSS+, FAROI, CAM-CM, CFA,
S-BSS-DC. The image sources are in the �rst column and the TACs are in the second.
The dashed lines denotes ground truth and the full lines TACs estimated by algorithms.
Note that the results are normed with respect to the activities of ground truth; hence,
we study shapes, not amplitudes.

Since we have ground truth TACs, we can compute Mean square error (MSE), Mean
absolute error (MAE), and Maximum error. The results is shown in Table 1. It can
be seen that the computed statistics have signi�cant explanatory value with S-BSS-DC
algorithm being the best.

4 Validation on Real Data

Validation on real data is much more challenge then validation on synthetic data. Gen-
erally, we have no ground truth; hence, we can not compare results from algorithms with
it. In renal scintigraphy, we have two main choices.

First, skilled operator can manually select regions contained each tissue and plot
activities of the selected regions. Note that overlaps must be carefully considered. This
task is extremely subjective and using of these types ground truths should be done with
respect of this fact.

Second, diagnostic coe�cients may be computed by a physician from the data. In
renal scintigraphy, this task is very subjective too [3]. We are focused on computing of
relative renal function (RRF) [2] which is a percentage of function of the left kidney and
the right kidney. The RRF is estimated from the sum of activity in the left (L) and in the
right (R) parenchyma during the uptake time. Then, RRFL = L

L+R
× 100 % and RRFR

can be computed analogically, both weighted by their time activity curves. Historically,
the activity is taken only from the uptake time, the time when kidney accumulates activity
only.

We propose a comparison on dataset [14] where RRF is computed by experienced
physician. We select the sequences where both kidneys are present, i.e. 99 cases. The �ve
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Mean Square Error

Algorithm
Tissue no. BSS+ FAROI CAM-CM CFA S-BSS-DC

1 0.0061 0.0033 0.05 0.0135 0.0033
2 0.0047 0.0037 0.0205 0.0056 0.002
3 0.0455 0.0133 0.1420 0.0643 0.0095

Mean Absolute Error

Algorithm
Tissue no. BSS+ FAROI CAM-CM CFA S-BSS-DC

1 0.0432 0.0416 0.1515 0.1017 0.0429
2 0.0321 0.0285 0.0363 0.0716 0.0374
3 0.1448 0.0737 0.2663 0.2208 0.0656

Maximum Error

Algorithm
Tissue no. BSS+ FAROI CAM-CM CFA S-BSS-DC

1 0.4595 0.2827 0.7897 0.1684 0.2385
2 0.2651 0.2444 0.9516 0.1190 0.1589
3 0.5489 0.3569 0.8527 0.4362 0.2519

Table 1: Comparison of the algorithms on synthetic dataset is shown. The MSE, Mean
error, and Maximum error are computed.
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RRF estimation

Algorithm <5% <10% = 10%
BSS+ 57.6% 78.8% 21.2%
FAROI 58.6% 83.8% 16.2%

CAM-CM 47.9% 63.8% 36.2%
CFA 59.6% 82.8% 17.2%

S-BSS-DC 68.7% 86.9% 13.1%

Table 2: Cumulative histogram of RRFs.

described algorithms will be compared via di�erence of their results of RRF computation
from those provided by the experienced physician as a reference value. We will consider
the automatic method that is closer to his results to be better [12].

4.1 Results

The results will be compared for BSS+, FAROI, CAM-CM, CFA, and S-BSS-DC algo-
rithms. We use comparison over the cumulative histogram, see Table 2.

The results suggest the similar conclusion as results on synthetic data. The S-BSS-DC
algorithm seems to outperform the other algorithms.

5 Conclusion

We study possibilities of comparison of algorithms for blind source separation of medical
data sequence in this paper. We revise possible algorithms based on probabilistic mod-
eling from base to more complex ones with additional assumptions. We discuss the way
how to compare a performance of the algorithms. The synthetic data is proposed which
provide a ground truth. It is possible to compute signi�cant statistics using comparison
of results with this ground truth. Comparison of the algorithms on real data from renal
scintigraphy is more challenging task since no ground truth is available. We propose a
comparison based on relative renal functions computation and comparison with those
obtained from experienced physician.

We shown that the S-BSS-DC algorithm outperform other proposed algorithms in
both synthetic and real data. In a future, we will prepare a comparison on directly
manually selected tissue-images and related time-activity curves. It should prove the
feasibility of algorithms in the best imaginable way.
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Abstract. The article presents selected options of the Monte Carlo algorithm application to
study signals obtained by electroencephalographic examination (EEG). Using simulation algo-
rithms considering the EEG signal within each measured channel as a chaotic system, there
could be a faster and more e�cient computation. Functionality of the Monte Carlo method is
veri�ed on the existing known systems. One of the goals is to �nd the appropriate characteristics
and statistically signi�cant indicators, applicable in the diagnosis of Alzheimer's disease.
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Abstrakt. �lánek p°iná²í vybrané moºnosti aplikace algoritm· metody Monte Carlo p°i studiu
signál· získaných elektroencefalogra�ckým vy²et°ením (EEG). Uºitím simula£ního algoritmu
pohlíºejícího na signál EEG v rámci jednotlivých m¥°ených kanál· jako na chaotický systém,
dochází ke zrychlení a zefektivn¥ní výpo£tu. Funk£nost metody Monte Carlo je ov¥°ena na
stávajících známých systémech. Jedním z cíl· je nalézt vhodné charakteristiky a statisticky
významné ukazatele, aplikovatelné v diagnostice Alzheimerovy choroby.

Klí£ová slova: Monte Carlo, chaotický systém, EEG, Alzheimerova choroba

1 Introduction

There are many possibilities how to analyse EEG time series. Frequency analysis is the
most popular methodology here. Another possibility is to analyse fractal properties of
the time series. One of the possible characteristics of chaotic behaviour is called corre-
lation dimension, which is based on calculations of correlation sum. In the case of EEG
signal there are very large time series. Therefore, the time complexity of the correlation
sum evaluation is unacceptable in real application. The novelty of this approach is in
simultaneous and approximated calculations of correlation sums which makes the method
applicable to real data.

∗This work has been supported by the grant SGS11/165/OHK4/3T/14.
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Figure 1: Hénon Discrete Dynamic System

2 Discrete Dynamic Systems

Let n ∈ N be system dimension. Let ~xk ∈ Rn be system state. Discrete dynamic system
(DDS) can be driven by deterministic dynamics

~xk+1 = f(~xk) (1)

where f : Rn → Rn is continuous mapping.
Previous formula is useful for theoretical investigation and simulation of DDS. In the

case of real data analysis, the state variable xk cannot be directly observed. According
to Whitney [6] and Takens [5], any state variable yk = xk,j could be sampled and then
the state space reconstruction calculated

~ξk = (yk,1, ..., yk,D−1) (2)

where D ∈ N is embedding dimension of given DDS.
Having a knowledge of system dimension n, Whitney's theorem could be applied and

directly set D = 2n + 1. When fractal dimension of DDS attractor DF is known, more
optimistic estimate D > 2DF according to Takens' theorem could be obtained.

2.1 Hénon Map

Hénon system [1] is driven by formulas

xk+1,1 = 1− ax2k,1 + bxk,2

xk+1,2 = xk,1 (3)

where usual parameters are a = 1.4 and b = 0.3.
Trajectory of Hénon DDS for ~x0 = (0, 0.9)T is depicted on Fig. 1. According to [4],

fractal dimension of attractor is DF = 1.25827.
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Figure 2: Holmes Discrete Dynamic System

2.2 Holmes Cubic Map

Holmes system [2] is driven by formulas

xk+1,1 = xk,2

xk+1,2 = −axk,1 + bxk,2 − x3k,2 (4)

where usual parameters are a = 0.2 and b = 2.77.
Trajectory of Holmes DDS for ~x0 = (1.6, 0)T is depicted on Fig. 2. According to [4],

fractal dimension of attractor is DF = 1.26977.

2.3 Lozi Map

Lozi system [3] is driven by formulas

xk+1,1 = 1− a |xk,1|+ bxk,2

xk+1,2 = xk,1 (5)

where usual parameters are a = 1.7 and b = 0.5.
Trajectory of Lozi DDS for ~x0 = (−0.1, 0.1)T is depicted on Fig. 3. According to [4],

fractal dimension of attractor is DF = 1.40419.

2.4 Multichannel EEG Data

Electroencephalography (EEG) represents a basic electrophysiological method for exam-
ination of brain activity. The essential part of EEG registers spatio-temporal changes
of brain biopotentials resulting from the continuous activity of excitatory membranes at
synapses of columnarly arranged neural populations. The positive and negative charges
create dipoles which are generally perpendicular to the surface of the cerebral. Sensing
electrodes register the di�erences between particular areas.
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Figure 3: Lozi Discrete Dynamic System

Most frequently used scheme of electrode placement is called 10-20, whose name cor-
responds to the ratio of the distances between particular electrodes. This diagram is
shown in Fig. 4.

Figure 4: 10-20 scheme

3 Correlation Dimension

Correlation dimension D2 is important characteristic of fractal structures. Their value
lies between topological and Hansdor� dimensions according to inequalities

DT ≤ D2 ≤ DH (6)
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Correlation dimension is determined by using correlation sum

C(r) =
2

N(N− 1)

N∑
j=1

N∑
i=j+1

Θ(r− ri,j) (7)

where r > 0, Θ is Heaviside function, ri,j = ‖~xi− ~xj‖ or ri,j = ‖~ξi− ~ξj‖, respectively and
N is a number of data points.

Correlation dimension is then de�ned as

D2 = lim
r→0

lim
N→∞

dlogC(r)

dlogr
. (8)

For �nite N , D2 can be estimated via LSQ method using linearized model

logC(r) = A + D2logr. (9)

The main disadvantages of these approach are:

1. Unacceptable time complexity of C(r) calculations for large N,

2. unacceptable bias of D2 estimate for small N.

Therefore, the original methodology of D2 estimation is unacceptable in the case of
EEG data analysis.

4 Numeric Experiments

4.1 Hénon Discrete Dynamic System

Monte Carlo approach was applied to Hénon DDS with ~x0 = (0, 0.9)T . Time series of
{xk,1}Nk=0 for N = 106 was used in state space reconstruction for D = 5 with M =
104, 105, 106 repetitions. Repeating approximations of C(r) are depicted on Fig. 5. Nu-
meric estimates of capacity dimension are collected and compared with theoretical value
D2
∗ = 1.220 in Tab. 1.

