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Kernel PCA in Alzheimer’s Disease Diagnosis
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Abstract. The paper deals with the problem of automatic identification of pacients with
Alzheimer’s disease. The identification process is based on data mining method using the Kernel
PCA algorithm. I determine the recommended value of parameter ¢ to the test data set of CT
scans of the human brain, which is crucial for the proper functioning of the algorithm for that
problem. Some results visualized using the programming environment MATLAB are presented
at the end of the contribution.

Keywords: data mining, kernel PCA, Alzheimer’s Disease, MATLAB

Abstrakt. Prispévek se zabyva problémem strojové identifikace pacientt s Alzheimerovou
chorobou. Proces identifikace je zaloZen na data miningové metodé& vyuzivajici algoritmu Kernel
PCA. Na mnoziné testovacich dat CT snimki mozku jsem urcil doporu¢enou hodnotu parametru
o, ktery je klicovym pro spravné fungovani algoritmu pro danou tlohu. Nakonec jsou prezen-
tovany vysledky vizualizované pomoci programovaciho prostiedi MATLAB.

Klicovd slova: dolovani dat, kernel PCA, Alzheimerova nemoc, MATLAB

1 Introduction

Data mining involves a wide range of methodologies for obtaining hidden and potentially
useful information from data sets. It is difficult to give clear guidance on the process of
data mining.

During the 90th years, data mining evolved into two general methodologies that at
least can be roughly described by the steps of SEMMA methodology (Sample, Explore,
Modify, Model, Assess) and the CRISP-DM (CRoss-Industry Standard Process for Data
Mining). The common methodology is the essence of all sequence of several steps:

1. Practical (Business) - the role of formulation and understanding of the problem.
Even the automatic search of knowledge can not be done completely blind.

2. Data - search for and preparation of data for analysis. Statistical algorithms usually
require data ready in some form, and therefore can not be applied directly to raw
data from databases.

3. Analytical - searching for information in the data and producing statistical mod-
els. These use a variety of methods from simple tabulation and visualization to

*This work has been supported by the grant SGS 10/092/OHK4/1T/14.



2 J. Adamec

sophisticated approaches such as genetic programming. The most commonly used
methods, however, the logistic regression with automatic variable selection, decision
trees and neural networks. The output of this phase would be general knowledge
and mathematical models.

4. Application - findings and models can be put into practice.

5. Control - the need for feedback and to check whether the model is not too aged and
retains its effectiveness.

2 Theoretical Background

2.1 Principal Component Analysis

Principal Component Analysis involves a mathematical procedure that transforms a
number of possibly correlated variables into a smaller number of uncorrelated variables
called principal components. The first principal component accounts for as much of the
variability in the data as possible, and each succeeding component accounts for as much
of the remaining variability as possible. Depending on the field of application, it is also
named the discrete Karhunen—Loeve transform (KLT), the Hotelling transform or proper
orthogonal decomposition (POD).

PCA was invented in 1901 by Karl Pearson. Now it is mostly used as a tool in ex-
ploratory data analysis and for making predictive models. PCA involves the calculation
of the eigenvalue decomposition of a data covariance matrix or singular value decompo-
sition of a data matrix, usually after mean centering the data for each attribute. The
results of a PCA are usually discussed in terms of component scores and loadings.

PCA is the simplest of the true eigenvector-based multivariate analyses. Often, its
operation can be thought of as revealing the internal structure of the data in a way which
best explains the variance in the data. If a multivariate dataset is visualised as a set
of coordinates in a high-dimensional data space (1 axis per variable), PCA supplies the
user with a lower-dimensional picture, a "shadow'" of this object when viewed from its
(in some sense) most informative viewpoint.

PCA is closely related to factor analysis; indeed, some statistical packages deliberately
conflate the two techniques. True factor analysis makes different assumptions about the
underlying structure and solves eigenvectors of a slightly different matrix.

2.2 Kernel Principal Component Analysis

Kernel Principal Component Analysis is an extension of principal component analysis
(PCA) using techniques of kernel methods. Using a kernel, the originally linear operations
of PCA are done in a reproducing kernel Hilbert space with a non-linear mapping.
Principal component analysis (PCA) projects high - dimensional data onto a lower -
dimensional subspace by seeking a linear combination of a set of projection vectors that
can best describe the variance of data in a sum of squared - error sense. Kernel PCA
extends the capability of linear PCA by capturing nonlinear structure in the data, since
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a linear PCA performance in the feature space corresponds to a nonlinear projection in
the original data space.

For a set of data points x; € R¢,j = 1,..., N, we map them into an arbitrary high
- dimensional feature space with the nonlinear function ® : #¢ — F. The transformed
data are centered, i.e., the mean is 0. This can be achieved by using the substitute kernel
matrix,

k=k—1yk—kly+ 1ykly (2.1)
where k = {k(x;,x;)} is the kernel matrix, k(x;,x;) = exp(—%) and (1y);; =
1/N, 1y € RV,

Similar to linear PCA, the principal components are obtained by calculating the eigen-
vectors e and eigenvalues A > 0 of the covariance matrix

DOREED B AL IEHE

e = Z Te. (2.2)

N
By multiplying with ®(x;) from the left and noticing that e = Zalfﬁ(xl), straightfor-

1=1
ward manipulation of Eq. 2.2 yields

A a(®(x) - B(x)) = %Zal (‘I)(xl) : Z @(xj)> (®(x;) - B(x))). (2.3)

foralll=1,...,N

Using the kernel function, Eq. 2.3 can be written as

Aa = ka, (2.4)
where a = (ay,...,ay)?. The achieved solutions must be normalized following the
condition,

Given a new data point, its projection can be calculated as

(a; - @(x)) = Z%zk(xl,x)- (2.6)
1=1

3 Implementation in MATLAB

Method using kernel PCA algorithm is programmed in MATLAB programming environ-
ment that allows easy entering and processing of matrix computations and their subse-
quent visualization. Most interesting are the following two functions.

The first function prepares the matrix K - there is an important dependence on the
parameter o, which affects the quality of the result set in next function.
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function [crit,Y,W,eff]=KERNELPCAGAUSS(X,iseuclid,sigma,beta,d,p)
if iseuclid
m=size(X,1);
K=zeros(m) ;
for i=1:m-1
for j=i+l:m
K(i,j)=norm(X(i,:)-X(j,:));
K(j,1)=K(i,j);

O© 00 NO O WN -

end

10 end

11 else

12 K=X;

13 end

14 if sigma>0

15 if beta>0

16 K=1./(1+0.5/betax(K/sigma) .~2) . beta;
17 else

18 K=exp(-0.5%(K/sigma) ."~2);
19 end

20 else

21 K=-K."2;

22 end

The second function performs the actual calculation of the functional value of PCA.
The parameter o is used in matrix K - see equation 2.1 vs. line 5.

function [crit,Y,W,eff]=KERNELPCANALYZER(K,d,p)
eps=1e-100;

m=length(K) ;

ONEM=ones (m) /m;
K=K-0ONEM*K-K*xONEM+ONEM*K*0ONEM ;
(E,LAMBDA]=eig(K) ;

E=real (E) ;LAMBDA=real (LAMBDA) ;
lambda=diag(LAMBDA) ;aaa=trace(K);
U=[lambda E LAMBDA];

U=sortrows (U,1);

lambda=U(:,1);

E=U(:,2:m+1);

LAMBDA=U(: ,m+2:end) ;

O© 0O NO O WN -

=
= O

=
w N

14 eff=cumsum(lambda(end:-1:end-d+1)/(aaat+eps));

15 w=[1;

16 for k=1:d

17 W=[W E(:,end-k+1)/sqrt (LAMBDA (end-k+1,end-k+1)+eps)];
18 end

19 Y=KxW;
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20 Y=Y*diag(1l./(std(Y)+eps));
21 dcrit=chi2inv(1-p,d);
22 crit=sum(Y."2,2)>=dcrit;

4 Results

In experiments I ivestigated that with increasing parameter o incereases the number of
correctly classified patients. This growth is reflected in the figures below - initially in 2D
then in 3D. It is obvious that increasing sigma value from some value do not increase the
function value of PCA. Growth performance values stops for parameter sigma more than
5000. For comparison, the last figure shows the result with the o = 0.

PCA, (0.35652)
o

PCA, (0.38828)
o

—1t

o 2 1 0 1 2 3 o 2 a1 0 1 2 3
PCA, (0.22603) PCA, (0.24058)

Figure 1: 2D view, o = 100 Figure 2: 2D view, 0 = 200

3 T 3

PCA, (0.39839)
o

PCA, (0.39989)
o

PCA, (0.24503) PCA, (0.24568 )

Figure 3: 2D view, o = 500 Figure 4: 2D view, o = 1000
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Figure 5: 2D view, o = 5000
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Figure 7: 2D view, o = 10°
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Figure 9: 3D view, o = 100
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Figure 8: 2D view, 0 =0
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Figure 10: 3D view, o = 200
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5 Conclusion

The methodology allows to visually study the separation of patients with ALD from
normal patients. The system can be set so that the first three components carry more
than 75% of information about all patients. The first three components do not allow
linear separation, but can be set so that the error rate is 10 — 25%, which corresponds
to common clinical practice in the diagnosis. I assume, that in the future I will be
using linear classifiers working with more dimensions. I also assume that the application
of cluster analysis will allow me to distinguish several types of normality, respectively
several types of dimension.
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Abstract. Object registration is a common problem in many fields. Several methods for
registration have been developed to efficiently register two sets on each other. One approach is
to use the Hausdorff distance to measure the degree of dissimilarity of two sets and minimize it
in registration process. To increase the robustness of Hausdorff distance to noise and outliers,
several modification of this measure were introduced. This paper deals with three modifications:
Partial Hausdorff distance, Modified Hausdorff distance, and local Windowed Hausdorff distance,
and discusses their properties and usability.

Keywords: Set distance, Hausdorff distance, Hausdorff distance modifications, partial HD, mod-
ified HD, windowed HD, local dissimilarity map

Abstrakt. S automatizovanym rozpoznévanim objektov sa uz v dnesnej dobe mozeme stretnut
v najroznejsich odvetviach priemyslu, ¢ vedy. Za GCelom Co najpresnejsie identifikovat objekt, ¢i
odlignosti urc¢itého objektu od daného vzoru, boli vyvinuté mnohé metédy, ktoré tento problém
viac ¢i menej efektivne riesia. Jednym z pristupov k rieSeniu tohto problému je pouzitie metdd
zalozenych na Hausdorffovej vzdialenosti (HD). Vzhl'adom k extrémnej citlivosti HD na Sum, je
vhodné uvazovat o modifikacidch tejto vzdialenosti, ktoré st voc¢i Sumu robustnejsie a stabilnejsie.
Tento ¢lanok predstavuje 3 takéto modifikacie, konkrétne sa jednd o Ciastoena HD, Modifikovant
HD a Okienkovt HD. St diskutované ich vlastnosti a vyhody. Nakoniec sa ¢lanok zameriava
najmé na Okienkovd HD a lokdlne vzdialenostné mapy, ktoré si vysledkom merania vzdialenosti
objektov prave okienkovou HD a to v 2D a 3D.

Khicové slovd: vzdialenost mnozin, Hausdorffova vzdialenost, Modifikdcie Hausdorffovej vzdi-
alenosti, ¢iasto¢na HD, modifikovand HD, okienkova HD, lokdlna vzdialenostnd mapa

1 Introduction

Now days, the image recognition and registration is a common problem in many fields
from flow production where the quality of products may be controlled by a system based
on shape recognition, through satellite photographs enhancement, up to medical image
processing. Especially in medicine, the outputs of various diagnostic tools are 3D images
where registration of such data sets is very common problem. The term registration refers
here to a transformation that maps the points of one coordinate system onto correspond-
ing points in another coordinate system. The purpose is to fit pictures of the same thing
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captured by various technologies on each other. Thus, the resulting “multi” picture pro-
vides more information and helps doctors with the diagnosis of potential disease. Other
application may be comparing probably sick parts of body against healthy etalons. Again,
registration of two images is necessary to help doctors to detect changes and interpret
them. The registration is always necessary, because it is practically impossible to place
an examined patient in the same position every time and in every diagnostic tool. What
is more, the human body is not a rigid structure, but is subject to slight deformations
caused by heart beat, breathing, or other slight movements.

Several methods for object matching and object registration have been developed.
They enable to determine the similarity between compared objects, and in the process
of registration minimize this dissimilarity. In this paper we introduce Hausdorff distance
(HD) as a good tool for measuring degree of dissimilarity between two sets. Further,
we discuss some modifications of Hausdorff distance that improve its properties and
performance when considering real world noisy images. Although these alternations may
violate some rules of well-mannered distance measure (a metric), they generally yield
better results over degraded images where standard HD is unsuitable.

1.1 Distance measure

Let M be a set of points. In the following discussion we assume an Euclidean metric
space {M, o} where Z, i € M and metric g is defined as follows:

T

o(,5) = | D_(xx — us)? (1)

k=1

Equation (1) is a mathematical tool for expressing the distance between two elements of
metric space. In the following sections we present methods for determining the distance
between two sets of elements. We mention trivial set distance measures, but due to their
incapability to measure degree of mismatch of two sets, we will not discuss them in detail.
We rather focus on Hausdorff distance and its modifications that have, on the contrary,
very good ability to measure dissimilarity of two sets, i.e. distance between two sets.

Well-mannered measure of distance satisfies axioms of metric: explicitly identity,
symmetry, and triangle inequality. It can be shown that only the Hausdorff distance
in its basic not modified definition satisfies all axioms under certain general conditions
(refer to [1], [2]). To be exact, Hausdorff distance satisfies metric axioms over the set
of all closed and bounded sets. Over such sets the Hausdorff distance is a metric, and
therefore, has very favorable mathematical properties as a distance measure.

From among closed and bounded sets we restrict ourselves to finite point sets. In the
following discussion we will consider only this subset, because finite point sets are very
common output of available technologies for image capturing.

1.2 Trivial set distance measures

Trivial measures between two sets are nearest points distance, farthest points distance, or
center of gravity distance. These measures of set distance are not metrics, because they
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violate some of metric axioms, and also, they have a very limited discriminatory power,
so they are unusable in determining the degree of dissimilarity of two sets. However, they
may have some useful properties in some applications. They are very easy to implement
and algorithms using these measures take relatively small computation times.

2 Hausdorff distance

Hausdorff distance is a max-min distance defined by the following definition.

Definition: Let {M, o} be a metric space where M is a finite set of points, and metric
o is defined by equatoin (1). Let A = {aj,...,d,} and B = {b:, o b;} be two subsets
of M. We define Hausdorff distance H (A, B) by:

H(A, B) := max {max min o (d’, 5) , max min o (d’, 5) } (2)
acA peB beB GEA

Note: The definition of Hausdorff distance can be derived by a series of steps naturally

extending the distance function g in the underlying metric space {M, o} as follows: Let

{M, o0} be a metric space. Given @ € M and non-empty set B C M we define a distance

dist (@, B) between point @ and the set B by:

dist (d, B) := min g <5, E) (3)

beB
Using this distance we define h (A, B), the distance between A and B where A, B C M:

h(A,B):= max dist (d, B) (4)
h (A, B) is called the directed Hausdorff distance. If A and B are compact sets, then
h (A, B) will be finite. Triangular inequality property of h (A, B) is inherited from metric
0. Directed Hausdorff distance is not a metric yet because although fact that A = B
implies h (A, B) =0, h (A, B) = 0 does not imply that A = B. h (A, B) = 0 only implies
that A C B. What is more, directed Hausdorff distance does not obey even the symmetry
property of metric. To be precise, h (A, B) is not always equal to h (B, A). However, we
can create a metric using the directed Hausdorff distance by defining undirected distance
called Hausdorff distance as follows:

H (A, B) := max {h (A, B) ,h (B, A)} (5)

Hausdorff distance is a very powerful tool for measuring dissimilarity between two
sets. The set can represent some graphics in 2D or various 3D pictures in medicine,
for instance captured by technologies like MRI or CT. Using Hausdorff distance, we
can measure a degree of mismatch between two object shapes very precisely. Unlike
feature based methods, Hausdorff distance is zero if and only if the shapes of objects are
exactly the same and increases with growing dissimilarity. What is more, if we need to
minimize the Hausdorff distance over the space of some transformation parameters, any
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transformation of object (rotation, affine transform...) can be taken into consideration.
An advantage is also the possibility of independently using the undirected distances that
Hausdorff distance is composed of.

On the other hand, the major disadvantage is computation burden of discussed mea-
sure. H (A, B), where A, B are two sets of size p,q can be trivially computed in time
O (pq). In the last decades several methods have been proposed that allow speeding up
the computation. By approximation of objects by polygons, for instance, the computation
time can be improved to O ((p + ¢) log (p + q)) [3]-

Besides computation troubles, there is another fact that is necessary to take into
consideration. As was mentioned above, Hausdorff distance measures difference between
two sets very precisely. Consequently, it is extremely sensitive to outliers. Therefore,
if we want to obtain satisfactory results, measured sets have to be without any random
disturbance or noise, what is difficult to achieve in the real world. Hausdorff distance as
defined by eq. (2) or (5) is not capable to distinguish between what are data of interest
and what is a noise. It simply processes noise as it was a part of processed set. Without
any additional information about noise or the set itself and without any modification to
the measure, the resulting distance between sets can differ from an intuitive notion.

Imagine a situation as figure 1 shows, where we have a noise-free etalon (model set),
and we want another set to compare to it. The other set is identical with the etalon but
has a random dot far away from it in a distance d. The result of comparison of such sets
using standard Hausdorff distance will be highly disappointing. Instead of zero, or at
least distance very close to zero, we will receive distance d.

Figure 1: Two sets with Hausdorff distance d

In the real world, data sets received from various sensors are always disturbed by
noise which is random in most cases. As we have just shown, the Hausdorff distance in
its standard form is generally not suitable as dissimilarity measure of such noisy sets.
Therefore, for the real world shape matching it is necessary to modify the Hausdorff
distance in a way to make it more robust and stable to noise and outliers.

Some modified Hausdorff distances have already been proposed to achieve the goal.
However, modifications of Hausdorff distance can cause violation of certain axioms of
metric. Consequently, the modified Hausdorff distance may no longer be a metric. In
support of more robust measure this is not a big trouble while the new modified distance
corresponds with an intuitive notion of shape resemblance. In the next sections we will
describe these modifications and discuss their properties.
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3 Modifications of Hausdorff Distance

3.1 Partial Hausdorff distance

Partial Hausdorff distance was proposed by Huttenlocher et al. in [4]. He extended the
definition of Hausdorff distance to enable comparison of objects that are partially hidden
from the view. It has been shown by many experiments that the partial Hausdorff distance
yields good results also for matching binary sets disturbed by impulse noise.

Consider the partial Hausdorff distance h (A, B) from set A to B where p, ¢ are num-
bers of elements of the sets and dist (a@, B) is defined by eq. (3). The computation of such
distance rank all points from set A by a distance to the nearest point of set B. Partial
Hausdorff distance as defined by eq. (4) determines the distance by the largest ranked
element of set A. When instead of taking the largest ranked element, we take the K
ranked element of A, where 1 < K < p, to determine the distance from A to B, we receive
the definition of partial directed Hausdorff distance as Huttenlocher et al. proposed it:

hi (A, B) :== K& \dist (@, B) (6)

That is, for each element of A, the distance to the nearest element of B is computed and
then the elements of A are ranked according to the respective values of this distance.
The K ranked distance d expresses that K of the elements of set A are each within
a distance d of some point of B. When we put K = p, we get the standard directed
Hausdorff distance h (A, B).

The K value is an input parameter for the computation. The range of possible values
is dependent upon the number of set elements. To generalize this input argument it is
better to specify some fraction x, where 0 < x < 1. Subsequently, K can be computed
by K = |xp|. The notation of directed distance using generalized input argument in a
form of fraction or percentage can look like:

h. (A, B) :== *K \dist (@, B) (7)

Directed partial Hausdorff distance as defined by eq.(6) or (7) has a nice property of
automatically selecting the best matching points of A. Thus, it is not required to specify
which part of the set A is to be compared to the set B. Computation of h (A, B) deter-
mines the distances from elements of A to the nearest points from B and after ranking,
the K nearest elements are taken under consideration.

Undirected partial Hausdorff distance is naturally defined as:

HK,L (A, B) = max{hK (A, B),hL (B,A)} (8)

3.2 Modified Hausdorff distance

Modified Hausdorff distance (MHD) was proposed by Dubuisson and Jain in [5]. They
compared 24 different undirected distance measures based on Hausdorff distance and
tested them for matching two objects based on their edge points. Tested measures were
created by combining 6 different directed distances h; (4, B) with 4 functions f; (4, B)
providing undirected resulting distance. Dubuisson and Jain conclude that the proposed
MHD yields the best results in object matching among all tested measures. Moreover, it
has the following desirable properties:
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e The value of measure increases as the degree of mismatch is growing.

e It is robust to outliers that might result from segmentation errors.

MHD proposed in their paper uses the following directed distance

h(A,B) = % S dist (@, B) ()

acA

and the function that combines two directed distances in order to receive undirected
distance measure

(A, B) = max {h (A, B),h(B, A)} (10)

3.3 Windowed HD

In January 2007 in a preprint and later published in 6] a new approach was proposed
for determining dissimilarity between two sets using Hausdorff-like distances. While pre-
vious and other modifications of Hausdorff distances were global and except the classical
Hausdorff distance and the MHD required some input arguments, the windowed Haus-
dorff distance operates locally and does not require any input parameters. Furthermore,
while the global ones produce only one number that expresses the dissimilarity between
two sets, the windowed Hausdorff distance produce a dissimilarity map where local mis-
matches can be examined. The main idea of windowed Hausdorff distance is to define
some window, moving it over two sets, counting the Hausdorff distance within the window
and record the results into dissimilarity map. Thus, the windowed Hausdorff distance
could be naively defined by applying the global Hausdorff distance within a window:

H, (A, B) := max {hy (A, B), hy, (B, A)} (11)

where

he (A, B) := max <min g(a,g)) (12)

acANW \ pe BNnW

This definition is naive, because it does not take into account the possibility that there
could be no elements or elements of only one of two sets in the window W. What is
the distance in those cases? Furthermore, it is necessary to assure that the distance
be coherent when the window is moved or resized, which is not the case in this naive
definition. To eliminate these negative facts, the naive windowed Hausdorff distance
definition should be modified so that it respects the following principles:

e The distance value should not decrease if the window size is enlarged.

e The distance values obtained in different cases (representative of one set in the
window, representatives of two sets in the window...) shall be consistent so as to
have smooth transition when the window is modified

The improved definition, which takes into account the previous principles, involves
three different directed Hausdorff distances, which supplies three possible cases of presence
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of set points in the window. It makes use of the distance to the frontier Fr (W) of the
window W. In this discrete case we consider that the frontier F'r (W) is between the
elements. For example the frontier of the ball B (x,n) is the line between B (z,n) and
B(z,n+ 1)\ B (z,n). The distance of a point = € B(z,n) to the frontier is equal to the
distance to the elements just behind the frontier.

Definition: Let A, B be two bounded sets of R". H,,(A, B) = max {h, (A, B), h,(B,A)}

where:

e IfANW ADANBNW #£10)

he (A, B) == max {min g<a,5), min g(a,w)} (13)

acANW | pe BNW weFr(W)

e IfANW ADABNW =)

hy (4, B) := max [werg;?w) o(d, w)] (14)
e IfANW =10
he (A, B) =0 (15)

Note that according to this new definition it is possible to measure the windowed Haus-
dorff distance even if the window contains no element or elements of only one set. In case
there is no point of A nor of B in W, both directed distances h, (A, B) and h,(B, A) are
equal to zero, and therefore, the global distance H, (A, B) is zero too. In case there is
exactly one set without point in W, one of two directed distances is equal to zero and
the expression of the other one takes into account the distance to the border of W.

3.3.1 Properties of windowed Hausdorff distance

e Symmetry and non-negativity (by definition)

o [dentity
Let A, B be a bounded sets of points of R". Let W be a convex closed subset of
R". Hy(A,B) =0 AnW =BnW

e Boundary

Let ¥ € R" and r > 0. Let define W = B (&, r) then H,(A, B) < H(A, B).

o Growth

Let V = B (4,,r,) and W = B (2, 1,) be two closed balls such as V' C W. Then
H,(A,B) < H,(A, B)
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These properties ensure that the value measured in the window does not decrease when
the window is enlarged. As the window W slides all over two sets, the values in the pro-
duced dissimilarity map will remain between 0 and H (A, B). The properties of boundary
and growth give a frame to an optimum window-size-criterion definition. In [6] it is
shown that the window W = B (#,r) gives a local measure when the Hausdorff distance
in this window is maximum i.e. Hpz (A, B) = r > 0. This maximum value is reached
only if exactly one element of A is in the center of the window and no B elements are
within it. The maximum local measure for fixed ¥ is the biggest possible » > 0 where
Hpzr (A, B) = r. The maximum local measure is the distance from the central point of
window for instance @ € A to the nearest point of the other set: r,, = dist (d, B). The
maximum local measure centered in general point & could be computed and recorded to
the local distance map by the following technique.

3.3.2 Local distance map

Definition: Let A and B be two non-empty finite sets of points of R” and let ¥ € R",
the local distance map LD Map (Z) is defined by:

LDMap (%) = |l (¥) — I (¥)| max {dist (Z, A) , dist (¥, B)} (16)

where I 4 (7) is equal to 1 if © € A and 0 otherwise.

The maximum value in the LDMap is the Hausdorff distance H(A, B). This value is
present in the map at least once. Figure 2 shows 2D local distance map of two brains
slices cut at the same level.

20 20 L 20 .
40 * 40 . 40
60 ‘ 60 60

20 40 60 80 20 40 60 80 20 40 60 80

Figure 2: Slices of two brains (left, right) and slice of corresponding 3D LDMap (center)
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Local distance map can be visualized also for 3D images as shown in figure 3.

50 50

0L~ 0l S
100 100 >
100

100 100

Figure 3: Brain 3D SPECT images and their LDMap

4 Conclusion

The methods mentioned in this paper have been examined deeply over 2D images. It
has been proved by many experiments that they are relatively robust and stable to noise
and outliers. Also, effective algorithms have been developed, which reduces the compu-
tation time and save memory. We extended the last mentioned method WHD to third
dimension and we generated a 3D LDMap showing the usability of Windowed Hausdorff
distance in medicine. The 3D LDMap highlights local dissimilarities between two human
organs, which can be helpful for doctors when trying to detect abnormalities. In the fur-
ther research, these LDMaps will be examined in more detail and utilized for automatic
identification of Alzheimer disease.

Acknowledgment: The support of grant OHK4-027/10 CTU in Prague is gratefully ac-
knowledged. The Authors would also like to thank Helena Trojanova and Renata Pichova
from Clinique of Nuclear Medicine FNKV in Prague for providing the image data.
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Abstract. Laser plasma simulations are well modelled by Lagrangian hydrodynamical equations
with heat conductivity and laser absorption included. Pure Lagrangian simulation, however,
may suffer from severe mesh distortion which can cause the failure of the computation. This
difficulty is overcomed with the use of an Arbitrary Lagrangian Fulerian method, treating the
hyperbolic hydrodynamical part of the model. The parabolic heat conductivity part is treated
by splitting and mimetic method. A simulation of laser and material interaction demonstrates
the usefullness of the method.

Keywords:

Abstrakt. Simulacia laserovej plazmy je typicky modelované prostrednictvom Lagrangeovskych
hydrodynamickych rovnic s dodatoénymi ¢lenmi pre tepelnt vodivost a absorpciu laseru. Cisto
Lagrangeovska simulécia véak moze trpiet vaznymi poruchami sietky, ¢o dokdze zapric¢init zly-
hanie vypoctu. Tento problém sa d& prekonat pouzitim ALE metédy pre vypocet hyperbolickej
hydrodynamickej ¢asti modelu. Parabolicka ¢ast pre tepelna vodivost je rieSené prostrednictvom
splitting metody a mimetickej metody kone¢nych diferencii. Pouzitelnost metddy je ilustrovana
na simulécii interakcie laserového zvizku s cielovym materidlom.

Klicové slovd:

1 Introduction

The Arbitrary Lagrangian Eulerian methods are a popular group of methods for sim-
ulation of continuum mechanics problems where the laser plasma simulation belongs.
Compressible laser plasma typically includes regions of high compression and large ex-
pansion which require treatment by Lagrangian hydrodynamics, with heat conductivity
and laser absorption included, allowing large scale changes of the computational domain.
The computational mesh with the boundaries and boundary condition is fixed to the fluid
and moves with the fluid. In some cases, e. g. in problems solving shear flows, however,
the moving mesh can degenerate and become invalid with inverted cells when some node
crosses the opposite edge of the same cell.

Therefore, the hyperbolic part of the model (hydrodynamics) is treated by the Ar-
bitrary Lagrangian Eulerian (ALE) method which avoids moving mesh distortion and
parallelized by means of the OpenMP library. The ALE method is a combination of
Lagrangian and Eulerian methods and consists of three phases, the standard Lagrangian
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computation, rezoning, and remaping. The rezoning is a simple mesh modification in
order to repair different local degenerations, while the remapping corresponds to the
Eulerian part of the ALE method and allows the mass flux between cells.

The parabolic part of the model (heat conductivity) is treated by splitting by an
implicit mimetic finite difference method. Heat conductivity is presented in classical
Spitzer-Harm form and the heat conductivity coefficient is a non-linear function of the
temperature. The mimetic method works well on bad quality meshes, appearing in the
Lagrangian simulations where non-linear heat conductivity effects like heat waves or
discontinous diffusion coefficient can be observed. Methods used to solve the parabolic
part of the model are parallelized by means of the LAPACK library which gives the
possibility to perform linear algebra calculations in parallel, especially to obtain the
solution of a tridiagonal matrix in parallel.

For the laser absorption there is presented a model where the laser is absorbed on
critical surface. Under the term critical suface there is understand a surface where the
critical density is reached.

2 ALE Method

For compressible fluid flow with heat conductivity and laser absorption the Euler equa-
tions in Lagrangian coordinates can be written in form

dn .

—_ — 1
dt ) ( )
dv

—_ — — 2
dt Ps, ( )
de

E o i -Ws—L 3
dt PUs S S ( )

where t stands for time, n = 1/p, p is density, v velocity, p pressure, ¢ specific internal
density, W is heat flux, and finally, L is energy flux density of laser radiation. Equations
express consecutively law of conservation of mass, law of conservation of momentum, and
law of conservation of energy.

Additionaly, the system is supplemented with the equation for mesh movement

dzx

— =7 4
— =3 (4

where ¥ represents the position vector.
Finally, the system is completed with the equations of state (EOS) as functions p =
p(e,p), T =T(e,p). For the ideal gas they have the form

p = ep(y—1) (5)
A k

L S . (6)

Z+1cyp My

where 7 is heat capacity ratio, Z degree of ionization, A atomic (proton) number, kg
Boltzmann constant and m, = 1,6605.10~2*¢ atomic mass unit.
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Tij+1

ni+h+1

i

Figure 1: Cell geometry. A quadrilaterall cell divided into 4 subzones by connecting the
cell center with the edge centers.

The system of equations (1), (2), (3) is split into hyperbolic part containing Lagrangian
hydrodynamical equations and laser absorption

dn
—_— = U 7
dt vs (7)
dv
e = —_ 8
o Ps (8)
de
— = —pis—1L 9
dt PUs S ( )

and into parabolic part containing equation for heat conductivity

de
— = —W¢ — Lg. 10
dt s s (10)

2.1 Lagrange step

The Lagrangian hydrodynamical equations are numerically treated in two-dimensional
domain on quadrilateral, logically rectangular computational mesh by means of compat-
ible staggered discretization [4]. This discretization places scalar quantities (p, €, p, T)
into the mesh cells and vector quantities (¢,Z) into mesh nodes. Each quadrilateral cell,
zone, is divided into 4 subzones by connecting the cell center with the edge centers as
shown in Figure 1.
As it was mentioned, the mesh movement satisfies the equation (4) which can be
discretized in the form
dz,,
dt
for each node n. After the mesh movement the density can be calculated in standard way
as

me ms

Pec= 7,3 Ps =

= 12
v 0 (12)
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for each cell ¢ and subzone s, and seeing the Lagrangian assumption that the mass does
not flow through the mesh and submesh edges, the mass of each cell and subzone remains
constant.

The discrete law of conservation of momentum (2) at node n can be written as

= F, =Y Fuym (13)

where ﬁc(n) » 18 the force from the cell ¢ (neighboring the node n) to the node n, and F,is

the total force from all four cells in the neighborhood of the node n affecting the node n.
Forces Fc(n) are composed of zonal pressure force F in) subzonal pressure force FC(Z;)

and artificial viscosity force F! f(n) n

— —

Fuyn = F* .+ F%

nll
c(n),n c(n),n + I

The forces ﬁc(n),n are used also in discretization of law of conservation of energy (3)
de..
me di = - Z Fn(c cvn(c) (15)

n(c)

where n(c) represents a node in the neighborhood of the cell ¢, and ﬁn(c),c is the force
from node n (neighboring the cell ¢) affecting the cell ¢. This guarantees conservation of
the total energy [4].

The viscosity force term F f(n)m in (14) can be expressed by means of several vis-
cosity types. One of the simplest artifical viscosity is a simple bulk viscosity based on
Kuropatenko formula [5, 11]. Another forms of viscosities that can be used are edge
viscosity [5] and tensor viscosity [3].

The system of ordinary differential equations (11), (13), (15), where the mass is con-
served due to Lagrangian assumptions, represents the spatial discretization of the system
of hydrodynamical equations. In addition, the system is also discretized by means of a
predictor-corrector second order method for all nodes and all cells in time.

2.2 Laser absorption

In the energy equation (9) there is a term L representing the energy transfered to the
system because of the absorption of the laser radiation. It is assumed in the form

L= divf,

where I represents the laser intensity. The laser is absorpted only at a critical surface
which is the isosurface with a critical density

A
. =1,86-1073——
p ,86-10 7

where A is atomic (proton) number, Z degree of ionization, and A, laser wavelength in
pm.



Parallel Algorithms for Numerical Solution of Laser Plasma Hydrodynamics 23

The intensity in places of material with subcritical density is given by laser radial
and temporal Gaussian profiles. Behind the critical surface the laser intensity is zero.
The (x,y) components of laser intensity are projected on the edge normals at the edge
midpoints and divergence of the intensity approximated by the standard formula derived
from Green’s theorem.

2.3 Heat conductivity

The parabolic part of the system, the equation for heat conductivity, is assumed in the
form

dr

0 V.(kVT), (16)
where r stands for heat conductivity, and the term V.(kVT') represents the heat flux. The
equation is treated after each Lagrangian step by a scheme fully implicit in time which
allows the timestep to be equal to the timestep of the hyperbolic system. Operators
of divergence and gradient are discretized by a mimetic finite difference method [12],
leading to a system with a symmetric positive definite matrix which is solved by conjugate
gradient method.

2.4 Rezoning and remapping

Allowing the mesh to move, it can become strongly deformed, and these deformations
need to be improved. The rezoning phase of the ALE algorithm, which covers mesh
smoothing and untangling, is a way how to repair these mesh distortions. However,
because of remapping, it is necessary to move only the vertexes which have to be moved,
and as little as possible. There exist several methods for rezoning, the combination of a
feasible set method and global optimization [14] or reference Jacobian method [9]. The
algorithm used in our ALE computation is the Winslow smoothing method [16].

In the remapping phase of the ALE method there is performed a conservative in-
terpolation of conserved quantities from the original, the old Lagrangian mesh to the
new, smoother one. It is required this procedure conserves the mass, each component
of the momentum, and the total energy. Furthermore, the monotonicity, or at least the
local bounds, for density, velocity and specific energy have to be preserved, and also the
remapping should be as accurate as possible. All these can be achieved by a method
which, first, performs a piecewiese linear reconstruction [1| of conserved quantities, then
integrates the reconstruction |10, 6] over regions swept by edges as the edges move from
old mesh to the new one, and finally, corrects (repairs [10, 13]) possibly created new
extrema, which does not preserve the local bounds, by redistribution to the neighbouring
cells.

Other techniques almost always need to have satisfied all the imposed requirements.
They can combine a low-order intercell fluxes (which preserve local bounds by default)
with a higher-order (generally unconstrained) fluxes. An example can be seen in [15].
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3 Results

As the numerical example there is presented a laser and material interaction simulation
from laser plasma physics performed at Prague Asterix Laser System (PALS) facility.
A massive alluminium target is irradiated from the top by intensive laser beam pulse.
The laser beam is operating at the energy 115.J with the wavelength A = 438 nm and
pulse length 300 ps. The simulation starts at the moment of impact and continues till
the simulation time ¢ = 10 ps as can be seen on Figure 2.
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Figure 2: Simulation of material irradiation by intensive laser beam pulse. On the top-
left picture there can be seen density of the massive target just before the impact ¢ = 0,
on the top-right at time t = 4 ps, then at time t = 7 ps on the bottom-left, and finally,
at time ¢ = 10 ps on the bottom-right picture. The colormap displays the density range
from 0 to 16 g.cm™3.

In pure Lagrangian simulation the computation fails very soon due to fatal mesh
distortion, however, with the ALE algorithm, the mesh smoothness is preserved, and
the computation can continue till the final time. The smoothing was performed with
weighted-average rezoning and remapping with piece-wise linear interpolation with re-
pairing.

After the laser impact, the massive target starts to compress itself which leads to its
temperature increase and material evaporation. Part of the material becomes ionized and
forms an expanding plasma corona. A crater is formed in the massive target, representing
the interface between liquid and gas phase. Later in time, the crater stops in further
movement, while a shockwave formed at the solid-liquid phase interface is still propagating
deeper in the target material.
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4 Conclusions

An arbitrary Lagrangian Eulerian algorithm has been developed in order to simulate dif-
ferent laser plasma problems. The algorithm is developed on logically orthogonal 2D grid,
and includes pure Lagrangian calculation with heat conductivity and laser absorption fol-
lowed by mesh rezoning and remapping procedure. It has been applied to a simulation,
laser and material interaction problem, inspired by the experiment performed at the PALS
facility. The Lagrangian calculation without the ALE extension was unable to calculate
the solution due to severe mesh distortions, while the complete ALE simulation provides
reasonable results what demonstrates the usefullness of the algorithm.
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Abstract. This article describes a fuzzy image processing method which can serve as a potential
diagnostic tool for Alzheimer’s disease. We have set up a sequence of several image-processing
processes based on morphological fuzzy edge detection followed by watershed segmentation.
Then we undertook an analysis of nilpotent t-norms forming the edge detectors and the param-
eter of Gaussian filter, and in the end we carried out an statistical evaluation of segments of
human brains images. Our goal was to demonstrate the usefulness of the Lukasiewicz BL-algebra
in feature extraction of 3D biomedical images by using enhanced methods of image morphology.

Keywords: image processing, fuzzy logic, watershed transformation, Alzheimer’s disease

Abstrakt. Tento ¢lanek popisuje metodu fuzzy zpracovani obrazu, kterd mé potencial slouzit
jako diagnosticky nastroj pro Alzheimrovu chorobu. Navrhli jsme poslouponost nékolika pro-
cesti zalozenych na fuzzy detekci hran pomoci morfologickych operatorti a segmentaci obrazu.
Poté jsme analyzovali nilpotentni normy, které tvoti zédklad pro hranové detektory a parametr
Gaussova filtru. Nakonec jsme statisticky vyhodnotili pocty ziskanych segmentii z obrazi lid-
skych mozki. NaSim cilem bylo demonstrovat uzite¢nost Lukasiewiczovy BL-algebry pfi extrakci
rysi 3D biomedicinskych obrazii za pouziti rozsifenych morfologickych metod.

Klicovd slova: zpracovani obrazu, fuzzy logika, transformace pomoci rozvodi, Alzheimerova
choroba

1 Introduction

Alzheimer’s disease (AD) is the most frequent degenerative dementia. Despite important
progress in the field of neurology and neurosciences during the last years, its diagnosis
remains, however, based essentially on clinical appreciation. Current diagnostic criteria
reach sensitivity and specificity about maximally 80-87 %.

The principal idea of our research takes advantage of the medical finding that affected
brains are usually characterized by a different structure of gray and white matter. Hence,
we predicted that we would get a different number of segments after applying some conve-
nient segmentation methods. To achieve this goal, we had to set up an image-processing
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procedure consisting of appropriate functions. The edge detection was based on morpho-
logical fuzzy operators in coordination with transformations of the image contrast, while
operators were taken from the Lukasiewicz BL-algebra.

2 Edges and nilpotent t-norms

As we have mentioned, the edge detectors in our process make use of fuzzy logic. Our
approach is based on t-norms [6] and [1], but we differ in results via generator theory. The
novel decomposition of edge decomposition is based on increasing bijection transform as
intensity preprocessing and the absence of inverse transform. Speaking more accurately,
the detectors are built of fuzzy operators from BL-algebras generated by nilpotent t-
norms. Every standard BL-algebra is a standard residuated lattice |3] and [2|, with two
more axioms:

rANy=z® (r —y) (1)
(z—=yVy—z)=1 (2)

for all z,y,z € [0,1] and it is formed by £ = ([0,1],V, A, ®, —,0,1) where ® represents
a t-norm and — corresponds to residuum. The word ’standard’ means that we operate

over BL-algebras having a support in the real interval [0;1]. Similar utilization can be
found in [8],[9] and [10].

We chose the BL-algebra because it is suitable for our gray-scale images where in-
tensities flow between 0 and 1 and its logic operations produce the desired behavior,
concretely speaking they contribute by suppressing and heightening specific edges and
areas in images.

Every t-norm defines its BL-algebra and its derived operators such as addition, sub-
traction or biresiduum, causes different behavior on systems where it is used. We focused
on a subset of nilpotent t-norms in our application of edge detector and we figured out
several detectors. Inspirative results were taken from [14] or [13]. The main goal was to
prove that every formula from a general BL-algebra generated by a nilpotent t-norm is
equivalent to the same formula expressed in the Lukasiewicz BL-algebra and the bijection
¢. Let us say that every function F : [0,1]" — [0,1] is a formula realized in some BL-
algebra if it is combined exclusively by operators from the same BL-algebra or by their
derived operators. We can say that every formula realized in some BL-algebra generated
by a nilpotent t-norm can be expressed by the same formula realized in the FLukasiewicz
BL-algebra and a bijection ¢.

L1 is a standard BL-algebra generated by a nilpotent continuous t-norm. L, is a

standard Fukasiewicz BL-algebra. Let ¢ : [0,1] — [0,1] be an increasing bijection,
F:[0,1]" — [0,1] and Z = (z1,...,x,), where n € N. If F; is F realized in £; then

Fi(2) = o (Fa(p(@1), - -, (), (3)
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where Fy is F realized in L.

For the purposes of BL-algebra application in image processing, we always work with
some volume element (voxel) and its neighborhood in a 3D image matrix. We define
a function built of BL-algebra operators, which transform the intensity of a voxel with
regard to intensities of neighboring voxels. We define the voxel neighborhood of a given
central voxel V,, , ,, from a 3D image J as

Ne(Viow) ={Viju €T :ju—i| < RAJv—j| < RA|w—k|l <R},

where R € Nj. Generally, a function transforming intensities of image voxels is a local
operation based on subtracting minimum from maximum in a neighborhood of a central
element; hence, it heightens edges in a global aspect. Such function can be modified in
some way, but it must be still built of BL-algebra operators. We substitute the subtrac-
tion by the distance operator in two cases of the following examples of edge-heightening
functions. The function has three parameters y = f3(c, R) where ¢ represents a central
voxel and R is a radius of the neighborhood Ny(c) of a central element c. Here are several
fuzzy edge detecting functions where index ¢ runs through the neighborhood of a central
element c:

o fuzzy Minkowski sausage: f; = max(z;) © min(z;)
o fuzzy morphological edge detector f; = (max(z;) © ¢) A (¢ © min(z;))
e modified fuzzy morphological edge detector f3 = (max(x;) © ¢) @ (¢ © min(z;))

Our approach to the functions is similar to [4], [5] and [7]. The presented formulas of
fuzzy morphological operators in BL-algebra aim to alternate classical gradient methods
based on derivation. Thus, each element of an output image of some edge-detecting
operator represents the fuzzy measure of being the edge with regard to intensities of
other elements. It means that the measure of being a part of an edge must be computed
in respect to the maximum of an image. The introduced edge detecting formulas can be
expressed in the Lukasiewicz BL-algebra according to the theorem. After applying this
relation we get successively

f; = ¢~ [p(max(z;)) O ¢(min(z;))] (4)
f, = ¢ ' [p(max(z;)) A @(min(z;))] (5)
f3 = ¢~ '[p(max(z;)) Or ¢(c)) ®x (2(c) O w(min(z;)))] (6)

If we focus on the increasing bijection ¢ : [0, 1] — [0, 1], we can observe that it changes
contrast and brightness of an image. In the later experiment we design this function by
polynomial p(x) = ax + bx?* 4+ cx® where parameters a, b, ¢ are counted upon given values
of contrast and brightness and the assumption that brightness and contrast are defined

as
1 1 1

1
bri = /0 o(x)dx = Jat Zb + 3¢
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1 3
contr:gp(§):a+b+zc,

where ¢(0) =0 and ¢(1) =1 (thus a + b+ ¢ = 1). We choose only a solution that fulfils
the condition of increasing polynomial on the real interval [0,1]. The operation ¢! is
not finally executed owing to the zero-effect on the edge detection, which is based only
on the value comparison.

3 Patients and Control Groups

We enrolled SPECT data from 17 available adult patients (10 males, 7 females) with
definite Alzheimer’s disease (AD) confirmed by post mortem brain autopsy. As controls
(CN) we used SPECT data from randomly chosen 10 patients (7 males, 3 females) with
amyotrophic lateral sclerosis (ALS), a neurodegenerative disorder affecting predominantly
upper and lower motor neurons. These patients underwent SPECT and detailed cognitive
evaluation as a part of a research protocol (submitted data).

4 Methodology

Let the initial input image matrix be denoted A. The method of whole-image segmenta-
tion consists of several steps. At first, we carry out the image filtration using the kernel
given by the relation

F(i) = ¢ a2 (7)

where ¥/ is the space coordinate vector and o represents the filter radius. The filtration
is provided by convolution

B=AxF. (8)

At the second step, voxel intensities are transformed into the real interval [0; 1] to get
a matrix applicable for fuzzy edge detectors. This step must be carried out owing to the
noise that arises from acquiring a digital record on the SPECT device

B

€= max(B) (9)

Then the normalization is followed by soft thresholding which cuts off the image values

below 6#,. This is made feasible by subtracting #, in the Lukasiewicz BL-algebra from
each element of an image matrix

D = max(C — 64,0). (10)

The next step consists of fuzzy edge detection which was comprehensively described
above. Firstly, we apply a -function, counted from variables contr (contrast) and bri
(brightness), on an image, and finally we continue with application of one of three fuzzy
edge detector function f; using voxel neighborhood with radius R
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G = detect(D, {;, R, contr, bri). (11)

The second soft thresholding with 6s-value comes right after the fuzzy edge detection
and serves as a tool for cutting off image values representing edges that may be illusory
or too narrow. This is provided in the same way as in the first thresholding.

H = max(G — 6,,0) (12)

Keeping these edges on an image may cause an undesirable impact on evaluated
features such as the final number of totalled segments. The final step is represented by
the watershed transformation. It returns an image containing separate regions marked
by integers that have been created by flooding an image from the global minimum to
the global maximum. The function for watershed transform wshed computes a label
matrix identifying the watershed regions with the parameter of connectivity system. This
parameter identifying the neighborhood system of the watershed transform was fixed upon
the 6-connectivity system in 3D space as

J = wshed(H). (13)

The watershed method including a computational algorithm is described in [15]. Such
transformed images have served for evaluating particular features. They were processed
by means of several experiments based on evaluating different features and comparing
both classes of images. The previously presented sequence of image processes was ap-
plied to every 3D input image and then it was used for evaluating a selected feature.

If we summarize the designed method, we need to analyze the following parameters
to find their optimal intervals for the finest results of our application:

e o - the filter radius from (0; + inf)

6, - the first threshold parameter from [0, 1]

contr - the value of contrast from [0.2, 1.4]

bri - the value of brightness was fixed upon 0.5

fy, £, f3 - the fuzzy edge detecting function

65 - the second threshold parameter from [0, 1]

R - the radius of the edge detector’s neighborhood from N

5 Results

We have chosen the observed feature as a total segment number of an image processed by
the designed method. The values of all images from both groups were used for evaluating
Student’s two-sample t-test. The output p-value represents the probability that the null
hypothesis is true, where the null hypothesis claims that mean values of two random
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Table 1: The system parameters for the optimum p — value = 4.48 x 10~2 evaluated on
entire brains.

‘Edge‘R‘ contr ‘ o ‘ 0, ‘ 0, ‘nhood‘
| &, | 4]08676]1.509[0.4900 | 0.3548 | 6 |

Table 2: The system parameters for the optimum p — value = 3.816 x 10~7 evaluated on
pariatal area.

‘Edge‘R‘ contr ‘ o ‘ 6, ‘ 0, ‘nhood‘
| f, | 4]1.0148]0.2763]0.8997 [ 0.3272| 6 |

variables are identical.

As far as the phase of the edge detection is concerned, the scale of contrast had an
unambiguously significant influence on the final number of segments. The change of
brightness had no influence on the final segmentation due to the interprocess of fuzzy
edge detectors, therefore we did not take this parameter into account while evaluating
our feature. Another important parameter was found in the initial threshold #,. Since it
sets elements with values below the 6, to zero, it suppresses edges which are false due to
noise or they are completely unimportant with respect to other high edges in the image.

The first aim of the evaluation was to find optimal configuration of our system, i.e.
values of parameters o, 0, 05, contrast, edge detecting function f and radius R which
lead to the minimum p-value of the Student’s two-sample test. We reached our optima
by means of a heuristic optimization method based on the differential evolution described
in [16], [17] and [18|.

The first image processing and evaluation was made over entire area of a human
brain. The table 5 shows the final values of input parameters and the optimum ¢-value
(respectively p-value) computed by using differential evolution algorithm.

Next part of this article presents results of the evaluation made only on the part of a
brain called pariatal area, where a brain matter is usually mostly affected by the disease.
From the medical point of view, structure of brains in these two symmetric areas is more
disrupted for AD than for CN class. The following table 5 contains final values of the
evaluation at pariatal area and the boxplot graph for each brain with number of segments
in y-axis.
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Figure 1: Boxpot graph with number of segements for each class evaluated with param-
eters given from pariatal areas

Such results still need to be verified on a larger number of patients with Alzheimer’s
and healthy controls and compared with results from patients with other dementia sub-
types. This research will be also supported by another approach based on fuzzy edge
detection in dodecahedral grid system.
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Figure 2: The processing of input images AD (left) and CN (right) from the beginning
(top) to the end (bottom).
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Abstract. The goal of this contribution is to describe the transport of colloids in heterogeneous
porous media. This work includes equations describing the flow field, transport of colloids,
and deposition of colloids in porous media. Then we describe a numerical discretization of the
system of equations describing the colloid transport by means of operator splitting finite volume
method. We present some numerical results at the end of the contribution.

Keywords: transport of colloidal particles, heterogeneous porous medium, finite volume method

Abstrakt. Hlavnim cilem tohto ptispévku je popis transportu koloidii v heterogennim poréznim
prostfedi. Tato prace obsahuje rovnice popisujici proudové pole, transport koloidi a jejich
ukladani v poréznim prostiedi. Déle je v praci obsazena numerickd diskretizace tohoto systému
rovnic popisujictho transport koloidu za pouziti rozkladu operatoru a metody koneénych objemii.
Na zavér piispévku jsou uvedeny nékteré dosazené vysledky.

Klicovd slova: transport koloidnich ¢astic, heterogenni porézni médium, metoda koneénych
objemu

1 Introduction

Colloids are small particles with at least one dimension smaller than 100 nm. Because of
their size, colloid particles are strongly attracted to the pore surfaces. On the other hand,
colloids, like nanoiron particles, can be strongly reactive and can be used in remediation
of contamined sites. To plan a suitable remediation strategy, one has to understand mech-
anisms of colloid transport and their deposition in the subsurface. This understanding
can be obtained by means of numerical models. This paper contains equations describing
colloidal transport in porous media. Then introduce semi-explicit scheme and present
some results of numerical experiments.

2 The Physical Model

This section presents equations describing the colloidal transport in porous media [1].
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2.1 Flow Field Equation

The following equation describes a distribution of pressure in a porous media

(Po)

(ko
5 div (;(Vp — Qg)> = 0(s4 —s-), (1)

where £ is the permeability, u the dynamic viscosity, g the gravity, o is density, s, and
s_ are the sources and sinks and p [Pa] is the unknown fluid pressure. When the pressure
distribution is known the Darcy velocity can be computed using from the Darcy law

q= —S(Vp—gg). (2)

The flow field will be necessary for description of the colloidal transport.

2.2 Colloid Transport Equation

The colloid transport equation can be derived from the mass balance of colloids over
the REV (representative element volume). There are three main mechanisms controlling
the colloidal transport: hydrodynamic dispersion, advection and colloid deposition and
release. This can be described by the generalized advection dispersion equation, where
the unknown is the particle number concentration n

877,_

on L
ot

V- (DVn) — V- (V-n) (3)

where 6 is the specific surface coverage, defined as

total cross-section area of deposited colloids

interstitial surface area of the porous media solid matrix’
f is specific surface area

interstitial surface area

porous medium pore volume’

a, is the radius of colloidal particles, D is the particle hydrodynamic dispersion tensor
and V is the particle velocity vector. It is possible to write the particle hydrodynamic
dispersion tensor as
_ ViV
Dij = OéTV(SZ‘j + (OéL — OéT) ;7] + DdT(sij,

where D, is the Stokes-Einstein diffusivity, V;, VJ are components of the interstitial ve-
locity, ay is the longitudinal dispersivity, ar is the transverse dispersivity and T is the
tortuosity of the porous medium.
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2.3 Colloid Deposition and Release

Let A be the percentage part of the solid matrix with favorable conditions for colloid
deposition. This can be for example areas with iron oxides on its surface. These surfaces
are typically positively charged and colloids are typically negatively charged. Deposition
on the surfaces is usually irreversible. On the rest (1 — ) of the solid matrix surface are
unfavorable conditions for the colloidal deposition. Deposition takes place on both parts,
but difference in rates can be huge. For particle surface coverage rate we can adopt this
patchwise model

A L Y (@)
where 0; is the favorable surface fraction and 6, is the unfavorable surface fraction. The
rates are described by the following partial differential equations

o0
—8tf — naikdepJnB(@f) — kdet,fefR(ef)7 (5)
00,

= 702 kdep,unB(04) — Kaer,uuR(0,,), (6)

where kg, is the colloid deposition rate constant, kg is the colloid release rate constant,
B(#) is the dynamic blocking function and R(f) is the dynamic release function. The
colloid deposition rate coefficient kg4, can be expressed by means of a single collector

efficiency n
neV. aneV
kgep = = 7
dep 4 A ) ( )
where V' is the fluid advection velocity, ¢ is porosity and 7y is the favorable single collector

removal efficiency.

2.4 Dynamic Blocking and Release Functions B(6), R(6)

The dynamic blocking functions characterize the particle deposition [4]. When the col-
lector is particle free at the beginning, blocking function has value B(f) = 1. As the
deposited particles block the surface more and more, B(6) decreases. At the maximum
attainable surface coverage 6 = 0,4, (jamming limit), B(6) = 0.

2.4.1 RSA Dynamic Blocking Function

For colloidal particles depositing on the oppositely charged collector surface, these con-
ditions for use of RSA model are valid [4]:

e attachment is irreversible as long as conditions do not change
e surface diffusion is negligible

e particle-particle contact is prohibited
For low and moderate surface coverage, the function B(6) has this form

9 63 0\’ 40 176 0 \°
B(6) =1 — 40, SN 220 (g ,
( ) ‘gmaa: * m < ‘gmaa:) - <\/§’/T 377'2) < ‘gmaa:)

where 6, is the hard sphere jamming limit.
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2.4.2 Dynamic Release Function

The dynamic release function describes the probability of colloid release from the porous
media surface covered by retained colloids [1]. This function should in general depend
on the colloid residence time and the retained colloid concentration. Because the colloid
release is not well understood, we will use R(0) = 1.

3 Mathematical Model

This section shows solved equations, initial and boundary conditions. By substituting
equations describing the colloid deposition and release (4), (5) and (6) into (3), we obtain
the following expression

on _ V- (DVn)—-V-(V-n)— i(()\7Ta;k;dep,fB(«9f) + (1 = N 7aZkgepu B(0))n —

ot Wag

((/\ﬂ'kidet’fng(Qf) + (1 - )\)kdemQuR(Qu)). (8)

We assume that K () = 1 (first-order kinetics release mechanism) and use the follow-
ing notations

f

Y= @a
Ka(gfv 0.) = Wa;%[/\kdep,fB(Qf) + (1 - )‘)kdep,uB(‘gu)]a (9)
Kr(gf, Hu) = )\W]Cdetfef + (1 — /\)kdep’ueu.

