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Predmluva

Workshop Doktorandské dny 2009 je jiz ¢tvrtym v fadé€ setkani doktorandt oboru Ma-
tematické inzenyrstvi doktorského studijniho programu Aplikace pfirodnich véd, ktery je
akreditovany na katedrach matematiky a fyziky FJFI. Pro mnohé z doktorandi je tento
workshop prvni prilezitosti referovat o své védecké praci pred odbornym férem. Nacvik
prezentacnich dovednosti je pro postgradualni studenty nezbytny, stejné jako zkusenost
s psanim odbornych textl. I z tohoto diivodu jsou prispévky doktorandt shromazdény
v psané formé v tomto sborniku. Sborniky Doktorandskych dnii pak slouzi i ke sledovani
postupu prace jednotlivych doktorandu. Otisténé prace maji obvykle vysokou uroven a
neziidka byvaji vysledky nasich doktorandi pozdéji publikovany v recenzovanych odbor-
nych casopisech. .

Za ptispéni ke zdarnému konani workshopu dékujeme katedfe matematiky FJFI, kde
se setkani kona, i Dopplerovu tstavu pro matematickou fyziku a aplikovanou matematiku
pii FJFI, ktery konéani finanéné podporil.

Editori






Paralelni algoritmy pro numerické reSeni
hydrodynamiky laserového plazmatu

Lubos Bednéarik

2. ro¢nik PGS, email: Lbs@centrum. sk

Katedra matematiky, Fakulta jadrova a fyzikalne inzinierska, CVUT v Praze
skolitel: Richard Liska*, Katedra fyzikalni elektroniky, Fakulta jaderna

a fyzikalné inzenyrska, CVUT

Abstract. For solution of laser plasma hydrodynamic we introduce model of Lagrangian equ-
ations, which includes heat conductivity and laser absorption. We show us the discretization of
hydrodynamical equations and describe one step of the difference schema. With achieved results
we check the correctness of our solution.

Abstrakt. Pre rieSenie hydrodynamiky laserovej plazmy sa v tvode zoznamime s modelom
Lagrangeovskych rovnic, ktory v sebe zahfiia aj tepelnt vodivost a laserovii absorpciu. Ukazeme
si diskretizaciu hydrodynamickych rovnic a popiSeme jeden cyklus diferen¢nej schémy. Ziskanymi
vysledkami overime korektnost nésho riesenia.

1 Formulacia tlohy

Laserova plazma, ktord vzniké pri interakcii laserového Ziarenia s hmotou, je typicky mo-
delované ako stlacitelna kvapalina prostrednictvom Eulerovych rovnic s tepelnou vodi-
vostou a laserovou absorpciou. Simuldciou vznikaju oblasti, ktoré sa vyznacuju vysokou
expanziou resp. kompresiou. Popis systému v Lagrangeovskych sturadniciach je preto
vhodnejsi nez klasicky Eulerovsky popis, ktory nie je vhodny pre problémy, kde nasta-
vaju velké zmeny vo vypoctovej doméne (podrobny popis transformacie mozeme najst v
[6, 7]). Budeme sa teda venovat problému, ktory v Lagrangeovskych sturadniciach (.5, 1)
mé tvar

dn
R frg 1
dt vs (1)
dv
JEE— o — 2
dt ps (2)
de
— = — —Ws — L 3
dt PUs S S ( )

kde n = 1/p, p je hustota, v rychlost, p tlak, € vntutorna energia, W je tepelny tok a L
je hustota toku energie (intenzita) laserového Ziarenia. Jednotlivé rovnice vyjadruji po-
stupne zakon zachovania hmotnosti (1), zdkon zachovania hybnosti (2) a zdkon zachovania
energie (3). Systém dopliiujeme dalej eSte o stavové rovnice p = p(e,p), T = T'(e, p),

*liska@siduri.fjfi.cvut.cz



2 L. Bednarik

ktoré pre idedlny plyn uvazujeme v tvare:

p = ep(y—1) (4)
A k

S S . (5)

Z+1cyp My

kde v = 5/3 je plynova konstanta, Z stupen ionizacie, A atomové ¢islo, kg Boltzmanova
konstanta a m, = 1,6605.10~**¢g atdomova hmotnostna jednotka.

Systém rovnic (1), (2), (3) riesime v dvoch krokoch. V prvom kroku riesime samos-
tatne systém hydrodynamickych rovnic

dn
E = Vg (6)
dv
20— 7
dt ps (7)
de
o = TPvs (8)

V druhom kroku rieSime samostatne rovnicu vedenia tepla so zahrnutym c¢lenom pre
laserove ziarenie

de
—_— = —|/[/ — L 9
dt 5T s 9)

2 Diskretizacia

Systém rieSime numericky diskretizaciou v ¢ase aj v priestore, pri¢om uvazujeme obdlz-
nikovii doménu (A*, B*) x (AY, BY). Tato oblast je Tubovolne rozdelena bodmi ny; az
Mo 1my+1 a m*mY buniek, kde ny; = (A%, AY) a npey1mvr1 = (B, BY). Tieto bunky
tvoria takzvani primdrnu sietku. Primdrne body definujeme ako stredy tychto buniek a
znacime postupne ni/21/2 aZ Ny 41/2,my41/2 1SP. C11 AZ Crpemy, Kde ¢j; = niy1/2 j41/2 je
stred bunky definovanej vrcholmi 7;;,1;41;,741j41,7ij+1. Vrcholy primérnej sietky tvoria
tzv. dudlne body a dudlna sietka bude obsahovat dudlne body vnutri svojich buniek, a
teda jej vrcholmi st priméarne body.

Bunky a uzly na okraji domény nazyvame okrajové bunky a okrajové uzly. Po okraji
celej domény navyse pridavame este jednu vrstvu uzlov, tzv. ghost uzly, ktoré spolu s
okrajovymi uzlami vytvaraja ghost bunky. Polohy ghost uzlov st rovnaké ako polohy
okrajovych uzlov, z ¢oho vyplyva, ze ghost bunky maji nulovy objem. Pri zmene polohy
okrajovych uzlov sa analogicky zmeni poloha ghost uzlov tak, aby sa udrzala nulovost
objemov ghost buniek. Vyznam ghost buniek a ghost uzlov sa uplatiuje pri definicii a
aplikacii okrajovej podmienky.

Na obrazku (1) moézme vidiet zobrazent ij-tu bunku tvorenti 4 vrcholmi primarnej
sietky. V jej strede sa nachadza 1 bod dudlnej sietky. Stredy hran st oznaCené pisme-
namy exc a eyc podla toho, ¢i ide o horizontédlnu hranu orientovani v smere osi x alebo
vertikdlnu hranu orientovanii v smere osi y. Spojnicu stredu hrany a stredu bunky nazy-
vame separdtor. Kazda bunka méa teda 4 separdtory, dva horizontalne sxc?j,sxc}j a dva
vertikilne syc?j, sycilj.

Kazda hrana je navySe svojim stredom rozdelend na dve subhrany, ktoré znacime

axc),axcy a ayc),ayc;. Tym je cela bunka rozdelena na Stvoricu subzon, kde kazda

(Y
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Obréazok 1: Struktara ij-tej bunky.

je tvorend dvojicou prislusnych subhran a dvojicou prislusnych separatorov. Indexacia
subzon je v poradi zlava zdola 00, 10, 11, 01 proti smeru hodinovych rudiciek.

balej potrebujeme urcit objem bunky, pripadne jednotlivych subzon, ktory zavisi na
pouzitom type geometrii. Budeme uvazovat karteziansku a cylindricki geometriu, ktoré
si dalej podrobnejsie rozoberieme. Budeme pritom potrebovat znalost greenovej vety

0A 0B

dedy — —dxdy = | Ad d 1
o Wy — 5, dwdy / z + Qdy (10)
1% oV

2.1 Tlakové sily v kartezidnskej geometria

V pripade kartezidnskej geometrie uvazujeme nasledujuci vztah pre vypocet objemu bun-
ky

V. = /ldxdy. (11)

[

S pouzitim Greenovej vety objemovy integral sa zmeni na krivkovy integral po hranici

Ni41j Mit15+1 Tij+1 nij
V., = /xdy = / xdy + / xdy + / xdy + / xdy,
Ve Nij Nit1j5 Nit+15+1 Nij+1

a v pripade, ze oznac¢ime vrcholy bunky postupne ¢islami od 1 do 4 dostavame

‘/C ==
l

4
W1 —u) (2 + 241) -
—1
Analogicky dokézeme spocitat objem subzony a nasledne spolu s hustotou subzony
ziskavame hmotnost subzoény

U ly/l
mc_pc‘/c'
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Pre celkovii hmotnost a celkovy objem bunky pritom prirodzene plati

4

4

! !

mC:E m,, VC:E V..
=1

=1

Hmotnost uzlu ako aj objem uzlu definujeme opét prirodzenym spésobom ako sucet
hmotnosti resp. objemov subzoén okolo daného uzlu.
Integréeiou rovnice pre zakon zachovania hybnosti dostavame

dw dw® op
_ . = — | —dxdy = F?
/ / dt - ( dt ) / i
Vn
(12)
dw? dw? dp
b il - — [V
p 7 / / dxdy = / dxdy mn< 7 ) By ——dxdy = I,
Vn
(13)

kde hornym indexom x resp. y mame na mysli prisluSnu zlozku danej veli¢iny a symbolom
F,,, oznacujeme tlakovi silu posobiacu na uzol n. Nasledne s pouzitim Greenovej vety
dostaneme

Fr W / pdy (14)

oV

Fy = /pdx (15)

oV

Hranica uzlového objemu je tvorend 6smimi separatormi v okoli daného uzlu n, ktoré
ozna¢ime cyklicky ¢islami od 0 do 7 zlava zdola spodnym separatorom pocinajic proti
smeru hodinovych ruciciek. Separator ¢islo sedem je zaroveih minus prvym separatorom.
Mozme tak napisat Vzt’ah

oV, = Z (n,1) Z n,l):zgzzl:s(n,QlJrk—l) (16)

I=—1 =0 k=0

Nase separatory st vzdy orientované v smere doprava a nahor, preto zavadzame tzv.
znamienkovy integral po separatore

/ dy = Sqn (s(n,1)) / dy (17)
s(n,l) s(n,l)

/dx:Sgn(s(n,l)) /dm (18)

s(n,l) s(n,l)

ktory v pripade, ze budeme integrovat po danom separatore v smere proti jeho orientacii
mé opacné znamienko ako integral po tomto separatore. V opa¢nom pripade ma zna-
mienko rovnaké. Tym docielime isti kompaktnost findlnych vztahv pre vypocet tlakovej
sily posobiacej na dany uzol.

Podla zadefinovaného znacenia teda plati
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3 1 s

(16)+ o Z Ps(n,l) / dy = — Z Zps(n,zurk—l) / dy (19)
l==1 s(n,l) 1=0 k=0 s(n,2l+k—1)
6 - 3 1 -
Fy, 19209 > pagna) / dr =+ > pumark-1) / dx (20)
I==1 s(n,) 1=0 k=0 s(n,20+k—1)

Tlakom na separatore rozumieme priemer tlakov subzon susediacich s tymto separa-
torom. Ak uvazujeme, Ze subzony v bunke mame ocislované zlava zdola ¢islami 0 az 3 a
podobne aj bunky v okoli uzlu n mame ocislované zlava zdola ¢islami od 0 do 3, potom
oznacenim p;’(‘n’l) rozumieme tlak v m-tej subzone [-tej bunky pri uzle n. Nasledne teda
tlak na 204 k — 1-tom separatore (¢islovanie separatorov zo vztahu 16) sa da vyjadrit ako

Lok | ive kit Lo ko | 1kes
Pamaren = 5 (B2 + 252) = 5 (ks + i) (21)
Pre zlozky tlakovych sil potom plati
o) 3,1 l(k432+pl(k433 —~
. !
p oy M e [y @2
Lk=0 s(n,2l+k—1)
31 ploht2 L lokd3
+p
(21) c(nl c(n,l)
Fy, =+ / dz (23)

LE=0 s(n,2l4+k—1)

S tymito vztahmi by sme v podstate mohli aj skoncit, avsak aby sme dosiahli podob-
nost so vztahmi pre cylindricku geometriu, vykoname este niekol'ko formalnych aprav. K

tomu si potrebujeme vyjadrit orientovani hranicu subzonalneho objemu
1

8\/;(2’21) = s(n,2l—1)+s(n, 2l)+a(n,l)—a(n,l-1) = Z (s(n,2l+k — 1) + (=1)*a(n,l — k))
k=0
(24)
kde pismenom a oznacCujeme prislusné subhrany. Inymi slovami orientovana hranica
[ + 2-tej subzony [-tej bunky pri uzle n je tvorena 2/ — 1-tym a 2[-tym separatorom pri
uzle n a [-tou a [ — 1-tou subhranou pri uzle n. Minus pred [ — 1-tou hranou nam hovori,
ze tato hrana je opacne orientovana nez je orientacia hranice na tomto tuseku. Cislovanie
subhran v okoli uzlu n zacina dolnou subhranou od 0 do 3. Podobne ako sme zaviedli
znamienkovy integral po separatore, zavadzame aj znamienkovy integral po subhrane

/ dy = Sgn (a(n, 1)) / dy (25)
a(n,l) a(n,l)

—~

/dx:Sgn(a(n,l)) /dx (26)
a(n,l) a(n,l)

KedZe hranice subzén st uzavreté krivky, plati

1 —

(24)+(25)
o= [ ay=uiiz, [ av' 2?312 / RS D

= k=0
+2 +2 2l+k— 1
8Vc(n 1) 8‘/c(rz. 1) 7'L +
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1 —

1

(24) +(26)
o= [ ar=pi, [ a0y S [ w Yt [
)

k=0

‘9Vcl(+n2l) 6‘/61(4;2” k=0 s(n,204+k—1 a(n,l—Fk)
(28)
a po pridani do vztahov pre tlakove sily ziskame
o) 3,1 l(k;432 +pz(kj;3 —~ —~ ~
27 Peny l+2 l+2 _
g oS B e[St [ as e [ a
L,k=0 s(n,2l+k—1) LE=0 S(”72l+k*1) LE=0 a(n,l—k)
29)
25) 3.1l k+2+pl k+3 % —~ —~
-y Pe(n,p) . e(n.l) / dr szu / dr me B / i
k=0 s(n,2l+k—1) LE=0 s(n,2l+k—1) Lk=0 a(n,l—k)
(30)

2.2 Tlakové sily v cylindrickej geometrii

V pripade cylindrickej geometrie vztah pre vypocet objemu bunky vyzera nasledujico:

Ve = /17”de2. (31)

[

S pouzitim Greenovej vety sa nam objemovy integral opét zredukuje na krivkovy integral

4

2
r 1 2, .2
Ve= g /Edz =5 Eﬁ (2141 — 2) (7“1 + T +7"l7"l+1) .
Integraciou rovnice pre zakon zachovania hybnosti dostaneme v cylindrickej geometrii

Vztahy pre zlozky tlakovych sil
My ( ) /—Tdrdz = FT

p dt = / / rdrdz

(32)
dw _ / drd / Lrdrdz = F,
P = rdrdz My rdrdz =
(33)
Prg Eier)ivécig tlaku %dvodgne 5 3( ) 5 2 (or)
pr) _op or _ op p . pr) _or _ pr)
o o TPor o TP T o oy e e P BV
d(pr) 8]9 or  Op 8]9 ~ O(pr) ar 0 (pr)
0z 32 s p& %r 0= 82 T 0z p& T 0z 0 (35)

Po dosadeni do vztahov pre r-ovi a z-ova zlozku tlakovej sily dostavame tieto v
podobe

r (34 0 (pr) / or /5 (pr) : 1+2 / or
Fro= - — E
on / " drdz+ [ p Tdrdz " drdz + 2 Pe(ni) Tdrdz (36)

Vn Va Va - I+2
Vc(n 1)
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3
2 (39) 9 (pr) or _ 9 (pr) 142
F = —/ 5, drdz +/p&drdz = — Wdrdzjtz:pc(nl —drdz (37)
Vn Vi Vi =0 vize,
¢o spolu s Greenovou vetou déava

Fro= /prdz + pr(fl / rdz (38)

OV, a‘/pl(tl?l)
2 S /prdr Zpl;(fl / rdr (39)

OV avit2

c(n,l)

Tu je vhodné poznamenat, ze zatial ¢o druhy ¢len v (38) je nulovy, v (39) moze byt
druhy ¢len nenulovy. V tom sa rozchadza analogia s kartezidnskou geometriou, a prave
mo7na nenulovost druhého ¢lenu v (39) bola déovodom dodatoénych tuprav v kartezian-

skom pripade, aby sme zachovali kompaktnost konec¢nych vztahov pre tlakové sily.