M ED2 S z = ED2−D2
∗

S
p-value

104 1.2237 0.0404 0.9163 0.3617
105 1.2138 0.0140 -4.4075 2.6554×10−5

106 1.2155 0.0050 -9.1118 9.5479×10−15

Table 1: Correlation dimension for Hénon DDS

4.2 Holmes Discrete Dynamic System

Holmes DDS was approached with ~x0 = (1.6, 0)T . Time series of {xk,1}Nk=0 for N = 106

was used in state space reconstruction for D = 5 with M = 104, 105, 106 repetitions too.
Repeating approximations of C(r) are depicted on Fig. 6. Numeric estimates of capacity
dimension are collected and compared with theoretical value D2

∗ = 1.260 in Tab. 2.
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M ED2 S z = ED2−D2
∗

S
p-value

104 1.2455 0.0770 -1.8834 0.0626
105 1.2536 0.0248 -2.5733 0.0116
106 1.2564 0.0076 -4.7804 6.0912×10−6

Table 2: Correlation dimension for Holmes DDS

4.3 Lozi Discrete Dynamic System

Lozi DDS was approached with ~x0 = (−0.1, 0.1)T . Time series of {xk,1}Nk=0 for N = 106

was used in state space reconstruction for D = 5 with M = 104, 105, 106 repetitions.
Repeating approximations of C(r) are depicted on Fig. 7. Numeric estimates of capacity
dimension are collected and compared with theoretical value D2

∗ = 1.384 in Tab. 3.

M ED2 S z = ED2−D2
∗

S
p-value

104 1.3490 0.0636 -4.5001 2.9737×10−2

105 1.3508 0.0212 -8.6321 1.4892×10−6

106 1.3670 0.0101 -12.8742 7.9621×10−10

Table 3: Correlation dimension for Lozi DDS

5 Case Study: Alzheimer's Disease Diagnosis

For the case study, a group of 165 patients has been used, from which 24 were a�ected by
Alzheimer's disease (AD) and 139 were with control normal (CN). The data was recorded
using the standard 10-20 scheme, thus values of 19 channels were obtained. The sampling
frequency was 200 Hz and patients were measured for 5 minutes.

D2 values of each channel for all AD and CN patients were studied. The model
parameters were M = 106 repetitions, D = 19 for state space reconstruction, pmin =
0.59, pmax = 0.6, and minimum sample distance ∆ = 200.

Tab. 4 summarizes �nal results. The best pvalue = 0.0049 was obtained for second
channel and pvalue = 0.0306 for sixth channel which correspond to frontal electrodes. The
result con�rms former research results that signi�cant di�erences between AD and CN
groups could be recognized in the case of frontal electrodes.
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Figure 7: Lozi Discrete Dynamic System

Ch D2 CN D2 AD pvalue

mean std mean std
1 1.4121 0.3922 1.2535 0.4540 0.0669
2 1.3829 0.3715 1.1492 0.4419 0.0049
3 1.4158 0.3698 1.4877 0.4557 0.3828
4 1.5757 0.3915 1.5150 0.4245 0.4752
5 1.6267 0.3742 1.4752 0.4439 0.0678
6 1.6090 0.3812 1.4227 0.4894 0.0306
7 1.4712 0.4206 1.3994 0.4745 0.4353
8 1.6114 0.4834 1.6329 0.5124 0.8365
9 1.7073 0.3872 1.6653 0.4539 0.6223
10 1.6895 0.4074 1.6035 0.4792 0.3381
11 1.6950 0.3990 1.6408 0.4389 0.5321
12 1.6654 0.5035 1.5828 0.5583 0.4519
13 1.6001 0.3848 1.6117 0.4267 0.8900
14 1.6459 0.3641 1.6027 0.4522 0.5942
15 1.6541 0.3456 1.5928 0.5132 0.4465
16 1.6450 0.3534 1.6354 0.4307 0.9019
17 1.6015 0.3911 1.6038 0.5378 0.9797
18 1.5791 0.3722 1.5076 0.4729 0.3913
19 1.5855 0.3560 1.5942 0.4405 0.9128

Table 4: Comparison of D2 value of AD and CN patients
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Abstract. We study arithmetical aspects of Ito-Sadahiro number systems with negative base.

We present an e�ective algorithm for addition when the base is −γ where γ > 1 is the tribonacci

constant, the root of x3−x2−x−1. In particular, we show that addition can be done by a �nite

state transducer. As a consequence of the structure of the transducer, we show that γ posseses

the so-called �niteness property. Moreover, we determine the maximal number of fractional

digits arising from addition of two (−γ)-integers.

Keywords: negative base, number system, tribonacci

Abstrakt. P°ísp¥vek se zabývá aritmetickými vlastnostmi £íselných soustav se záporným zák-

ladem. P°edvedeme efektivní s£ítací algoritmus pro p°ípad, ºe základem je −γ, kde γ > 1 je

takzvaná tribonacciho konstanta, ko°en x3 − x2 − x − 1. P°esn¥ji °e£eno, ukáºeme, ºe s£ítání

m·ºe být provedeno kone£ným p°eklada£em. Následn¥ pak, jako d·sledek struktury p°eklada£e,

ukáºeme, ºe γ má takzvanou vlastnost (-F). Navíc ur£íme po£et zlomkových míst vznikajících

p°i s£ítání dvou (−γ)-celých £ísel.

Klí£ová slova: záporná báze, numera£ní systém, tribonacci

1 Introduction

Numeration systems with negative non-integer base received a non-negligible attention
since the paper [5] of Ito and Sadahiro in 2009. Since then there have been written several
papers concerning arithmetical aspects of such number systems with a Pisot base (see
[6], [7], [1]).

It has been shown in [1] that the negative base number system posseses interesting
properties when the base is taken to be root of

xk −mxk−1 − · · · −mx− n, m ≥ n ≥ 1 and m = n for k even. (1)

The most interesting of those properties is that the set of (−β)-integers coincides with
the set

X(−β) =
{ n∑
i=0

ai(−β)i | ai ∈ {0, 1, . . . , bβc}
}
,

∗This work was supported by the Grant Agency of the Czech Technical University in Prague grant
SGS11/162/OHK4/3T/14 and Czech Science Foundation grant 13-03538S.
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i.e. the set of linear combinations of non-negative powers of (−β) with coe�cients in
the canonical alphabet, even though the string anan−1 . . . a0 may be forbidden in the
corresponding number system. An analogous result for positive based number systems
comes from Ch. Frougny [3]. Another interesting result from [4] is that roots of (1) posses
the so-called Property (F), namely that the set Fin(β) of numbers with �nite expansion
forms a ring.

As we will see, unlike in β-expansions, roots of (1) do not have Property (-F) with the
exception of roots of x2k+1 −mx2k − · · · −mx−m. In particular the set Fin(−β) is not
closed under addition. In this work we show that the tribonacci constant, i.e. the positive
root of x3 − x2 − x − 1 has Property (-F). The proof is done by providing an algorithm
for addition which is probably the �rst e�ective arithmetical algorithm for negative base
number systems.

2 Preliminaries

The Ito-Sadahiro number system is a numeration system analogous to Rényi β-expansions
which uses a negative base. Instead of de�ning the expansions of numbers from [0, 1) �rst,
the unit interval [`, `+ 1) with ` = −β

β+1
was chosen. For −β < −1, any x ∈ [`, `+ 1) has

a unique expansion of the form d−β(x) = x1x2x3 · · · de�ned by

xi = b−βT i−1−β (x)− `c, where T−β(x) = −βx− b−βx− `c .

For any x ∈ [`, `+ 1) we obtain an in�nite word from AN = {0, 1, . . . , bβc}N.
Another analogous concept is the (−β)-admissibility, which characterizes all digit

strings over A being the (−β)-expansion of some number. The lexicographic condition,
similar to the one by Parry, was also proved in [5]. Ito and Sadahiro proved that a digit
string x1x2x3 · · · ∈ AN is (−β)-admissible (or, if no confusion is possible, just admissible)
if and only if it ful�lls the lexicographic condition

d−β(`) �alt xixi+1xi+2 · · · ≺alt d
∗
−β(`+ 1) = lim

y→l+1−
d−β(y) for all i ≥ 1 . (2)

Here, the limit is taken over the product topology on AN and ≺alt stands for alternate
lexicographic ordering de�ned as follows:

u1u2 · · · ≺alt v1v2 · · · ⇔ (−1)k(uk − vk) < 0 for k smallest such that uk 6= vk .

In analogy with β-numeration, the alternate ordering corresponds to the ordering on reals
in [`, `+ 1), i.e. x < y ⇔ d−β(x) ≺alt d−β(y).

The reference digit strings d−β(`) and d∗−β(`+1) play the same role for (−β)-expansions
as Rényi expansions of unity for β-expansions. While d−β(`) is obtainable directly from
the de�nition, the following rule (proved in [5]) is to be used for determining d∗−β(`+ 1):

d∗−β(`+ 1) =

{
(0l1 · · · lq−1(lq − 1))ω if d−β(`) = (l1l2 · · · lq)ω for q odd,

0d−β(`) otherwise.

We can now recall the de�nition of (−β)-expansions for all reals.
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De�nition 1. Let −β < −1, x ∈ R. Let k ∈ N be minimal such that x
(−β)k ∈ (`, ` + 1)

and d−β

(
x

(−β)k

)
= x1x2x3 · · · . Then the (−β)-expansion of x is de�ned as

〈x〉−β =

{
x1 · · ·xk−1xk • xk+1xk+2 · · · if k ≥ 1,

0 • x1x2x3 · · · if k = 0.

Similarly as in a positive base numeration, the set of (−β)-integers Z−β can now be
de�ned using the notion of 〈x〉−β. Since the base is negative, we can now represent any
real number without the need of a minus sign.

De�nition 2. Let β > 1. Then the sets of (−β)-integers and of numbers with �nite
(−β)-expansions are de�ned as

Z−β = {x ∈ R | 〈x〉−β = xk · · · x1x0 • 0ω} =
⋃
i≥0

(−β)iT−i−β(0) ,

Fin(−β) = {x ∈ R | 〈x〉−β = xk · · · x1x0 • x−1 . . . x−n0ω} =
⋃
i≥0

(−β)−iZ−β .

We say that β has Property (-F) if Fin(−β) is a ring.

3 Arithmetics in Ito-Sadahiro number systems

Let us recall that it has been shown in [1] that

Z−β =
{ n∑
i=0

ai(−β)i | ai ∈ {0, 1, . . . , bβc}
}
, (3)

if and only if β is a root of

xk −mxk−1 − · · · −mx− n, m ≥ n ≥ 1 and m = n for k even. (4)

Such bases are promising candidates for having Property (-F). For it su�ces to show
that x + 1 ∈ Fin(−β) for any x ∈ Fin(−β), and that −1 ∈ Fin(−β). Because of the
property (3), it means one has to show that any admissible string with +1 added to the
position where maximal digit lies can be rewritten as a �nite string over the alphabet
{0, 1, . . . , bβc}.