Under these assumptions, the following equation is obtained

871 Ka(Qf,Hu) K,_(Hf,eu)
“_v.(D V.- (V-n)— :
5 V- (DVn)—=V-(V-n) -y n + )

In (10), V is a known velocity field given by a flow model. We complete this equation

with (5) and (6)

(10)

00

a—tf = waikdepjnB(@f) — kdet,fgfa (11)
90, )

E = Wapkdep#nB(eu) — k’det’ueu. (]_2)

To solve this system, we will need boundary conditions for equation (10) and initial
conditions for each equation (10), (11) and (12). Let us consider a rectangular domain
) with boundary I', where lower boundary is denoted I'y, right I's, upper I's and left T'y

(Fig. 1).
For concentration equation (10), we will prescribe an initial condition

n(x,0) = ng(x) for x € Q, (13)
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Figure 1: The domain 2. i

and boundary conditions describing concentration of colloids on I'
n(x,t) =ni(x,t) forx eIy, iel,...,4. (14)

For equations (11) and (12) we need to prescribe initial conditions for ¢ and 6,,. As there
are initially no deposited colloids,

0s(x,0) = 0,(x,0) =0 for x € Q. (15)

4 Numerical Solution

We discuss the discretization methods for solving (10), (11) and (12). Although our
numerical solution is computed on a rectangular grid, we develop the scheme for the
transport problem for a more general case of an unstructured mesh in two dimensions
composed of triangles and quadrangles of the domain €2, which is called the primary mesh.
We construct a dual mesh by connecting barycentres of each element with midpoints of
all its sides in each element from the primary grid. In this way we obtain a polygon
around each node from the primary mesh (on the boundary of the domain 0S2, polygons
are incomplete). For a primary mesh node i, we call this polygon B;, the exclusive
subdomain of node i. 9B; consists of several abscissae and each of abscissa belongs to
one abscissa connecting node ¢ with his neighbor m. For each couple 7, m, there are
two abscissae, we denote them 9B!, . The midpoint of the abscissa dB!,, is denoted
Vop  (Fig. 2). The time level is denoted by superscript k. The length of abcissa 0B},
is denoted |9B!,,|.
transport equation.

The same numerical grid is used for solving the flow field and the
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4.1 The flow field

The flow problem (1) is discretized using the finite volume method. To solve the linear
equations system in the scheme is used the PETSc library for programming language C.

4.2 The transport equation

Explicit scheme has the disadvantage that the time steps has to be limited due to CFL
condition [6]. For this reason we implemented semi-implicit numerical scheme [5], which
will enable us to use larger time steps compared to the explicit scheme.

Equation (10)

877, . Ka(ef,eu) KT(Gf,Hu)
5 =V.-(DVn)—-V-(V-n) - n+ -y

(16)

is solved using the operator splitting technique. At first we solve explicitly convection
and reaction parts of the equation

g () B0, eltr.0)
ot v ~

(17)
obtained from (10) by setting D = 0. We discretize (17) as follows

n. — Nn; a i Y r i Y
] ] ( f7 ) )n’]f ( f7 5 ) ‘ E’)Z‘

S Vs, i) o 108 =0 (18)
m.l i,m

where the upwind value is given as

nk for n -V > 0,
N { i OB . (76B§7m) (19)

for nyp - V(vsp ) <0.

1
The value of nf+2 is used as an initial condition and (14) as boundary conditions for

solving the diffusion equation

0
8—2 — V. (DVn), (20)
which is solved using the backward Euler scheme
ni - "I'H% k+1 !
1Bl = 3 [(D (s, ) (V) (o)) By 0Bl (21)
m,l

We denote number of nodes in one row of our numerical grid n,. On a rectangular grid
with grid sizes Az, Ay, equation (21) reads as
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1
k41 k+35
i Yy

At

n

Ay

ot~
|Bil = AxDyy(Yopi iy, ) | — | +
k41 k41
n; — —n;_ n;, =Ny,
Ame(’YaBi,i,l) <T1> + Anyy('Y@Bi,ifnr) (A—y> —
k+1 _ k1

n; n;

In equation (22) the terms containing boundary values can be eliminated into the right

hand side. In every time step we need to solve the system An*™! = b, where

A . _ _AmDw(00sin,)

Li—Ny Ay

AYyDayy ('Y(?Bi 1-_1)

Aiin = ———x,

A _ By A$Dyy(’YBBi,i+nr) + AyDzz(’YaBi,i_l) + A‘BDyy(“f@Bi’i_nr) + AyDzz("/aBM_‘_l)

22 - AtA ( Ay) Az Ay Az
YDz (VoB; 144

Ajiy1 = ——F5,
A o _A$Dyy("faBi7i+nr)

1,5 +"Nr - Ay

and A; ; = 0 elsewhere. The right hand side of the solved system b reads as

|Bil &
bi = i
At

(23)

where index ¢ goes through all nodes. The boundary terms can be eliminated into the b;.

5 Results

In this section we present results describing transport of colloids in a heterogeneous porous
media. We are given a square domain €2 of size 3 X 3m with two heterogenities. The first
one is a square [0.5,0.75] x [1.25, 1.5] with higher X and kg4, and affects only the transport
of colloids. The second heterogeneity is a circle in the middle of €2 with diameter of 1
where is ten times smaller permeability then in the rest of 2.

For pressure we have no flow boundary conditions on I'y and I's and Dirichlet’s bound-
ary conditions (hydrostatic pressure) p(x) = 10.0° — yog on I'y and p(x) = 1.1-10° — yog
on I'y. In the beginning no colloidal particles are present in the area. We prescribe a
boundary condition

(24)

(x.1) = 10"[m=3] for t < 0.5day
mxt) = 0 for 1.0 >t > 0.5day

for y € [1,2] and 0 elsewhere on I'y and n(x,t) = 0 for x € I'y, I'y, I's and ¢ € [0, 1day]
We are interested in the distribution of colloids in domain €2 in time of one day. Our
results are showing the number concentration of colloidal particles contained in water in
pores n divided by 10, so that the resulting values are rescaled between 0 and 1. The
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rectangular numerical grid with 100 x 100 nodes was used for computations. Results
computed by the semi-implicit numerical scheme are shown in Figure 5.

Figure 4 depicts the flow field. The heterogeneity in permeability made most of water
to flow around the circle lower permeability heterogeneity in the middle of the area.
Second figure 5 shows the time evolution of normed concentration of colloids during
transport with higher deposition rate in the square heterogeneity with higher deposition
constants. Transport is of course influenced by means of the permeability heterogeneity
due to flow field.

6 Conclusion

In this contribution a summary of equations describing the colloid transport was pre-
sented. The equations were discretized by means of the semi-implicit scheme based on
the operator splitting technique using first order upwind (19) for approximation of the
convection term. Numerical results show the expected behavior. Most of the colloids
go around low permeability heterogeneity and on the heterogeneity with higher colloid
deposition quantities colloids deposits with much higher rate.
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Abstract. Classical regression estimators, such as the ordinary least squares (LS), are sensitive
to occurrence of outliers and are not consistent when the orthogonality condition fails. There
have been several robust estimators that can cope with this problem. The development of
instrumental weighted variables (IWV), the robust version of instrumental variables methods,
is reviewed. The alternative approach in regression methods when orthogonality condition is
breaking and both independent and dependent variables are considered to be measured with
errors is called total least squares. The existence and uniqueness of the solution is discussed
and different approaches of calculation are described. The robustified version of TLS based on
the idea of downweighting the influential points is presented and its properties are discussed.
Finally the generalization of TLS to mixed LS-TLS and its robustified version is mentioned.

Keywords: robust regression analysis, instrumental weighted variables, robustified total least
squares

Abstrakt. Klasické regresni odhady, jako metoda nejmensich ¢tverct, jsou citlivé na vyskyt
odlehlych pozorovani a nejsou konzistentni kdyz nezévislé proménné jsou meéfeny s chybou.
Jedna z moznosti jak se s timto pfipadem vypofadat je pouzit metodu instrumentalnéch vazenych
proménnych. Dal§i moznosti je robustifikovat totalni nemensi ¢tverce (TLS). Zakladni vlastnosti,
existence a jednoznacnost feSeni i zptusoby vypoctu klasickych totalnich étverci jsou diskutovany.
Déle jsou predstaveny moznosti robustifikace TLS pomoci penalizace vlivnych bodi. Na zavér je
uvedeno zobecnéni TLS na metodu smiSenych nejmengich ¢tverci-totalnich nejmensich ¢tverci
a robustifikace této metody.

Klicovd slova: robustni regresni analyza, instrumentalni vazené proménné, robustifikované totalni
nejmensi ¢tverce
1 Introduction
Let us consider the multiple linear regression model
}/i :X@lﬂg—i‘Xi,Qﬁg—i""—i—Xi,pﬁg—€Z‘ :XiTﬂO—ﬁi = 1n,

or in the matrix notation

Y =X3%—¢,

where Y € R"*! is a vector of response (dependent) variable, X € R™*? is a matrix of pre-
dictors (independent variables), 3% € RP*! is a vector of unknown regression coefficients

47
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and ¢ € R™! a vector of unknow error terms (vector of disturbances). The objective

is to estimate the unknown regression coefficients and express the dependent variable
+o0
as a linear function of the independent variables. We assume that {(XZT ,5Z~)T} is a

sequence of 7id (p + 1)-dimensional random variables with a absolutely continu(Z)uls dis-
tribution function, but the explanatory variables X;’s can be correlated with the error
terms ¢;’s. Our goal is to find a robust estimator of the regression coefficients, which
resists well to a violation of theoretical conditions and to a contamination of the data.
Many regression estimators such as the ordinary least squares are not robust, i.e. they are
very sensitive to outliers. One of the best known and the most used robust estimator is
the least trimmed squares (LTS), which was proposed by Rousseeuw in 1984 (see [3]). It
minimizes the sum of the h smallest squared residuals, where the j-th residual is defined

as 1;(3) = r; =Y; — X 3. The TLS estimator is defined as follows

h

B(LTS,h,n) = arg minz 7“(21-) (8),

pER? 1

where % is an optional parameter satisfying § < h < n and 7"(22.) is the i-th least squared
residual, i.e. for any 5 € RP

7"(21)(5) < 7”(22) (B)<...< 7“(271) (3).

For h = L%J + V’—glj the LTS reaches the maximum possible value of the breakdown
point equal to ";—TQ. The existence of the LTS estimator is given by the existence of the
LS estimator for all subsamples of size h. While it is very difficult to find exact value
of LTS estimate for larger sets of observations, the approximative algorithms are usually
used. The oldest one defined by Rousseeuw does the approximation in the following way.
Let select randomly an (p+ 1) observations and apply the least squares method on them.
For the estimated parameter 5 evaluate residuals for all n observations. Then select A
observations with the smallest squared residuals and compute again the least squares
estimation. Repeat last two steps until convergence. Repeat the procedure number of
times with different initial estimate to get more candidates. The candidate which has the
smallest value of the objective function (sum of squared residuals) is taken as the LTS
estimate. Due to the high computational complexity of the LTS estimator there have
been appeared a lot of algorithms in the literature for last years, but the mentioned one
is sufficient for our purpose. One of the main disadvantages of the LTS is its infinite local
sensitivity, because the "change of weights” between trimmed and not trimmed points is
too sharp. We can cope with this problem by the definition of some continuous weighting
function and multiply the residuals by a weights from (0, 1). This is exactly the way how
the least weighted squares estimator is defined. According to [4]

; - —~ [i—1
[EWSwn) — aromin w;rey (3) = argmin »  w ( ) 2 (8),
am ; (0) = argm ; — ) 1% (0)
where weights w; are defined by the weight function w : (0,1) — (0, 1), which is absolutely
continuous, w(0) = 1 and non-increasing with the derivative w’(¢) bounded from below
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by a constant (—L), where L > 0. Furthermore we can rewrite the previous definition of
LWS and instead of ordering the residuals we can reorder the weights (w; := w;(3)). For
any ¢ € {1,...,n} let us denote by 7(5,7) the random rank of the i-th residual as

m(B,i)=7€{l,...,n} & r7(8) = r%j)(ﬂ)
Then we have
A Z m(B,4) — 1
[UEWSwn) — arg minz w <7’ ) r2(8)
PERP n
and the least weighted squares are solution to the normal equations
n .
w(B,1) — 1
NEy.xn(8) = Z;w <%> Xi (Vi - X78) = 0. (1)
1=
The solution to LWS estimate exists, because it is equal to the solution to classical
weighted least squares, where weights have one certain permutation. Consequently our
problem, how to find the least weighted squares estimator, is equal to the problem, how
to find "the best” weighted least squares among n! possibilities. Since n is not usually
“small” number, we can not find a deterministic solution to this extremal problem and we
need to use some approximative algorithm again. One of the most simplest, but sufficient
one, is based on the same procedure that we described in LTS section.

In econometrics, the explanatory variables are frequently assumed to be correlated
with the random error e, that is, X is supposed to be correlated with £ such that
plim (%XTe) =% 0. If we now apply LS, LTS or LWS estimators, we get an inconsistent
estimate of 3. One of the best known example of the situation, when the orthogonality
condition fails (i.e. F[X;e;] # 0), is the model in which the explanatory variables are
measured with a random error. We consider an overdetermined set of n linear equations
Y ~ X3, where Y € R™!, X € R and 8 € RP*! is a parameter of interest. We
suppose that

Yi=Ynu—¢ Xi = Xo;i — 0;

and that there exists 8 € RP*! such that
Yoi = Xoi°,
ie.
Assuming usually that E[g;] = 0, E[g] = 0% € (0,00) and E[§;] = 0, E [0,67] = 5
nonsingular and E [0;¢;] = 0. If we consider now classical regression model
Vi = X0’ — i = (X +0:)0° —ei = X;8° + 0,6° —e; = X,3° + e,
we can easily find out that orthogonality condition is broken.

If 3° # 0 then Xy3° # 0 and not only the LS estimate of the regression coefficients
is inconsistent. In the following sections we describe two possibilities how to cope with
such a cases when the orthogonality condition is broken and the data set contains outliers.
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2 Instrumental Weighted Variables

Suppose there is an n X p matrix of some variables Z, called instruments. If instrumental
variables are uncorrelated with errors and the matrix of correlations between the variables
in X and the variables in Z is of maximum possible rank (equal to p) then we call the
instruments proper. Let {Z;}!" | be any sequence of p-dimensional proper instrumental
variables, then the instrumental variable estimator 3UV'™ of 80 is defined by

pIvm — (z7X) " ZTY.

We can easily obtain “classical” weighted instrumental variables by adding weights into
the definition of instrumental variables

[FIVIVRW) _ (ZTWX)A ZTWY.

where W is in our case an n X n diagonal matrix of weights. For weighted instrumental
variables the weights are assigned to the observation a priori, according to an external
rule or some previous knowledge of the problem. The weighted instrumental variables
(WIV) estimation WV W) can by also defined as the solution to the following normal
equations

Z'W (Y — Xj3) = 0.

Since SWTVinW) is not robust with respect to outliers and leverage points, we are going
to use the idea of implicit weighting of the squared residuals from the LWS and define
the robust version of the instrumental variables estimator.

Let {Zl};;of be any sequence of p-dimensional proper instrumental variables. Then
the solution of the normal equations

NEyxzn(03) = Z w (%

i=1

)zz- (¥, — X78) =0 (3)

will be called the instrumental weighted variables estimation (IWV) of 4° and denoted by
pUWVn) - Ag we described in previous text the relation between classical weighted least
squares and the robust LWS, we can find similar relation for classical WIV and newly
defined IWV. Suppose we have some weighting function w and set of proper instruments
Z. Then we can permutate the set of weights

(o () w(B0) (2]

according to some permutation m € P, where P denotes the set of all permutations of
the indices {1,2,...,n} for any n € N. Let compute for all 7 € P,

B(WIV,n,W(ﬂ)) _ (ZTW(W)X)AZTw(W)Y.

Recall that weights in instrumental weighted variables satisfy the condition that the
smallest residual obtains the largest weight, the second smallest residual obtains the
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second largest weight, etc. till the largest residual obtains the smallest weight. Hence,
we can minimize again the sum of weighted residuals. We have n! possibilities how to
permutate weights and hence n! solutions of classical weighted instrumental variables.
We compute the classical WIV for all 7 € P and find the certain permutation m.s € P
which minimizes the the sum of weighted residuals among all B(WIV’"’W(“)). Then IWV
estimator can be defined as

B(IWV,TL) — B(WIV,n,W(WbeSt)) — (ZTW(T‘-best)X)_IZTW(T‘-best)Y‘

In [5] is shown that all solutions of the corresponding normal equations (3) are bounded
in probability and the weak consistency of the IWV is proved. Another technical ap-
proach of the proof of consistency is in [2], but it still using the idea of bounding the
solutions of (3) with some probability and the strengthened Glivenko-Cantelli theorem

SUPge pr SUP e VT Fﬂ(”) (r) — Fz(r)| = Op(1). In [2]|, among others, are described some

approximative algorithms that compute the IWV estimator S"WV") of a given linear
regression problem. The first type of algorithms is based on the idea of iterative re-
weighting which was described in the introduction section. The (j + 1)th iteration of the
IWYV estimator is obtained as:

(IWV,n)

) )) — (ZTW (5((;‘)WVn)) X) 'z'wW <B((J{)WV,n)) Y,

A(va,n,w(ﬁ
(+1)

where as the initial estimate B%WV’”) we can consider the simple LS estimator of (p + 1)
randomly picked different observations and

W(pB) = diag {wy, wa, ..., w,} s wi:w<M>.

n

The second type of algorithms is based on on theory of simulated annealing and use
Metropolis-Hastings algorithm for Markov Chain - Monte Carlo and anther one use ge-
netic algorithms. All of them have been tested for several different simulations and
verified not only on data sets where outliers and leverage points occur but also on data
sets where regressors are correlated with error terms. The first one is much faster and for
larger dataset (n > 50) gives significantly better results, but two remaining probabilistic
algorithms give still sufficiently good estimation compared with LS, [V or LWS.

The disadvantage of the IWV method is that the credibility of the estimates hinges
on the selection of suitable instruments. To find such instrumental variables that are
not correlated with the error terms and that are highly correlated with the explanatory
variables can be hard. That is why we introduce another approach that is much bet-
ter especially in such a cases when both response variable and explanatory variables are
measured with a random error (the model (2)). This model is sometimes called errors-
in-variables model and the approach how to estimate unknown parameter 3° is known as
orthogonal regression or total least squares.
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3 Total Least Squares

The total least squares method is viewed as a tool for deriving approximate linear models
and its systematic investigation was started by Golub and Van Loan paper in 1980 [6].
Assume again the overdetermined system of n linear equations

Y ~X3 YecR", XcRY™, n>p,

Y~ X X0~ Yix + Yivxr
X0 = Ylpp» B = N(X) & R(X") = 0 € RX").

Since the exact solution need not exist, we try to find some approximation, which is best
in some sense. The idea is to modify all data points in such a way that some norm of the
modification is minimized subject to the constraint that the modified vectors satisty some
linear relation. There are many possible way how to define the approximation, but the
most frequent ones are ordinary least squares, data least squares and total least squares
approach. Given an overdetermined set of n linear equations Y ~ X/ in p unknowns (3
then

e the ordinary least squares problem seeks to

B(OLS’n) - ,Geﬂgie%u@n H5H2 subject to Y +¢e = Xp. (4)

B(OLS’") is called a OLS solution to the problem (4) and ¢ is called the corresponding
OLS correction.

e the data least squares problem seeks to

BPLS™ = min [|@], subject to Y = (X + ©)3. (5)

BERP, @R X(P)

BDLSm) g called a DLS solution to the problem (5) and © is called the correspond-
ing DLS correction.

e the total least squares problem seeks to

L) _ min I[e.®]]l subject to Y +e=(X+©)3.  (6)

BERP [e,0]cRnx (p+1)

BTLSm) is called a TLS solution to the problem (6) and [e, ©] is called the corre-
sponding TLS correction.

The suitable norm used in previous definitions of the DLS and the TLS problem is called
the Frobenius norm and for the matrix X is defined as follows

min{n,p} rank(X

)
= y/trace(XTX) = Z 07 = Z o7, (7)
i=1 i=1

nop
IXllp= 4| D>

i=1 =1
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where ¢;’s are the singular values of the matrix X.

While in the OLS approach we assume that we know all data points from matrix X
exactly and we measure with errors only the response variable Y in the TLS approach we
assume that both the response variable and the predictors are perturbed. Let us consider
an n-element point set P € RP™' whose ith point is p; = (X;1,..., X, Y;)T. We will
denote by the term hyperplane a p-dimensional hyperplane, which is nonvertical (i.e. the
last coordinate of its normal vector is nonzero). A model parameter vector 3 corresponds
to a hyperplane, which we will denote by p(3) or simply p. The residual d;(p) is defined
to be the signed orthogonal distance from p to p;. In this formulation the total least
squares problem is equivalent to computing the hyperplane that minimizes the sum of
the squared orthogonal distances, while OLS minimizes the sum of the squared vertical
distances from the data points p; to the fitting hyperplane p. The normal vector of the
hyperplane p is v = [ﬂT, —1]T. Then the formula for the orthogonal distance of point
p; € RPFL from the hyperplane p is

}VT(A—pi)’

Il

where A € p is arbitrary point. Then we can formulate the total least square problem as

V74— ) R ‘W’ -1 { Y }

2

B(TLS,n)

= argmin 3 = arg min 5
perr = |l pek ; 167, =1l
- X
= argmin Z| — X,4|” = arg min - ———1 1Y ﬁH (8)
g Lt “5“ Ve R I

Before we give conditions for uniqueness and existence of a TLS solution, we introduce
some important tools such as singular value decomposition.

Singular Value Decomposition Theorem

The singular value decomposition (SVD) of the matrix [X,Y] € R**®*1 is defined by

X, Y] =UxVT, (9)
where U = [u1,...,u,] € R and V = [vy,...,v,41] € RPTIXEHD are orthonor-
mal matrices that contain the left and the right singular vectors, respectively. > =
diag{oy,...,0.} € R r = min{n,p+1}, 0y > 09 > ... > 0, > 0 are the singu-

lar values of the matrix [X, Y] in decreasing order of magnitude. The triplet (u;, o;, v;)
is called a singular value triplet. If we assume that rank([X,Y]) = r then the dyadic
decomposition of the matrix [X, Y] is following

= Z UiUiUiT (10)
i=1

and decompose the matrix [X, Y] of rank r in a sum of  matrices of rank one. Note that
numbers o;’s are square roots of nonzero eigenvalues of the symmetric and nonnegative



54 J. Franc

definite matrices [X,Y]" [X,Y] and [X,Y][X,Y]" related to eigenvectors {u, ..., u}
and {vy,...,v.}.

To solve the problem (6) with the TLS, bring the set into form [X,Y][3,—1]" ~ 0.
We want to find ,true” values [Xo, Yo| such that ||[X,Y] — [Xo, Yol|| is minimal and
[Xo, Yol [5, —1]T = 0 for some 3. If g,4; # 0 then rank([X,Y]) = p + 1. There is
no nonzero vector in the orthogonal complement of the space generated by the rows of
[X,Y]. In order to obtain a solution, the rank of [X,Y] must be reduced to p, i.e.

p
rank([Xo, Yo]) = p. Let SVD of [X,Y] be given by (9) then for [Xo, Yo|] = > oyuv]

i=1
Eckart-Young-Mirsky theorem tells us that

min_|[[X, Y] = All[p = [[X, Y] = [Xo. Yolll» =
rank(A)=p

(11)

By another words, the best rank p TLS approximation [Xg, Y| of [X, Y] is obtained by
settings the smallest singular value 0,4 to zero. This was firstly investigate by Golub
and Van Loan (see [6]) and the following theorem gives conditions for uniqueness and
existence of a TLS solution.

Solution to the TLS problem

Let the SVD of [X,Y] = > oyu;v! and 0,,,(X) be the smallest singular value of X. If

i=1
Omin(X) > 0,41, then the TLS solution

. . 1 T
ﬁ(TLS7 ) — _U o [U17P+17 . 7Up,p+1] (12)
pb+1,p

exists and is the unique solution to Yo = Xof and the corresponding TLS correction
matrix is given by
£, 0] = opirtipi1v),,. (13)

The condition 0y, (X) > 0,41 ensure the uniques of TLS solution. If we suppose that
[X,Y] has full column rank, this condition is generically satisfied. For general case see
[1], where the situation when o,,,(X) = 0,41 is analyzed. Since singular vectors v;’s
are eigenvectors of the matrix [X,Y]" [X, Y], BTLS™ satisfies the following eigenvector
equations

~

X, Y] [X, Y] [ b

(TLS,n)
o

B XX XTIy B(TLS,n) 9 B(TLSJZ)
T YTX Y'Y -1

and we can write the closed-form expression of the TLS solution

B(TLS,TL) _ (XTX . 0_2

2D XY,

The previous formula tells us that the TLS solution is more ill-conditioned than the LS
solution. It can be dangerous to compute TLS estimate by this way and that is why we
will evaluate TLS solution by the help of SVD and equation (12). The computational
stability and speed can by further improved by using the Golub-Kahan bidiagonalization
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(GKB) to the matrix [X,Y] and use the connection among TLS problem, GKB and

Krylov subspaces. This concept is called core problem and has been developed by Paige

and Strakos (see [7]). The idea is to find by the help of GKB two orthonormal matrices
P, Q such that

by A 0

T _ | i An

where the block A is lower bidiagonal with nonzero bidiagonal elements. Moreover, the
matrix Aj; has full column rank and its singular values are simple. The matrix A;; has
minimal dimensions, and Ay has maximal dimensions and the first elements of all left
singular vectors of Ay, are nonzero. These properties guarantee that the subproblem
b1 =~ A11(11 has minimal dimensions and contains all necessary and sufficient information
for solving the original problem Y =~ X/3. All irrelevant and redundant information is
contained in Ayy. The asymptotical behaviour of the TLS estimator such as consistency
or asymptotic normality is shown and proved by in [9], among others. If the errors in the
observations are independent random variables with zero mean and equal variance, TLS
gives better estimate than does LS. The problem arises when outliers are present then
accuracy of the TLS estimate deteriorates considerably, because classical TLS estimation
is not robust estimator.

4 Robustified Total Least Squares

The goal of this section is to propose a robustified version of TLS estimator that is based
on the idea of downweighting the influential points. We want to find such a estimators
that will combine the advantages of both TLS and respectively LTS and LWS. Firstly let
us define the total least trimmed squares.

Total Least Trimmed Squares (TLTS)

TLTS minimizes the sum of the h smallest squared orthogonal distances of data points
pi’s from the pth dimensional hyperplane p(3). The j-th orthogonal distances is denoted
by d; and defined by

d; = w (14)
1+ [|8]]
The TLTS estimator is defined as follows
A h
BILTS) = arﬂgeflgin Z d%z% (15)

where h is an optional parameter satisfying § < h <n and d?i) is the ¢-th least squared
orthogonal distance, i.e. for any 5 € R?P

diy(8) < dfy(B) < ... < dy(8).

TLTS estimator has similar properties as LTS estimator. The existence of TLTS is given
by the existence of the TLS for subsamples of size h. The computational complexity to
find the exact solution is given again by examination of all (Z) possible subsamples and
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the candidate with the smallest value of the objective function is TLTS estimate. The
approximative algorithm to evaluate TLTS is following:
For k=1 to number of iteration do

1. Pick randomly (p+1) data points and compute TLS estimate 3TES2+1 by the help
of SVD.

2. Compute the orthogonal distance for all n data points from the pth dimensional
hyperplane p(3755)).

3. Select the h data points with the smallest squared orthogonal distances d;’s.
4. Compute TLS estimate B(TLSJ‘) by the help of SVD for selected data points.
5. Repeat steps 2-4 until convergence.

6. If the value of the objective function is the smallest one among the values, that
have been reached up to this moment, store the appropriate estimation as a TLTS.

This algorithm is very fast and generally gives satisfactory results. We also tried to
implement algorithms based on theory of annealing or on genetics algorithms, results of
these algorithms are sufficient, but there is still some pending work. The larger simulation
study is the question of present work. The disadvantages of the TLTS is its infinite local
sensitivity, hence we modify the estimator by adding some continuous weighting function
and multiply the distances by a weights from (0, 1).

Total Least Weighted Squares

n . n .

A(TLWSw,n) _ : L 1) 2 _ : (W(ﬁal) — 1) 2

B arﬁgelugm Zl w < - dgy () arﬁgengm Zl w - dz(3),
where weights w; are defined by the weight function w : (0,1) — (0, 1), which is absolutely
continuous, w(0) = 1 and non-increasing with the derivative w’(¢) bounded from below
by a constant (—L), where L > 0 and 7(3,14) is the random rank of the i-th residual as
previously. The evaluation of this estimator, algorithms and the large sample properties
are under research.

5 Mixed Ordinary Least Squares Total Least Squares

Sometimes the linear modeling problem Y =~ X[ contains the intercept (i.e. X; =
1, i = 1,...n) or some columns of X may be known exactly. In this cases the TLS
solution cannot give the accurate estimation of parameters . It is natural to require
that the corresponding columns of the data matrix X be unperturbed since they are
known exactly. The generalization of the TLS approach is called mixed least squares -
total least squares problem (mixed LS-TLS). Let us suppose the overdetermined system
of n linear equations

Y~X3, YeR" XeR", n>np,



Robustified total least squares o7

partition X = [XM X@] XU ¢ Rr X@) ¢ Rrxp2
gr — [ng, 5<2>T] B c RP1, 8O ¢ Rp

and assume that the columns of X are error free and p; + p» = p. Then the mixed
LS-TLS problem seeks to

B(LS—TLS,n) — min |[e,®]|| subject to Y+e= X(1)5(1)+(X(2)+6)ﬁ(2)'
BERP [e,@]cR™* (P2 +1)
(16)

BLS=TLSm) i called a mixed LS-TLS solution to the problem (16) and [¢, ©)] is the corre-
sponding LS-TLS correction. By varying p; from zero to p, the mixed LS-TLS problem
can handle also with any ordinary LS or ordinary TLS problem. To solve the mixed
LS-TLS problem, due to Golub, we us QR factorization, solve ordinary TLS problem of
reduced dimension and after that we compute the first p, components of FES~TLSm) et
a matrix [X(, X®] be given, have full column rank and columns of X" are error free.
Suppose that 0 < p; < p then compute the QR factorization

1) ~(2) _ Ri1 Ri2 Ry,
XUXEX]=Q1 0" Ry, Ry, |
where Q is orthogonal, Ry; € RP**P1 and Rgy € R P1*P2+L are upper triangular. Then
compute the ordinary TLS solution 3TESm=P1) of Ry, ~ Rya which gives us the the
last ps components of 3ES-TLSn) The first p; components we obtain from the solution
of following equation
R11 35570 = Ry, — RypfTESm P,

The mixed LS-TLS solution is F(ES-TESn) — [B(Ls’pl),B(TLS’”_pl)}. Unfortunately this

universal estimator is not robust and gives misleading results when outliers occur.

6 Robustified Mixed Least Squares Total Least Squares

The robustification of mixed LS-TLS estimator is not straightforward as in ordinary
total least squares. Let denote by p; the p; + 1 dimensional hyperplane given by the

[ 5(LS—TLS,n) 5(LS—TLS,n)
1

T
normal vector vy = sy Oy , —1} and by py the ps + 1 dimensional

. . T
hyperplane given by the normal vector vy = [ﬁ;ffl_ TLSm) ., BiES=TLSm) —1] . Then we
can compute the squared vertical distance of each data point [X;i, ..., X;,,, Y:] from the

hyperplane p; and the orthogonal distance of each data point [X;p, 11, . .., Xjp, Y;] from the
hyperplane ps;. Now we need to take some reasonable combination of these two distances,
identify the influential points and downweight them. Another possibility is to identify
the influential points separately and instead of discarding s outermost points from the

~ T
ﬂ(LszLS,n) ’ -1

p—+1 dimensional hyperplane p given by the normal vector [ we discard

s/2 points from the first part by the help of LTS and s/2 points from the second part
by the help of TLTS. However, algorithms and properties of robustified mixed LS-TLS
estimator are still under research and large simulation study is under preparation.
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7 Conclusions

In this paper we reviewed the development and extensions of estimation of parameters
in linear regression model when outliers occur and the orthogonality condition fails. The
most frequent example of this problem is a case when the explanatory variables are mea-
sured with a random errors. In algebraic point of view is the problem of overdetermined
system Y ~ X[3. We propose and described two approaches how to solve this kind of
problem. The first approach is based on theory of instrumental variables and the second
one on theory of total least squares. We described how to determine the solution to
the basic TLS problem from the SVD. We propose the robustified versions of IV and of
TLS with outlines of the algorithms for computations of the solutions of the instrumental
weighted variables or total least trimmed squares. Furthermore we generalized the TLS
to mixed LS-TLS method and propose the robustified version. To all mentioned estima-
tors and methods we ran small simulation study and both results and MATLAB codes of
algorithms are available on the request. Since the error-in-variables model corresponds to
TLS, this field of mathematics connects the algebraic and numerical mathematics with
statistics. For further reading we can recommend [1] or [8].
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Abstract. Point estimators based on minimization of information-theoretic divergences be-
tween empirical and hypothetical distribution induce a problem when working with continuous
families which are measure-theoretically orthogonal with the family of empirical distributions.
In this case the ¢-divergence is always equal to its upper bound and the minimum ¢-divergence
estimates are trivial. Broniatowski and Vajda in [2]| proposed several modifications of the mini-
mum divergence rule to provide a solution to the above mentioned problem. We examine these
modifications in practical use.

Keywords: divergences, minimum ¢-divergence estimation, maximum subdivergence estimators,
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Abstrakt. Bodové odhady zalozené na minimalizaci ¢-divergenci mezi empirickou a hypotet-
ickou distribuci pfinédsi problém, pokud pracujeme se spojitymi rodinami hustot, které jsou orto-
gonélni (vzhledem k dominujici o-kone¢né mife) s rodinami empirickych distribuci. V takovém
piipadé je ¢-divergence vzdy rovna své horni mezi a odhad s minimélni ¢-divergenci je tudiz
trividlni. Broniatowski a Vajda v [2] navrhli nékolik modifikaci tohoto typu odhadu a poskytli
tak TeSen{ zminovaného problému. V tomto pfispévku se vénujeme praktickému vyuziti téchto
modifikovanych odhadii.

Klicovd slova: divergence, odhad s minimélni ¢-divergenci, odhad s maximalni subdivergenci,
odhad s minimalni superdivergenci, simulace

1 Introduction

As was already mentioned in many publications, the well known information-theoretic
measures of divergence of probability measures introduced in the 60ties by A. Renyi and I.
Csiszar cannot be directly applied in statistical estimation, since the divergence between
the theoretical absolutely continuous probability measure and the discrete empirical prob-
ability measure is always equal to its upper bound and often takes on infinite values. In
2008 - 2009 Broniatowski & Vajda ([2]) studied and extended two different modifications
of divergences proposed independently in 2006 ([5], [1]). They altered the traditional
¢-divergences into subdivergences and superdivergences and defined maximum subdiver-
gence estimators with escort parameter ¢ and minimum superdivergence estimators. We

*This work has been supported by grants GA CR 102/07/1131, GA CR P202/10/0618, SGS OHK4-
007/10 and MSMT 1MO0572.
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shall present the key results of extensive simulation study of these types of point esti-
mators. The main interest of our research (|4]) was to examine these modifications in
practical use as to the consistency, robustness and efficiency of the estimators. We focus
on the well known family of power divergences parametrized by « in the normal distri-
bution model. We run a comparative computer simulation for several randomly selected
contaminated and uncontaminated data sets, and we study the behavior of estimators
for different sample sizes and different ¢-divergence parameters.

2 ¢-divergences and Minimum ¢-divergence Estimators

This chapter introduces the ¢-divergences, their basic characteristics, and the concept of
minimum divergence estimation. We mention several problems encountered when working
with these estimators, and we suggest some possiblilities to bypass them.

Let (X,.A) be a measurable space and let P be a set of all probability measures on
(X, A). If P € P is dominated by a o-finite measure A on (X,.A), then p = dP/d\ is a
Radon-Nikodym density of P with respect to measure A.

Definition 1.. Let P,Q € P, {P,Q} < A\, p = dP/d\ and q = dQ/d\. A ¢-divergence
of distributions P a () is a function D, : P x P — [0, 00| defined by

p p
pn.@)= [ o(2) da= [ao(2) ir. 1)
X q X q
where ¢ : (0,00) — R is a convex function.
For this formula to be well defined, we put

q¢(y):{q¢(0) ifp=0
q p ¢(o0)/o0 if ¢ =0,
where ¢(0) := limy_, ¢(t) and ¢(00)/00 1= lim;_. @, while "0 - 0o =0".

For ¢-divergences it holds the following theorem.

Theorem 1.. For each generating function ¢ it holds ¢(1) < Dy(P, Q) < ¢(0)+¢(00) /00
for every P,Q) € P, where the left equality takes place if P = Q) and the right equality
takes place if P1Q), i.e. P, Q) are singular.

From now on, we shall consider only ¢ which are twice differentiable, strictly convex
generating functions with ¢(1) = 0 and continuous extension to t = 0, denoted by
#(0). We let ® be the class of all such functions. As to the probability measures, we
will deal with P and @ which are either measure-theoretically equivalent, P = @ (i.e.
pq > 0 A-a.s.), or measure-theoretically orthogonal, P L @ (i.e. pg = 0 A-a.s.).

In the sequel, we shall use the power divergences

Da(PaQ) = D¢>a(PaQ)> OéER, (2)

where t*—a(t—1)—1
balt) = ala—1)

a#0,a#1 (3)
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with the limiting cases
do(t) = —Int+t—1 and ¢i(t) =tlnt —t+ 1. (4)

For these functions it holds as a result of Theorem 1

L if 0<a<l1

0<D,(P < o= ’
< (P,Q) < { 00 otherwise. ®)

The left equality takes place if and only if P = Q). If 0 < o < 1 then the right equality
takes place if and only if P L (). Otherwise it takes place if a < 0 and Q &« P, i.e.
QX —S(P))>0,orifa>1and P £ Q,ie. P(X—S(Q)) >0.

Now, let X, Xs, ..., X, be independent and identically distributed observations gov-
erned by Py, € P, where P = {F; : § € ©} is a family of probability measures on (X, .A),
© C RY is a parameter space, and we assume that for every 0.6, € O, 6 # 0, holds
Py # Py, and Py = Py,. Moreover, we assume the family P to be nonatomic (continous),
i.e. forall @ € © and = € X we require FPyp({z}) = 0. We also let the data X, Xo, ..., X,
to be represented by an empirical probability measure P, = %Z?:l Px,, where P, is the
Dirac probability measure with all mass concenrated at the point z € X.

Definition 2.. Let ¢ € ®. We say that an estimator @\n : X" — O of a true parameter
0y € © is a minimum ¢-divergence estimator if for the corresponding Dy it holds that

6, = argmingDy( Py, P,,).

The problem we encounter with these estimators is that the continuous family P
and the family of empirical distributions Pe,,, are measure-theoretically orthogonal, i.e.
Py 1L P, for every Py € P and P, € Py, This implies that for every Py € P and

Pn emp
€P Dy(Py, P,) = $a(0) + ¢o(00) /00

and the above defined estimates are trivial. To face this problem, it is possible to use
some prior smoothing of the data or another nonparametric density estimation like we did
by implementing histogram in [3|, but these methods bring another unpleasant obstruc-
tions such as bandwidth selection. In the next section, we present several modifications
of the minimum divergence rule studied by Broniatowski & Vajda (|2]) avoiding these
complications as well.

3 Power subdivergence and superdivergence estimators

We shall regard the probability measures P € P and ) € Q for Q = P U Py,
Consider the family of finite expectations

D, (P, Q) = /¢'(pe/pé) dPa+/¢#(pe/p§) dQ, (P, Q) eP®Q (6)

parametrized by (¢,0) € ® ® ©, where

o7 (t) = ¢(t) —tg'(t) forevery ¢ € ®

and ¢’ denotes the derivative of ¢. For (6) to be correctly defined, we assume that the
integrals exist and have a finite value.



62 L Frydlova

Now, the maximum subdivergence estimators with escort parameter § € @ (briefly,
the maxD -estimators) are defined as

0.0 = argmaxy Dy 5(Py, P) = argmax; [/¢ (PG) s ;Qs# ( g;)]
)

and the minimum superdivergence estimators (briefly, the min D¢ -estimators) as

04n = argming sup; D, 5( Py, P,) = argmin, sup; [/¢ (pa) dPy + — Z¢# po(X. )] :

p .

If we restrict ourselves to a subclass of these estimators determined by the power
divergences given in (2), by employing the power functions ¢, from (3) and (4) we receive
for a > 0 formulas

O00.n = argming M, (P, 0) (7)
and ~ _
Oon = argmaxyinfy; M, o(Py,0) or 6,, = argmaxy M, (P, 000n) (8)
where
~ 1 Do 1 “~ (pe(Xi)\* .
Myo(P,,0) = /(—) dP; + < ifa>0 a#1
ol ) 11—« Di an 21 pi(X;)

(9)

_ /ln—dPng Zp9 ifo =1

forall Q € Q =P UQ and
00,0, = argmaxy X7 Inps(X;) and 6, = argmax, X7, In py(X;) (10)

for « = 0. It is obvious that in this case the estimators coincide with MLE’s, hence the
classes of maxD, -estimators and of minDy-estimators are extensions of the MLE.

3.1 Power subdivergence estimators and power superdivergence
estimators in the normal distribution model

Let the observation space (X, .A) be (R,B) and P = {FP,, : p € R, 0 > 0} be the normal
family with parameters of location p and scale o (i.e. variances 0?). We are interested in
the minD,-estimates (fta,n, 0a,n) and the maxD,-estimates (fiq,u,0n, Tapuon) With power
parameters o > 0 and escort parameters (u,0) € R® (0, 00).

If « = 0 then these estimators reduce to

n

_ i 1 ¢ 1 _
(MO,na UO,n) - (MO,,u,cr,nu UO,u,U,n) - 5 Z Xiu ﬁ Z (XZ - MO,u,U,n)Q (]-1)
=1

i=1
which is a maximum likelihood estimate in the family of normal distributions.
For a > 0, o # 1 the function (9) becomes

~ ~ 1 Pu,o “ 1 a P U(Xi) “
MOHMU(PM 2 U) = / < - ) dpﬂﬁ +— § : < - (12)
1—a an ;)

Di,é P (Xi




Performances of Modified Power Divergence Estimators in Normal Models 63

where o N a N
Puo (@) _(Z exp oz — N)Q o (z — N)2
pﬂﬁ(x) g 252 202 ’
and
« _ 1 — _ M2 ~2 1 — 2
/ (ZM) dPﬁ5 = eXp Oé(~ Oé)(lu Iu) — ln \/QU ~+ ( a)a .
Piié ’ 2[ad? + (1 — av)o?] gegl-a
For a =1

Ml,,u,,cr(Pnu /17 5-) = lim Ma,u,U(PTw ﬂ? 5-)

a—1

o IR

X % Z <§) exp { (Xzé;f/«) . (Xz‘Q;QN) } ‘ (13)

i=1

Q|
N——
[\
|
—_
—_

In [2], Vajda shows that the maxD,-estimators of location are Fisher consistent in
the normal family P, = {P,, = N(u,0%) : p € R} with ¢ > 0 fixed if and only if
o = 1, which suggests an easy loss of consistency of these estimators. We shall inspect
this property by simulations in the next chapter. We shall also examine whether the
maxD,-estimators escorted by MLE 7,, = fig ., i.€. flar,n, are Fischer consistent under
all hypothetical models P, , = N(u,0?), o > 0, and possibly consistent and robust under
the contaminated versions of these models.

4 Computer Simulations

This chapter is to present the results obtained by applying the methods of Broniatowski
& Vajda introduced in the previous chapters. We target the study at the power subdi-

vergence and power superdivergence estimators of location given by
n

- = 1
MHon = Ho,un = X, = ﬁ ;Xi

and fan = argmax,,inf; Mo, (P,, i) floun = argming Mo, ,(Py, fi)

for « > 0 with M, ,(P,, fi) given by (12) with parameter ¢ = 1, and the power subdiver-
gence and power superdivergence estimators of scale given by

1 n
~ 2
Oon = 00,00n = Sn = E XZ
n < 1
1=

and Oan = argmax,infz M, ,(P,, ) Gaom = argming M, ,(P,, o)

for « > 0 with M, ,(P,,) given by (12) with parameter 4 = 0. Here Xj,..., X,, are
observations on the convex mixtures P. = (1 — )P + @, P is a standard normal model
with location = 0 and scale o = 1, further denoted by N(0, 1), and Q is successively
normal (N(0,9), N(0,100)), logistic (Lo(0, 1)), and Cauchy (C(0,1)) distribution. The
contamination we use is 0, 1, 5, 10, 20, 30 percent respectively, i.e. £ takes on the values
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0, 0.01, 0.05, 0.1, 0.2, and 0.3. The sample size n is considered successively 20, 50, 100,
200, 500. B

In case of minD,-estimators fi4 n, 0q,n We take into account only power parameters 0,
0.01, 0.05, 0.1, 0.2, and 0.5. In the case of maxD,-estimators fi, ,, We consider the same
values of power parameter and in addition to that we select the escort parameters p =
0, 0.1, 0.2, 0.5, 1 and finally u = X,, (MLE). For maxD,-estimators 7, ,, we consider
the same values of power parameter and the escort parameters o = 0.5, 1, 1.2, 1.5, 2 and
finally 0 = S, (MLE) and o = 1.483 med;(|X;|) (MAD estimate of scale for known
location parameter equal to 0, otherwise MAD = 1.483 med;(|X; — med;(X;)|)).

To evaluate the behavior of power superdivergence (or power subdivergence) esti-
mators we generate K different data samples (K=100 or K=1000) to gain K different
estimates (further indexed by *)) and we compute means and standard deviations

m(p) = % > ) s(p) = % > (b — m(p))?

mo) == S0l slo) = | Dol - m(o))?

1

k=
K
k=

of the minD,-estimators (or maxD,-estimators) and maximum likelihood estimators X ;k)
and S, Making use of these we receive the relative empirical efficiencies

K (k) K
% ne (X5 ) e (S —1)?
K eref(o) = =K >
K Zk:l(uavn) I7d Zk:1(0a,n - 1)

eref (u) =

4.1 Results for power subdivergence estimators of location

First we inspect the development of consistency, efficiency and robustness in case of
mixture (1 —¢)N(0,1)+eN(0,9) for moving value of escorting parameter y = 0, 0.1, 0.2,
0.5, 1 and contamination parameter ¢ = 0, 0.01, 0.05, 0.1, 0.2, and 0.3.

For power parameter a = 0 we can conclude that the estimates coincide with MLE,
ie. eref(i) = 1, as was expected. In case of escort parameter y = 0, the maxD,-
estimators for the uncontaminated data still more or less copy the behavior of MLE
even for values of a > 0, but as the contamination grows, we observe that the mean and
standard deviation of maxD,-estimator move apart from MLE taking on lower values than
maximum likelihood estimate of the contaminated data. In case of m(ji) the difference is
only slight (yet favourable), but in case of s(j1) is the difference apparent (cf. Figure 1) and
causes a fair increase in empirical relative efficiency. Figure 2 displays the development of
eref(f1) for different values of power parameter o showing us that the robustness tendency
is growing stronger with « increasing. Since the dependence on sample size n is almost
constant for n > 50, we present in Figure 3 the value of eref(i) only for n = 500
as a function of contamination parameter ¢ for different levels of a. This shows the
rising efficiency of maxD,-estimator (compared to MLE with o« = 0) with increasing
contamination.

All that was stated above holds for p = 0. However, the situation changes to the
worse for the parameter u moving to 1. The consistency, efficiency, even the robustness
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tendencies slowly vanish, and we see that apart from the case of y = 0 the maxD,-
estimators do not possess the useful properties we would desire.

The previously described behavior can be seen also for the other mixtures, i.e. con-
tamination by N(0,100), Lo(0,1) and C(0,1). It was only observed to grow stronger
as the outliers get farther away, as is the case of contamination by Cauchy distribution.
Especially the robustness of the estimator escorted by p = 0 is rather stunning compared
to MLE. Unfortunately also the loss of consistency for ; moving to 1 is faster.
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0,35 4
0,3 1
0,25 4
0,2 1
0,148 4
0,1 4
0,08 4

0

100 200 300 400 a00
eps=0, alpha=0 eps=0, alpha=0.5
= = = =gps=0.3, alpha=0 eps=0.3, alpha=0.5

Figure 1 : Dependency of standard deviation of the maxD,-estimators with escort pa-
rameter 1 = 0 on sample size n for data distributed by (1 —¢)N(0,1) +eN(0,9)
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Figure 2 : Dependency of empirical relative efficiency of the maxD,-estimators with
escort parameter ;1 = 0 on sample size n for data distributed by 0.7N(0,1) + 0.3N(0,9)
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Figure 3 : Dependency of empirical relative efficiency of the maxD,-estimators with escort
parameter p = 0 on contam. parameter ¢ for data distributed by (1—e)N(0,1)+eN(0,9)
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In accordance with the fact that the best results we obtained were for ;1 = 0 which is
the true parameter of the estimated data, some very good results were received for the
value of the escort parameter ;1 = X, as was already indicated by theory in [2].

For contamination by N(0,9), N(0,100) and Lo(0, 1) we received perfect match with
MLE for all values of . Nevertheless, an outstanding behavior was noticed in case of
contamination by Cauchy distribution, where the power subdivergence estimator shows
a significant resistance to distant outliers ( cf. Figure 4). In this situation, the standard
deviation s(fz) of the maximum likelihood estimator with great volatility copies the oc-
currence of extreme outliers, while the standard deviation of MLE-escorted subdivergence
estimator retains low values and steady convergence to 0. This, clearly, results also in
huge empirical relative efficiency.

30 -
289 _a=n»

20 4 .

1] 100 200 300 400 a00
eps=0, alpha=0 eps=0, alpha=0.45

= = = =epps=0.2 alpha=0

eps=0.2, alpha=0.5

Figure 4 : Dependency of standard deviation of the maxD,-estimators with escort pa-
rameter © = X, on sample size n for data distributed by (1 — )N (0,1) +eC(0,1)

4.2 Results for power subdivergence estimators of scale

Lets again first inspect the development of consistency, efficiency and robustness in case
of mixture (1 —¢)N(0,1)4+eN(0,9) for the values of escorting parameter o = 0.5, 1, 1.2,
1.5, 2 and contamination parameter € = 0, 0.01, 0.05, 0.1, 0.2, and 0.3.

As expected, for « = 0 we get the exact MLE, hence eref(¢) is always equal to 1.
For ¢ = 0, i.e. the uncontaminated data, the subdivergence estimators more or less
correspond with the maximum likelihood estimators, but they do not outperform them.
With rising value of parameter « also the standard deviation s(&) rises a little, which
causes a certain loss of efficiency. For ¢ > 0 and escort parameters ¢ = 1, 1.2, 1.5, and
2 we observe a loss of consistency, however the MLE loses its consistency too, and with
rising contamination we see that the maxD,-estimators possess lower values of means and
standard deviations then MLE and their performance is therefore better. The best results
were received for escort parameter o = 0.5. Here, the estimates retained the consistency
even for highly contaminated data, showed substantially lower values of m(&) and s(¢),
which resulted in high empirical relative efficiency (cf. Table 1).

The maxD,-estimators for the other mixtures behave very much the same, the de-
scribed behavior only gets stronger with contamination by distant outliers. For data
contaminated by N(0,100) and C(0,1), the subdivergence estimators perform better
then MLE even for very small level of contamination ¢ = 0.01 and all values of escort
parameter o.
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As in the location case, we tried to escort the subdivergence estimator with the MLE
o = 8,. However, we received only a perfect match with maximum likelihood estimator,
showing no robusness whatsoever. This motivated us to plug in a simple and robust
estimate of scale called median absolute deviation (MAD), which showed up to be a
better choice. For this type of estimators we observe that while the power parameter «
moves away from 0, the values of m(5) decrease and the values of s(&) increase. This
causes the efficiency to rise at first and than fall down slowly (cf. Table 2). However, by
direct comparison with Table 1 we see that the performances of these estimators are not
as good as those of the estimators escorted by o = 0.5.

a/n 50 100 200 500

m(&) s(o) eref(d) | m(a) s(&) eref(d) | m(&) s(&) eref(d) | m(&) s(&) eref(d)
0.00 | 1.336 0.256 1.000 1.326 0.175 1.000 1.336 0.125 1.000 1.336 0.079 1.000
0.01 | 1.297 0.214 1.326 1.291 0.147 1.288 1.296 0.104 1.301 1.297 0.065 1.288
0.05 | 1.207 0.147 2.757 1.206 0.103 2.580 1.205 0.073 2.705 1.207 0.044 2.671
0.10 | 1.156 0.125 4.450 1.155 0.088 4.321 1.152 0.062 4.749 1.153 0.038 4.789
0.20 | 1.114 0.121 6.446 1.110 0.083 7.210 1.105 0.059 8.763 1.106 0.036 9.454
0.50 | 1.089 0.143 6.302 1.079 0.097 8.780 1.072 0.069 12.97 1.072 0.043 16.94

Table 1: The evaluation characteristics of maxD,-estimators for mixture 0.9N(0,1) +
0.1N(0,9) and escort parameter o = 0.5

a/n 50 100 200 500

m(&) s(o) eref(d) | m(a) s(&) eref(d) | m(&) s(&) eref(d) | m(&) s(&) eref(d)
0.00 | 1.336 0.256 1.000 1.326 0.175 1.000 1.336 0.125 1.000 1.336 0.079 1.000
0.01 | 1.176 0.204 2.464 1.132 0.140 3.711 1.106 0.103 5.911 1.085 0.073 9.559
0.05 | 1.108 0.191 3.688 1.082 0.147 4.806 1.072 0.113 7.093 1.072 0.091 8.853
0.10 | 1.088 0.199 3.776 1.071 0.162 4.381 1.067 0.130 6.005 1.071 0.106 7.283
0.20 | 1.073 0.215 3.450 1.062 0.180 3.761 1.065 0.154 4.618 1.070 0.126 5.750
0.50 | 1.064 0.252 2.638 1.053 0.211 2.895 1.062 0.191 3.181 1.070 0.158 3.992

Table 2: The evaluation characteristics of maxD,-estimators for mixture 0.9N(0,1) +
0.1N(0,9) and escort parameter o0 = M AD

4.3 Results for power superdivergence estimators

For the power superdivergence estimators of location, as well as in case of maxD,-
estimators of location escorted by u = X, we received a perfect match with maximum
likelihood estimatior for all mixtures except for the mixture (1 —¢)N(0,1)4+eC(0,1). In
this case again, with higher contamination the minD,-estimators show favourable robus-
ness and rising efficiency. Yet, these robustness tendencies are not as strong as with
power subdivergence estimators escorted by p = 0 or u = X,,.

When estimating the scale parameter, we also received estimates that very well coin-
cided with the MLE, even in the case of contamination with Cauchy distribution. These
estimates showed no robustness at all.

Another demotivating feature of superdivergence estimators computation is extremely
high computing time caused by double optimization. This price is too high to pay for the
above mentioned robustness, and it strongly discourages the users from further utilization.
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5 Conclusion

To resume, the power subdivergence estimators of location do not possess the required
properties except for the case with escorting parameter 1t = 0 or 4 = X ,,. These estimates
show consistency copying maximum likelihood estimates, and they exhibit high empirical
relative efficiency and considerable robustness. This resistance to distant outliers together
with consistency and efficiency is a key result of our simulation, and it motivates us to
explore the maxD,-estimators further.

The power subdivergence estimators of scale also suffer by the loss of consistency
but their performance is usually better than that of the maximum likelihood estimator,
especially when the data are contaminated by distant outliers. The best results were
received for the cases with escorting parameter o = 0.5 where the consistency was retained
and the efficiency was high due to the decrease of means and standard deviations of the
subdivergence estimators. Some very good results were obtained also for escort parameter
equal to median absolute deviation, but the performances surprisingly were not better
those of the subdivergence estimators escorted by ¢ = 0.5. This also brings up many
questions and inspires us for the future research.

The power superdivergence estimators of location are equivalent to standard maxi-
mum likelihood estimator, apart from the cases of high contamination by heavy-tailed
distribution. Here it displays certain robustness which, however, does not overly impress
and which does not compensate the extraordinary computational demands. The power
superdivergence estimators of scale also very well correspond with the standard maximum
likelihood estimator.

References

[1] M. Broniatowski and A. Keziou. Minimization of ¢-divergences on sets of signed
measures. Studia Scientiarum Mathematica Hungarica, vol. 43, (2006), 403-442.