Dalej teda po zavedeni znamienkovych integralov po separatore a subhrane v cylin-

drickom pripade

—~

/sz:Sgn(s(n,l)) /sz

s(n,l) s(n,l)

/ rdr = Sgn (s(n,l)) / rdr
s(n,l) s(n,l)

/ rdz = Sgn (a(n,l)) / rdz
a(n,l) a(n,l)

/ rdr = Sgn (a(n,l)) / rdr
a(n,l) a(n,l)

a po naslednych upravach ziskavame

” 31 k42 | lokd3 ~
S IR [ S [ S
Lk=0 s(n,204+k—1) 1,E=0 s(n,20+k—1) LE=0
31 1—k+2 I-k+3  — ~
’ pC +pcn
szn @) + Z (n,1) 5 () / rdr— Z ler2 / rdr— Z ler2 —
Lk=0 s(n,2l+k—1) LE=0 s(n,2l+k—1) LE=0

Zavedenim zovSeobecneného znacenia suradnic
Q - (QO7 q1, 42, Q3) - (ZE, y,r, Z)

a perznacCenim vSetkych integralov nasledujicim sposobom

(40)
(41)
(42)

(43)

—~

/ rdz

a(n,l—k)
(44)
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Lnn = Linny = / dy  IN. = Loy = / dy (47)
s(n,1) a(n,l)
Loy =Ly = /dx Ltnny = Loy = /dﬂf (48)

s(n,l) a(n,l)

I;](Qn,l) = Ig(n,l) = / rdz Ig?n = == I;( ) = / rdz (49)
s(n,l) a(n,l)
Iggn ) — Isz(n,l) = / rdr I(;]?n ) = Ig(n,l) - / rdr (50)

s(n,0) a(n,l)
ziskavame zovSeobecnentu zlozku tlakovej sily v tvare

3,1

. i Ly ko | 1—k+s) jas
Fl=—(-1) Z B <pc(n,;3 + Pent) ) Loyt
L k=0

2 rai 142 k; ;
ZP+ g(n 2A+k—1) ZP+ 3(n I—k) (51)

1,k=0 1,k=0

kde i = {0,1,2,3)}.

2.3 Visko6zna sila

Viskozna sila je velmi dolezitou ¢astou celkovej sily posobiacej na uzol. Bez nej nie je
Lagrangeovsky rie§i¢ schopny simulovat problémy, v ktorych dochadza k rdzovym vlndm
a kontaknym diskontinuitim. Existuje mnoho sposobov ako zahrnut viskoznu silu do
rieSenia. My vyuzivame jeden z jednoduchsich sposobov, kde na vypocet viskdznej si-
ly pouzijeme vztahy ziskané pre tlakové sily, pricom miesto tlaku dosadime do tychto
vztahov umelu viskozitu. Tt uvazujeme v tvare (Kuropatenkova viskozita):

+1 +1Y’
g " = pe Oﬂ | Aw |+\/ (VT) (Aw)* + CF (o) | [Aw],  (52)

kde C'1,C5 st konStanty vacSinou rovné 1 a c. je rychlost zvuku v bunke.
Ked7ze viskozitu definujeme len pre bunku, a teda v kazdej jej subzone je rovnaka,
bude mat viskozna sila po naslednej uprave tvar

142 i 142 k i
Z q b n,l g(n 2l+k—1) Z qczrnl 3(111 k) (53)

1,k=0 1,k=0
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Celkova sila posobiaca na uzol je teda
F, =F,, + F,,

Po nahradeni ¢asovej derivicie v rovnici pre zdkon zachovania hybnosti centralnou

diferenciou potom méame
Ow wktt — ok

Odkial ziskavame vysledny vztah pre rychlost pohybu uzlov

At
Wyk+1 = w + —F
mpy

2.4 Vnutorna energia

Pre odvodenie vztahu pre vnutornu energiu vychadzame z rovnice pre zakon zachovania
energie. Definujme, celkovi energiu v bunke ako

4
1 2 2
E.=m.. + E §mlc ((wZ(C,l)) + (wZ(C,l)> )
=1

Ked7ze zakon zachovania energie plati v kazdej bunke, je Casova derivacia celkovej
energie v bunke rovna 0. Mo6zeme potom napisat

OF. Oe. ‘1 ! 8“’53(0,1) y aMZ(c,l)
0= ot - mca + Z imc 2ujz(c,l) ot + 2wn(c,l) ot

=1

¢o spolu s (54) nam dava

xl l
+Z< n(ch +wn(cl)Fy>

Definujme teraz celkovi pracu vykonand v bunke silami F,. vztahom

4
Eyt == wnenF,
=1

Potom méame

Oe.
ot

Nahradenim ¢asovej derivacie centralnou diferenciou ziskavame vysledny vztah pre
novu Specificki vnitornd energiu

m Ework
c

At
k+1 _ k work
€, € +—FL,

c
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2.5 Kompletny krok Lagrangeovej metédy

Na za¢iatku jednoho Lagrangeovho kroku pozname nasledujice veli¢iny bud z predchéa-
dzajuceho kroku alebo z pociatoc¢nej inicializacie: ¢asovy krok At, rychlosti uzlov w,,
bunkové a subzonalne objemy V., V!, bunkové a subzondlne hustoty p,, pL, tlak v bunke
Pe, voutornd energiu bunky e.. Potom cely krok sa d& popisat nasledujicim sposobom

1. Pre kazdu subzonu spocitame tlakové a viskozne sily Fpi, Fi.

2. Spocitame celkové sile posobiace na subzony a celkové sily posobiace na uzly F! =
4
Iy + Fy, B = D1 Fcl(n,Z)-

3. Vzhladom k ziskanym silam ur¢ime nové rychlosti uzlov wyri = wk + %Fn, apli-

. . . » . . . . k+1/2
kujeme na ne okrajové podmienky a urc¢ime rychlosti v polovicnom case wy, /2 =

% (w,’i + w"’“).

n
4. Posunieme uzly na ich nové polohy z**! = zfl—i—AthH/ >a prepocitame celi geomet-
riu sietky (stredy buniek, polohy hréan, separatorov, subhran, bunkové a subzonélne
objemy).

5. Urc¢ime celkovi pracu v bunke vykonanu silami posobiacimi na jej uzly Eé”‘”’"’ =
4 1 Ny . . . . k+1 __ _k At rrwork
— Y 1 Wn(en)FL a spocitame novi vnitornd energiu bunky e = e + et

6. Dopocitame nové bunkové a subzonélne hustoty p. = m./V,, p. = m./V!.

7. balej dopocitame nové tlaky podla stavovej rovnice a aplikujeme tlakovi okrajovi
podmienku.

8. Dopocitame ostatné stavové veli¢iny.

k+1

9. Priradime novej sietke spocitané nové rychlosti w,, = w,

Popisany postup vyuziva Eulerovu metdédu diskretizacie v case, ktora je jednoducha,
rychla avSak s presnostou prvého radu. ZlepSenie sa da dosiahnat pouzitim presnej-
Sej metody napriklad Runge-Kutovej metody druhého radu, alebo niektorou metétou
prediktor-korektor.

3 Vysledky

Korektnost nasho algoritmu sme overovali na viacerych tlohach, pre ktoré je zname ich
rieSenie. Ak nebude napisané inak, na nasledujucich obrazkoch bude vzdy zobrazena
hustota materialu s prislusnou legendou, kde studensie (modrejsie) miesta budu znamenat
oblast s menSou hustotou nez teplejsie miesta (Cervenejsie) s vyssou hustotou. Podobne,
ak nebude napisane inak, uvazujeme ekvidistantné rozdelenie sietky a hmotnost kazdej
bunky m. = 1. Venujme sa teda dalej jednotlivym problémom.
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3.1 Sodov problém

Jednym z prvych testovacich problémov bol takzvany Sodov problém. Jednd sa o Riema-
nov problém, kde uvazujeme oblast rozdelent na dve podoblasti, ¢i uz horizontalne alebo
vertikalne. V jednej podoblasti s nachadza material s menSou hustotou a mensim tlakom,
v druhej podoblasti je material s vyssou hustotou a vyssim tlakom. Zvolili sme vertikalne
rozdelenie, a to z dovodu porovnania kartézskej geometrie a cylindrickej geometrie.

Na obrazku (2) mozme vidiet priebeh riesenia ako aj graf zéavislosti hustoty od polohy
na ose y. Vysledky jak v kartezianskej geometriji tak aj v cylindrickej geometrii boli
relativne podobné, a tak na obrazkoch vidime len rieSenie v kartezidnskej geometrii.

1 1 1 1 1
08 k 05 08 08 08
- qos 05 - qos 06 - qos
o qoa E 0.4 T qoa 04 T qoa
02 : 0.2 02 02 02
0 o 0 0 0

[ 02 04 06 08 1 0 0z 04 05 08 1 [ 02 04 06 08 1 [ 02 04 06 08 1

—— (nt, nxc) = (0, 3)

—@— (nt, nxc) = (1, 3)
(nt, nxc) = (5, 3)

—— (nt, nxc) = (10, 3)

rho

nyc

Obréazok 2: Riesenie Sodovho problémusp; =1, py = 1, po = 0,125, po = 0,1. Na prvych
4 obrazkoch mozme vidiet rieSenie postupne v ¢asovych hladinach ¢ty = 0, t; = 0,02,
t5 =0,1 a tyg = 0,2. Na poslednom obrazku graf zavislosti hustoty od polohy na ose y.

3.2 Problém poésobiaceho piestu

Uvazujme dalej piest posobiaci na material. Nech teda hustota a tlak si v celej doméne
rovnaké. Odlisnost nastava v rychlostiach, kde okrajovym uzlom charakterizujicim piest
udelime nenulovi poc¢iato¢nu rychlost orientovani stibezne pre kazdy uzol smerom do
domény. Inymi slovami, ak piest posoby zhora na doménu, udelime okrajovym uzlom
rovnaku vertikalnu rychlost smerom nadol.

Priebeh riesenia spolu s grafom zavislosti hustoty na polohe na ose y vidime na obrazku
(3). Opétovne boli vysledky v kartezidnskej a cylindrickej geometrii relativne podobné,
a tak uvadzame iba rieSenie v kartezianskej geometrii.
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0 0z 04 05 08 1 [ 02 04 06 08 1 02 04 06 08 1

—&— (nt, nxc) = (10, 40)
—@— (nt, nxc) = (5, 40)
= (nt, nxe) = (1, 40)

rho

100

nyc

Obrazok 3: RieSenie problému posobiaceho piestu. Piest posobi v zvislom smere s vekto-
rom rychlosti w = (0, —1). Hustota bola v kazdej bunke p = 1, tlak p = 107%. Na prvych
4 obrazkoch vidime priebeh rieSenia postupne v ¢asovych hladinach ¢y = 0, t; = 0, 06,
ts = 0,36, t;p = 0,6. Na poslednom obréazku graf zavislosti hustoty od polohy na ose y.

3.3 Sedov problém

V tomto pripade st opét hustota a tlak v celej doméne rovnaké az na jednu bunku, tzv.
speak” (a v jednorozmernom kartezianskom resp. dvojrozmernom cylindrickom probléme
sme pochopitelne nastavili cely pas buniek), vi¢Sinou umiestnent v strede domény, ale
z dovodov symetrie problému mozme umiestnit takato bunku aj do rohu a spresnit tak
rieSenie, v ktorej nastavime pociatocu energiu relativne vysokiu a podobne aj tlak bude
relativne vyssi nez v okoli. To sposobi tzv. razova vlnu, ktora sa bude $irit od stredu
symetricky smerom k okrajom.

Vhodnym nastavenim pociato¢nej podmienky sme dokézali simulovat 1D Sedov prob-
lém v kartezianskej geometrii (vid. obrazok 4), 2D Sedov problém v kartezianskej geomet-
rii (obrazok 5), 2D Sedov problém v cylindrickej geometrii (6) a 3D Sedov problém v
cylindrickej geometrii (7). Pociato¢na hustota v celej oblasti bola pampient = Ppeat = 1,
tlak v okoli pampiens = 107%, a v tzv. peaku sme definovali celkovii energiu £ = (0.244816.

3.4 Nohov problém

Nohov problem je definovany opét pre doménu, kde je tlak a hustota vSade rovnaka,
pricom kazdému uzlu udelime rychlost rovnakej velkosti orientovanu vzdy do jednoho a
toho istého bodu (tzv. black hole point). Normu rychlosti sme volili |w| = 1, po¢iato¢ni
hustotu p = 1, tlak p = 1075 Priebehy jednotlivych rieSeni splolu s grafmi zévislosti
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Obréazok 4: RieSenie 1D Sedovho problému v kartezianskej geometrii.

rho
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< (n, nye) = (1,0)
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Obrazok 5: Riesenie 2D Sedovho problému v kartezidnskej geometrii.

hustoty na polohe na osi x st zobrazené postupne

rho

ey
25 3 35 4 45

0s 1

na obrazkoch (8), (9), (10) a (11).

0 25 50 75 100 125 150 175

nxce

Obrézok 8: Riesenie 1D Nohovho problému v kartezidnskej geometrii.
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Obréazok 9: RieSenie 2D Nohovho problému v kartezidnskej geometrii.
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(a, nye) = (1,3)

& &
® (ninyo) = (5.3)
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Obréazok 6: RieSenie 2D Sedovho problému v cylindrickej geometrii.
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Obréazok 11: Riesenie 3D Nohovho problému v cylindrickej geometrii.

4 Zaver

Zoznamili sme sa s modelom Lagrangeovskych rovnic pre rieSenie hydrodynamiky lasero-
vej plazmy. Dalej sme sme si ukazali diskretizaciu nasho modelu, a to jak v kartezianskej
geometrii tak aj v cylindrickej, pricom sme sa zamerali na ziskanie kompaktnych vzorcov
pre oba typy geometrie. Popis nasho algoritmu sme zhrnuli popisanim celého jednoho
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Lagrangeovského kroku. Na zdklade ziskanych vysledkov zo simulacii vybranych problé-
mov sme overili korektnost nasich vypoctov.
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Abstract. The goal of this contribution is to describe the transport of colloids in porous media.
This work includes equations describing the flow field, transport of colloids, and deposition of
colloids in porous media. Then we describe a numerical discretization of the system of equations
describing the colloid transport with known flow field by means of the upwind scheme. We
present some numerical results at the end of the contribution.

Abstrakt. Hlavnim cilem tohto piispévku je popis transportu koloidid v poréznim prostiedi.
Tato préace obsahuje rovnice popisujici proudové pole, transport koloidi a jejich ukladani v
poréznim prostiedi. Dale je v praci obsazena numerickd diskretizace tohoto systému rovnic
popisujiciho transport koloidi pii znamém proudovém poli za pouziti upwindového schématu.
Na zavér prispévku jsou uvedeny nékteré dosazené vysledky.

1 Introduction

Colloids are small particles with at least one dimension smaller than 100 nm. Because of
their size, colloid particles are strongly attracted to the pore surfaces. On the other hand,
colloids, like nanoiron particles, can be strongly reactive and can be used in remediation
of contamined sites. To plan a suitable remediation strategy, one has to understand mech-
anisms of colloid transport and their deposition in the subsurface. This understanding
can be obtained by means of numerical models. This paper contains equations describing
colloidal transport in porous media. Then introduce explicit and semi-explicit schemes
and present some results of numerical experiments.

2 The Physical Model

This section presents equations describing the colloidal transport in porous media [1].

2.1 Colloid Transport Equation

The colloid transport equation can be derived from the mass balance of colloids over
the REV (representative element volume). There are three main mechanisms controlling
the colloidal transport: hydrodynamic dispersion, advection and colloid deposition and
release. This can be described by the generalized advection dispersion equation, where

17
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the unknown is the particle number concentration n

on f o0

where 0 is the specific surface coverage, defined as

total cross-section area of deposited colloids

interstitial surface area of the porous media solid matrix’
f is specific surface area

interstitial surface area

porous medium pore volume’

a, is radius of colloidal particles, D is particle hydrodynamic dispersion tensor and V is
the particle velocity vector. It is possible to write the particle hydrodynamic dispersion
tensor as

_ V.V
Dij = OéTV(SZ‘j + (OéL — OCT)% + DdT(sij,
where Dy is the Stokes-Einstein diffusivity, V;, V; are components of the interstitial ve-
locity, ay is the longitudinal dispersivity, az is the transverse dispersivity and T is the
tortuosity of the porous medium.

2.2 Colloid Deposition and Release

Let A be the percentage part of the solid matrix with favorable conditions for colloid
deposition. This can be for example areas with iron oxides on its surface. These surfaces
are typically positively charged and colloids are typically negatively charged. Deposition
on the surfaces is usually irreversible. On the rest (1 — \) of the solid matrix surface are
unfavorable conditions for the colloidal deposition. Deposition takes place on both parts,
but difference in rates can be huge. For particle surface coverage rate we can adopt this
patchwise model

A L Y (2
where 0, is favorable surface fraction and 6, is unfavorable surface fraction. These rates
are described by the following partial differential equations

00

—8tf = ’/Taikdepdan(ef) - kdet,fefR(ef)7 (3)
00,

S = TkaepunB(0.) = ka8 R(0.). @)

where kg, is the colloid deposition rate constant, kg is the colloid release rate constant,
B(0) is the dynamic blocking function and R(f) is the dynamic release function. The
colloid deposition rate coefficient kg4, can be expressed by means of a single collector

efficiency n

neV. aneV
= 5)

where V' is the fluid advection velocity, ¢ is porosity and 7y is the favorable single collector
removal efficiency.

kdep -
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2.3 Dynamic Blocking and Release Functions B(6), R(0)

Dynamic blocking functions characterize the particle deposition [4]. When the collector
is particle free at the beginning, blocking function has value B(0) = 1. As the deposited
particles block the surface more and more, B(f) decreases. At the maximum attainable
surface coverage 6 = 0,,,, (jamming limit), B(f) = 0.