However, there are examples that this procedure is not possible for almost all roots
of (4). We have

1.
〈m+ 1〉−β = 1m0 • 02k−311m

[
02k−3110

]ω
for β root of x2k −mx2k−1 − · · · −mx−m;

2.
〈β +m+ 1〉 = (m− n+ 1)(m− n+ 1)1(n+ 1)ω

for β root of x3 −mx2 −mx− n, and
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3.
〈−β +m+ 1〉−β = 0 • 02k−1(m− n+ 1)(m− n+ 1)0

[
02k−31(n+ 1)n

]ω
for β root of x2k+1 −mx2k − · · · −mx− n, n < m, k ≥ 2.

In case of β being of odd degree and n = m, we have no counterexample. Later we will
show that there is no such example for the root of x3−x2−x−1, the tribonacci constant.
We provide a transucer whose input is a digit-wise sum of x, y ∈ Fin(−β) and output is
a representation of x+ y over {0, 1}.

Theorem 3. Let γ > 1 be the root of x3 − x2 − x − 1. Then for any x, y ∈ Fin(−β)
the computation of a representation of x + y over the alphabet {0, 1} can be done by a
�nite-state transducer.

Proof. We de�ne a tranducer (S, s0,Σ,Λ, T ) where

� S ⊂ {2, 1, 0, 1, 2, 3}3 is the set of states;

� s0 = 000 is the initial state;

� Σ = {0, 1, 2} ∪ {0, 1, 2}2 is the input alphabet;

� Λ = {0, 1} ∪ {0, 1}2 is the output alphabet;

� T : S × Σ → Λ × S is the transition function de�ned by the transitions in the list
below.

The notation s1|a→ b|s2 means that the machine is in the state s1 and reads symbol(s)
a from the input tape, then it switches to the state s2 and writes symbol(s) b onto the
output tape. In fact, the machine reads the digit-wise sum of two numbers from the left
side, looks only at four or �ve symbols wide window, and, if needed, adds a representation
of zero. Then it moves the window to the right.

One can verify that the transition function de�ned bellow does not change the numeri-
cal value of the string since each image is obtained by adding or subtracting representation
of zero, namely 0 = 1111 which follows from the minimal polynomial for γ. Here a stands
for −a. Moreover, with one exception, the transitions from any state are de�ned for any
input symbol from Σ. The exception is the state 101 that cannot be escaped by reading
symbol 0. However, the only path to the state 101 leads from 131 by reading 202 on the
input (see Figure 1). Reading 2020 would mean that both x and y contain forbidden
string 1010 that can be avoided (we have d−β(`) = 101ω). Hence we assume that at least
one summand does not contain 1010.

000|0→ 0|000

000|1→ 0|001

000|2→ 0|002

001|00→ 00|100

001|01→ 11|011

001|02→ 11|012

001|1→ 0|011

001|2→ 0|012

002|0→ 1|111

002|1→ 1|112

002|21→ 11|131

002|22→ 11|132

002|20→ 00|220

003|0→ 1|121

003|1→ 1|122

003|2→ 1|123

001|0→ 0|010

001|1→ 0|011

001|2→ 0|012

011|0→ 0|110

011|1→ 0|111
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101

0111|1

012

2|112(-1) 2|0221 0|1131 2|0

Figure 1: Transitions leading to the state 101

011|2→ 0|112
012|0→ 0|120
012|1→ 0|121
012|2→ 0|122

013|00→ 00|211
013|01→ 11|120
013|02→ 11|121
013|1→ 0|131
013|2→ 0|132
023|0→ 0|230
023|1→ 0|231
023|2→ 0|232
010|0→ 1|011
010|1→ 1|012

010|20→ 00|111
010|21→ 00|112
010|22→ 11|023
011|0→ 1|001
011|1→ 1|002
011|2→ 1|003
012|0→ 1|011
012|1→ 1|012
012|2→ 1|013

011|00→ 00|011
011|01→ 00|012
011|02→ 11|103
011|1→ 0|111
011|2→ 0|112
100|0→ 1|000
100|1→ 1|001
100|2→ 1|002

101|1→ 1|011
101|2→ 1|012
101|0→ 1|010
101|1→ 1|011
101|2→ 1|012
110|0→ 1|100

110|10→ 00|100
110|11→ 11|011
110|12→ 11|012
110|2→ 0|011
111|0→ 1|110
111|1→ 1|111
111|2→ 1|112
112|0→ 1|120
112|1→ 1|121
112|2→ 1|122
111|0→ 0|001
111|1→ 0|000
111|2→ 0|001
112|0→ 0|011
112|1→ 0|010
112|2→ 0|011
120|0→ 0|111
120|1→ 0|110
120|2→ 0|111

121|00→ 00|101
121|01→ 00|100
121|02→ 11|011
121|1→ 0|120
121|2→ 0|121
122|0→ 1|220

122|10→ 00|211
122|11→ 11|120
122|12→ 11|121
122|2→ 0|131
123|0→ 1|230
123|1→ 1|231
123|2→ 1|232
121|0→ 0|101
121|1→ 0|100
121|2→ 0|101
131|0→ 0|221
131|1→ 0|220
131|2→ 0|221
132|0→ 0|231
132|1→ 0|230
132|2→ 0|231
211|0→ 1|001
211|1→ 1|000
211|2→ 1|001
220|0→ 1|111
220|1→ 1|110
220|2→ 1|111
221|0→ 1|121
221|1→ 1|120
221|2→ 1|121
221|0→ 1|101
221|1→ 1|100

221|20→ 00|100
221|21→ 11|011
221|22→ 11|012
230|10→ 00|101
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230|11→ 00|100
230|12→ 11|011
230|0→ 1|211
230|2→ 0|120
231|0→ 1|221
231|1→ 1|220

231|20→ 00|211
231|21→ 11|120

231|22→ 11|121
232|0→ 1|231
232|1→ 1|230
232|2→ 1|231
231|0→ 0|112
231|1→ 0|111
231|2→ 0|110
103|0→ 0|121

103|1→ 0|122
103|2→ 0|123
111|0→ 0|001
111|1→ 0|002
111|2→ 0|003
112|0→ 0|011
112|1→ 0|012
112|2→ 0|013

Remark 4. It follows from the proof that algorithm can be extended to adding of more
than two numbers with �nite expansion by adding numbers consecutively. However, we
always have to add an admissible string since the automaton may not accept the string
2020.

Also, an extension to periodic expansions is possible. Since the digit-wise of two
periodic representations is also periodic, the period of the result can be recognized by
looking at the states in which the transducer is when the repetition of the period is being
read.

The proof of Theorem 3 gives us two important consequences. The �rst is that γ pos-
seses Property (-F). Closeness of Fin(−β) under addition can be seen from the subgraph
of the transducer on Figure 2. It shows that when in�nite repetition of zeros is on the
input, the in�nite repetition of zeros eventually appears also on the output. Although the
representation obtained from the transducer may not be admissible, property (3) ensures
that the expansion is also �nite. Moreover, subtraction can be represented as addition
since 1• = 11 • 001. This leads to the following theorem.

Theorem 5. The tribonacci constant has Property (-F).

Often observed property is the number of fractional points arising from addition of
two (−β)-integers. We can determine this number again from Figure 2. One can see that
when reading only zeros, the last nonzero digit is sent to the output at ninth position, i.e.
six positions after the franctional point. For example, 112 • 0ω = 100 • 0110010ω. Since
the latter representation is admissible, this also shows that this bound can be reached.

Theorem 6. Let β be the tribonacci constant. Then the number of fractional points
arising from additon of two (−γ)-integers is at most 6. This bound is strict.
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Abstrakt. V £lánku se zaobíráme nekomutativní kalibra£ní teorií z pohledu zobecn¥né geome-
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1 Introduction

Generalized geometry [14, 13] recently appeared to be a powerful mathematical tool for
the description of various aspects of string and �eld theories. Here we mention only few
instances of its relevance that are more or less directly related to the present paper. Topo-
logical and non-topological Poisson sigma models are known to be intimately related to a
lot of interesting di�erential, in particular generalized, geometry. For instance, the topo-
logical Poisson sigma models are of interest for the integration of Poisson manifolds (and
Lie algebroids) [7] and are at the heart of deformation quantization [9]. Field equations
of (topological) Poisson sigma models can be interpreted as Lie algebroid morphisms [4]
and as such can further be generalized in terms of generalized (complex) geometry [20],
[19]. Poisson sigma models can be twisted by a 3-form H-�eld [18] and also general-
ized to Dirac sigma models [19], where the graph de�ned by the corresponding (possibly
twisted) Poisson structure is replaced by a more general Dirac structure. In turn, at least
in some instances, D-branes can be related to Dirac structures [22], [2], or coisotropic
submanifolds [8]. In [1], it has been observed that the current algebra of sigma models
naturally involves structures of generalized geometry, such as the Dorfman bracket and
Dirac structures.

∗Excerpts from the paper published with Branislav Jur£o and Peter Schupp.
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2 Generalized geometry

2.1 Fiberwise metric, generalized metric

In this section we recall some basic facts regarding generalized geometry, see, e.g., [13],
[5]. Although most of the involved objects can be de�ned in a more general framework,
we focus on a particular choice of vector bundle. Namely, let M be a smooth manifold
and E = TM ⊕ T ∗M . A �berwise metric (·, ·) on E is a C∞(M)-bilinear map (·, ·) :
Γ(E)× Γ(E)→ C∞(M), such that for each p ∈M , (·, ·)p : Ep × Ep → R is a symmetric
non-degenerate bilinear form. There exists a canonical �berwise metric 〈·, ·〉 on E, de�ned
as

〈V + ξ,W + η〉 = iV (η) + iW (ξ), (1)

for every (V + ξ), (W + η) ∈ Γ(E). This �berwise metric has signature (n, n), where n is
a dimension of M . Hence, we denote by O(n, n) the set of vector bundle automorphisms
preserving this �berwise metric. That is

O(n, n) = {O ∈ Γ(Aut(E)) | (∀e1, e2 ∈ Γ(E)) (〈Oe1, Oe2〉 = 〈e1, e2〉)}. (2)

There are three important examples of O(n, n) transformations, which we will use in the
sequel. Let B ∈ Ω2(M) be a 2-form on M . In this paper we will always denote the
induced vector bundle morphism from TM to T ∗M by the same letter, i.e., we de�ne

B(V ) = −iVB = B(·, V ), (3)

for all V ∈ X(M). Correspondingly, the map eB is given as

eB(V + ξ) = V + ξ +B(V ). (4)

In the block matrix form

eB
(
V
ξ

)
=

(
1 0
B 1

)(
V
ξ

)
, (5)

for all (V + ξ) ∈ Γ(E). Similarly, let θ ∈ Λ2X(M) be a bivector. The induced vector
bundle morphism is again denoted by the same letter, that is

θ(ξ) := −iξθ = θ(·, ξ), (6)

for all ξ ∈ Ω1(M). Correspondingly, we have eθ

eθ(V + ξ) = V + ξ + θ(ξ). (7)

In the block matrix form

eθ
(
V
ξ

)
=

(
1 θ
0 1

)(
V
ξ

)
, (8)

for all (V + ξ) ∈ Γ(E). Finally, let N : TM → TM be any invertible smooth vector
bundle morphism over identity. We de�ne the map ON as

ON(V + ξ) := N(V ) +N−T (ξ), (9)
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where N−T : T ∗M → T ∗M denotes the map transpose to N−1. In the block matrix form

ON

(
V
ξ

)
=

(
N 0
0 N−T

)(
V
ξ

)
. (10)

Any O(n, n) transformation with the invertible upper-left block can be uniquely decom-
posed as a product of the form

e−BONe
−θ. (11)

More explicitly, for
(
A11 A12

A21 A22

)
inO(n, n), i.e., AT21A11+A

T
11A21 = 0, AT12A22+A

T
22A12 =

0 and AT21A12 + AT11A22 = 1, we �nd N = A11, θ = −A−111 A12 and B = −A21A
−1
11 .