[2] M. Broniatowski and I. Vajda. Several Applications of Divegence Criteria in Con-
tinuous Families. Research Report No. 2257, Institute of Information Theory and
Automation, Prague, (2009).

[3] L. Frydlova. Minimum Kolmogorov distance estimators. Thesis, Czech Technical Uni-
versity, Prague, 2004.

[4] L. Frydlova. Modified Power Divergence Estimators: Performances in Location Mod-
els. Research Report No. 2258, Institute of Information Theory and Automation,
Prague, (2009).

[5] F. Liese and I. Vajda. On divergences and informations in statistics and information
theory. IEEE Transactions on Information Theory, vol. 52, No. 10, (2006), 4394—
4412.



Minimum Distance Estimate®

Jitka Hanouskova

3rd year of PGS, email: kj@email.cz
Department, of Mathematics
Faculty of Nuclear Sciences and Physical Engineering, CTU in Prague

advisor: Vaclav Kius, Department of Mathematics, Faculty of Nuclear Sciences
and Physical Engineering, CTU in Prague

Abstract. Minimum distance density estimates (MDE) are considered. Via numerical simula-
tion, robustness and consistency of many types of MDE are examined. We consider Kolmogorov,
Lévy, discrepancy, and Cramer—von Misses distances. For all but last distances we have proven
consistency of the order n=/2 in L;—norm if the sample is non—contaminated. Graphs for con-
taminated case are presented and discussed. Further, new type of MDE are introduced, namely,
with generalized Cramer—von Mises (GCM) and Kolmogorov-Cramer (KC, ) distance. Vari-
ous types of GCM estimates are simulated and results are presented and discussed. As results
of simulation show, the new defined estimates possess some robustness and consistency even for
heavily contaminated distributions (35% contamination).

Keywords: minimum distance estimate, consistency, Cramer-von Mises estimate

Abstrakt. Zkoumame odhady s miniméalni vzdalenosti (MDE). Pomoci numerické simulace
je zkoumana konzistence a robustnost téchto odhadu. Uvazujeme odhady s minimalni Kol-
mogorovskou, Lévyho, diskrepanéni a Cramer-von Mises vzdalenosti. Pro vSechny aZz na posledni
zminény mame teoreticky dokazanou konzistenci a ¥4d konzistence n=1/2 v Lj—normé a stfedni
hodnoté L;—normy pro neznecisténou distribuci. Grafy pro znecistény piipad jsou prezentovany a
diskutovany. Déle jsou zavedeny dva nové odhady s minimalni vzdalenosti, jmenovité se zobec-
nénou Cramer-von Mises vzdalenostzi a Kolmogorov-Crame vzdalenosti. Vysledky simulaci
ukazuji, ze oba nové zavedené odhady vykazuji robustnost a konzistenci i pro velka znecisténi.

Klicovd slova: odhady s miniméalni vzdalenosti, konzistence, Cramer-von Mises odhad

1 Introduction

This paper focuses on the minimum distance density estimates. Consistency and robust-
ness of many type of the minimum distance estimates are explored. For non contami-
nated case Kus [10] has proven conditions for consistency of the order n=/2 in (expected)
Li-norm for Kolmogorov estimate. Hanouskova [8| has weakened this conditions and ex-
tended them on Lévy and discrepancy estimate. Further, Cramer-von Mises and newly
defined generalized Cramer-von Mises and Kolmogorov-Cramer estimates are explored via
simulation. We consider non contaminated and contaminated distributions and explore
consistency and robustness of all above mentioned estimates.

*This work has been supported by the grant SGS OHK4-007/10.
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2 Basic Concepts

We introduce the notation used in the following text. Let A\ be a o-finite measure on
(R, B), where B is a borel o-field on R. Let F) be the set of distributions on (R, B) which
are absolutely continuous with respect to the measure \. Let us denote by D, the set in
Banach space L;(R,d\) containing densities corresponding to distribution functions in
Fy, by D arbitrary nonvoid subset of Dy, and by F a respective subset of F,. Further,
X, = (Xi,...,X,) denotes a random vector with independent components distributed
by a density f. Next, F,(z) represents the empirical distribution function based on X,,,
similarly v,,(B) stands for the empirical measure

1 ¢ 1 ¢
Fo(w) == Tx<ap, 7€R, v(B)=—> Iixen, BEB, (1)
j=1

J=1

where Iix; <, and Ijx;epy stand for indicators of the corresponding events.

Definition 1. Let d be a distance on a given set of probability measures P. An estimate
P, of a measure P € P (for nonparametric model), or an estimate 6,, € © of a parameter
0 (for parametric model) is called minimum d-distance estimate if it holds that

P, = arg min d(P,v,) a.s., (2)
0, = arg min d(Pp,vy) a. s., (3)

and Pn, 9 exist. If the measures from P are absolutely continuous with respect to the
measure A, then the density fn corresponding to the measure P ( fn = dPn /d\) provides
the minimum d distance estimate of probability density f corresponding to the measure

P.

In the following text p; denotes a distance between two probability densities f,g €
D, defined by p4(f,g) = d(P,Q), where P,(Q € P are the corresponding probability
measures. If the distance d is a metric, p; need not be a metric. We use the concept of
equivalence classes (f ~ ¢ iff ps(f,g) = 0) in order to convert p,; into a metric.

We deal with Kolmogorov (pg), total variation (py ), discrepancy (pp), Cramer-von
Mises (pc—n), and Lévy (pr) distances. And further, we define generalized Cramer-von
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Mises distance (pcon)-

p(f,9) = iggm) — G(7)], (4)

v(f,g)Z/!f—gldA, (5)

(f,9) = Z?E‘P(B) Q(B)|, (6)
peni(f.9) / (F(x) — G(x))*dF (x) ™)
pr(f,g) =inf{e >0:G(x —¢) —e < F(x) <Gz +¢)+ ¢}, (8)
peer(f.g) = / F(z) - G(a)|*dF(x), (9)

where B is the set of all closed balls, and P, ) are probability measures with distribution
functions F, G corresponding to the densities f, g. And « is a non-negative real parameter
of generalized Cramer-von Mises distance. Obviously, for the choice of parametr o = 2
the generalized Cramer-von Mises distance converts to the original Cramer-von Mises
distance.

Further, we define new type of minimum distance estimator. We define so called
Kolmogorov-Cramer distance with parameter o, m (dgc, ) between empirical distribu-
tion function and arbitrary distribution function in the following way

Definition 2. Let (x1,...,x,) be a realization of random vector X,,, o real parameter,
and F arbitrary distribution function then a sequence (G;)?" is defined as

G = |Fn(x;) — F(z)|“proi=1,....n (10)
Gonr—i = [Fo-(2;) — F_(z;)|" proi=1,...,n. (11)

Where F,_(z;) = lim F,_(z) and simillar F'_(z;) = lim F_(z). Then Kolmogorov-

T—T;— T—IT;—
Cramer distance is defined

Ao, (Fuy F) Z G (12)

where G(;) denotes arranging in order of size.

In other words, we can say that the Kolmogorov-Cramer distance is one over m times
sum of m largest of the G;, i = 1,...,2n. We call the distance Kolmogorov-Cramer,
because for m = 1 it converts to Kolmogorov distance to the pover o and the shape is
inspired by Cramer-von Mises distance.

Definition 3. We say that an estimate ﬁ of a density f is consistent in the given py
distance (in the expected p, distance) iff pi(fn, f) — 0 a.s. ( Epa(fn, f) — 0). We say
that the estimate f,, is consistent of the order r, — 0 in the distance p,, (in the expected

paq distance) iff pd(]?n, f)=0,(ry), (Epd(ﬁw f)=0(r.)).
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3 Consistency in L;—norm

Kus [10] presents conditions for consistency and for consistency of the order n~'/2 of Kol-
mogorov estimates. Conditions are based on domination relation between Kolmogorov
distance and total variation distance. Furthermore sufficient condition for the domina-
tion relation is proven ibid. All previous results could be summarized in the following
way. If the degree of variation of family D is finite, then all Kolmogorov estimates of
densities from D are consistent of the order n~'/2 in the (expected) L;-norm. Further,
generalization of this theory is given in Hanouskova [8]. Namely, new (weaker) condi-
tions for consistency and for consistency of the order n='/? of Kolmogorov estimates are
proven. For this aim an asymptotic domination and a partial degree of variation were
defined. The main result could be summarized by following statement. If the partial
degree of variation of family D is finite, then all Kolmogorov estimates of densities from
D are consistent in the (expected) L;—norm. And if, moreover, some additional, but not
as restrictive as finiteness of the degree of variation, assumptions hold, then we gain the
order n~'/2 of consistency in the Li-norm and in the expected L;-norm. For details see
Hanouskova [8].

Now we explore the consistency and the order of consistency of our minimum distance
estimates for the case of distances differing from the Kolmogorov distance. Let us suppose
that the asymptotic domination is fulfilled for a family D C D,. Further, assume that for
a given distance d it holds both inequalities p; < hi(px) and px < ha(pg) with two real
functions hy, he continuous at zero point with zero value in zero argument. If there exist
positive constants K; such that h;(x) < Kz, i = 1,2, in a neighborhood of zero, then
the minimum d distance estimates of densities from D are consistent of the order n='/2 in
L;—norm and the expected L;—norm. (See Hanouskova [8] for details). The above stated
conditions are satisfied for example for Lévy and discrepancy distances, i.e.

pr(f,9) < pr(f.g9) < (14 sup|G')pe(f,9)- (14)

For specific inequalities derived in spaces of probability densities, see Gibbs & Su [5].

Moreover, we were able to prove consistency and n~'/? order of consistency for
Kolmogorov-Cramer estimate even though the upper mentioned inequalities do not hold.
For Cramer-von Mises and generalized Cramer- von Mises distances we failed to show the
desired inequalities leading to n~'/2 consistency. Nevertheless, we hoped for consistency
of this two estimates, so we produced numerical simulation to ascertain. Via simulation
we study robustness of all upper mentioned estimates.

4 Numerical simulation

Further, we considered normal distribution N(0, 1) contaminated by the normal distribu-
tion N(0, 100) and explore consistency of all above mentioned minimum distance estima-
tors. For contaminated case we have not theoretical results guaranteeing the consistency.
Thus, this case is explored only via simulation. Normal distributions with 5%, 10%,
15% contamination were considered and the consistency results (and related robustness
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as well) are presented in Figure 1 for Kolmogorov, Lévy, discrepancy, and Cramer-von
Mises estimate and Figures 2, 3 present consistency results for generalized Cramer-von
Mises estimates with parameter o = 0.25,0.5,0.75,1.0,1.2,1.4,1.6, 1.8.

The consistency is now getting worse with increasing contamination for the Kol-
mogorov, Lévy, and discrepancy metrics. Under 10% and 15% contamination all esti-
mates, except for Cramer—von Mises and generalized Cramer-von Mises, achieve the best
Li—error for n = 50 or n = 100 observations and for greater sample sizes the L;—norm
slightly increases possibly to a limiting value. Nevertheless, it can be seen from Figure 1
that the Cramer-von Mises and all examined types of generalized Cramer-von Mises es-
timates seem to preserve good consistency even under 5%,10%, and 15% contamination.
Thus, Cramer—von Mises and generalized Cramer-von Mises estimates show some robust
behavior.

Kolmogorov estimate Lévy estimate
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Figure 1: L;—error of MD estimates for Normal distribution with parameters pg = 0,
o2 = 1 contaminated by Normal distribution with parameters y = 0, o = 100.

Regarding the robustness, it can be seen directly from the Figures 1, 2, 3 that Cramer—
von Mises type of estimate has the most robust behavior of all for sample sizes greater
than 200. Further, we want to determine which choice of parameter « is the best (in sence
of robustness and consistency, too). However, the shapes of graphs for Cramer-von Mises
type of estimates are very similar and it is not easy to determine which choice of « is the
best. Therefor Figure 4 presents average absolute error of estimated parameter (o) with
respect to the true value of parameter (og) for 5%,10%, 15%, and 35% contamination.
As it can be seen the best result for 5% contamination is achieved for parameter o =
0.5,0.75,1.0, for 10%,15%, and 35% contamination is the best result achieved for a@ =
0.25. For the 5% contamination case the trend is not monotonic. The line is serrated
with local extremes (minims). For 10% contamination case the average absolute error
is monotonically decreasing for a« < 1. For all but 5% and 10% contamination cases
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Figure 2: L;—error of generalized Cramer-von Mises estimates for Normal distribution

with parameters pg = 0, 07 = 1 contaminated by Normal distribution with parameters
pw=0,c?=100.
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Figure 3: L,—error of generalized Cramer-von Mises estimates for Normal distribution
with parameters jy = 0, 02 = 1 contaminated by Normal distribution with parameters

1 =0, 0% = 100.

decreases the average absolute error monotonically if the o tends to zero. It could lead
us to the idea that the smaller parameter a we choose the more robust estimator we
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Figure 4: Average absolute error of estimated parameter with respect to the true value
of parameter |0y — o] of various types of generalized Cramer-von Mises estimates.

gain. However, parameter o could not be taken as small as possible. Naturally, there is
a threat of loosing efficiency due to gaining robustness. For more accurately determining
of the best choice of parameter « to obtain robust and efficient estimate a comprehensive
simulation study would be beneficial.
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Figure 5: Average absolute error of estimated parameter with respect to the true value
of parameter |0y — o] of Kolmogorov-Cramer estimates for various sample sizes.
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Further we examine the robustness property for newly defined Kolmogorov-Cramer
estimate. Theoretical proof guarantee us the consistency and order of consistency of this
estimate. For robustness we have no theoretical results; our investigation is based on
simulation. Figure 5 presents average absolute error of estimated parameter (o) with
respect to the true value of parameter (o() for 15% contamination and various sample
sizes (n = 200,350,500). As can be seen from the Figure 5 the bigger the parameter
m is the smaller absolute error we gain for all examined sample sizes. And as can be
seen from the last graph in Figure 5 the Kolmogorov estimate has the biggest absolute
error, and the smallest absolute error has the Cramer-von Mises estimate with param-
eter . The Kolmogorov-Cramer estimate’s absolute errors lie between absolut error of
Kolmogorov and Cramer-von Mises estimate. The result of this simulation study is follow-
ing, the bigger parametr m we choose the smaller absolute error we gain. It means that
the Kolmogorov estimate is the less robust and Cramer-von Mises is the most robust of
our examined estimator. Newly defined Kolmogorov-Cramer estimator create transition
from Kolmogorov to Cramer-von Mises estimate. However, for Cramer-vonmises estimate
we have not proven the consistency (and order of consistency) and for Kolmogorov and
Kolmogorov-Cramer estimate we have theoretical results for non contaminated distribu-
tion.

5 Conclusion

Via numerical simulation we explored consistency of Cramer-von Mises and generalized
Cramer-von Mises estimates. Further, consistency on contaminated distribution was
explored. Kolmogorov, Lévy, and discrepancy estimate loosed their consistency on con-
taminated sample. On the other hand Cramer-von Mises type of estimate preserve some
consistency even under heavier contamination. Moreover, we determine the best choice
of parameter « of generalized Cramer-von Mises estimate in sense of robustness and con-
sistency too. As the best choice was determined case o = 0.25, the smallest of explored
choices (Choice of parameter « inside interval < 0.25,2 >) were explored). However the
possible change of efficiency was not explored. Thus, more detail simulation study will
be beneficial. In the end the robustness of newly defined Kolmogorov-Cramer estimate
was explored via simulation with this results. The bigger parameter m we choose the
more robust the estimate is, i.e. the most robust of Kolmogorov-Cramer estimate is
the Cramer-von Mises estimate. However, for Cramer-von Mises estimate we have no
theoretical results about consistency for non contaminated distribution. More detailed
numerical study and would be beneficial. Moreover, there is a chance to extend the proof
of the order of consistency of Kolmogorov-Cramer estimate to case when the parametr
m depends on sample size n.
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Abstract. The phase-field method has appeared in the context of diffuse interfaces. It has been
applied to the three major materials processes: solidification, solid-state phase transformation,
and grain growth and coarsening. Very recently, a number of new phase-field models have been
developed for modelling thin films and surfaces (see [4]). The first part of this contribution
is concerned with the phase-field model of spiral crystal growth [7] described by the Burton-
Cabrera-Frank theory [2]. Here, we investigate the influence of numerical parameters on the
growth patterns. We then present computational studies related to the pattern formation and
to the dependence on model parameters. The second part is concerned with the phase-field
model [9, 10] of heteroepitaxial growth. Finally, we present our latest results.

Keywords: phase-field method, spiral growth, heteroepitaxial growth, ATG instability, FDM,
FEM

Abstrakt. Metoda phase-field se objevila v souvislosti s difuznimi rozhranimi a byla aplikovana,
na tii hlavni procesy v materidlech: tuhnuti, fizovy pfechod pevné latky a rist zrn. V soucasné
dobé fada novych modelu phase-field byla vyvinuta pro modelovani povrchii a tenkych vrstev
(viz [4]). Prvni ¢ast tohoto pFispévku se tyka modelu phase-field pro spiralovy rist krystala [7],
popsany Burton-Cabrera-Frankovou teorii [2]. Zde zkoumame vliv numerickych parametri na
rust krystali, vysledky jsou pak prezentovany. Druhé ¢ast se zabyva modelem phase-field pro
heteroepitaxni rist, zalozenym na [9] a [10]. Nakonec prezentujeme nase nejnovéjsi vysledky.

Klicovd slova: metoda phase-field, spirdlovy rist, heteroepitaxni rist, ATG nestabilita, metoda
siti, metoda konecnych prvki

1 Spiral Crystal Growth

1.1 The Model

Crystallization is the process where solid crystals are formed from melt, solution, or
vapour phase. There are two major stages involved in the crystallization process — nu-
cleation and crystal growth. Nucleation is the stage where crystal forming units (atoms,
ions or molecules) gather into clusters which are unstable until they reach a critical size.
Stable clusters are called nuclei. After nuclei are created, crystal growth begins. It is the
stage where new crystal forming units are incorporated into the crystal lattice.

Real crystals contain dislocations which are crystallographic defects in the structure
of the crystal lattice. The presence of dislocations influences the mechanism of crystal
growth. If a screw dislocation is present in the crystal lattice of the substrate, a step with
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a zero height at the dislocation core is created. This step winds around the dislocation
and produce a spiral.

Classically epitaxial crystal growth is modelled using Burton-Cabrera-Frank (BCF)
theory (see [2]). According to that theory, atoms are first adsorbed to the crystalline
surface. Such atoms are called adatoms. They then diffuse freely along the surface and
they can either desorb from the surface with a probability 1/7s per unit time, or they are
incorporated into the crystal at one of the three sites: ledge site, step site or kink site.
Incorporation at a kink site will be the most energetically favourable.

|;| deposition

dif fusion
-~ |}

Figure 1: Burton-Cabrera-Frank model.

The basic equations in the phase-field formulation [7| of BCF model are

0c = DAc— Ry - Q0 10,, (1)
Ts
ad® = EAD + sin(2n(® — D)) + Ac(1 + cos(2m (P — Dg))), (2)

where ¢ is the adatom density, D is the surface diffusion coefficient, 75 is the mean time
for the desorption of adatoms from the surface, F' is the deposition rate, ® is the surface
height in units of atoms, « is the time relaxation parameter, ¢ is the width of steps
between terraces, ®g is the height of the initial substrate surface and A is the coupling
constant.

The boundary conditions are given by

Jc 0o

—(t,X) = a_n

- (t,x) = 0, € (0, 7). (3)

The initial conditions are given by

~—
=
—~

=~

c(0,x

¢(0,x) = Pg(x). (5)

1.2 Numerical scheme

We use an explicit scheme of the finite difference method to solve the free boundary
problem of spiral crystal growth. The first step in the discretization is to divide the
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computational domain into a two-dimensional grid and then derivatives are replaced
with equivalent finite differences.

We consider the computational domain S to be a rectangle (0, L;) x (0, Ly) which
is to be discretized. We partition the domain S using a grid of internal nodes w;, =
{(ih1,jho)|i=1,.. ., Ny —1,5=1,... — 1}, where hy = 2+ hy = F are the mesh sizes
in S. We discretize the time interval usmg a mesh [0,7] : T = {kﬂk =0,..., Nr}, where

T = NLT is a time step. Then we can consider a grid function u : T X wp — R for which

’LLZ = U(ihl, jhg, kT)
The time derivative is approximated by forward difference

uk+1 uk

atu ~ 77_ zj,

and the space derivatives are approximated by second-order central differences:

k
82 k ~ Uiy1,5 2“ +"z 1,5
T z] h2 )
2u +u
h2

uk
82 kE o~ Yig+1 i,j— 1
YRS

Then the Laplace operator in two dimensions is given by Ayufy; = djul; + djuy;.
The explicit scheme has the form

k+1 k

= E 0D} + sin(2m(Py; — D))
+ /\cfj(l + cos(27r(<1>fj — ‘Pk ))) (6)
k+1 k k k+1 :
C... T — C:s @i 2
G "% _ pak - +F O-1ou i (7)
- T

fori=1,...Ny—1,7=1,...,. No— 1,k =0, ...,NT.
Discretization of the epitaxial crystal growth problem leads to a system of equations

NSRRIt LANEY: L1

k+1 k
ot = Pyt

h2
T
+ asm(Qw(@fj - @’gij))
TA 4
+ —c L1+ cos(27r(<1>k @gz]))) (8)
ko ok k
A+t = k4D Cirtg + G — 4;;5 TGt Gy
k1 _ gk
Tk T
- TF — 9
Lo+ - S o)

fori=1,..Ny—1,7=1,..., No— 1,k =0, ..., Ny. That means we can obtain the values
at time k£ + 1 from the corresponding ones at time k.

For h = hy = hsy this explicit method is known to be numerically stable and convergent
whenever % <land (s + 2L ) 1.

The boundary conditions are treated by mirroring the values in the inner nodes across

the boundary.
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face width

a 50 188 158 2t

Figure 2: Comparison of transient dynamics for different desorption times. Green (bot-
tom) line: 7 = 0.1, the surface width quickly levels off and remains constant. Red (top)
line: large 7g, the surface width changes slowly in time.

1.3 Numerical Results

In the numerical experiments, we investigated the influence of the parameter 7¢ to the
spiral growth. First, transient dynamics is quantified by defining the so called surface
width w(¢) which represents the mean fluctuation of the surface height

w(t) = (@ (.07 — (B(x, 1)),

where (f) = L™ [ fdz. (L = h(N — 1) = 50) (see Fig. 2).

Then, the parameters are set up as follows: Q = 2.0, a = 1.0, £ = 1.0, A = 10.0,
Dg = 2.0, F = 3.0, 7 = 0.00025, Ny = 100000, so that T" = 25. The dimensions of wy,
are 100 x 100 and the spatial step size is set to 50/99. The initial height of the substrate
®g is formed by %ﬂ(y/w) for the dislocation. We observed two distinguished growth
regimes. As can be seen in Fig. 3 for small 74, the spiral finds its final step spacing [
essentially after a single rotation. In contrast, for very large 7¢ the transient spiral ridge
evolves slowly towards a spiral with a constant [. This surface evolution is demonstrated
in Fig. 4.

From these numerical simulations we conclude that step spacing is dependent on
desorption time. The larger desorption time is, the smaller the step spacing is.

2 Heteroepitaxial Growth

Epitaxy refers to the oriented growth of crystalline material onto the single crystal surface.
The orientation is determined by the underlying crystal. In general, we distinguish two
cases:

e Homoepitaxy — the growth layers of the material and the substrate are of the same
chemical composition.
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Figure 3: Spiral ridge at different times ¢ for 7 = 0.1. Colour palette represents the
surface height.

e Heteroepitaxy — the growth layers of the material and the substrate are of the
different chemical compositions.

Our aim is to study heteroepitaxial growth which is under misfit stress. This leads to
morphological instability (known as Asaro-Tiller-Grinfeld instability).

We consider a system (2 consisting of two regions — a solid epitaxial film Q¢(¢) and
vapour phase QV(t). The solid-vapour interface is denoted I'(¢), which is a function of
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Figure 4: Spiral ridge at different times t¢ for large 7¢. Colour palette represents the
surface height.

time ¢ (see Fig. bc). We introduce a non-conserved order parameter
0 xe
(I)(t,X)—{ 1 XGQe

Here, the linear elastic theory is used. The stress tensor o
by Hooke’s law

(v)

;. 1n the vapour is given

gl.(;.’) = 2,u(”)ez-j + /\(”)Ekk5ij;

where einstein summation convention is implied.
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Figure 5: Heteroepitaxial growth.

(e)

Following [14] the stress tensor o, in the epitaxial film is given by

e v()
Ji(j) _ 2/1 e)el + )\ )Gkk62] — € {11+21/(e) }67,]7

Qe—0s

where 1), \*) are Lamé constants, v*) is Poisson’s ratio, where * € {e,v}. €™ = is

the misfit strain, where a., as are lattice constants of epitaxial film or substrate. The strain
Bul

tensor is given by €;; = 3 ( + 6u7) where wu; is the ith component of the displacement

vector.
The stress tensor in the system is determined from

= o I h(@)of) 1~ h(@)ol), (10)

where h(®) = ®?(3 — 2®) is the weight function for the epitaxial layer.
The equation of motion is

0,0 = AEAD+ —g/(d)

. ) NSO
= 1 )eyei +

B
£

+ O (@){ (!

1+ v 2
- m(ﬁ )}
where & = 1 represents the solid phase, & = 0 represents the liquid phase, 0 < ¢ <
1 represents the diffuse interface, ¢ is the width of the transition region, A, B,C' are
constants, ¢'(®) = 2®(1 — @)(1 — 2®), and A’ (P) = 6P(1 — D).

2.1 Numerical results

We implemented the model using the explicit scheme based on FDM for the phase-field
equation (11). For the elastic problem, we used FreeFem-++ based on FEM. Computa-
tions of stress field were very time consuming.

In the numerical experiments, we set up initial surface of heteroepitaxial film to be
rectangular and material parameters of silicon are taken. We observed that both tops
and valleys of the surface profile deepen but the valleys deepen at higher velocity (see
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Fig. 6). It is not obvious from the experiments whether this can lead to fracture. We
found that numerical noise avoid us to simulate the problem in longer time. Therefore,
our aim in the future is to develop better numerical schemes suitable for the model of
heteroepitaxial growth.
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Figure 6: Evolution of heteroepitaxy at different times.
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Abstract. In recent years, the so called NoSQL DBMS starts profiling against a widely used
and proven relational DBMS. These database systems are characterized by an effort to improve
scalability at the expense of features of the database system. They are designed for specific
applications and thus are different from each other. The article compares the three most popular
CouchDB, MongoDB and Google Bigtable with emphasis on scalability.

Keywords: scalability, noSQL, MongoDB, CouchDB, Google BigTable

Abstrakt. V posledni dobé se vii¢i Siroce pouzivanym a osvédéenym rela¢nim DBMS zac¢inaji
profilovat tzv. NoSQL DBMS. Tyto databazové systémy se vyznacuji snahou o lepsi Skalova-
telnost za cenu sniZeni pozadavki kladenych na databdzovy systém. Tyto systémy jsou kon-
struovany pro specifické oblasti pouziti a jsou tedy od sebe odlisné. V ¢lanku srovnévam tii
nejpopularnéjsi CouchDB, MongoDB a Google BigTable s dirazem na Skalovatelnost.

Klicovd slova: skalovatelnost, noSQL, MongoDB, CouchDB, Google BigTable

1 NoSQL DBMS (Structured data storages)

je souhrny néazev pro ruzné databazové systémy (DBMS), jez se snazi umoznit Skdlova-
telnost aplikaci na nich postavenych. Mezi predstavitele téchto systému patii CoucheDB,
MongoDB, Google BigTable a dalsi. Tyto systémy nemaji jednotnou funkénost stanove-
nou standardem. V zasadé je lze rozdélit na systémy reprezentujici data jako dokumenty,
grafy, provazané objekty, slovniky (hash tabulky) a XML databaze. Cilené relaxuji né-
které podminky ACID (atomi¢nost transakci, konzistenci, izolaci zmén v ramci transakei
a trvanlivost dat). Dotazovani téchto systému je téz omezené, Casto neexistuje podpora
pro podobné operace jako maji rela¢ni databazové systémy: napt. operace databazového
spojeni (join), agrega¢ni funkce. V téchto systémech se po¢ita s nasazenim na clusteru a
je tedy kladen diraz na efektivitu sitové komunikace mezi uzly clusteru. Tyto DBMS se
nedotazuji pomoci SQL, ale vétsinou pomoci vlastniho proprietarniho jazyka s omezenou
funkcénosti.

Spole¢nym rysem téchto systémii je, ze nevyzaduji definovat schéma databize a umoz-
nuji vlozit tzv. ridk4 data. Kazdy zdznam tedy miize mit napt. vyplnéné jiné sloupce. Ne-
vyhodou tohoto pfistupu je, ze konzistenci databaze si musi hlidat uzivatel sim. Vyhodou
naopak je, ze zmény pozadavku na databazi nevedou ke zméné databazového schématu,
kterd mize byt ¢asové narocna a v produkénim prostiedi lze tedy napt. omezit odstavky
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databaze. V databazi totiz mohou existovat zdznamy se starym i novym formatem vedle
sebe.

2 Skalovatelnost

Skélovatelnost je v softwarovém inzenyrstvi zadana vlastnost, kterd vyjadiuje schopnost
zvladat prijatelnym zpusobem zvétSujici se mnozstvi prace. Skalovatelnosti v kontextu
distribuovanych databézi rozumime schopnost systému vyhovovat zadanym pozadavkim
pri zméné nésledujich proménnych: mnozstvi dat, mnozstvi operaci zapisu a mnozstvi
operaci ¢teni. V praxi se ovSem jen ziidka setkdme pri ristu aplikace pouze s jednim dru-
hem gkalovatelnosti a tak ma smysl fesit reakci na vSechny predchozi druhy skalovatelnosti
zaroven.

Hrubé feceno, abychom oznagcili systém za dobie Skalovatelny, ocekavame, ze reakce
databéze by se neméla prodluzovat pii ristu predchozich proménnych. Toho samoziejmé
nelze dosdhnout na stejném pocitacovém vybaveni a tak se predpoklada, ze narust jed-
notlivych proménnych je imérné kompenzovan nartistem poctu stroju, které jsou schopny
pozadavky paralelné zpracovavat.

Ukazuje se, ze velkou prekazkou skalovatelnosti byvaji naro¢né operace, které komerc¢ni
relacni databaze bézné zajistuji: synchronizace transakci pii praci na spole¢nych datech,
replikace databaze a zajisténi konzistence databéaze v sitovém prostiedi.

Sprava zamku muze tvorit podstatnou ¢ast rezije DBMS. Rezie planovani transakei,
tak aby nebyla ohrozena integrita databaze, muze pii vzrustajicim zatizeni vést k prud-
kému propadu vykonu.

Dalsi podstatnou c¢asti rezije DBMS se stava sitova komunikace mezi jednotlivymi
stroji a mechanismus udrzovani aktuédlni verze dat na vSech strojich. To je ¢asto realizo-
vano pomoci ¢asové naro¢ného dvoufazového potvrzeni (two phase commit).

NoSQL DBMS se problémtum s rustem zatéze snazi Celit omezenim délky transakci
na jeden zdznam, rozdélenim souvisejicich dat na stejny stroj (shardovéni), duplikaci
dat (replikace) a omezenim podminky na konzistenci databéaze pii zatézi. Replikace se
casto pouziva i k zajisténi vétsi spolehlivosti databaze ulozené na vice strojich v sitovém
prostiedi. Ne vSechny noSQL DBMS v8ak tento problém fesi stejné a proto mé smysl
prozkoumat v ¢em se v této oblasti lisi a tim potencidlnim uzivatelim umoznit vybrat
DBMS, jez se jim pro jejich aplikaci bude hodit nejlépe.

3 Google BigTable

Google BigTable |5] je pouzivana pro Google App Engine Datastore |2]. Jedna se o DBMS
komerc¢ni, ktery spole¢nost Google navrhla pro své cloud sluzby. Je silné konzistentni,
tedy kazdé ¢teni vraci vysledek po posledni operaci zapisu. Toho je docileno tim, ze pro
kazdy zadznam je stanoveno, kdo drzi jeho hlavni verzi. Silnou konzistenci lze relaxovat
na eventudlni konzistenci. PTi eventualni konzistenci mohou byt vracena starsi data ze
zalozni kopie. Dotazovani tohoto DMBS je zamérné omezeno a napi. operaci databazové
spojeni je tfeba implementovat v aplika¢ni vrstve.
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Databaze je organizovana a srovnana podle klict, ke kazdému kli¢i nalezi jeden doku-
ment, ktery se sklada z nékolika sloupci s hodnotami. Kazda hodnota méa ¢asovou znacku
a v jedné buiice (urcené kli¢em a sloupcem) mize tedy byt nékolika hodnot. Konzistence
se tedy zajistuje pomoci Multiversion Concurency Control (MVCC'), tento systém kon-
troly konzistence zajistuje, ze kazd& operace ¢teni pracuje nad obrazem databaze, jak
databéze vypadala pri spusténi této operace. Zaroven lze nastavit, kolik verzi hodnot se
v daném sloupci méa uchovavat. Databazovy stroj pak starsi verze automaticky uvoliuje.

Dokumenty databéaze jsou seskupeny do bloki tzv. tablets. Tyto bloky jsou vytva-
feny dynamicky a ruzné bloky mohou byt umistény na riuznych strojich clusteru. (Cela
databaze je navrzena pro provoz v clusteru).

I kdyz je v. API mozné operace nad databazi seskupovat, atomicita operace je zarucena
pouze v ramci zmény jediného dokumentu. Kontrola konzistence databaze je zanechana
na uzivateli a v databazi neexistuje mechanismus integritnich podminek jako jsou cizi
klice nebo unikatni hodnoty. Rozhrani Google app engine umoznuje definovat transakce
nad vice dokumenty, ale je nutné specifikovat, ze se tyto dokumenty mohou ucastnit
spolecné transakce uz v dobé jejich vytvoreni. Konzistence databaze je zajisténa vici
selhani uzlu clusteru i vypadku spojeni mezi clustery.

S popisu je tedy ziejmé, ze vysoké skalovatelnosti je dosazeno pomoci rozdéleni data-
béaze do vice blokli a zamezenim vazeb mezi jednotlivymi bloky.

4 CouchDB

CouchDB [1][4] je open source DBMS s Apache licenci, ktery je postaven na jazyku Erlang
a jehoz rozhrani je realizovino pomoci HTTP protokolu s vyuzitim pravidel REST a JSON
formatu zaznamii. Stejné jako Google BigTable se pro zajisténi konzistence databaze
pouzivi MVCC model pro zménu hodnot. Pokud v pribéhu zmény zéznamu dojde ke
zméné jinym procesem, DBMS ohlasi konflikt pfi zépisu a aplikace se mize pokusit o novy
zapis. Databaze je bezschémovd, kazdy zaznam se sklada z klict, které jsou typované.

Je mozné provozovat paralelné nékolik instanci databaze s tim, Ze zmény si instance
posilaji mezi sebou. V této situaci se mize stat, ze dojde k zapisu do stejného zdznamu
do obou instanci zaroven a tedy ke konfliktu. Tento konflikt je vyfeSen automaticky tak,
ze za aktualni verzi se zvoli posledné ulozeny zépis instance a starsi verze se ulozi pro
pozdéjsi feSeni konfliktu. Reseni konfliktu je zanechano na aplikaci, ktera by si méla zvolit
moznost feseni, kterd je pro dany zaznam vhodna (nic neménit, vratit se ke starsi verzi,
nebo néjakym zpusobem zaznamy sjednotit).

5 MongoDB

MongoDB [3][6] je téZ open source DBMS s AGPL licenci (licence podobna GPL 3.0),
ktera se ale vztahuje jen na samotny DBMS a ne jiz na aplikace jej vyuzivajici. DBMS je
postaven na jazyku C+-+. Pfestoze je v mnohém podobny CouchDB v nékterych ohledech
se lisi. Misto MVCC modelu pro updatovani zaznamu pouziva "in place update", a proto
se nedoporucuje pouzivat v konfiguraci master-master. DBMS je v konfiguraci master-
slave silné konzistentni. Operaci "in place update" je myslena zdména zaznamu piimo na
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Google BigTable CouchDB MongoDB
horizontalni rozdéleni ano ano ano

replikace

tablet servers

master-master

master-slave

atomicita

nutno urcit pri zadavani dat

jeden dokument

jeden dokument

kontrola soub&hu

MVCC

MVCC

update in place

model konzistence

silnd 1 eventualni

silnd 1 eventualni

eventualni

Tabulka 1: Srovnani vlastnosti NoSQL databazi

disku. Toto se provede jen pokud se délka zaznamu o moc nezvétsi, v opacném pripadé
je nutno zaznam ulozit jinde na disku. Jelikoz pro kazdy zadznam neni uchovavana jeho
historie a specificky konflikty pfi ménéni zaznami, neni mozné tesit konflikty pii even-
tualni konzistenci. Tato nevyhoda je vSak vyvazena lepSim vyuzitim operac¢ni paméti a
diskového mista.

MongoDB se od CouchDB lisi i vétsim durazem na velikost prenéSenych dat a s
DBMS neni nutné komunikovat jen pomoci REST rozhrani, ale je tak mozno ¢init i
pomoci proprietarnich konektort.

6 Celkové srovnani

V porovnani databazi jsem se zamérné zaméril na vlastnosti spojené s ACID charakte-
ristikami transakci a provozem v siti a vynechal jsem jiné rozdily, které vSak pti vybéru
databaze mohou téz hrat vyznamnou roli. Celkové srovnani je shrnuto v tabulce 1.

7 Zaveér

NoSQL databéze jsou schopné skalovani i v situacich, kdy toho bézné komerc¢ni relacni
databaze schopné nejsou. Zaroven diky omezeni povolenych operaci vedou k aplikacim,
které nevyuzivaji Spatné Skidlovatelnych vlastnosti a umoziuji snadnéji predvidat, jakym
zpusobem porostou naroky systému. NoSQL DBMS vytvaii alternativu pro aplikace, u
kterych lze oc¢ekavat vyrazny narust pozadavku a potiebu provozovat databéazi v clusteru,
za cenu podstatného omezeni z funkcionality poskytované klasickymi rela¢nimi DBMS.
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Abstract. Modern experiments in the particle physics depend on computer systems which are
used to store and analyze large quantities of data. This paper describes the data acquisition
system of the COMPASS experiment at CERN and focuses on the role of databases in this
system. At first, the existing database architecture is analyzed, then the new architecture is
proposed. The proposal includes replication, monitoring, and back ups to achieve high reliability
and availability of the database service. Finally, implementation of the proposal is reviewed.
This paper also briefly covers several database optimization techniques which were required to
reduce the server load. Some possible future improvements are also discussed.
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Abstrakt. Moderni experimenty ve fyzice elementarnich ¢astic pouzivaji pocitafe pro simu-
lace, pro fizeni a pro sbér a analyzu dat. Tento ¢lanek popisuje systém pro sbér dat pouzi-
vany experimentem COMPASS v Evropské organizaci pro jaderny vyzkum (CERN) a zaméfuje
se na roli databazi v tomto systému. Nejprve je popséna stavajici databazova architektura,
poté je predstaven névrh nové architektury. Pro zajisténi vysoké dostupnosti a spolehlivosti
databazové sluzby se v navrhu podéita s replikaci, s pravidelnym zalohovinim a s dohledovym
systémem. Nésledné ¢lanek popisuje feseni nékolika problémii, které se vyskytly béhem imple-
mentace névrhu. Clének také stru¢né zminuje prostiedky optimalizace databizové struktury a
databazovych dotazii, které byly pouZzity pro snizeni zatéze serverti. V zavéru jsou vyjmenovana
dalsi mozna vylepSeni aktualizované architektury.

Klicovd slova: sbér dat, databéze, vysoka dostupnost, COMPASS

1 Introduction

Today, computers participate in every phase of experiments in the particle physics: They
are used for detector simulations, for the experiment control, for the data acquisition,
and for the data analysis. In this paper, the database system used by the COMPASS
experiment is described. At first, the experiment is briefly introduced and the data
acquisition system is presented in extent that is necessary for the following discussion. In
the following section, the existing database architecture is reviewed and our proposal of
the upgrade is presented. In the last section, we analyze the solution of several problems
that occurred during the upgrade.
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2 The COMPASS experiment

COMPASS, which is an abbreviation for the Common Muon and Proton Apparatus for
Structure and Spectroscopy, is a fixed target experiment operating on the SPS (Super Pro-
ton Synchrotron) particle accelerator at CERN [1]. Scientific program of the COMPASS
experiment was approved by CERN in 1997; it consists of the muon and hadron programs.
Data taking started in 2002. Today, the proposal of the second phase (COMPASS-II)
has been submitted to the CERN scientific council |2]; this proposal includes 3 programs
which would run at least until 2015, if approved by CERN.

2.1 Data acquisition system

The beam of the accelerated particles (muons or hadrons, depending on the program)
provided by the SPS accelerator hits the polarized target. When the beam particles
interact with the target, secondary particles are produced. The particles passing through
the spectrometer are registered by the system of detectors. The beam is not continuous,
it consists of the co called spills. Typical spill contains 10® particles. The flight and decay
of a particle in the spectrometer is known as an event. Each event can be described by
roughly 35kB of data. Total year production attacks the value of 500 TB (508078 GB in
2004, [5]).

APV 25: GEM F1-TDC: LAT/SciFiu0
Silicon FIADC: Calorimetr
GASSIPLEX: RICH

Detector i
frontends |_ ! 1" L

Feadout o —‘ i ‘
modules GeSiCA - CATCH

TCS TCS

Optical S—Links

MUX

Readout buffer PCs

Gigabit Ethernet

Switch =
[
E | \I I
_ i Event builder Central
Eventbuilder PCs and filter | Data Recording

Figure 1: Layers of the DAQ system according to [4]

System for the data acquisition (DAQ) consists of several layers (see Fig. 1). First,
the front-end electronics, which is part of detectors, digitizes the analog signal generated
by the detected particle. Front-end electronics also handle the delay caused by the time
of flight of the particle (the length of the spectrometer is about 50 m). The raw data
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produced by front-end electronics is collected by the front-end boards called CATCH
and GeSiCA. In this layer, event header is appended to data. This header will be used
by the following layers to reconstruct events from blocks of data coming from different
detectors. Data files are transferred to the following layer — the ROB computers — by
the S-LINK interface. S-LINK is a high speed bus developed in CERN for the ATLAS
experiment. ROB (Read out buffer) computers act as a cache for data. Data packets
are received during spill and are send to the last layer, to the event builder computers
(EVB). As their name suggests, EVB computers are used to reconstruct events. Data
files representing events are sent using the CDR (Central data recording) facility into the
permanent storage CASTOR (CERN Advanced storage) after some delay.

Software for the DAQ is based on the DATE system which has been developed for
the ALICE experiment at the Large Hadron Collider experiment. The COMPASS DAQ
system combines industry standard equipment (such as Gigabit Ethernet) with prototypes
(e.g., the CATCH front-end board was developed in Freiburg). There is currently a
proposal to replace ROB and EVB computers by the architecture based on FPGA (Field-
programmable gate array) circuits and to reuse existing read out buffers and event builders
for online filtering and analysis. More information about the COMPASS DAQ can be
found in [8].

3 Existing database architecture

It was previously stated that the year data production exceeds 500 TB. These data are not
stored in the database, they are saved on tapes in the CASTOR. Databases in COMPASS
manage meta-information about the run of the experiment. These meta-information
include detector configuration, beam parameters, or software logs.

Clients

pccodb00
(virtual address)

Master 1 > Master 2
Slave 2 @ MySQL replication @ Slave 1
pccodb01 < pccodb02

Figure 2: Existing database architecture

COMPASS uses two physical database servers named pccodb01 and pccodb02. These
servers are powered by 32-bit operating system Scientific Linur CERN which is rebranded
Red Hat Enterprise Linuz. As a database software, the MySQL server has been selected
because of its performance. Two physical servers are synchronized by the master—master
replication [10]. Server pccodb01 acts as a master of slave server pccodb02. At the same
time, server pccodb(02 acts as a master of slave server pccodb01. This means that both
servers contain the same data. This mechanism helps to achieve high availability of
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the database service. Furthermore, during the replication, all queries are written to the
binary log. This log can be considered as an incremental back up. Clients connect to
database through the virtual address pccodb00 which normally points to pccodb01. In case
the pecodb01 experiences problems (crash, overload), the virtual address is reconfigured
to point to pccodb02. This process is transparent to clients. When the pccodb01 recovers,
it resynchronizes itself with the pccodb02 by means of the replication.

Each MySQL server contains roughly 20 logical databases. Two largest databases
beamdb2009 and DATE2009 log hold about 15GB of data. The beamdb2009 stores
information about beam parameters, the DATE2009 log stores error logs of the DATE
software. Another large database runlb stores logbook entries provided by shift crew,
database DATFE2009 stores configuration of event builders and read out buffers.

4 Proposal of database upgrade

The existing architecture became overloaded several times during last year. For the 2010
run, it was expected that the load would increase as a consequence of higher intensity
of the beam. We were asked to design a new database architecture that would sustain
increased load.

pccodbOlv _——_ Clients pccodb0O2v
(virtual address) p (wrtgal address)
Contains database: \ = ) Contains database:
DATE2009_logs beamdb2009
Master Master
pccodbO01lm pccodb02m
pccodb00
(virtual address)
Replication Replication
Slave Slave
2
pccodb02s Proxy server pccodb02s

Figure 3: Proposed upgrade of the database architecture

The main idea of the new architecture lies in splitting two of the largest databases on
separate servers. The proposal also counts with master—-master replication to guarantee
high availability. Thus, the first pair of physical servers manages the DATE2009 log
database, the second pair manages the beamdb2009 database. Remaining smaller data-
bases are distributed evenly among the pairs of servers. Fifth (physical) server acts as a
proxy server. It connects clients to the corresponding server according to the requested
database. This server is also used for additional tasks: monitoring, back ups, and HT'TP
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server. Clients would connect to the proxy through virtual address pccodb00. This means
that migration to the new architecture should be transparent.

The proposal has been presented on the meeting of the front-end electronics group
and with some modification it has been approved. Unfortunately, only three physical
servers were provided. On the other hand, the hardware configuration of new servers is
much better in comparison to the old servers (see table 1). Thus, the new architecture
combines features of the old architecture with features of the proposal.

As in the original architecture, all databases are stored on two servers (named pccodb11
and pccodb12) which are synchronized using the replication. Third server (pccodb10) is
used as a proxy which is accessible via virtual address pccodb00, so there is no need to
reconfigure clients. These servers are part of the COMPASS internal network and are
located directly in the experimental hall. To increase safety of the data, server pccodbl1
is replicated to the server compass02 which runs in the CERN computing center and acts
as a gateway to the Internet. The compass02 is replicated into the computer centers of
participating institutes. This configuration is known as a chain replication.

Old server New server
Memory 3GB 16 GB
Processor | 2 cores at 3 GHz (Xeon) | 8 cores at 2.5 GHz (Xeon)
0S 32b SLC 4.7 64b SLC 5.4
Linux 2.6.9 2.6.18
Server MySQL 4.1.22 MySQL 5.1.45

Table 1: Configuration of old and new servers

According to the proposal, the proxy server is also running the HTTP service. This
service includes database management tool phpMyAdmin, run logbook application, and
web interface of the monitoring software Nagios. Nagios has been selected because of its
modular design: it is relatively easy to configure it to meet specific needs. Its functiona-
lity can be extended by plug-ins, there are many plug-ins available in the standard Nagios
installation. In addition, we developed a custom plug-in which monitors a temperature
of CPU cores. It was decided to monitor at least the following quantities: the uptime and
load average of servers, the state of MySQL processes, the state of replication, the state
of the cron daemon, and the core temperatures. The Nagios Remote Plug-in Ezecutor
(NRPE) agent is installed on database servers to intermediate communication between
Nagios and plug-ins. NRPE receives requests sent by Nagios, executes them, and sends
back the result. Nagios displays the state of the monitored servers using the web inter-
face. If the Nagios detects a problem, it notifies administrator by an e-mail. In certain
circumstances, it can also attempt to fix the problem. For example, the proxy server
normally connects all clients to the pccodb11 server. If the Nagios detects that this server
is down, it reconfigures the proxy to redirect all clients to the pccodb12 server.

4.1 Implementing the proposal

The migration started with the installation of the operating system (OS) on the new
servers. The support of the Scientific Linux CERN release 4 ends later this year, thus it
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has been decided to use newer release (5.4) of this OS. At the same time, the architecture
has been switched from 32b to 64 b. The first problem appeared during the installation:
The servers did not contain optical drive, so bootable flash disk had to be prepared. The
rest of the installation was completed without any other issues; we have chosen the ezt3
as a file system for MySQL data directory.

Also the MySQL server software was upgraded to the latest stable version (5.1.45).
Precompiled package for the SLC 5 was not available, the installation was done by compil-
ing the source codes. In the configure stage of installation, several features were enabled
(e.g. support for very large tables, storage engine InnoDB). In the next step, addi-
tional customization was achieved by editing the server configuration file. As a base, the
my.cnf.huge template was used. This template is designed for heavily loaded database
servers, yet it appeared that some parameters were not sufficient: The limit on the num-
ber of simultaneously opened files had to be increased. Moreover, binary logging was
turned on to enable replication. We also enabled logging of slow queries. Knowledge of
problematic queries is very important for optimization.

Clients [ [0
Q

pccodb00

(virtual address) pccodbl10

MySQL proxy
monitoring

back ups
WWW server

Master 1 Master 2
Slave 2 E MySQL replication E Slave 1
pccodbll pccodb12

Figure 4: New database architecture

The migration continued by dumping all data from old servers. The tool mysqldump
was used for this purpose. It saves dumps as a script with SQL commands (CREATE
TABLE followed by INSERT statements) which restore dumped data. The scripts were
copied using the scp tool to the new servers. The data was imported into the pccodb11
server and the pccodbl2 was automatically synchronized due to the replication. It is
imperative to verify that data were imported correctly. The idea was to dump data from
new server and compare the dumped files with dumps from old server. Due to the size
of dumps (several gigabytes for largest databases), fast method of the file comparison
was necessary. The comparison method is based on the mdjsum tool which calculates
md5 hash of given file |7]. If the hashes of dumps from old and new servers differ, it
indicates that there was problem with migration. The md) is not an injective function,
i.e. different dumps can have the same hash but the probability of the hash collision is
very small and can be ignored.

This method proved that the majority of databases was imported successfully. Only
3 databases had produced different hashes. It was required to determine the cause of the
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failure. The md5 function can only decide whether the dumps differ or not. On the other
hand, another tool diff compares files line by line and writes the differences. However,
it needs more time and resources (CPU, memory) to do its job. The output of the diff
helped with identification of the problem: The definition of the data type DECIMAL(m,
n) has changed in recent version of the MySQL server [11]. This type stores rational
numbers, the M parameter represents the significant digits, the N parameter represents
the number of the digits following the decimal point. Old version of MySQL stored
this data type as a character string, each digit was saved as a character as well as the
sign. In this representation, the range of the positive numbers could be extended by
one magnitude. E.g., the type DECIMAL(5, 2) represented the rational numbers from
the interval [—999.99,9999.99]. In the version 5.0.3 of the MySQL server, the definition
changed in order to comply with the SQL standard. According to the standard, the data
type DECIMAL(M, N) represents rational numbers with up to M — N digits before the
decimal point and up to N digits after the decimal point. Thus, the type DECIMAL(5,
2) represents interval [—999.99,999.99]. To fix the problem, it was necessary to modify
the CREATE TABLE SQL command in dumps from old server before importing it into
new server.

Another problem appeared at the end of the migration, after the old servers had been
disconnected. Some clients were not allowed to connect to new servers. Inspection of
the system table with privileges (‘mysql‘. ‘user’) revealed that the affected clients were
permitted to login only from address pccodb00. This was not problem on the old architec-
ture, because the virtual address pointed directly on the database server. On the other
hand, in new architecture, the virtual address points to the proxy server pccodb10 (see
Fig. 4). The problem was solved by changing the address in system table from pccodb00
to pccodb10.

To enhance safety of the data, regular back ups were scheduled. There are three
types of back ups: daily, hourly, and incremental. Daily back ups contain all data from
all databases, hourly back ups contain all data from only smaller databases (i.e. all
databases except beamdb2009 and DATE2009 log). Back ups are created by shell script
that is automatically invoked by the scheduler cron. Script uses mysqldump program to
retrieve data and gzip to compress dumps; it takes approximately 30 minutes to dump
all data. Back ups are purged after two days to save disk space. During the replication,
all queries that modify data are written into binary log which is read by replication slave.
This log can be also used as an incremental back up. In case of accident (disk failure,
dropped database), it is possible to recover all data.

4.2 Database optimizations

When working with larger tables, it is important to optimize table structure and queries.
As already mentioned, we have enabled logging of slow queries, i.e. queries that take long
time to execute. MySQL provides useful command called EXPLAIN which explains how
is the query evaluated. The command informs which table indices are used (if any), how
many rows must be examined, whether temporary tables need to be created, or if the
query can be split into subqueries. This output should be used to improve both schema
(by adding indices) and query (by splitting it to subqueries, using LIMIT keyword to
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reduce number of returned records, etc).

Additional improvements can be achieved by reducing amount of data in tables, thus
less demanding data types should be used wherever possible. MySQL server in version
5.1 brings support for a new feature: the partitioned tables. Such a table is divided into
several partitions according to some function defined over a set of table columns. Each
partition can be treated as a separate table. Execution of some queries can be greatly
improved by using partitioning. In these cases, only partition which can contain the
desired rows are searched. This technique is known as a partition pruning. In addition,
each partition can be stored on different disk. This can improve speed of the SUM
operation by parallel processing of multiple partitions.

Finally, it is also possible to improve performance of the database by choosing ap-
propriate storage engine for tables. In [3], we have compared two most popular engines:
MyISAM and InnoDB. MyISAM is much faster than InnoDB when comparing speed of
row insertion. On the other hand, MyISAM engine has stricter limitation on length of
index. If longer index is needed, InnoDB should be used. InnoDB also supports fully
ACID' compliant transactions. COMPASS uses the MyISAM engine. Table in the My-
ISAM engine can be packed by the myisampack utility. This tool reduces table size to
40% — 70% depending on contained data but also makes it read-only [11]. This feature
could be used to compress old databases (e.g. beamdb2006, DATE2006 log).

Currently, MySQL Proxy running on the pccodb10 redirects all queries to one database
server (usually to the pccodb11). But the proxy has much greater potential: For example,
it can be used to implement load balancing. In the load balancing mode, all queries
that modify the data (INSERT, UPDATE, DELETE) are sent to one server, queries
that retrieve data (SELECT) are distributed across multiple servers. The proxy server
contains a script written in the Lua language that checks availability of database servers,
their load, and the replication lag to decide which server executes the query. At the end
of the year, the load balancing will be tested in the current database architecture. If the
tests succeed, the load balancing will be implemented before the start of the 2011 run.

5 Conclusion

Data acquisition system of the COMPASS experiment has been described. We have
analyzed existing database architecture of the experiment and prepared proposal of new
architecture. This proposal has been approved with some modifications and implemented
before the start of the 2010 data taking. New databases servers are now running without
problems for several months, old servers have already been used as additional event
builders.

For the near future, there are plans to use some advanced MySQL features to improve
performance of servers. These plans include the partitioning of large tables, the change of
the storage engine of several older tables, and also using MySQL proxy as a load balancer.
We have been also asked to use Nagios to monitor other machines that participate in data
taking (event builders, read out buffers).

! Atomicity, Consistency, Isolation, Durability
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Abstract. This article deals with traffic modeling. Introduction shows the difference between
analyzing traffic on microscopic and macroscopic level. Then, a possible way to gain an universal
model, powerful in both analysis, is introduced. It is based on thermodynamical traffic model,
which is proper for exploring the microscopical structure. After modification, some simulations
have been made and the macroscopic phenomena have been observed. Also the microscopic
structure in new model has been confirmed.

Keywords: traffic modeling, traffic congestion, modified metropolis algorithm, thermodynamical
gas model

Abstrakt. Tento c¢lanek se zaobirda modelovianim dopravy. V tivodu je kratce vysvétlen rozdil
mezi mikroskopickou a makroskopickou analyzou dopravy. Pak je nastinén mozny postup zis-
kani univerzalntho modelu. Vychodiskem je termodynamicky dopravni model, pouzivany pro
zkoumani mikroskopické struktury, v kterém je provedena modifikace. V upraveném modelu
jsou provedeny prvni simulace indikujici vyskyt makroskopickych jevi a porovnani ovérujici
zachovani mikroskopické struktury.

Klicovd slova: modelovani dopravy, dopravni zécpa, modofikovany metropolisiv algortimus, mo-
del termodynamického plynu

1 Uvod

Zajem o zkoumani a modelovani dopravy v poslednich desetiletich neustale rostl. Bylo
pouzito mnoho pristupi a analyz dopravnich vzorki na makroskopické a mikroskopické
trovni. Jednim z nejvyznamnéjsich cilu dopravniho modelovéani je predstaveni universal-
niho modelu generujiciho mikroskopickou strukturu zodpovidajici skutec¢nosti, ve kterém
se navic pii volbé vhodnych parametru vyskytuji makroskopické jevy.