2.3.1 RSA Dynamic Blocking Function

For colloidal particles depositing on the oppositely charged collector surface, these con-
ditions for use of RSA model are valid:

e attachment is irreversible as long as conditions do not change
e surface diffusion is negligible
e particle-particle contact is prohibited
For low and moderate surface coverage the function B(#) has this form

9 63 0 \? 40 176 9 \*
B =1—40, —— + X2 _ —
(6) 900 emax * 7T (600 emax ) + ( \/577' 37T2 ) (900 emax ) ’

where 0, is the hard sphere jamming limit.

2.3.2 Dynamic Release Function

The dynamic release function describes the probability of colloid release from the porous
media surface covered by retained colloids [1]. This function should in general depend
on the colloid residence time and the retained colloid concentration. Because the colloid
release is not well understood, we will use R(#) = 1.

3 Mathematical Model

This section shows solved equations, initial and boundary conditions. By substituting
equations describing the colloid deposition and release (2), (3) and (4) into (1), we obtain
the following expression

0
8—2 =V (DVn) =V (V-n)— Wi%%((xmgkdep, iBOy) + (1 = N1 kgepu B(0.))n —
(AT Kder, 107 B(05) + (1 = A)Kaep,ubuB2(0))- (6)

We assume that K () = 1 (first-order kinetics release mechanism) and use the follow-
ing notations

_ f
’7 - 7(_(1%7
Ko(05,0,) = ma2[Akaep, s B(0f) + (1 = N)kaepu B(04)], (7)

=
—~
>
>
>
<
~
I

)\’/deemvef -+ (1 — )\)]{dep,ueu.
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I

N

T, Q

I

Figure 2: The exclusive subdomain for node
Figure 1: The domain 2. i

Under these assumptions, the following equation is obtained

871 Ka(Qf,Hu) K,_(Hf,eu)

V. (DVn)—V-(V-n)— . 8

5 V- (DVn)—=V-(V-n) -y n+ " (8)
In (8), V is a known velocity field given by a flow model. We complete this equation with
(3) and (4)

00y

ot = waikdepjnB(@f) - kdet,fgfa (9)
90, )
E = Wapkdep#nB(eu) — k’det’ueu. (]_0)

To solve this system, we will need boundary conditions for equation (8) and initial
conditions for each equation (8), (9) and (10). Let us have rectangular domain € with
boundary I', where lower boundary is denoted I'y, right I'y, upper I's and left I'y (Fig. 1).

For concentration equation (8) will have an initial condition

n(x,0) = ng(x) for x € Q, (11)
and boundary conditions describing concentration of colloids on I'
n(x,t) =ni(x,t) forx ey, iel,...,4. (12)

For equations (9) and (10) we need to prescribe initial conditions for 6 and 6,. As there
are initially no deposited colloids,

0¢(x,0) = 0,(x,0) =0 for x € Q. (13)
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4 Numerical Solution

We discuss the discretization methods for solving (8), (9) and (10). Although our numer-
ical solution is computed on a rectangular grid, we develop the scheme for a more general
case of an unstructured mesh in two dimensions composed of triangles and quadrangles
of the domain €2, which is called the primary mesh. We construct a dual mesh by con-
necting barycentres of each element with midpoints of all its sides in each element from
the primary grid. In this way we obtain a polygon around each node from the primary
mesh (on the boundary of the domain 992, polygons are incomplete). For a primary mesh
node i, we call this polygon B;, the exclusive subdomain of node . 0B; consists of several
abscissae and each of abscissa belongs to one abscissa connecting node ¢ with his neighbor
m. For each couple i, m, there are two abscissae, we denote them 8Bf7m. The midpoint
of the abscissa 0B, is denoted Yop  (Fig. 2). The time level is denoted by superscript

k. The length of abcissa B, is denoted |9B!

z,m"

4.1 Explicit Scheme

Equation (8) is discretizated using the finite volume method. First we integrate this
equation over an element B;

/Bl- |:(Z_7Z + Ka(‘i]/‘,eu)n_ Kr(‘i}/‘,eu)] ds = /Bz [v (DV?”L) S VAN (Vn)] ds. (14)

Now we use Gauss formula on the right hand side of equation (14)

/Bi[V~(DVn)—V-(V~n)]dS:/

(DVn) -nygp,dl — / (V-n)-ngpdl, (15)
B,

0B;

where 0B; is boundary of B; and nyp, is the normal vector to 0B;.
Equations (14) and (15) give together

/ |:@_‘_Ka(9f>HU)n_ KT(9f>QU)
B LOt gl gl

]ds: / (DVn)-npp,di— / (V-n)mpp,d. (16)
BBZ' aBi

The left hand side of (16) is approximated as

/ {877, i Ka(ef,eu)n _KT(Of,Hu)} dS ~
B;

at ;
Bk K050 ) K (65,0
nl nZ a fv’” U, k r fv’” U,
P |By|. 17
g S 5, (17

The first term on the right hand side of (16) can be approximated as

/ (DY) - npmdl = 3 / (DVn) -y dl
OB; w1 Y OB, o

> (DO, (I (st ) 1ot 10BL|, (18)

m,l

Q
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where (Vn)¥ is the approximation of Vn from concentration values from time level k.
The second term on the right hand side of (16) is approximated as

[V nondt =3 [ (Vi ) i) mon J0BL)(19)
dB; mi OB, ’ ’

where upwind value reads as
(20)

The approximation (19) is called the first-order upwind scheme and helps us to avoid
oscillations in the solution, but suffers from the numerical diffusion. To obtain smaller
numerical diffusion without oscillations, higher-order upwind scheme with limiters can be
used.

Values of n on the boundary 9 are taken from the boundary conditions (11). 6;
and 6, for the first time step can be 6; and 6, taken from the initial condition (13). The
explicit scheme for solving (8) is

1 op A 4
(3

Y Y

K, (0%, 0F. K, (6% 6F.
’BZ‘ < ( fi u,z)nk_ ( fi u,z)) +
=3 |(POosy, )T (o)) - o |0BL,|] +

S V) ni) mas 108 (21)

We use the forward Euler scheme to discretize equations (9) and (10) to compute
particle coverage: 0;*! for favorable case [ = f and unfavorable case | = u

el’fjl — 91’2 + At (WapkdepwanB(@l]fi) — kdet,l,iel’fi) l € {fu}, (22)

where 0, Kaep1i, Kdetai are values of 0F, kgep1, Kaery in the node 4. In equation (22), we
use n**! that has been computed previously by (21).
The coupled system of equations is solved as follows. We denote by At the time step.

e 1. Initial conditions are initialized, k = 1

e 2. The number concentration n”, based on the number concentration and coverage
at time level k£ — 1, in time ¢, = kAt is computed by the scheme (21)

e 3. New surface coverages 6§ and 6} are computed from (22) using values of n*
obtained from 2. and surface coverages from time level k£ — 1

e 4. If kAt < (Final time) increase k by 1 and go to 2; else end.
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4.2 Semi-implicit Numerical Scheme

Explicit scheme has the disadvantage that the time steps has to be limited due to CFL
condition [6]. For this reason we implemented semi-implicit numerical scheme [5], which
will enable us to use larger time steps compared to the explicit scheme.

Equation (8)

(?9_7; =V-(DVn) -V -(V-n) - Ka(if’eu)n + Kr(‘:f’eu). (23)

is solved using the operator splitting technique. At first we solve explicitly convection
and reaction parts of the equation

g () B8, eltr.0)
ot v ~

(24)

obtained from (8) by setting D = 0. We discretize (23) as follows

3k K (05,608, K, (0%, 0%,
n; ny + a( f u,z)nf_ 7"( fo u,z) ‘Bz“‘—
At vy vy

S Vs, ) i) o 108 =0 (25)

1
where the upwind value is given as (20). The value of anr? is used as an initial condition
and (12) as boundary conditions for solving the diffusion equation

on
o = V- (DVn), (26)

which is solved using the backward Euler scheme

k+35
k+1 _ n, 2

(3 7

At

: Bl =3 |(DOasy, N(F0) (osr ) - mogy [0BL . (27)

m,l

We denote number of nodes in one row of our numerical grid n,. On a rectangular grid
with grid sizes Az, Ay, equation (27) reads as

k1 Rts

7 7

At

—nNn

nk—tl I§+1
‘Bz‘ - AIDyy (VaBi,zumT) TA—y +

n

k1 _

k+1
AyD,.(VoB,._,) <T1> + AxDyy(VoB,,; ,) <A—y> o

k1 _

n k+1
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In equation (28) the terms containing boundary values can be eliminated into right hand

side. In every time step we need to solve the system An*t! = b, where
A o A$Dyy("faBi7i_nT )
L=y A
y
AyYyDgq ('YDBi ifl)
Ajir = ———3x,
A B4 I AzDyy(V8B; ;1 1,.) i AyDuw(voB; ;1) | AvDyy(YeB, ;) i AyDaw(VoB; ;1 1)
22 - AtA D Ay) Az Ay Az
Yl 'YBBZ-J-_‘_l
Aiipr = ———x
A Anyy('YBBM_‘_M )
Qitn, = T Ay

and A; ; = 0 elsewhere. The right hand side of the solved system b reads as

|Bil &
bi -
AL

(29)

79

where index ¢ goes through all nodes. The boundary terms can be eliminated into the b;.

5 Results

In this section we present results using data set from [1]| of a two dimensional experiment.
In [1] dependence of solution on physical parameters percentage part with favorable con-
ditions A and colloid particle diameter a, was investigated.

We are given a stationary flow field parallel to the x-axis on a square domain €2 of size
3 x 3m. In the beginning no colloidal particles are present in the area. We prescribe a
boundary condition

~f 2.8-10%[m™?] for t < 0.5day

n(xt) = { 0 for 1.0 >¢ > 0.5day (30)
on I'y and n(x,t) = 0 for x € 'y, T'y, I's and ¢t € [0,1day] We are interested in the
distribution of colloids in domain €2 in time of one day. Our results are showing the
number concentration of colloidal particles contained in water in pores n divided by
2.8 - 10, so that the resulting values are rescaled between 0 and 1. The numerical grid
with 100 x 100 nodes was used for computations. Using semi-implicit scheme instead of
explicit scheme enabled us to use about six times longer time steps. For explicit scheme
we used time step ﬁ day and for semi-implicit % day.

Results computed by the explicit and semi-implicit numerical schemes on a rectangular
mesh are shown in Figures 3 and 4. These figures show a cut of the two dimensional
solution along the z-axis and show the dependence of number concentration on physical
parameters:percentage part with favorable conditions A and colloid particle diameter a,,.
Figures 3 and 4 are depicting that results for both explicit and semi-implicit schemes are
close to each other. Figures describing the dependence of the number concentration n on
the percentage part with favorable deposition conditions A show that the concentration
of colloids which do not deposit and stay in water decreases quite fast with increasing
A. The concentration of colloids which do not deposit and stay in water decreases with
decreasing radius of colloidal particles.
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by 10" for different values of A\ and a, in by 10'* for different values of A\ and a, in

time 1 day ; explicit numerical scheme. time 1 day; semi-implicit scheme.

6 Conclusion

In this contribution a summary of equations describing the colloid transport was pre-
sented. The equations were discretized by means of

e the explicit numerical scheme
e the semi-implicit scheme based on the operator splitting technique

both using first order upwind (20) for approximation of the convection term. Numeri-
cal results show that by using semi-implicit scheme, we can use approximately six-times
longer time steps. Both numerical schemes are in good comparison. We were able to
reproduce some of the numerical results from [1|. The dependence of the number con-
centration of colloids is in good agreement with [1] but there are some discrepancies in
the dependence on particle radius (Figures 3 and 4). These discrepancies will be one of
subjects of future research. The future work will be focused on a behavior of colloids and
nanocolloids in porous media, especially in heterogeneous porous media.
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Abstract. In order to investigate effects of the dynamic capillary pressure-saturation relation-
ship used in the modelling of flow in porous medium, a one-dimensional fully implicit numerical
scheme is proposed. The numerical scheme is used to simulate experimental procedure using
the measured dataset for the sand and fluid properties. Results of the simulation using different
models for dynamic effect term in capillary pressure — saturation relationship are presented and
discussed.

Abstrakt. V ¢lanku je prezentovan jednorozmérny model dvoufazového nemisivého a nestlaci-
telného proudéni, ktery je pouzit na zkoumani vlivu dynamického efektu pro model kapilarniho
tlaku v zavislosti na saturaci v poréznim prostfedi. Numericky model je pouzit k simulaci
laboratornich experimentu s cilem posoudit vliv ruznych modelu pro koeficient dynamického
efektu na feseni jednorozmérné ilohy.

1 Introduction

In the description of the behaviour of immiscible and incompressible fluids within porous
media, a rigorous definition and a reliable model of the capillarity are crucial. In the past
decades, various capillary pressure — saturation models were correlated from laboratory
experiments under equilibrium conditions. These static capillary pressure models such as
[4] or [25] have been used in most of the mathematical studies on modelling of multiphase
flow in porous medium. However, it was found out hat the laboratory measured capillary
pressure does not correspond to the capillary pressure in the case of large velocities. As
a result of the empirical approach in [24], new two-phase flow theories appeared in [12],
[13], [15], [14], [7], or [3]. The most important result is that the static capillary pressure
— saturation relationship cannot be used in the modelling of capillarity when the fluid
content is in motion and, therefore, a new model of the capillary pressure — saturation
relationship is proposed and referred to as the dynamic capillary pressure [12], [13], [15],
[14].

The two-phase flow system can be simplified to the Richards problem, in which the
pressure of the non-wetting phase (air or oil) is assumed to be constant. This is the case
in [18], where the dynamic effects are not found to be relevant for the given structure of
heterogeneous porous medium. Other numerical approaches using the dynamic capillary
pressure have been studied in [20], [19], or [22]. However, the relevance of using the
dynamic capillary pressure in the full two-phase flow system of equations has not been
fully answered yet. For instance, in [17], the authors present a semi-implicit numerical

27
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scheme based on the first-order upwind finite volume method, where the material inter-
faces are treated by the Lagrange multiplier. However, in that paper, only the constant
dynamic effect coefficient was considered whereas other researchers suggest more general
functional models for the dynamic effect coefficient as in [23]. A fully implicit numerical
scheme is proposed that can be used for a detailed investigation of the saturation and
capillary pressure behaviour when dynamic capillary pressure is used instead of the static
capillary pressure in the full two-phase flow system. The aim is to investigate behaviour
of different functional models of the dynamic capillary pressure coefficient. Moreover,
the material interface condition for the dynamic capillary pressure is treated in a new,
modified way based on the standard extended capillary pressure condition as in [16].

2 Mathematical model

In this section, we present the mathematical model describing two-phase flow in a one-
dimensional porous medium. In this paper, two phases - a wetting phase (indexed w)
and a non-wetting phase (indexed n) - are considered to be present within the pores
of a porous medium and both fluids are assumed to be incompressible and immiscible.

Under these assumptions, the following one-dimensional p,, —.S,, formulation in a domain
Q= [0, L] (see [1]) is given by

0S,  Ou,
2 4 1
o " or O (1)
kro 0
= K (= - 2
Ue - ( 2 (Pw + BanPe) — Pa g), (2)

where S, + S, = 1, dan is the Kronecker symbol, and o € {w,n}. S, denotes the
saturation, p, si the pressure, p, is the volumetric density, p, is the dynamic viscosity,
k.o is the relative permeability of the phase «, where o € {w,n}. The Darcy velocities
are denoted by u,. Symbols ®, K, and g stand for porosity, permeability of the soil
matrix and gravitational acceleration, respectively.

Governing equations (1) and (2) are subject to an initial condition

Sa=5° in Q, (3)
and boundary conditions
Uy -n=ul, on DN, (4)
Sy =852 on TZ, (5)
Pa=py, on I, (6)

where n denotes the outer normal vector to the boundary. Generally, T'Y TI'¢, and I'}’
denote subsets of the boundary I' of the domain 2, here, I' = {0, L}.

Following the standard definitions in literature, the capillary pressure p. on the pore
scale is defined as the difference between the non-wetting phase pressure p, and the
wetting phase pressure p,, i.e.,

Pe = Pn — Puw- (7)
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On the macroscale, the capillary pressure has been commonly considered as a function
of the wetting phase saturation only [16], [2], [11], [8], [9], or [10]. The following Brooks
and Corey [4] capillary pressure - effective wetting phase saturation parameterization is
used in the presented two-phase flow model *

>

Pt = pa(Sy) >, (8)
where pg is the entry pressure, A is the pore size distribution index, and S¢, is the effective
saturation of the wetting phase defined as

Se Sa - Sra

S ) .
B

where S, is the a-phase irreducible saturation.

The Brooks and Corey relationship (8) is suitable for modelling of flow in heteroge-
neous porous media because the difference in the entry pressure coefficients py in different
porous materials captures the barrier effect that has been observed in various experiments
[21], [16], [1]. Together with the Brooks and Corey model of p. given in (8), the Burdine
model [5] for the relative permeability functions k,, is given as

Brw = (S5, ko = (1= 55)% (1= (55)'*H)). (10)

The dynamic capillary pressure — saturation relationship is proposed in the following
form [13]:

Pe :an—pwzpiq—T%, (11)
where p¢? is the capillary pressure — saturation relationship in the thermodynamic equi-
librium of the system and 7, the dynamic effect coefficient, is a material property of the
system.