Let now τ : Γ(E)→ Γ(E) be a C∞(M)-linear map of sections, such that τ 2 = 1. For
e1, e2 ∈ Γ(E), we put

(e1, e2)τ := 〈τ(e1), e2〉. (12)

If such (., .)τ de�nes a positive de�nite �berwise metric, we refer to it as a generalized
metric on E. From now on, we will always assume that this is the case. Since (·, ·)τ is
symmetric, τ is a symmetric map, that is,

〈τ(e1), e2〉 = 〈e1, τ(e2)〉, (13)

for all e1, e2 ∈ Γ(E). Also, because τ 2 = 1, it is orthogonal and thus τ ∈ O(n, n).
Moreover, from τ 2 = 1, we get two eigenbundles V+ and V−, corresponding to +1 and
−1 eigenvalues of τ , respectively. Using the fact that (·, ·)τ is positive de�nite, we get
that 〈·, ·〉 is positive de�nite on Γ(V+) and negative de�nite on Γ(V−). Finally, we can
observe that V ⊥+ = V− with respect to 〈·, ·〉 and vice versa, and using the knowledge of
the signature of 〈·, ·〉, we get the direct sum decomposition

E = V+ ⊕ V−. (14)

Conversely, for any subbundle V of E of rank n, on which 〈·, ·〉 is positive de�nite, set
τ |V := +1 and τ |V ⊥ = −1 to get a generalized metric on E.

From positive de�niteness on V+, we have V+ ∩ TM = 0 and V+ ∩ T ∗M = 0, and the
same for V−. This means that V+ and V− can be viewed as graphs of invertible smooth
vector bundle morphisms:

V+ = {V + A(V ) | V ∈ TM} ≡ {A−1(ξ) + ξ | ξ ∈ T ∗M}, (15)

V− = {V + A′(V ) | V ∈ TM} ≡ {A′−1(ξ) + ξ | ξ ∈ T ∗M}, (16)

where A,A′ : TM → T ∗M , respectively. We can view A as covariant 2-tensor �eld onM ,
and write uniquely A = g+B, where g is a symmetric part of A and B a skew-symmetric
part of A. From the positive de�niteness of V+ we get that g is a Riemannian metric on
M , whereas B can be an arbitrary 2-form on M . Using the orthogonality of V+ and V−,
we see that A′ = −g + B. From this equivalent formulation, i.e. using g and B, we can
uniquely reconstruct τ . This will give

τ(V + ξ) = (g −Bg−1B)(V )− g−1B(V ) +Bg−1(ξ) + g−1(ξ), (17)
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for all (V + ξ) ∈ Γ(E). In the block matrix form,

τ

(
V
ξ

)
=

(
−g−1B g−1

g −Bg−1B Bg−1

)(
V
ξ

)
. (18)

The corresponding �berwise metric (·, ·)τ can then be written in the block matrix form

(V + ξ,W + η)τ =

(
V
ξ

)T (
g −Bg−1B Bg−1

−g−1B g−1

)(
W
η

)
. (19)

The important observation is that the block matrix in formula (19) can be written as
a product of simpler matrices. Namely,(

g −Bg−1B Bg−1

−g−1B g−1

)
=

(
1 B
0 1

)(
g 0
0 g−1

)(
1 0
−B 1

)
. (20)

Note the important fact that the 2-form B does not have to be closed, and this will
remain true throughout the whole paper. Nevertheless, we assume that B is globally
de�ned, i.e. H = dB globally.1 We thus consider only the models with trivial H-�ux.
The case of the non-trivial H-�ux will be discussed elsewhere.

There exists a natural action of the group O(n, n) on the space of generalized metrics.
For each O ∈ O(n, n) and given τ de�ne τ ′ = O−1τO. Clearly τ ′2 = 1 and

〈τ ′(e1), e2〉 = 〈τ(O(e1)), O(e2)〉 = (O(e1), O(e2))τ .

Hence (·, ·)τ ′ is again a generalized metric. We may use the notation (·, ·)τ ′ = O(·, ·)τ .

2.2 Factorizations of generalized metric, open-closed relations

Let us start with a (di�erent) generalized metric H, described by a Riemannian metric
G and a 2-form Φ. Hence

H =

(
1 Φ
0 1

)(
G 0
0 G−1

)(
1 0
−Φ 0

)
. (21)

Let θ be a 2-vector �eld on M . The action of the O(n, n) map e−θ on the generalized
metric H gives us a new generalized metric G, which has the form

G =

(
1 0
θ 1

)(
1 Φ
0 1

)(
G 0
0 G−1

)(
1 0
−Φ 1

)(
1 −θ
0 1

)
. (22)

By the previous discussion, there exists a unique Riemannian metric g and a 2-form B,
such that

G =

(
1 B
0 1

)(
g 0
0 g−1

)(
1 0
−B 1

)
. (23)

Comparing the two expressions (22) and (23) of G, we get the matrix equations

g −Bg−1B = G− ΦG−1Φ, (24)

1More precisely, we assume that the corresponding integral cohomology class [H] is trivial.
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Bg−1 = ΦG−1 − (G− ΦG−1Φ)θ, (25)

which can be uniquely solved for G and Φ. Since e−θ is invertible, we can proceed the
other way around as well. We also know how the corresponding endomorphism τH is
changed by e−θ. Namely, we have

τG = eθτHe
−θ. (26)

From that, we can easily �nd the relation between +1 eigenbundles:

V G
+ = eθV H

+ . (27)

Since
V G
+ = {ξ + (g +B)−1(ξ) | ξ ∈ T ∗M},

and
V H
+ = {ξ + (G+ Φ)−1(ξ) | ξ ∈ T ∗M},

we get using the above formula that

(g +B)−1 = θ + (G+ Φ)−1. (28)

Formulae (24) and (25) are the symmetric and antisymmetric parts of (28). If θ is Poisson,
(28) is the Seiberg-Witten formula2 relating closed and open string backgrounds in the
presence of a noncommutative structure represented by θ. In particular, for given g, B
and θ, we can �nd a unique G and Φ, and conversely, for given G, Φ and θ, there exists
a unique pair g and B.

For Φ = 0 the open-closed relations can be given a slightly more geometric interpre-
tation [2]. Consider the inverse G−1 of the generalized metric G. If we exchange the
tangent and cotangent bundles TM and T ∗M , respectively, G−1 has the same properties
as G. Obviously, G−1 and G have identical graphs as well as ±1-eigenbundles. The
open-closed relations, for Φ = 0, is a simple consequence of that.

2.3 Dorfman bracket, Dirac structures, D-branes

Here we brie�y recall some relevant facts concerning the Dorfman bracket and Dirac
structures, see, e.g., [11], [13], [5]. Our vector bundle E = TM ⊕ T ∗M can be equipped
with a structure of a Courant algebroid. The corresponding Courant bracket is the
antisymmetrization of the Dorfman bracket:

[V + ξ,W + η]D = [V,W ] + LV (η)− iW (dξ), (29)

for all (V + ξ) ∈ Γ(E). The corresponding pairing is the canonical �berwise metric (1).
A Dirac structure is a (smooth) subbundle L of E, which is maximally isotropic with

respect to 〈·, ·〉 and involutive under the Dorfman bracket (29).
Let θ be a rank-2 contravariant tensor �eld on M . As before, de�ne a vector bundle

morphism θ : T ∗M → TM by θ(ξ) = θ(·, ξ). De�ne a subbundle Gθ of E as its graph,
that is

Gθ = {ξ + θ(ξ) | ξ ∈ T ∗M}. (30)
2For an earlier appearance of this type of formulae in the context of duality rotations see [12].
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It is known that Gθ is a Dirac structure with respect to the Dorfman bracket, if and only
if θ is a Poisson bivector. Similarly, let B be any rank-2 covariant tensor �eld on M .
De�ne B(V ) = B(V, ·) and its graph GB as

GB = {V +B(V ) | V ∈ TM}. (31)

Again, one can show that GB is a Dirac structure, if and only if B is a closed 2-form on
M .

Furthermore, for any closed B ∈ Ω2(M), one has

eB[V + ξ,W + η]D = [eB(V + ξ), eB(W + η)]D, (32)

and
〈eB(V + ξ), eB(W + η)〉 = 〈V + ξ,W + η〉, (33)

for all (V + ξ), (W + η) ∈ Γ(E). In the other words, eB is an automorphism of the
corresponding Courant algebroid. Note that (32) is no longer true for eθ, where θ ∈
Λ2X(M), but (33) holds.

Generally, a Dirac structure L provides a singular foliation of M by presympletic
leaves, which is generated by its image ρ(L) of the Dirac structure under the anchor map.
We refer to [2] for arguments in favor of the identi�cation �D-branes ∼ leaves of foliations
de�ned by Dirac structures". In the case we will consider later, L will be given as a graph
of a Poisson tensor θ and the corresponding foliation of M will be the foliation generated
by Hamiltonian vector �elds, i.e., by symplectic leaves of θ. Hence, in this case we will
identify the symplectic leaves and D-branes.

3 Gauge �eld as an orthogonal transformation of the

generalized metric

Let us start with a given Riemannian metric g and 2-form B. Further, let F be a 2-
form (at this point an arbitrary one3). The gauge transformation de�nes new 2-form
B′ = B + F . To the pair (g,B) corresponds the generalized metric G, see (23). The
generalized metric G′ corresponding to the pair (g,B+F ) has the following block matrix
form:

G′ =

(
1 F
0 1

)(
1 B
0 1

)(
g 0
0 g−1

)(
1 0
−B 1

)(
1 0
−F 1

)
, (34)

that is, G′ is related to G by the O(n, n) transform e−F . As shown before, we can always
get G by action of O(n, n) transformation e−θ on the generalized metric H, where H is
described by �elds G and Φ, see (21).

One may ask, if there is a bivector θ′ on M , such that we get G′ by the action of e−θ
′

on the generalized metric H′, which is described by the same G as H, but by gauged 2-
form Φ′ = Φ +F ′ for some gauge �eld F ′. This can be achieved under some assumptions,

3Later, when discussing DBI action, F will be closed and de�ned only on a submanifold of M sup-
porting a D-brane. In which case, all expression involving F will make sense only when considered on
the D-brane.