1.1 Macroscopicka struktura

Makroskopicky piistup zkouma dopravu na globalni tirovni. Mezi nejvyznamnéjsi veliciny
popisujici makroskopickou strukturu dopravniho systému patii dopravni tok a hustota
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provozu. Dopravni tok udava pocet vozidel zaznamenanych na pevné urc¢eném tseku
vozovky za jednotku casu.

N
b =—.
t
Hustota provozu zas predstavuje pocet vozidel nachazejicich se v jednom okamihu na

jednotce délky vozovky.

N
p= I
Pti zkoumani dopravy je zajem kladen predevsim na vztah uvedenych velicin & =
®(p). Graficka reprezentace téhle zavislosti se nazyva fundamentélni diagram.
Aktualni pozice dopravni vzorky ve fundamentélnim diagramu udava dopravni rezim,
ve kterém se tenhle vzorek nachézi. RozliSuji se dva resp. tii hlavni dopravni rezimy.
Rezim volné dopravy je charakterizovan relativné vysokou rychlosti, kterou mizou vozi-
dla dosdhnout a nizkou mirou vlivu ostatnich vozidel na trajektorii. Takové stavy jsou
zaznamenany v levé ¢asti fundamentalniho diagramu, kde je zavislost dopravniho toku
na hustoté provozu téméi linedrni. V realné dopravé zodpovida rezim volné dopravy
napi. pohybu na dalnici vysokou rychlosti. Pfikladem synchronizované dopravy je nao-
pak dopravni zacpa, kdy je fidi¢ nucen pohybovat se v zavislosti na okolnich vozidlech,
aby predesel narazu. Ve fundamentalnim diagramu jsou tyhle ptipady zachyceny v pravé
casti, kde dochazi ke zvySovani hustoty provozu, ale dopravni tok klesa. Nékdy je pak
extrémni pripad dopravni zacpy, kdy vozidla stiidaveé stoji a pohybuji se ve vinich, bran
jako samostatny rezim.

1.2 Microscopicka struktura

Mikroskopickd analyza dopravni vzorky zkouma jednotlivé vozidla. Detektory zachytavaji
rychlost itého vozidla v; a ¢asové okamihy t; a 7; kdy piedni resp. zadni naraznik vozidla
mine detektor. Ze ziskanych udaji se dopocitava délka vozidla [; a vzdalenost od (i+1)niho
vozidla r; pomoci vztaht

li = vi(T — ti),
Ty = ’Ul(tl — ’7'1',1).

Pro analyzu dopravniho vzorku jsou pak dilezité predevsim pravdépodobnostni roz-
déleni rychlosti ¢(v) a vzdalenosti mezi sousednimi vozidly p(r).

2 Termodynamicky bunéc¢ny dopravni model

Hlavnim cilem je pokusit se nastinit univerzalni model pouzitelny na analyzu mikrosko-
pické i makroskopické struktury dopravniho vzorku. Jako inspirace nam poslouzi Nageliiv-
Schreckenbergiiv bunécény model, ktery dokaze produkovat makroskopické jevy, a do-
pravni modely zaloZené na termodynamice plynu, ve kterych se tyhle jevy nevyskytuji.
Termodynamicky pfistup vSak narozdil od prvniho zminovaného modelu pfinasi mikro-
skopickou strukturu odpovidajici struktute readlnich dopravnych dat. Novy model by mél
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tedy idealné kombinovat vyhody obou.

Vychodiskem pro néj bude model zaloZzen na jednodimenzionalnim kratkodosahovém ter-
modynamickém plynu, kterého ¢astice se budou pohybovat pouze v diskrétnich oblastech,
jak tomu je u Nag.-Schreck. modelu. N ¢astic uvazovaného plynu je umistnéno na kruz-
nici s obvodem délky N rozdélené na m bunék stejné velikosti % Aby mél model smysl,
musi platit m > N. Castice se pohybuji pouze skokové mezi buiitkami. Pozice [té Céstice
se bude znacit x; a hodnota této veli¢iny bude udavat poradové ¢islo bunky, ve které se
[ta céastice aktualné nachéazi. Vzdalenost dvou nasledujicich c¢astice se bude znacit r; a
dopocitavat vztahem

T = (T — xl)(%)

S ohledem na rovnost

N
Zrl:N
=1

bude jeji stiedni hodnota rovna 1, co se da brat taky jako 37 bunék. Rychlost ¢astice je
charakterizovana délkou skoku. Omezeni maximéalni rychlosti se tedy promitne do omezeni
maximalni délky skoku, udavané v poctu bunék, ktera se bude znacit w.
Uvazovany soubor ¢astic je navic umistnén v teplotni lazni s termodynamickou teplotou
T. 7 praktickych divodi se bude misto 7" pouzivat inverzni termodynamicka teplota (3
zavedend vztahem

b=
kde £ reprezentuje Boltzmannovu konstantu.
Jako vychozi konfiguraci ¢astic se muze pouzit ekvidistantni nebo ndhodné rozmistnéni.
Pro oba piipady systém sméruje k termalni rovnovaze nezavislé od pocatec¢ni konfigurace
a zavislé od hodnoty (3. Termalni rovnovaha je charakterizovina stabilni hodnotou po-
tencialni energie U, hodnota které se pro konkrétni konfiguraci ¢astic vypocita pomoci
vztahu

U:Z%. 1)

Tedy dosazeni terméalni rovnovahy odpovida stabilizaci hodnoty této velic¢iny. Inverzni
termodynamické teplota 3 ovliviiuje hodnotu U po dosazeni uvedené rovnovahy. 3 muze
byt v dopravnim modelu prezentovina jako parametr udavajici stres fidice. Ten je za-
a znackami, stavem silnice, povétrnostnimi podminkami a taky aktudlnim psychickym
stavem fidi¢e. Hodnotu parametru ( v redlni dopravé nelze zmérit. Vime vsak, ze veli-
kost tohohle dopravniho stresu roste s rostouci hustotou provozu a maximum dosahuje
v zacpach. Zavisi tedy na aktualnim dopravnim rezimu a poloze dopravniho vzorku ve
fundamentalnim diagramu.

Modely vyuzivajici termodynamicky pristup vétsinou simuluji dopravnou situaci s kon-
stantni hodnotou (3. Tedy pro vysoké hodnoty tohohle parametru, kdy se predpoklada
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dopravni zacpa, se berou v potaz pouze vozidla vytvarejici tuhle zacpu. Pro synchroni-
zovany dopravni rezim jsou charakteristické kratké a témeér stejné rozestupy. V termody-
namickém modelu se vSak vzdalenosti preskaluji, aby jejich stfedni hodnota byla rovna
1. Proto nedochazi ke tvorbé dopravnich zacep jak je zndme z Nag.-Schreck. modelu a
fakt, ze se jedné o vozidla v synchronizovaném dopravnim rezimu miize byt zjistén jenom
analyzovanim pravdépodobnostniho rozdéleni vzdéalenosti. K pozorovani zacpy je potieba
rozliSovat dvé oblasti: oblast samotné dopravni zacpy a oblast, kde k zacpé nedochézi.
Ty logicky musi mit odliSnou hodnotu parametru j3.

Proto bude kruznice v uvazovaném modelu rozdélena na dvé ¢asti, pricemz kazdé casti
bude pfifazena jind hodnota inverzni termodynamické teploty (; resp. Fs. Tahle modifi-
kace by pfi vhodném nastaveni méla vynutit vznik zacpy. Jesté zbyva vyresit jak oblasti
vymezit. Jelikoz jsou disjunktni a souhrnné pokryvaji celou kruznici, spokojime se s vy-
mezenim jedné z nich. Nejjednodussim feSenim je pevné ji definovat jako ¢ést kruznice.
To ale prilis neodpovid& redlni situaci, kde muzeme pozorovat pohyb zacpy, proto se
pristoupilo k definici pomoci ¢astic. Pro potieby tohoto ¢lanku byl pozit model, kde je
jedna oblast definovana jako okoli pevné zvolené ¢astice. Konkrétné slo o osminu délky
kruhu kolem sté ¢astice. Nalezeni idealni varianty rozmistnéni obou oblasti vSak zustava
otevienou otézkou a muze slouzit jako motivace pro dalsi vyzkum.

Pro simulaci procesu ustalovani termodynamické rovnovahy byl pouzit modifikovany me-
tropolisuv algoritmus obsahujici néasledujici kroky:

e Je vypocitana hodnota potencidlni energie pro aktualni konfiguraci ¢astic pomoci
vztahu (1)

e Nahodné je vybran index [ ¢astice ktera se pokusi o skok.

e Je vygenerovano ¢islo 0 jako realizace ndhodné veli¢iny rovnomérné rozdélené na
intervalu (0, 1) reprezentujici nahodny faktor v délce skoku.

e Délka skoku je ziskdna pomoci vztahu w = wd a nasledné diskretizace w = [wd].
Horni cela ¢ast je pouzita pro zajisténi nenulového vysledku.

e Nova predpokladana pozice z; [té Castice je dana vztahem #; = z; + w. V uvazo-
vaném modelu neni povolena zména poradi ¢astic, proto muze byt novi pozice 7
akceptovana pouze v piipadé, Zze je splnéna nerovnost ; < x;y.

e Je vypocitana nova hodnota potencialni energie U pro konfiguraci obsahujici ;.
e Obé hodnoty potencidlni energie se porovnaji. V piipadé, ze U < Uy, skok z x; do
27 je ptijat a konfigurace zménéna. Jinak je vypocten Boltzmanniv faktor ¢ jako

—BIAU (U-Uo)

q = exp =exp

resp.

g = eap ?2V = eap= W10,

pricemz je vybrana hodnota [; resp. G2 v zéavislosti na tom, ve které oblasti se [t&
Castice aktualné nachazi. Pak je vybrano nidhodné ¢islo g rovhomérné rozdéleno
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Obrazek 1: Priklad trajektorii ¢astic pro konstantni hodnotu parametru 3

na intervalu (0, 1) a porovnéano s Boltzmannovym faktorem. Pfi splnéni nerovnosti
q > g je skok pfijat, jinak zistava konfigurace nezménéna.

3 Vysledky

3.1 Trajektorie Castic

Aplikovanim predchoziho algoritmu ziskdvame simulaci pohybu vozidel. Sledovani zmén
v pozici konkrétni castice udava jeji trajektorii. Ty lze po vykonani dostatecného poctu
kroku metropolisova algoritmu zobrazit formou diagramu a tak ziskat pfedstavu o roz-
mistnéni ¢astic za danych podminek. Tahle simulace se miize provadét pro rozli¢né na-
staveni hodnot parametru J; a J». Nejprve se v8ak zaméiime na trividlni pripad 5, = (.
Model s konstantni hodnotou inverzni termodynamické teploty pro celou kruznici je jiz
dobie znam. Pro nazornost si zobrazime trajektorie ¢astic na grafu (1). Jediné pozorova-
telné zhusténi je zpiusobeno pocatecni nahodnou konfiguraci a je brzy rozpusténo.

Nyni jiz pfistoupime k simulaci pro ruzné hodnoty 3, a (5. Jeden z vysledki dané
simulace je zobrazen na grafu (2). Odlisna barva pfedstavuje oblast s jinou hodnotou
parametru (3, mensi ¢ervend oblast ji ma vysSsi nez modry zbytek. Lze si povSimnout,
ze na spodnim okraji ¢ervené oblasti vznikd zhusténi, které se proti sméru pohybu Sifi
modrou oblasti. Naopak na druhé strané se zaicpa rozpousti a v horni ¢asti modré oblasti
se jiz Castice pohybuji volné, bez zhusténi. Porovnanim grafi (1) a (2) lze dojit k zavéru,
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Obrazek 2: Priklad trajektorii ¢astic pro dvé rozdilne hodnoty (3, a 3

ze predpokladané zacpy jako zastupci makroskopickych jevi se vyskytuji pouze na grafu
(2). A tedy modifikace uvedena v piedchozi kapitole pravdépodobné vyvolava jejich vznik.
Jesté zbyva ovérit jestli se zachovala mikroskopicka struktura, kterda u modeli zalozenych
na termodynamickém plynu koresponduje se strukturou redlnych dopravnych vzorkii.

3.2 Rozdéleni vzdalenosti

Pro analyzovani mikroskopické struktury bude dilezity piredevsim tvar pravdépodob-
nostniho rozdéleni vzdéalenosti dvou nésledujicich ¢astic. Ten byl v termodynamickém
dopravnim modelu odvozen [1] z Hamiltonianu daného systému

m o N
7 7)) —
H= QZ(UZ v) Czri,
=1 i=1
kde m oznacuje hmotnost ¢astice a v prumérnou rychlost v souboru. Vysledkem je
pak funkce

P(r)= @(T)Aexp[—g — Br], (2)

kde ©(r) oznacuje Heavisidovu funkci, 3 piedstavuje jiz zminénou inverzni termody-
namickou teplotu a A a B jsou normaliza¢ni konstanty. Jejich hodnoty se ziskavaji z dvou
normalizacnich rovnic.
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/ Aexp[—é — Br]jdr =1,
0 r

(ry = /000 TA@ZBp[—g — Br]dr = 1.

Prvni vztah popisuje vlastnost kazdé hustoty pravdépodobnosti, druhy zajistuje stiedni
hodnotu 7 rovnou 1. Jejich aproximativni vyjadieni v zavislosti na hodnoté parametru (3
je nasledujici

3 — exp[sqrtf]
2 9

1 | B
AT =2 §K1(2\/@)7

kde Ki(x) oznatuje modifikovanou Besselovou funkei druhého druhu.

Ziskany tvar pravdépodobnostniho rozdéleni vzdalenosti odpovida struktute realnych do-
pravnych dat, jak jiz bylo dokazano. Tato funkce je vhodnou aproximaci jak u vzorku v
rezimu volné dopravy, tak u téch, kde dochéazi ke zhusténi, rozdil je v hodnoté parame-
tru (. Priblizné plati, Ze rezim volné dopravy koresponduje s niz§imi hodnotami inverzni
termodynamické teploty, zatimco pii zacpach hodnota tohohle parametru stoupa. Pro
extrémni pripad § = 0 jde o Poissonovo rozdéleni, které se pouziva pro nezavisle se po-
hybujici ¢astice.

Pro ziskani pravdépodobnostniho rozdéleni ve zkoumaném modelu se pouziji data ze
simulaci. Aby se zamezilo vlivu poc¢atec¢niho rozmistnéni, budou se analyzovat pouze ko-
ne¢né konfigurace po ustaleni rovnovahy. Taky je potieba provést vice béht metropolisova
algoritmu se stejnymi parametry pro dostatek dat. Kruznice v modelu byla rozdélena na
dvé ¢asti s rozdilnymi hodnotami parametru 3, ¢emu odpovidaji také odlisné hustoty
pravdépodobnosti vzdalenosti. Proto musi byt i ¢astice ziskané ze simulace rozdélené do
dvou souboru podle toho, ve které oblasti se nachéazeji. Uvazime-li fakt, Ze na okrajich
obou oblasti dochazi k deformacim, musime je$té ze souboru vyloucit Castice z okraju
oblasti. Tim ale zistane dost dat pro analyzu poskytujici smysluplné vysledky pouze ve
vétsi z oblasti a proto déle pracujeme jenom s ni. Samotnou funkci hustoty pravdépo-
dobnosti vzdalenosti ziskdme jako histogram vzdalenosti ¢astic z analyzovanych udaju.
Protoze hodnota inverzni termodynamické teploty  pro analyzovany soubor je zndma,
je dan i pozadovany tvar pravdépodobnostniho rozdéleni a to (2)

B=p+
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Histogram znézorihuje funkci hustoty pravdépodobnosti ziskanou ze simulaci a kifivka reprezentuje jeji
pozadovany tvar.

Na obrazcich (3.2) jsou zobrazeny porovnani hustoty pravdépodobnosti ze zkouma-
ného modelu oproti predpoklddanému tvaru pro rizné hodnoty parametru (. Vizualnim
srovnanim je potvrzeno, ze vysledné histogramy zodpovidaji pozadovanému tvaru funkce.
Drobné odchylky mizou byt zptusobené nedostatkem dat v souborech.

4 ZAaveér

Vysledky simulaci a prvnich analyz naznacuji, ze model piedstaven v tomhle ¢lanku
miuze byt krokem spravnym smérem k vyvinuti univerzalniho dopravniho modelu spojujici
lokalni a globalni pohled na dopravu. Ten by pak kvantitativné i kvalitativné vysvétlil
vSechny jevy a zakonitosti zname ze silnic a dalnic. Prvnim pozitivnim impulzem je vyskyt
dopravni zacpy jako makroskopického fenoménu v modelu, ktery zachovava pozadovanou
mikroskopickou strukturu. Mélo by to slouzit jako motivace pro podrobnéjsi analyzu
pravé predstaveného modelu, jako i zkouméani dalsich moznosti modifikace. Klicem ke
globalnéjsimu pohledu na dopravu je jak se zd& upusténi od piedpokladu konstantni
inverzni termodynamické teploty v celém zkoumaném vzorku.
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Abstract. This paper provides a novel method for predictive control of a stochastic dynamic
system. The prediction is implemented by local regression which makes no assumptions about the
model’s structure and parameters. The method works on the principle of dynamic programming
form the horizon to actual time instant. The paper focuses on risk-averse optimization related
to the distribution of total loss. Hence, the uncertainity is sustained by additional data points.
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Abstrakt. Tento prispévek predklada novou metodu prediktivniho fizeni pro stochastické dy-
namické systémy. Predikce je realizovana pomoci lokalni regrese, kterd neklade zadné predpok-
lady na strukturu modelu a jeho parametry. Metoda pracuje na principu dynamického pro-
gramovani. Pfipévek vénuje optimalizaci za averze vudi riziku. Proto je informace o neurcitosti
udrzovana pomoci piidatnych datovych bodi.

Klicovd slova: lokalni regrese, dynamické rozhodovani, fizeni rizik, stochastickd programovani

1 Introduction

Two directions have been distinguished in advanced control, namely model oriented and
data oriented 7] approaches. Model oriented systems require some explicit prior knowl-
edge based on first principles. However, for some systems, no explicit parameterized
model is known since (i) the science have not already provided relevant first-principles,
(ii) modeling of the system by first principles would be extremely complicated, or (iii)
the process is very non-stacionary and it is impossible to capture it by one parameterized
model, even the parameters would be addaptive. This situation occurs typically when
the operation of the system is impacted by human factors, e.g. in Internet activities,
stock exchange or also HVAC systems, especially in buildings large complexes.

Absence of an explicit model make eventual control difficult. Some authors solve the
problem by some approximation, very often by neural networks [2, 10|, speaking about
model free control. In fact, they use a model, even it is a black box model.

This paper provides a novel combination of data-centric regression and stochastic
optimization for risk-dirigible predicitve control. It is organized as follows: Section 2
provides used building blocks, i.e. lazy learning and stochastic optimization. Next,
Section 3 formulates the control algorithm and discusses some of its properties. Then,
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Section 4 demonstrates the function of the algorithm on a simple examples. Finally,
Section 5 summarizes the paper.

2 Building Blocks

2.1 Value at risk optimization

Before we will introduce the system and its control, it is necesarry to define the optimiza-
tion paradigm as such. Since we are going to optimize a stochastic function in terms of
value at risk, we have to define these terms:

Definition 1 (Value At Risk). Let Z be a random variable with cdf Hz and let o € [0, 1],
value of Z at risk « is then defined as:

V@R,(Z) = H;'(1-a) (1)
= inf{t: P(Z<t)>1-a} (2)
inf{t : P(Z>1)<a} (3)

Definition 2 (Random mapping). R™ — R" is a mapping where to each x € R™ is
assigned only one distribution over R™. We will use the notation (Y|X = z) for this
where x is called decision.

Note that if we consider X to be a random vector and a conditioned random vector
is given Y|X. Random mapping, in this case assinges to the distributions X and Y |X
the marginalization Y : f(y) = [ f(y|z)f(z)dz.

The radnom mapping is therefore defined for both point and probabilistic decisions
which is more general and enables eventual fully probabilistic design. It has to be men-
tioned that in both cases the decision returns a probability distribution of Y.

Now, we are able to formulate

Definition 3 (Value At Risk Optimization Problem). Let
1. Y|X be the objective function with the risk level
2. E|X be equality constraints with the risk levels a\®
3. G|X be unequality constraints with the risk levels a(9)

The goal of the value-at-risk optimization problem is to find such (random) vector X0 so

it holds:
e Vi: P(E; #0/X0) < a, and
e Vi: P(G; > 0|X0) < a, and

e VAR, (Y]XO0) is minimal.
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Figure 1: System dynamics for predictive horizon t,,,x where dashed boxes are not con-
sidered for the optimal control.

where o = 0.05, typically.

It have to be mentioned here that this problem may have no solution. The reason
can be that the constraints are in conflict. This is a typical situation for all constrained
optimization problems. However, there might be also an issue with the probabilities. Let
us consider F; = 2 — 1 + ¢ where ¢ ~ N(0,0%). Even the 0> > 0 is arbitrary small
and z = 1, the P(F; = 0) = 0 almost surely since the distribution is continuous. Hence,
the constraints in form of equation require a tie at zero or they have to be replaced by
intervals around zero.

2.2 V@R control

We will consider a Markovian system of order one (the generalization to higher orders is
straightforward) with action and observation models as probability distribution functions:

FX@)X(=1),0( -1)) (4)
GY ()X (1), U(t)) (5)

The system dynamics is presented in Figure 1 where the arrows correspond to the stochas-
tic mappings F, G. Mention that we use G(Y (t)| X (¢) instead of G(Y ()| X (), U(t)) since
the loss depending on U(t) can be considered as a part of the state U(t 4+ 1). Let F
and G have densities functions f and g. The loss function is defined as a sum of partial
losses z = Z:rj’f‘ z(t). All state variables are measured, this approach does not use any
unobserved variables. Consider random mapping Z|Uy, U; ..., Uy, .1, Xo with following
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cdf:
JITTLY ] 5o Tl - 1,0~ 1)t~ 1) ..ot
- f(s — f 2|z (1))dz(1) ... dz(tmax)

Then the problem is to minimize z via changing the control strategy w(0), u(1) ... u(tmax—
1) so the expression equals given « € [0, 1]. We make no assumption on g and f, we only
assume a data set of (x,u, z) measurements from the past. Note that

t

[ToG@)et = 1),u(t - 1)) (6)

i=1

is application of the chain rule.

There is already intensive work on risk-averse control of stochastic systems. The risk
aversion can be expressed in form of the utility function [12]. In this case, usual appli-
cation of mean value operator for each step of the dynamic programming is possible, for
more detail on favorable properties of the mean value in stochastic dynamic programming
see |14].

Usage of true risk measures requires alternative approach. The risk measures are
adjusted so they can be pushed back in the dynamic programming process. This claim
requires more assumptions like convexity, subadditivity and homogenity of the risk mea-
sures |1, 13| which do not hold for V@QR. and are focused mostly no discrete systems.
This paper however provides a method which is able to work with wider class of risk
measures, including the VQR.

2.3 Local Regresion and Conficence Sets

Local regression is an essencial topic in nonparametric statistics. Let us consider following
dependency:
Y = f(z) + e(z) (7)

where Y € R and x € M, M is a metric space with metric d : M x M and €(x) is a
random variable with zero mean.

Local regression based on kernels provide methods to construct the estimate of 7 ~ r
and provide eventually some information about the error e(z).

The estimator is defined as follows:

() = Z li(x)Y; (8)

where

K (55)

Ty K (5E)
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and K is a kernel function®.

The local regression makes no assumptions on model if sufficient amount of data
is available. The local regression is also applicable in the dynamic systems and the
nonstacionarity can be covered easily [8]. For our purpose of risk-dirigible control, we
have to treat the risk. There are some alternatives where the most recent is based directly
on considered quantile regression [4]. In this work we will nevertheless assume the errors
e(r) to be distributed normally. In this case we can adopt the concept of confidence
bands [18]. First of all, the variance have to be estimated:

1. Estimate the r

2. Define Z; = log(Y; — #(z;))?

3. Estimate the ¢ as local regression of the Z; depending on z;
4. Obtain 6%(x) = i@

This holds only for points from the training set while for the other the distance has some
impact on the variance. The adjustement is perfomred as follows:

sa) = || S @B @) (10)

The confidence band can be expressed in form [7(x)—cs(x), #(x)—cs(x)]. The constant ¢ >
0 can be find for one dimensional in an explicit sophisticated way [16]. For our purposes
we adopted - however - direct quantile prediction [3] which consist in minimization:

K(x — ;)

(Y- 6) (1)

where p,(z) = |z| 4+ (2 — 1)z and 6 the desired a-percentile.

2.4 Stochastic Optimization

In this work, we have to minimize the VQR, (Y |z) with respect to x. Using fixed «a,
the problem becomes deterministic. The objective function is - however - very general
and usual suitable properties like linearity or convexity cannot be ensured. Therefore,
methods of stochastic optimization can be applied. Both population based or single point
methods can be used, e.g. the differential evolution [15], particle swarm optimization [5],
threshold accepting [19], simulated annealing etc. Furthemore, it is possible to use some
kind of advanced metaheuristics like memetic algorithms [6], DEBR18 [17] or OSOOM
[11].

If we want to treat constraints, it is possible to adopt lexicographic comparison mech-
anism [9]:

'In multidimensional case, the it is possible to use usuall kernell function with a metric, e.g Eucidian
[18]. Alternatively, contributions in dimensions can be multiplied.
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e If x1 and x4 satisfy both the stochastic constraints at least at required level a4 then,
they are compared by their V@R, (x;) and V@R, (x;) values.

e Otherwise, x; and x5 are compared by their probabilities they will both satisfy the
constraints.

Finally, it have to be added that deterministic constraints are a special case of the stochas-
tic ones.

3 Proposed Algorithm of Predictive Control

Predictive control attempts to find a control strategy for a predictive horizon. Proposed
algorithm works on principle of dynamic programming;:

1. Imitialization: t =t,.,+ 1, C; =0
2. Update: C;_; = z;(X) + Cy

3. Regression: Having data (X, U, C}), regress intented percentil o of Cy|U, X. How-
ever for the next step, it is necessary to regress also other representative percentiles
or parameters of Cy|U, X

4. Optimization: For all X from the original set find U* = argmaxy VAR, (C;|U, X).
For the step ¢, related data should be used with higher weights, e.g. for t = t,ax,
last training data will be prefered. This might help to avoid the impact of potential
nonstacionarity. These weights can be used as additional input for weighting in the
local regression.

5. Particle Filtering: For all pairs (X, U) optimizing the V@R, (C}) sample some
values from Cy| X, U and use it as a data set for the next iteration.

6. Next step Go to 2)

4 Application

This work is intended to be applied in two applied problems where the risk aversion plays
an important role and parameterized models are not available. The first application is
in supervisory control of HVAC? systems. The goal is to ensure required comfort and
minimize operational costs. Nevertheless, the demands of zones in a building complex on
heat and fresh air is impacted by human factor, changing operation. Some dynamics can
be covered by first-principle modeling like heat accumulation in internal mass, air flows
etc. However, there are usualy not enough sensors required for this approach.

The other application area is the portfolio management where the risk is an important
topic. Also in this case, parameterized models are missing. Hence, the data-centric risk
averse control seems to be a promising.

2Heating, ventilation, air conditioning.



Predictive Control via Lazy Learning and Stochastic Optimization 121

Finally, this topic relates to author’s PhD thesis which attempts to control a opti-
mization procedure composed of various optimization methods. The author adopts in
the thesis proposal also the risk averse approach that should lead to reliable results in
the optimization.

5 Conclustion

Proposed approach has proved high level flexibility and genericity. The major disad-
vantages consists however in the computational complexity since each evaluation of the
objective function has to process the whole data set and this makes the optimization very
slow. This is also a key point of possible improvements. The data set could be reduced to
a reasonable reference data set (like in case of Support Vector Machines), nevetheless, this
reduction might worsen the estimates of the confidence bands. Alternatively, the process
of query for the objective function calculation could be speeded up by an advanced data
structure.

Other topic to be improved is the confidence interval estimation which are typically
dependent, at least for several subsequenting steps.
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Abstract. This paper deals with image processing methods in the hexagonal topology. The
first part describes the implementation of the hexagonal grid. In the second and third part
deals with the various operations of the hexagonal image (noise reduction, edge detection and
morphological operations). The last section is devoted to the use of hexagonal topology in real
biomedical data for diagnosing Alzheimer’s disease.

Keywords: image processing, hexagonal topology, Alzheimer’s Disease

Abstrakt. V této préaci se zabyvam metodami zpracovini obrazu v hexagondlni topologii.
V prvni ¢asti prace se vénuji implementaci hexagonalni miizky. Ve druhé a tieti ¢asti se vénuji
jednotlivym operacim nad hexagonalnim obrazem (odstranéni Sumu, detekce hran a morfologické
operace). V posledni ¢asti se vénuji vyuziti hexagonalni topologie na realnych biomedicinskych
datech k diagnostice Alzheimerovy choroby.

Klicovd slova: zpracovani obrazu, hexagonélni topologie, Alzheimerova nemoc

1 Uvod

V oblasti zpracovani obrazu je ¢asto zmihovano vyuziti hexagonalni miizky jako alter-
nativa ke konvenc¢ni ¢tvercové. OvSem nebyva toto téma ptilis rozvinuto. Cilem tohoto
textu je tuto problematiku popsat podrobnéji a ukazat jeji vyhody na realnych datech.

Hexagonalni zpracovani obrazu se od tetragonalniho se lisi nejcastéji v tvaru konvoluc-
nich masek, které musi odpovidat navrhu vzorkovaci mfizky. Tu je vhodné tedy imple-
mentovat tak, aby prevod znamych konvolu¢nich masek byl co nejsnazsi a nejpresnéjsi.
Vytvoreni hexgondlni miizky je stézejni bod, od kterého se odviji dalsi postupy pfi zpra-
covani obrazu.

2 Vyhody hexagonalniho zpracovani obrazu
Hexagonalni obraz vznikne vzorkovanim signalu do mfizky, ktera je tvorena pravidelnymi
Sestitthelniky. Z geometrickych vlastnosti Sestitithelniku vyplyvaji zdkladni vlastnosti této

topologie:
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e Sestitthelnik zahrnuje vice prostoru nez Ctverec, ¢imz lépe aproximuje kruh. To
znamena, ze hustota vzorkovani hexagonalni mtizkou je vétsi nez u ¢tvercové miizky.

e Kazdy obrazovy element ma Sest stejné vzdalenych sousedu, ktefi sdili hranu. Z toho
vyplyva, ze kiivky mohou byt v hexagonalni miiZce mnohem lépe zastoupeny nez
ve Ctvercoveé.

e Existuje jednoznac¢né okoli bodu, na rozdil od ¢tvercové miizky, kde okoli bodu
mize byt definovano jako 4-sousedstvi (sousedé jsou jen ti, ktefi sdili hranu) nebo
8-sousedstvi (sousedé jsou i ti, ktefi sdili roh).

Obrazek 1: Okoli bodu ve ¢tvercové miizce (8-sousedstvi a 4-sousedstvi) a hexagonalni
miizce.

hd

3 Implementace hexagonalni mrizky

Neni mi znamo, ze by se v praxi vyskytovaly pfistroje, které zaznamenavaji obraz pifimo
do hexagondlni mftizky. K dispozici mam pouze bézné obrazy zachycené do Ctvercové
miizky, které se musi do hexagonalni interpolovat.

Obréazek 2: Konverze mezi ¢tvercovou a hexagonalni topologii.

Rozmeéry vstupniho obrazu I ozna¢ime M a N, dalsi znAmou hodnotou pro vypocet
je polomér kruznice h opsané Sestitthelniku, ktery volime. Tyto tdaje sta¢i k vypoctu
rozméru m, n matice H. Dale potfebujeme zjistit pocatecni body zq a yq.
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Pro soutadnice levého dolniho rohu plati x > N a y > 1 a pro pravy horni roh x < 1
ay > M. 7 toho vyplyvaji nasledujici vztahy:

x0+h(m—1)+g(m—m)2N:>:U02N—h(n—1) (1)
o+ 3V3m = m) > 15 g > 1 )
x0+h(1—1)+g(m—1)21 (3)

1—|—g\/§(m—1)2M:>1 (4)
7 vyrazi plyne
m:[ﬂfi\/gﬂﬂ, n:ﬂm;luwgﬂﬂ. (5)

Hodnoty soutradnic obrazovych elementi jsou

. h . h ,
Tij :$0+h(j—1)+§(m—2), yi,j:yo+§\/§(m—z),
kdei=1,...,m;j=1,...,n. (6)

4 Zpracovani obrazu

Diilezitou operaci pfi zpracovani obrazu je konvoluce. Konvoluce dvourozmérnych funkeci
f a h je definovana integralem

f(z,y) *h(z,y) = /_OO /_00 f(x —a,y — b)h(a,b)dadd ,

kde h(z,y) je konvolu¢ni jadro.
V digitalni zpracovani obrazu se vyuziva diskrétni konvoluce, diskretizace predchoziho
integralu zni

k k
,y) s h(z,y) = Y Y Iz —iy—jh(,j),

j=—kj=—k

kde I je diskrétni obraz a h(z,y) jadro konvoluce.

4.1 Nizkofrekvencni filtry

Nizkofrekvenéni filtry slouzi k vyhlazovani obrazu, jejich cilem je odstranéni nezadouciho
sumu, ktery se v obraze nachazi.

Pokud mame vice obrazi stejné predlohy, muzeme pouzit k odstranéni Sumu postup,
kdy zprumérujeme hodnoty obrazovych bodi o stejnych soutadnicich. Vyhodou tohoto
postupu je, ze nedochézi k rozmazéani obrazu. Ovsem ve vét§iné piipadi pii zpracovani
obrazu mame k dispozici pouze jednu predlohu a musime tedy pouzit jiné metody.
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Obréazek 3: Ukazka konvoluce v hexagonalnim obrazu.

Metody pracujici pouze s jednim obrazem spoléhaji na nadbytec¢né informace v ob-
raze. Sousedni obrazové body mivaji vétSinou stejnou nebo velmi podobnou troven jasu.
Zasumeéné obrazy lze tak na zakladné provedeni analyzy okolnich bodu opravit. Hodnota
vybraného bodu je nahrazena hodnotou typickou v jeho okoli. Typickou hodnotou mam
na mysli napt. primér, vybérovy prumér nebo median.

Zékladni metodou vyhlazovani obrazu je primérovani. Jedna se o linearni vyhlazovani.
Kazdému bodu je pfifazen novy jas, ktery je aritmetickym prumérem piivodnich jast ve
zvoleném okoli. Obraz je zpracovan konvolucéni maskou, kterd popisuje chovani funkce
h(i,j) s tim, Ze stfed masky ma soutadnice (0,0). Muze mit napiiklad tvar

h=- (7)

Y

1
1
1

—_ =%

Tento neobvykly tvar masky (matice) je dan implementaci hexagonalni miizky. Hvéz-
di¢ky predstavuji prazdnou (neexistujici) hodnotu. Napiiklad v programovacim prostiedi
Matlab jsou implementovany jako NaN (Not-a-Number).

Miuzeme samoziejmé volit i masky jiné velikosti, dokonce masky o rozméru 5 x 5 se
v hexagonalni topologii osvéd¢ily. Ve své praktické ¢asti pouzivam i zajimavé masky dvou
,poloméri“. Vnéjsi polomér R udava celkovou velikost masky a vnitini r je polomér okoli,
na které nebude pfi zpracovani bran zietel. Plati, ze R > r > 0.

Prikladem muze byt maska

>

I
¥ K == =
* = O O =
_— o O O =
_— O O = ¥
— == X %

—

o

SN—

kde R=2ar=1.

Ovlivnit proces zpracovani lze i zvyhodnénim respektive znevyhodnénim, nékteré ob-
lasti v konvolu¢ni masce. Typicky to muze byt zvétSenim vahy bodiu blizkych stiedu
masky. Naptiklad jako

1 1 1 % =

1 1 1 % 1 1 2 2 1 %
hzl—o 1 4 1 neb0h:2—7 1 2 3 2 1 9)

* 1 1 *x 1 2 2 1

* x 1 1 1
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U téchto masek mizeme misto obycejného priméru volit i vdaZeny priumer.
Pro odstranéni Sumu lze vyuzit i masky, jejichz vahy odpovidaji hodnotam Gaussovy
funkce.
Gaussovo rozdéleni pro 2D je definovano jako
1 a2 4y?

Gla,y) = e o

Diskrétni aproximaci ziskdme konvolu¢ni masku.

Hlavni nevyhodou linearnich metod vyhlazovani je rozmazavani hran. Toto lze Tesit
vyuzit nelinedrnich metod jako je pouziti medianu nebo rotujici masky.

5 Vysokofrekvencni filtry

Mezi typické aplikace vysokofrekvencni filtru patii zejména detekce hran.

Detekce hran je dulezitd operace v biologickém i v pocitacovém vidéni. Podle hran
¢lovék dokéze rozlisovat objekty. K zakladnim predpokladim nalezeni hrany v obraze je
néhle se ménici hodnota jasu.

V pocitacovém zpracovani obrazu patii detekce hran k zakladni operaci, na kterou
navazuji dalsi aplikace (napf. rozpoznani objekti).

Hrana je ur¢ena tim, jak nahle se zméni obrazova funkce f(z,y). Nastrojem na zachy-
ceni zmén funkce dvou proménnych jsou parcidlni derivace — zménu udéava jeji gradient,
urcujici smér nejvétsiho rustu a strmost. Obrazové body s nejvétsim gradientem se nazy-
vaji hranami.

Jednou z metod nalezeni hrany je vyuziti tzv. operatorii. Téch je nékolik a lisi se podle
toho zda jsou zavislé na rotaci ¢i nikoliv. Predstavitel operatoru, ktery je nezavisly na
rotaci a udava pouze silu hrany, je Laplacetdv operator.

Ukazka masky Laplaceova operatoru

1 1 =
h=11 —6 1]. (10)
* 1

Pri praktickych testech se ukazalo, Ze u Laplaceova operatoru a hexagonalni topologii
funguje lépe vétsi maska, napf.

1 1 1 % =
1 0 0 1 x
h=11 0 =12 0 1 (11)
* 1 0 01
* ok 1 11

Dalsim z operatori je operator Prewittové, ktery je zavisly na rotaci. Vyuziva vice
masek a jejich pocet je zavisly na po¢tu moznych rotaci. Pro masku 3 x 3 je téchto sméru
Sest, ukazka 12.
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1 1 * 0 1 % -1 0 =x*
hy = 0, hyo=]| —1 0O 11|, h3=| -1 0 1],
-1 -1 *x —1 0 x 0 1
-1 -1 * -1 -1 =x 0 —1 *
hy = 0 0 0], hs= 0 0 0], hg=1]1 0 —1 (12)
* 1 1 * 11 * 1 0

Po zpracovani obrazu vSemi maskami je vybrana napiiklad hodnota s nejvétsi hodno-
tou gradientu.

6 Morfologické operace

Morfologické operace patii mezi nelinedrni operatory, vyuzivajici masky, kterd se zde
nazyva strukturni element.

Morfologické operace patii mezi nelineadrni operatory, vyuzivajici masky, ktera se zde
nazyva strukturni element. Nejdiive nez se dostanu k jednotlivym operacim, je potieba
zavést pojmy vrsek a stin mnoziny a Minkowského operace.

6.1 Minkowského operace, vrsek mnoziny a stin mnoziny

V |2] jsou pojmy vriek a stin definovany nésledovné. Vrgek mnoziny A je funkce defino-
vand na (n — 1)-rozmérném definiénim oboru. Pro kazdou (n — 1)-tici je vrsek nejvyssi
hodnota zbylé posledni souradnice mnoziny A. Pro euklidovsky prostor ma nejvyssi hod-

nota vyznam suprema.
Nec A C &™ a necht defini¢éni obor

F={rc& ' pronekteray € &, (v,y) €A }.
Vrsek mnoziny A, oznacovany T[A], je zobrazenim F — & definovanym jako
T[A](z) = max{y, (z,y) € A }.
Stinem funkce f je mnozina sestavajici se z vrsku f a celého prostoru pod nim.
Necht F C £" 1 af: F — £. Stin funkce f se oznacuje Ulf], U[f] CF x &
Ulf] = {(z,y) e F x &,y Cf(x)}.
Definice. Necht M je zdkladni mnoZina a A, B jsou objekty na M. Minkowského soucet

a rozdil definujeme pomoci zdkladnich operaci

o soucet
AoB=[JA +p
pseB

o rozdil
A oB=[)(A +0),
B/eEB

kde A + 3 predstavuje posun mnoZiny A ve sméru vektoru 3 .
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o0 -

Obréazek 4: Dilatace

6.2 Dilatace

Jelikoz Sedotonova morfologie je zobecnéni morfologie binarni, pred zavedenim piislusné
definice dilatace (pozdéji i eroze) pro Sedotonovy obraz uvedu nejprve definici této operace
pro binarni morfologii.

Definice. Dilatace D je v bindrni morfologii definovana pomoci Minkowského souctu jako

DAB)=AozB=[J(A +5)
BeB

Definice. Necht F, K C El f F—-Ek:KCE.
Sedotonovd dilatace ® funkce f s funkci k, definovana jako

fe k=T{U[f] ®s Ulk]} .

Tato definice neni piilis vhodna pro algoritmizaci, proto se zavadi postup pfes maxi-
mum souc¢tld v mnoziné

(f® k)(z) = max{f(x — 2) +k(2),z e K,z —2z € F}.

o &

Obrazek 5: Eroze

6.3 FEroze

Tak jako v predchozi sekci vénované dilataci je nutné nejdiive zacit definici eroze binédrniho
obrazu.

Definice. Eroze E je v bindrni morfologii definovdna pomoci Minkowského rozdilu jako

E(A,B)=AcpB=)(A+7).
#/EB

nyni je mozno piejit k definici eroze v Sedoténovém obrazu.



130 J. Nerad

Definice. Necht F K C €™, f: F — &,k : K C . Sedoténovd eroze © mnoZiny f
mnozinou k, definovdana jako

fok=T{U[f ©p UlH}.

(Pozndmka: © na pravé strané je erozi binarnich obrazi)
Opét skuteény vypocet eroze v praxi probiha jinak

(fok)(x) = rzréllrg{f(x +2) —k(2)}.

Dalsi z morfologickych operaci jsou operace tref ¢i min, otevieni, uzavieni ¢i ztenco-
vani. VSechny tyto operace vyuzivaji kombinace dilatace a eroze.

7 Vyuziti hexagonalni topologie k diagnostice Alzhei-
merovy choroby

Obsahem této kapitoly je zjistit, zda znalosti uvedené v predchozich kapitolach povedou
k odhaleni Alzheimerovy demence (AD).

8 Alzheimerova demence

Alzheimerova demence (nékdy oznacovana i jako Alzheimerova choroba) je neurodegene-
rativni onemocnéni mozku, pii kterém dochézi k postupné demenci [4]. Nemoc se proje-
vuje poruchou tzv. kognitivnich funkci - mysleni, paméti a tsudku.

Choroba je v soucasné dobé nevylécitelna. V roce 2008 trpélov touto nemoci v Ceske
republice ptiblizné 120 tisic lidi [4].

8.1 Predzpracovnani dat

Nejdiive je nutné snimky predzpracovat (tzv. preprocessing). Jelikoz data jsem mél ve
formé trojrozmérné matice [m, n, h] = [79,95, 69|, bylo nejdiive nutné provést fez v urcité
hladiné. Rozhodl jsem se fez provést na hladiné h = 30, kterd subjektivné poskytuje
nejveétsi mnozstvi informaci.

Poté nasledovalo zbaveni obrazu nezadouciho Sumu pomoci nizkofrekvenc¢nich filtru,
detekovat hrany, prevést obraz do binarni podoby a najit hranice.

A7 poté byly provedeny statitické operace a rozhodnuti zda uvedeny postup vede
k detekci AD.

8.2 Vytvoreni etalonu zdravého pacienta

P1i pozorovani zpracovanych obrazi jsem si vSiml, Ze obrazy zdravych pacientu jsou si
velmi podobné, na rozdil od nemocnych pacientii, kde struktura snimku byla odlisna.
Demonstrovéano na obr. 6.

Tohoto poznatku jsem vyuzil k vytvoreni etalonu zdravého pacienta, ktery slouzi
k rozliSeni zdravého pacienta od nemocného.
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Etalony jsem vytvofil dva E; a Ey. Zakladem prvniho byla Gaussova filtrace a druhého

 Oeea
BB

Obrazek 6: V horni fadé jsou zpracované obrazy zdravych pacientu. V dolni fadé pacienti
trpici AD.

8.3 Samotni detekce AD

Ptedzpracované obrazy podle postupu v 8.1 jsou nyni porovnany s vytvorenymi etalony.
Kritériem pro rozpoznani snimku zdravych a nemocnych pacientu je pocet obrazovych
elementu pacienta I lezici mimo etalon E. Tomu odpovida velic¢ina

c=H(I\E).

Ze souboru nemocnych byl sestaven vektor hodnot ¢ap = (cq, ..., ¢2). Analogicky byl
ze souboru zdravych sestaven vektor Coy = (¢}, ..., Cog ). K testovani hypotézy Hy o schodé
prumeéru byl pouzit t-test na hladiné vyznamnosti p = 0,05. Cilem bylo prokazat, ze
pii vhodné volbé parametru zpracovani a etalonu je statisticky vyznamny rozdil mezi
hodnotami ¢ pro nemocné a zdravé pacienty.

V tabulkich 1 a 2 jsou vysledky testovani s riznymi hodnotami parametra R (polo-
mér masky pii vyhlazovani), p (prah pii detekci hran) a py;, (prah pii tvorbé binarniho
obrazu).

Tabulka 1: Testovani s E;

| Test ¢ It ] 2 3 | 4 ]
R 5 3 3 5
p 0,38 | 038 [ 048 [ 048
Pbin 0,4 0,4 04 | 04
p — hodnota || 0,0167 | 0,00035 | 0,0001 | 0,007

Ve vysledcich lze vidét, ze pres rizné nastaveni parametri se udrzuje hladina vyznam-
nosti pod hodnotou 0, 05.
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Tabulka 2: Testovani s E,

| Test ¢. I 1 [ 2 | 3 | 4 |
R 5 3 3 5
P 0,38 | 038 | 048 | 048
Pbin 0,4 0,4 0,4 0,4
p — hodnota || 0,0155 | 0,00034 | 0.0135 | 0,0002

9 Zavér

Predstavil jsem zékladni moznosti prace s hexagonalnim obrazem a ukézku reilného
pouziti pii detekci Alzheimerovy choroby. I kdyz vysledky ukazuji dobré hodnoty, jsem
opatrny v jejich prezentaci, protoZe testovacich dat (snimky pacientil) nebylo mnoho.
Ale byl udélan prvni krok k potvrzeni, ze vyuziti hexagonalni topologie je dobra cesta
a ma smysl se ji dale zabyvat. V soucasné dobé jiz mam k dispozici vétsi a kvalitnéjsi
soubor dat a predpokladam, ze pomoci nich budu schopen lépe demonstrovat vyhody
této topologie.
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Abstract. This paper describes the new method which is based on non-linear one-step predictor,
which is designed as MLP neural network. It is a kind of low-pass non-linear filter. The
difference between raw EEG and the ANN output is then a subject of band spectral analysis.
The differences in this power spectrum between Alzheimer diseased and control patient group
are statistically significant.

Keywords: EEG, Alzheimer’s disease, ANN, model error, spectral analysis

Abstrakt. Tento ¢lanek popisuje novou metodu, ktera je zalozena na nelinedrnim jednokrokovém
prediktoru, navrzeném jako neuronova sit MLP. Je to druh nizko-tiroviiového nelinearniho filtru.
Rozdil mezi hrubym EEG a vystupem neuronové sité je pak predmétem pésmové frekvencni
analyzy. Rozdily ve vykonovém spektru mezi skupiny zdraych pacienti a pacientii trpicich
Alzheimerovou demenci jsou statisticky vyznamné.

Klicovd slova: EEG, Alzheimerova demence, neuronové sité, chyba predikce, spektralni analyza

1 Introduction

Alzheimer’s disease (AD) is the most common dementia. This disease affects approx-
imately 7% of people older than 65 years and 40 % of people older than 80 years [7].
Dementia is characterized by memory decline and others neurophysiological changes that
occur in the elderly and the risk of disease increases exponentially with age.

EEG signals reflect the bioelectrical activity of the brain. Electroencephalographic
records are one of the tools for diagnosis of neurological diseases. Traditional analysis
relies mainly on detection of spectral changes: performs the analysis of selected frequency
bands, then calculate the corresponding spectral powers, whose changes may indicate
dysfunction of the nervous system.

Analysis of the power spectrum of a healthy active brain suggests [2| that there are
four main frequency bands: § (0.5 —4Hz), § (5—8Hz), a (9—12Hz), 5 (13—-20Hz). In
the frequency domain, there are established following differences in the EEG records of
healthy patients and patients with Alzheimer’s dementia: an increase in theta and delta
rhythms, decline in beta rhythm and slowing of alpha rhythm.

Many works [3], [4], [5] also show the possibility of using artifical intelligence to solve
the problem of identification of Alzheimer’s disease. Among them those employing neural
network to address this problem. Dominating amount of the works has many common
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features: perform artefacts cleaning of EEG record, perform the analysis of time series
decomposition to frequency bands, perform further processing of these bands. After all
these operations neural network is used for classification purposes.

The possibility of classification of healthy people and people with Alzheimer’s disease,
in this study, is explored using the following assumptions:
- don’t use EEG signals adjusted with artefacts filtering;
- use neural network to detect patters in the EEG signal;
- prediction error is used for classification purposes, this prediction error was obtained
from the use of neural network, trained on human health and subsequently used for
a person with Alzheimer’s disease;
- Don’t use an artifical neural network for classification purpose.

2 Alzheimer’s disease diagnosis via EEG

Electroencefalography is a continuous multi-channel recording of electrical potential dif-
ference. This recording was measured by electrodes placed on the scalp in some way.
EEG was first introduced and described by Berger [6] in connection with the study of
sleep. Data which are collected from a typical EEG experiment are a sequence of time
points sampled at 128 — 1024 Hz in general.

EEG recordings were obtained from 16 healthy people and 16 people with Alzheimer’s
disease. All patients sat in a chair in a darkened room, they were at a quiet state and
had their eyes closed. Measurements were performed using 21 active electrodes placed on
the surface of the head in line with the international 10/20 system. Sampling frequency
was 200 Hz.

3 ANN as intelligent filter of EEG

3.1 Signal description

One of the main points of this work is to construct a model that would allow to assess
the general patterns of EEG recording in healthy people and would create preconditions
for the decision rules required to classify EEG recordings of healthy people and people
with Alzheimer’s disease.

Formulation of the problem is largely procedural in nature, taking into account only
one factor, the one that EEG record reflects changes in brain bioelectrical activity, and
among these changes are those that carry for us important informations.

In the most general case, the behavior of EEG signal can be described as a superpo-
sition of a function z which describes important informations for us, and some random
component e. The estimation z of the signal function z will be implemented by using
neural network, in this paper. Random component &, which arises as a result of this
assessment, will serve as the calculation of the noise component e.
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3.2 Neural network

Let n € N be number of inputs, N € N be number of outputs and H € N be number
of neurons in the hidden layer. Let x € R™ be input vector, y € RY be output vector
and h € R be signal vector in the hidden layer. The three layer ANN — multi-layer
perceptron (MLP) operates according to equations

h = f(Wx + wy) (1)

% = Vh + v (2)

where
W e RV € RV*H are weight matrices, wo € RY, vy € RY are biases and f is a
non-polynomial function. After the decompositions:

wWg VN

We can establish the vector of ANN parameters

T T T T .T T
P=(Wy,Wi,...,W,Vo,Vi,---sVy)

consisting of M = (n+ 1)H + (H + 1)N real coordinates. The resulting MLP as ANN
can be formally rewritten as
y = ANN(x, p) (3)

3.3 Learning strategy

Let m € N be number of patterns for ANN learning. The pattern set can be represented
via matrices
X1 Y1
X=| : [erR™" Y=| : [eR™V
Xm Ym

The method of least squares was used to ANN learning. Adequate objective function

F(p) = ) _ llye — ANN(x, p)||? (4)

k=1

is thus subject of minimization.

Due to multi-modality of F(p) we applied Fast Simulated Annealing (FSA) method.
The algorithm of FSA produces a parameter sequence po, p1, - - ., pr € RM beginning with
initial vector py according to the rule:

pr+1 =Dr when  F(p;) < F(pk) + Ty tan py
Pr+1 =pr  when  F(pp) = F(pi) + T tan py, (5)
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where p;, = pi + g1} - tanty, pg, ri; ~ U(—g, +§) are independent uniformly distributed
random variables, g > 0 is scaling factor and T} > 0 is dimensionless temperature. The
strategy of FSA cooling is

(6)

where r € N is a repeating period.

4 Spectral analysis of EEG signal

Power spectrum describes the energy distribution of the frequencies of the dynamic sys-
tem. The dynamic development of simple systems can usually be described by a certain
frequency range. An opposite situation is typical for complex systems: cannot be selected
any particular frequency band. Frequency components were processed in each of the four
frequency bands using the following relationship.

> band 6]
— an .1
Tband Z ‘fft‘Q 00 % (7)

where fft is a result of application of the fast Fourier transform to analyse EEG signal,
band is one of the four main frequency bands: 9, 6, o or 3. Due to the large non-linearity
of EEG signal, Fourier transformation was applied not only to the data itself but also on
the resulting prediction error obtained by using neural networks. It is natural to expect
that the non-linearity error is smaller than the non-linearity of the original signal.

5 Results

To eliminate noise in the EEG data, EEG signals of all patients were analysed in the range
of indices from 20000 to 50000. Identify patterns in the EEG recording was performed
by one-step prediction using MLP neural network. The used MLP network consisted of
one hidden layer with four hidden neurons. Hyperbolic tangent function was used as an
activation function of MLP network. As a standard healthy person has been chosen one
patient (pivot) whose EEG signal had the average statistical characteristics regarding the
set of healthy people. The neural network was trained on the EEG signal of this patient,
generalization abilities of used neural network were tested on the EEG signals of the
remaining healthy patients. Subsequently, the neural network was applied to the EEG
signals of patients with Alzheimer’s disease. All electrodes were used for the prediction
of EEG signals using MLP network in the corresponding EEG signals of pivot patient.
Training all neural network were performed by FSA algorithm, containing 300 interior
and 300 exterior cycles. Classification of healthy patients and patients with Alzheimer’s
disease was based on a review of one-step prediction error signal EEG using MLP neural
network learning on EEG signal of a healthy pivot patient, and then used for prediction
EEG signals others patients. In accordance with the above definitions, we have: n =1,
H=4 N=1T5=0.001, g =1, r = 300, kya = 300.