Early in 1978, before the thermodynamic definition of the capillary pressure (11) in
[13], Stauffer [24] observed the dynamic effect in laboratory experiments and proposed a
linear dependence in (11) with the following definition of 7

:U’wq) DPd ?
TS = Oésﬂ ﬁ s (12)

where ag = 0.1 denotes a scaling parameter. Both A and p; are the Brooks and Corey
parameters [4] that can be experimentally estimated.

The Stauffer model for the dynamic effect coefficient 7¢ was obtained by correlating
experimental data for fine sands. The values of 7¢ vary between 74 = 2.7 - 10* Pa s and
75 = 7.7-10% Pa s, see [19, page 27]. Other researchers suggest that the magnitude of 7
should be smaller, i.e., in the order of 10? — 10® Pa s according to [6], or, on the other
hand, it should be higher, i.e., in the order of 10* — 10® Pa s as estimated in [14].

LA superscript “? is used in the definition (8) with respect to the latter and it indicates the model of
the capillary pressure for the system in the state of thermodynamic equilibrium.
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In this paper, the authors rely on laboratory data, where a more general nonlinear
dependence 7 = 7(S,,) is assumed and the order of magnitude of 7 is about 10° Pa s,
see Table 3. As a result of the laboratory data, different functional models of 7(S,,) were
correlated and used in the numerical simulations in order to investigate their influence
on the two-phase flow. The laboratory experiment is described briefly in Section 4 and
in detail in [23].

3 Numerical model

We propose a standard finite volume discretization technique in order to determine
approximate discrete solutions SJ; and pf ; of the problem (1), generally denoted by
k= f(kAt,iAx), where i = 0,1,....m, mAx = L, k=0,1,....n, and nAt =T. L
denotes the length of the domain and T is the final time of the simulation.

The fully implicit numerical scheme reads

k+1 k+1 k+1

Sa,—ii— - Sg,i _ C Uagivie T Yaio1/2 (13)
At Az ’
where o € {w,n}. The discrete Darcy velocities u, introduced by (2) are given by
K Pl Pl
k+1 o k+1 w,i+1 W, c,i+1 c,t

ua,z’+1/2 - _Ekra(sa,upw) <\ Az + 5anT — Pa gj), (14)

Ad,

and the discrete capillary pressure by

Gh+l _ gk S+l _ gk
k‘fl = n, 1 — Sk+l _ne n,? — (1 — Sk+1 1 — Sk+l 7,1 n,z‘ 15
pc,l P nydg At Dc ( n,i ) + 7—( n,i ) At ( )

where S¥T 1 is the saturation taken in the upstream direction with respect to the gradient

of the phase potential ®,, i.e.

SktL i AD, > 0.
Sk—i—l

a,upw

SKEL i Ad, < 0.

The fully implicit numerical scheme is solved using the Newton-Raphson iteration
method. The Jacobi matrix is block tridiagonal and therefore solved by the Thomas
algorithm. In each iteration, a new guess of discrete saturation Sﬁjl is given (in the
current time step k + 1) and the upstream saturation in (14) are recomputed.

4 Numerical experiments

In this section, we use the numerical scheme (13) to simulate the laboratory experiment
that was carried out in the Center for Experimental Study of Subsurface Environmental
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Figure 1: Discretization of the saturation jump at material discontinuity.

Processes, Colorado School of Mines. As a result of this experiment, three functional
models of the dynamic effect coefficient 7 = 7(.S,,) were correlated.

Models of the dynamic effect coefficient 7 = 7(S,,) were estimated as a result of the
laboratory experiment, which consisted of a single, vertically placed, 10 cm long tube
uniformly filled with a homogeneous sand. Initially, the column is flushed with water
such that no air phase is present inside. A series of slow drainage steps was carried
out in order to determine the capillary pressure — saturation relationship in equilibrium
ped. The measured Brooks and Corey model parameters are shown in Table 2. Then,
a series of fast drainage and imbibition experiments was performed and values of the
capillary pressure and the air saturation are measured by probes in the middle of the
column. Based on these measurements, three models of the dynamic effect coefficient 7
were correlated, (see Table 3).

We simulate the experiment as a one-dimensional problem with different models of
7(Sw). The parameters of the discrete problem (13) are summarized in Table 1. The
resulting temporal profiles of the air saturation S,, and the capillary pressure p. are
shown in Figure 2. In these numerical simulations, the measured outflow of water is used
as a Neumann boundary condition at the bottom of the column (z = L).

The non-smooth shapes of the numerical solutions in Figure 2 are caused solely by
the non-smoothness of the prescribed flux of water. Since the temporal derivative of the
air saturation is directly influenced by the given flux, the non-smoothness is magnified
in the values of the dynamic capillary pressure given by (11). That is why the bumps do
not appear in the case of the static capillary pressure .

The influence of different models of the dynamic effect coefficient 7 on the numerical
solution of the air saturation S, is negligible (see Figure 2). On the other hand, their
influence on the capillary pressure p. is important in cases, where there is a temporal
change in the saturation S,, because the temporal derivative of S,, is multiplied by the
dynamic effect coefficient 7 in (11). The constant model for 7 does not seem to be a
good model for the appropriate approximation because its numerical solution of p. differs
substantially from the measured capillary pressure (see Figure 2). Therefore, the constant
model requires further investigation of its validity.
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Initial condition Sp(z,0) =0 Vo € (0, L)
Boundary conditions u,(0,t) =0 vVt e [0,7]
pn(0,t) = const = Vt € (0,7
(L, t) = measured outflow Vt € [0,T]
un(L,t) =0 vVt € [0,T]
Problem setup T = 5000 s, L =10 cm, g = 9.81 ms~2
Capillary pressure Dynamic capillary pressure p., various models for 7(S,,)
Sand Ohji sand, Table 2
Fluids Air and water, Table 4

Table 1: Parameters of the simulation of the laboratory experiment

5 Conclusions

A one-dimensional numerical scheme of two-phase incompressible and immiscible flow is
presented that enables simulation of two-phase flow in homogeneous porous media under
dynamic capillary pressure conditions.

Laboratory measured parameters were used in the numerical simulation of the dy-
namic capillary pressure including three models of the dynamic effect coefficient 7 =
7(Syw). The numerical solutions for the non-static capillary pressure show that the dy-
namic effect has a significant impact on the magnitude of the capillary pressure while
the change in the saturation profiles may be considered negligible in some cases. The
constant model of 7 showed rather unrealistic profile of the numerical approximation of
the capillary pressure when compared to the laboratory measured data.

Results of the simulation indicate that the dynamic effect may not be so important
in drainage problems in a homogeneous porous medium. However, it may be of a great
importance in highly heterogeneous media where the capillarity governs flow through
material interfaces.

Parameter Ohji sand
Porosity & [-] 0.448
Intrinsic permeability K [m? 1631074
Residual water saturation Swr [—]  0.265
Brooks-Corey entry pressure pa  [Pa] 3450
[

4.66

—

Brooks-Corey pore size dist. index A

Table 2: Properties of porous media used in the numerical simulation.
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Model of 7 [Pa s] Ohji sand

Stauffer model 7(Sw) = Ts.onji = 3.3 - 10°
Constant model  7op;i(S,) = 1.1 - 10°

Linear model Tonji(Sw) = 3.2-10%(1 — S,,)
Loglinear model  7op;i(Sw) = 10® exp(—7.75,,)

Table 3: Experimentally determined models of the dynamic effect coefficient 7 for the
Ohji sand.

Parameter Water Air
Density p kg m™] 997.8 1.205
Dyn. viscosity p [kg m™'s7!] 9.77-107% 1.82-1075

Table 4: Fluid properties used in the simulations.
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Abstract. Bidirectional texture function, also known as BTF texture, is 7D function of planar
coordinates, spectral coordinate, and viewing and ilumination angles. In comparison with smooth
textures, visual appearance of the BTF texture depends on viewing and illumination conditions.
BTF textures are acquired by complex measurements of the real materials and subsequent image
processing. Techniques from measurement to BTF texture rendering have been described well.
On the other hand, there is no environment involving support to the BTF texture rendering.
This paper describes novel Blender texture plugin for purpose of BTF texture mapping and
rendering. Our previously developed BTF Roller algorithm is also implemented in the plugin.
Described plugin allows to create realistic computer animations with additional BTF textures
of desired size mapped onto an object surfaces while the other functionality of Blender retains.

Abstrakt. Bidirectional texture function, znama téz jako BTF textura, je sedmirozmérnd funkce
planarnich soutfadnic, spektralni souradnice, uhli pohledu a osvétleni. Oproti hladkym texturam
zachycuje zavislost vzhledu redlnych materiali na svételnych a pozorovacich podminkach. BTF
textury jsou ziskdvany slozitym méfenim redlnych materiald a naslednym zpracovanim naméfe-
nych dat. Techniky od méfeni po renderovani BTF textur jsou jiz popsany v odborné literatuie.
Na druhou stranu v8ak chybi dostupné prostiedi, ve kterém by byla implementovana podpora
pro tento typ textur. Tento ¢lanek prezentuje rozsiteni 3D grafického editoru Blender o podporu
BTF textur pomoci texturnitho modulu, v€etné implementovaného algoritmu BTF Roller pro
syntézu BTF textur. Popsana implementace umoziuje tvorbu realistickych pocitac¢ovych ani-
maci s vyuzitim BTF textur libovolnych rozmérd mapovanych na povrchy objekti a soucasné
zachovava plnou funkcionalitu Blenderu.

1 Uvod

1.1 BTF

Textura reprezentuje vizualni vlastnosti materialu jako funkce planarnich soufadnic (z, y),
piipadné 3D textura jako funkce prostorovych soutadnic (x,y, z). BTF textura [2| je za-
visla na svételnych a pozorovacich podminkach, jde o 7D funkci planarnich a spektralnich
soutadnic a thli osvétleni a pohledu, BTF(x,y, r, 0;, ¢, 0., ¢,). Existuje nékolik systémii
pro méfeni BTF textur |2, 8] a od nich se odviji zptsob jejich reprezentace a mnozstvi
ulozenych dat. Jednou z moznosti je reprezentace BTF textury jako mnoziny nékolika ti-
sicti vzajemné registrovanych planarnich textur, dal$i moznosti je ulozeni takové textury
ve formatu HDR.

V tomto ¢lanku jsou vyuzivany BTF textury z méficiho zafizeni na Univerzité v Bonnu
(obr. 1), které v soucasnosti predstavuje nejlepsi mé¥ici zafizeni na svété. Takova BTF
textura se pak sklada z 6561 barevnych obrazki, coz je kombinaci 81 pozic kamery a 81
pozic svételného zdroje (obr. 2).
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Obrazek 1: Robot pro méieni BTF textur  Obréazek 2: Znazornéno je 81 pozic pro své-
na Univerzité v Bonnu. Vzorek materialu  telny zdroj i pro kameru. Béhem méteni
se naklapi, svételny zdroj i kamera se po-  BTF textury je méfeno 6561 (81 x81) kom-
hybuje, zméii se 6561 kombinaci. binaci polohy svételného zdroje a kamery.

Existuji také zplisoby pro reprezentaci BTFEF prostoru pomoci matematickych modela
[3, 7, 4, 6], ovSem ty jsou nad ramec tohoto ¢lanku.

1.2 Vizualizace BTF

Ve svété zatim neexistuje zadny profesionalni nebo vefejny software pro vizualizaci BTF
textur. Na druhou stranu naprogramovani celého nezbytného grafického prostiedi by bylo
velmi naroc¢né a s nejvétsi pravdépodobnosti by nebylo dosazeno takovych moznosti, jaké
nabizi soucasné néstroje pro tvorbu 3D grafiky a animaci. Proto bylo potfeba najit apli-
kaci, ktera by §la vhodné rozsitit o vizualizaci BTF. Jako idedlni volbou pro implementaci
vizualizace BTF se ukézal Blender, ktery je v soucasné dobé aktivné vyvijen sdruzenim
Blender Foundation a je volné dostupny vcetné zdrojovych kodi.

1.3 Blender

Blender je open-source software pro modelovani a vykreslovani 3D pocitacové grafiky
a animaci s vyuzitim riznych technik, jako napt. raytracing, radiosita, scanline rendering.
Vlastni uzivatelské rozhrani je vykreslovano pomoci knihovny OpenGL. OpenGL umoz-
nuje nejen hardwarovou akceleraci vykreslovani 2D a 3D objekti, ale predevsim snadnou
prenositelnost na vSechny podporované platformy, napi. FreeBSD, IRIX, GNU/Linux,
Microsoft Windows, Mac OS X a Solaris.

Modelovaci schopnosti jsou zaméfeny predev§im na préaci s ploskovou reprezentaci
téles. Blender umoziuje pracovat s takzvanymi subsurf plochami, dale pak podporuje
v omezené&jsi formé praci s parametrickymi plochami a ki¥ivkami (Bezier, NURBS) a im-
plicitnimi plochami (MetaBalls).

Animacni moznosti nejsou omezeny pouze na jednoduché klicovani objektu a jejich
tvari, ale Blender umozinuje animovat objekty i pomoci armatur a inverzni kinematiky.
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Déle méa implementovanu podporu pro fluidni dynamiku, softbodies, ruzné deforméatory,
Casticové sytémy, apod.

1.4 Texturni moduly v Blenderu

Blender ma v sobé zabudovanu podporu pro nékolik typu textur, z nichz dulezité je pod-
pora rastrovych obrazki, které lze nasledné mapovat na libovolné objekty jako textury.
Zde je mozné vyuzit standardnich formatu BMP, PNG, JPEG a mnoho dalsich. Nejdilezi-
t6j81 moznosti pro renderovani BTF jsou texturni moduly (pluginy). Texturnim modulem
je zde dynamicky linkované knihovna, v niz jsou obsazeny funkce s pevné definovanymi
hlavickami, zejména pak funkce, ktera vraci barvu pozadovaného pixelu s danymi textur-
nimi soutfadnicemi. Kdyz je tfeba znat barvu takového pixelu, zavola Blender piislusnou
funkci z modulu, jiz jsou texturni soufadnice predavany jako parametry. Tato funkce pak
vrati barvu pixelu.

2 BTF texturni modul

Vzhledem k tomu, 7ze BTF textura je mnozina nékolika tisic barevnych obrazkiu, bylo
by velmi komplikované implementovat podporu pro BTF textury pfimo do Blenderu.
Pravé moznosti texturniho modulu se ukazaly jako nejvyhodnéjsi. Navrzeny BTF modul
komunikuje s Blenderem pomoci standardniho rozhrani, které bylo tfeba rozsitit pouze
o predavani uhli pohledu a osvétleni modulu. Veskeré dalsi vypocty a operace s BTF
texturami jsou ¢isté v rezii modulu.

Tento zpusob vyuziti BTF v Blenderu ma nékolik dalSich zasadnich vyhod. Hlavni
z nich je moznost implementace riznych algoritmu pro syntézu textur a BTF textur
ptimo v 3D grafickém editoru, zejména pak diive vyvinutého algoritmu BTF Roller [5].
Dalsi vyhodou je mnohem snaz$i néslednd optimalizace vykonu modulu bez nutnosti
zasahu do rendereru Blenderu.

2.1 Rozhrani pro texturni moduly

Vstupem pro texturni modul jsou prostorové texturni soufadnice (u,v,w), vystupem je
pak vektor (i,Yr,Ys,Yn, Ny, Ny, Ny), kde @ je intenzita (v pfipadé monochromatické
textury), Y, Yo a Yp jsou slozky RGB a N,, N, a N, jsou slozky vektoru normaly
v texturnich souradnicich.

Vyuziti vSech slozek vstupniho i vystupniho vektoru je nepovinné, pro texturni mo-
dul pro BTF textury byla vyuzita pouze dvojice texturnich soufadnic (u,v) na vstupu
a trojice (Yg, Y, Yp) na vystupu.

Automatickym generovani texturnich soufadnic s vyuzitim pomocnych téles (krychle,
valec, koule) nelze pro slozité povrchy objektii doséhnout kvalitnich vysledki. Blender
vSak nabizi propracované nastroje pro ru¢ni mapovani textur technikou nazyvanou UV-
mapovani nebo UV-mapping. UV-mapovani prifazuje libovolnému bodu povrchu objektu
texturni soufadnice, jde tedy o mapovaci funkci Tyy, (u,v) = Tyy(x,y, z). Soutasné se
jedna o nejpiesnéjsi zpisob mapovani.



40 M. Hatka

t, =1
Obrazek 3: Vypocet azimutu a elevace pro  Obréazek 4: Interpolace motivované sféric-
vektory pohledu a osvétleni. Je zalozen na  kymi barycentrickymi soufadnicemi. Pri-
transformaci vektoru pohledu a osvétleni  spévky od P, P, P; k P odpovidaji ob-
do prostoru texturnich soutradnic. jemum protéjsich ¢tyistént.