On the Generalized Geometry Origin of Noncommutative Gauge Theory 315

however, only up to a certain additional O(n, n) action. In particular, there exists a
vector bundle morphism N : TM → TM , such that

G′ =

(
1 0
θ′ 1

)(
NT 0
0 N−1

)
H′
(
N 0
0 N−T

)(
1 −θ′
0 1

)
, (35)

where

H′ =

(
1 Φ′

0 1

)(
G 0
0 G−1

)(
1 0
−Φ′ 1

)
.

Indeed, examine the block matrix decomposition:

G′ =

(
1 F
0 1

)(
1 0
θ 1

)(
1 Φ
0 1

)(
G 0
0 G−1

)(
1 0
−Φ 1

)(
1 −θ
0 1

)(
1 0
−F 1

)
.

It su�ces to consider the three rightmost matrices in the above expression. Since we
want to modify Φ to Φ + F ′, we may proceed by inserting 1 = e−F

′
eF

′
:(

1 0
−Φ 1

)(
1 −θ
0 1

)(
1 0
−F 1

)
=

(
1 0

−(Φ + F ′) 1

)(
1 0
F ′ 1

)(
1 −θ
0 1

)(
1 0
−F 1

)
.

Now it is enough to note that the product of the last three matrices, can be uniquely
decomposed into a product of a diagonal and an upper triangular block matrix�of course,
only if we assume that (1+θF ) is invertible. For this, use the decomposition of e−θe−F ∈
O(n, n) according to (11) as

e−θe−F = e−F
′
ONe

−θ′ , (36)

with F ′ ∈ Ω2(M), θ′ ∈ Λ2X(M) and N ∈ Γ(Aut(TM)). What we �nd are the following
expression for θ′, F ′ and N :

θ′ = (1 + θF )−1θ = θ(1 + Fθ)−1, (37)

F ′ = F (1 + θF )−1 = (1 + Fθ)−1F, (38)

N = 1 + θF. (39)

Comparing (34) and (35), we get the equalities

g − (B + F )g−1(B + F ) = NT (G− (Φ + F ′)G−1(Φ + F ′))N (40)

and

(B + F )g−1 = NT (Φ + F ′)G−1N−T −NT (G− (Φ + F ′)G−1(Φ + F ′))Nθ′. (41)

Taking the determinant of (40), we �nd that

det(g − (B + F )g−1(B + F )) = det(N)2 · det(G− (Φ + F ′)G−1(Φ + F ′)). (42)

This equality will play the central role when later discussing the DBI action.
Furthermore, following the same type of arguments leading to (28) we see that the

equations (40) and (41) can equivalently be written as

(g +B + F )−1 = θ′ + (NT (G+ Φ + F ′)N)−1. (43)
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Finally, let us examine the objects F ′ and θ′ using the tools described in subsection
2.3. We will concentrate on the case important for the discussion of the DBI action and
noncommutative gauge theory. Therefore, in the rest of this section, we assume that θ is
Poisson and F is closed. θ′ is a bivector on M . For the graphs of θ and θ′ we have

eFGθ = Gθ′ . (44)

Since eF is an automorphism of Dorfman bracket, Gθ′ has to be again a Dirac structure
of E. Hence, θ′ is a Poisson bivector. Similarly, one can see that

eθGF = GF ′ . (45)

4 Seiberg-Witten map

For an approach to the non-abelian case, using cohomological methods akin to the ones
of Zumino's famous decent equations [23], see [6, 10]. Here we follow the approach of
[15], [16], [17], where it was shown that the Seiberg-Witten �eld rede�nition from the
commutative to the non-commutative setting has its origin in a change of coordinates
given by a map ρ : M → M , such that ρ∗(θ′) = θ.4 This map can be derived using a
generalization of Moser's lemma: Consider the family of Poisson bivectors

θt = θ(1 + tFθ)−1 (46)

parameterized by t ∈ [0, 1]. Of course, we have to presume that the formula is well-
de�ned. To see that these θt are indeed Poisson for all t, simply observe that Gθt = etFGθ

holds for the respective graphs.5 Partial di�erentiation of (46) with respect to t leads to
the di�erential equation

∂tθt = −θtFθt.

For F = dA, this can be rewritten as

∂tθt = −Lθt(A)θt,

with a vector �eld θt(A) := θt(·, A), with initial condition θ0 = θ. This di�erential
equation can be integrated to a �ow φt, such that φ∗t (θt) = θ. Thus ρ = φ1. Obviously,
ρ explicitly depends on the choice of gauge potential A, hence we shall use the notation
ρA. To avoid possible confusion, we will for a moment notationally distinguish between
the tensor itself and its components in coordinates. Therefore we introduce the matrix
(θ)ij := θij. Also, denote J ik = ∂ρi

∂xk
. We have

ρ∗A(θ′
kl

) = JkiJ
l
jθ
ij.

We thus get that
det ρ∗A(θ′) = J2 detθ. (47)

4As said before, here we assume only topologically trivial [H]-�ux. The interested reader may �nd
some relevant discussion concerning nontrivial H and the related non-commutative gerbe in [3].

5Let us note again that etFGθ is a bona-�de Dirac structure even for non-invertible (1 + tFθ).
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Let us assume for a moment that θ is invertible. From (37) we see that so is ρ∗Aθ
′. We

immediately have that
J−2 = det (θ(ρ∗Aθ

′)−1). (48)

For degenerate θ and hence also θ′ the formula (48) still makes sense and we can argue as
follows: Since the map ρA is in�nitesimally generated by the vector �eld θt(A), and the
kernels of all θt's are the same, we see that ρA only changes coordinates on the symplectic
leaves (of θ). We can thus restrict ourselves to the non-degenerate case in order to carry
out the computation of the Jacobian.

5 Noncommutative gauge theory and DBI action

In the previous sections we have described all ingredients needed for our discussion of
noncommutativity of D-branes as a consequence of their generalized geometry. Namely,
we have seen that the relations (24), (25), (40) and the (semiclassical) Seiberg-Witten
have their root in generalized geometry. Actually, it is know for quite some time [17] that
the equivalence of the commutative and (semiclassically) noncommutative DBI actions
follows once one has established (24), (25), (40) and has understood the (semiclassical)
Seiberg-Witten map as a (local) D-brane di�eomorphism. Nevertheless, according to our
best knowledge, the direct relation to generalized geometry is new.

Assume that we have a D-brane D of dimension d, i.e, a submanifold of target space-
timeM equipped with a line bundle with a connection A and corresponding �eld strength
F . Also, consider the restrictions (pullbacks) of the background �elds (open and closed
ones) to D. While describing the Seiberg-Witten map in the previous section, we have
seen that it is quite natural to assume that there is a relation between the D-brane and
the Poisson tensor θ.6 Namely, assume that our D-brane is of a particular kind, i.e., one
which comes as symplectic leaf of the Poisson structure θ.7 As argued before, under this
assumption, the Seiberg-Witten map is a D-brane di�eomorphism.

Before we turn to the discussion of the DBI action and its commutative and noncom-
mutative description, we discuss the relation between the e�ective closed and open string
coupling constants gs and Gs, respectively [21]. These are related as

Gs = gs

(det(G+ Φ)

det(g +B)

)1/2
.

A most intriguing relation is obtained from (??) and the relation (40), again using the
above mentioned formula for the determinant of a sum of a symmetric and an antisym-
metric matrix:

1

gs
det1/2(g +B + F ) =

1

Gs

det1/2(1 + θF ) det1/2(G+ Φ + F ′). (49)

6Recall, in accordance with our above discussion of the open-closed relations, here we start from a
given closed background (g,B), pick a θ and determine uniquely the open variables (G,Φ).

7It is straight-forward to modify everything to the case where the D-brane is a submanifold, such
that the restriction of θ to it de�nes a regular Poisson structure, i.e. a Poisson structure having constant
rank.
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Integrating over the D-brane world-volume∫
ddx

1

gs
det1/2(g +B + F ) =

∫
ddx

1

Gs

det1/2(1 + θF ) det1/2(G+ Φ + F ′), (50)

recalling (48), and performing the change of coordinates according to the Seiberg-Witten
map, we �nally obtain a relation between the commutative and semiclassically noncom-
mutative DBI actions

ScDBI :=

∫
ddx

1

gs
det1/2(g +B + F ) =

∫
ddx

1

Ĝs

det1/2
( θ̂
θ

)
det1/2(Ĝ+ Φ̂ + F̂ ′) =: SncDBI .

(51)
The hat ˆ has the following meaning: On matrix elements of θ it is de�ned as θ̂ij :=
ρ∗A(θij), and similarly for the other objects. As a result of this de�nition, F̂ ′ is the
semiclassically noncommutative �eld strength, which under the gauge transformation
δA = dλ transforms semiclassically noncommutatively, i.e.,

δF̂ ′ij = {F̂ ′ij, λ̃},

λ̃ =
∑ (θt(A) + ∂t)

n(λ)

(n+ 1)!
|t=0.

Here, the curly bracket is the Poisson bracket corresponding to the Poisson tensor θ and
λ̃ is the (semiclassical) noncommutative gauge parameter.
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Abstract. This article describes a general implementation of the �nite element method for the

heat equation. The implementation allows for using domains of arbitrary dimensions and various

types of �nite elements. In addition, it is easily extensible to other partial di�erential equations.

The main goal of this article is to analyze the �nite element method from the implementational

point of view while not ignoring its mathematical background.

Keywords: FEM, heat equation

Abstrakt. Tento p°ísp¥vek popisuje obecnou implementaci metody kone£ných prvk· pro rovnici

vedení tepla. Popisovaná implementace umoº¬uje pouºití domén libovolné dimenze a r·zných

typ· kone£ných prvk·. Navíc je jednodu²e roz²i°itelná i na jiné parciální diferenciální rovnice.

Hlavním cílem tohoto £lánku je analyzovat metodu kone£ných prvk· z implementa£ního pohledu

a p°itom zohlednit její matematickou stránku.

Klí£ová slova: metoda kone£ných prvk·, rovnice vedení tepla

1 Introduction

A long-term goal of our work is to create a GPU solver for the incompressible Navier�
Stokes equations in 3D using unstructured meshes. Because we have experience with
the �nite element method for the Navier�Stokes equations in 2D, we intended to extend
our original 2D implementation into 3D. However, this task proved to be di�cult. The
original implementation would have to be completely rewritten in order to include 3D
computations. Thus, we decided to create a new implementation of the �nite element
method from scratch. Our requirements on the new implementation include its extensi-
bility to other computational problems and its suitability for the adaptation to GPUs.
Another option would be to use an existing �nite element library, e.g., DUNE-FEM [4],
DUNE-PDELab [5] or ViennaFEM [7]. Nevertheless, although such libraries are rather
universal, they do not support computations on the GPU.