Results of band spectral analysis of individual channels for raw EEG data are collected
in the Tab. 1. Individual p-values are results of two-sample two-sided t-test of hypothesis
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Hy that relative power (for given frequency band and channel) is the same for AD and
CN group of patients. Adequate ROC diagram is depicted on the Fig. 1 for four bands
and first channel. Tab. 2 shows results of the t-test of significance for each band, in the
power spectrum of EEG signal, originating from the first channel, at a significance level

of 5%.
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Table 1: P-values for significant differences (AD x CN) in the case of raw EEG (t-test)

channel ) 0 « 15}
1 9,4 x 1072 1,6 x 1072 1,1 x 1071 2,6 x 1072
2 3,2 x 1071 1,9%x 1072 | 2,4x 1072 1,1x 107!
3 3,6 x 1071 3,3x1072 | 1,6 x107* 1,4x 107!
4 1,4x107' | 8,1x10% | 2,4x10°3 | 3,8x10°!
5 2,1x107' | 6,8x10°3 1,7%x107%2 | 8,0x 1072
6 3,7x107! | 5,2x1073 | 7,0x 1073 1,3x 107!
7 8,8 x 107! 8,1x107%2 | 3,9x107°3 2,7 x 1071
8 5,2 x 1071 9,7x1072 | 3,0 x10°° 6,2 x 1071
9 7,8 x 1071 3,2x1071 | 3,9x10°* | 2,9x1072
10 9,8x 1072 | 3,2x10°3 | 3,5x1074 7,2 x 1072
11 3,7x 1071 9,2x 1072 | 9,0 x 107 1,6 x 107!
12 5,8 x 1071 6,9x1072 | 9,8 x10°* | 8,0x 107"
13 6,5 x 1071 5,4x 1071 | 2,0x107* | 6,9x 1072
14 8,4 x 1071 2,8x 107" | 8,0x107° 1,2 x 1072
15 3,0 x 107! 8,3x107! | 7.6 x107* | 7,2x107%
16 2,5 x 1071 7,2x1072 | 3,0 x 1075 1,1 x 107t
17 5,5 x 107! 3,9%x1072 | 2,0x1073 | 5,0x 1072
18 7,7 x 1071 7,0x 107" | 9,0x1073 | 1,3 x10°3
19 7,8 x 1071 3,0x1071 | 9,9x10°* | 3,1x1072
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Figure 1: ROC for the 1st channel and 6, 6, «, § bands in the case of raw EEG data

Table 2: The significance of differences in the power spectrum of EEG signal (t-test)
h P t df S

d—band | 0 | 0,0944 | —1,7274 | 30 | 7,4846
f—band | 1 | 0,0164 | —2,5439 | 30 | 2,8343
a—band | 0 | 0,1074 | —1,6596 | 30 | 1,5903
G—band | 1 | 0,0261 | 2,3399 | 30 | 2,7321

The differences between raw EEG and the output of ANN is called here as prediction
error. The best are the results of band spectral analysis of the prediction error. Relative
power of prediction in given channel and band was also subject of statistical testing.
Results are involved in the Tab. 3. Adequate ROC diagram is depicted on the Fig. 2 for
the four bands and first channel. Table 4 shows results of the t-test of significance for
each band, in the power spectrum of prediction error, originating from the first channel.
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Table 3: P-values for significant differences (AD x CN) in the case of model error (t-test)

channel ) 0 « 15}
1 2,4x102 | 6,4x103 | 7,2x10°% | 1,7x10°3
2 3,1x1072 | 2,3x107% | 2,2x1072 | 1,7x1073
3 6,7x107" | 4,9x10°! | 2,8 x 1073 1,7 x 1072
4 4,0 x 107! 7,7x1072 | 4,8x1073 | 2,1 x 1072
5 2,1 x 107! 5,5 x 1072 1,8 x107% | 5,0x 1073
6 6,3 x 107! 1,9x 107" | 7,7x107% | 6,6 x 1073
7 7.2 x 107! 4,4x107' | 3,6 x107°3 2,0 x 1072
8 8,1x 107! 9,0x 107! | 5,1 x 1074 1,9 x 107!
9 5,6 x 1071 3,0x1071 | 1,2x1073 | 2,0x 1072
10 2,1 x 107! 5,2x 1072 | 1,7x1073 | 3,6x 1073
11 1,6 x 107! 7,6x1072 | 7,1 x10°* 1,6 x 1072
12 9,0x 107" | 4,0x 107" 2,1x1072 | 5,8x107?
13 2,7 x 1071 3,7x107! | 2,8 x10°3 | 2,0x 1073
14 7,6 x 1071 6,1x107! | 4,1 x10°* | 1,0x 103
15 9,9 x 107! 3,9x107! | 9.4x107* | 6,6 x107%
16 4,3 x 107! 5,6 x 107" | 4,5x107* | 1,4x 1073
17 6,1 x 1071 3,9x107' | 1,3x1073 | 1,2x 1073
18 9,8 x 1071 9,1x107! | 9,5x10°3 | 1,6 x 1074
19 3,7x107" | 4,4x107' | 5,0x107% | 3,0x 1074

Table 4: The significance of differences in the power

(t-test)

spectrum of the prediction error

h P t df S
0—band | 1 | 0.0238 | —2.3815 | 30 | 1.5916
f—band | 1 | 0,0064 | —2.9289 | 30 | 1.5619
a—band | 1 | 0.0072 | —2.8850 | 30 | 2.0161
f—band | 1 | 0.0017 | 3.4542 | 30 | 3.9116

6 Conclusions

Band-power spectrum of raw EEG is efficient tools for the classification of Alzheimer
diseased patients against control normal patients. Bound-power spectral analysis of pre-
diction error come to statistically significant results. Namely (-band relative power in the
case channels 1,2, 5,6, 10,13 — 19 has p-value < 0.001 in the case of two-sample two-sided
t-test. The relative power of ANN prediction error is significantly lower in the case of
Alzheimer’s disease. It corresponds with hypothesis of diseased [-activity in the right
frontal domain of the human brain in the case of given dementia. Classification purposes,
as #-band well as a-band, enable more stable results in the case of channels 13 — 19.
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Figure 2: ROC for the 1st channel and 4, 0, «;, # bands in the case of model error
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Abstract. This paper discusses whether MDA and Agile, two software design and development
approaches, are exclusive or can be combined. After a brief indtroduction of both of them, the
paper defines a set of observed features and traces the presence in one or the other or both.
We see a great potential in the combination of these two approaches with a lot of supplemental
features in regard to each other. However, model based evolution will still have to wait before
the majority of developers together with tools vendors come along to this approach as a new
standard.

Keywords: MDA, Model Driven Architecture, Agile, Software Development Methodology

Abstrakt. Tento ¢lanek se snazi zhodnoti Agilni a MDA pfistup k navrhu a vyvoji software z
pohledu jejich mozného zkombinovani. Po stru¢ném piedstaveni obou metodik nésleduje vlba
pozadovanych vlastnosti k porovnani a zmapovani jejich pifitomnsti v té ¢ oné. V kombinaci
obou pristupt vidime velky potencial, jak se mohou vzajemné doplnit a prispét ke zvySeni
vysledné efektivity. Rozvoj modelovaciho piistupu bude muset nicméné jesté pockat nez majorita
vyvojarti spolu s dodavateli vyvojovych néstroji pfijmou tento zptusob za novy standard.

Klicovd slova: MDA, Modelem fizend architektura, Agilni vyvoj, Metodika vyvoje software

1 Introduction

During the last 9 years, there has been a lot of buzz around two catch-phrases in the
software development world — Model Driven Architecture|[11] and Agile[4]. Both of these
describe a different way how to approach software development, focusing, among others,
on minimizing the failure rate of information systems. Over these years, many debates
took place on whether the modelling (the foundation of MDA) should drive the whole
development process or should be used rather informally only for temporary artifacts (the
way Agile treats it).

Model Driven Architecture (MDA), or the modelling with UML itself, proposes an
approach to software engineering with most of the work being done at a higher level of
abstraction, working with platform-independent models and striving for reusability.

Agile, on the other hand, draws attention by involving customer and application
experts in the overall development life-cycle. Its main focus is primarily on the code
and the distinction between design and implementation tasks is put aside. Extreme
programming |7], for example, encourages developers to select the most simple solution
as opposed to designing for reusability.
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The following two sections briefly re-introduce both approaches, highlighting the key
attributes of each one. In section 4, individual attributes are evaluated for comparison
and intercompatibility and presented in the form of a table.

2 Model Driven Development /Architecture

Model Driven Architecture was introduced as a set of guidelines for software specifications,
design, and development, defined by the Object Management Group|3|. These guidelines
describe the development life-cycle which is not all that different from the traditional
approaches. The difference is in the artifacts being created during the process. In case of
MDA, the main artifacts are models. Specifically, a set of models which comprises three
core models on three different levels of abstraction and distance from the target platform.
Fully automatic both-way transformations are defined between these three models[15].

The first of the top-level models is a Platform Independent Model (PIM), independent
of the technology of implementation and target platform. This model is mostly used in
the analysis phase, but when following an iterative development methodology and thanks
to the automated transformations, it can also be refined continuously.

PIM transforms into a Platform Specific Model (PSM) which consists of sub-models
interdependent with the specific platform (e.g., EJB), see Figure 1.

transformation
definition

language

is i is
written used written
in by in

language

transformation
PIM definition PSM

Figure 1: The MDA Framework [15]

And finally, the third model is the final, fully generated and executable code.

As has been already said, MDA raises the levels of abstraction and reuse. This is
achieved by combining the phase of design and specification with the phase of manual
implementation following the outputs of design phase. History shows nice examples of
similarly significant paradigm shifts.

In the 1980s, the software development field went through a shift from manually
producing assembly code to programming in high level programming languages and hav-
ing the compiler producing assembly code. No doubt that the level of abstraction and
platform independence has increased. As for the reuse, it was a long way through the
decades of functions, procedural paradigm, object oriented paradigm, components and
frameworks until the very present domain models [9].
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Another advantage is the interoperability [11]. Interoperability represents MDA fea-
ture of making multiple PSMs generated from one PIM able to communicate with each
other. This is achieved by the concept of bridges — automatically generated connectors
between individual PSMs. This feature can save a lot of time during development.

It is also worth noting that the transformations used are often also a subject of the
development because the generic transformation is often not enough. At least not yet.
This can lead to either prolonging the total delivery time or the need of utilizing additional
resources.

3 Agile Approach

Agile movement started around 2001. It was a reaction to a much-greater-than-necessary
number of experience of slipping schedules, growing budgets, unsatisfied customers, inef-
fective practices, etc. Fear of failing again and again led to more and more constraining
processes demanding a growing number of documents and reports [7].

By this motivation, the Agile Alliance was formed and it outlined the basic values and
principles. Agile methods, formerly known as light-weight processes, promote disciplined
but flexible project management process, run in short iterations and continuously refining
the estimates. Using a big-scale method like PERT which does not fit smaller projects
(i.e., most of the software projects, because PERT does not scale well to the man-day
level), or a method like CPM which does not correlate its concurrency in tasks with the
real-world developers’ capabilities, is suppressed in favor of relative estimates based on
the nearest experience of the last iteration.

Estimates expressed in virtual points represent amount or portion of tasks/features
that will be implemented in the iteration, first one is more or less guessed [6]. Based on
these points is calculated the effectivity, measured as a number of points delivered in the
last iteration. It is called velocity.

The approach draws high attention to the customer. He is involved as much as possible
in the whole process, he is allowed and expected to prioritize the features during planning
sessions, even change the requirements and collaborate by all means.

Developers need to adopt a set of engineering best practices focused on quality, de-
livery time, and maintainability. These include: test-driven development, pair program-
ming, continuous integration, etc. Working code is at the core of all and any developer
can work at any part of it at any time — a practice called collective ownership. And
most importantly, at the end of every iteration there has to be a working program.

Changes to requirements are harnessed with confidence backed up with automated
test suite guarding regressions. Acceptance tests written in a scripting language verify
the expected behaviour.

Agile suppresses production of comprehensive documents unless really and immedi-
ately needed. The design is evolved gradually rather than prescribed by big design up
front [13] — incremental development.
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4 Putting It Together

This section will try to give an overview of the selected features and properties of both
approaches, thus mapping the presence in one or the other or both, every attribute
being completed with our statement. Some of the features are heavily dependent on the
maturity and availability of the tools to support them; when this is the case for at least
one of the subjects, the attribute is prefixed with T:.

Attribute Agile MDA Statement / Comment
Reuse By default, does not Support reuse by MDA’s higher level of
explicitly promote having main focus abstraction, visual ar-

Risk Manage-
ment

reuse. Starts with the
simplest thing that
could possibly work
and the design goes
through the evolution
before the final state.

Agile methods are
designed to mitigate
risks like changing
requirements and
schedules [14].

on the more abstract
and general level -
the model. Some of
the MDA methodolo-
gies even explicitly
prescribe  techniques
to create potentially
reusable artifacts [1].
Existing methodolo-
gies do mnot provide
coverage  for  the
activity [1].

tifacts and model ex-
ecution speaks for the
advantage of MDA in
focus on reusability.

It would seem that
Agile is better pre-
pared for risk man-
agement; however, the
general techniques of
risk management can
be applied and used
with both of the ap-
proaches.

Continued on next page
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Attribute Agile MDA Statement / Comment
Adoption For agile development Broad adoption is Agile being definitely
Prospects there are quite mature waiting for sound more prevalent has a

tools supporting Agile tools or integration better adoption start-

Tools support

practices and existing
methodologies are also
proved by time. The
troubles with adop-
tion are mainly in the
shift of involving cus-
tomers, learning new
practices and habits,
and bringing manage-
ment and developers
on the same page.

The two most popular
IDEs - Eclipse and
Visual Studio - and
most of the tools
improvements are
directed towards pro-
gramming  activities
and Agile practices
support [12].

with major tools be-
ing used [12]. It also
requires  developers
and analysts to ex-
tend their portfolio of
software engineering
techniques with mod-
elling skills [13]. One
of key impediments
to adoption is the
a priori assumption
that model driven
code cannot possibly
work [10]. Building
a deliverable system
early in Agile style
allays the fears and
brings team sceptics
on board.

Neither of the two
most popular IDEs
- Eclipse and Visual
Studio - has yet paid
enough attention to
attract wider audience
to the MDA approach,
the first being ar-
guably further.

ing point. How-
ever, it is very likely
that MDA will begin
to attract more and
more attention both of
the developer and tool
vendors.

As the most develop-
ment tools focus on
the code, it is Ag-
ile practices which has
a better support at
this time, MDA tools
are either not mature
enough or specific for
a certain area (Net-
silon [5], BridgePoint
for the Shlaer-Mellor
method), or too ex-
pensive.

Continued on next page
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Attribute Agile MDA Statement / Comment
T: Coping with It is usually difficult MDA with a tool Legacy systems are a
legacy systems to apply Agile prac- with full round-trip very sound argument
tices on the legacy engineering support for MDA approach as
code which was not can easily recon- they are able (with ap-

T: Prototyping

T: Test Cover-
ing

designed in that man-
ner. Especially lack
of test suite increases
the risk of defects from
refactoring and chang-
ing the original be-
haviour.

Directly aims at con-
tinuously  involving
customer and appli-
cation experts via
frequent  prototypes
and the “test first”
paradigm.

Given the test-first
paradigm, the project
started with agile ap-
proach usually exhibit
a good test coverage.

struct the model from
legacy code and start
rebuilding from there.

With  proper tool
with support of an
executable version of
UML and PSMs, the
model can be used for
rapid prototyping.

Same as  previous
attribute, the exe-
cutable UML would
provide support
for the activity [8].
Another approach
proposes  usage of
visual contracts to
define test cases [2].

propriate tool) to im-
port the old system
and modify it on the
model level.

Prototyping is an
important activity in
nowadays business
software development
and it is achievable
with both approaches;
however, MDA might

still suffer from
immature tools.
Basically the same
statement as the one
above applies here
with the notion of
that model testing
requires different
techniques.

Table 1: Features and Properties of MDA and Agile

5 Conclusions

Both MDA and Agile claim an increased productivity as one of the benefits they can
provide. For MDA, this comes out from high potential of the fact that the main artifact is
the model which can be easier to understand for customers and stakeholders than the code,
test execution outputs, or bare business logic prototypes. In Agile context, productivity
is achieved by short iterations with working software at the end of each, automated test
suite created with the test-first approach, working closely with the customer to review
the results and decisions immediately.

In that, there might be an opportunity for even further productivity increase — hav-
ing customer on site but working on the model level, while the model is the executable
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test suite (or it can be at least automatically generated). Customer’s presence and tasks
prioritization (together with Agile promotion of simple design and solutions) might also
help preventing modeling a too-large system (horizontal scope creep) or too general (pre-
mature generalization - vertical scope creep) [10].

There is a great potential in the combination of these two approaches with a lot of

supplemental features in regard to each other. However, model based evolution will still
have to wait before it is very well supported by the major tools being used [13].
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Abstract. We study certain classes of P7 -symmetric extensions of symmetric second deriva-
tive operators. The operators are similar to self-adjoint ones except particular irregular cases.
Spectral properties of the latter are very far from those of self-adjoint extensions: operators with
empty resolvent set and empty spectrum are present.

Keywords: PT-symmetry, point interactions, irregular boundary conditions

Abstrakt. Studujeme tfidy P7-symmetrickych rozsifeni symetrickych diferencialnich operé-
tord druhého fadu. Rozsifeni jsou podobna samosdruzenym operdtorim s vyjimkou specidlnich
pripadd, jejichz spektralni vlastnosti jsou velmi odlisné od samosdruzenych rozsifeni: existuji
rozsifeni s prazdnou resolventni mnozinou a s prazdnym spektrem.

Klicovd slova: PT-symetrie, bodové interakce, iregularni okrajové podminky

1 Introduction

PT -symmetric operators, a special case of operators with antilinear symmetry, have been
intensively studied in both physical and mathematical context as a result of the obser-
vation that the spectrum of such operators may be real and discrete [5]. Although it
is known that some P7-symmetric operators are special case of quasi-Hermitian ones
[7], or equivalently, they can be mapped by similarity transformation to the self-adjoint
ones, see e.g. |3, 11, 16] for examples, the spectrum of P7 -symmetric operators may be
also complex, e.g. complex conjugated eigenvalues may appear. The complex conjugated
pairs of eigenvalues instead of the real ones are actually the simplest possible deviation
of the spectrum from the self-adjoint case. In fact, the class of operators with antilinear
symmetry is much larger. The residual spectrum of operators (even bounded) with an-
tilinear symmetry may be non-empty and the point spectrum of such operator may be
uncountable [17], i.e. operators may be non-spectral [8].

We consider P7-symmetric point interactions on a line described in general in [1].
It has been established that the spectrum of P7-symmetric point interaction on a line

*This work has been supported by the Grant Agency of the Czech Technical University in Prague,
grant No. SGS OHK4-010/10.
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can include up to two real or complex conjugated eigenvalues in addition to the contin-
uous part [1]. However, it has been noticed in a more recent work [3] that an irregular
case having uncountable point spectrum is present among previously studied extensions.
Starting from this observation we proceed with an analysis of the analogous models on a
finite interval showing that the spectrum of the corresponding operators can be empty or
entire complex plane depending on boundary conditions imposed at the endpoints. All
these examples show that P7 -symmetry together with pseudo-Hermiticity and J-self-
adjointness may be a very weak requirement allowing not only complexification of some
(or all) discrete eigenvalues.

In the physical framework of P7-symmetric Quantum Mechanics [4, 15|, the fact
that the point interactions can completely and dramatically change the spectrum was
not expected. Nonetheless, considering operators being not even similar to normal ones
brings expected unusual spectral effects. We remark that these examples illustrate the
necessity of the non-empty residual set assumption in [10, III, Corollary 6.34], claiming
that the extension of a finite order has a compact resolvent if and only if some other
extension of the same operator has a compact resolvent.

We recall a definition of P7 -symmetric point interactions in the first section and we
also formulate slightly more precisely the claim of [1| concerning the P7 -self-adjointness
of the operators. In the next section, we consider a particular P7 -symmetric point
interaction for the model defined on a line, we summarize results on the spectrum and
indicate a connection to the collapse of quasi-Hermiticity in the irregular case. Models
defined on the finite interval (—[,[) are studied in the last section. The dependence of
the spectrum on the boundary conditions at 4/ is described in details.

The interesting spectral effects caused by certain P7-symmetric point interactions
can be expected when considering general classification of boundary conditions, cf. [§],
since the studied extensions correspond to irregular boundary conditions. The recent
work [14] dealing with pseudo-Hermitian extensions with empty resolvent set shows that
their presence is essential for existence of an additional fundamental symmetry that can
be used for explicit construction of C operators.

Operators P and 7 are defined in L*(R) space in the following way, the parity P
acts as (Pv)(z) = ¢(—x) and the time reversal symmetry 7 is the complex conjugation

(T4)(z) = (x). We say that an operator A is P7-symmetric if (P7)A C A(PT).

2 'P7-symmetric point interactions

A family of P7-symmetric point interaction at the origin was determined in [1] by the
two types of boundary conditions: connected and separated. Differential operator L,
corresponding to the point interaction,

d2

L=——
dz?

(1)

is defined on the domain Dom (L) consisting of functions ¢ from W?%%(R\ {0}) satisfying
boundary conditions described by parameters b, ¢, v, 8, hg, hy in the following way
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i) connected case:

with the matrix B equal to

B = ¢ (m e'¢ b )
c V1+bee )’
with real parameters b > 0, ¢ > —1/b, 6, ¢ € (—7, 7.
ii) separated case:
hot!'(04) = hie®p(0+),
hot!(0—) = —hie "9(0-), (4)

with the real phase parameter 6 € [0, 27) and with the parameter h = (hg, hy) taken
from the real projective space P!.

The operator L is an extension of a symmetric densely defined operator Ly = —d?/da?
with the domain Dom (L) = C§°(R \ {0}). L can be also viewed as a restriction of
Lyaz = L = —d?/dz? with the domain Dom (L,..) = W*2(R\ {0}).

The separated P7 -symmetric boundary conditions have been studied in several works
[11, 6, 13, 12] and we will not consider this case further.

We would like to remark that the claim of [1] that all operators L satisfy the property
L* = PLP is not entirely accurate for the connected case. If we express explicitly
the boundary conditions corresponding to the adjoint operator L*, we conclude that
L* = PLP holds if and only if & = 0. Nevertheless, none of the other claims of [1] is
affected by this fact because of the unitary equivalence of the operators corresponding to
the different choices of #. Further, we will consider 6 = 0 only.

We summarize symmetry properties of L. The proof of the following proposition is
straightforward application of boundary conditions for L, L* and actions of operators P
and 7.

Proposition 1. Let L be the second derivative operator corresponding to the connected
PT -symmetric point interaction at the origin (1)—(3) with the choice 6 = 0 in the bound-
ary conditions. Then

i) L* =PLP,

ii) (PT)L C L(PT),

iii) L* =TLT.

The first symmetry is referred to as the P-pseudo-Hermiticity or P7 -self-adjointness,
the second one is the P7-symmetry in its original sense and the third one is the 7-
self-adjointness, the special case of J-self-adjointness, where J is an antilinear isometric
involution, i.e. J?> = I and (Jx, Jy) = (y,z) for all z,y € H. The importance of 7 -self-
adjointness for P7 -symmetric models was stressed in 6], one of the reasons is that the
residual spectrum of J-self-adjoint operators is empty [9, Lem. IIL.5.4|.

We remark that the property ¢) of the Proposition 1 guarantees that the operator L
is closed. To this end take into the consideration closedness of every adjoint operator,
the relation i), and P = P! € Z(H). The closedness of the considered extensions can
be alternatively shown with help of |10, III, Problem 5.11] as well.
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3 Model on a line

The spectrum of this model has been investigated firstly in [1, Thm.2, Prop.1], it basically
consists of the branch of continuous spectrum [0,00) and up to two real or complex
conjugated eigenvalues. However, it was observed in [3] that there is one “exceptional”
case for particular choice of parameters for which the resolvent set of corresponding
operator is empty. Our aim is to investigate this particular operator into more details.

Let us study the connected case with § = b = c = 0, i.e. the boundary conditions for
Ly read

$(0+) = €9(0-), ¢'(0+) = e ?'(0-), (5)

where ¢ € (—m,7|. The adjoint operator L7 can be found explicitly, L}, = L_,; and the
case ¢ = m corresponds to the self-adjoint operator.

Spectral properties of Ly for ¢ # +7 are very simple, the spectrum is continuous
without any eigenvalues,

o(Lo) = 0e(Ly) = [0,00), ¢ # 5. (6)

It is possible to find an invertible positive bounded operator © with bounded inverse
satisfying
. T
L3Oy =0O4Ly, ¢ # iE’ (7)
in other words, to show that L, is quasi-Hermitian [7] or, equivalently, that L is similar

to a self-adjoint operator. The explicit formula for the operator © and its square root
was obtained by different approaches in |3, 16, 2|,

@¢ = I — isin ¢Psignpa (8)

where the operator Py, acts as a multiplication by the function signz. The spectrum of
O, consists of two eigenvalues 1 &+ sin ¢ of infinite multiplicities,

0(0g) = 0(0y) = {1 £ sin ¢} (9)

We denote L.,©O. the operators corresponding to ¢ = £7. The relation (7) is still
valid for ¢ = £7, however, operators ©. are no longer invertible. Moreover, we can see
that formula for the resolvent [1, eq.(17)] collapses because the expression |1, eq.(18)]
appearing in the denominator is identically zero. These facts are reflected in unusual
spectral properties of L. being far from those of self-adjoint operators.

Proposition 2. Spectra of the operators Ly include all complex numbers, interval [0, 00)
is the continuous part and every A € C\ [0,00) belongs to the point spectrum.

op(Ls) = C\ [0,00), 0c(Lz) = [0,00). (10)

Proof. The eigenfunctions corresponding to eigenvalues from C \ [0,00) can be found
explicitly, see [3] for the details. O
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4 Models on a finite interval

We consider a finite interval (—[,[) and a second derivative operator L, corresponding
to the P7 -symmetric interaction at origin of the type (5). The domain of L, consists of
functions ¢ belonging to the Sobolev space W22((—1,0) U (0,1)) and satisfying boundary
conditions (5) at origin and some other boundary conditions at +I being specified later.
Our aim is to study the spectrum of such differential operators, particularly if ¢ = +7/2
where the choice of the boundary conditions at £/ plays an essential role.

We distinguish two classes of boundary conditions being imposed at +[: symmet-
ric and P7 -symmetric ones. The symmetric boundary conditions are determined by a
unitary matrix U entering well known relation

(U = DW() +i(U+ DW(l) =0, (11)

v - () vo- (00 (12)

The P7T-symmetric boundary conditions are defined by relations (2)-(4).
We summarize spectral properties of Ly in following propositions. As we may expect,
the cases ¢ = +m/2 exhibit unusual features.

where

Proposition 3. Let Ly be the second derivative operator in L*((—l,1)) corresponding to
the PT -symmetric point interaction (5) at origin with symmetric boundary conditions
(11)—(12) at £l.

If ¢ # +7/2, then the spectrum of Ly is discrete and its eigenvalues N\ = k* are
solutions of the equation

cos ¢<P1(U) — kP (U) cos 2kl + k> Py(U) sin ka) +
+2ik <U12 "+ gr 4 i(uny — tugs) sin ¢) —0, (13)

where u;; are elements of the unitary matriz U and

Pi(U) = 1—u1p — uipugr — Usz + U1,
Py(U) = 14 uigugr — uriUsg,
Py(U) = 14 ui — urpuor + ugy + uritgs. (14)

If ¢ = £7/2, then the point spectrum of Ly is either empty or entire C. The latter case
occurs if and only if
U2 + U2 + i(uu — Ugg) = 0. (15)

If we take into consideration usual Dirichlet (U = —I) and Neumann (U = I) bound-
ary conditions at +/, then the condition (15) is fulfilled, thus the spectrum of L. is the
entire complex plane.

Next, we apply both connected and separated P7 -symmetric boundary conditions at
+[. It may be expected for connected case that the second point interaction (parameters
are denoted by the subscript 2) of the type by = 0, ¢y = 0, o = £7/2 produces analogous
interesting spectral effects.
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Proposition 4. Let Ly be the second derivative operator in L*((—1,1)) corresponding to
the PT -symmetric point interaction (5) at origin with connected PT -symmetric boundary
conditions (2) at £l.

If ¢ # +m/2, 09 # £70/2 or ¢ # £7/2, 9 = +7/2 and by # 0 or co # 0, then the
spectrum of Ly is discrete and its eigenvalues X = k* are solutions of the equation

coS @ <(b2k2 — cg) sin 2kl 4 2k+/ 1 4 bycy cos ¢, cos le) +
ok <\/1 ¥ bycy Sin ¢ sin ¢y — 1) — 0. (16)

If ¢ = £7/2, then the point spectrum of Ly is either empty or entire C. The latter case

occurs if and only if
\ 1+ bQCQ sin ng —1=0. (17)

If by = 0,c0 = 0, 0o = £7/2, then the point spectrum of L. is either empty or entire C.
The latter case occurs if and only if ¢ = +7/2.

Proposition 5. Let Ly be second derivative operator in L*((—1,1)) corresponding to the
PT -symmetric point interaction (5) at origin with separated PT -symmetric boundary
conditions (4) at .

If  # £71/2 and 0 # 0,m, then the spectrum of Ly is discrete and its eigenvalues
\ = k? are solutions of equation

cos ¢ (2hohik cos 2kl cos § + (hik® — h) sin 2kl) — 2hohyk sin 6 sin ¢ = 0. (18)

If ¢ = +7/2, then the point spectrum of Ly is either empty or entire C. The latter case
occurs if and only if 0 =0, .

Remark 1. The case of empty point spectrum actually means that the whole spectrum is
empty because the resolvent is compact in this case.

Proof. We solve the differential equation Ly = A\ together with both boundary condi-
tions. We search for a non-zero eigenfunction and this yields the secular equations (13),
(16), (18). If we insert ¢ = =£7/2 or other assumptions on the rest of the parameters
into the equations, we obtain the assertions concerning the empty and entire C point
spectrum.

In order to prove the claim of the non-empty discrete spectrum and of the remark
above we show that the resolvent is compact in these cases. We calculate the resolvent
explicitly for the operator L, in Proposition 5. The remaining resolvents can be obtain by
analogous procedure. At first, using standard Green function approach, we calculate the
resolvent corresponding to the L; = —d?/dz? on (—[,1) with separated P7 -symmetric
conditions (4) at =+l.

(Ru,(N)g) (z) = / G y)g(y)dy, (19)

where g € Ly(R), A = k%, and
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h? h?
W(k) = k* — —+ ) sin 2kl + 2k— cos 6 cos 2kl
02 02

us(x) = Ay coskx + By sin kz,

01 o h
A_ = —kcoskl+e Y —sinkl, B_ = e 2L coskl + ksin kl,
ho ho

Ay = kcoskl —eieﬁsinkl, B, = ew@cos kl + ksin kl. (21)
ho ho

We may easily check that functions uy satisfy appropriate boundary condition (4) at +I.

We define operators L., and L, both acting as —d?/dz?, the domain of L,

consists of v € W2((—1,1)) satisfying (0) = ¢’(0) = 0 and the separated P7 -symmetric

boundary conditions (4) at #I, while the domain of L,,q, are ¢» € W22((—=1,0) U (0,1))

satisfying the separated P7-symmetric boundary conditions (4) at /. Both Ly and Ly

are extensions of L,,;, and restrictions of L,,,, and therefore the resolvent of Ly can be
written in the form

(R, (k*)g) (z) = (R, (k*)g) (z) + C_(k)e—(x) + Cy (ke (), (22)

with
ex(r) = ¥(xr)us(x), (23)
where 9(z) is the Heaviside step function, and CL(k) are to be determine. We require

Ry, (k*)g € Dom Ly, thus it must satisfy boundary conditions (5). This leads to the
system of linear equations for C (k)

(S ) () = (S50 24)

@) = (Ru()g) (), Fia) =~ Fi(x). (25)

where

The solution exists if determinant of the matrix on the Lh.s. of (25) denoted M further
is non-zero. On the other hand the condition det M = 0 yields eigenvalue equation (18).
Solutions C4 (k) have the following form:

ei¢ e~
c-) = Saar (B-FO) - AP0,
el® — :
) = o Ml <e“¢B+F(O)—%A+F’(O)). (26)

If we consider k& for which det M # 0 and W (k) # 0, then CL(k) are bounded and

estimates

[C(k)] < CE)g] (27)

are valid for a constant C(k) depending on k. Ry, (k?®) is a compact operator and if we
add rank one, i.e. also compact, operators Cy(k)es we get Ry, (k®) which is then also



158 P. Siegl

compact for the fixed k. Whence, by the resolvent identity, Ry, (k?) is compact for all
k? € o(Lg).
This claim remains true also for ¢ = 7/2 and 6 # 0, ™ because

h
det M = —2k>— sin 6. (28)
ho
We can alternatively finish the proof by using [10, ITI, Corollary 6.34]. In order to prove

that resolvent is compact it suffices to show that the resolvent set is non-empty, i.e. to
find some k for which Ry, (k*) € B(H). O
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Abstract. We will exhibit an example of an infinite word, whose language is closed under
reversal, and the word itself is rich in palindromes and contains infinitely many non-palindromic
bispecial factors. We will prove the mentioned properties. We will also mention the motivation
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Abstrakt. Uvedeme piiklad nekonecného slova, které méa jazyk uzavieny na reverzi, je plné
saturovano palindromy a obsahuje nekone¢né mnoho nepalindromickych bispecidlnich faktora.
Zminéné vlastnosti dokdzeme a zminime i motivaci pro hledani takového slova v kontextu zobec-
néni Sturmovskych slov.
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1 Introduction

Combinatorics on words deals mainly with infinite words - infinite sequences of letters.
It is a relatively new domain, it dates to the beginning of 20" century. Since then, its
growth is accelerating until today. It is intimately connected with other mathematical
domains. One of the closest connection is to symbolic dynamics where the state of the
system is represented by an infinite word. A lot of combinatorial properties of an infinite
word have their dynamical equivalent in a symbolic dynamical system (see for instance
[4] or [5]).

We will deal with some specific combinatorial properties of infinite words. The situ-
ation is usually simpler on a binary alphabet. Some binary infinite words are quite well
explored and their properties have been generalized to larger alphabet. In [2] a well-
known class of binary words, Sturmian words, served as an inspiration for exploring the
generalized properties and their relations. Sturmian words are an interesting object as
they can be defined in many ways and they appear in very different situations in the
world around us. Some of their combinatorial characterizations rely on the notion of
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grant no. MSM6840770039 and LC06002 of the Ministry of Education, Youth, and Sports of the Czech
Republic and by the grant no. SGS10/0850HK4/1T /14 of the Grant Agency of the Czech Technical
University in Prague
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palindrome - a word read the same from the left as from the right. One of the properties
of Sturmian words is that they are fully saturated by palindromes, i.e., a Sturmian word
cannot contain more palindromes. Some of their generalizations also fulfill that property
(which is referred to as richness or fullness).

In this report we will give one example of an infinite word used in [2| in the context
of generalizations of Sturmian words. We will require this example to be also saturated
by palindromes and contain non-palindromic factors (subwords that occur without gaps
in the infinite word) - see later for precise definition. We will give proof of its properties.

Section 2 gives some necessary notions and definition from combinatorics on words
while Section 3 contains the example and proofs.

2 Preliminaries

An alphabet A is a finite set of symbols called letters. A finite word is a finite sequence
of letters. By a language we mean a set of finite words. The set of all finite words over
the alphabet A is denoted by A* and includes the empty word . When equipped with
the operation of concatenation, A* is a monoid.

An infinite word is an infinite sequence of letters. For an infinite word u = (u;);",
where u; € A for all i, we say that a finite word w is a factor of u if there exists an
integer k > 0 such that w = ugugyq ... ukrn—1. The integer k is said to be an occurrence
of w in u. The integer n is the length of the word w, denoted |w]|.

An infinite word is recurrent if every factor occurs infinitely many times, i.e., has in-
finitely many occurrences. An infinite word is uniformly recurrent if the gaps between
consecutive occurrences of every factor are bounded.

The set of all factors of an infinite word u, including the empty word ¢, is denoted
L(u). This set is said to be the language of u. We say that a factor v € L(u) is a
right extension of a factor w € L(u) if there exists a letter x € A such that v = wz.
If a factor w has more than one right extension, we say it is right special (RS). Note
that in a language of an infinite word, every factor has at least one right extension. The
definition of left extension and left special (LS) factor is analogous. If an infinite word
is recurrent, then also every factor has at least one left extension. If a factor is right and
left special, we say it is bispecial BS.

Factor complexity C(n) is a mapping associated to an infinite word u which to an
integer n associated the number of distinct factor of length n, i.e.,

C(n) = #{w € L(u) [ Jw[=n}.

The bilateral order of a factor w € L(u) was introduced in [3] as the number
b(w) = #{awb | awb € L(u),a,b € A} — #{aw | aw € L(u),a € A} — #{wb | wb €
L(u),b € A} +1. Factors can be classified according to their bilateral order. If b(w) = 0,
we say the factor is ordinary. If b(w) > 0, it is said to be strong. Otherwise the
factor is weak. It can be readily seen from the definitions that if w is not BS, then
it is ordinary. The importance of bilateral orders stems from the fact that the second
difference of the factor complexity can be expressed in terms of bilateral orders of factors.
Since only bispecial factors can have non-zero bilateral order, they play important role
while studying the language of an infinite word.
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The mirror image or reversal of a word w = wowy . .. w, is defined as
W = WpWp_1 - ..WQ.

If a language contains with every factor w also its reversal w, we say it is closed under
reversal.

A finite word such that w = @ is a palindrome. Given a palindrome w € L(u), we
say that zwz, z € A, is a palindromic extension of w if zwx € L(u).

More basic notions and theorems can be found for instance in [6] or [4].

In |2] more properties of infinite words and relations between them are given. We will
mention some of them. We say that an infinite word u satisfies

e Property C if its factor complexity is C(n) = (#A4 — 1)n + 1 for all n > 0;
e Property P& if every its palindrome of £(u) has a unique palindromic extension;
e Property BO if every its factor is ordinary.

Note that most of the mentioned definitions can be rewritten in a more general way
for any language. As we will deal only with languages of infinite words, we keep the
notions for the language of an infinite word £(u).

We will use the following relation taken from |[2].

Theorem 1 ([2| Theorem 22). Let u be an infinite word with language closed under
reversal satisfying Property C. Then Properties PE and BO are equivalent.

This is an example of a relation between generalized properties of Sturmian words. On
a binary alphabet, if we add aperiodicity to the Property BO, the 3 mentioned Properties
are equivalent even if we relax to condition of being closed under reversal on the language
to be closed under reversal.

The next claim is a reformulation of Corollary 27 from the same paper. It refers to
an interesting class of words called rich words. A finite word w is rich if it contains
|w| + 1 palindromic factors (including the empty word). It can be shown that this is the
maximum number of palindromic factors that a word can contain, thus the name rich.
An infinite word is rich if all its factors are rich. In other words, rich infinite words are
fully saturated by palindromic factors.

Claim 2. Let u be an infinite word with language closed under reversal satisfying Property
C. If the property PE is satisfied, then the word is rich.

We will need another theorem.

Theorem 3 (folklore). If u is a uniformly recurrent word that contains infinitely many
distinct palindromes, then its language L£(u) is closed under reversal.

Proof. Suppose for contradiction that there exists a factor w € £(u) such that w & L(u).
Since u is uniformly recurrent, there exists an integer K, such that every factor of length
at least K contains every factor of length |w|. As there is infinitely many palindromes,
we can find a palindrome p € £(u) such that |p| > K. As w occurs in p, w occurs also
in p and therefore in £(u) — contradiction. O
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3 Example of an infinite word with desired properties

The goal is to construct a rich infinite word having its language closed reversal and con-
taining non-palindromic BS factors. The motivation is that all known examples contain
only palindromic BS factors and such example would serve as a counterexample. For
larger context see [2].

Ezample 4. A ternary word with such properties is v = m(u), where u = ¢?*(u) (i.e.,
u is a fixed point of a morphism ¢?) and ¢ : {A,B,C,D}* — {A,B,C,D}* and 7 :
{A,B,C,D}* — {a,b,c}* are the following morphisms

p:A— CAC, B— CACBD, C —- BDBCA, D — BDB,

m:A—ba, B—b C—a, D— abc.

The idea of the construction is very different from the actual proof and is inspired
by |7]. To prove its properties we will use notions and claims from the previous section.
However the proof is rather technical and is separated into 5 lemmas.

The first two lemmas concern the word u.

Lemma 5. Let v € {A, B,C, D} and n > 1. Then the word ©*"(x) equals pyoy1 where p
1S a palindrome and yo and vy, are letters.

Proof. The proof will be done by induction on n. We will prove the following. For any
letter z and any integer n, ¢**(x) without last two letters is a palindrome and words
©*(CA) and p*"(DB) differ only on their last two letters.

Before proceeding, note that the suffix of length 2 of ©**(z) can be determined for
any n. They are enumerated in Table 1.

r  suffix of p?"(z)
A CA
B DB
C AC
D BD

Table 1: Suffixes of length 2 of words ¢*"(z)

For n = 1, the claim can be directly verified.
Suppose now the claim is true for n. Let first x = A. We want to prove that

p?"2(A) = ¢*" (BDBCACACBDBCA)

without last two letters is a palindrome. Let p, denote the palindrome such that ?"(y) =
pyYoy1 with yo and y; being letters. Using this notation, we can rewrite ¢*""2(A) as

prDBppBDprD Bpc ACpAC Apc ACpsCApc ACpg D Bpp BDppD Bpc ACpsC A.

The fact that p*"(C'A) and ¢**(D B) differ only on their last two letters can be denoted
as

pcACps = ppBDpp. (1)
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Putting these two equalities together we get p?"™2(A) =
prDBppBDpp D BppBDppC Apc ACpAC Apc ACpg D Bpp BDpg D Bpp BDpgpC A.

It is easy to verify that if we cut the suffix C'A, we get a palindrome.

For x = B the proof is analogous.

For the remaining two letters C' and D we can consider a morphism exchanging
the letters o A < D and B «+ C. It is clear that ¢*"*%(C) = o(p*""?(B)) and
©*"2(D) = o(p**2(A)). The first part of the claim is proved.

To prove the remaining relation, one can see that
©*"2(CA) = p*(BDBCACAC) = pgDBppBDpgDBpc ACp ,C Apc ACp ,C Apc AC
and
©*""?(DB) = ¢**(BDBCACBD) = pgDBppBDpDBpc ACpAC Apc ACppDBppC A.

Comparing the two words, one can see that only their suffix differs and we in fact
want to prove that the word psC Apc equals pgDBpp. This is true since we can apply
o to the relation (1). On the left-hand side we get

o(pcACpa) = psDBpp

and on the right-hand we have

o(ppBDpp) = paCApc.

The equality 0(p,) = Do) for any letter x is due to the fact that o(p(z)) = p(o(x)).
U

The last lemma implies that £(u) contains infinitely many palindromes. Theorem 3
then implies that £(u) is closed under reversal.

Lemma 6. Every LS factor of u is a prefir of p*"(B) or ¢**(C) for some n € N.

Proof. 1t is readily seen that B is LS factor, with DB and CB its left extensions. The
same holds for C', whose left extensions are AC' and BC'.

>From the definition of ¢?, we can see that all short left special factors are prefixes
of ¢*(B) or p?(B).

On the other hand, one can see that both ©*"(B) and ¢?"(C) are left special for all
n.

Suppose now that w € L(u), |w| > |¢*(B)|, is left special. Such factor w must be a
factor of an image by ¢? of a shorter LS factor v. Since for any letter x, the word ¢?*(z)
ends by z, we can easily identify the preimage v to be a prefix of ©?"(B) or ©**(C) for
some n big enough.

0

The following lemmas concern the infinite word v.
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Lemma 7. Let p € L(u) be a non-empty palindrome different from B and C. Then
7(p) = zyp’ where x and y are letters and p' is a palindrome.

Proof. The proof is done by induction on |p|. For short palindromes, the claim can be
verified easily.

Suppose the claim holds for a palindrome p, [p| > 3. Let m(p) = zyp’ where p’ is a
palindrome.

We will now deal apart with the four possible cases ApA, BpB, CpC and DpD -
palindromes of length |p| + 2. Let us recall the factors of u of length 2

Lo(u) ={AC,CA,CB,BC,CD, DB} .
It will serve us to determine xy in each case.

1. ApA: Since ApA € L(v), it is clear that either CA or C'B is a prefix of p. In both
cases this implies that xy = ab. Altogether we have w(ApA) = baabp'ba.

2. BpB : All 3 possible prefixes of p, namely D, CA and C'B, imply that xy = ab.
One can see that 7(BpB) = babp'b.

3. CpC : 3 possible prefixes of p are BD, BC' and A. Thus zy = ba. Therefore
m(CpC) = abap'a.

4. DpD : 2 possible prefixes of p are BD and BC. As xy = ba, we have n(DpD) =
abcbap’ abe.

U
Lemma 8. Every LS factor of v is a prefiz of m(p*"(B)) or w(¢**(C)) for some n € N.

Proof. Let w € L(v) be a LS factor. Let zw and yw, where x and y are letters, be its left
extensions. It is clear that there exists a left special factor W € L£(u) such that zw is a
factor of XW, where X is a letter. Analogously, there exists an extension Y. Since the
pair (X,Y) is either (A4, B) or (C, D), and words in pairs (7(A), 7(B)) and (7(C),w(D))
end in different letters, one can see that w is a prefix of 7(1). The claim then follows
from Lemma 6. U

Lemma 9. The infinite word v contains infinitely many non-palindromic BS' factors.

Proof. Consider r € L(u) to a BS factor starting by the letter B and ending by the letter
C'. We will firstly show that 7(r)ba is a non-palindromic BS factor of £(v). In the second
part we will show that such a factor r exists and there are infinitely many factors with
such properties.

It is clear that r is extended in L£(u) by the letters B and C to the left and to
the right. Since m(B) and 7(C) end in different letter, we can see that m(r) is LS.
Since the last letter of r is C', the factor r can be extended to the right by one of
the following words: {BD, BCA, BCB, AC'}. The longest common prefix of the words
{n(BD),n(BCA),m(BCB),m(AC)} is ba and is not equal to neither of them. Therefore,
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7(r)ba is right special. As the first letter of r is B, the first letter of 7(r)ba is b. Thus
7(r)ba is a non-palindromic BS factor of v.

It remains to show that £(u) contains infinitely many BS factors starting by the
letter B and ending by the letter C. To prove that take an arbitrary integer n and a
non-empty prefix w of the word ¢**(B). According to Lemma 6 w is a LS factor. As u
is uniformly recurrent, we can extend w to the right in a unique manner until we have a
factor s € L£(u) which is also right special.

Since u is closed under reversal, there are two possibilities for the last letter of s. It
is either B or C.

If the last letter is C', then s is followed by one of 3 factors: AC, BD or BC. The
longest common prefix of factors {¢*(AC), ¢*(BD), ¢*(BC)} is the word p?(B). More-
over, the longest common prefix is shorter than any of these 3 words. Thus the word
©%(s)p*(B) is right special with two right extending letters - B and C'. Note that ¢?*(sB)
ends by the letter B. According to Lemma 6, ©?(sB) is also left special since it is an
image by ¢? of a LS factor.

If the last letter of s is B, the situation is analogous. We can construct a longer BS
factor p?(sC), this time ending by the letter C.

Altogether we can find an infinite sequence of non-palindromic BS factors of £(u)
starting by B and ending by C. 0

Proof of properties of v. As v contains infinitely many distinct palindromes (Lemma 7)
and is a morphic image of a uniformly recurrent word, thus uniformly recurrent, according
to Theorem 3 the language £(v) is closed under reversal. Using Lemma 8 we see that
L(v) has 2 LS factors of each positive length. This implies that for n > 0 we have

Cln+1)—C(n) =2

as any other non-special factor has only one left extension. Therefore, v has complexity
C(n) = 2n + 1, i.e., Property C holds. Since there are two infinite words whose prefixes
are exactly LS factors, with 2 left extensions each time, it can be deduced from the
definition of the bilateral order and the fact that the language is closed under reversal
that v contains only ordinary BS factors. Applying Theorem 1, Property PE holds as
well. Finally, as Lemma 9 states, £(v) contains infinitely many non-palindromic BS
factors. O

The word u is ternary. One might ask if there exists a binary word with such prop-
erties. The answer is positive, we can use v to construct such word. Let us define a
morphism v as follows:

Y :a— 01,b — 010,c — 01011.

In fact, this morphism is from a class denoted P, treated in [1]. We will not give details
of this class, however the form of ¢, Property PE and richness of v imply that ¢(v) is
rich and has language closed under reversal.

In the proof of Lemma 9, it is in fact stated that v contains infinitely many BS factors
starting by b, ending by a, whose right and left extending letters are a and b. Take r to
be a such BS factor. It is readily seen that ¢)(r)010 is a BS factor of ¢)(v). Since r starts
by b and ends by a, it follows that ¢(r)010 has a prefix 0100 and a suffix 1010, thus it is
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not a palindrome. Thus, ¥ (u) is a binary word having the same properties as the word
u.

4 Final remark

In the proof of the properties of u we have used a common technique used to analyse a
language of an infinite word which is produced by morphisms. Such technique may not
be sufficient for some special cases of morphisms.
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Abstract. In the course of tuning the developed numerical algorithm for MR-DTI data vi-
sualization, it was necessary to introduce a measurement technique capable of quantitatively
assessing the artificial isotropic diffusion in numerical schemes for PDE. Based on such assess-
ment, a qualified choice of the numerical scheme can be made. This contribution describes the
proposed measurement technique based on total variation evaluation. The procedure is applied
to several numerical discretizations of the anisotropic diffusion model based on the Allen-Cahn
equation and the obtained results are presented.

Keywords: Allen-Cahn equation, artificial numerical diffusion, finite volume method, multipoint
flux approximation, total variation

Abstrakt. V pribéhu ladéni numerického algoritmu pro vizualizace dat z MR-DTI bylo nutné
vyvinout metodu schopnou kvantitativné posoudit miru umélé numerické difuze, kterd je pii-
tomna v kazdém numerickém schématu pro diskretizaci PRD. Na zakladé takového méfeni
lze pak kvalifikované rozhodnout o volbé numerického schématu. Ptispévék popisuje techniku
méfeni zaloZenou na vyhodnocovani totalni variace. Tato procedura je pouzita na nékolik num-
erickych diskretizaci modelu anizotropni difuze zalozeného na Allenové-Cahnové rovnici a jsou
prezentovany dosazené vysledky.

Klicovd slova: Allenova-Cahnova rovnice, umélad numericka difuze, metoda konecnych objemii,
vicebodova aproximace toku, totalni variace

1 Introduction

The Allen-Cahn equation having its origin in phase modeling in physics [1] has since found
its application in other fields, including image processing and mathematical visualization
[2, 9]. In particular, in order to visualize the streamlines of a given tensor field in 3D, an
initial boundary value problem for the modified Allen-Cahn equation with incorporated
anisotropy can be used (see |9, 11] and |7]), giving similar results to the LIC method|3, 5]|.
We begin with the problem formulation and describe its numerical solution using several
flux approximation schemes on a rectangular grid. The schemes suffer from an undesired
numerical dissipation effect which demonstrates itself as an additional isotropic diffusion
of the solution. Hence, we proceed with the development of a measurement technique
that would provide for assessing the amount of the numerical diffusion produced by the
schemes. A quantitative scheme comparison criterion is thereby created.
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2 Problem for the Allen-Cahn equation with anisotropy

Formulation. Assume there is a symmetric positive definite tensor field D : ) s R3*3
where 2 C R? is a block shaped domain. On the time interval J = (0,7T), the initial
boundary value problem for the anisotropic Allen-Cahn equation reads

) 1 .
9 =V DY+ 2holy) in 7 x Q. (2.1)
op B =
. . -0 on J x 0f), (2.2)
plg =1 in O (2.3)

where
fo(p) = p(1 —p) ( - %) :

Let z € . Thanks to D (z) in the diffusion term on the right hand side of (2.1), the
diffusion of p at x is focused into the direction of the principal eigenvector of D (x), or
more precisely, with the directional distribution described by the ellipsoid

{n € R3’nTD(x)_1n = 1}.

In terms of tensor field visualization, we choose the initial condition I in (2.3) as a noisy
texture, preferably an impulse noise. Due to the anisotropic diffusion process carried out
by solving (2.1-2.3), the solution p changes in time from noise to an organized structure.
Streamlines of the field of principal eigenvectors of D can be recognized there as parts
with locally similar value of p. The term f; efficiently increases contrast of the resulting
3D image provided that the parameter £ and the final time 7" are chosen appropriately
(in our case by experiment). In order to actually view the resulting 3D image p (-, T"), 2D
slices through €2 can be helpful.

Numerical solution. For numerical solution, the method of lines [8] is utilized. Apply-
ing a finite volume discretization scheme in space, the problem (2.1-2.3) is converted to
a system of ODE in the general form

dp
— = f(t,p). 2.4
Thereafter, we employ the 4th order Runge-Kutta-Merson solver with adaptive time
stepping to solve (2.4).

Describing the finite volume scheme, (2.4) can also be referred to as the semidiscrete

scheme and written in the form
1

5fo,K t) VKeT (2.5)

e () =€ Y Fio () +

c€€K

where 7 is an admissible finite volume mesh [4], K € 7 is one particular control volume
(cell) and Ek is the set of all faces of the cell K. Fi , (t) represent the respective numerical
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fluxes at the time ¢, which contain difference quotients approximating the derivatives d,p,
Oyp, O0.p at the center of the face o.

Artificial dissipation and finite volume scheme design. As indicated in the in-
troduction, all schemes introduce a certain amount of artificial (numerical) isotropic
diffusion in the solution. However, its strength depends on the exact form of Fi ,. This
phenomenon needs to be suppressed as much as possible as it may significantly deterio-
rate the visual quality of the result due to blurring. Its cause lies in the occurrence of high
frequency structures in the solution: both the initial noise and the forming streamlines.
To be treated correctly, they require the difference operators used in Fx, to be of an
appropriate order [10, 6].

We have assembled and investigated numerical schemes using the following approxi-
mations of the derivatives in the flux term:

e second order central difference approximation with linear interpolation of the miss-
ing points in the difference stencil;

e fourth order multipoint flux approzimation (MPFA) central difference scheme with
linear interpolation;

e fourth order MPFA central difference scheme with cubic interpolation.

Thereto, a classical forward-backward first order finite difference (FD) scheme has been
added. For more details on the design of the MPFA differences, see [11].

3 Artificial diffusion measurement

Having the results available obtained by using different schemes but based on identical
input settings, one can try to compare them visually to decide on the scheme with the
least artificial diffusion. In Figure 3.1, an example of such comparison is demonstrated
on a real-data MR-DTI neural tract visualization. In the center part of the images, a
major neural tract in the shape of U is displayed in the form of streamlines. It can be
observed that the FD scheme produces undesired isotropic diffusion greatly dependent on
the prescribed direction of diffusion. This is related to the asymmetry of the difference
stencil. The 2nd order central difference flux approximation used in the FV scheme is
already symmetric. However, it is clearly outperformed by the scheme based on MPFA
which causes significantly weaker blurring.

Scheme assessment by total variation. In this part we introduce a quantitative
measure of the artificial diffusion in the schemes. For this purpose, the total variation of
the numerical solution p* = p” (¢) finds its rather unusual application. It is defined as

TV (") = > |Vipl| m (K) (3.1)
KeT

where V'p represents the discrete approximation of the gradient and m (K) is the
measure of the cell K. From the image processing point of view, the value of TV is
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FD FV 2nd order MPFA cubic 4th order

Figure 3.1: Artificial diffusion in different numerical schemes. Crops from colorized MR-
DTI visualizations based on real data, transverse plane slice.

proportional to both the number of edges in the image p" and its contrast. Both these
quantities assume their maxima for the noisy initial condition and change in time along
with the diffuse evolution of the numerical solution. Performing two computations with
identical settings except for the choice of the numerical scheme, it is possible to directly
compare the TV values of the results. The scheme producing an image with a greater
value of T'V exhibits less artificial diffusion as it maintains more edges, more contrast, or
both.

Scheme comparison methodology. We have performed extensive testing with phan-
tom input tensor fields to investigate the behavior of the schemes depending on the
prescribed direction of diffusion. For each triple of spherical coordinates (r =1, ,0)
where ¢ € [0,360°], 8 € [-90°,90°], let a unit vector

v1 (p,0) = (cos @ cos b, sin ¢ cos b, sin 0)

represent the principal eigenvector of a uniform tensor field D (¢, 6), corresponding to
the eigenvalue \; = 100. The remaining eigenvalues are Ay = A3 = 1 and the eigenvec-
tors vq, v3 complete the orthonormal basis of R3. Afterwards, a computation is carried
out using D (p,#) as input data and subsequently, T’V is evaluated from the resulting
datasets. The T'V values alone are not of particular interest since they depend on both
the grid dimensions and the size of the domain 2. However, the relative differences of
TV between schemes provide the desired information.

The results of the procedure described above performed for all the four schemes in
several time levels are shown in Figures 3.2-3.6. In all the graphs, 7'V is normalized so
that the maximum in each chart is 1. Settings of all important computation parameters
can be found in the figure captions. In Figure 3.2, the latitude 6 is fixed to 0 and the
longitude ¢ traverses the angles from 0° to 350° with the step 10°. The same is true for
Figure 3.3 which only differs from Figure 3.2 in the setting of parameter . Figure 3.4
depicts the "diagonal” cut through the space (¢, 6) in the range from 0° to 90°, including
the worst situation for all schemes where ¢ = 6 = 45°. Finally, Figures 3.5 and 3.6
contain surface plots of all measured combinations of ¢, for the FD scheme and the
MPFA FV scheme with cubic interpolation, respectively.

Observations from Figures 3.2-3.6 can be summed up as follows:

e Artificial diffusion clearly depends on v; and occurs least when the direction v; is
aligned with coordinate axes. For the FD scheme, a straightforward explanation
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Figure 3.2: Comparison of numerical schemes based on TV, £ = 5x 1073, 0 =0, ¢ €
[0°, 350°].

4

can be given: In the degenerate case Ay = A3 — 0, the equation systems for different
rows of grid nodes along v; become independent.

The performance of all schemes improves (i.e. T'V rises) with growing time. This
is obvious as the ongoing diffusion gradually limits the frequency spectrum of the
solution. At the beginning, the infinite spectrum of the initial condition can not be
handled properly by any difference operator.

The performance of the schemes improves with decreasing £ (compare Figures 3.2
and 3.3).

The FD scheme exhibits a highly asymmetric behavior (see Figures 3.3 and 3.5).
All FV schemes are symmetric.