Jak bylo uvedeno vyse, BTF textura je 7D funkci planarnich soufadnic, spektralni
soutadnice a hlu pohledu a osvétleni, BTF (x,y, 7, 0;, ¢, 0., ¢»). Vstupni rozhrani modulu
tedy muselo byt rozsifeno o predavani thlu pohledu a thlu osvétleni, vstupni vektor
(u, v, w) byl nahrazen vstupnim vektorem (u, v, w, 0;, ¢, 0, ¢,), kde slozka w neni vyuZzita.

Soucésti rozhrani je moznost definovat pomoci standardnich ovladacich prvki uziva-
telského rozhrani Blenderu ovladaci panel modulu, ktery je k dispozici pfi jeho pouziti
a umoznuje modulu predavat dalsi parametry pro jeho ovladdani. Konkrétni parametry
predavané BTF modulu budou popsany pozdéji.

2.2 Podpora Blenderu pro BTF textury

Blender neuvazuje ve svém rendereru zavislost textury na tihlu pohledu a thlu osvétleni.
Implementovano je sice nékolik typu diftiznich a spekularnich shaderi, které pracuji s
normalou povrchu, vektorem pohledu a vektorem osvétleni, nicméné texturovani probihé
dfive a mimo shadery a jejich vyuziti ztraci pro potieby BTF vyznam.

Pro mapovani BTF textur na povrchy objekti a jejich renderovani nejsou shadery ve
skuteCnosti potieba, protoze efekty vznikajici osvétlenim jsou zachyceny v naméienych
BTF datech.

Jedinou nutnou upravou bylo rozsiteni rendereru o podporu vypoc¢tu uhla elevaci 6,
resp. 0 a azimutu ¢, resp. ¢, pro pohled resp. osvétleni (obr. 3).

Renderer Blenderu vykresluje danou scénu bod po bodu a pfi vykreslovani konkrétniho
bodu, kterému odpovida bod néjakého objektu, pracuje s vektorem pohledu a s vektory
prichoziho osvétleni. Vektori pro osvétleni je tolik, kolik je svételnych zdroji. Vysledné
osvétleni bodu scény je dano souctem piispévki od jednotlivych svételnych zdroji. Pro
kazdy vektor osvétleni je tedy nutné urcit ahly 6;, ¢;, 6, a ¢,, na nichz zavisi prispévky
barvy renderovaného pixelu od jednotlivych svételnych zdroju.
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2.2.1 Vypocet thlia pohledu a osvétleni v rendereru

Kazdy renderovany pixel nalezi renderovanému trojihelniku. Uvazujme vykreslovany bod
scény, kterému odpovida bod V' na povrchu uréitého objektu (obr. 3). Tento objekt je
reprezentovan mnozinou trojuhelnikovych plosek, z nich ozna¢me AV;V,V3 trojuhelniko-
vou plosku, kterda obsahuje bod V. Ozna¢me (Vi)s = (vf,v{,v}), (Va)s = (v3,0Y,v3),
(V3)s = (vi,v4,v3), kde S = (7,7, Z) je ortonorméalni bazi prostorovych soufadnic, sou-
fadnice bodu Vi, Va, V3. Mapovaci funkce Tyy, Tyy (vF, 0¥, 0Z) = (v¥, v?), jim pak piifa-
zuje texturni soufadnice (Vi)r = (vi,v},0), (Va)r = (v¥,0v3,0), (V3)r = (v¥,04,0), kde
7T = (4, v,w) je ortonormalni bazi tfirozmérného prostoru texturnich soufadnic. Pozna-
menejme, ze ploska AV, V4 V3 lezi v roviné dané osami @ a ¢ a jeji norméla 7 je rovnobézné
s osou w. Ze znalosti vztahti mezi prostorovymi a texturnimi soutradnicemi se vyjadii osy
texturnich soufadnic v soufadnicich prostorovych, tj. ¢, = (@)s, t, = (¥)s a t, = ().

Ozna¢me vektory d resp. dl pro smer pohledu resp. osvétleni vyjadrené v prostoro-
vych souradnicich. Projekci vektoru d, na osy t,, ty, ¢, texturnich soufadnic vyjadfenych
v prostorovych souiadnicich pak ziskdme vyjadireni vektoru d, v texturnich soufadnicich
So = (s, 8%, s%) = (do)7. Konetnd z vyjadreni vektoru s; = (do)7 v texturnich sou-
fadnicich vypocteme potiebné uhly 6,, ¢, pomoci vztahii mezi kartézskymi a sférickymi
soufadnicemi

S'U

cosf = sv, sin ¢ = , cos ¢ = )
(s4)7 + (s°)° (54)" + (s)*

2.3 Implementace BTF modulu

Texturni modul je dynamicky linkovand knihovna obsahujici funkci s hlavickou defino-
vanou dle rozhrani pro texturni moduly, kterd je opakované volana béhem renderovani
scény. Jako parametry jsou ji pfedavany texturni soufadnice a thly pohledu a osvétleni,
funkce vraci barvu pixelu pro zadané vstupni parametry.

BTF textura je méfena pro 81 riznych pozic kamery v kombinaci s 81 pozicemi
svételného zdroje. V praxi je ale potfeba vypocitat barvu pixelu pro jiné nez namétrené
kombinace thli. Pro nézndmé thly je barva pixelu iterpolovana z nejblizsich zndmych
pozic principem, ktery je motivovan sférickymi barycentrickymi soufadnicemi [9].

Protoze se jedna BTF textura sklada z 6561 barevnych obrazki, nebylo by efektivni
celou texturu nacitat do paméti. Jako dostacujici se ukazalo implementovat zasobnik
nac¢tenych obrazku pro potfebné kombinace tthli pohledu a osvétleni, pricemz uzivatel
modulu méa moznost ovlivnit velikost zédsobniku.

Poslednim dulezitym krokem pii navrhu modulu byla implementace algoritmu BTF
Roller [5] pro syntézu BTF textur. Vstupni data pro modul musi byt ve formé vzajemné
zaménitelnych texturnich dlazdic, které jsou nalezeny béhem analytické ¢asti algoritmu.

2.3.1 Interpolace barycentrickymi vahami

BTF textura je méfena pouze pro dané kombinace thli pohledu a osvétleni, navic 81
pozic svételného zdroje i kamery, vytvarejici polokouli nad méfenym vzorkem, soucasné
definuje triangulaci polokoule.
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V praxi je pti renderovani BTF povrchi objekti nutné znat barvu pixelu pro libovol-
nou kombinaci pohledu a osvétleni. Vzhledem ke zndmé triangulaci se piirozené nabizi
interpolace, ktera vychézi z principu sférickych barycentrickych souradnic [9]. Interpolace
s vyuzitim sférickych barycentrickych souradnic by byla nejpiesnéjsi, na druhou stranu
ale vypocetné naroc¢na. Nasledujici aproximace se vSak ukéazala jako dostatec¢na.

Predpokladejme nyni polokouli (obr. 4) se stfedem O, na ni bod P odpovidajici po-
zadovanému azimutu a elevaci pro pohled nebo osvétleni, dile oznacme P, P, a Pj tfi
nejblizsi zndme body s naméfenymi hodnotami Yp, Yp, a Yp, a w;, we a ws jejich pii-
spévky pro Yp, tj. Yp = w1 Yp, +woYp, + wsYp,, w1 +wy +ws = 1. S vyuzitim sférickych
barycentrickych soufadnic by byly vihy w; resp. wy resp. ws rovny obsahu sférického
trojuhelniku AP P, P3 resp. APP3P; resp. APP; P, délené obsahem sférického trojihel-
niku AP, P, P3. Upusténim od sférickych barycentrickych soufadnic lze vahy wq, wy a ws
definovat néasledovné:

wy = V="i+V+V,

V?
kde Vi je objem ¢tyisténu PP, P30, Vo objem PP3; PO, Vs objem PP, P,O. Navic kdyz
O =(0,0,0), je V} = % |det(P, Py, Ps)|, Vo = % |det(P, P, Py)|, V5 = % |det(P, Py, Ps)|.

2.3.2 Zasobnik pro BTF data

Texturni modul je navrzen a implementovan tak, ze kazda jeho instance pouziva vlastni
sadu parametru a obrazova data. Aby nebylo béhem renderovani zbyteéné plytvano ope-
ra¢ni paméti pocitace, jsou nactena obrazova data, kde kazda kombinace thlu pohledu
a osvétleni mé unikatni index, ulozena v zasobniku. Zasobnik je implementovan jako dvoj-
smérny seznamu o velikosti definované uzivatelem (obr. 5). Navic pocet obrazi v BTF
texture je 6561, proto je soucasti zasobniku pole ukazateli na prvky seznamu indexované
indexy jednotlivych obrazi. Diky tomu Ize velmi efektivné, bez prochézeni seznamu, zjis-
tit, zda je pozadovany obraz v seznamu.

V okamziku, kdy texturni modul potfebuje obraz s danym indexem, zjisti, zda je
aktualné v paméti. Pokud ne, nac¢te obrazova data. Aby bylo nac¢itani resp. odstranovani
obrazu do resp. z paméti efektivni, je aktualné pouzity obraz s danym indexem piesunut
na zacatek seznamu. Nejdéle nepouzity obraz je vzdy na konci seznamu. Je-li seznam
naplnén, je pred vlozenim dalsitho obrazu nejprve odstranén obraz z jeho konce.

2.3.3 Syntéza BTF textur

Aby syntetickd vystupni textura modulu mohla mit libovolné pozadované rozméry a aby
vypadala stale realisticky jako puvodni textura, byl do modulu implementovan algorit-
mus BTF Roller [5] pro syntézu textur v redlném ¢ase. Ptesnéji, byla implementovana
pouze Cast syntézy, vstupni data pro modul jsou vystupem analytické ¢asti algoritmu.
Pro rozhodnuti, ktera texturni dlazdice se ma pro renderovany pixel pouzit, byl vyuzit
princip Wangovych dlazdic [1].

Pouzitim Wangovych dlazdic lze ziskat deterministicky pfedpis pro aperiodické vy-
dlazdéni libovolné velké plochy kone¢nou mnozinou malych dlazdic. Pro potieby textur-
niho modulu byla vyuzita iterativni varianta publikovanéa v [10]. Pfi inicializaci modulu



Vizualizace BTF textur v Blenderu 43

11 2| 3| 4 N-1 N [ lowdrugn |
~uik pA pU NULL pb ~biL IC:U:Jf—blenderipluginslBTF[S_instancelrelease‘tBTF.dll]
ETF
Output testure
Input tile 4 Fiows 1024 *
[ Fiows 96 e colsto2d |
£ Cols 115 + | ETF directary
|4 Tiles 4  |[e:itt_corduroy |
i Buffer 125 »
A
Lofe—| Iy afs—{ Ig Obrézek 6: Rozhrani BTF texturniho mo-
dulu. Pro spravnou funkei je tieba nastavit
Obrazek 5: Implementace zésobniku pro  velikost a pocet dlazdic, velikost vyrovnéa-
nac¢itani obrazku s BTF daty. Dole dvoj-  vaci paméti, pozadovanou velikost synte-
smérny seznam obsahujici obrazova data,  tické textury a adresar s umisténim textury
nahote pole ukazateli na prvky seznamu. na disku.

je vypocten pocet potiebnych iteraci (v fadu jednotek), pii syntéze je pak pro kazdy
renderovany pixel urcena dlazdice, kterd ma byt pouzita.

2.3.4 Parametry modulu

Pro pozadovany vzhled BTF textury je tieba nastavit nékolik zakladnich parametru
(obr. 6), zejména pocet dlazdic a pozadovanou velikost syntetické textury.

3 Vysledky

Texturni modul spolu s upravou jadra rendereru Blenderu umoznuje pouziti BTF textur
ptimo v prostiedi Blenderu. Pouzitim zde rozumime jejich UV-mapovani na 3D modely
a nasledné fyzikalné spravné, realistické zobrazeni povrchi objekti s BTF materialy.

Obrazek 7 ilustruje pouziti vyvinutého texturniho modulu pfi mapovani a zobrazeni
BTF textur v interiéru modelu automobilu. Pro srovnani lze srovnat s obréazkem 8 se
stejnou scénou, ve které byly misto BTF textur pouzity hladké textury. Na prvni pohled je
patrné, ze pomoci hladkych textur nelze, na rozdil od BTF textur, modelovat efekty jako
odlesky a zménu barvy materidlu v zavislosti na pozorovacich a svételnych podminkach.
Na obrazku 8 si Ize vSimnout nerealnych odlesku na sedadlech, ktera jsou potazena latkou.
Jesté 1épe je rozdil mezi mapovanim a renderovanim hladkych a BTF textur patrny na
detailnéjsim obrazku 10, kde bylo pro srovnani pouzito vice materiali.

Pro vyssi rychlost pti manipulaci s BTFE texturami byl do texturnitho modulu imple-
mentovan algoritmus BTF Roller [5], ktery v sou¢asnosti piedstavuje nejrychlejsi zptusob
syntézy BTF textur.

Pouziti BTF textur v prostiedi Blenderu nijak vyrazné nezpomaluje proces rendero-
vani. Nejvice ¢asu spotiebuje texturni modul pro nacitani jednotlivych kombinaci pohledu
a osvétleni BTF textury z pevného disku pocitace. V prvni verzi, bez optimalizace za-
sobnikem popsanym v kapitole 2.3.2, byla manipulace s texturnimi daty casové velmi
naro¢na. Po optimalizaci se ¢as na vykresleni scény zkratil na 10% puvodniho ¢asu.
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Obréazek 7: Model automobilu s BTF texturami pouzitymi v interieru. Diky BTF textu-
ram lze dosdhnout realistického vzhledu modelovanych objektii.

Obréazek 8: Model automobilu s hladkymi texturami pouzitymi v interieru. Mapovanim
hladkych textur nelze dosdhnout realistického vzhledu jako v ptripadé BTF textur.
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Obrazek 9: Porovnani aplikace BTF textur a hladkych textur. Zobrazeny jsou vysledky
vizualizace testovaci scény véetné umisténi svételného zdroje. V horni fadé jsou mapovany
BTF materialy, v dolni fadé pak odpovidajici hladké textury. Je zfejmé, ze v piipadé BTF
textur vypadaji materidly skutecné realisticky. Dalsi komplikaci je v pripadé hladkych
textur spravné nastaveni shaderii pro jednotlivé materialy, v ptipadé BTF pouziti shadert
odpada.

Obréazek 10: Porovnéni vysledki aplikace BTF textur a hladkych textur. V horni radé
zobrazena opérka a Cast sedadla s namapovanymi BTF texturami, v dolni fadé odpovi-
dajici planarni textura. Zleva postupné pouzity materialy mansestr, latka a cerna kuze.
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4 Zaver

Texturni modul pro podporu BTF textur je vyznamnym piinosem pro oblast pocitacové
nosti vyuziti a prezentace vysledku ruznych metod modelujici a zpracovavajicich BTF
textury.

Implementace texturniho modulu je prvnim krokem pro praktické vyuzivani BTF
textur v libovolnych jiz existujicich 3D modelech a 3D scénach. V dalsi praci je planovano
rozsiteni BTF texturniho modulu i na UNIXové a linuxové platformy, dale rozsiteni o
podporu vicejadrovych procesori a predevsim zobecnéni modulu i pro dalsi metody pro
syntézu BTF textur a dalsi BTF modely vyvinuté v UTIA.
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Abstract. In the paper we consider the problem of spiral crystal growth. This problem is
described by a phase-field model based on the Burton-Cabrera-Frank theory (see Ref. [3]). For
numerical simulations performed in three dimensions, we develop a numerical scheme based
on the finite difference method. We investigate the influence of numerical parameters on the
growth patterns. We present computational studies related to the pattern formation and to the
dependence on model parameters.

Abstrakt. Prispévek se zabyva problémem spirdlového riustu redlnych krystali. Tento problém
je popséan modelem typu phase-field zalozenym na Burtonové, Cabrerové a Frankové teorii (viz.
[3]). Pro numerické simulace jsme vyvinuli numerické schéma, které je zaloZené na metodé
kone¢nych diferenci. Zkouméame vliv numerickych parametri na mechanismus ristu. Nakonec
jsou prezentovany ziskané vysledky.

1 Introduction

There are two fundamental models of crystal growth mechanism: two-dimensional nucle-
ation and layer growth of perfect crystals or spiral growth of real crystals (see Ref. [12],
Chapter 3).

Real crystals contain dislocations which are crystallographic defects in the structure
of the crystal lattice. The presence of dislocations influences the mechanism of crystal
growth. If a screw dislocation is present in the crystal lattice of the substrate, a step with
a zero height at the dislocation core is created. This step winds around the dislocation
and produce a spiral (see Fig. 1).

Recently, crystal growth has been investigated from a mathematical point of view.
For more details, we refer the reader to the works of Guo-Nakamura-Ogiwara-Tsai 5|
and Ohtsuka [9].

*The work was partly supported by the project No. MSM 6840770010 “Applied Mathematics in Tech-
nical and Physical Sciences”, and by the project No. LC06052 “Jind¥ich Necas Center for Mathematical
Modelling”, both of the Ministry of Education, Youth and Sports of the Czech Republic.
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2 The model

Classically epitaxial crystal growth is modeled using Burton-Cabrera-Frank (BCF) theory
(see Ref. [1]). According to that theory atoms are first adsorbed to the crystalline
surface. Such atoms are called adatoms. Then they diffuse freely along the surface
and they can either desorb from the surface with a probability 1/75 per unit time, or
they are incorporated into the crystal at one of the three sites: ledge site, step site or
kink site. Incorporation at a kink site will be the most energetically favorable. Two-
dimensional growth occurs only at relatively higher super-saturation when random nuclei
are generated on existing flat surface.