This article deals with the �nite element method for the heat equation from two
perspectives. First, it brie�y summarizes the mathematical background of the method.

∗This work has been supported by the grant No. SGS11/161/OHK4/3T/14 of the Student Grant
Agency of the Czech Technical University in Prague and the project No. TA01020871 of the Technological
Agency of the Czech Republic
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And second, it attempts to describe a way of implementing the method generally, i.e.,
independently of the type of the �nite elements and of the domain dimension. Moreover,
the implementation should also, with slight modi�cations, be applicable to some other
partial di�erential equations than the heat equation. The heat equation was chosen as
an example for its simplicity.

2 FEM for the heat equation

Let Ω ⊂ Rn be a Lipschitz-continuous domain and ∂Ω its boundary. The heat equation
for an unknown function u = u(x, t) of the spatial coordinates x ∈ Ω and the time variable
t ∈ (0, T ), supplemented with a Dirichlet boundary condition and an initial condition,
takes the following form:

∂u

∂t
= ∆u in Ω× (0, T ), (1a)

u|∂Ω = uDir on ∂Ω× (0, T ), (1b)
u|t=0 = uini in Ω, (1c)

where uDir = uDir(x, t) and uini = uini(x) are given functions and ∆ denotes the Laplace
operator. It is a second-order parabolic partial di�erential equation.

The �rst step of the �nite element method consists of converting problem (1) into its
corresponding weak formulation. This is accomplished by multiplying equation (1a) by
a test function v ∈ V , where V is a suitable function space, and integrating over Ω:∫

Ω

∂u

∂t
v dx =

∫
Ω

∆u v dx. (2)

Here the usual choice of V is the set of all functions in the Sobolev space W 1,2(Ω) with
zero trace on ∂Ω. Applying Green's theorem on the right-hand side of (2) and using the
fact that the trace of v is zero on ∂Ω, the weak formulation of (1) is obtained:∫

Ω

∂u

∂t
v dx = −

∫
Ω

∇u · ∇v dx for all v ∈ V. (3)

The solution u = u(x, t) might be thought of as a function u : (0, T )→ W 1,2(Ω) mapping
t ∈ (0, T ) to u(·, t) ∈ W 1,2(Ω). Additional assumptions on u are that it is di�erentiable
with respect to t, that ∂u

∂t
(·, t) ∈ L2(Ω) for all t ∈ (0, T ) and that u(·, t)|∂Ω = uDir in the

sense of traces for all t ∈ (0, T ).

2.1 Spatial discretization

In order to discretize (3) spatially by means of the �nite element method, the function
u(·, t) ∈ W 1,2(Ω) is for all t ∈ (0, T ) decomposed as

u(·, t) = u0(·, t) + uD, (4)
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where u0(·, t) ∈ V and uD ∈ W 1,2(Ω) such that uD|∂Ω = uDir in the sense of traces.
Furthermore, we assume such uD exists and is known. Substituting (4) into (3) gives:∫

Ω

∂u0

∂t
v dx = −

∫
Ω

∇u0 · ∇v dx−
∫
Ω

∇uD · ∇v dx for all v ∈ V. (5)

Now let Vh be a �nite dimensional subspace of V . The semi-discrete weak formulation of
(1) is to �nd uh : (0, T )→ Vh satisfying∫

Ω

∂uh
∂t

vh dx = −
∫
Ω

∇uh · ∇vh dx−
∫
Ω

∇uD · ∇vh dx for all vh ∈ Vh. (6)

Denoting by Φ = {ϕ1, . . . , ϕN} a basis for Vh, the function uh(·, t) can be expressed
for each t ∈ (0, T ) as a linear combination of the basis functions:

uh(·, t) =
N∑
j=1

uj(t)ϕj, (7)

where the coe�cients uj, j = 1, . . . , N , are real functions of time. Plugging (7) into (6)
and taking vh = ϕi, i = 1, . . . , N , leads to the following system of N ordinary di�erential
equations:

N∑
j=1

u′j(t)

∫
Ω

ϕj ϕi dx = −
N∑
j=1

uj(t)

∫
Ω

∇ϕj · ∇ϕi dx−
∫
Ω

∇uD · ∇ϕi dx (8)

with the initial condition uj(0), j = 1, . . . , N , given by a projection of uini onto Vh.
Equations (8) can be rewritten in a more compact form using matrices M (mass) and S
(sti�ness), whose elements are

Mi,j =

∫
Ω

ϕi ϕj dx and Si,j =

∫
Ω

∇ϕi · ∇ϕj dx, (9)

and vector f composed of components

fi = −
∫
Ω

∇uD · ∇ϕi dx. (10)

Then system (8) becomes:
Mu′(t) = −Su(t) + f (11)

with the initial condition u(0), where u(t) is a vector comprising components uj(t) and
u′(t) its time derivative.

In the �nite element method, the space Vh is chosen so that it contains continuous,
piecewise polynomial functions on a triangulation of Ω. The support of the basis func-
tions ϕ1, . . . , ϕN usually consists of only several cells of the triangulation. Hence, the
matrices M and S are sparse. Accordingly, a �nite element is determined by a cell of the
triangulation and by the restriction of the basis functions to the cell.
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2.2 Time discretization

We employ the backward Euler method for the time discretization of (11). We introduce a
time step τ > 0 and the notation uk for u(kτ). The time derivative u′(t) is approximated
by a di�erence quotient:

u′(t) ≈ uk − uk−1

τ
. (12)

The time discretization of (11) is performed in an implicit manner, which results in the
following system of linear equations for uk at the time level k = 1, 2, . . .:

(M + τS)uk = Muk−1 + τ f . (13)

Vector u0 represents the initial condition.

3 Implementation

The algorithm of the �nite element method for the heat equation is divided into the
following four basic steps:

1. triangulation of computational domain Ω,
2. evaluation of integrals in (9) and (10),
3. assembly of matrices M and S and of vector f ,
4. solution of linear system (13).

3.1 Triangulation of the computational domain

In the presented implementation, the computational domain Ω is triangulated prior to
the start of the main program using an external application, e.g., Gmsh [6] or NETGEN
[8]. The output of these applications is a conforming unstructured mesh representing the
triangulation; i.e., the triangulation is the set of the mesh cells. The term conforming
mesh means that neighboring mesh cells are required to meet face-to-face, edge-to-edge
and vertex-to-vertex. In other words, if two mesh cells intersect, their intersection is
always an entire face, edge or vertex of both of the cells.

We assume that Ω has piecewise linear boundary and so can be triangulated exactly.
Thus, denoting the triangulation by Th,

Ω =
⋃
K∈Th

K. (14)

3.2 Evaluation of integrals

Given a mesh for the computational domain Ω and denoting by Th the set of its cells, the
integrals over Ω in (9) and (10) can be expressed by the sum of integrals over the mesh
cells: ∫

Ω

· dx =
∑
K∈Th

∫
K

· dx. (15)
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A common way of computing such integrals over K ∈ Th is to transform them to integrals
over the corresponding reference element and evaluate them using quadratures.

Each cell K ∈ Th together with the set ΨK = {ψ1, . . . , ψM} of so-called local basis
functions associated with the cell form a �nite element. The local basis functions ψi are
nonzero functions from K to R satisfying that for each ψi ∈ ΨK there exists a basis
function ϕl ∈ Φ such that ϕl|K ≡ ψi. Moreover, if ϕl|K 6≡ 0 for some ϕl ∈ Φ, then
ϕl|K ∈ ΨK . Hence, we never need the global basis functions ϕl ∈ Φ because the local
basis functions ψi ∈ ΨK hold all the necessary information. Note that the local basis
functions depend on K although this dependance is not re�ected in the notation.

3.2.1 Reference elements

A reference element is a speci�c �nite element from which all �nite elements of the
corresponding type are derived by transformation. It is given by its geometric shape K̃
and the set of local basis functions Ψ̃ = {ψ̃1, . . . , ψ̃M}, where ψ̃i : K̃ → R for all ψ̃i ∈ Ψ̃.

The usual geometric shapes of reference elements are as follows:

• line segment K̃lin = Conv {(0), (1)} ⊂ R,
• triangle K̃tri = Conv {(0, 0), (1, 0), (0, 1)} ⊂ R2,
• quadrilateral K̃quad = Conv {(0, 0), (1, 0), (1, 1), (0, 1)} ⊂ R2,
• tetrahedron K̃tetra = Conv {(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1)} ⊂ R3,
• hexahedron K̃hex = Conv {(0, 0, 0), (1, 0, 0), (1, 1, 0), (0, 1, 0),

(0, 0, 1), (1, 0, 1), (1, 1, 1), (0, 1, 1)} ⊂ R3,

where Conv{·} is the convex hull of a set of points.
There are many ways to choose the reference basis functions; see, e.g., [3]. For exam-

ple, the P1 reference element on the triangle K̃tri is given by the following reference basis
functions:

ψ̃1(x̃) = 1− x̃1 − x̃2, ψ̃2(x̃) = x̃1, ψ̃3(x̃) = x̃2 (16)

for all x̃ = (x̃1, x̃2) ∈ K̃tri ⊂ R2.

3.2.2 Transformation of the reference element

The transformation of the reference element to a �nite element is based on a bijective
mapping g : K̃ → K, i.e., from the geometric shape of the reference element to the
geometric shape of the �nite element. Obviously, the reference basis functions ψ̃i ∈ Ψ̃
must be transformed as well. For the case of scalar basis functions, the relation between
ψ̃i and the corresponding ψi ∈ ΨK is:

ψi
(
g(x̃)

)
= ψ̃i(x̃) for all x̃ ∈ K̃. (17)

Considering the geometric shapes of the reference elements introduced in Section 3.2.1,
the usual mappings g comprise a�ne, bilinear and trilinear transformations.