The FV scheme with MPFA and cubic interpolation outperforms all other schemes
in the comparison except for the FD scheme when v, is aligned with some coordinate
axis.

Conclusion

We have developed an approach for measuring the amount of artificial isotropic diffusion
in numerical schemes. Thorough computational studies based on phantom input data
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Figure 3.3: Comparison of numerical schemes based on TV, & = 1072, ¢
[0°, 350°].

0, p €

confirm that this technique fulfills the given objective and produces results in agreement
with an intuitive notion of blurring observable in images obtained by solving (2.5). Intro-
ducing a suitable threshold in (3.1), the measurement can also be applied to computations
with real MR-DTT input data.
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Abstract. Spectral properties of semi-infinite symmetric Jacobi matrices with diagonal created
by a real and strictly increasing sequence such that the reciprocal sequence belongs to 2 is
studied. Parallels to the diagonal are composed of a positive and bounded sequence. It is shown
the spectrum of these matrices is simple and discrete. Further functions € and § with simple
and nice algebraic properties are defined on a subset of the space of complex sequences. Some
special functions are expressible in terms of these functions, first of all the Bessel functions of
first kind. The main result of this work is finding a function which is expressed with the aid
of § applied to a certain sequence with a property that zeros of this function coincide with
eigenvalues of the Jacobi matrix under investigation. At the end general results are applied
to a simple example. It is demonstrated the spectrum of the semi-infinite Jacobi matrix with
linear diagonal and constant parallels coincides with zeros of the Bessel function of the first kind
considered as the function of its order.

Keywords: tridiagonal matrix, Jacobi matrix, eigenvalue problem, characteristic function

Abstrakt. V tomto ptispévku jsou studovany vlastnosti spektra polo-nekone¢nych symetrickych
Jacobiho matic, jejichz diagonéala je tvofena redlnou a ryze rostouci posloupnosti s prevracenou
hodnotou v 2. Vedlejii diagonaly tvoii pozitivni a omezend posloupnost. Je ukazano, ze spek-
trum téchto matic je jednoduché a diskrétni. Déle jsou zevedeny funkce € a § na podmnoziné
prostoru komplexnich posloupnosti. Tyto funkce maji jendoduché a pékné algebraické vlast-
nosti. Neékteré specidlni funkce lze vyjadrit pomoci funkci € a §, napiiklad Besselovy funkce
prviniho druhu. Hlavnim vysledkem préace je nalezeni funkce vyjadiené pomoci § aplikované
na urcitou posloupnost, kterd ma tu vlastnost, ze jeji nuly odpovidaji vlastnim hodnotdm stu-
dované Jacobiho matice. Na ptikladu je ukazano, Ze spektrum polo-nekone¢né Jacobiho matice,
jejiz diagonéla z&visi linedrné na indexu a vedlejsi diagonaly tvoii kladny parametr, se shoduje
s mnozinou v8ech nul Besselovy funkce prvniho druhu jako funkce jejiho radu.

Klicovd slova: tridiagonalni matice, Jacobiho matice, vlastni ¢isla, charakteristickd funkce

1 Introduction

In the whole paper I assume real strictly insreasing sequence {\,}22 ; satisfying condition

oo

ZA—Z@o, (1)

n=1""

179
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and positive and bounded sequence {w, }>%; to be given. Note the assumptions imply

lim M\, = +oo.

n—oo

Next let me denote J a seminfinite symmetric Jacobi matrix whose diagonal is created
by sequence {\,}52, and parallels to the diagonal are consist of sequence {w,}>2 ,, i.e.

Al wy
wp Ay W

J = wy N3 ws . (2)

Further J,, denotes the truncation of J, i.e.

AL wy
wy Az Wa

Wp—2 )\nf 1 Wnp-1
Wn—1 )\n

There exists a sequence of polynomials gx(§), & = 1,2,..., such that the degree of
qr(€) equals to k — 1, the coefficients of ¢ (&) are rational functions of Aq,..., A\, and
wy, ..., wg_1, and whenever the sequence {z;}72, solves the eigenvalue equation

Az +wize = x4,

Wr1Tk—1 + AT + WpTp1 = §xg, K =2,3,...
with an eigenvalue £ € C then it holds
e =qp(&r, k=1,2,...

Actually, one sets ¢;(£) := 1 and the sequence of polynomials is unambiguously defined
by the reccurent relation

§— Ak

W

%H(f) = Qk(f) -

(where one has to set wy := 0).
Corollary 1. Any eigenvalue of J regarded as an operator in (*(N) is simple.
Proposition 2. The spectrum of J is discrete.

Proof. Operator J can be decomposed as

J=A+W4+W*
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where A := diag(A;, Ag,...) and

oo o
o §
E oo

o O

Since sequence {w,}>°, is bounded W is bounded, |W|| = /|[WW*|| = supw,. Ob-
viously the essential spectrum of A is empty, hence A has a compact resolvent. Conse-
quently, W +W* is A-compact self-adjoint perturbation ((W +W*)(A —4)~! is compact)
and, by the Weyl criterion, the essential spectrum of J is empty. O

2 Function ¢ and function §

Definition 3. Define ¢: D —-C,§: D — C,

[e.o]

o [o¢] (o ¢]
Elx)=1+ E g E o E Ty They 41Tk Thog 1 - -+ Theyp Thop 11

m=1k1=1 ko=k1+2 km=km—1+2

and

e} e} [ee) o0

§(x) =1+ Z(—l)m Z Z e Z Th1Thi+1Tko Tho41 -« Lk L +1

m=1 k1=1 ko=k1+2 km=km—1+2

where
D= {{xk}i"l c G Z |ekxps| < oo} :
k=1

For a finite number of complex variables we identify §(z1, s, ...,2,) with §(x) where
r = (r1,79,...,7,,0,0,0,...) and similarly for €. By convention, we also put &(()) =

(@) = 1 where ( is the empty sequence.

Remark 4. Note that the domain D is not a linear space. One has, however, (*(N) C D.

The function § is continuous functional on ¢*(N) which satisfies the following identi-
ties. First, the recurrent relation

F(x) = §(T'x) — 2122 F(T"x) (4)
holds for all z € D (T stands for the shift operator). This identity admits a generalization
§(2) = (@1, m) F(Th2) = Fan, - mp) v § (T ), k=120 ()

Next, the Bessel function of the first kind can be expressed with the aid of §. More
precisely, for v ¢ —N, one has

T (2w) = F(:]:L 1)3({1/:51«}:01)‘ (6)
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The respective proofs of these identitites are work out in [4].

The function € has very similar properties as §. € is continuous functional on *(N)
and it holds

E(x) = &(Tx) + z129 €(T?2), (7)
E(x) = &(wy,...,23) €(T*2) + E(zy, ..., 2o vpzp (T ), k=1,2,..., (8)

'h@w):IX:iJ)e({uik}jl) (%)

where x € D, v ¢ —N and [ stands for the modified Bessel function of the first kind. All
the proofs of (7), (8) and (9) can be done by the same way as the proofs of (4), (5) and
(6) with only slight modifications.

Finnaly, an obvious inequality

()] < €(J«]) (10)

holds for any =z € D, |z| = (|x1], |22l .. .).
Application of § to a finite complex sequence can be unambiguously defined with the
aid of a determinant of a Jacobi matrix.

Proposition 5. For d € N and {z;}4_, C C, one has

1 T
) 1 )

S@ra =l - (1)

Proof. The case d = 1,2 is easy to verify. Denote the RHS of (11) by D(z1,xa,...,z4).

By expanding D(z1,xs, ..., 24) along the first row one finds out the recurrence rule
‘D(‘rbx% R ,I'd) = D(Z’Q,[E3, s 7xd) - $1$2D($3,$4, R ,I'd)
holds. Now, it suffices to apply the induction hypothesis and (4). O

Remark 6. The Jacobi matrix J, can be decomposed into the product

Jn = G JnG,, (12)
where G, = diag(71,72, - -, 7) is a diagonal matrix and .J, is a Jacobi matrix with all
units on the neighboring parallels to the diagonal,

Y
1 X 1
Iy = '
1 Mg 1
I A\
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One can put

k—1 k—1
Wa; Wa;
rYQk—l:H 2 7’72k:w1]i[ﬂ7k:172737"" (13)
j=1 W =1

Alternatively, the sequence {~x}7_; is defined recursively by v = 1, Y41 = Wi/

Furthermore, A\, = \./77. With this choice, (12) is clearly true.

Consequently, the characteristic function of finite symmetric Jacobi matrix .J,, can be
expressed with the aid of §.

Proposition 7. Let d € N and {y}¢_, be the sequence defined in (13). Then it holds

d ’Y2 72 72
det(Ja — zla) = (H(*k B Z)) 3</\1 e LDy z) 14

k=1

for all z € C.

Proof. In view of Remark 6 and Proposition 5, one finds out det(J; — zI;) is equal to

A1—2
z !
1 =7 1
det(Gy) det det(Gq)
1 Ad;l*Z 1
Ya-1 N
4—Z
d 2 2 2
71 72 Y
= )\ - ) ) )
H(k ?) S()\1—2 Ay — 2 )\d—z)
k=1

3 Preliminaries

In this section I introduce several preliminary propositions which are necessary for de-
riving main results of this paper. Respective proofs of these propositions are omitted
because they are too extensive and/or too technical.

First, sequence of functions
2 n
s(in))
k= %) p=1

s((w).)

converges to function
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loccaly uniformly in z € C\ {\;}32; with n — oco. However, one can claim more. The
same proposition holds for the first derivative of these functions with respect to z. Hence,

it holds
. d v,% " d 7,3 o
lim — - =
”1—{20 dzg <{/\k_z}k:1> dzg ({)‘k_z k=1

and the convergence is local uniform in z € C\ {\¢}32;.

Since ) .
Vi
(i),

is the analytic function in z on set C\ {A;}}_; the limit function

(751

is also the analytic function in z on set C\ {\¢}72;. This proposition is based on Theorem
8.8 stated in [5] (where the assumption of uniform convergence is replaced by local uniform
convergence). In other words the limit function is meromorphic on C with poles in the
points of {A;}72,. Moreover these poles are of order 1.

Definition 8. Let me denote

2 2 2 .
f(n)(z) _ (z - /\S)g <)\Ziz’ )\Zijiz’ M )\Z:z) ’ if z € He()‘S) \ {)‘s} (15)
s,k T . 2 2. .
lim, ), (2 — As)F <)\:fz, )\Zﬁ_z, o /\Z’Qiz) , iz =)
and ,
PR Y. 3 (/S ST if 2 € H.(\)\ {\s
RETES S (&5 i) AR

lim, ., (2 — Ao)F ( o ke ) Cifr= A,

Ak—27 Agy1—2"

where s,k,n € N,k <n+1and H. (X)) ={z€ C: |z — X\;| < €}

Remark 9. First, it is not important how small € in the previous definition is. One can
take for instance € = min{\; — As_1, A\s31 — A} if s > 1 and e = Ay — A\ if s = 1. I need
the functions to be defined only locally. Second, the limit in the previous definition exists
and it is finite (use (5) and strict increase of sequence {\;}).

Let s,k € N then sequence of functions fs(?(z) converges to fsx(z) uniformly on
a neighbourhood of A\; with n — oo. However, the same proposition holds for the first
derivative with respect to z. Hence, sequence of functions % (n)(z) converges to % fsr(2)

dzJ s,k
uniformly on a neighbourhood of A\; with n — oc.

3.1 Christoffel-Darboux-like identities

Identities derived below for the function § are analogies of the Christoffel-Darboux for-
mula (see |1, Chp. 1| for details).
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Definition 10. Let me denote

womno- B (2], ) w

where k,n € N, 0 < k <n (set wy:=1). Note R,(C") is a polynomial in z of degree n — k.

Recurrence rule (4) rewritten in terms of Ry has a form
wkflefl(Z) + ()\k - z)Rk(z) + kak+1(Z) =0 (18)
which holds for 1 < k <n — 1. Further the identity

(h=2A) Z Ri(p = w1 (Ri(A) Ria (i) — Ri(p) Ri—1 (X)) (19)

holds for all m € N, [ € {1 2,...,n} and A\,u € C. To prove (19) one can proceed by
induction in [ =n,n—1,...,1. By putting [ = 1 in (19) and makeing limit ;4 — A one
arrives at the identity

n

> (Re(N)? = Ri(MRy(A) — Ro(MR; (M) (20)

k=1

which holds for all n € N and A € C. Finnaly one can use definititon relation (17) and
identity (20) to find out the equation

i (M (52) 5 ((),) = () ) s ()
e B (5] #s (B8] ) —s({(55) ) &5 (55 L)]

(21)

holds for all n € N and z € C\ {\¢}}?_;. A similar formula can be derived for functions
fs(j;). Thus the identity

- - —A 2 n n
Z( (Zwl ll)f:?ﬂ(z)) = 1LY )
=2 N

k=1

He =2 |11

holds for all s,n € N and 2z from a neighbourhood of A;.

— 52 (2) (22)

3.2 Simple zeros

The identities derived in the previous subsection let me prove a proposition concerning a
multiplicity of zeros of the function

(w51

considered as a function of variable z. The assumption of strict increase of sequence
{An}22, is essential. Proofs are only indicated in this subsection.
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Proposition 11. Let zy € C\ {\;} such that
2 00
Tk
(et
)\k — 20 k=1

Proof. One can prove the statement by contradiction. If zp € C\ {\;} is a multiple zero
one can send n to infinity in (21) and put z = z;. Consequently, by switching lim,, .,
and dilz (correct due to local uniform convergence discussed at the beginning of section
3), the RHS of (21) vanishes. Then one can arrive at a contradiction. O

then zy is a simple zero.

A similar property holds for function f; ;.
Proposition 12. Let s € N and f1(A\s) = 0 then s is a simple zero.

Proof. Similarly as in the previous proof one can prove the statement by contradiction
using (22) instead of (21). O

4 Main results

In this section it will be shown the eigenvalues of J coincides with zeroes of a function
which will be expressed with the aid of the function §.

At the beginning let me recall the main result demonstated in [2] where it is prooved
the spectrum of J is equal to the set of all limit points of sequences of eigenvalues of
truncated finite-dimensional matrices J,. Thus the equivalence

A € spec(J) & (3{k,} C Nk, < ki) (3N} C RN, € spec(Ji,))(lim A, = \) (23)

holds.

Proposition 13. The implication

(A espec(J) AN E M)2,) — 3§ <{ Af A}w 1) —0

holds.

Proof. Let A € spec(J) and A ¢ {A\}72,. According to (23) one has a real sequence )
such that lim, .., A, = A and, by equality (14), it holds

~ kn ~ 2 kn
k= \n

k=1 k=1

for all n € N. Without loss of generality one can assume Az # \, for all k,n € N. Hence

one gets
2 En
5 { 7k~} =0, for all n € N.
Ak - /\n k=1
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Finnaly, the last equality together with the argument concernig local uniform convergence
and analiticity discussed at the beginning of section 3 imply

()

Proposition 14. Let zy € C\ {\;} such that

ST
=0
s ({/\l - ZO}Z:l)

Proof. Since, according to Proposition 11, zj is a simple zero, § ({

then z, € spec(J).

7\
)\—l} ) 1s continuous
=% )=

2 oo ; "
in zp and § ({ ’\71_3}1—1> is locally uniformly aproximated by sequence § ({ Ajl—z}lﬂ) in

z = zp there exists a real sequence {z,} such that lim, ., z, = 2y and

ol
—0
St

for all n (sufficiently large). Hence z, € spec(.J,,) due to identity (14). Finally, equivalence
(23) implies zy € spec(J). O

Thus, it was shown that

spec(J)\ I} = {z €C:§ <{ Af Z}:) - 0} .

But what about the points of sequence {\;}72,? These points can be also in the spectrum
of J. Further it will be derived a similar condition for them to be in the spectrum.

Proposition 15. Let s € N and A\s € spec(J) then fs1(As) = 0.

Proof. According (23) there exists a real sequence {\7}>°, such that lim, ., A\ = A
and \? € spec(Ji, ). Without loss of generality one can assume A3 # A\, for all n,k € N,
k # s. By using (14) one has

kn

0=det(Jy, — NoIr,) =[] O — A5 (x0)
k=1,k#s

for all n € N. Hence
fEI(A8) =0, forallneN.

Finnaly, by taking into account the local uniform convergence of sequence fs(ﬁ) (discussed
at the beginning of section 3), it suffices to send n to infinity in the last equation to get

fs,l()\s) = 0.
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Proposition 16. Let s € N and f;1(As) = 0 then As € spec(J).

Proof. Since, according to Proposition 12, A, is a simple zero, f;; is continuous in Ay and
fsa is locally uniformly aproximated by sequence fs(ﬁ) in \; there exists a real sequence
{sz)} such that lim,, .., 2% = ), and

YR

for all n (sufficiently large). Then = spec(J,,) because, by identity (14), one has

n

det(J, —291) = T] v =28 =) =o.
k=1,k#s

Finally, equivalence (23) implies A\ € spec(J). O

5 Summary and example

Let me summarize the main results.
Let {w,}°, be positive and bouded sequence and {\,}5°, be real and strictly in-
creasing sequence satisfying the condition

=1
ZE<OO.
n=1" "

Then it holds

seset\ (b =5 ({32} ) =0 (24)

k=
and , -
As € spec(J) <= lim (A\s — 2)§ <{ T } ) =0. (25)
2—As AL — 2 b1

Example 17. Let A\, =nA, A > 0 and w, = w > 0 for all n € N. Then

A w

w 2\ w

J(Aw) = w 3N w

Since J(A,w) = AJ(1,w/\) it is sufficient to investigate spectrum of J = J(1,w) without
loss of generality. With this choice it holds

{1, if n is odd
Tn = . .
w, if n is even.

Next, it is easy to check
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According to (6) one has

3 ({ — Z}:Ol) — wT(1 — 2)J_.(2w).

Since term w*I'(1 — z) does not effect the zeros of function F <{ & }:O:l) and moreover

k—z

the term I'(1 — z) causes the singularities in z = 1,2, ... of function § <{k1fz}20:1) one

can put (24) and (25) together and one arrives at the statement
z € spec(J) <= J_,(2w) =0 (26)

or equivalently
spec(J) = {z € C; J_.(2w) = 0}. (27)

Finnaly one has

spec(J(\, w)) = {/\z cC:J. (27“’) - 0} | (28)
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Abstract. The finite distribution mixtures present a wide class of probability distributions.
Apart from the obvious application as the distribution estimator of the population with more
than one underlying independent phenomena, the mixtures are successfully applied in the model
based clustering. If we constraint the members of the mixture to arise from one specific family or
type of parametric distributions, each cluster would refer to one component of the mixture. The
membership of the observed sample to a cluster is given simply as the maximum probability on
the components of the mixture, i.e. by the Mahalanobis distance, and weighted by the weights
of the mixture. This approach is feasible even for overlapping clusters and strongly uneven
numbers of the members of the clusters, where standard methods of cluster analysis fall short.
We provide with an introduction to the distribution mixtures, focusing on the problem of fitting
the mixture to observed sample using the maximum likelihood approach and the EM algorithm,
as well as the assessment of the optimal number of components.

Keywords: distribution mixtures, model based cluster analysis, order of a parametric model

Abstrakt. Distribu¢ni smési predstavuji nesmirné sirokou t¥idu distribu¢nich funkci. Pouziti
distribu¢ni smési pro odhad nezndmych multimodalnich rozdé&leni pravdépodobnosti je pfirozené,
smési ale mohou byt vyuzity i ve shlukové analyze. Omezimeli komponenty smési na jeden typ
parametrického rozdéleni pravdépodobnosti, kazdy shluk v naméfenych datech bude odpovi-
dat jedné komponenté smési. Prislusnost naméfenych hodnot ke komponenté smési ziskdme
pres maximalni vérohodny odhad. Distribuéni smés je vhodny model i tam, kde b&zné metody
shlukové analyzy selhdvaji, pro pfekryvajici se shluky a pro shluky s vyznamné riznymi pocty
prvkii.

Klicovd slova: distribu¢ni smés, shlukova analyza, fad parametrického modelu

1 Introduction

We understand under the term (finite) distribution mixture a convex combination of
distribution functions. This seems like a trivial concept. Nevertheless, if we constraint
components of the mixture to be from parametric families of distributions we get a quite
general set of distribution functions which retain some of the convenient properties of the
parametric models, e.g. that the mixture is fully described with set of scalar parameters.

The distribution mixture is usually employed whenever there is strong evidence of
multimodality in the data. Our scope will be the possible use of the distribution mixture
as a model based method in cluster analysis, where the clusters are considered to be
generated from the distribution mixture components with normal densities. Since each
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component of the distribution mixture should ideally refer to one cluster in the data,
the problem of choosing an optimal number of components of the mixture becomes quite
urgent. As we will see later, there is no definite answer to the problem of optimal
number of components and the approach taken depends strongly on the judgement of the
experimenter.

2 Clustering via the distribution mixture

In our narrowed scope, we denote the distribution mizture any convex combination in a
form of

M M
7j=1 7j=1

where p;(z) are probability density functions on R” «; are the weight factors, x € R”,
M is the number of the components. Further, if the components are from the same
parametric density family, we denote

p(elO) = D aspi(alf). Doy =1 )

where ¢; € R® is the vector denoting the j-th component of the mixture.

Let x = (x1,...,2n) be sequence of i.i.d. observation of a random variable X which
has the density p(z|0). We expect the data to form M clusters according to the com-
ponents of the mixture. Then, we prescribe to which component of the mixture the
observation x; belongs with vector ¢;

() = agpr (i)

= 7 ,
m=1

ke(l,...,M). (3)

The k-th element of ¢; evaluates the probability of x; belonging to the k-th component of
the distribution mixture. If we prefer having only a scalar indicator, we define ¢; simply
as

afgfkﬂe%iakpk(x\ k) ( )

3 Fitting the distribution mixture

Let there be a i.i.d. sequence x = (x1,...,zy) drawn from range of a random variable
X having the distribution mixture density p(z|©), © = (a1,...,ap1,601,...,00). As
the distribution mixture is fully described by the vector of parameters ©, fitting the
distribution mixture to the data x means finding an estimate ©* of the real parameter
©. Our preferred method is the maximum likelthood method.
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We denote the log-likelihood function as [(O|x) = Inp(x|©). The mazimum likelihood
estimate is then a vector ©* that satisfies

O = arg max(©]x), (5)

where A is a domain from which we take the possible candidates for ©*. In the case of
the same types of components we have

N N M
iid
[(©]x) =Inp(x|O) = In Hp(xz\@) = Zlnz%pj(a:iwj). (6)
i=1 =1 j=1

In most practical applications, the probability density of the mixture is a differentiable
function. To get he candidates for ©* we take the partial derivatives of [(©|x) with respect
to all elements of © and solve the system of equations.

The maximum likelihood method applied on the distribution mixture bear some spe-
cific problems:

e The mixture is not identifiable. The identifiability property means that for every
distinct O, ©y € A, p(x|©1) # p(x|O2) a.s. Since the identifiability property
does not hold for the distribution mixture, the sequence of ML estimators does
not have to be consistent. Some identifiability problems can be resolved easily, e.g.
the component permutation invariance can be solved by ascending sorting of the
components, but some cannot be resolved at all. The |2| presents examples when
the estimator is stuck within a connected subset of A, where the singular Fisher’s
information matrix is singular.

e The loglikelihood function is not bounded even for the simplest mixture, since every
observation x; gives rise to a singularity of the loglikelihood function. Consider
a mixture of two heteroscedastic normal densities. If we prescribe the mean of
the second component to be exactly equal to the i-th observation and we force the
variation of the second component to go to zero, the loglikelihood function will grow
beyond all bounds. In the context of the cluster analysis, the unwelcome behavior
of the mixture implies that one component fits to a single observation. These
solutions are the so called “spurious clusters" solutions and they are disregarded.
However, the presence of spurious clusters mean that that the global maximizer
of the loglikelihood function does not exist, we have to cope with local maximum
solutions. The practitioner usually looks for a sequence of solutions of (5) that
seems to be consistent with growing number of observations.

e The analytical work with the term (6) proves to be difficult. Fortunately, there is
a simple iterative algorithm which provides the local maximizers of the likelihood
function which is called the Expectation Maximization algorithm.

4 EM algorithm

Before we can proceed to the definition of the steps of the EM algorithm we need to
take one step back and formulate the problem (3), i.e. from which component of the
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mixture the i-th observation origins, via the missing information principle. We introduce
the random variable Z = (if), where X are the in the experiment observable data , Y is
an unobservable random variable that provides the information from which component
of the mixture was the observed X drawn. We refer to Z as to the complete data, X

as the observed data, and Y as the missing data. Let x = (z1,...,2y) a i.i.d. random
sequence drawn from X, which was observed, and sequence y = (y1,...,yy) from Y
which is missing. If x is i.i.d. then y is i.i.d. We denote

z = ((xbyl)Ta"';(xN?yN)T) ) (7)

the complete data. The joint distribution density P(x|©) and the loglikelihood function
of the complete data [.(0]z) can be then expressed in the form

P(x|©) = P(2/0)/Plylx,0) (8)
I(Ox) = 1.(O]z) - In P(y[x,0) (9)

By taking the conditional expectation of [.(©|z) with respect to x, & € A we get

Bll(O1bx, 8] = Efl(O]2)}x, ] - B[l Plylx, 0)}x, &), (10)
[(©]x) = E[l.(0]z)x,®] — F[ln P(y|x, ©)|x, | (11)

We denote the conditional expectation of the complete data loglikelihood function as
(0, ®) = E[l.(0]z)|x, . (12)

The k-th interation of the EM algorithm consist of two steps, the expectation and the
maximization step:

E-step: Calculate ¢(©, ©%).

M-step: Maximize ¢(0, ©F) with respect to first argument O,

k1 _ k
O = arg%agicq(@, e"). (13)

The iteration of EM algorithm is repeated until convergence. It can be proved [4] that
the iteration of the EM algorithm either increases the value of the loglikelihood function
1(0F|x) or ©F is already a stationary point © of [(©|x), albeit it does not have to be a
local minimum.

The advantage of the EM algorithm is that for a few distributions, among which
belongs the mixture of normal components, the iteration of the EM algorithm can was
solved analytically and the formula to calculate ©*! was derived in closed form.
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We skip the lengthy derivation of both steps of the EM algorithm for the mixture of
normal components and provide only with the final formula to illustrate the how simple
the iteration of EM algorithm gets (detailed derivation can be found in [3]). For k-
th iteration, ©F = (a,... ok, |, 08 ... 0%), ©FF1 = (Tt . okt vt ok,
(9}“ = (u,Cy), I =1,..., M, we obtain

N
af ' = 1N p(l]a;, 0F), (14)
=1
N
> p(lfa, ©)z;
wtt o= = (15)

N
S p(l]:, )
i=1

1 N

C;H_l = N— Zp(l|xz, @k)]Bi,l (16)
> p(llz;, 08) T
i=1
where,
1 _
(z:l0) = 1 —§($i—uz)TCzl($i—Ml)
Pi\T;|U; - (27T)D/2’(Cl’1/26 )

By = (z— ™) (2 — )"

We now list the most important properties of the EM algorithm:
1. The EM algorithm converges to a stationary point © of the loglikelihood I(©|x).

2. The EM algorithm naturally suppresses superfluous components by forcing their
weights to zero.

3. The local maximum found by the EM algorithm strongly depends on the initial
point of the algorithm ©°, since the EM algorithm cannot escape a stationary point
once it is reached. We usually initialize the EM algorithm either randomly or with
some traditional cluster analysis method and run the EM algorithm several times.

4. The convergence rate gets slow in the later iterations which are close the to local
maximum. We usually stop the iterations once [(©*"!|x)/I(©%|x) — 1 descends
under certain € > 0.

5 The number of components of the mixture

Up until now, we did silently assume that the number M of the components of the
distribution mixture is fixed and known, although in many practical problems the number
of clusters in the data is unknown. The assessment of the optimal number of components
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of the distribution mixture pertains to a more general problem called the optimal order
of a parametric model.

There is a wide variety of different methods and criteria available in the literature,
because there is no definite answer what number of parameters of the model is optimal.
The opinions vary in different experiment setups and from author to author. Further,
in the context of cluster analysis with the distribution mixture, the optimal number
of components that will explain the observed data with sufficient level of precision will
probably differ from the optimal number of components needed for discerning the clusters.

Out of all possible methods we consider the penalization criteria of the loglikelihood
function the most feasible. All loglikelihood penalization criteria share the same structure.
For each possible number of components M, the maximum likelihood estimate ©}, (MLE)
is calculated, and then the loglikelihood [(©%,|x) is penalized for the complexity of the
model. The penalization term is necessary, since the loglikelihood at MLE will rise with
increasing M as we maximize over a larger parametric space A,;. The optimal number
of components M, is chosen so it would minimize the loglikelihood at the MLE minus
the penalization term, which can be written as

My = arg min[—21(O[x) + 26(N, M, Oy, dar(O)]; (17)

where M is the number of components, N is the number of observations, £ is the penal-
ization term, dys is the number of free parameters in the mixture described by ©3,.
A different choice of a penalization term £ yields a different penalization criteria.
We will discuss the four most important criteria used in clustering applications.

1. Akaike’s information criterion (AIK)

2. Bayes information criterion (BIC)

3. Entropy criterion (ENC)

4. Integrated classification likelihood (ICL)

Akaike’s information criterion (AIC)

The AIC, originally named Another information criterion has become widely used in the
regression analysis. The optimal number of parameters of the model, in our case the
number of components M, is chosen as

My = arg min[~21(©5, %) + dus (O3] (18)

Bayes information criterion (BIC)
The BIC was published by professor Schwartz in 1979, [5|. The optimum number of
components is chosen as

M, = arg %é%[—Zl( vlx) + du(©3,) In NJ. (19)

The derivation of the BIC is done by Bayes methods. The proof of consistency of
the criterion provided in [5], i.e. that with N — oo the BIC chooses asymptotically
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the true number of parameters in the model, holds only for the regular exponential
family of distributions. Some of the necessary assumptions are broken by the distribution
mixtures, thus the BIC is not guaranteed to be a consistent estimator of the true number
of components of the mixture. We note that this did not stop the practitioners to use the
BIC frequently and the BIC is now a standard criterion applied on distribution mixtures
and other criteria are frequently benchmarked to the BIC.

The Entropy criterion (ENC)

As both AIC, BIC criterions are theoretical criteria for assessment of the optimal number
of model parameters, the other two we mention, the ENC and ICL are both criteria that
was derived with the sole purpose of finding the optimal number of components of the
mixture applied in cluster analysis.

We recall the notation (7) of the complete data z = ((z1,y1)7,..., (zx,yn)?). The
component indicators y; are assumed to be vectors from R with k-th element equal to
1 if the observation x; comes from the k-th component of the mixture, 0 otherwise. We
may write the loglikelihood of the complete data in the form analogical to (9)

1Il]€(Z‘X,@M) = lc(@M‘Z)—l(@]\ﬂX), (20)

1(Oy|x) = Zanakpk ;|0r), (21)
=1

lc(@M‘Z) = ZZyz,klnakpk(xZ\Hk) (22)
i=1 k=1

Further, we get from (21) and z (22)

Ink(z|x,©y) = ZIHZyzklntzk, (23)
1=1

ti = M@kpk(xz"ek) . (24)

> ajpi(ail6;)
=1

The value of In k(z|x, ©)/) is unknown, but we can calculate its negatively taken expec-
tation with respect to the observation x, which we denote EN (O, x),

N (O, x) = —E[In k(z|x, ©3;)|x, O] = Zthklntzk (25)

i=1 k=1

The term EN(O,,x) can be interpreted as the entropy of the fuzzy classification matrix
with elements ¢, 5, hence the name of the criteria.
Finally we approximate (21) with its expectation and use the MLE O3, for O,

le(O)|2) = 1(O)[x) = EN(O}, x). (26)
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The EN criterion is defined to maximize the complete likelihood [.(©%,]x),

My = argﬁérl\l][—Ql( ulx) +2EN (03, %)]. (27)

The entropy EN(©%,,x) serves as measure of cluster separation. If the clusters are
well separated, the terms ¢, ; would have one element almost equal 1 and the other would
be 0, which leads to almost zero value of EN(©%,,x). On the other hand, the entropy
reaches a high value for strongly overlapping clusters.

Integrated classification likelihood (ICL)

Although the ENC criterion can be used as it is, it has one significant shortcoming, since
it does not penalize the model for complexity. The ICL criterion attempts to overcome
the lack of penalization terms, the optimal number of components M, satisfies

M():arg%g\l][ICL( X)), (28)
ICL(©%,,x) = —21(0%]x) +2EN(0%,,x) + dy In N

M M
1
+ 2N;a}21no¢z —2;lnf(nk+ 5)

1 M M
+ 2MIn F(ﬁ) +2In(N + 7) — 21nf(7), (29)

where dyy = dyy — M + 1, ny, = Zf\; Yik, I is the gamma function. Naturally, we
approximate the gamma function with Stirling formula

1 1
lnF(u):(u—é)lnu—u+§ln27r. (30)

The main idea behind the ICL criterion is straightforward, the ICL is taken as the
posterior mode of the complete loglikelihood [.(0%,|x), where the prior p(©,/) is assumed
to be from the Dirichlet distribution family. The derivation itself is quite complex and
beyond the scope of this paper, the reader is referred to 6] for the detailed derivation.

6 Discussion

The distribution mixtures are a powerful tool in statistics but seemingly underused. They
are employed the most successfully whenever there is a strong evidence that the observed
data have multiple modes, where the parametric models are bound to fall short. They are
considered a compromise between simple parametric and general nonparametric methods.
For more applications of the distribution mixture see [1].

The estimate of the optimal number number of components of the mixture is crucial
in the cluster analysis. We provided four likelihood penalization based criteria, the AIC,
BIC, NEC and ICL. Our experiments with the data from the acoustic emission confirm
the general opinion within the model based clustering community that the AIC and BIC
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seem to overestimate the number of clusters, whereas the ICL usually chooses the best
model.

There are other methods frequently used to assess the right number of the components
of the mixture, for example the likelihood ratio test (LRT) between each two possible
candidates for My. The LRT is generally applicable, since the compared models are
nested, i.e. that if My < My, the corresponding parametric spaces satisfy Ay, C Az
The problem we see with the LRT is that since we do not have the asymptotic normality
of the MLE for the mixtures, therefore the asymptotic distribution of likelihood ratio is
not guaranteed to be chi-squared and it has to be sampled via bootstrapping methods.
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Abstract. Knowledgeability about interest rates set by a central bank is very important for
all participants in an economy. In this paper we have used publicly available data to model the
behavior of Czech National Bank in terms of how they manipulated interest rates when conducted
the monetary policy recently. Using artificial neural networks with different architecture, namely
the multilayer perceptron and radial basis function types, and with the different number of hidden
neurons, we modeled the discount rates of CNB on a set of macroeconomic variables including
inflation rate (CPI), exchange rate of CZK to Euro, interest rate PRIBOR 3M, unemployment
rate, the economic growth rate, the growth rate of money aggregate M2 and interest rate set
by European Central Bank. Having also compared the results obtained from modeling by these
artificial neural networks with the results from a linear model run on the same set of regressors,
we found that in terms of predicted errors, the neural network modeling gives superior results
over the ones from the linear model.

Keywords: linear model, artificial neural network, MLP and RBF networks, CNB short-term
interest rate

Abstrakt. Znalost arokovych mér stanovenych centralni bankou je velmi dilezita pro vSechny
ucastniky dané ekonomiky. V tomto piispévku jsem pouzival vefejné dostupnd data k mode-
lovén{ chovani Ceské narodni banky pii vykonu meénové politiky prostFednictvim diskontnich
urokovych sazeb. Byly pouZity neuronové sité s rtiznou architekturou, konkrétné vicevrstvé sité
perceptron (MLP) a sité s radialni bazi (RBF), a s rtiznym poc¢tem skrytych neuroni a diskontni
sazby CNB byly modelovéany jako funkce makroekonomickych proménnych jako miry inflace, mé-
nového kurzu ¢eské koruny viéi Euru, drokové miry PRIBOR 3M, miry nezaméstnanosti tempa
riastu HDP, miry ristu penézniho agregdtu M2 a trokové miry stanovené Evropské centralni
banky. Vysledky modelovani trokovych mér CNB neuronovymi sitémi byly potom porovnény s
vysledky ziskanymi linedrnim modelem. Ukazalo se, Zze neuronové sité poskytuji mnohem pies-
néjsi vysledky métené stiedni chybou modelu.

Kliéovd slova: linedrni model, umélé neuronové sité, MLP a RBF sité, diskontn{ sazba CNB

*Tato prace byla podpofena grantem ¢islo SGS10/092/OHK4/1T /14 Ministerstva Skolstvi, mladeze
a télovychovy Ceské republiky.
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1 Uvod

V poslednich nékolika desetiletich se objevil novy nastroj pro zpracovani dat zvany umélé
neuronova sit. Jak uz jeho nazvu vyplyva, neuronové sité se snazi napodobovat chovani
skutecnych biologickych neuronu v lidském mozku a skladaji se ze siti neuront propo-
jenych synapsemi predavajicimi vystupy z jednoho neuronu na druhy s vyjimkou vstup-
nich a vystupnich neuroni. Diky své struktufe jsou neuronové sité velmi flexibilni a jsou
schopné zachytit i slozité nelinearni zavislosti mezi vysvétlujicimi a vysvétlovanymi pro-
ménnymi, coz jedna z prednosti neuronovych siti pii modelovani dat. Dalsi vyhodou oproti
tradi¢nim modeltim je to, ze vysledky modeli zaloZzenych na umélych neuronovych sitich
(ANN) jsou ovlivnény hierarchickou strukturou téchto siti. Proto je zajimavé studovat
vliv typu neuronové sité, poc¢tu skrytych neuronu a poctu identifikovanych parametru
(vah ANN) na dosazenou piesnost modelovani. Tyto prednosti neuronovych siti budou
ovéieny pri modelovani chovani Ceské narodni banky.

Centralni banky ve vyspélych trznich ekonomikach v posledni dobé stale nej¢astéji pou-
zivaji kratkodobou tirokovou sazbu pro realizaci ménové politiky. Snazi se prokézat svou
diavéruhodnost transparentnosti, svoje rozhodnuti o irokovych sazbach zaklada na objek-
tivnich indikatorech, jejichz vliv na ekonomické prostiedi je vniman riaznymi subjekty v
ekonomice. Protoze zmény trokovych sazeb ovliviuji vSechny aktivity doméciho bankov-
niho sektoru a stejné tak i veskeré operace na kapitalovém trhu véetné toku kapitélu ze
zahranici, zminéné subjekty se snazi odhadnout s predstihem, jak bude centralni banka
zachazet se svymi trokovymi nastroji. Znalost vyse tirokovych mér stanovenych centralni
bankou je velmi dulezita pro vSechny subjekty v dané ekonomice.

Uvedené skutec¢nost je dostatecné silny motiv k modelovani chovani Ceské narodni banky
(CNB) na zakladé vefejné pifstupnych informaci. K tomu acelu slouzi riizné typy neuro-
novych siti, jejich vystupy lze nasledné vyuzit k jednokrokové predikci jeji zmény trokové
sazby. Jde tedy o externi modelovani chovani CNB v diskrétnim ¢ase, jehoz vystupem
je mésicni relativni zména urokové sazby. Dale bude zkouméan vliv architektury nami
zvolenych neuronovych siti na presnost naseho modelu. Tento prispévek je strukturovan
nasledovné: v nasledujici ¢asti budu charakterizovat, jak CNB provadi svou ménovou po-
litiku. Pak vymezim modely, které budou pouzity pro modelovani chovani CNB. V dalst
¢asti podrobné analyzuji kritéria pro hodnoceni kvality jednotlivych modeli. Vysledky
modelovan{ chovani CNB budou uvedeny v navazujici ¢asti ¢lanku a v zavéru bude celkové
vyhodnoceni.

2 Uméla neuronovi sit jako nastroj modelovani

Umaéla neuronova sit (ANN) je jednim z nastroji umélé inteligence (Al), o kterém lze rov-
néz tvrdit, Ze je z pohledu matematické statistiky téZ modelem, jehoz parametry je tieba
odhadnout napiiklad metodami nelinearni regrese (Haykin, 1999, Snorek a Jifina, 1997).
7Z hlediska teorie systémii ve stejné souvislosti hovoiime opét o modelu, jehoz parametry
se adaptuji, jsou pfedmétem optimalizace nebo je tieba je identifikovat. V analogii s li-
nearnim modelem je vhodné problematiku ANN zuzit pouze na neuronové sité s jednim
vystupem (predikovana relativni zména) nékolika vstupy (relativni zmény ekonomickych
ukazateli) a s dopfednym Sifenim signala. Tim se vyhneme rekurentnim vypoctim a
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cyklim v topologii sité. Kazda takovd ANN je reprezentovana acyklickym orientovanym
grafem, jehoz vrcholy lze formalné ocislovat tak, aby signal postupoval ve sméru vzrista-
jiciho indexu vrcholu. V ptipadé ANN vrchol nazyvame umélym neuronem, coZ neni nic
jiného nez procesor pro zpracovani informace z do néj vstupujicich hran. Kazda vstupni
hrana nese dvé zasadni informace: svou vahu a hodnotu signalu z ptfedchoziho vrcholu
(neuronu). Vrcholy, do kterych nevede 7zadna hrana, nazyvame vstupni neurony neboli
vstupy systému. Vrcholy, ze kterych nevede ziddn& hrana, nazyvime vystupni neurony
neboli vystupy systému. V nasem piipadé mame pouze jeden vystupni neuron. Zbylé
vrcholy slouzi jako mezi¢lanky prenosu informace a nazyvame je skrytymi neurony. K
transformaci hodnot signali dochazi tedy pouze ve skrytych as vystupnich neuronech.
Kazdy takovy umély neuron méa svij model, tj. funkci, kterd zpracuje hodnoty vSech vah
a signali do néj vstupujicich a vytvoii z nich novy signal. Problematika ANN se tedy tykéa
pouze t¥i aspekti: topologie grafu sité, modeli jednotlivych neuroni a nastaveni (urceni,
uc¢eni, odhad, adaptace, optimalizace, identifikace) vah jednotlivych hran orientovaného
grafu.

Nejcastéjsi je hierarchické usporddani ANN do jednotlivych vrstev. Vrstva ANN je sku-
pina neuront (vrcholi), které spolu pfimo ani nepfimo nekomunikuji. Komunikace je dale
omezena tak, ze do neuronu dané vrstvy vedou signaly pouze z predchozi vrstvy. Z toho
okamzité plyne, ze poradi vrstev, které musi byt respektovino. Pak hovofime o prvni
(vstupni) vrstvé tvofené v8emi vstupnimi neurony, druhé, tieti skryté vrstvé a koneéné o
posledni (vystupni) vrstvé) obsahujici v8echny vystupni neurony. Jednoduché ulohy lze
feSit pomoci dvouvrstvé topologie ANN, kdy zcela chybi skryté vrstvy. Vétsinu aplikaci
lze zvladnout pomoci t¥ivrstvé topologie s optimalnim poc¢tem skrytych neuront v jediné
skryté vrstvé. Z hlediska modeli jednotlivych umélych neuroni jiz davno nejde o napo-
dobovani chovani jednotlivych nervovych bunék zivych organizmi. Jde o modely, které
se v oblasti Al pragmaticky osvédcily pfi konstrukei univerzalnich aproximaci spojitych
funkci. Do prvni skupiny patii modely zalozené na skalarnim soucinu vektoru vah a vek-
toru vstupujicich hodnot. Takto vznikly vazeny soucet (linearni kombinace signali) je
vétsinou modifikovan vhodnou nelinearitou. Oblibena nelinearita tohoto typu ma tvar
sigmoidalni funkce (hyperbolické tangenty). Do druhé skupiny patii modely zaloZené na
rozdilu vektoru vah a vektoru vstupujicich hodnot a jeho normé (délka rozdilového vek-
toru). Pokud vektor vah chapeme jako popis etalonu (vzorové situace), pak timto postu-
pem urc¢ime vzdalenost vstupujiciho vektoru (reality) od etalonu (prototypu). Vysledna
vzdalenost je pak opét zpracovana vhodnou nelinearitou. Vystupni signal takového neu-
ronu obvykle chapeme jako informaci o podobnosti reality a etalonu. Vzdalenost vétsinou
méiime euklidovskou normou a nelinearita méa obvykle tvar Gaussovy zvonovité funkce.
Do treti skupiny obvykle fadime modely umélého neuronu produkované s vyuzitim ope-
ratort fuzzy logiky. V této souvislosti se vyskytuje pojem fuzzy-neuronova sit, coz neni
nic jiného, nez ANN, ve které existuje neuron z uvedené tieti skupiny.

V drtivé vétsiné realnych aplikaci se setkdvame s ANN obsahujici pouze jednu homogenni
skrytou vrstvu a jednu homogenni vystupni vrstvu. Pokud jsou ve vystupni vrstvé pouze
linearni modely neuronu, pak to ma vyhody pfi nastavovani vah mezi skrytou a vystupni
vrstvou metodami linearni algebry. Pokud jsou ve skryté vrstvé pouze neurony prvniho
typu se sigmoidalni charakteristikou, pak hovoifime o t¥ivrstvém ¢i obecné vicevrstvém
perceptronu (MLP). Pokud jsou ve skryté vrstvé pouze neurony druhého typu s eukli-
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dovskou normou a vystupni vrstva je linearni, pak hovotime o siti s radialni bazi (RBF).
Samostatnou kapitolu tvoii metody uceni ANN, coz z hlediska matematické statistiky
neni nic jiného nez urc¢eni bodového odhadu parametru celého modelu ANN na zakladé
realnych dat. Nejcastéji se setkavame s u¢enim MLP ¢i RBF gradientnimi metodami
(metoda konjugovanych gradienti, stochastickd gradientni metoda, zpétné Sifeni neboli
backpropagation. Pfi ném vychazime z ndhodného odhadu vah modelu a itera¢né ziskdme
jeden z lokalnich extrému souctu ¢tverci odchylek chovani modelu ANN od pozadovanych
hodnot. K tomuto ucelu slouzi znamé gradientni metoda vychazejici z ruznych pocatec-
nich hodnot vah ANN. Alternativou k takovému postupu je vyuziti heuristik pro hledani
globélniho minima souc¢tu ¢tverci odchylek, nap¥. simulované zihani (SA, FSA, ASA),
modely chovani kolonii (ACO), modely migrace jedinci (SOMA), modely chovani hejn
(PSO), genetické algoritmy optimalizace (GO), evolu¢ni vyhledavani (ES) a diferencialni
evoluce (DE).

3 Pouzité modely ANN

V tomto piispévku jsou vyuzity dva modely s jednou skrytou vrstvou a jednim vystup-
nim neuronem (tiivrstva ANN). Prvni z nich je t¥ivrstva perceptronova sit s linearnim
vystupnim neuronem, o které je zndmo, Ze je univerzalnim aproximatorem na t¥idé spoji-
tych omezenych funkci. To znamenad, Ze s rostoucim poc¢tem skrytych neuroni klesa chyba
aproximace k nule, nikoli vSak ve statistickém slova smyslu. Vystup uvedené sité je dan
vztahem

H n
Y=y + Z Uk tanh(who + Z wk,jxj) (1)
k=1

= j=1

kde H je zadany pocet skrytych neuronii, wi, ..., wn,, jsou neznadmé vahy jednotlivych
vstupti a wg, ..., wy jsou neznamé vystupni vahy. Celkovy pocet parametriu uvedeného
nelinearniho modelu je roven np = H(n+2)+1. Pokud preferujeme sité s radialni bazi, pak
dame prednost tiivrstvé neuronové siti RBF, ktera je rovnéz univerzalnim aproximatorem
spojitych ohranicenych funkeci. Vystup uvedené sité je dan vztahem

. 2 (5 — wi)?
yzvo+kaexp(— 3—1232 Js
1 W0

) (2)

Celkovy pocet parametri uvedeného nelinearniho modelu je opét roven np = H(n+2)+1.
Kritéria hodnoceni kvality modelu

Chceme-li vzajemné porovnévat linearni model a nelinearni modely ANN, musime sta-
novit srovnatelné podminky pro oba typy modeli. Vzhledem k tomu, Ze linearni regrese
je standardnim néstrojem odhady parametri linedArnitho modelu, je pfirozené odhadovat
vahy (neznamé parametry) siti MLP a RBF stejnou metodou, tedy minimalizaci souc¢tu
¢tvercu odchylek, coz je mnohem néaroc¢néjsi tloha vzhledem k nelinearité piislusnych
modeli. Prislusna ucelova funkce, jejiz minimum je hledano, je

m

SSQra =Y (pi — p")? (3)

=1
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kde p;, pAVY je relativn{ piiristek trokové sazby a jeho predikce na vystupu ANN. V
pripadé hnearni ANN je znamo explicitni feSeni s vyuzitim linearni algebry. Pokud je
tloha nelinearni, osvédcily se k jejimu feSeni kompetitivni heuristiky diferenciélni evoluce.
V tom piipadé je tieba si uvédomit, ze neni zajisténo nalezeni globalniho optima SSQ),.;,
nebot u¢eni ANN je NP-uplny problém, takze se nezavisle na metodé hledani nezndmych
vah je nutné uchylit k opakovanym numerickym experimentium s danou heuristikou a tak
ziskatjistotu presnéjsich vysledki. Jednoticim kritériem kvality modelu pro linedrni model
i ANN je stfedni chyba predikce relativni diference tirokové sazby CNB dana vztahem

SSQT@I
m —np

S.E. = (4)

Vzhledem k moznosti permutace neurontu ve skryté vrstvé ANN neni mozné posuzovat

statistickou vyznamnost jednotlivych vah ANN respektive stanovovat jejich smérodatnou
odchylku.

4 Msénova politika Ceské narodni banky

V trznim hospodaistvi hraje centralni banka nezastupitelnou tlohu v bankovnim sys-
tému. Kromé jinych funkci se ji vyhradné svéfuje vykon meénové politiky statu. Ménova
politika je proces, kdy centrilni banka vyuziva ruzné nastroje k dosazeni urcitych cilu,
jejich realizace prispiva k stabilizaci a ristu narodni ekonomiky. Tyto cile jsou cenové sta-
bilita, vysoka zaméstnanost, ekonomicky rist, stabilita drokové miry a ménového kurzu
a v neposledni fadé i stabilita finan¢niho trhu. Je patrné, ze tyto cile nejsou od sebe déli-
telné a dosazeni jednoho z nich mize byt realizovano na tkor druhych. K dosazeni téchto
cili mé centralni banka nékolik nastroju, které jsou trzni i netrzni, tedy regulatorni po-
vahy. Protoze regula¢ni podminky a opatieni ve vyspélych ekonomikach jsou standardni,
v soucCasné dobé centrilni banky ve vyspélych trznich ekonomikach inklinuji k pouziti
trznich néstroju jako operace na volném trhu nebo urokovych nastroju k dosazent cilu
své ménové politiky. Ceska narodn{ banka (CNB) podle Ustavy Ceskeé republiky a zakona
o Ceské narodni bance (zakon €. 6/1993 Sb.) je centralni bankou Ceské republiky. Kromé
emisnich pravomoci a dohledu nad finan¢nim sektorem operujicim na c¢eském tzemi Ceska
narodni banka vykonava ménovou politiku, jejimz hlavnim cilem je zabezpecit cenovou
stabilitu v Ceské republice. CNB také podporuje jiné cile hospodatské politiky vlady
Ceské republiky jako ekonomicky riist, nizkou nezaméstnanost a vnitini a vnéjsi stabilitu
ekonomiky, pokud tyto cile nejsou v konfliktu s hlavnim cilem CNB. Jako cenové stabilita
se rozumi stabilitou spotiebitelskych cen méfenou indexem spotiebitelskych cen (CPI)
poskytovanym éesk;’fm statistickym uradem. Je tfeba podotknout, Zze jako cenovou sta-
bilitu CNB nepocita s absolutni stabilitou, tedy nulovou inflaci, nybrz kalkuluje s mirné
kladnou inflaci, jez mimo jiné zohlediuje pozitivni zmény v kvalité novych zbozi a sluzeb
poskytovanych spotiebitelim, které dochézeji prubézné v ekonomické realité. K dosazeni
svych cili pouziva CNB v soucasné dobé tzv. rezim cilovani inflace, ktery centralni banky
vyspélych trznich ekonomik zacaly rozsitené aplikovat od konce devadesatych let minu-
lého stoleti (Mandel a Tomsik, 2008). Cilovani inflace je takovy proces, pfi némz centralni
banka odhaduje a zvefejiuje cilované hodnoty miry inflace v budoucnu a provadi takovou



206 V.Q. Tran

ménovou politiku prostifednictvim zmén trokovych sazeb a jinych ménovych néstroju,
aby se skutecnd inflace v budoucnu co nejvice priblizila k cilované hodnoté. Napt. cent-
ralni banka si stanovuje cil, Ze inflace v ekonomice bude 2% v budoucnu. Pfi plnéni svého
cile centralni banka v tuto chvili pozoruje riizné, které mohou potencialné vyvinout silny
tlak na zvysSeni inflace v budoucnu, a to jak ze strany nabidky, tak i ze strany poptavky.
Chce-li centralni banka toto nebezpeci eliminovat a svij inflac¢ni cil splnit, tak musi zvy-
§it nomindalni drokovou miru. Nicméné zvysSeni turokové miry vede ke zdrazeni penéz v
ekonomice, coz negativné ovliviiuje ekonomickou aktivitu riznych subjekti v ekonomice
v podobé zpomaleni ekonomického ristu nebo zvySeni nezaméstnanosti. Vyhoda ménové
politiky v rezimu cilovani inflace spo¢iva v tom, ze pokud centrélni banka (v nasem pii-
padé CNB) je dostatecéné kredibilni a dovede si svij infla¢ni cil splnit spravnou ménou
politikou, ziska tim duvéru verejnosti. Ta na oplatku zabuduje do svého ocekavani cilo-
vanou hodnotu inflace deklarovanou centralni bankou a tim se vytvori infla¢né stabilni
prostiedi v ekonomice. Podminkou k prosazeni takové ménové politiky je nezéavislost cen-
tralni banky na vladeé a CNB ze zékona tuto nezavislost ma. V tuto chvili CNB vyhlasuje
infla¢ni cil ve vysi 2% s tim, Ze se skutec¢né inflace nebude lisit od této hodnoty vice nez

1%.

5 Modely chovani CNB

Chovani CNB je zkoumana v diskrétnim case. Navic pro modelovani a predikce neni je
tfeba vhodnéa selekce ukazatelt a a jejich transformace. Z tohoto divodu je modelovana
relativni zména trokové sazby pomoci relativnich zmén makroekonomickych ukazateli v
predchozim obdobi. Jelikoz Ceské narodni banka ménf trokoveé sazby nepravidelné, bylo
také nutné tyto nepravidelné zmény prevedeny na data s mésic¢ni periodou. Ostatni makro-
ekonomické ukazatele je dostupné jiz v mési¢nich periodach. Pouze data o ekonomickém
riustu jsou prepocitany na tuto periodu linearni interpolaci. Pro vSechny studované ve-
liciny jsou tak k dispozici ¢asové fady s periodou jeden mésic. Pokud budeme studovat
¢asovou fadu {£}7_, tvorenou kladnymi hodnotami, pak pii modelovani mizeme vyuzit
absolutni diference 6 = &1 — & nebo relativni diference pp = 1005175  Absolutni
diference se uzivaji v souvislosti s linedrnimi modely. Pro snadnou aplikaci ANN je tieba
pouzit relativni zmény (v %) s tim, Ze nékteré makroekonomické ukazatele jiz uvedeny
relativni tvar maji. Ulohu o jednokrokové predikci v ¢asové fadé relativnich diferenci tiro-
kové sazby je tieba konvertovat na tilohu o linedrni nebo nelineirni regresi. Zavedeme-li
dvé trovné indexovani relativnich diferenci tak, Ze prvni index odpovida ¢asovému kroku
a druhy index sledované veli¢iné (irokova sazba CNB mé index roven jedné), pak jedno-
krokova predikce je ddna vztahem pgi11 = f(pr1, prn), kde n je pocet sledovanych veli¢in
ay = f(x) je pfisludny model. Z ¢asovych fad délky M tak dostaneme fady relativnich
diferenci délky M — 1, které umozni realizaci statistického vybéru o rozsahu m = M — 2.
Nyni se miizeme vénovat jednotlivym modelim. V prvé fadé byl studovan linedrni model
ve tvaru

Yy = Wo + Z Wk (5)
k=1
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kde jsou nezndmé vahy jednotlivych vstupt. S vyuzitim metodiky linedrni regrese snadno
uré¢ime nejen bodové odhady parametra (vah) a chybu modelu, ale té7 jejich smérodatné
odchylky parametrii a piislusné p-hodnoty (testovani hypotéz o nulovosti parametri).
Uvedeny linearni model muzeme chépat jako referenéni ANN bez skryté vrstvy s jednim
lineArnim neuronem ve vystupni vrstvé. Celkovy pocet parametri uvedeného modelu
je roven np = n + 1. Cilem studie je porovnat chovani takového linearniho systému s
nelinearnimi modely reprezentovanymi rovnéz ANN.