The BCF model consists of a diffusion equation for the concentration of adatoms, as
well as two boundary conditions at the growing steps:

Oc = DAc— ic + F, (1)
Ts
in the domain S and
¢ = ceg(14+ KQy/kpT), (2)
v o= DO - ) ®)

on+  On—

on the interface I'(t). Here, ¢ is the density of adatoms on the surface S, D is the
surface diffusion coefficient, 74 is the mean time for the desorption of adatoms from to
the solution, F' is the deposition rate, c., is the equilibrium concentration for a straight
step, k is the curvature of step I'(¢), €2 is the area of a single atom,  is the step stiffness,
kgT describes the thermal energy for a fixed temperature 7" and v,, is the normal velocity
of the step and ;2% is the normal concentration gradient on the lower (+) and upper (—)
side of the step.

Direct numerical simulations of the sharp-interface problem (1) — (3) are difficult,
since the position of the step has to be tracked explicitly (see Ref. [3]). The BCF model
described above can be replaced by a phase field model where a higher-dimensional order
parameter function ®(x,y,t) is introduced whose values indicates the phase at a given
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position. In our case, the phase field ®(x,y,t) describes the height of the epitaxial solid
by the number of monoatomar layers. The phase-field model was previously used by Liu
and Metiu [7] for one-dimensional step train, then enhanced by Karma and Plapp [5].
This model, which represents a system of parabolic partial differential equations, has the
form

dc = DAc— = +F—Q7'9,0, (4)
Ts
ad® = AP + sin(2n(® — D)) + Ac(1 + cos(2m(® — Dg))), (5)

in the domain S, where « is the time relaxation parameter, £ is the width of steps between
terraces, ®g is the height of the initial substrate surface and A is the coupling constant.
The boundary conditions are given by

dc 0P
%(t,x)—%(t,x)—O,te(O,T),xE@S. (6)

The initial conditions are given by

c(0,z) = 0,z€8, (7)
®(0,z) = Pg(z),z€S. (8)

3 Numerical scheme

We use an explicit scheme of the finite difference method to solve the free boundary
problem of epitaxial crystal growth. The first step in the discretization is to divide the
problem’s domain into a two-dimensional grid and then derivatives are replaced with
equivalent finite differences.

We consider the problem’s domain S to be a rectangular domain (0, L;) x (0, Ls)
which is to be discretized. We partition the domain S using a grid of internal nodes
wp = {(ihy, jho)li=1,..,N; — 1,5 =1,..., Ny — 1}, where h; = h2 = % are the mesh
sizes in S. We discretize the time interval using a mesh [0, T] = {kﬂk =0,...,Np},
where 7 = NLT is a time step. Then we can consider a grid functlon u:T; xwp, — R for
which uf‘] = u(ihy, jho, kT).

The time derivative is approximated by forward difference

u; v
dyuf; ~ ——4

and the space derivatives are approximated by second-order central differences:

2u +u
2,k ~o H—lj i—1,5
8xum ~ h2 )

2u +u
2,k ~ 1]-&-1
Iy uz; = nE

zgl

Then the Laplace operator in two dimensions is given by Apu®;; = d2uf; + d2ul;.
The explicit scheme has the form
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dF+l _ @k
a——3 = ¢ Ahfbk —|—sm(27r(<1>k % )
T J
—i—)\cij( + cos(27r(<I>f- — <I>k ))) 9)
k+1 _ k k; k+1 k
ciTe — ok O} PF.
S = Dy - + O L B — (10)

fori=1,...Ny—1,7=1,..., No— 1,k =0,..., Np.
Discretization of the epitaxial crystal growth problem leads to a system of equations

5 (I)erlJ + CDZ ,J+1 4@1@ + (I)kj 1 + CD

k1 gk
b= ey ! h?
T .
—i—asm(27r(<bfj — @@J))
TA & &
+—ck (1 + cos(2m(®3; — Py, 1)) (11)
!
cFo ek — Ak —|—cl + k-
CZ‘H _ c 47D +1J J+1 h2 J—1 Lj
k+1 k
T k i — 0
L F---__ Y 12
TSCZJ+T 0 (12)

fori=1,...Ny—1,7=1,..., No—1,k=0,..., Ny. That means we can obtain the values
at time k + 1 from the corresponding ones at time k.

For h = hy = hy this explicit method is known to be numerically stable and convergent
whenever % < 1 and T(4DS + ) <1

The boundary conditions are treated by mirroring the values in the inner nodes across
the boundary.

4 Numerical results

In the numerical experiments we investigated the influence of the parameter 74 to the
spiral growth. First, transient dynamics is quantified by defining the so called surface
width w(¢) which is the mean fluctuation of the surface height

w(t) = (@ 1 — (@, 1))

where (f) = L™ [ fdz. (L = h(N — 1) = 50) (see Fig. 3).

Next, the parameters are set up as follows: Q = 2.0, « = 1.0, £ = 1.0, A = 10.0,
Dg = 2.0, F = 3.0, 7 = 0.00025, Ny = 100000, so that T" = 25. The dimensions of wy,
are 100 x 100 and the spatial step size is set to 50/99. The initial height of the substrate
®g is formed by w for the dislocation. We observed two distinguished growth
regimes. As can be seen in Fig. 3 for small 7g, the spiral finds its final step spacing [
essentially after a single rotation. In contrast, for very large 7¢ the transient spiral ridge
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Figure 2: Comparison of transient dynamics for different desorption times. Green line:
75 = 0.1, the surface width quickly levels off and remains constant. Red line: 74 = 10,
the surface width changes slowly in time.

evolves slowly towards a spiral with a constant [. This surface evolution is demonstrated
in Fig. 4.

From these numerical simulations we conclude that step spacing is dependent on
desorption time. The larger desorption time is, the smaller the step spacing is. Finally,
we would consider elastic deformation of the solid generated by the misfit strain between
atoms in the epitaxial layer and the substrate and include it to the model.



52 D.H. Hoang

t =25 t=5
50 2,5 50 4.5
48 48

3.5

3
30 1.5 38

2.5

2
20 28

1.5
10 g.5 18 e

0.5
] o ] o

8 18 28 30 48 56 ] 18 20 38 48 56

(a) (b)

FY

na

=9

t=7.5
50 7 18
9
6
a8
8
5
7
30
4 6
5
20 3
4
2
18 a
1
2
8 o 1
8 108 28 38 48 50

(c) (d)

Figure 3: Spiral ridge at different times ¢ for 7 = 0.1. Colour palette represents the
surface height.
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Abstract. Exploitation of the data assimilation methodology in the field of radiation protection
is studied. When radioactive pollutants are released into the atmosphere, a radioactive plume is
passing over the terrain. In order to ensure efficiency of introduced countermeasures, it is nec-
essary to predict spatial and temporal distribution of the aerial pollution and material already
deposited on the ground. The predictions are made by the means of numerical dispersion models
with many inputs. A group of the most significant input parameters affecting the dispersion
process was selected using available sensitivity and uncertainty studies performed on dispersion
models. Exact values of these parameters are uncertain due to the stochastic nature of atmo-
spheric dispersion, hence the parameters are modeled as random quantities. Data assimilation
is the optimal way how to exploit information from both the measured data and expert-selected
prior knowledge to obtain reliable estimates of the input parameters. Early identification of the
parameters is essential for reduction of uncertainty of the radiation situation predictions. In this
paper, sampling-importance-resampling algorithm (particle filter) is used to evaluate posterior
distribution of estimated parameters and improve their estimates on-line as the plume is passing
over the stationary measuring sites. The algorithm is tested on an artificial release scenario.

Abstrakt. Prispévek pojednava o vyuziti data asimilace v ¢asné fazi radia¢ni nehody. V pii-
padé vzdusného tniku radionuklidii se utvori mrak postupujici nad terénem. V ramci zajisténi
ochrany obyvatelstva formou vhodnych protiopatieni je nutnd znalost pfedpovédi ¢asového a
prostorového rozlozeni radionuklidi. Predikce se pocitaji pomoci numerickych disperznich mod-
eli s mnoha vstupy. Na zakladé studie citlivosti a neurcitosti provedené na disperznich modelech
byla vybrana podmnozina nejdilezitéjsich vstupnich parametri. Jejich pfesnd hodnota je kvli
stochastické povaze atmosférické disperze neznama a tak jsou tyto parametry modelovany jako
nadhodné veli¢iny. Data asimilace je optimdlni zplisob vyuZziti expertné volené apriorni informace
a dostupnych metenych dat k ziskidni zpfesnénych odhadii vstupnich parametri modelu. Jejich
vCasnd identifikace je stézejni pro redukci neurcitosti v predpovédich. V prispévku je demon-
strovano vyuziti sampling-importance-resampling algoritmu pro odhad posteriorni distribuce
odhadovanych parametri a vylepsovnani jejich odhadu on-line v pribéhu postupu mraku nad
terénem. Algoritmus je testovan na scénafi simulovaného tniku.

1 Introduction

During the operation of a nuclear power plant, there is a potential for accidental release
and dispersion of a nuclear material into ambient atmosphere and exposure of population

*This work has been supported by the grant GACR No. 102/07/1596 and the MSTM project 1M0572.
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to the ionizing radiation. The radiation dose received by the public as a consequence
of a release comes mostly from five sources: External y-radiation from the plume (cloud
shine); external v-radiation from radioactive material deposited on the ground, trees,
buildings (ground shine); inhalation of radioactive material; external o, $ and v from
radioactive material deposited on the skin and ingestion of contaminated foodstuff.

The time lapse of a nuclear release can be split into two major phases. The first
phase, the early phase, covers the first few hours or days and lasts until the radioactive
cloud has passed the area of interest. During this phase, the irradiation from cloud shine,
ground shine, skin contamination and inhalation are most important. The second phase,
the late phase, lasts until the radiation levels resumes back to levels of background. In
this phase, dose from ground shine and ingestion becomes important. Negative impacts
on population health are averted by the means of countermeasures introduced as soon as
possible after or even before the expected release. These can be iodine prophylaxis, food
bans, sheltering or evacuation.

The unavoidable condition for application of effective countermeasures is knowledge of
spatial and temporal distribution of radioactive pollutants. Former accidents on nuclear
facilities revealed unsatisfactory level of the decision support, both in hardware equip-
ment (reliable communication channels, computation techniques) and also deficiencies in
software decision support systems (DSS). Great attention to this topic is paid since the
Chernobyl disaster. DSS is a software tool including a mathematical model for predic-
tion of radionuclide spreading in the environment [9]. It can embody different subsystems
for evaluation of expected consequences in terms of demographic or economic statistics.
Output from the system should provide to responsible authorities a rational basis for
coordination of countermeasures [11], |7].

Data assimilation is a way how to increase reliability of such predictions in both the
early and the late phase of an accident [13]. Recent development in hardware allows us to
implement assimilation algorithms based on methods earlier computationally prohibited
like sequential Monte Carlo methods |3]. Marginalized particle filter [12] was used here
to estimate model error covariance structure in a parametrized form. Data assimilation
is the optimal way how to exploit information from both the measured data and expert-
selected prior knowledge to obtain reliable estimates. This paper studies exploitation
of the data assimilation in the early phase of an accident when the radioactive cloud is
passing over the terrain.

The outline of this paper is as follows. Problem statement is given in Section 2. Atmo-
spheric dispersion model and methodology of calculation of cloud shine dose are described
here. Section 3 briefly discusses particle filter and puts it in the scope of the Bayesian
filtering. Section 4 presents a particular assimilation scenario and numerical experiment
with simulated measurements. Conclusion and future work is given in Section 5.

2 Problem statement

Assume an accident in a nuclear power plant followed by aerial release of radionuclides.
After the release, there is a radioactive cloud passing over the terrain. The spatio-
temporal distribution of radionuclides is modeled by the means of numerical dispersion
models in order to determine appropriate countermeasures. Output of such a model is a
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prediction of radiation situation given in terms of radiological quantities. Assume that
the radiological quantity of interest is the continuous activity concentration in air C'(s, t),
where s = (s1, S92, $3) is a vector of spatial coordinates and ¢t = 1, ..., tyax is the time
index. Concentration of activity is important radiological quantity which can be used
for calculation of some other quantities like deposition or doses from different pathways
of irradiation. The concentration itself is a difficult quantity to measure, therefore the
measuring devices are designed to measure the y-dose rate. It has well developed mea-
suring methodology. These measurements can be provided by stationary measuring sites
or mobile groups [10].

For computational reasons, the continuous quantity C(s, t) is evaluated only in a set
of M points of a computational grid in time ¢. Values of C(s,t) in the grid points are
aggregated in vector C;. The available measurements of time integrated ~y-dose rate at
time ¢ are aggregated in vector y,. We can employ data assimilation and use the sparse
measurements to improve reliability of model predictions and thus allow for introduction
of effective countermeasures in the actually affected areas.

The evolution of C(s, t) is modeled by a dispersion model which is parametrized
by a set of parameters ©;. These parameters reflect physical processes involved in the
atmospheric dispersion, atmospheric conditions and conditions of the accident in each
time step t. Exact values of the parameters are uncertain due to stochastic nature of
the dispersion, lack of accurate information, etc. Typically, the choice of values of these
parameters is subject to an expert opinion. The subjective choice of parameter values
can introduce significant errors into the predictions. To avoid this, we apply Bayesian ap-
proach and treat the parameters as random quantities. We attempt to estimate parameter
distributions in consecutive time step from measurements. The number of parameters is
potentially large but a restricted subset 8; C ©,; of the most important parameters can
be found for specific scenario [8].

Since all uncertainty is modeled by probability distributions, the appropriate data
assimilation methodology is the Bayesian filtering. The introduced scenario fits into
the family of state-space models. Realization of the process at time t contains all the
information about the past, which is necessary in order to calculate the prediction of
future evolution. State vector x; of the system comprises of the two components x; =
[C,0;]". The model of integrated y-dose rate measurements y, is given by the probability
density function (pdf) p(y,|z;).

2.1 Evolution of state

Evolution of the state is given by the transition pdf p(a;|x;—1):

p(wt’wtfl) = P(Cm Ot‘ctfla 0&1)
= p(Cy|Ci-1, 04, 0,1)p(60:|Ci—1, 0:_1) (1)

Under the choice of atmospheric dispersion model Capn(6;) and its parameters 6;, the
evaluation of C, is deterministic:

p(Ct‘thla 0., Otfl) = 5(Ct - CADM(et)) (2)
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Time evolution of 8, is given by the pdf p(6;|6;_1). Under the choice of time invariant
parameters (6; = 0), the transition pdf gets the form p(6,;|6,_1) = 6(6; —80). The process
is initialized with prior pdf p(0y), typically covering wide range of possibilities.

We chose the Gaussian puff model (GPM) for the atmospheric dispersion model. Tt
is based on approximative solution of the three dimensional advection-diffusion equation

[1]:
Q [o(t) R(t) 1| (51— ut)’ 52\ s3)°
C(s, 1) = 21 vl =3 (1) + () (2)]F @
(27T)§081 Osy Osy 2 Os Osy Osg
where ¢ is time index, @) is the total released activity in Bq and wu is the wind speed.
Dispersion coefficients {og, }|i=1,2,3 are functions of distance from the source. Factor
fp(t) stands for radioactive decay, dry and wet deposition. The last term R(t) accounts

for homogenization of the vertical profile of concentration due to the reflections from the
top of mixing layer and the ground. See [4] for more details.

2.2 Measurement model

Measurements are assumed to be normally distributed and mutually independent given
the state x;. Errors of measurements are set proportional to the their values with an offset
term modeling the background radiation superposed to the actual dose measurements

Yy, ~ N(Dy, (D)), (4)

where N (a, ¥) is a multidimensional normal distribution with mean value @ and a co-
variance matrix . D, is a vector of measurements of time integrated absorbed 7-dose
in all the measuring sites available in time ¢. If the released nuclide is a noble gas, there
is no deposition and we don’t have to assume ground shine from deposited material. In
this case, the measured quantity is just the y-dose from cloud shine. The time integral
of absorbed v-dose rate in tissue from a mixture of radionuclides emitting photons on
different energy levels E, jis

t
K;ig: E. ;
Dio= [ 30 SIS 0y (C s, ) o )
t=1 I

where K, p,; and ®; are conversion coefficient, absorption coefficient and effective flux
of gamma rays, respectively. Subscript j stands for the fact, that the particular values
depend on the energy level E, ;. Summation is over assumed energy levels and p is
the mass density of air. Equation (5) defines the observation operator converting the
concentration in Bgm ™3 to the time integrated ~y-dose in Gy.

The general expression for ® at a receptor located at § = (81, S5, §3) from a source of
energy E., dispersed in air is

@@@&ﬂw:ﬂyﬂmﬂ&wW@mwﬂmm“& o

4t 2
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where r? = (81 — s1)? + (52 — s2)* + (83 — s3)?, f(E,) is the branching ratio to the specific
energy, u is the attenuation coefficient of air, B(E.,, ur) is the dose build-up factor, C(s)
is the radionuclide concentration in Bgm ™3 of isotope being considered. The build-up
factor can be calculated from Bergers analytical expression

B(Ey, pr) =1+ apr exp(bpur), (7)

where coefficients p1, a and b depend on E,. Energy dependent absorption coefficient f,
is calculated as

uazu/{Hﬁ]- (8)

The simplicity of used Gaussian puff model (3) allows for numerical evaluation of integral
(6) on a compact support where the concentration is not negligible. If the radioactive
plume is large compared to the mean free path of the y-rays, then the semi-infinite cloud
approximation of effective flux can be successfully used. See [5] for more details.