A�ne transformation. A�ne transformations are used to map K̃lin to an arbitrary
line segment, K̃tri to an arbitrary triangle and K̃tetra to an arbitrary tetrahedron. The
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general form of an a�ne transformation g is:

g(x̃) = Lx̃+ s, (18)

where L is a matrix representing a linear transformation and s is a vector. The Jacobian
matrix Jg of such transformation is equal to L:

Jg(x̃) = L. (19)

When transforming K̃lin to an arbitrary line segment AB with endpoints A and B, the
parameters L and s in (18) can be given as follows:

L = B − A, s = A. (20)

Similarly, when transforming K̃tri to an arbitrary triangle ABC, the columns of L would
be B − A and C − A:

L = (B − A,C − A), s = A, (21)

and in the same way for K̃tetra and an arbitrary tetrahedron ABCD:

L = (B − A,C − A,D − A), s = A. (22)

Bilinear transformation. A bilinear transformation maps the reference quadrilateral
shape K̃quad to an arbitrary convex quadrilateral:

g(x̃) = p0 + x̃1p1 + x̃2p2 + x̃1x̃2p12, (23)

where x̃ = (x̃1, x̃2) ∈ K̃quad and p0, p1, p2 and p12 are column vectors. Its two-column
Jacobian matrix is given by:

Jg(x̃) = (p1 + x̃2p12, p2 + x̃1p12) . (24)

To transform K̃quad to an arbitrary convex quadrilateral ABCD (with vertices labeled in
accordance with K̃quad as de�ned in Section 3.2.1), the parameters in (23) should be set
as follows:

p0 = A, p1 = B − A, p2 = D − A, p12 = A−B + C −D. (25)

Trilinear transformation. Using a trilinear transformation, the reference hexahedral
shape K̃hex is mapped to an arbitrary convex, quadrilaterally-faced hexahedron:

g(x̃) = p0 + x̃1p1 + x̃2p2 + x̃3p3 + x̃1x̃2p12 + x̃2x̃3p23 + x̃3x̃1p31 + x̃1x̃2x̃3p123. (26)

The corresponding Jacobian matrix has three columns:

Jg(x̃) =
(
p1 + x̃2p12 + x̃3p31 + x̃2x̃3p123,

p2 + x̃1p12 + x̃3p23 + x̃1x̃3p123,

p3 + x̃2p23 + x̃1p31 + x̃1x̃2p123

)
.

(27)
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An arbitrary convex, quadrilaterally-faced hexahedron ABCDEFGH is obtained from
K̃hex by g de�ned in (26) with the following parameters:

p0 = A, p1 = B − A, p2 = D − A, p3 = E − A,
p12 = C −D −B + A, p23 = H − E −D + A, p31 = F −B − E + A,

p123 = G− F + E −H − C +D +B − A.
(28)

Again, the vertices of the hexahedron should be labeled in accordance with K̃hex as de�ned
in Section 3.2.1.

3.2.3 Transformation of integrals to the reference element

Let g : K̃ → K be a bijective mapping from the reference element shape K̃ to K ∈ Th
as described in Section 3.2.2. Then, using integration by substitution and the fact that
g(K̃) = K, ∫

K

ψi(x) ψj(x) dx =

∫
K̃

ψi
(
g(x̃)

)
ψj
(
g(x̃)

)
|det Jg(x̃)| dx̃, (29)

where ψi, ψj ∈ ΨK and Jg(x̃) denotes the Jacobian matrix of g at point x̃ ∈ K̃. Using
(17) we can rewrite (29) as∫

K

ψi(x) ψj(x) dx =

∫
K̃

ψ̃i(x̃) ψ̃j(x̃) |det Jg(x̃)| dx̃. (30)

In a similar manner, integrals involving gradients of the basis functions are trans-
formed; for example:∫

K

∇ψi(x) · ∇ψj(x) dx =

∫
K̃

∇ψi
(
g(x̃)

)
· ∇ψj

(
g(x̃)

)
|det Jg(x̃)| dx̃. (31)

Since ∇ψi(x) is equal to the transposed Jacobian matrix of ψi(x) and the notation using
Jacobian matrices is more general, we consider the following form of (31):∫

K

∇ψi(x) · ∇ψj(x) dx =

∫
K̃

Jψi

(
g(x̃)

)
Jψj

(
g(x̃)

)T |det Jg(x̃)| dx̃. (32)

Di�erentiating the transformation formula of the basis functions (17) with respect to x̃
and writing the result in terms of the Jacobian matrices yields:

Jψi◦g(x̃) = Jψ̃i
(x̃). (33)

Application of the chain rule to the left-hand side of (33) leads to:

Jψi

(
g(x̃)

)
Jg(x̃) = Jψ̃i

(x̃), (34)

which is equivalent to
Jψi

(
g(x̃)

)
= Jψ̃i

(x̃)Jg(x̃)−1. (35)
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It follows that∫
K

∇ψi(x) · ∇ψj(x) dx =

∫
K̃

Jψ̃i
(x̃)Jg(x̃)−1 (Jg(x̃)−1)T Jψ̃j

(x̃)T |det Jg(x̃)| dx̃. (36)

Owing to (10), we also need to compute integrals involving uD which cannot be ex-
pressed as a linear combination of the basis functions:∫

K

∇uD(x) · ∇ψi(x) dx =

∫
K̃

JuD
(
g(x̃)

) (
Jg(x̃)−1)T Jψ̃i

(x̃)T |det Jg(x̃)| dx̃, (37)

where JuD
(
g(x̃)

)
is the Jacobian matrix of uD with respect to x at point g(x̃).

Formulas (30), (36) and (37) cannot be used when transforming reference element
shapes to mesh cells in a higher-dimensional space. This is the case of, e.g., surface
meshes in 3D. Because the Jacobian matrix of g is not square, its determinant and
inverse do not exist. However, |det Jg| can be replaced with a volume element [2]:

|det Jg| ∼
√

det
(
Jg

TJg
)

(38)

and the inverse with a left inverse:

Jg
−1 ∼

(
Jg

TJg
)−1

Jg
T . (39)

3.2.4 Quadratures

The integrals on the right-hand side of (30), (36) and (37) are of the form∫
K̃

f(x̃) dx̃, (40)

where f is some real function. Such integrals over a reference element shape K̃ are
evaluated using quadratures; i.e., the integrals are approximated by a weighted sum of
f(xi) at certain points xi ∈ K̃: ∫

K̃

f(x̃) dx̃ ≈
m∑
i=1

wif(xi). (41)

The points xi ∈ K̃ and weights wi ∈ R are chosen so that the quadrature rule (41)
yields exact results for polynomial functions f up to a certain degree. For examples of
quadrature rules on the reference elements, see, e.g., [3].

3.3 Assembly of the �nite element matrices and vector

The matrices M and S and the vector f are assembled from the contributions from
each �nite element. Given a �nite element represented by a cell K ∈ Th and a set
ΨK = {ψ1, . . . , ψM} of local basis functions, we can construct the so-called local matrices
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MK and SK and the local vector fK . The matrices MK and SK are composed of elements
(MK)i,j and (SK)i,j computed using (30), (36), (38) and (39) as:

(MK)i,j =

∫
K

ψi ψj =

∫
K̃

ψ̃i ψ̃j

√
det
(
Jg

TJg
)
, (42)

(SK)i,j =

∫
K

∇ψi · ∇ψj =

∫
K̃

Jψ̃i

(
Jg

TJg
)−1

Jψ̃j

T
√

det
(
Jg

TJg
)

(43)

for i, j = 1, . . . ,M . Similarly, the components (fK)i of fK are computed using (37), (38)
and (39) as:

(fK)i = −
∫
K

∇uD · ∇ψi = −
∫
K̃

JuDJg
(
Jg

TJg
)−1

Jψ̃i

T
√

det
(
Jg

TJg
)

(44)

for i = 1, . . . ,M , where JuD is understood as the Jacobian matrix of uD with respect to
x at point g(x̃).

The elements of MK and SK and the components of fK are distributed to the global
matrices M and S and the global vector f . Let us recall that for each ψi ∈ ΨK there
exists ϕl ∈ Φ such that ϕl|K ≡ ψi, as stated in Section 3.2. This statement de�nes a map
from {1, . . . ,M} to {1, . . . , N} mapping i to l. Denoting the map by γK , we can assert
that ϕγK(i)|K ≡ ψi for each ψi ∈ ΨK . Consequently, each element (MK)i,j of MK is added
to MγK(i),γK(j) of the global matrix M, and in the same manner S and f are assembled.

To construct mapping γK , global information about the mesh is necessary. Typically,
each basis function ϕl ∈ Φ is associated with a mesh entity, e.g., a vertex, an edge or a
cell, and the global index of this entity within the mesh determines the index l of ϕl. On
the element level, the local index i of ψi ∈ ΨK is determined using the local index of the
associated mesh entity within the cell K. Thus, the mapping γK is usually based on the
local-to-global index mappings of the corresponding mesh entities.

3.4 Solution of the linear system

Equation (13) represents a system of N linear equations which can be written in the form

Ax = b, (45)

where x = uk is the unknown vector, A = M+ τS and b = Muk−1 + τ f . The coe�cient
matrix A is symmetric positive de�nite and sparse. The system (13) can be solved by
any method for the solution of linear systems, e.g., the conjugate gradient method.

4 Conclusion

We implemented the �nite element method for the heat equation in C++. The imple-
mentation is based on the unstructured mesh library presented in our last year's article
[1]. The mesh library enables the implementation to operate on various types of meshes,
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e.g., triangular, quadrilateral, tetrahedral and hexahedral, in an arbitrary dimensional
space. Furthermore, it was designed with its future adaptation to GPUs in mind. The
implementation of the �nite element method is general. It supports several types of �nite
elements, and it could be used for the numerical solution of various problems.
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Abstract. This contribution deals with two scale approaches to the mechanical manifestation

modeling of freezing saturated soils. The �rst approach involves a macro-scale description of

the problem. The mathematical model of two-dimensional two-phase system is designed. It

comprises the modi�ed heat equation involving the phase change of the pore water and the

system of the Navier equations describing deformations of the body. Both equation types are

coupled with the term which is related to the phase transition and which springs from the

empirical considerations. Computational studies of the model for the control of the structural

conditions within the mechanical heterogenious soil medium loaded by a concrete structure are

presented. The second approach represents the pore-scale description of the problem. Several

basic ideas regarding the local conditions of balance and mechanisms of the causes of the soil

heaving inception under the thermal gradient are summed up. The preliminary simulations of

the pore-scale freezing dynamics are shown.

Keywords: freezing, model, phase-transition, soil, heaving

Abstrakt. Tento p°ísp¥vek pojednává o dvojím p°ístupu k modelování mechnických pro-

jev· zamrzjících saturovaných zemin. První z p°ístup· popisuje v makro m¥°ítku dvoudimen-

zionální termoelastický model dvoufázového systému. Model zahrnuje modi�kovanou rovnici

tepla popisující fázový p°echod vody v pórech p·dního materiálu a dále systém Navierových

rovnic popisující deformaci t¥lesa. Oba typy rovnic jsou provázány £lenem, který je vztaºený k

fázovému p°echodu a který vychází z empirických úvah. V p°ísp¥vku jsou ukázány po£íta£ové

studie tohoto modelu pro °ízení strukturálních podmínek v mechanicky heterogenním p·dním

médiu zatíºeném betonovou konstrukcí. Druhý p°ístup p°edstavuje problém na úrovni porézní

struktury. Jsou shrnuty n¥které základní p°edstavy ohledn¥ podmínek lokální rovnováhy a mech-

anismy p°í£in vzniku p·dního vzdouvání p°i výskytu teplotního gradientu. Prezentovány jsou

prvotní simulace dynamiky zamrzání na úrovní jednotlivých pór·.
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1 Introduction

During the temperature shifts of ground surface around 0◦C, several qualitative property
changes of upper soil layer can occur as a consequence of the phase change of water in
pores. They include both mechanical and thermal property changes, and their range is
substantial after a su�cient amount of the pore water, which is usually over 80 % of the
soil porosity, is reached. Therefore, the saturated soil model is a convenient simpli�cation
for describing soil freezing problems. This model is used in our consideration as well.