6 Pouzita data a vysledky odhadi parametri modeli

Pro modelovani chovani Ceské narodni banky jsou vybrany tyto fady: jako trokova sazba
je zvolena diskontni sazba CNB. Méritkem inflace je index spotiebitelské ceny. Indikato-
rem vnéjsi stability ¢eské mény je primérny mésicni kurz koruny vici spolecné evropské
méné Euru. Dale jsou to prumérna mési¢ni trokova sazba na mezibankovnim trhu na
dobu tii mésici Pribor3M, mési¢ni tempo rustu penézniho agregatu M2, mési¢ni mira
nezaméstnanosti, ¢tvrtletni tempo ristu HDP v Ceské republice a diskontni sazba Ev-
ropské centralni banky, a to v obdobi od 1.1.1999 do 1.9.2008. Zdrojem tudaju o diskontni
sazbé, kurzu ceské koruny vuci euru, mezibankovni drokové sazby a meési¢niho tempa
rustu penézniho agregatu M2 je statistika Ceské narodni banky. Udaje o inflaci a tempu
ristu HDP jsou ziskany ze statistiky Statistického uradu CR. Udaje o nezaméstnanosti
jsou ziskany ze statistiky Ministerstva prace a socialnich véci. Udaje o diskontni sazbé
ECB jsou z jeji statistiky. Protoze vSechny proménné zahrnuté v modelu nemaji stejného
meétitko ani stejnou povahu je treba pfistoupit k transformaci nékter)’fch z nich. Udaje
zadovany charakter, mohou vstoupit do modelu beze zmény. Ostatni proménné, i kdyz
nékteré z nich jsou udavané v procentech jako tirokové sazby nebo mira nezaméstnanosti,
jsou prevedeny na nejdiive na priristkovou formu, pak i na relativné prirustkovy tvar.
Je patrné, ze nejlepsi transformace je ta, kterd prevadi vSechny proménné jsou ve stej-
nych méritkach a stejné povahy, které navic jsou symetrické kolem jejich primérta. Touto
upravou se pocet pozorovani snizuje z 117 na 116. Relativni piirustky diskontni trokové
sazby CNB jsou pak modelovany na hodnotach vybranych proménnych zpozdénych o
jedno obdobi véetné samotnych relativnich prirastku diskontni drokové sazby. Zavislost
relativnich prirastkia diskontni trokové miry Ceské narodnf banky na vybranych pro-
ménnych je nejdiive modelovdna metodou nejmensich ¢tverci a vysledné odhady vlivia
jednotlivych proménnych jsou uvedeny v tabulce 1, kde kromé samotnych odhadu jsou
uvedeny také standardni chyby jednotlivych odhadi a jejich p-value, tj. hladina, od které
se zamita nulova hypotéza, ze hodnota odhadovaného parametru je nula. Podle p-value
jsou statisticky vyznamné odhady zpozdéné diskontni tirokové sazby CNB, zpozdéné tro-
kové sazby na mezibankovnim trhu Pribor 3M a zpozdéné trokové sazby Evropské cent-
ralni banky. Vyznamnost téchto proménnych je odivodnitelnd, protoze rozhodnuti CNB
o zméné urokové sazby musi vychazet z jejich minulych uzavéru a mezibankovni aro-
kova sazba Je odvozena od urokove sazby stanovene CNB a CNB prl svém rozhodovam
storu. Odhady parametru ostatnich proménnych obsazenych v modelu jsou statisticky
nevyznamné a nelze tedy odmitnout nulovou hypotézu, Ze hodnoty téchto parametru
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Tabulka 1: Vysledky odhadu linedrntho modelu chovani CNB

regresor W S.E. | p-value

Konstanta -4,2310 | 2,4901 | 0,0922

Urokova sazba CNB -0,3359 | 0,1105 | 0,0030
Inflace CR (CPI) 0,0274 | 0,4548 | 0,9521
Priumérny mési¢ni kurz EUR/CZ | -0,0660 | 0,6275 | 0,9165
IR Pribor 3M 1,0911 | 0,2116 | 0,0000

Tempo ristu M2 0,2815 | 0,2594 | 0,2804

Meési¢éni mira nezaméstnanosti 0,0646 | 0,2181 | 0,7676
Urokova sazba ECB 0,2706 | 0,0944 | 0,0050
Tempo rustu HDP CR (¢tvrtletni) | 0,2277 | 0,4573 | 0,6197

Tabulka 2: VIiv po¢tu neuronti na chybu MPL a RBF modelu

pocet neuront 2 3 4 5)
MPL 6,60162 | 5,85499 | 6,34161 | 6,71695
RBF 6,56605 | 6,06271 | 5,34662 | 5,68335

mohou byt nulové. Tato skutec¢nost mize byt zpusobena tim, ze tyto proménné mohou
byt silné korelované. Naptiklad mira nezaméstnanosti miuze byt ovlivnéna tempem rustu
HDP a naopak pfi poklesu tempa ristu HDP muze dojit k ristu nezaméstnanosti. Chyba
linedrniho modelu je se = 7,4206. Porovnavame-li ji se standardni odchylkou tady rela-
tivnich p¥irtstka diskontni trokové miry Ceské narodn{ banky (s = 8,6550), je patrné, ze
jen pomérné mala ¢ast jeji variability je vysvétlena timto modelem. Zavislost relativnich
prirtstku diskontni tdrokové miry CNB na vybranych proménnych je také modelovana
vicevrstvou neuronovou siti (MLP — multilayer perceptron). Tato sit se sklada z jedné
vrstvy vstupnich neuront, pak ji nasleduje skrytd vrstva a na konci této sité je vystupni
vrstva, ze které vychazi vystup jako linearni kombinace vystupu ze skryté vrstvy. Nami
zkoumana zavislost je modelovana s riznym poc¢tem neuronu ve skryté vrstvé. V tabulce 2
jsou uvedeny vysledky modelovani zavislosti relativnich priristku diskontni irokové miry
Ceské narodni banky na vybranych proménnych prezentované chybami modelu v zavis-
losti na poctu skrytych neuront. Pocet neuroni v posledni vrstvé je vzdy o jeden neuron
vice nez ve skryté vrstvé. Je vidét, ze nejmensi chybu (5,855) poskytuje neuronova sit se
tfemi skrytymi neurony. Pro tuto sit jsou uvedeny optimalni vahy jednotlivych vstupnich
proménnych ve skryté vrstvé (tabulka 3) a vahy vystupi ze skrytych neurona do linearni
vystupni vrstvy (tabulka 4). Porovnavame-li chybu modelu neuronové sité s chybou line-
arniho modelu, zjistime, zZe variabilita relativnich ptirastki diskontni irokové miry Ceskeé
narodni banky na vybranych proménnych je vysvétlena mnohem vice prostfednictvim vi-
cevrstvé neuronové sité nez linedrnim modelem. Zéavislost relativnich priristka diskontni
urokové miry Ceské narodnf banky na vybranych proménnych je dale modelovana siti
RBF neuronti. Typologie této sité je podobna vicevrstvé siti. Sklada se z vrstvy vstup-
nich neuroni, déle je vrstva RBF neuront a posledni je vystupni vrstva, ze které vychazi
vystup jako linedrni kombinace vystupu ze skryté vrstvy. Zavislost je také modelovana
s riznym poc¢tem RBF neuronu ve skryté vrstvé. V tabulce 2 jsou uvedeny vysledky
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Tabulka 3: Optiméalni vahy jednotlivych vstupu ve skryté vrstvé MLP sité

vaha 1 2 3
Konstanta 0,927236 | -0,787776 | -0,937465
Sazba CNB -0,095104 | 0,082983 | 0,096009
Inflace CR (CPI) -0,058158 | 0,020444 | 0,061885
Pramérny mési¢ni kurz EUR/CZ | -0,050555 | -0,099868 | 0,069388
IR Pribor 3M 0,026756 | -0,074350 | -0,018224
Tempo rustu M2 -0,080787 | 0,096671 | 0,078897
Meési¢éni mira nezaméstnanosti -0,084985 | 0,046552 | 0,089975
Sazba ECB 0,068586 | -0,050390 | -0,070029
Tempo ristu HDP CR (¢tvrtletni) | -0,075676 | -0,028200 | 0,087045

Tabulka 4: Vahy ve vystupni vrstvé optimalni MLP a RBF sité
vaha
¢. neuroni MPL RBF
0 -0,00180 | 0,000000000002
7,49334 | -0,000000000181
0,75171 | -0,000000071741
6,79324 | 1,606886617377
- 0,000000000002

=W N

modelovani zavislosti relativnich pfiristki diskontni trokové miry Ceské narodnf banky
na vybranych proménnych prezentované chybami modelu v zavislosti na poc¢tu skrytych
RBF neuroni. Je vidét, ze nejmensi chybu (5,347) poskytuje RBF neuronova sit se ¢tyimi
skrytymi neurony. Pro tuto sit jsou také uvedeny optiméalni vahy jednotlivych vstupnich
proménnych ve skryté vrstvé (tabulka 5) a vahy vystupu ze skrytych neuroni do line-
arni vystupni vrstvy (tabulka 4). Porovnavame-li chybu modelu neuronové sité s chybou
linedrntho modelu, zjistime, Ze variabilita relativnich pfirtstka diskontni trokové miry
Ceské narodnf banky na vybranych proménnych je také lépe vysvétlena RBF neuronovou
siti nez linearnim modelem. Porovnavame-li nejmensi chybu modelu RBF sité s nejmensi
chybou modelu MLP sité, zjistime, ze optimélni RBF sit poskytuje mensi chybu nez
optimalni MLP sit. V obou pfipadech je vSak variabilita relativnich prirastku diskontni
tirokové sazby CNB vysvétlena méné nez na 50 %.

7 Zaveér

V této praci byly pouzity dva typy neuronovych siti k modelovani chovani Ceské narodnf
banky na zékladé vefejné dostupnych makroekonomickych dat. Byla modelovéna je re-
lativni zména diskontni trokové sazby CNB. Za predpokladu, ze Cesk4 narodni banka
pracuje s adaptivnim ocekavanim, byly pouzity zpozdéné makroekonomické veli¢iny jako
prediktory pro modelovani chovani CNB s vyjimkou diskontni sazby, kdy se spiSe nez
adaptivni ocekdvani predpoklada urcita kontinuita v chovani centrilni banky. Bylo pro-
kidzano, ze nékteré makroekonomické veliciny umoznuji jednokrokovou predikci relativni
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Tabulka 5: Optimélni vihy jednotlivych proménnych ve skryté vrstvé RBF sité

viha 1 2 3 1

Polomér RBF 1,676286 | 6,485502 | 1,711815 | 3,8421907
Sazba CNB 0,428009 | -22,757768 | -6,064228 | -22,639839

Inflace CR (CPI) 5,514883 | -0,253952 | 5,934267 | 1,515577
Primérny meésicni kurz EUR/CZ | -3,288189 | 3,502609 | -0,155341 | -2,069613
IR Pribor 3M “12,000000 | 15,148288 | 11,658247 | 12,575753

Tempo ristu M2 7086276 | 3,202215 | 5,404994 | 12,754242

Mésieni mira nezaméstnanosti 0,067192 | -3,156935 | 0,884224 | -0,845098
Sazba ECB 5,634724 | -14,858715 | 5,975916 | 16,641846

Tempo ristu HDP CR (¢tvrtletnf) | 2,854650 | 5,297753 | 4,822723 | 2,301018

zmény diskontni trokové sazby CNB. V piipadé linearniho modelu jsou statisticky vy-
znamné vlivy zpozdéné diskontni trokové sazby éNB, zpozdéné trokové sazby na mezi-
bankovnim trhu Pribor 3M a zpozdéné trokové sazby Evropské centralni banky. Stan-
dardni odchylka rady relativnich p¥irtstki diskontni drokové miry Ceské narodni banky
je 8,655 % a chyba predikce linearnim modelem je 7,421 %. Tento maly rozdil vypovida
o obtizné predikovatelnosti chovani CNB linearnim modelem.

Jako nelinearni alternativa k linedArnimu modelu byly vybrany umélé neuronové sité typu
MLP a RBF sité a ve snaze najit optimalni pocet skrytych neuronu zajistujici co nejnizsi
chybu predikce bylo zjisténo, ze pro neuronovou sit typu MLP se pro tfi skryté neurony
podafilo snizit chybu predikce na 5,855 % pfi topologii ANN 8-3-1. Neuronova sit typu
RBF docilila pro ¢tyfi skryté neurony chybu predikce 5,347 % s topologii ANN 8-4-1,
coz je nejlepsi dosazeny vysledek. Rozdil v chybé jednotlivych modelu sice neni fadovy,
ale modely neuronovych siti mohou v oblasti predikce chovani CNB prinést podstatné
zlepSeni v porovnani s linedrnim modelem. Je tieba si povSimnout i fadovych rozdilu
v hodnotach vah mezi skrytou a vystupni vrstvou. V siti MLP se pfevazné uplatiiuje
pouze prvni a tieti neuron, avSak druhy neuron nelze zcela eliminovat, nebot model se
dvéma skrytymi neurony méa vétsi chybu predikce. Obdobné situace je u sité RBF, kde
se nejvice uplatnil pouze tieti neuron a zbylé tii neurony hraji symbolickou roli. Ac¢koliv
oba nelinearni prediktory neumoziuji jednoznac¢nou interpretaci vah ANN, ¢imz je jejich
analyticky vyznam mirné snizen, modelovani irokovych mér s vyuzitim neuronovych siti
je uzitecné alternativa ve srovnani s tradi¢nim linedrnim modelem.
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Abstract. Business process modeling is one of the essential parts of system development and
served as foundation for subsequent activities like analysis, design and implementation. BPM
techniques should be clear and easy that everybody who plays a role for description of the system,
could understand it and it should use different artifacts to provide essential properties of the
system at high abstraction level that later development efforts could use these models effectively.
It also plays an important role for communication between all stakeholders and requirement
analysis. However, semantic gap between business process modeling and subsequent information
system development activities is the main problem. In this paper, different business process
modeling techniques and their contribution to corresponding information system development
are discussed.

Keywords: business process modeling, conceptual gap, BORM, model driven engineering, infor-
mation system development

Abstrakt. Business modelovani je jedna ze zédkladnich ¢asti procesu vyvoje a slouzi jako zéklad
posloupnosti aktivit jako jsou analyza, navrh a implementace. Techniky business modelovani
by mély byt jasné a snadno pochopitelné pro kazdého, kdo se podili na popisu systému, pii-
padné kdo by mél tento popsi pochopit a kdo by mél poskytnout zékladni parametr systému na
vysoké urovni abstrakce tak, aby pii pozdéjsim vyvoji bylo mozno tyto modely efektivné pouzit.
Hraji také vyznamnou roli pfi komunikaci vSech tcastniki procesu vyvoje a analytikem poza-
davki. Bohuzel, velkym problémem je sméantickd mezera mezi procesem business modelovani
a navaznymi aktivitami vyvoje systémt. V tomto ¢lanku jsou diskutovény techniky byznys
modelovani a jejich konsekvence vzhledem k dal§im korespondujicim aktivitam.

Klicovd slova: modelovani{ business procesti, koncepéni rozdily, Borm, model fizeného inzenyrstvi,
informaéni systém vyvoje

1 Introduction

A business process model is an abstraction of the real world complex business systems.
Main purpose of a business model is to create a medium where all stakeholders including
domain experts, customers, end-users, system analyst and software system developers
communicate. In addition to that, business process models are also the foundation of
subsequent system modeling activities. That is the reason that business process models
should be transformed to the I'T world without loss of information in a consistent manner
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which enables complete and satisfactory end-user products. Main question of system
development comes from the semantic gap between business process description and the
corresponding information system built on that business specifications. Even though
there are so many system development processes, this conceptual difference is still main
concern among these approaches. In this paper, different BPM techniques and their way
of bridging this conceptual gap are illustrated.

Since full system development process life cycle is comprehensive and comprises var-
ious aspects and artifacts, the scope of this paper is delimited with different BPM tech-
niques with the main concern of semantic gap between business domain and system IT.

In the following sections, with the excursion into different BPM techniques, required
properties, which should be satisfied to minimize conceptual gap, are discussed. As a
kind of BPM techniques, BORM [9]and its way of handling this problem are emphasized.

2 Main Problem - Business Domain to I'T Transforma-
tion

As mentioned in the preceding section, main source of incoherency between business and
IT world, could be specified as conceptual gap. More formally Goldberg [1]| uses different
terms to define this problem. Concept space describes the system under development
from the user/expert view point. The articulation space is used to define communication
medium between user/expert and system analyst. The constructed model as a feedback
to that user/ expert’s expectation is called as analyst space. Basically, difference between
this concept and corresponding analyst’s space is called as the conceptual gap, which is
addressed in this paper.

The cost of any kinds of requirements misconception among participants of system
development increases exponentially as it gets detected later on the following phases of
development, especially after product delivery to end-user. The cost of bugs which are
detected later in the development process, is much more than the cost of any bugs detected
earlier during initial phases. So, it gives a big responsibility to the business process
modeling in order to get an unambiguous, exact, concrete and consistent representation
of the system under development. The second step is to transform this business models
into corresponding software system development environments without loss of information
and in a consistent manner. BPM and software development are different disciplines and
have their own artifacts. Moreover, users and domain experts have totally different
expertise and knowledge level with respect to software developers who deal with system’s
technical and implementation aspects. BPM techniques should provide participants of
both worlds with a common ground for easy communication to create concrete software
system specifications through business to I'T transformation.

3 Business Process Modeling Approaches

Even though there are lots of system development processes in the literature, problem
of business to IT transformation is still problem. Menes et al.|8] define two dimensions
for transformation. A horizontal transformation is a transformation at the same level of
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abstraction whereas a vertical transformation renders an input into more detailed output
through refinements. Stein et al.[14] propose a framework for business to IT transfor-
mation. In this framework, it is stated that business process models should be platform
independent and the platform specific I'T solution, nevertheless must be derived from
these process models through vertical transformation, not horizontal. According to [14],
horizontal transformation guarantees totally independent business and I'T environments,
however, vertical transformation requires a business process model which should have I'T
related perspectives to be configured by domain experts at high level abstraction. Verti-
cal transformation is accepted as a more reasonable approach compared to the horizontal
transformation to bridge the gap between business and IT.

In this section, as a special and important discipline of system development processes,
BPM techniques are illustrated with the concentration on their support for subsequent
software system development efforts in order to bridge the cultural gap.

3.1 RUP and BPM

Business process modeling is one of the Rational Unified Process disciplines. [4] It is per-
formed during inception phase of system development life-cycle. Similar approaches and
artifacts as in software development are suggested for BPM in RUP to create an strong
inter-dependency between BPM and rest of the system development. As in subsequent
software development effort, use case modeling technique and business object model with
system actors are used during this phase. UML (Unified Modeling Language) is used
for description language as in the rest of software engineering disciplines like require-
ment, analysis and design. Although UML is reach enough for software engineering and
provides different modeling techniques from different points of view of the system under
development, it is claimed that using the same techniques for business description might
not be comprehensible and appropriate for domain experts and users of the system, who
do not have technical knowledge as system and software engineers have. Domain experts
and users, nevertheless should contribute to the system description actively, especially in
the early and during maintenance phases.

As discussed in the following sections, more user centric methodologies with different
specification techniques behind them, like EPC, Petri Nets or FSM (Fine State Machines)
have been developed. In stead of using RUP’s own business process modeling techniques,
business process descriptions specified by these methodologies could be transformed into
the RUP software development environment to exploit UML for subsequent software
engineering disciplines.

3.2 ARIS

ARIS (Architecture of Integrated Information Systems) framework is one of methodolo-
gies for modeling of business processes [11|. Today, this methodology is widely used in the
world of business modeling. The author of this framework is Professor August-Wilhelm
Scheer; its research has started in 1990s. Today ARIS is complex methodology which
offers for analyzing processes and it takes a holistic view of process design, management,
work flow, and application processing with a powerful tool for modeling. The main mod-
eling technique used in ARIS is Event-driven process chain (EPC). This tool is directed
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graph which follows the process from begin to end. The basic of idea lies in the fact that
processes consist of events and our reactions. In other words — our activities are affected
by events. EPC diagram is the sub-sequence of events and functions, where two events
are linked by a function. Then a function represents our reaction on some events. This
concept expects that every event has some reaction and every reaction is conditioned by
some event. We never do something without reason and without suggestion and no event
is without response. But the basic version of EPC is not able to express more difficult
and complex processes. So it has been extended, which is called Extended EPC(eEPC).
eEPC chart is able to show not only events and functions, but also inputs, outputs, roles
and organization units. The most important property in eEPC is the possibility of flow
control. Now we can use logical connectors which allow analyst to model branches and
conditions. So this is the way how we can model business process in language, which is
natural to workers in business. They feel process in the way of activities that they have to
accomplish as a result of some events. Analyst has to define (in cooperation with stake-
holders from the business where processes are analyzed) the initial event, which starts
whole process and then he has to find sub-sequence of reactions and events. The chart
as result is understandable for analyst as well as for active participants from business.

3.3 BPMN/(Business Process Modeling Notation)

Business Process Modeling Notation (BPMN) is a graphical notation (the set of graphical
objects and rules, which determine the possibility of connections of objects) that system
analyst can use for business process modeling [15]. The primary goal of the research
activity is the same as the goal of this paper — bridge the semantic gap between business
modeling and subsequent activities. Now this method is one of the standards for business
process modeling and it is widely used (with many of modeling tools). The second goal is
to make the method easy as well as usable for modeling of complex processes. Important
aspect is the way how to convert model to IT implementation for running processes.
Mostly, BPMN is used for automatic model transformation towards IT domain. (BPMN
has so many features that it is not easy to make full automatic conversion. Some tools
restrict some features and then they can do this automatic conversion. For detailed
techniques for model transformation using BPMN, you can check.[10]) The result of
modeling is one diagram, Business Process Diagram (BPD), which is network of graphical
objects and flows between them. Graph can also contain lanes, which can represent roles,
departments etc. For details of notation, you can find in [15|. As an advantage, research
of this notation is oriented to cooperation between analyst and participants from business.

3.4 XMDD (Extreme Model Driven Design)

In XMDD]|5], an holistic approach is proposed to bridge the gap between business driven
requirement and IT-based realization. A well defined (JABC) framework|6] is specified
to support business process modeling and model transformation to I'T system.

XMDD combines different system and software development paradigms to provide
an agile process. The combination of eXtreme programming, model driven design and
process modeling forms the basics of XMDD process. In addition to that, service oriented
paradigm is followed during process modeling. It is stated in [12|that
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process model of OTA implementation

Figure 1: OTA of XMDD applied to heterogeneous landscape of the Rational Unified
Process

“A very highlevel kind of programming, in terms of orchestration, coordinates
and harmonizes application-level “things” that are provided as services.”

Implementation of services is regarded as a distinct task and any kind of programming
paradigm could be used for service implementation, which is beyond the scope of this
paper.

Most important philosophy used by XMDD is “One-Thing Approach” (OTA). It is
a cooperative and hierarchical development process, which is organized by building and
refining “one thing artifact” during whole process, which is called “Service Logic Model”.
Model refinements could occur in different forms like adding details, defining roles, re-
sponsibilities, any kind of constraints or performance requirements along the way down
to the implementation in both vertical and horizontal dimensions. One thing approach
guarantees consistency between model refinement efforts while keeping the loss of in-
formation minimum between consecutive process stages compared to other “many thing
approaches”. Model refinement continues until a sufficient level of detail is reached, where
user and application functions could be implemented as elementary services by I'T domain
experts. So, cultural gap between business and I'T domain just becomes service-oriented
realization of requirements.

As shown in figure 1, business process and use case specifications in UML are combined
together to build consistent one thing in XMDD for further refinements. Application of
OTA for a project which was first implemented by RUP within IKEA IT group, is detailed
in [2].

Moreover, domain experts and users take the control during process modeling. They
participate actively in system analysis, model verification and refinement. They also
experience and monitor the developed system at any phase by document browsing, sim-
ulation, full execution, or mixtures of them. So XMDD could also be called as “User
Centric”.

Briefly, one thing philosophy with empowering domain experts during business de-
scription, model refinements and verification provides an agile, consistent and compre-
hensible process in order to bridge the cultural gap between business and IT.

For further information about XMDD, you could also check references|2, 7, 13].
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In the next section, BORM methodology regarding business process modeling aspect
with its properties mentioned in preceding sections is discussed.

4 BORM - Our Approach

In this section, as another business process modeling methodology, Business Object Rela-
tion Modeling|9] is discussed. In contrast with XMDD discussed in the preceding section,
it uses object oriented modeling paradigm for all phases of system development.

BORM is a end-to-end, full life cycle supporting system development methodology,
which has been progressed since 1993. It has been used to capture knowledge of typical
business systems, like business processes, business data and all related problems asso-
ciated with business systems. BORM methodology has been used in development of
different systems with variable sizes. Details of recent projects with BORM could be
seen in [9].With these examples, BORM has proved to be effective in process of describ-
ing business systems and introduction of new requirements. The effectiveness of BORM
comes from its simplicity and usage of unified method to model systems in different
abstraction levels.

One of the main problems addressed in BORM is business to IT transformation.
As discussed in the previous sections, active participation of stakeholders is necessary
for requirement specification and creation of conceptual model of the systems to ensure
that systems under development are verified easily. This requirement is only achievable
through an understandable and easy modeling technique as the primary concerns for
business process representation. It is widely accepted that “use case” modeling for the
initial stages of development is not enough to capture all necessary aspects of the systems,
and it should be supported by other modeling techniques like sequence and activity
diagrams in UML.

In BORM, single diagram shows all necessary aspect of the systems at certain ab-
straction levels, in stead of using multiple diagrams for different views. Any change in
business description is reflected apparently down to the implementation to guarantee con-
sistent model generations. So we could say that BORM uses “one thing approach” like in
XMDD discussed in the preceding section. Diagramsin BORM reflect the nature of object
oriented paradigm, including business process description. It is fully object-oriented de-
velopment process. BORM has several concepts associated with different stages of system
development and some rules considering model transformation between these concepts.

In business process diagram, main concepts are business objects, their behaviors (func-
tions), data links and communication between objects. Every object is represented as
finite state machine(FSM), where transitions between object’s states are initiated by
events. Three dimensions of object oriented paradigm, which are data, behavior and
history of objects are represented in this model. It combines three diagrams of UML
together, state, communication and sequence diagrams. In figure 2, an invoice business
process modeled in BORM is shown as an example.

As it could be seen, rectangles and ovals represent objects states and behaviors (func-
tion) respectively. Arrows between objects are used to model communication and data
transfer between them. Concepts used for business process description is simple, under-
standable and comprehensive, which is necessary to minimize conceptual gap. It allows
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Figure 2: Invoice Business Process in BORM

Bank

domain experts and users of the system to participate in business process description
actively to specify system requirements concretely and unambiguously. Domain experts
and users could also test, verify and validate the system under development without
any relation to software realization. So it could be said that BORM borrows “test first”
paradigm with active participation of domain experts and end-users at the modeling level.
BORM is a user centric approach.

Business process model built by all stakeholders is step-by-step transformed towards
to the final model of the system for software implementation. BORM uses specific rules
for model transformation to keep consistent set of models. Models in BORM are orga-
nized hierarchically via model decomposition. An object or behavior of a model must be
linked to another object or behavior in an upper or lower level of hierarchy. Two new
concepts for vertical and horizontal transformations as mentioned in section 3, are used to
define this hierarchy mechanism. Model aggregation /refinement uses IS-A or HAS-A rela-
tion to add details to models across different abstraction layers whereas model filtration is
used for simplification, encapsulation or hiding unnecessary parts of models at the same
aggregation /refinement levels. Model aggregation/refinement and filtration mechanism
is shown in figure 3. In this example, a library process model is transformed by model
aggregation /refinement and filtration mechanism. This mechanism allows model trans-
formation both in vertical and horizontal dimensions. Any change in a model at some
certain level of hierarchy is reflected through model hierarchy in a consistent manner.

Moreover, BORM exploits fast prototyping through use of totally dynamic and pure
object oriented implementation in Smalltalk, which is necessary to validate and verify
system under development at early stages.

For the detailed description of all concepts, models and transformation rules used in
BORM, you could see |3, 9].
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aggregation

filtration

Figure 3: Model aggregation/refinement and filtration

5 Conclusion

As a conclusion, business process modeling constitutes initial stages of system develop-
ment and its main purpose should provide a medium for communication between all
stakeholders in a project to bridge the gap between business and IT. Throughout the
paper, it has been emphasized that any approach to build common understanding of the
business derived requirements should have certain characteristics.

Business process models must be simple, understandable and comprehensive enough
to represent requirements of the system under development concretely and unambigu-
ously. By doing so, domain experts and users who do not have technical knowledge and
experience, could be empowered and have direct control on the process during early stages
of development. We call it “user centric” approach. To keep the model hierarchy con-
sistent and simple, one artifact which combines different aspects of the process together
in one model, should be built and transformation toward to realization of final product
should be based on step by step refinements of this unique model, which is called “one
thing approach”.

In addition to characteristics summarized above, in order to minimize the misconcep-
tions among stakeholders, business process approaches must provides tools to test, verify
and experience the system whenever it is necessary during development process.

Regarding the business process modeling characteristics discussed so far, we could
say that BORM provides an object oriented and agile methodology through use of “user
centric” and OTA with verification and validation supports during development process.
Moreover, model aggregation/refinement and filtration concepts are defined to build a
consistent model hierarchy in BORM. By doing so, step by step transformation towards
software implementation is achieved. From the practical perspective, BORM has been
used in different projects for 10 years. This experience proves that our clients prefer to un-
derstand and simulate each important relationship between materials, finance, resources,
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and information in simple and concrete model, like in BORM business process model,
which shows the importance and power of user centric, OTA in practice as discussed so

far.
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Abstract. We analyse the structure of built-up land in the centre of big cities in the Czech
Republic using the framework of statistical physics. To do this, both the variance of the built-up
area and the number variance of built-up landed plots in spheres are calculated. In both cases
the variance as a function of a circle radius follows a power law. The obtained value of the
exponents are comparable to values typical for critical systems. The study is based on cadastral
data from the Czech Republic.

Keywords: urban structure, critical systems, self-organized criticality

Abstrakt. V nasi praci se zabyvame studiem struktury zastavénych ploch z pohledu statistické
fyziky v centrech velkych mést v Ceské republice. Za timto tGcelem pocitame rozptyl zastavéné
plochy a rozptyl potu zastavénych pozemkia ve sférach. V obou piipadech vykazuje tento
rozptyl jako funkce poloméru mocninnou zévislost. Ziskané hodnoty exponentt jsou srovnatelné
s hodnotamy pro kritické systémy. Studie je zaloZena na datech z katastru nemovitosti Ceské
republiky.

Klicovd slova: struktura méstské zéstavby, kritické systémy, samo-organizovana kritikalita

1 Introduction

Urban land represents an important part of overall landscape where most of people live.
The structure of cities is influence by cultural, sociological economic, political and other
processes.

As was shown, despite the apparent complexity, some simple universal properties and
rules can be found. The classical work discuss the size distribution of the cities [11]. If the
cities are ranked by their number of inhabitants, then the rank-size distribution follows a
power law. From physical point of view, it is interesting to study the spatial properties of
urban pattern. Complex spatial features associated with urban systems are often being
described within fractal self-similarity concept [1, 2, 8, 9].

Our aim is to study the principles of the urban structure on smaller scales. The main
topic of this article is the analysis of the built-up pattern in the inner urban area based
on the data from Czech Cadastre. The use of land parcels allows us to study the built-up
structure over the smallest possible scale. We are going to show the connection of urban

*This work has been supported by the grant No. 202/08/H072 of the Grant Agency of the Czech
Republic and by the grant No. SGS10/211/OHK4/2T /14 of the Czech Technical University in Prague.
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land to so called critical systems from thermodynamics. Particularly that some spatial
properties of built-up land pattern are the same as for critical systems.

Built-up land in the centre of cities is chosen, because one can there expect the uniform
density of built-up land. By uniform, we mean the same probability for a point to be
built-up thorough the history or possible future of the city, not the present state (concrete
realization). Together with the previously mentioned fractal properties of urban systems
and the fact that from economic point of view, the built-up land represents the new phase
between other types of land, the effort to study critical properties seems natural.

2 Critical phenomena

Let us now recall some specific features of this so called critical systems [5, 6, 7|. Phase
transitions within thermodynamic description of a system occurs in points where ther-
modynamic potential becomes non-analytic. Such non-analyticity may be discontinuous
(first order phase transition) or continuous (second order). Properties of different ther-
modynamic systems near the continuous phase transition show specific universalities for
which the term critical phenomena is used. In the past decades similar behaviour was
also found in various systems from natural and social sciences.

If one is interested in the static spacial structure then certainly the most important
property is the scaling invariance connected with the change of quantities under a change
of length scale. In simple terms, if a part of a system is magnified to the same size as
the original system, it is not possible to distinguish between the magnified part and the
original system. In other words, near the critical point there exists only one characteris-
tic length of the system, the correlation length &, which is solely responsible for singular
contributions to thermodynamic quantities. At the critical point correlation length di-
verges thus no characteristic length is presented and the system is invariant under scale
transformations.

In order to explicitly describe these features one needs to define an order parameter M
as a thermodynamic quantity that distinguish between the two phases and approaches
zero at the critical point as the phases become identical there. Well studied exam-
ples of order parameter are density difference between gas and liquid phase near critical
point, shear modulus in liquid-solid phase transition or magnetization in ferromagnet-
paramagnet transition. The conjugate field H is defined by the relation

AW = —HdM, (1)

where dIW denotes the work done on the system when the order parameter changes by
dM. Canonical partition function can be written in the form

Z(TH) =Y P g 2)

where 7 and M are values of the Hamiltonian and the order parameter, respectively,
for a concrete realization. The sum is as usual taken over the whole ensemble. Order
parameter can be from the partition sum obtained through Gibbs free energy given by
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G(T,H) = —kgTIn Z:

oG 1 — - ;
— _ | = — —B(H—HM)
M (a )T > Me . (3)

It is also useful to define a local order parameter value m(r) by the relation
M= /(m(r)>dr, V CRY (@)
1%

where d is the dimension of the space and (...) stands for ensemble average. If the system
is homogeneous and isotropic then

(m(r)) = (m(0) =m =17, VreV. )

The susceptibility is given by the derivative of the order parameter density with
respect to its conjugate field

(T, H) = (g%) g %ZM%%(H—HM _ @ZMe—ﬂ(H—HM))Z] . (®)

Together with the definition of the order parameter density one gets

s V

1
X = kBTV/V/VG(Tl,’I”Q,T)dTldTQ, (7)

where G(ry, 79, T) stands for two-point correlation function

G(r1, ) = ((m(r1) = (m(r1)))(m(r2) — (m(r2)))) - (8)

The correlation function G(71,7rs) describes the fluctuations of the order parameter and
under homogeneity and isotropy can be simplified to

G(r) = (m(r)m(0)) —m?, (9)
where 7 = |r|. Thus the final relation for susceptibility known as the fluctuation-
dissipation theorem is

1
T)=—— [ G(r,T)dr. 10
X( ) kBT v (r7 ) r ( )

As we stated before, the correlation length diverge when approaching the critical
point. Suppose the critical point occurs at the point 7., H, in the parameter space and
the spacial size is infinite i.e. thermodynamic limit V' — 40c0. Introducing the reduced
temperature t = (T'— T,)/T. the correlation length ¢ is assumed to diverge as

E(t) o |t]77, v > 0. (11)
The scaling assumption for correlation function can be written in the following form:

G(r) = P (r/€) (12)

rd—2+n "’
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where subscripts + denotes two different functions W (x) for ¢t > 0, and V_(z) for £ <0
as these directions can be generally different. Index n appearing in the exponent of power
law part of G(r) is called the anomalous dimension. Inserting this relation into equation

(10) leads to
! /q’i(r/@dr. (13)

X= kBT rd=2+n
The final scaling form for susceptibility is
£ [ Wy (x _ (o
V=i | e = K . a1

Similar relations hold also for particle density in the grand canonical ensemble |7, 4].
To obtain them we should replace the order parameter by the mean total number of
particles M — (N), conjugate field by the chemical potential H — p, canonical partition
function by the grand canonical one Z(T', H) — Z(T, 1, V') and the Gibbs free energy by
the Grand potential G — €). Local order parameter is then just the density of particles
(p(r)) = po = (N)/V. The role of susceptibility takes here the isothermal compressibility
kr. Under such replacement it is easy to see the following relations:

o051 Oln=
<N>:_(_) :kBT( = ) , (15)
o) 7y o )y
where Z(T, 1, V) = > e A =1#N) and
1 /0*InE 1 (0?9
g () (), e o
=22 (), =3 (52),, T (16)
Fluctuations of the number of particles are thus given by
(N
(N?) — (N)2 = kT <(<9—M>> . (17)
TV

After a little play with Jacobians, Maxwell relation, the fact that Gibbs free energy is
linear in N and the definition of compressibility

1 /oV
=—— | — 1
- V(%){ (18)
one obtains
<N2> — <N>2 = ]{BTp(Q)VK,T. (19)

Defining the two-point correlation function G(r) for p(r) analogously to (8), the fluctuation-
dissipation theorem can be written in the form

1
R = m/G(T)dT (20)

Scaling forms for correlation length and correlation function are again described by
the functional forms (11) and (12), respectively. The fluctuation-dissipation theorem
gives analogously to (14)

k= K& o |t]"&7 (21)
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The only qualitative difference between order parameter and particle density is in the
singular structure of a concrete realization. Density function for point particles located

at points 71, T, T3, T4, ... € R%is given by
[e.e]
p(r) = 6(r—ry). (22)
i=1

The correlation function can be written |7] in the form
G(TQ — ’l”l) = poé(’f‘g — 7“1) + g(’l”Q — Tl), (23)

where G(r2 — 71) is the non-diagonal part meaningful only for » = |ry — 74| > 0. Thus
the difference of correlation of the order parameter and particle density is only in the
diagonal ¢ therm which of course doesn’t influence the character of the divergence near
the critical point.

2.1 General parameter

From scaling laws it is analogously possible to show that the character of fluctuations given
by the power-law divergence of two-point correlation function and general susceptibility
holds also for the extensive thermodynamic variables that do not approach zero at the
critical point. One such example is the density discussed above. The reason for working
with the order parameter near the critical point lies in the possibility to expand the
free energy in the powers of m and its derivatives and use this expansion in analytical
derivation of the properties (with or without renormalization theory).

Since our attention now is not in the scale field modelling we are not limited to the
assumption of the respective parameter be 0 at the critical point. In the next we will thus
work with general parameter of the system. Under this parameter we also understand
the density of particles if needed. In the previous section we showed that in such case the
only difference is the presence of the diagonal part in the relation for correlation function
(23).

2.2 Parameter variance in spheres

The useful tool to analyse experimental data is the variance of the parameter in spheres.
For the parameter m(r) with homogeneous and isotropic distribution (m(r)) = m the
cumulative value of the parameter in the sphere of radius R is given by

M(R) = /S(R) m(r)dr, (24)

where the sphere is the set S(R) = {r € RY|r| < R} with a volume |S(R)|. The
centres of the spheres are not important because of the homogeneity of the parameter
distribution. The parameter variance is defined [3| as

0*(R) = (M(R)*) — (M(R))®, (25)
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where

(M(R)) = /S(R) (m(r))dr =m|[S(R)], (26)

and

(M(R)?) :/ / (m(r)m(rs))dridr,. (27)

S(R) JS(R)
Using the definition (8) of the two-point correlation function, o?(R) can be expressed by
o2(R) = / Gy — 1o)dridrs, (28)

S(R) JS(R)

It is reasonable to change the variables and obtain the relation
o*(R) = ]S(R)\/ G(r)dr. (29)
S(2R)

If we compare this relation with the fluctuation dissipation theorem (10) then in the
thermodynamic limit V' — +o00 outside the critical point, where the susceptibility is
finite, the following limit holds

. 2 - .
Jim o*(R) = kgTX(T) Jim |S(R)]. (30)
This leads to
0*(R) x R* ~ (M(R)), R>1. (31)

Outside the critical point is the parameter distribution sometimes called substantially
Poissonian, since for the Poissonian point process (particle distribution in the ideal gas)
is the last equation valid for all R. That can be easily derived from the fact, that the
particles are non-interacting and therefore independent. The correlation function for
density (23) has only the diagonal part

G(r) = pod(r). (32)
The density variance is therefore
o*(R) = po |S(R)| = (M(R)). (33)

Different situation arise when the system is approaching the critical point. There both
the susceptibility (compressibility) and correlation length £ diverge. Spatial correlations
in this region are long-ranged and the correlation function is dominated by the power-law
decay (12). In the region R > 1 and R < & we obtain

1
Td72+n

R Td_l
UQ(R)oc\S(R)]/ dr:C\S(R)]/O mdr:C]S(R)\RQ_". (34)

S(2R)
Hence the fluctuations are proportional to

d+2—n
d

0*(R) o< RT*77 ~ (M(R)) (35)
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3 Data analysis

In this section we show that built-up land patterns have the same fluctuation properties
as critical systems. As we work with the surface data, the dimension of the space in
previous formulas is now d = 2.

Our data contain all cadastral records form the Czech Republic. Every landed plot i is
characterised by its definition point 7;, size (acreage) \;, type of land and the ownership
data. Since our interest is in the built-up structure we restrict our attention only to built-
up landed plots. We don’t know the exact parcel shape, thus the most straightforward
analysis of cadastral data is to use the point pattern given by definition points r; of the
parcels. This is in the latter text called "point" representation. For this representation
the order parameter is represented by the singular point density (22). Parameter variance
o?(R) is than the number variance in sphere.

Another possibility is to approximate unknown parcel shapes by circles with the same
acreage. The built-up land is represented as a subset Z of two dimensional surface R2.
Order parameter in this case is just the indicator of such subset: m(r) = 1 if there is
a building at =, m(r) = 0 otherwise. Such approximation leads to errors. Fortunately
the approach of estimating parameter variance in spheres is much less sensitive to them
than direct estimation of correlation function. During the estimation of built-up area
contained inside one concrete sphere S(R) the intersection area of the sphere with every
parcel represented by circle is added to cumulative result:

M{R) =3 A (si N S(R)) , (36)
icl
where A(.) denotes the Lebesgue measure on R?, I is the set of all built-up parcels and
S; is the circle positioned at the definition point of the i-th parcel having the same size
A(S;) = A;. For R much larger than typical parcel perimeter this approach produce errors
only in the vicinity of the sphere boundary. The effective error will therefore decrease as
M(R) — M(R)
M(R)

For "set" representation the built-up area variance in spheres is calculated.

All estimations are based on the assumption of self-averaging property [10]. It means
that sufficiently large sample is a good representative of the whole ensemble. In our case
however, the size of sample is limited to the area around the city centre where we can
expected uniform density. For typical large Czech city the perimeter of such area is about
4 km. This size puts limitation on the perimeter of spheres in order to obtain reasonable
statistics. Together with the fact that the power law dependence, if presented, is valid for
R >> 1, one is usually restricted to work in the region 400 km < R < 1000 km. Related
to this, mean values in formula (25) for fixed perimeter R are estimated in the following
way. Inside the studied part of the city A C R? centres o; of N spheres are uniformly
randomly chosen so that every sphere is inherited in A, S(0;, R) C A. For every sphere
S(0j, R) the cumulative parameter value (number of points or built-up area) M;(R) inside
is calculated. The mean value is than estimated by

(M(R) = 5 S A (R) 39

~ R (37)
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and the variance by

PH(R) = 13 3 (G (R) = (MR, (39)

Note the same notation for the definition (25) and for the estimator (39). It is always
clear from context what does the symbol mean.

3.1 Results

We analysed 6 largest cities in the Czech Republic. For each city we calculate both num-
ber variance in spheres (point representation) and built-up area variance in spheres (set
representation). The dependences of o*(R) on (M(R)) in the case of set representation
are plot in the log-log scale in figure 1.

10™ T T

[| —=— Praha

Ll —*— Plzen

t| —©— Liberec

l| —<— Brno

Ceské Budejovice
|| —*— Ostrava

= 1010 |
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10* 10° 10°

(M(R))

10

Figure 1: Dependencies of 0?(R) on (M(R)) in log-log scale for different cities.

It is clearly visible that the dependence for all the cities follows a power law. It can
be therefore fit by the strait line (in log-log scale). From this fit we can easily determine
the exponent of power-law. The summary of resulting exponents « for studied cities
according to the relation

o*(R) oc (M(R))" (40)

is presented in table 1.
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As was shown by (31), exponent o = 1 express the system that is outside of the
critical region, e.g. randomly positioned particles. One can see that this is not the case
of built-up pattern.

Table 1: Exponents a according to power law dependence (40) of o?(R) on (M(R)).

City Point representation | Set representation
Praha 1.47 1.64
Plzen 1.61 1.69
Liberec 1.54 1.65
Brno 1.40 1.65
Ceské Budéjovice 1.50 1.58
Ostrava 1.54 1.62

4 Conclusion

We study the built-up land pattern in the centres of 6 largest cities in the Czech Republic.
Our analysis is based on cadastral data. For every parcel we know the location of the
definition point, size, type of land, that uniquely determines the built-up land and other
properties. For the purpose of analysis the built-up land is represented in 2 different ways
- points and subset.

Because the data do not contain information about exact shape of parcels, it is useful
to study the fluctuations of built-up area in spheres (circles). This leads, especially for
set representation, to effective error that decreases with increasing perimeter R of the
spheres.

The computations show, that for both representations the dependence of fluctuations
on the mean value of the parameter follows a power law. Moreover the set representation,
as can be expected, seems to be more universal. The values of exponent « in the relation
o%(R) ~ (M(R))?, for different cities in the Czech Republic are very close to the value
a = 1.64.

We can conclude that the inner urban area structure is correlated with a long ranged
power-law dependence. This shows the connection between critical systems and the urban
system. The power-law exponent seems to be independent of the concrete city, being
therefore determined only by the fact that it represents an inner urban structure. Such
observation is very interesting and the connection between urban area and critical systems
may be useful to development and verification of further urban models. The probable
explanation may be inherited in the connection of built-up land to various networks, e.g.
transportation, water supply, sewerage, electricity.
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Abstract. In this article, we introduce the concept of Backward Stochastic Differential Equa-
tions (BSDE), provide fundamental theorems of existence and uniqueness of the solution for
some essential cases and we show by example its important connections to financial mathe-
matics. Finally, we focus on vast applications of BSDE to stochastic control via Pontryagin’s
maximum principle.
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Abstrakt. V tomto ¢lanku predstavime koncept zpétnych stochastickych diferencidlnich rovnic
(BSDE) a vyslovime zasadni véty o existenci a jednoznatnosti Feseni takovych rovnic v obecném
pripadé. Na piikladu déle ilustrujeme jedno z jejich moznych vyuziti v oblasti Fizeni finan¢niho
portfolia. Posledni ¢ast je vénovana uplatnéni zpétnych rovnic v teorii stochastického Fizeni
uzitim Pontrjaginova principu maxima.

Klicovd slova: zpétné stochastické diferencialni rovnice, stochastické fizeni, stochasticky princip
maxima

1 Introduction

The domain of BSDE; in its full generality, was first studied in 1990 by Pardoux and Peng
who formulated the general problem of BSDE and proved some fundamental theorems
including the central one - the existence and uniqueness of the solution, see [3]. Since
then, BSDE have found a variety of applications in finance, in physics but also in even
more theoretical fields such as stochastic control, theory of random processes probabil-
ity distributions, probabilistic representation of elliptic and parabolic-type deterministic
PDE’s, numerical methods for PDE’s and many other.

The first section of the article gives an introduction to BSDE - we start by the theorem
of Pardoux and Peng for finite time horizon BSDE and then we proceed to infinite time
horizon case considering, in addition, Lévy driven stochastic noise. We refer to [5], [7]
and [9] for an overview on generalizations of this type. Further, to present an example
of a practical model using the BDSE theory. We show how the theory can be applied to

*This work has been supported by grants no. 402/09/H045 and no. P402/10/1610 of the Czech
Science Foundation.
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the European Call Option hedging problem. In the second section, we formulate the task
of stochastic control and associated maximum stochastic maximum principle and discuss
some other extension of the model.

2 Backward stochastic differential equations (BSDE)

2.1 Finite time horizon case

The main motivation for introducing the BSDE is the need for solving problems with
terminal condition of the following type

—dYy = f(t,Ys, Zy)dt — Z,dW,, YVt € [0,T), as. (1)
Yr=¢, as.,

where 0 < T' < +o0 is a finite time horizon, (Q, F, P) is a standard probability space
equipped by a standard R%valued Wiener process <Wt)te[o,T}' Let <‘7:tW)te[0,T} be the
canonical filtration of W, i.e. F}V = O'(WS; s < t) and (Ft>t€[0,T} be its completion. The
function f (called drift) and the random variable & (terminal condition) are, in fact, the
only inputs of the equation.

Definition 1: The couple (f,&) is called standard parameters of the equation (1) if it
holds

o £ € L2(Fr;R"), ie. £ is an Fr-measurable r.v., R"-valued, satisfying E||£||? < +o0
o f:OX[0,T]xR"x R - R, ie. (w,t,y,2)— flw,t,y,2) ER
e fis an application F @ B(R) ® B(R") - progressively measurable

o Vi€ [0,T]: f(-,t,0,0) € H*(R), i.e. f(-,t,0,0)is F; -progressive with
E [ f2(-,1,0,0)dt < +o0

e f is uniformly Lipschitz in y and z, i.e. 3C' > 0 that

|f(w,t,y1,21) — flw,t,y2,22)| < C(lyn — y2| + |21 — 22|)
Yy, y2 € R, Vz1,20 € R", dP ® dt a.s.

Generally, we denote as H*(X) the set of stochastic processes (¢)iejo.r], Ft - progres-

sive, with values in Banach space X, satisfying E fOT ||¢]|3dt < +o0.

The properties of standard parameters are sufficient conditions for the existence and
uniqueness of the solution which is an assertion of the following theorem proved by
Pardoux and Peng in [3].

Theorem 1: Let (f,&) be standard parameters. Then the BSDE (1) has a unique
solution (Yy, Zy)iepor) € HA(R™) x HA(R™*).
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Idea of the proof: We define an application ® : H*(R") x H?(R"*?) — HZ(R") x
H2(R™ 1) so that ®(U, V) = (Y, Z) where

—dY; = f(t, U, Vy)dt — Z,dW,, ¥t e [0,T) a.s. (2)
Yr=¢, as.

To have ® defined correctly, one must show that there exists a unique solution to (2)
belonging to the product space H?(R") x H?(R™*4). Note that in (2), the driver f does
not depend on Y; and Z;.

Further, we realize that (Y, Z) solves (1) iff ®(Y,Z) = (Y, Z) therefore, (Y, Z7) is a
fixed point of ® (on a Banach space H?(R") x H2(R"*9)). It is possible to show that ® is
a contraction on H?(R™) x H?(R™*?) for the norm || - ||3 where 3 > 0 is chosen properly
and

T T
1Y, 2)|I3 = E/ eﬂﬂmwsw/ 12, 12ds.
0 0

Then the solution to BSDE (1) exists uniquely by the fixed point theorem.

Remark 1: 1) The process (Z;):c[o,17, introduced by Theorem 1, ensures the adapt-
ability of the process (Y3):c[o,77-

2) The uniqueness of the solution means that if (V;, Z;) and (Y;, Z;) are two solutions
to (1) then E [ [|Y; — Vi||?dt = E [, || Z; — Z4||?dt = 0.

3) Since the process (Y})icjo,77 has continuous trajectories a.s., the space H*(R"™) in
Definition 1 can be replaced with the space S*(R™) which is a set of F;-adapted processes
(Y?)iepo,m with E[ sup HYtHQ} < ~o00.

0<t<T

Theorem 1, in general, says nothing about the form of the solution even if it exists.
Nevertheless, it is possible to express and compute it in some special cases. One such a
case is a linear model, i.e. f(t,Y:, Z;) = BiY: + 712 + ¢ where (B;)icpo,r) and (Ve)efo,n]
are two processes J; - progressively measurable, bounded, with values in R and R",
respectively. (¢¢)icpo,r) is a F; - progressively measurable, R-valued process, square-
integrable. We suppose that Y; and Z; have corresponding dimensions, i.e. they are R
and R™ - valued, respectively. Then we have, due to Pardoux and Peng [3],

Theorem 2:The linear BSDE

—dY; = (BY; + 7,2, + @y)dt — ZJdW,, YVt e [0,T) as.
Yr=¢ as. (3)

has a unique solution Y; = E[HTf + ftT Hsgosds|.7:t], Vit € [0,7T] a.s.,
where the process (Ht)te[O,T] s a solution to the following SDE

dHy = Hy(Bydt + ~dWy); Hy = 1.
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Remark 2: 1) The second solution process (Z;);cpo,r) is obtained by applying the
integral representation theorem for square-integrable continuous martingales (see e.g.
[1]) to the martingale M; = Y; + fot H,p,ds.

2.2 Example

To see one possible application of BSDE, we give a classical example. It concerns the
hedging task for a European Call Option in a complete market.

We consider a financial market model with n + 1 assets (S°, S, ...,.S™") whose price
dynamics is given by the following SDE’s

e dS? = SYr,dt (one non-risky asset)

o dS; = Sj(bidt + ojdW,;), i =1,...,n (n risky assets) where

(1¢)ecor)> (be)eejo,r) and (01)sep,m are R, R™, R™™ - valued bounded processes, F; -
progressive. Moreover, we assume that there is a bounded process (Ht)te[oﬂ with values
in R™. (Gt)te[oﬂ is called market price of risk and it ensures the absence of arbitrage in
the market.

The portfolio process 7 is an R™ - valued process, F; - progressive whose i component

i represents the amount invested into the i*" asset in time ¢. Moreover, we assume that
T
E [ ||ofm|[?dt < 4oo0.

The wealth process YY", associated to the initial amount gy, and the portfolio process
7, is given as a solution to the following (forward) SDE

d)/tyoﬂl' = 'l“t}/tyomdt + W;[bt - T‘tl]dt + W;UthVt, t € (O, T]
Y0 = yo, a.s. (4)

This approach is very intuitive for the wealth process simply expresses our wealth
gained by applying our investment strategy m starting with an initial deposit yo. What
is, nevertheless, more interesting is a task of hedging a financial instrument, concretely a
European Call option (EC), i.e. we look for an investment strategy = so that the terminal
value Y] of the corresponding wealth process would be equal to the EC pay-off which
means Y7 = (Sr — K)* where K is an exercise price of the EC and St is the price of an
underlying asset at time 7. Less formally said, we can imagine EC pay-off as a random
amount (contingent claim) which we will have to pay (cover) in the future (at time 7).
Our goal is to invest now (at ¢y < 7T') so that our wealth at time 7 is equal to that
random amount. Formally, it means that we need to find a solution (Y, Z) = (Y, o'7) to
the following BSDE

dY[ = r Y7 dt + mi[by — rd]dt + mio, dWy, t € [0,T)
Y7 = (Sr— K)*, as. (5)
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Then, if we assume,in addition, that the matrix ¢ is invertible, we can express our
investment strategy as ™ = o1 Z.

2.3 Infinite time horizon and Lévy driven BSDE

Since the end of 1990’s, there has been a huge progress in introducing jumps into BSDE
models. First, just by considering an additional Poisson process but gradually, the theory
was built up for general Lévy processes. The reason was, beside some specific physical
tasks, that it was more and more clear that real financial asset prices do not follow nor-
mal (or better log-normal) distribution naturally obtained by using geometrical Brownian
motion. Lévy-driven stochastic models were capable to improve (yet not to solve com-
pletely) the problem of heavy tails and to incorporate intuitively expected (and observed)
jumps, see [4]. In this subsection we work only with R- valued Lévy processes and we
adopt the notation from [2].

Definition 2: An adapted process X = (Xt)t>0 with Xo =0 a.s. is a Lévy process if

1. X has increments independent of the past, i.e. X; — X, is independent of F, for
0<s<t<+4oo; and

2. X has stationary increments, i.e. X; — X4 has the same distribution as X;_s for
0<s<t< oo, and

3. X s continuous in probability, that is P — lz’n} X, = X;.
s5—

Remark 3: Since every Lévy process Y has a cadlag modification X (i.e. right
continuous with left limit) which is again Lévy process (see |2], Theorem 30), we will
always work with this cadlag process X.