3 Data assimilation

Bayesian approach to data assimilation is based on representing uncertainty in the state
via probability distribution. When no measurements are available the probability distri-
bution of the considered state (the prior) must be rather wide to cover all possible realiza-
tions of the state. Each incoming measurement brings information about the “true” state,
reducing the original uncertainty. In effect, with increasing number of measurements, the
posterior pdf is narrowing down around the best possible estimate.

Formally, the prior distribution p(x) is transformed into posterior pdf p(x;|y,.,) using
measurements y,., = {y,, ..., y,} by recursive repetition of the following steps:

Py ) = /p(wt’wtl)p(wt1‘y1:t—1)dwt1 (9)

P(Yi| ) p(2e| Y1)
fp Y|z p(xe| .,y )de,’

The process is initialized by prior p(xo).
Evaluation of (9) and (10) involves integration over complex spaces and often it is
computationally infeasible. Suboptimal solution can be found by the means of sequen-

tial Monte Carlo methods also known as particle filters [2]. Particle filters numerically

approxunate posterior pdf p(x;|y,.;) using a set of particles azg ) and importance weights

forz—12 , IN:

p(@e|y,,) = (10)

p(xe|yo.) ~ Zwt «’Bt—wgz))a (11)

where §() is the Dirac o-function. The particles wgi) are drawn from a proposal pdf

q(x¢|y,..), which can be an arbitrary pdf the support of which includes the support of
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p(x¢|y,..). Under this approximation, the integral equations (9)—(10) reduces to drawing
new particles at each time ¢ and simple re-evaluation of the importance weights:

(i) QIR0
i i Pyl )p(e,|2,24)
wﬁ) x wt(_)l L GO = (12)
q(xy |21, Yre)
Here, oc denotes equality up to multiplicative constant. This constant can be easily
computed to assure that S wt(z) = 1. Equation (12) can be further simplified to
wi” oc w p(y,|2”) by choosing q(wly,,) = p(a|ziy).
The approximation is easily extendable for prediction. Predicted pdf of the state at
time ¢ + k is then approximated as

N
P(Teik|Y1e) = Z wt(l) o(Ter — wgk)> (13)
i=1

(4)

where particles @,

. are recursively generated from p(a:t|a3§?1).

4 Numerical experiment

For purposes of numerical experiment was chosen assimilation scenario with an instanta-
neous release of *' Ar. Numerical experiment is conducted as a twin experiment, where
the measurements are simulated via a twin model and perturbed. Convergence of radi-
ological quantity of interest—' Ar activity concentration in air—evaluated on basis of
estimated parameters to that produced by the twin model can be then assessed.

Since the argon is a noble gas, there is no deposition and consequently no ground
shine. The released activity is propagated via Gaussian puff model, (3). Half life of decay
of M Ar is 109.34 minutes. According to the TORI (Tables Of Radioactive Isotopes)
database, there are more energy levels of v radiation produced by isotope *'Ar. We
assume just the energy level 1293.57keV with the branching ratio 99.1%. The rest being
included in the 0.9% is neglected and the summation over energy levels in (5) can be
omited.

The topology of measuring sites is similar to that of the Early Warning Network of the
Czech Republic [10]. The source of simulated release is a nuclear power plant surrounded
by almost fifty stationary measuring sites capable to measure time integrated ~y-dose (5).
Measuring sites are located more or less regularly in the area of radius 10km around the
source. The time step of assimilation algorithm was set to 10 minutes and the time horizon
tamax=6 (60min). Measuring devices are assumed to integrate the y-dose in 10 minute
intervals and then send measurements on-line to the quarters of crisis management. The
height or release is 50m and the magnitude of release Q—=1.0E+10Bq of *! Ar. We assume
no vertical velocity or any significant heat capacity of the effluent and the effective height
remains 50m during the puff propagation. The time horizon spans up to 1 hour after the
release start. It means, that we performed 6 assimilation cycles consisting of time and
data update steps.
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4.1 Parametrization of atmospheric dispersion model

A group of the most significant variables affecting the dispersion process (including meteo-
rological inputs) was selected using available sensitivity and uncertainty studies performed
on Gaussian dispersion models [8]. Variables of the dispersion model Cxpy treated in
this numerical example as uncertain are: magnitude of release (), horizontal dispersion
coefficients oy, |;—=1,2 and also two meteorological inputs: wind speed v and wind direc-
tion ¢. Their parametrization via vector of random parameters 6; = (wy, &, ¥y, ¢;) and
location parameters (Q, o, @0, 0s,,|i=1,2) is listed in Table 1. The parametrization was

variable | physical effect parametrization

Q magnitude of release | ) = w; Qo

U wind speed u=(14+0.1&)up+0.5&

) wind direction O = ¢o + A, Ap = 1), (2m/80) rad.
0s,li=1,2 | horizontal dispersion | o, = (; 05, |i=1,2

Table 1: Parametrization of selected variables and inputs to the ADM.

selected according to that in the UFOMOD code [6]. Location parameters refer to the
prior initialization of the variables. All the random parameters are treated as time con-
stant: 6, = @, even the parameters & and 1, concerning uncertainty in meteorological
forecast. In case of time horizon of several hours, the assumption of stationarity of the
meteorological condition vanishes. Parametrization of the meteorological data has to be
fragmented into shorter time intervals (usually hourly intervals) where the assumption of
stationarity holds.

The set of parameters O@rwin used for evaluation of the twin model simulating mea-
surements is

Orwin = (0.72, —0.17, —8.3, 1.3). (14)

The comparison of initial Capy; inputs with the initial setting and the twin model is
in Table 2. The real release was smaller in magnitude, with the lower wind speed,
directed by approximately 37deg anticlockwise and the puff dispersed more than was
apriori assumed. Horizontal dispersion parameters o, and oy, are functions of distance

variable | physical effect prior val. param. value true value
Q released activity 1.0E+10Bgq 0.72 7.2E+09Bq
u wind speed 3.10m/s -0.17 2.96m/s
0] wind direction 310.0deg -8.3 272.7deg
0s;|i=1,2 | horizontal disp. | o5, = 0, (dist)|i=1,2 1.3 o5, = 1.3 04, ]i=1,2

Table 2: Values of variables of the initial model setting and the twin model.

the from source. The total number of N = 1000 particles was initialized with random
vectors {O(Z), i=1,...,1000} with elements generated according to the pdfs in Table 3.
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parameter | physical effect pdf type | mean value std. dev.
W magnitude of release | log-normal 1.0 1.0 (30 truncated )
& wind speed uniform 0.0 1.0
Uy wind direction uniform 0.0 10.0
G horizontal dispersion | log-normal 1.0 1.0 (3¢ truncated )

Table 3: Prior distributions of estimated parameters 6; = (wy, &, ¥, ().

4.2 Results

The results are visualized in terms of the time integral of ground level concentration of
activity in air (TIC):

TIC(s) = / C(s, 7)dr. (15)

0

Computational grid is a rectangular grid of dimension 41 x 41 grid points with the grid
step 1km. The source of pollution is placed in the center of the grid.

In Figure 1 left we can see the TIC evaluated by the atmospheric dispersion model
without the data assimilation and with initial setting of variables ) = @y, u = wuy,
¢ = ¢o and 0y,)i=1,2 = 0,,li=1,2. This is done by setting & = (1.0,0.0,0.0,1.0, ), see
Table 1. In Figure 1 right is the TIC evaluated by the twin model used for simulation
of measurements. In Figure 2 are visualized assimilation results. Assimilation results are
presented in the form of expected value of TIC with respect to the predictive densities
at different time steps. Expected value of prediction of TIC displayed in Figure 2 top
left are based only on the measurements y,. Even at this stage, the wind direction was
correctly recognized, however other parameters, such as parametrization of @), are still
too uncertain and the prediction differs from the twin model. With increasing time the
measurements provide enough information and the expected values of TIC are converging
to the twin model.

i i win model 60 min
20000 Mathematical model 60 min Le4005 5505 L 1e+005

15000 15000

10000 10000
10000 10000

5000 - Lk 5000

1000 Y Hi \ 1000
IR T .t -.g. — o0
-5000 2 } on ~5000 . 2

-10000 -10000

~15000 -15000

~200%,550-1 1 5000 10000 15000 20000 ~200%506-15000-10000 5000 5000 10000 15000 20000

Figure 1: Predicted TIC based on initial values without the data assimilation (left) and
the twin model (right).
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Analysis 10 mins Analysis 20 mins Analysis 30 mins

20000 1e+005 20000 le+005 20000 1e+005

15000 15000 15000

10000 10000 10000
10000 5 10000 % 1ooo0

5000 - 2. 5000 « * 5000

Y b
-5000 ) ) 100 -5000 . e 200 —5000

1000

100

~10000 ~10000 —10000

~15000 -15000 —15000

1

- = -200
200%660-15000-1 5000 10000 15000 20000 20008666-15600- 5000 10000 15000 20000 %%0900-15000-10000 -5000 5000 10000 15000 20000

i i Analysis 50 mins Analysis 60 mins
— Analysis 40 mins i 55600 ia 08 o~ ——

15000 15000

10000 10000 10000

10000 10000 10000

5000 . 5000 5000

= o e . 3 100
| 100 _5000 n 5 100 ~5000 .

1000

~5000

~10000 g ~10000

-10000

-15000

~15000 -15000

= —20000 - -
1 2000)566-15000-10000—5000 5000 10000 15000 20000 *%5000-15000-T 5000 10000 15000 20000

~200%% 5601 5000 10000 15000 2000

8

Figure 2: Predicted TIC based on assimilation at t = 1,2,3,4,5, 6, respectively.

5 Conclusion

Rapid assessment of the situation in case of an aerial release of radionuclides is crucial
for planning of countermeasures. Introduced Bayesian methodology has very interesting
properties suitable for this scenario. Specifically, it allows joint estimation of spatio-
temporal distribution of activity and parameters of the dispersion model. Thus, we obtain
assimilated estimate of the radiation situation on the terrain and a way how to easily ex-
tend this estimates to predictions on an arbitrary horizon. The presented scenario clearly
illustrates the power of the method. However, a lot of work is required to incorporate
the method to the existing decision support systems. We foresee the core of the work in
development of more realistic models of the state evolution and the measurements. For
example, more realistic scenarios should consider a mixture of radionuclides and extended
set of uncertain variables. Such extension of the model inevitably increases complexity
of the implied algorithm which may lead to computational difficulties. These may be
overcome with exploitation of recent developments in the filed of sequential sampling,
such as adaptive resampling or problem specific proposal densities.
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Abstract. In the Semantic web paradigm data are described by ontologies. The ontologies may
be subject of changes. The paper deals with storing information about changes and querying
stored information. Specifically, it propose a method for binding information about changes to
a signature (set of symbols from the ontology).

Abstrakt. V kontextu Sémantického webu jsou data popsana ontologiemi. Tyto ontologie mohou
podléhat zménam. Clanek se zaobira zpusobem jak uchovavat informace o téchto zménach a
jak je dotazovat. Konkrétnéji navrhuje postup, jak vztdhnout informace o zménach k mnoziné
symbolim z ontologie (signatufe).

1 Uvod

Mnozstvi informaci na webu se stale zvétsuje. Jiz davno se neni mozné na webu oriento-
vat bez pomoci specializovanych aplikaci jako jsou vyhledavace. Nejcastéji pouzivanymi
nastroji pro orientaci na webu, fulltextové vyhledavace, indexuji obsah podle slov ob-
sazenych v dokumentech na webu. Tyto specializované nastroje maji problém rozlisit
riznou sémantiku slov vyplyvajici napr. z kontextu. P¥i zvétSujicim se mnozstvi infor-
maci se méné obvyklé vyznamy vyhledavaji hute. Integrace informaci z vice zdroju jesté
vice zduraznuje chyby pfi ur¢ovani sémantiky dat na webu. Mnozstvi dat na webu velmi
rychle roste a stejné tak se na web dostavaji nové druhy informaci, proto se v budoucnu
bude problém s ur¢ovanim sémantiky dat a integraci dat zvétSovat.

Jiz dnes vSak existuje reSeni, které je schopno vySe popsané problémy fesit souc¢asnymi
prostiedky. Toto FeSeni se nazyva Sémanticky web [1] a spociva v poskytovani dat v presné
daném strojové citelném formatu. Samoziejmé forméat dat je urcen pouze ramcové, aby
mohl pokryt vétsinu informaci, jez se na webu vyskytuji a vyskytovat budou. Presnéjsi
urceni formétu dat se provadi pomoci jazyka RDFS nebo OWL a konkrétni zadani dat
pak pomoci jazyka RDF. Aplikace postavené na technologiich sémantického webu budou
schopny provadét daleko lepsi hledani a integraci informaci dostupnych na webu. Séman-
ticky web tedy poskytuje jiz dnes dostupné feseni, jak prekonat vySe zminéné problémy
webu klasického.

Data na sémantickém webu lze popsat za pomoci ontologii |2| vyjadienych jazykem
OWL. Ontologie umoznuji definovat vztahy v datech a zéroven z existujicich vztahu
vytvaret vztahy nové. Ontologie neslouzi jen k definici moznych vztaht v datech, ale
hlavné k integraci dat popsanymi pomoci spole¢né ontologie. V prostredi sémantického
webu je tedy mozné integrovat data z rozlicnych oblasti, pokud jsou popsany pomoci
propojenych ontologii. Zptusobem jak vytvorit spole¢nou ontologii urc¢enou k integraci
dat se zaobira proces integrace ontologii. Protoze integrace ontologii je pomérné naro¢ny

65
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proces Casto s nutnou ucasti doménového experta, je snaha se mu vyhnout pouzivanim
relativné malého mnozstvi ontologii. Tyto ontologie by mély byt vytvoreny odborniky
v oboru (doménovymi experty) a pouZivany pro velkou §ifi aplikaci. Vyvojaii konkrétni
aplikace ¢asto nemaji dostatek znalosti k ipravam ontologie a musi se spoléhat na spravce
ontologie.

Existuji oblasti, které lze presné popsat ontologiemi, které nepodléhaji zménam napi.
genealogie. OvSem mnozstvi oblasti se vyviji a jejich ontologie nemohou zustat neménné
napi. vyrobky v obchodech mohou ziskat nové vlastnosti nebo mohou zacit pattit do
nové vytvorené kategorie zbozi. Tyto zmény casto zavadéné spravcem ontologie piimo
ovlivigji funkei aplikaci, které tuto ontologii vyuzivaji. Proto je dilezité védét jak byly
zmény zduvodnény, kdo je provedl i kdy byly provedeny a dalsi idaje souhrnné zvané
provenance ontologie zaznamenavat.

Tento Clanek se zabyva zpiusobem jak zmény v ontologii zaznamenat a jakym zpiso-
bem je lze dotazovat. Konkrétnéji se zabyva myslenkou jak vztdhnout zmény v ontologii
k néjakému symbolu z ontologie.

1.1 Provenance ontologie

Slovo provenance pochazi z francouzského slova provenir, které znamena pochéazet. Toto
slovo se pouziva k oznaceni zdroje, puvodu, nebo i puvodce néjakého objektu. Postu-
pem casu se, ale toto slovo zacalo pouzivat i pro informace o historii objektu a obecné
pro vS8echny udalosti, které objekt v ¢ase provazely. Hlavnimi oblastmi, kde se sledovani
provenance pouziva, jsou pravni teorie (pro zabranéni manipulace s dikazy), umeéni (ové-
feni pravosti dila), archivélie (ovéfeni, kdo mél k dokumentium piistup a jaké jsou jejich
zdroje) i véda (citace, odkazy na prvotni puvod myslenky).

Provenance se pouziva i pro data. Naptiklad v datovych skladech se vyznacuje, kdy a
z jakého zdroje byla konkrétni data pofizena. V rozsifeném vyznamu pak provenance pro
data muze oznacovat informace o zdrojich dat, osobach jez mély k datum piistup, apli-
kované transformace a algoritmy na datech, atd.. Data provenance tedy napi. umoznuje
prenaset diuvéru ve zdroje dat a algoritmy na vystupni data.

Jak je jiz vySe zminéno i ontologie podléhaji obcas zméndm, a proto je pfirozené
uchovavat provenanci i pro né. Uchovavani informaci k ontologii ndAm umoziuje:

e Zkoumat historii zmén a poucit se z ni. Nékteré zmény totiz mohou mit i nechtény
dopad a miize byt dulezité védét, jak byly zduvodnény.

e Zjistit dopad konkrétnich zmén. Protoze zména jediného axiomu v ontologii miize
zménit vyznam mnoha dalSich axiomii.

e Zkontrolovat, zda provedené zmeény jsou opravnéné.

Samotna ontologie se sklada ze dvou ¢asti. Prvni ¢ast je mnozina tvrzeni TBOX,
kterd definuje tvrzeni o konceptech a relacich. Prikladem tvrzeni v této mmnoziné muze
byt véta, ze vsichni lidé jsou smrtelni.