One of the phenomena associated with the freezing of the high water content soil is
the upward movement of the frozen ground. It is called the frost heave ([2],[6], [7]) and is
caused by the formation of ice structures in the soil , which tend to grow as the freezing
descends and which generate extra stresses a�ecting signi�cantly the mechanical behavior
of the soil.

One of our objectives is modeling the way how the freezing processes, including the
frost heave, a�ect soil mechanical properties in macro-scale under various condition and
heterogeneous properties.

2 Macro-scale model

Since the pore water interacts with the structure of porous medium, the water freezing
conditions vary locally in the pore-scale, and water does not exhibit the phase transition
all at once in a pore. For this reason taking approach from [8], it is convenient to de�ne
a function useful in describing the frozen state of soil:

φ(T ) =

1 : T ≥ T?
|T?|b

|T |b
: T < T?

, (1)

where T is the soil temperature in ◦C, T?, T? < 0◦C, is the freezing point depression (the
freezing point of the pore water), η is the soil porosity, and b is a positive soil parameter.
The function φ describes liquid water content in the pores, and its shape is supported
with a number of experiments.

Heat balance re�ecting the phase transition can be expressed by

C
∂

∂t
T + Lη

∂

∂t
φ(T ) = ∇ · (λ∇T ) , (2)

where C is the volumetric heat capacity of soil and λ is the e�ective thermal conductivity.
They can be further related to the frozen water content as follows

C = Cf (1− φ) + Cuφ , λ = λ1−φf λφu (3)

Cf = Cs(1− η) + Ciη , Cu = Cs(1− η) + Clη (4)

λf = λ1−ηs ληi , λu = λ1−ηs ληl (5)

where subscripts f , u, s, i, and l denote heat capacity and thermal conductivity of frozen
soil, unfrozen soil, solid particles, ice, and liquid water, respectively.
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To cover the mechanical manifestations during the soil freezing, the soil is viewed as
continuum, and the relation between the displacement vectors u, v and the temperature
is proposed. Including the Navier equations in the model (2) and adding a linking term,
the following governing system is applied

0

ρ
∂2

∂t2
u

ρ
∂2

∂t2
v


+



(
C + Lη

d
dT

φ

)
∂

∂t
T

0

0


+∇ · Γ = 0 (6)

where

Γ =



−λ ∂
∂x
T , −λ ∂

∂y
T

−E
(1− ν)

∂

∂x
u+ ν

∂

∂y
v

(1 + ν)(1− 2ν)
+ ξ(T ) ,

−E
2(1 + ν)

(
∂

∂y
u+

∂

∂x
v

)
−E

2(1 + ν)

(
∂

∂y
u+

∂

∂x
v

)
,−E

ν
∂

∂x
u+ (1− ν)

∂

∂y
v

(1 + ν)(1− 2ν)
+ ξ(T )


, (7)

ξ(T ) = χϑ (T? − T ) , (8)

E is Young's modulus, ν is Poisson's ratio, ϑ stands for the Heaviside step function, and
χ is the internal stress rate. The linking term ξ represents an intuitive switch function
of internal stress between frozen and unfrozen soil material, and its more exact design
will be objective of further development. It is supposed to be derived from the pore-scale
considerations.

However, the occurrence of such a component can be justi�ed by an analogy to the
linear constitutive equation derivation process as follows. Let Σ stand for the deformation
potential, which is given as the product of the mass density of undeformed body and the
free energy density for a deformable body, i.e.

Σ(eij, T ) = ρ0f (eij, T ) , (9)

where eij denotes the strain tensor. Then, the stress tensor is expressed as

σij =
ρ

ρ0

∂Σ

∂eij
. (10)

To obtain a linear dependence on eij, Σ can be assumed to be written in the following
form

Σ (eij, T ) = Σ0 (T ) + Σij (T ) eij +
1

2
Σijkl (T ) eijekl . (11)
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Analogously to the process of incorporation of the linear thermal expansivity term and
springing from the inspiration in the abrupt volume change of pure materials during
freezing, the linear coe�cient in (11) can be expressed as

Σij (T ) = aij0 − βijϑ (T? − T ) . (12)

Assuming small deformations, the density ratio reads

ρ

ρ0

.
=

1

1 + eklδkl

.
= 1− eklδkl , (13)

and (10) transforms into

σij = (1− eklδkl)
(
aij0 − βijϑ (T? − T ) + Σijklekl

)
. (14)

Dropping products of functions of T and ekl and assuming no initial stress in undeformed
unfrozen body, i.e. aij0 = 0, (14) gives

σij = −βijϑ (T? − T ) + Σijklekl . (15)

Multiplying the previous equation by the inverse tensor Σ−1
ijkl, it is possible to state the

meaning to the coe�cients. It is clear that the volumetric expansion coe�cients of freezing
and the elastic coe�cients are

[[eij]]T? = βijΣ
−1
ijkl = αkl ,

(
∂σij
∂ekl

)
T

= Σijkl , (16)

respectively. Considering the material to be isotropic, the number of the independent
coe�cients in (15) decreases and the coe�cient tensors reads

Σijkl =
Eν

(1 + ν)(1− 2ν)
δijδkl +

E

2(1 + ν)
(δikδjl + δilδjk) , (17)

αkl = αδkl , βij =
αE

3(1− 2ν)
δij = χδij . (18)

When involved (15) with isotropic coe�cients (17) and (18) in the dynamic balance
equation, the Navier equations are obtained in the form as in (6).

The model given by (6) is used for preliminary quality studies of freezing ground situ-
ations, which involve investigations of the stress distribution through soil heterogeneities
or assessments of the e�ect of the frost heave on building structures. Latter situation
simulation is shown in Figure 4. It represents a cross-section of a simple concrete build-
ing constructed on freezing heterogenious ground (see Figure 1b) and shows mechanical
processes within the structure when the soil heat leaks through the surface to the sur-
roundings.
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3 Pore-scale modeling

The soil mechanical property changes are a result of complex dynamic processes between
the freezing pore water and the solid skeleton. Due to a force of attraction that water
experiences in very close surroundings of a solid layer, a thin water �lm appears on the
walls of the skeleton even within the frozen soil. When the solid skeleton is continuous
under local pressure conditions, the �lm creates a continuous liquid net connected with
unfrozen water reservoir below freezing soil. This enables water to �ow through freezing
zone until a discontinuity in the liquid net is reached. It occurs at a level, where the
e�ective stress, σe, of the skeleton is fully supported by the stress produced by pore
content reaction, σn. At the level, the solid particles are no more pressed horizontally to
each other; the discontinuity appears, and cumulating water freezes and initiates an ice
lens.

The basic force balance in the considered soil volume is expressed by the Terzaghi
equation

P = σe + σn , (19)

where P stands for the overburden pressure. As the phases are assumed to be continuous,
σn is given by

σn = ζpl + (1− ζ)pi , (20)

where ζ is the stress partition function (0 ≤ ζ ≤ 1, ζ = 1 when pores are �lled only with
water), pi is the gage pressure of the pore ice, and pl is the gage pressure of the pore
water.

(a) (b)

Figure 1: (a) Scheme of the ice propagation under the vertical thermal gradient at the
pore-scale level. Angles mark out the asymmetric areas. (b) Cross-section of soil ground
with a structure on it. A, B, C, D stand for di�erent soil types; E stands for concrete.

Stress σn is increasing through the freezing zone as the result of an asymmetric in-
teractions of the �lm and the propagating pore ice. The ice propagation can be related
to the temperature by the Clapeyron equation, which can be derived from free energy
consideration (for more detail see [4]) in the following form:

pl
ρl
− pi
ρi

=
lT

Ta
, (21)
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Figure 2: Pore-scale simulation of ice (grey) propagation under vertical thermal gradient
through freezing water (dark) in pores around solid particles (white).

where l is the speci�c latent heat of freezing of water, ρi is the ice density, ρl is the
water density, and Ta is the absolute temperature. At thermodynamic equilibrium, the
ice pressure equals to the gage pressure of water, however, if the ice-water interface is
curved, pi and pl di�er. The di�erence is

pl − pi = σilκ , (22)

where σil is the surface tension of an ice-water interface and κ is the mean curvature
of the interface. From above equation it can be seen that the pressure conditions are
determined by the interface curvature, i.e. by the geometry, and by the temperature.

When the balance of forces on an inner solid particle of a static column in the freezing
zone (see Figure 1a) is considered, it follows from (21) and the temperature gradient
that the areas of the �lm pressure action on the upper and lower hemisphere are not
symmetric, and thus there is a downward component of force. The �lm pressure pf is
given by

pf = pi +
2σil
R + τ

, (23)
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Figure 3: Pore-scale simulation of ice (grey) propagation under vertical thermal gradient
through freezing water (dark) in pores around solid particles (white). Progress without
curvature in menisci. Last �gure illustrates the resultant surface force acting on the
middle particle.

where R is the radius of the supposed particle and τ is the �lm thickness. In addition to
this component, an another can by derived from a vertical gradient of pf on the symmetric
parts of the areas. If R >> τ , it is

∂pf
∂y

=
∂pi
∂y

=
−ρil
Ta0

∂T

∂y
, (24)

and the gradient is positive. Therefore, the component acts again downward.
The downward forces acting on every particle within the freezing zone represent the

distributed force on the solid skeleton. This force is associated with an equal and oppo-
sitely distributed force on the pore content, which tend the ice body to move against the
thermal gradient.

The process of new ice lens initiation is allowed when σn fully supports the load at
some level, i.e. σn = P or equivalently σe = 0. The pore water pressure at this level is
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minimal. Therefore, the water �ows from below to the level, where it cumulates, freezes,
and makes the ice lens to grow. This remain until another lens is created below. This
mechanism is described in more detail in [3], [5].

Several computational studies of the pore-scale ice propagation and its e�ect on the
single particle have been performed and their result are in Figures 2 and 3.

4 Conclusions

The presented macro-scale model includes a basic heat and force balance and has been
designed for the purpose of a preliminary study of structural changes in saturated soils
caused by the phase transition of the water content due to alternations of climatic con-
ditions. Although the model is based on the continuum approach and built on simpli�ed
relations, the produced simulations re�ect adequately common empirical knowledge of
the soil freezing and thawing process and the related mechanical manifestations. Further
development will involve an application of more sophisticated and descriptive relations
based on dynamical structure of freezing soil.

To ful�ll this objective, the pore-scale structure modeling has been summed up, and
numerical studies of the local balance conditions has begun.
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Figure 4: Strain evolution of the concrete construction during ground soil freezing