When considering Lévy process in the model, one must specify what filtration is he
or she using. In our case, we take a natural filtration of X, i.e. FX = o(X,,s <t) and
we proceed to completion and augmentation (.7-}) >0 Of the natural filtration. We lay

E ( Utzo ft) :

\/t>0 Fi =
Before pronouncing the existence and uniqueness theorem for infinite time horizon
BSDE, we remind a crucial lemma due to Nualart and Schoutens in [8]. First, we denote
as (2 the space of real-valued sequences (z;);>1 such that " |7;]? < 400 and as H2(I?)
we denote the space of [?- valued predictable processes ¢ = (wt)t>0 such that

+o0 £ ,
[N A L )
i=1
Lemma 1: Let X be a Lévy process whose associated Lévy measure v fulfills
1. [L(1A2*)(dz) < 400,

2. f( ce) My (dz) < +oo for every e > 0 and for some X > 0.
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Then every square-integrable random variable F' € L*(F..) has a representation of the
form

+oo £ .
F =E[F] + / > yam?, (7)
0 =1
(i) +eo . .
where {(Ht )t>0} are strongly orthogonal martingales such that each HY is a
20} i=1
linear combination of the Teugels martingales YU, j = 1,...,1 associated to the Léuvy
process X.

Remark 4: See [8] and [2] for more details on this orthogonalization.

Using this representation result, it is sufficient to consider infinite time horizon BSDE
of the following type

+o00 +oo oo ,
Y, =€+ / 9(s,Y,_, Z,)ds — / SN z0aH?, vt € [0, +oc], (8)
t t =1

where the £ € L*(F,) and the function g : Q x [0, +00] x R x {* — R fulfills

(A1): There exist two positive non-random functions u(t) € L'([0,+oc]) and v(t) €
L*([0, +00]) such that

’g(t> ybzl) - g(t7 ?1272’2)‘ S ’U(t)‘yl - y2’ + U(t)‘Zl - 22’ a.s., (9)
vt € [0, +o0l, (v, 2) ERx 1%, i =1,2

A2): t,y, 2 is Fi-progressively measurable V(y, z) € R x [? with
(A2): (9(t:9,2)) s prog y v,

E</0+OO 9(1.0,0)]dr)” < +oo.

Definition 3: A solution to BSDE (8) is a pair of processes (Y, Z) € S*(R) x H%(I?)
and satisfying (8).

For definition of S*(R) see Remark 1. Now we have all the tools to pronounce the
existence and uniqueness theorem which is due to Zheng [7].

Theorem 3: Let £ € L*(Fy) and let g satisfy the assumptions (A1) and (A2). Then
BSDE (8) has a unique solution.

In the next section we show how BSDE naturally arise in the domain of optimal control
having the meaning of conjugate variables (“generalized Lagrange multiplicators”).

3 Stochastic control

3.1 Finite horizon control problem

Let X/ be a controlled diffusion process in R”, i.e. X/ is a solution to the (forward)
SDE
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dXP = (X" ag)ds + o (X0 a,)dW,, Vs € (t,T] as. (10)
Xit =,
where 0 < T < 400, t € [0,T), 2 € R", a = (as)i<s<r is an Fy-progressively

measurable A-valued control process, A C R™, (WS)S €[] is an R%valued standard

Wiener process, b: R” x A — R” and 0 : R* x A — R"*? are two measurable functions
satisfying a uniform Lipschitz condition in A, that means that there is a positive constant
K so that

lb(z, a) = by, a)|[ + [lo(,a) = o(y, a)|| < Kl —yll, Vr,yeR"Vac A (1)

Let us denote as A(t, z) the set of all admissible controls « such that

E[/t 115(0, )| + [107(0, )| Peds| < +o0 (12)

which ensures strong existence of the diffusion process X from (10).
Furthermore, let f € C([0,7] x R™ x A) and g € C'(R") be two functions so that the
following functional is meaningful (i.e. it converges)

I(t,7,0) / Fls, X%, an)ds + g(X57)], (13)

and we define cost function v(¢, x) by
v(t,z) = sup J(t, z, ). (14)
acA(t,z)
Our goal is to find such a strategy o* € A(t, x) so that
v(t,x) = J(t,x,a").

Let us define generalized Hamiltonian of the problem H : [0, T]xR™ x A x R™ x R"*¢ —
R by

H(t,z,a,y,2) = bz,a)'y + trace(o(x,a)'z) + f(t,z,a).

We suppose that H is differentiable in x (with the gradient denoted as V,H) and we
consider the following BSDE

—dY, =V /H(s, X" oy, Ys, Z,)ds — Z,dW,, Vs € [t,T) a.s
Yy = V,g9(X5") as. (15)
Then we can formulate stochastic Pontryagin’s maximum principle providing condi-

tions on the optimal strategy a*. The proof can be found in [6].

Theorem 4 (Stochastic Pontryagin’s maximum principle): Let & € A(t, z)
and X be the associated controlled diffusion process. Further, let us suppose that there
exists a solution (Y, Z) to associated BSDE (15) such that
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1. H(t, X,,6,Y, 2) :manH(t,Xt,a,Y, Z), Vtel0,T] as.
ac

2. (z,a) — H(t,x,a,f/, Z) is a concave function for all t.

Then & = o, i.e. & is optimal control strategy to the stochastic control problem (14)
which means v(t,z) = J(t, z, &).

3.2 Lévy-driven stochastic control problem

The question now is if we are able to generalize the previous result to Lévy-driven stochas-
tic control problems - both for finite and infinite time horizon. A positive answer to the
first part of the question gives us the paper [5]. We note that in case of Lévy diffusion
the model is

dX5P = b(s, X0* ag)ds + o (s, X0, o, )dW, +/ n(s, X" as_,2)N(ds,dz), Vs € (t,T)] a.s.

XM=z, (16)

The new term is an integral with respect to Poisson random measure

N(ds,dz) = (Ny(ds, d2), ..., Ny(ds, dz))’ (17)

- (Nl(d87 dZ) - Xl(z)dyl(z)7 BT Nl(d87 dZ) - XZ(Z)dl/l(Z)),,
where N;(ds,dz), i = 1,...,1 are independent Poisson random measures with Lévy
measures v; respectively, on a filtered probability space (Q,]—" s (Fi) >0, P) satisfying the
usual conditions. The indicator functions y;, ¢ = 1, ..., truncate the domain of “small
and big jumps”. Moreover, we assume that the control process « is predictable, left

continuous with right limits. Hand in hand with these corrections, one must change the
form of the generalized Hamiltonian to H : [0, 7] x R" x A x R® x R"*¢ x R — R so that

H(t,x,a,y,z,1) = (t z,a)y + trace(c’(t,x,a)z) + f(t, z,a) (18)

+ /n trace(n'(t, x,a,2)r(t, z) - diag(d)\(Z)))

+ /n [(n’(t,x,a, 2)p+a'r(t,z)) (I — dmg(X))}d)‘(Z%

where R is the set of functions r : R""* — R™*! such that the integral in (18)
converges. Again, we suppose that H is differentiable w.r.t. x.
Then the corresponding BSDE is of the form

—dY, = Vo H(t, Xy, 00, Yy, Zyyr(t,))dt + Z,dW, +/ r(t_, z)N(dt,dz)

n

Yp = V.g9(X7). (19)

The assertion of the stochastic Pontryagin’s maximum principle for this Lévy case is
analogous to Theorem 4, see [5].
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3.3 Infinite time horizon stochastic control problem

When considering infinite time stochastic control problem, it is useful to stress that, in
fact, we are looking for a stationary optimal control a*, that is we do not consider time
dependence of functions b, o and f.

Then the functional to maximize is

—+o00
J(z,a) = E[/ e P f(XE, ozs)ds] (20)
0
with the associated cost function
v(x) = sup J(z,aq). (21)
acA(x)

Again, the set of admissible controls A(x) is such that for all & € A(z) there exist a
unique solution to (10) and the integral in (20) converges.

The question is, how the generalized Hamiltonian will look like when introducing also
jumps in the model (by using Lévy processes) and what assumptions are needed to prove
the associated Pontryagin’s maximum principle. This is the goal of my current research.

The author wishes to thank to prof. Maslowski, prof. Vo§vrda and to Dr. Smid for
their help, guidance and encouragement.
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Abstract. The paper is oriented to EEG signal analysis, which is focused to quasi-stationarity
hypothesis that the statistical properties of the channel signal fluctuate in time. Robust linear
predictor is used for short segments of EEG as low-pass filter and the difference between the
raw EEG and filter output was subject of statistical testing. Novelty is in the fluctuation
measurement which enables to classify the Alzheimer’s disease patients against controls.

Keywords: Alzheimer’s disease, EEG, quasi-stationarity, linear predictor, robust identification

Abstrakt. Tento piispévek je zaméfen na analyzu EEG signdlu. Soustfedi se na kolisani
statistickych vlastnosti v ¢ase - hypotézu kvazistacionarity. Robustni linedrni prediktor je pouzit
jako nizkofrekvenc¢ni filtr na kratké segmenty EEG signalu. Pfedmétem statistického testovani je
rozdil mezi skuteénymi a predikovanymi hodnotami EEG. Novinkou je méfeni této miry kolisani,
coz umoznuje klasifikovat pacienta s Alzheimerovou chorobou a zdravého jedince.

Klicovd slova: Alzheimerova choroba, EEG, kvazistacionarita, linearni prediktor, robustni iden-
tifikace

1 Introduction

Quasi-stationarity of EEG signal can cause difficulties in any signal processing of long
sequences. If we disconnect the original series to short segments of constant length, we can
use traditional methods of statistical analysis within any individual segment. Thus, the
statistical properties of individual segments can be estimated correctly when the segment
length is less then two seconds (in the case of EEG). But the statistical properties of
segments vary in time due to the quasi-stationarity of EEG signal. The paper is oriented
to statistical analysis of these fluctuations and its robust ranges.

2 Signal description

The multichannel EEG is a traditional tool for the investigation of human brain activ-
ity. The electrode signal was scrupled with constant frequency f; = 200 Hz and then
digitalized to the raw EEG time series X for k=1, 2, ..., L.

The signal was partitioned to nonoverlapping segments of constant length N < L.
Ideal signal should have stationarity property in the meaning that the statistical prop-
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erties [6] of short segments don’t vary in time. From the biomedical point of view, the
stationarity of EEG is observable only for short sequences up to 2 seconds, thus for
N <« L < 2f;. When the EEG scan is too long then the stationarity hypothesis falls.
In this case, the EEG quasi-stationarity was subject of investigation. We used N < 2f;
to guarantee interval stationarity of individual segments. Then the robust predictive
filter was applied to every segment. The difference between the original data and the
prediction was subject of statistical analysis. Various statistics of segment error sam-
ple were used and their values changed from segment to segment. Thus, the new time
series of length M = |L/N]| of segment characteristics arisen and its members are Ry,
for k =1, 2, ..., M. Statistical analysis of fluctuations is based on various statistical
characteristics of Ry, series. The process of EEG signal analysis consists of four steps:

e segmentation with X, as result;
e within segment prediction with e; as result;
e within segment error analysis with Ry as result;

e fluctuation analysis with @, as result.

3 Robust predictive model

We consider a basic linear model [4] in the form

"
Yips = Zﬂj%’(ym ooy Yo mi1) +Errs (1)
j=1
where

e N is the length of the time series segment (the number of observations);

H is the history length of time series;

S is the prediction step length;

e YV Y, ..., Yy are observations within given segment;

e 31, Ba, ..., By are unknown coefficients (parameters) of the model;

e v1(Ye, ... Yimi1), 0o(Ye, ooy Yiewaa)s oy o (Ye, - ., Yy p1) are polynomial
functions;

® c1 g is the random noise.
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When we transcribe (1), we obtain an equation system that could be described in matrix

form as

Yiis
Yiiiss

Yy

in other words

PY1,2,..., H(YH7 .-

-, 1)

©1,2,..., H(YH+1a <y Yz)

L 012, m(YN_s, -, YN_s—m+1) |

y=>"06+e.

It is significant that the number of equations (degrees of freedom) must be higher than
the number of estimated coefficients, i.e. N — H — S+ 1 > H. Further, supposed that
E(e) = 0, where symbol E indicates the expected value. Providing this we can express
estimated values Yy, g (for k= H, H+1, ..., N —.S) through the following formula

C g,
B

B

"
E(Yirs) = Y 8505 (Y- Yiorsn)-
j=1

EH+S
EH+1+S

EN

(3)

(4)

These estimated values are equal to functional values of selective regression function

where

e b; is the scatter estimate of unknown parameter 3; (for j = 1,2, ...

j=1

I
Virs = Y bios(Ves o, Y mi)

JH);

° Yk+s is the predicted value Yy g (for k=H, H+1, ..., N = 29).

Equation system (5) can be described in matrix form as

in other words

Yiis

Yiiits

| ¢12,..0(Yns, -

H(YH77)/1)

i = ®b.

L Ya)

S YN_s—Ht1) |

bu

(5)

(7)

We can use robust methods for the coefficient estimating of model (3), i.e. for vector

b specification (see 3.1).
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The difference between observed and predicted value is called residue and denoted as
vector e. The residue in given point is equal to e; = Y; — Y}, therefore for the model (1)
the residual vector has the form of

€H+S
€H+1+S

eN

3.1 Robust identification techniques

Robust techniques of parameter estimating represent the alternative to classical statistic
methods that are very sensitive to outliers in input data. We know several types of robust
estimates, namely: L-estimates, R-estimates and M-estimates. It is most suitable to apply
M-estimates, the pioneer of which was Huber [2|. M-estimate of model coefficients 3 is
defined via function minimization (with respect to b)

N-S . N-S ' _ &7
_ Z P (62;-5') _ Z P (Y;JrS szJrlb) (9)
—p ;

1= Z:H

where
e T is transposition symbol;
e p is a penalty function (see Tab. 1);
e o is standard deviation;
e &, is i-th row of the matrix ®.

When implementing the weight function defined as w(&) = —)% (see Tab. 1), satisfying

d
w(0) = 1 and substituting to the Taylor series of (9) we obtain a method of weighted
least squares (WLS) [4]

N-S o N-S5 H .
i+S i+S
Z w ( x ) YiisPu-nmi1; = Z Z < x ) i—H4+1); Pi— 1ROk

1=H i=H k=1

where j = 1,..., H. The method of WLS consists in implementation of the following
operations:

1. initial estimate of b by means of method of least squares, iteration counter set to
[=1.

2. residue specification e in [th iteration;

3. calculation of weights and then [ =1+ 1;
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4. specification of parameters b (estimate of vector b in [th iteration) and residue
specification.

If the estimates b a b~ are not close enough, we repeat the steps 3 and 4. It is
important when calculating the balance in step 3 that the robust estimate of standard
deviation o is not recalculated, i.e. it’s specified on the basis of error residue e after the
least squares method application. Such a b, by which the penalty function reached the
lowest value, is considered as the best estimate of parameter 3.

The question is how to get the robust estimate of standard deviation o. There is
statistics 0* = M ADg/0.6745 most frequently used in practice, where M ADy stands for

median of Fy, Fs, ..., Ey and E; = ’ei — F|, F is median of e, es, ..., ey.

Table 1: Robust approaches

method ‘ p(&) ‘ w (&) ‘ range ‘ constant
3 2
Tukey B? (1 — (1 — (5/3)2) ) /6 (1 — (5/3)2) || < B | B=4.865
B?/6 0 €| > B
Huber £2/2 1 €| <k | k=1.345
k[€] — k2/2 k/ € €| > &
Andrews A% (1 — cos(£/A)) (A/&)sin(€/A) | [€l < Am | A=1.339
242 0 €| > Am
Welsch | W2 (1 —exp (— (5/W)2)) /2 | exp (— (£/W)2) — | w=20s5
Talwar £2/2 1 €| <k | k=2.795
k%/2 0 €] > k

3.2 Statistical analysis of prediction error and time fluctuation

Let us have signal of length L, divided into segments of fixed length N and values H, S
being set. Afterwards, we effect suitable robust identification of model (1), coefficient and
indicate residue vector e = (e, ey, ..., ep)T. Now, it’s time to think of how to characterize
error prediction in one segment and how best to characterize variability of error prediction
of the whole signal in time. In kind of criterion featuring as total error prediction in one
segment the following two characteristics can be used. The first one can be described
through the relation

1/q
= (Ele|)"" = < Z!ek!q> (10)

where ¢ € (0,00) ap =N — H — S+ 1. Let’s identify this method as a method of root
of expected value of residues (MREVR(q)).

In order to make description of the second characteristic easier let us set a, = |ex|
and let us arrange a;, in such a way that ag) < ap) < ... < a). Afterwards, the total
signal error prediction in one segment will be calculated as
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R = a(g)) (11)

where parameter ¢ € (0,1) and p = N — H — S + 1. This approach we call the method
of quantiles of the residues (MQR(q)).

Thus, we get for each channel time series prediction errors {Ry, Ra,..., Ry}, re-
spectively structured selection {R(l), Ry, ..., R(M)} where M = |L/N|. For assess the
variability of the prediction errors EEG signal in time can be used such as one of the
following sample (segment) characteristics :

maximum Ry.x = max{Ry, Ra,..., Ry };
minimum R, = min{Ry, Ry, ..., Ry };
range R = Riax — Rumin;

p_ 1 \\M .
mean R = 57 > = Ry;

standard deviation o = \/ﬁ St (Re — R)Q;

median R = %(R(M/Q) + R(ay/2+1)) for the even M, respectively R= R((v41)/2) for
the odd M;

median absolute deviation M AD, = 7 where Z stands for median of VAR TNAY,
and Z; ’RZ- _ E’ fori—=1,2, ..., M;

Ist quartile (lower quartile) Roa25 = R|0.250Mm));
3rd quartile (upper quartile) Ry = R|o.750m));

interquartile range IQR = Ry75 — Ro.25-

These aggregating characteristics will be denoted as () in the next text.
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Figure 1: Fluctuation of MREVR in time for a healthy person (IQR = Ry75 — Ro.as5)
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Figure 2: Fluctuation of MREVR in time for a patient with Alzheimer’s disease (IQR =
Rozs — Ro.2s)

3.3 Quality of classification

There is a direct relationship between the quality of parameter setting and the qual-
ity of classification. In our case, the optimal parameter setting has greatest differ-
ences in () between groups AD and CN. The quality of parameter setting was driven
by the apparatus of statistical hypothesis testing. Variability of the prediction error
we calculated for each channel and each person. Thus, there are two samples Qap =
{OQFP,Q47,...,Q#P} and Qcy = {QFN,Q5Y, ..., Q5N } where n and m indicate the
number of 1nd1v1duals in AD and CN groups. The null and the alternative hypothesis
were constructed as follows:

Hy: expected value of random variables Q) 4p, Qcn are not different, i.e. pap = pon;

H; : expected value of random variables are different, i.e. uap # pcn.

Assuming equal variances in both groups, we can use the two-sample two-sided t-test
[4], where the test criterion is calculated as

T_ Qap — Qen mn(n +m—2) (12)

V(n—=1)a%p + (m =)oty n+m
Qap and Qcy denote the sample means, 0%, a 02, are sample variances.

The criterion (12) has Student’s t-distribution with df = n+m—2 degrees of freedom.
We calculated adequate p-value for given T" and df.

Another possible tool for assessing the quality of classifiers is the sensitivity and
specificity. Sensitivity reflects the probability of correct classification of positive sample
(AD) and specificity reflects the probability of correct classification of negative sample
(CN).

Let TP (true positive) be number of samples that the classifier correctly classified into
AD, let FP (false positive) be number of samples that the classifier incorrectly classified
into AD, let TN (true negative) be number of samples that the classifier correctly classified
into CN and let FN (false negative) be number of samples that the classifier incorrectly
classified into CN. The sensitivity and the specificity can be estimated as follows:
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e sensitivity (true positive fraction) TPF:TPTJF%;
e specificity (true negative fraction) TNF:FPTJiVTN.

The optimum, threshold for AD / CN classification is obtainable from ROC curve [1]
as compromise between maximum values of TPF and TNF. We prefer to maximize
min(7TPF, TNF) according to minimax decision principle.

4 Results

There were 32 EEG records included in our study. The groups of AD and CD consist
of 16 and 16 patients. We used international 10-20 electrode system [5]. During the
measurement of electrical activity, our testers were in the bed having with closed eyes
and without any stimulus. EEG data were approximately 300 seconds long with sampling
frequency of 200 Hz. Electric potential was measured in millivolts.

During computer experiments, which we aimed to optimum parameter setting, we used
model (1) with fixed functional base ¢; (Y, ..., Yi—pgi1) = Y1 for j € {1, 2, ..., H}.
The following procedure was used:

e signal was divided into segments (N = 100);

e standardization of each segment was performed Y;* = Yi;Y;

e default values of model parameter were used (H = 10, S = 1);
e Tukey’s method was used as default robust method;

o default value for MREVR was ¢ = 2;

e default value for MQR was ¢ = 1/2;

e two most suitable channels were chosen on the basis of two-sample two-sided t-test
at significance level of 0.05;

e with the help of p-value, optimal values for parameters N, H, S and ¢ were found,
and most suitable robust method was chosen.

Results of numerical calculations are included in the Tab. 2 using default parameters.
Bold font was used for p-value below critical probability (0.05). The best in AD / CN
resolution are channel 2 and 6, which were subject consequential analysis. The second
aim was to study the influence of processing parameters (N, H, S) to p-value. Following
parameter values were involved in the combination with Tukey’s method:

e length of the segment N=100, 125, 150, 200;
e history length of time series H=6, 8, 10;

e length of the prediction step S=1, 2, 3.
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The results of testing are summarized in the Tabs. 4, 5. The best results were obtained
for N =150, H =8 or 10, S = 1 or 2 in the case of Turkey’s method and channels 2 and
6. The parameter setting was then used for the other methods and channels. As seen
in the Tab. 3, the p-values of robust methods are lower than in the squares approach
(LSQ) in the case of channel 6. Similar result (except Andrew’s and Huber’s method) is
valid in the case of channel 2 (see Tab. 3). The method MREVR is recommended for the
segment error evaluation. The methods MAD and IQR are the best for the fluctuation
analysis.

Table 2: Minimum p-values for the default setting

‘ channel ‘ p-value ‘ characteristic ‘ method (q) ‘
1 0.003301 IQR. MQR(1/2)
2 0.000201 IQR MREVR(2)
3 0.070778 Runin MQR(1/2)
4 0.077238 IQR MREVR(2)
5 0.013298 IQR MREVR(2)
6 0.001757 IQR MREVR(2)
7 0.002733 MAD MQR(1/2)
8 0.182820 Runin MQR(1/2)
9 0.081693 Rumin MREVR(2)
10 0.118012 IQR MREVR(2)
11 0.113751 IQR MQR(1/2)
12 0.045587 IQR MKR(1/2)
13 | 0.012805 Rp MREVR(2)
14 | 0.047399 Rumin MREVR(2)
15 0.052538 Rumin MKR(1/2)
16 0.378503 Runin MREVR(2)
17 0.231664 Runin MREVR(2)
18 0.101802 o MREVR(2)
19 0.137812 Runin MREVR(2)

Table 3: Minimum p-values for the 6™ channel and different robust methods
‘ robust method ‘ p-value ‘ q ‘ method ‘ N—-H-S ‘ characteristic ‘

LSQ 0.000339 | 3/2 | MREVR | 150-8 -2 IQR
Tukey 0.000326 2 | MREVR | 150-8-2 IQR
Andrews 0.000315 2 | MREVR | 150-8-2 IQR
Huber 0.000212 | 9/4 | MREVR | 150-8-2 IQR
Welsch 0.000299 2 | MREVR | 150-8-2 IQR
Talwar 0.000337 | 5/4 | MREVR | 150-8 -2 IQR
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Table 4: Minimum p-values for the 2" channel and Tukey’s method
‘ N ‘ p-value ‘ H ‘ S ‘ characteristic‘ method(q) ‘

100 | 0.000236 | 10 | 2 Runin MREVR(2)
0.000320 | 8 | 1 IQR MQR(1/2)
125 | 0.000261 | 10 | 1 IQR MREVR(2)
0.000283 | 10 | 2 o MQR(1/2)
150 | 0.000071 | 10 | 1 IQR MREVR(2)
0.000225 | 8 | 1 IQR MQR(1/2)
175 | 0.000127 | 10 | 1 IQR MREVR(2)
0.000427 | 10 | 1 IQR MQR(1/2)
200 | 0.000171 | 10 | 1 MAD MREVR(2)
0.000495 | 8 | 1 IQR MQR(1/2)

Table 5: Minimum p-values for the 6" channel and Tukey’s method
‘ N ‘ p-value ‘ H ‘ S ‘ characteristic ‘ method (q) ‘

100 | 0.000683 | 8 | 1 IQR MREVR(2)
0.001112 | 8 | 1 IQR MQR(1/2)
125 [ 0.001047 | 8 | 1 IQR MREVR(2)
0.002533 | 10 | 1 o MQR(1/2)
150 | 0.000326 | 8 | 2 IQR MREVR(2)
0.000764 | 8 | 1 IQR MQR(1/2)
175 | 0.000591 | 8 | 2 MAD MREVR(2)
0.002549 | 8 | 1 IQR MQR(1/2)
200 | 0.001146 | 6 | 3 Ro.25 MREVR(2)
0.004374 | 8 | 1 IQR MQR(1/2)

Table 6: Minimum p-values for the 2" channel and different robust methods

‘ robust method ‘ p-value ‘ q ‘ method ‘ N—-H-S ‘ characteristic ‘
LSQ 6.59 X 1075 | 7/8 MQR 150-8-1 IQR
Tukey 6.32X 1075 | 9/4 | MREVR | 150 - 10 - 1 IQR
Andrews 6.74X 107° | 9/4 | MREVR | 150-10- 1 IQR
Huber 6.66 X 1075 | 9/4 | MREVR | 150 - 10 - 1 IQR
Welsch 6.11 X 1075 | 9/4 | MREVR | 150 - 10 - 1 IQR
Talwar 6.47 X 1075 | 7/8 MQR 150-8 -1 IQR
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5 Conclusion

Robust linear predictive filter was used for the characterization of signal variability within
individual segments. The quasi-stationarity analysis is recommended as a tool for the
classification of Alzheimer’s disease against controls. The best results were obtained on
EEG channel 2 with sampling period 200 Hz, segment length N = 150, history depth
H = 10, step of prediction S = 1, Welsch’s method, MREVR, (method of root of expected
value of residues) characteristics of EEG fluctuations. Then, the adequate optimum values
are:

e p-value p-value=6.11 X 107%;
e sensitivity T'PF = 81.3;

e specificity TINF = 87.5.

From the biomedical point of view the novel method is comparable with the other
complex methods of Alzheimer’s disease diagnosis.
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Abstract. The paper continues the previous research aimed at design the automatic trading
system. The paper concerns rating the quality of designed approaches. It reviews both general
methods and methods specialized to trading. The proposed method is a combination of them.

Keywords: approaximative dynamic programming, Bellman function

Abstrakt. Clanek navazuje na piedchozi vyzkum tykajici se obcodovani s futures. Téma je
zaméfeno na hodnoceni dfive navrzenych algoritmii. Clanek reviduje hodnotici metody jak
obecné tak zamérené na problematiku obchodvani. Vysledkem je kombinovand metoda, ktera je
testovana a hodnocena v zavérecné ¢asti.

Klicovd slova: pfiblizné dynamické programovani, Belllmanova funkce

1 Introduction

The paper towards automatic trading system for the futures contracts. The previous
research concerns the task definition and basic solution |3, 4|. The previous work proposed
many approaches and we have to compare them in order to select the most suitable one.
Two subtask are considered: First is how to recognize the good approach standalone, and
second deals with comparison of two approaches and selecting the better one.

To recognize a good approach, a final profit can be used as the measure of a success.
However in trading applications, the continuous development of the cumulative profit has
higher impact than the final profit. The analyzing the cumulative is more complex due
to working with the whole sequence, but can bring better insight to approach quality.

The comparison of two approaches seems to be easy, when the approaches are tested
on common data set. When even more data sets are available, the comparison becomes
complex, because each data set produces one dimension in results, then the comparison
of multidimensional results is needed. The typical problem is: Approach A makes a total
profit at five data sets $ 100000 USD, but profit was positive at only two data sets.
Approach B makes a total profit only $ 50000 USD, but it makes positive profit at four of
five data sets. Which approach is better? Both approaches can win, but the best should
be chosen according to the preference of trader.

The paper proposes a small review of the comparison methods and applies the methods
to one of the solved problems.

The paper contains two main parts. Section 2 introduces the problematics and defines
the task (Sec. 2.1), defines a coefficient characterizing the quality of approach using the

*This work has been supported by the grant MSMT 1MO0572.
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cumulative gain (Sec. 2.2) and introduces methods for multi-dimension comparing (Sec.
2.3). Section 3 introduces futures trading (Sec. 3.1) and coefficients used in trading (Sec.
3.2), defines algorithm of approaches rating (Sec. 3.3). The algorithm is applied and
commented in Sec. 3.4.

2 Comparing methods

The section deals with definition of the solved task and given assumptions.

2.1 Task of interest

We assume a decision maker and system. Decision maker is human or machine with aims
related to the system. The decision maker obtains a data y; at the system, and design
the decision u; to reach his aims. The process is repeated each discrete time instant
t € {1,...,T}. The aims of decision maker are characterized by a gain function G, which
maps the system output and decisions to a real number. Higher value indicates higher
success. The decision maker tries to maximize the gain function.

We focus on quality evaluation of designed decisions, hence we assume the knowledge
of a whole data yy,...,yr and decision sequence uy,...,up. Moreover, we assume the
knowledge of the gain function:

G:(y1, ., yr,u,...,ur) — R (1)

and its additive shape

T
G:Zgi, where  g; : (Y1, .-, Y, Uty -, u) — Ry (2)
i=1

and g; is called a one-step gain.
Let us define cumulative gain via:

G' = Z 9i. (3)

The gain is a sum over all time instants {1, ..., T}, whereas cumulative gain is sum over
the first ¢ time steps {1,...,t}, t <T. Hence, we use the term final gain for the gain from
here onward. Moreover, the cumulative gain can be viewed as a sequence G*, ..., GT and
characterizes the approach behavior.

We assume that there are M different approaches trying to maximize the gain (2) and
N testing data sets or experiment data available to compare the success of the approaches.
In summary, we have M x N final gains to decide, which approach is the best. Moreover,
we can obtain M x N x T values, in order to analyze the approaches using the cumulative
gains.
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2.2 Cumulative gain comparison

It is disputable, whether the final gain is a good criterion for rating of the approaches. In
some tasks, the good final gain can be reached only by a few last steps, hence the analysis
of the cumulative gain is required. But working with a whole sequence of cumulative
gain containing 7' values is difficult. Hence, it is needed to characterize the quality of
cumulative gain by one coefficient, and this section defines such a coefficient.

The ideal cumulative gain increases, therefore the knowledge of a trend is important.
To reach this knowledge, the sequence can be fitted by a linear function y(t) = at + b,
where a, b are parameters. We assume a sequence of values G', G2, ..., GT, and we search
the best values of coefficients a,b to minimize squared error min, ZtT:l(Gt — y(t))%
The obtained coefficients a,,in, bmin Characterize the nearest linear approximation of the
original sequence. Hence, the values of @y, bnin can be used to evaluate the success of
the approach.

The coefficient a,,;, reflects a trend of cumulative gain. The positive value charac-
terizes an increase, the negative one a decrease. The value of coefficient a is related to
strength of the increase, higher value means sharper increase. Thus, it can be used as a
relatively good criterion of the approach quality.

On the other hand, the linear approximation is not suitable, when the difference
between original sequence and approximation (G* —ayint—bmin ) i n0t normal distributed.
This property cannot be warranted by any cumulative gain. Hence, the credibility of the
coefficient a,,;,, is lowered. The credibility of coefficient a,,;, is given by value of error
squares s = ZtT:l(Gt — Qpint — bmin )%, the less value of s brings better credibility of @yp.
To obtain one characteristic coefficient, let us define increase coefficient c; as follows:

T

with s =) (G'—at —b)*, (4)

=,
logy(s) —1

where @i, bynin are coefficients of the best linear approximation of the cumulative gain
sequence. The logarithm is used due to big differences in values of s for the trading task.

The higher value of ¢y is rated as better result of an approach. The positive value
of coefficient c¢; characterizes the increase of cumulative gain, the weighting by difference
s lowers the value of coefficient for bad fitted sequences. The coefficient ¢; covers our
requirements for working with cumulative gain, hence the further sections deals with
comparing results obtained on more data sets.

2.3 Multi-dimension comparing

As was introduced, the comparison of two approach is simply, when they are tested
at one data set, but when more data set is available, the decision become complex.
The complexity originates from fact that the comparison has nature of multidimensional
task, where each data set forms one dimension of compared vectors. Following two
subsections deals with this task. Section 2.3.1 try to transform the multidimensional
task to one-dimensional by weighted summing. Whereas, the Section 2.3.2 let the task
multidimensional and defines comparison of vectors.

Analogical with Sec. 2.1, we assume M approaches and N testing data sets. The aim
is select the best approach, hence we form M vectors R',..., RM containing the results,
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which are quality measures related to each data sets. The quality measures can be final
gain, increase coefficient, or other variable characterizing the approach quality. Thus,
each vector contains N values R' = (r},...,r%). Our aim is to chose the best approach
using only this vectors.

2.3.1 Weighted sum

The first simply solution is to summarize the results and evaluate

N
m o __ m
S = Zrn
n=1

for each approach m € {1,...,M}. Then each approach is characterized by one real
number and it is simple to compare them.

Summing the results is simply and effective, but has a lot of disadvantages. When one
of data sets produces outstanding results, the total sum is influenced by this outlayer and
the results are not correct. Moreover, the maximal obtainable results must be comparable
for all data sets, because the higher potential gives higher weight to given data set. The
maximal and minimal possible value of results can be calculated for some special tasks
and using them the following coefficient can be defined:

rit— G

FP" = W x 100%, (5)
where GI"™ and G are minimal and maximal result values obtainable at nth data set.
Let the coefficient is called final percentage. The final percentage express the percent-
age of success reached by approach according to maximal and minimal potential results
reachable on the given data set. Summing F P over n € {1,..., N} brings the equiv-
alent results, where each experiment has the same weight independent on its potential.
Instead of summing, it is better to calculate the mean value:

N
1
MFP™ = =" FP" 6
N 2 Fh (6)

the results can be interpreted as mean potential percentage of the approach m. Let
coefficient M FP™ is called mean final percentage. The coefficient (6) is generalized
weighted sum. When the minimal results potential equals zero (G"™ = 0), then it is
equivalent to weighted sum with weights: w,, = 1/GI"**.

The coefficient MFP assigns each approach one number and the searching the best
approach is transformed to sorting the number.

2.3.2 Efficient solution

Another way to compare the vectors R',..., RM is by defining dominating and efficient
solution. . .
The vector R* = (r},...,r%) is dominated by vector R? = (r{,...,r)) even if following

inequalities are valid:

Vne{l,...,N} 7 <r

i
n
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and 4 '
dne{l,...,N} r, <rl.

Efficient solution is such a vector from the set {R! ..., RM}, which is not domi-
nated by any other vector. The term of efficient solution is taken from multiobjective
optimization [1].

Taking only efficient solutions, the set of outstanding solutions can be found. The
efficiency does not mix results reached on different data sets, i.e. the outstanding results
on one data set cannot help the approach rating such as in poor summing the gains.

On the other hand, the efficient solutions typically forms a subset of {R,..., RM}.
Hence, the method does not lead to one best approach, but it excludes a small set of
outstanding approaches. The method cannot prefer one of efficient solutions, until the
additional information about preferences is not added.

3 Example: commodity futures trading

The commodity futures trading is challenging task related to trading on stock exchanges

and prices speculation. The commodity futures means an contract for delivering the

commodity to given date in future. The price of contract is often object of speculation.
The speculator can speculate for following situations:

Price increase, the speculator buys the contract, it is said to open the long position.
Then, he waits, until the price increases, and sells the contract (it is said to close
the long position).

The profit is the difference of buy/sell contract price. The difference, whether
speculator makes profit or loss, depends, whether the price follows his expectation.
Hence, the profit from the long position is made, when the price increases, whereas
the speculator loses the same value, when the price decreases.

Price decrease, the speculator sells the contact, it is said to open the short position.
The fact, that he can sell not-owned contract, is related to principles of given
exchange, the speculator can lend the contract for this operation. Then, he will
buy the contract back, it is said to close the short position.

Indefinite, the speculator has no opened position. He is in so called flat position, or
out of market. Speculator neither profits nor loses by this operation.

A transaction cost must be paid for each contract, which changes the position.

The period from entering the non-flat position at market to leaving the position is
called trade. The trade is very important, because the profit in cumulative gain is only
hypothetical. But at the end of the trade, the cumulative gain corresponds with the real
realized profit.

3.1 Task definition

Let denote the price in time ¢ by 1, and position held in time ¢ by u,;. The structure of
uy is following: the absolute value |u;| sets the number of contracts in an open position;
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and the signum of u,; sets the kind of position, minus for short and plus for long position.
The flat position is characterized by u; = 0.
For this notation the gain function is defined as:

T
:Z :Z Yo — Ye1) U1 — Cluy — u 1’ (7)
t=1 >

t=1

gt

where C'is the normalized transaction cost. For offline experiments, the transaction cost is
artificially increased by so-called slippages. Slippages are required due to delay between
prompting the market command and its realization, during this short time period the
price can change. Second reason for slippages is that the action on market changes the
price itself and this is often not included in off-line experiments. Both reasons causes
that the price in real trading could be different from the value stored in data sets. To
avoid this difference, the transaction cost has two parts C' = ¢ + s for our task, where
c is transaction cost payed to exchange provider for each contract in position, and s are
slippages, which artificially make the transaction cost higher.

The slippages are estimated by an economic specialist. We use values obtained from
Colosseum a.s. due our cooperation. Although the slippages makes the task more difficult,
the trading system profitable at off-line data with slippages has big chance to be profitable
in real trading.

3.2 Requirements to applicability

The economist have designed a lot of additional criteria to rate, whether the approach is
good or bad. This criteria are closely related to the trading task. Moreover, the economist
will decide, whether the approach will be applied in practice, hence is important to
take this coefficients and criteria into a consideration. This section overview the main
coefficients and introduces the criteria required to application of the approaches.

3.2.1 Main coefficients

Net profit is the same variable as the final gain (7).

Gross profit is the net profit calculated only over the profitable trades. The profitable
trade is trade which starts with lower value of cumulative gain than finishes.

Gross loss is analogy with gross profit, but for non-profitable trades. The Gross profit
is positive number, gross loss is negative number and net profit is sum of them.

Total cost is total amount of transaction cost ¢ payed for realization of decision as was
introduced in Sec. 3.1. The total cost is calculated via: (—=1) Y1, cluy — w;_1].

Total slippages is total amount of slippages s, calculated in analogy with transaction
cost (—1) 321, s|luy — u;_1|. The slippages can be used for analyzing the results,
because in the trading task is typical that slippages make the result negative (see

21)-
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Trades is count of trades done during the experiment.
Winning/Losing trades is count of trades with positive/negative profit.

Days long/short/flat is count of time instants, when a contract was held in long/short /flat
position. (The word ’days’ is related to fact that we work with a day-data.)

Maximal drawdown is the biggest negative difference in cumulative gain sequence.
This variable characterizes the risk related to given approach. The drawdown of
bad approach is relatively same value as the final gain.

Length of drawdown characterizes the length of the maximal drawdown, i.e. how
many time instants was the drawdown realized. Again, the bad approach has
drawdown with comparable length as the data sequence.

3.2.2 Combinations of coefficients

The previous coefficient are raw coefficient obtainable from result. Following coefficients
can be computed from the raw coefficients and give us criteria for identifying the good
approach.

Percent profit gives percentage of winning trades:

Winning trades

Percent profit = .
P Winning trades + Losing trades

Profit factor is ratio of earned and lost money:

Gross profit
Profit factor = —71).
Loss

Profit per trade is average profit obtained in trade

Net profit

Profit trade =
rofit per trade Trades

3.2.3 Criteria on good approach

There is a difference between theoretical design of approaches and its applicability in
practice. Whereas, the theoretical success is each small bettering of an approach, the
practical application demands significantly good results. The criteria to application of the
tested approach for futures trading were designed by economic specialist from Colosseum
a.s. The criteria are presented in Table 1.

3.3 Algorithm of rating

The decision, which approach is best, should be done using following rules:

1. The non-efficient approaches are excluded, the final gain is taken as measure of
approach quality. This step chooses a subset of the original approaches.
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Coefficient ‘ Relation ‘ Value

Net profit greater than | 0

Maximal drawdown | less than 1/10 net profit
Length of drawdown | less than 250 days
Percent profit greater than | 0.4

Profit factor greater than | 1.5

Profit per trade greater than | $100 USD

Table 1: Requirements on approach to applicability in practice.

Ticker ‘ Commodity ‘ Exchange

CC Cocoa CSCE
CL Petroleum-Crude Oil Light | NMX
FV2 5-Year U.S. Treasury Note | CBT
JY Japanese Yen CME
W Wheat CBT

Table 2: Reference markets, their tickers and exchanges.

2. The non-efficient approaches are excluded, the coefficient ¢; is taken as measure of
approach quality. This step chooses a subset of the original approaches.

3. The approaches are sorted by their MFP - the highest value as first.

4. The approaches are tested consequently, whether suffice the requirements on appli-
cable approach. The proving is done over all data sets, hence each approach must
satisfy 6 x NV conditions. The first, sufficient is rated as the best approach, because
is efficient and has highest MFP.

3.4 Tuning the parameters

We have available price history from five market (see Tab. 2) and approach presented in
[4], where are 2 parameters the length of regressor [ € {1,2,...,10} and the forgetting
factor A € {1,0.999,0.99,0.9}. (The explanation of the parameters is not important.)
Thus, we have 40 couples of parameters and our aim is to estimate, which couple is the
best. Due to availability of five data sets, the count of experiments is 200.

Table 3 reviews the results obtained by presented method (see Sec. 3.3). The values
in the table were constructed by ordering the MFP coefficients (see Sec. 2.3.1), where the
highest value of MFP was denoted by 1, second highest by 2 etc. And the highlighted
approaches were marked as efficient in both steps 1 and 2 of algorithm from Sec. 3.3.

For last step of the algorithm, there is no approach satisfying all requirements for
applicability. The nearest is the approach with the parameters [ = 1 and A = 1, where
are satisfied 20 conditions from 30.

For the further research, the parameters couple [ = 1 and A = 1 will be used, although
the non-applicability. The reason for this choice is that the given approach is the most
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successful and moreover the analysis with respect to c¢; coefficient define in Sec. 2.2
reaches also the best results (see Tab. 4).

The testing of c; coefficient showed that approaches with value ¢; > 1.5 have increasing
cumulative gain without big drawdowns. Hence, the coefficient ¢; can be used for rating
the best approach in further research.

4 Conclusion

The paper concerns with the criteria of comparing approaches testing on data sets. The
algorithm of the best approach choosing is designed. The algorithm is applied on the
results obtained in tuning approach for futures trading task, and it chooses the best
approach.

The main advantage of the designed algorithm lies in possibility to compare the
approaches tested on more data sets. The algorithm combines the simply method of
weighted sum with efficients solutions and applicability of approach. This combination
is also great advantage.

The disadvantage of given algorithm is that the algorithm can exclude all approaches
due to applicability conditions. And opposite, the efficient solution often selects big
subset.

The algorithm will be tested in further research, but it make the ground idea for
further algorithms in rating the approaches.
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I JA=1 X=0999 A=099 A=09

1 1 21 26 28
2 13 17 23 30
3 8 15 25 27
4 6 19 18 33
5 2 11 20 35
6 3 12 22 36
7 5 14 31 37
8 4 16 29 38
9 10 24 34 39
10 9 7 32 40

Table 3: Comparison of 40 approaches for Bellman function estimation, each approach
is defined by couple [ and A\, the efficient solutions are highlighted and the numbers in
table are order of approaches by MFP.

| A=1 X=0999 A=099 A=09

[

1 || 1.0551 -0.3355  -1.2594 -1.7522
2 || 0.2444 -0.1365  -0.3234 -1.6807
3 || 0.6385 0.3818  -0.5466 -1.7164
4 1 0.4861 -0.0215 0.1084 -1.8719
5 || 0.6014 0.2383  -0.2796 -2.3504
6
7
8

9

0.6046 0.0992  -0.4663 -2.8133
0.5481 0.1318 -1.6669 -3.4924
0.5002 -0.0869  -1.2192 -3.7682
0.3632 -0.7274  -1.9563 -4.3346
10 || 0.2865 0.4667  -1.7901 -5.0938

Table 4: The mean value increase coefficient ¢; calculated over available data sets.
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Abstract. Distributed computing, heavily relying on the presence of data at the proper place
and time, have further raised demands for coordination of data movement on the road towards
achieving high performance. Although there exist several sophisticated and efficient point-to-
point data transfer tools, the lack of global planners and decision makers, answering questions
such as “How and from which sources to bring the required dataset to the user?”, is for most part
lacking. We present our work and status of the development of an automated data planning,
ensuring fairness and efficiency of data movement by focusing on the minimal time to realize
data movement (delegating the data transfer itself to existing transfer tools). Its principal
keystones are self-adaptation to the network/service alteration, optimal selection of transfer
channels, bottlenecks avoidance and user fair-share preservation. The planning mechanism relies
on Constraint Programming and Mixed Integer Programming techniques, allowing to reflect the
restrictions from reality by mathematical constraints. In this paper, we will concentrate on
clarifying the overall system from a software engineering point of view and present the general
architecture and interconnection between centralized and distributed components of the system.
The implications and benefit of our approach as well as a use case in practice made with multiple
choice for sources will be presented.

Keywords: planning, data transfers, distributing computing

Abstrakt. Distribuované pocitanie, ktoré zavisi na dostupnosti dat v spravnu dobu na spravnom
mieste, eSte viac zvySilo naroky na koordinaciu datovych prenosov na ceste za vysokou vykon-
nostou. Hoci niekolko sofistikovanych a vykonnych ’'point-to-point’ prenosovych nastrojov ex-
istuje, stale chyba globalny planovacé, ktory by riesil dlohy typu “Ako a z ktorych zdrojov
dorucit pozadované déata k uzivatelovi?”. Predstavime pracu a stav na vyvoji automatizo-
vaného planovacieho nastroju, zaistujiceho efektivnost a koordinaciu datovych prenosov. Jeho
hlavnymi atributami st auto-adaptacia k zmenam sluzieb/sieti, optimélna selekcia prenosovych
kanalov, zamedzenie vzniku tzkych hrdiel a zachovanie spravodlivosti medzi uzivatelmi. Plano-
vaci mechanizmus pouziva techniky programovania s obmedzujicimi podmienkami a celociselné
programovanie, ¢im zachytava obmedzenia z redlneho sveta do matematickych podmienok. V
tomto Clanku sa budeme zameriavat na preverenie celkového systému z pohladu softwarového
inzinierstva a predstavime celkovi architektiru a prepojenie jednotlivych centralizovanych a
distribuovanych komponent. UkaZeme tiez dopady a vyhody tohoto pristupu ako aj prakticki
studiu zaloZzend na poziadavkach k datam z viacerych zdrojov.

Khicové slovd: planovanie, datové prenosy, distribuované pocitanie
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Figure 1: General view of the automated planning system. The goal is to achieve con-
trolled and efficient utilization of the network and data services with a proper use of
existing point-to-point transfer tools. At the highest level of abstraction, the planner
should appear as a “box” between the user’s requests and the resources.

1 Introduction

As it is widely known, distributed computing offers large harvesting potential for com-
puting power and brings other benefits as far as it is properly exploited. On the other
hand it introduces several pitfalls including concurrent access, synchronization, commu-
nications scalability as well as specific challenges such as answering key questions like
“how to parallelize a task?”” knowing where my data and CPU power are located. In
data intensive experiments, like the one from HENP community and the STAR ' [1] ex-
periment, the problem is even more significant since the task usually involves processing
and/or manipulation of large datasets.

This massive data processing will be hardly “fair” to users and hardly using network
bandwidth efficiently unless we address and deal with planning and reasoning related to
data movement and placement. In this paper we present and focus on the implementation
and software engineering part of our ongoing work, while we refer to our previously pub-
lished papers explaining in more depth the underlying model and theoretical background.

The purpose of our research and work is to design and develop an automated plan-
ning system acting in a multi-user and multi-service environment as shown in Fig. 1.
The system acts as a “centralized” decision making component with the emphasis on
optimization, coordination and load-balancing. The optimization guarantees the
resources are not wasted and could be shared and re-used across users and sources. Co-
ordination ensures multiple resources do not act independently so starvation or clogging
do not occur, while load-balancing avoids creating bottle-necks on the resources. The
intent is not to create another point-to-point data transfer point-to-point tool, but to use

1Solenoidal Tracker at Relativistic Heavy Ion Collider is an experiment located at the Brookhaven
National Laboratory (USA). See http://www.star.bnl.gov for more information.
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Figure 2: Optimization of the transfer paths with regards to the network structure and
link bandwidth. Some network path may be re-used to satisfy multiple requests for the
same data.

Figure 3: Optimization of the transfer paths with regards to the different data service
performance/latency. Multiple sources for the same data may be naturally combined
alternatively to avoid overload and service clogging.

available and practical ones in the efficient manner.

We describe the most important optimization characteristic with the help of figures
Fig. 2 and 3. Let us suppose there are requests for the same (or overlapping) dataset
from two users, while each of them needs the dataset to be processed at his/her specific
location. The system has to reason about the possible repositories for the dataset, select
the proper ones for every file (the granularity is specified by the files in our case) and pro-
duce the transfer paths for each file. The output plan should be optimal with an objective
to the overall completion time of all transfers. Thus, this optimization characteristic is
focusing on the network structure and respective link bandwidth. As illustrated in Figure
2, it is conceivable in our example that optimization will cause data movement to occur
once on some network links while datasets will be moved to two different destinations.
Moreover, the files are usually served by several data services (such as Xrootd [6], Posix
file systems, Tape systems [8], ...) with different performance and latencies. Therefore,
the optimization and reasoning on where to take the files available from multiple sources
choice will allow making the proper selection for a file repository, respecting their in-
trinsic characteristic (communication and transfer speed) and scalability (Fig. 3). In
other words, as soon as multiple services and sources are available, load balancing would
immediately be taken into account by our planner.
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Figure 4: Architecture of the system.

2 Architecture

In this section, we will describe the architecture of the system, explaining briefly each
component following the work-flow (see Fig. 4 for illustration). End users (or stand-alone
services) generate requests using the web interface, written in PHP following the MVC
design pattern. A request is an encapsulation of the meta-data query (as understood
by STAR’s File and Replica Catalogue) and the destination. The request is stored in a
SQL database (system supports MySQL and PostgreSQL) in a Catalog agnostic manner
(any Catalog should work as far as they have a LEN/PFEFN concept our approach relies
on) with the additional information like user name, group or date of the request. Later,
the component called File Feeder contacts the File and Replica Catalogue and makes
the query for the requested meta-data. The output information is stored back to the
database, including all possible locations for every file in a request.

The brain of the system, a component called the Planner, takes a subset of all requests
for files to be transferred according to the preferred fair-share function. It creates the
plan (transfer paths) for the selected requests and stores the plan back to the database.
The individual file transfers are handled by the separate distributed component called
Data Mover. The role of these workers is to perform a point-to-point data transfer on
a particular link following the computed plan. The results and intermediate status is
continuously recorded in the database and user can check the progress at any time.

We can see that the whole mechanism is a combination of deliberative (assuring
optimality) and reactive planning (assuring adaptability to the changing environment).
Since this is crucial to the argument, in the next section we will describe the respective
two components (Planner and Data Mover) serving up as a “reasoner” and a “worker”.

2.1 Planner

The Planner (Fig. 5-left), the brain of the system, is built on the constraint-based math-
ematical model. The theoretical background and our continuous progress were published
in several papers ([11], [10], [12]). Therefore, we will not go into details in this pa-
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Figure 5: Left: Planner as a black box. Right: Data Mover component.

per, but only sketch out the main principles. Constraint based approach ([7]) brings
a fundamental advantage in a straight forward mapping of the reality restrictions into
the mathematical model. The solver uses methods from Constraint Programming and
Mixed Integer Programming and the logic tries to minimize the makespan considering
all possible combinations. The tree of possibilities may very well contain solutions where
transferring data once on a given link lead to a minima or balancing between services lead
to the fastest transfers. In all cases, the optimal solution will only be determined by the
input parameters. The input consists of three parts: current characteristic of the link or
network, requests to be planned (size, logical files) and information from a File (replica)
Catalogue about possible repositories. Having all these information the solver starts a
computation and stores the results directly into the database. The result is a computed
transfer path (repository and oriented path to the destination) for each request. Note
that multiple requests for the same files would be treated and accounted for in the plan.
Our planning is also incremental - we have previously demonstrated (|9]) that a full plan
or incremental planning would not make a large difference on the make span overall -
the gain of an incremental approach is the ability to self-adapt based on the Mowver’s
feedback.

For implementation of the solver we use Choco (|2]), a Java based library for con-
straint programming and GLPK ([4], [5]), a library for Mixed Integer Programming.
The Java based platform allows us an easier integration with already existing tools in the
STAR environment.

2.2 Data Mover

The Data Mover is the distributed component responsible for performing data transfers
in a reactive way. Each instance is controlling data services within a given computing site
and also the wide-area network connections from/to the site. It relies on the underlying
data transfer tools and uses them for data movement. In our implementation, we did
not address interoperability of data transfer tools (which is not the object of this work)
but settled in using by the Fast Data Transfer tool (FDT [3]). The way data movers
operate is reactive that is, as soon as a file appears at the source node (either at a data
service or in a cache space before WAN transfer) it is marked as “ready for transfer”
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and moved by the proper underlying tool. As soon as the transfer is finished another
instance realizes the file is available and initiates the next move (along the computed path
from the solver). Our approach is also adaptive: from the initial transfer and consequent
monitoring, the real speed can be inferred and re-injected as a parameter for the next
incremental plan, helping the system to converge toward realistic transfer rates rather
than relying on theoretical optimum alone.

The Data Mover is written in Python language and concurrent link/service control is
achieved by separate threads (Fig. 5-right).

3 Show case

To prove the validity of our planning strategy, a use case was designed and implemented.
The purpose of the test was to affirm the software components work and communicate
in the expected way and the quality of the computed plan is confident. The environment
was for simplicity formed by two computing sites, the central BNL and remote Prague.
The available data services at BNL were: Xrootd, NFS and HPSS, while in Prague only
NFS was available. The wide area network (WAN) transfer was controlled by FDT. The
configuration is shown in Fig. 6-left. The test hence challenges the planner in making
proper decisions when multiple sources are available at the same site.

The request consisted of files available at all data services at BNL at the same time
and the task was to bring them to the Prague NFS service. The test was composed of
four different configurations. The planner consecutively considered:

e only Xrootd repository

e only NFS repository

e only HPSS repositories

e a combination of Xrootd, NFS and HPSS repository concurrently

The results of each configuration are shown in Fig. 6-right. As expected, while all
files are located on mass storage in STAR, transfers from HPSS (in green) are the longest
to accomplish and hence, lead to the longest delays in delivery. In our setup, the green
and blue curves are near equivalent (NFS direct transfers are slightly faster) but it is
to be noted that not all files are held on NFS (central storage) in STAR and pulling all
files from Xrootd may cause significant load on a system in use primarily for batch based
user analysis (hence, an additional load is not desirable). When we combined all storage
sources, the makespan was equivalent to the one from Xrootd while the relative ratio
of files transfers from the diverse sources was 19%, 38% and 43% for HPSS, NFS and
Xrootd respectively with no load caused on any of the services. At the end, the overall
bottleneck was only the WAN transfer speed - we infer our test proved the planner
works as expected, since the full reasoning considering all possible repositories led to the
optimum makespan. Additionally, the utilization of all services brings the advantage in
the form of load-balancing and automatic use of replicas.
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Figure 6: Left: The network and service configuration for the tests. Right: The
performance of the system using 4 different configurations. On the X axis, we represent
the time of transfers while Y is the percentage completion. The x-range of each curve is
hence representative of the makespan.

4 Conclusions

When multiple sources for files or datasets are available along with many CPU resources
in a distributed computing environment, planning is needed to ensure load balancing,
efficient and fair data movement and best use of the resources. Random access to files
and datasets by users could easily destroy efficiency or render sites inoperative and with
this in mind, we have tackled the challenge of coordination of data transfers.

In this work, we specifically presented the architecture components and implementa-
tion of a framework, in test mode in the STAR experiment, which goal is to address the
planning challenges of transfers over widely distributed resources. Based on constraint
and mixed integer programming techniques, the tool was designed to incorporate elements
to achieve optimization, coordination and load-balancing. Its simple yet robust architec-
ture allows users to express their requests for files via a Web interface while a back-end
planner and a set of data movers take care of the movement on the user’s behalf. Within
our test example of moving files to a single destination considering a dataset available
from multiple-sources, we have showed that our approach lead to an optimal plan that
is, producing the shortest possible makespan while causing no load on any of the storage
systems by automatically load-balancing. With our model (showed to work in simulated
mode [10]) and this proof of principles, we are equipped with a corner stone functional
architecture and we will pursue as next steps multi-users and multi-sites transfers.
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