MAN C MORTAL
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Druhou ¢asti ontologie je mnozina tvrzeni ABOX, kterd ptifazuje konkrétni prvky
ontologie ke konceptum a relacim z TTBOX. Piikladem muze byt naptiklad véta, ze
Aristoteles je ¢lovek.

Aristoteles € M AN

Tvrzeni z obou mnozin budu dale v ¢lanku nazyvat axiomy ontologie.

Jelikoz cela ontologie je v podstaté jen mnozina axiomi, tak lze zmény v ontologii
z0zit na zmény v axiomech. Pfi zméné v ontologii muze byt jeden nebo vice axiomu sma-
zano, pridano nebo prepsano. Komplexnéjsi zmény ontologie mohou byt slozeny ze dvou
zakladnich operaci — smazani axiomu a vlozeni nového axiomu. Zménu axiomu lze totiz
nahradit odebranim jeho staré verze a vlozenim nové. Provenanci k ontologii lze tedy
vztdhnout ke konkrétnim axiomtum. Jednotku provenance, kterda popisuje néjakou kon-
krétni udalost nazveme provenanc¢ni atom. Jelikoz s axiomy lze provést jen dvé operace,
tak nam staci k jednomu axiomu navazat dva provenan¢ni atomy (vyznacujici udalost
ptidani axiomu a udéalost odebrani axiomu).

1.2 OWL anotace

Pro ukladani provenance k axiomum miuzeme pouzit libovolnou databézi. Protoze jsme
v prostiedi sémantického webu, tak se pfimo nabizi vyuzit jeho existujici technologie a
provenanci ukladat do oddélené ontologie (tedy do RDF souborta popsanych specifickou
ontologii). Ukladani provenance k ontologii do oddélené ontologie s vlastnim datovym
modelem je vyhodné, nebot umoziuje pouzit pro vyhledavani a odvozovani v téchto
informacich logického mechanismu ontologie.

Propojeni provenance s puvodni ontologii lze realizovat dvéma zptisoby. Prvnim z
nich je reifikace (reification) axiomi, ktera v nové ontologii vyjadii syntaktickou podobu
puvodniho axiomu a k této popsané strukture pak pridava nové vlastnosti.

Z axiomu MAN C MORTAL se tedy stane sada axiomu

CLASS(mortal)

CLASS(man)

SUBCLASS_OF _AXIOM (axiom])
SUBCLASS OF SUPERCLASS(axioml, mortal)
SUBCLASS OF SUBCLASS(axioml, man)
SUBCLASS _OF(man,mortal)

Ke kterym pak lze navazovat jednoduse vlastnosti

PROPERTY NAME(axioml,value)

Jak lze snadno nahlédnout, tak tento pristup z jednoho axiomu vytvori mnoho dalsich
axiomu a vede tak k vyraznému zvétSeni dat o provenanci a tedy i k vyraznému zpomaleni
prohledavani a uvozovani o provenanci.

Druhym pfistupem je vyuzit ¢asti zatim je$té neschvaleného standardu OWL 2.0.
V névrhu standardu je totiz zminéna moznost piifadit axiomim v originilni ontologii
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jednozna¢né URI'. Tim se zbavime nutnosti popsat syntaktickou strukturu axiomu a
muzeme provenanci navazat piimo na URI axiomu v origindlni ontologii. Oba p¥istupy
pro ukladéani provenance k ontologii jsou popsany v [7].

Samotnym formatem provenance pro ontologii se ¢lanek zabyvat nebude. Jaké pro-
venancni informace se maji ukladat je totiz velmi zavislé na jejich planovaném pouziti a
rozsah ukladanych informaci se muze velmi ménit. Jeden rozsdhly datovy model prove-
nance je popsan v [5].

2 Provenance vztazena k signature

Pokud uchovavame provenanci k ontologii, je pomérné jednoduché se zeptat, jaké udalosti
ovlivnili konkrétni axiom z ontologie. Napiiklad je mozné se zeptat, kdo konkrétni axiom
zapsal a kdy se tak stalo. Tato informace muze byt v urcitém kontextu dilezita a jeji
nalezeni je pouze dotazem na to, jaké provenanc¢ni atomy jsou svazané s URI axiomu.
udélosti ménily vyznam konkrétniho symbolu z ontologie. Piikladem takového dotazu
muze byt otazka na zakladé jakych zmén v pravni ontologii CR byl ménén vyznam kon-
ceptu OSVC - osoba samostatné vydélec¢né ¢inna.

Obecné lze tento dotaz formulovat, jak ziskat z provenance k ontologii provenanci
k signatufe. Signaturou se uvazuje mnozina symbolu koncepti, relaci a individui. Déle
budeme uvazovat, ze provenanci vztahujeme k axiomim v ontologii a dané feSeni tedy
ziskame tak, Ze najdeme co nejmensi pocet axiomi, které plné urcuji vyznam symbolu
(nebo signatury).

Jinou otazkou se zabyva prace [6], kde se fesi jak navazat provenanci k axiomu, ktery
je z dané ontologie logicky odvoditelny. To se mize hodit v ptripadé, ze chceme axiom z
ontologie nahradit jinym, bez zmény vyznamu ontologie.

Pti feseni polozené otazky narazime na dva problémy. Prvni je skutecnost, ze vyznam
symbolu muze byt zavisly na axiomech, které se v soucasné ontologii uz nevyskytuji. Proto
je potieba uchovavat vSechny historicky pouzivané verze ontologie. Druhym problémem
je zpusoben tim, ze vyznam symbolu muze byt urc¢en vice axiomy a to i takovymi, kde se
dany symbol nevyskytuje. Z tohoto divodu je potfeba vzit v iivahu logickou sémantiku
ontologie.

Ve snaze presnéji definovat tvrzeni ,axiom neméni vyznam symbolu“ nam pomiuze
definice pivodem z oboru modularizace ontologif [4].

Definice 1 (Model konzervativni rozsiteni). Necht O a O C O jsou dvé L-ontologie a
S je signatura nad L. Rekneme, 3e O je model S-konzervationi rozsieni Oy, prdvé kdyz
pro kaZdy model T ontologie O, existuje model J ontologie O takovy, Ze se shoduje na
interpretaci symbolii z S - formdlnéji I|s = J|s.

Definice tika, ze ontologie jde rozsifit ptidanim novych axiomu na jinou ontologii, ale
nevede to k jiné interpretaci symboli. Lze tedy fici, Zze nové pfidané axiomy nenesou k
danym symbolim nové informace a tedy neprispivaji k jejich vyznamu.

! Uniform Resource Identifier - jednotny identifikdtor zdroje/objektu
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Pro danou ontologii O a signaturu S lze tedy najit minimalni pod-ontologie, ktera
jesté spliuji model S-konzervativni roz§iteni, a fici, ze axiomy v téchto ontologiich defi-
nuji vyznam symboli z S. Provenance pro signaturu by se tedy ziskala jako sjednoceni
provenanc¢nich atomu pro vSechny tyto axiomy.

Bohuzel ovéfeni, zda ontologie je model S-konzervativni rozsifeni jiné, je velmi né-
ro¢né. Dokonce i pro velmi jednoduché ontologie typu ALC neni rekurzivné spocetné.
Vyuzijeme tedy vlastnost lokality z [4] a tvrzeni z 3], abychom pFedchazejici vlastnost
alespon priblizné odhadli. Lokalitu lze vyjadrit jako syntaktické omezeni na to jaké on-
tologie viibec budeme posuzovat. Protoze je definice lokality pomérné rozsahla, neni zde
uvedena. Zjisténi vlastnosti lokality je také pomérné obtizné, ale presto nepomérné snazsi.
Naptiklad zjisténi lokality pro pomérné slozité ontologie definované pomoci standardu
OWL DL je NEXPTIME-tplné.

Nasledujici véta dava do vztahu vlastnost lokality a model S-konzervativniho rozsiteni.
Sig(O) oznacuje mnozinu viech symboli koncepti, relaci a individui, které jsou pouzity
v axiomech ontologie O.

Véta 1. Necht Oy, Oy jsou dve ontologie a S je signatura, takové Ze Og je lokdlni vici
S U Sig(O1). Pak O1 U Oy je S-model konzervativni rozsireni Oy.

Tato véta tedy tika, ze pro danou ontologii O a signaturu .S sta¢i najit pod-ontologii
O, ontologie O, ktera je lokalni vaci S. Protoze O UOs = O plati O\ O2 C O7 a O\ O,
je spodnim odhadem ontologie, jez lze model konzervativné rozsirit na O.

Z tohoto duvodu neziskdme veskeré provenancni informace, které mohou ovlivnit vy-
znam symbolu. Je téz tfeba prozkoumat, jak je dany odhad piesny a v jakém vztahu je
ontologie ziskana timto zptisobem k minimélnim ontologiim, jez lze model konzervativné
roz§itit na O.

Prezentovany postup zalozeny na model S-konzervativnim rozgifeni nebere v tivahu,
ze v priibéhu zivota ontologie se pouzivaji riizné verze ontologie a provenance je navazana
ke vSem témto verzim. Prvné definujeme nasledujici termin.

Definice 2 (Historie verzi ontologie). Necht O1,0,...Oy je posloupnost ontologii vSech
pouzivangjch verzi ontologie O, setridéné podle casu vytvorent verze, kde Oy je pruni verze
ontologie a Oy posledni verze s tim, Ze Zddnd verze ontologie mezi O; and O;yq pro
i€{l,2,...,N —1} nebyla vynechdna. O1,05...ON nazveme historii verzi ontologie O.

Vyzadujeme, aby zadné pouzivané verze nechybéla, protoze vSechny provenanc¢ni atomy
vztazené ke zménam v dané verzi by ve vysledku nésledujiciho algoritmu chybély.

Algoritmus 1. Necht S je signatura nad jazykem L, (O;)icq1...ny historie verzi ontologie
O nad L a Prov(axiom) je funkce, kterd mapuje aziomy O na mnoZinu jim piislusnijch
provenancnich atomdi.

Pro kazdou verzi ontologie O; se nalezne (nebo pomoct lokality odhadne) sjednoceni
aziomi z mnoziny ontologii O° takovich, Ze O° je model S-konzervativnich rozsireni O;.
Toto sjednocent oznacime E;.

Jako E oznacime sjednocent takoviych mnoZin.

E= |J E

ie{1,...,N}
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Nakonec, provenancni atomy prislusejici k dané signature S a historii verzi ontologie
O ziskdme jako sjednocent provenancnich atomi pro vSechny axiomy v E.

Prov(S) = U Prov(a)

3 Shrnuti

Clanek prezentuje provenanci k ontologii, postup jak ji ukladat a algoritmus, ktery umoz-
nuje vztahnout ji k symboliim z ontologie. Protoze vypocet provenance k signatufie je z
definice mnohdy nemozny, je v ¢lanku navrzena moznost odhadu vysledku pomoci vlast-
nosti zvané lokalita.

Déle bych se chtél zaobirat, postupem jak ziskat pomoci lokality co nejpiesnéjsi odhad
a jak se bude na realnych datech ligit od vysledku dle definice. Také bych se chtél zabyvat
moznostmi optimalizace algoritmu.
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Abstract. Monte Carlo simulations are today indispensable part of any experiment in the field
of the high energy physics. This paper describes one of the most complex detector simulation
toolkit called Geant4. The paper covers the most important parts of this toolkit ranging from
material definition and geometry setup to primary particle generation. On the example of the
transport of a photon, Monte Carlo simulation is explained.
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Abstrakt. Simulace zaloZzené na metodé Monte Carlo dnes tvoii nedilnou soucast kazdého ex-
perimentu na poli fyziky vysokych energii. Tento ¢lanek se zabyva rozsahlou simula¢ni knihovnou
Geant4. Clanek popisuje nejdulezitéjsi ¢asti této knihovny od definice materialu a geometrie de-
tektoru az po generovani primérnich ¢astic. Na prikladu prenosu fotonu je vysvétlena podstata
simulace metodou Monte Carlo.

Klicovad slova: Geant4, simulace, Monte Carlo, C++

1 Introduction

Simulations play an important role during the life cycle of the experiment in the particle
physics. Simulations are used to design and fine—tune the detectors, to develop and test
software for data analysis and acquisition, or to calculate doses of radiation.

In the first part of this article, the simulation of transport of a particle is described.
The second part contains the general overview of the Geant4 simulation toolkit. Finally,
the last part describes the work with this toolkit.

2 Geant4 overview

Geantd (GEometry ANd Tracking, version 4 ) is a software toolkit used for the detector
simulation. Original version of the toolkit was developed in the FORTRAN language,
but in 1993 the researchers in CERN and KEK! independently proposed the idea to
rewrite the toolkit using modern programming techniques such as the object oriented
programming. These teams joined their effort in 1994 and created the RD44 project.
After four years of research and development, the first Geant version based on the C+-+

*This work has been supported by the grant MSMT LA08015
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language appeared in December 1998. More information about the history of Geant can
be found in [6].

Geant4 is a free software, it can be used under the terms of the custom license [8].
The toolkit is distributed in a source—archive. Currently, Geant4 is officially supported
on the three platforms: on GNU/Linux with the g+-+ compiler, on Mac OS X with g+,
and on MS Windows XP with MS Visual Studio C++.

Today, Geant4 is used as a simulation tool in many fields including high energy physics,
astrophysics, or medicine. Geant is used at all major experiments at the LHC collider at
CERN, at experiment BaBar at SLAC, or in X-ray Multi-Mirror Mission at ESA. More
application are showcased on the Geant4 website [12].

2.1 Monte Carlo methods

Simulations in Geant4 use the Monte Carlo methods. These methods are based on the
random sampling of a variable with given probability distribution. Monte Carlo methods
were developed during the Manhattan project by Stanislaw Ulam, John von Neumann,
and Nicholas Metropolis. The principle of the method will be demonstrated on the
transport of a particle.

Let us suppose that the particle, e. g. photon, is travelling through the infinite
homogeneous medium. The mean free path of the particle is a random variable with
exponential distribution. This result is known as the attenuation law [5]. Thus the
probability density function of the free path can be written in the following form:

f(x) = p-e7t (1)

where the constant u denotes the interaction coefficient dependant on the material. The
cumulative distribution function F(z) = [  f(¢)d¢ is random variable uniformly dis-
tributed on the interval (0,1) (~ U(0,1)) [10]. Thus, to sample the free path, it is
sufficient to generate v ~ U(0,1) and invert the cumulative distribution function, i.e.
r, = F~1(~). For the exponential distribution we get

F(z) =1—exp(—p - z) (2)
and

£y = Fl(y) = _ln(lﬂ— v) _ _lnl(j) (3)

7 is also sample of uniformly distributed random variable on the interval (0, 1) because
this distribution is symmetrical about 1/2.

Typical detector consists of several layers made of different materials. In this case,
the photon can pass through several layers before interaction. According to [11], let us
define the number of mean free path (or number of an interaction length):

My = @1+ fiy + Ty plp e T (4)

Here x; and p; correspond to the step size and interaction constant in ¢ — th layer. The
dimensionless number n, is independent of materials. At the beginning of the simulation,
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the value of n, is initialized to —In(y) (v ~ U(0,1)). After each step, the amount
of interaction length spent in the step is subtracted from n,. When n, reaches zero,
interaction occurs.

In the next step of the simulation, the type of interaction is chosen. Depending on
its kinetic energy, the photon can undergo one of the following processes: the photoelec-
tric effect, the Compton scattering, and the pair production. During the photoelectric
effect, the photon is absorbed by the atomic electron which is then emitted. Photo-
effect is dominant at lower energies. At higher energies, the Compton scattering becomes
dominant. In this process, the photon loses part of its energy and is deflected from its
original direction. Photons with energy higher than 1,022 MeV (1eV = 1,602 - 107197J)
can participate in the electron—positron pair production. The ratios of these processes
are known for given material and given energy; simulation program generates another
random number v ~ U(0,1) and according to its value selects corresponding process.
The simulation would continue by calculating parameters (kinetic energy, momentum,

..) of secondary particles (i. e. products of interactions) and tracking them. Again, the
physical parameters are calculated by sampling some random variable.

2.2 Geant4 kernel

Geant4 covers all aspects of the detector simulation. This include geometry and material
setup of the apparatus, definition of participating particles and processes, data analysis,
and visualisation.

Applications written Geant4 can be described by a finite state machine with seven
states. The application starts in the Prelnit state in which it initialize itself. In the fol-
lowing state — Init — user initialization is executed. This process is discussed more deeply
in the following section; when it is finished, the application switches to the Idle state. In
this state, the application waits to the Beam on command which starts the simulation.
The simulation is represented by two states: the GeomClosed and the EventProc. In the
former state, the geometry setup and physics processes involved are locked and cannot
be changed. The latter corresponds to the processing of event. These two states create
the event loop and are also known as the run. When the simulation ends, the application
returns to the Idle state. New simulation may begin or the application switches to the
Quit state and terminates normally. In case the exception occurs, the application moves
to the Abort state.

Basic unit of simulation in Geant4 is the event. The event begins by generating
primary particle tracks. These tracks are pushed into the stack. Then the track is
popped from the top of the stack and its life is simulated. Any secondary particle is
also stored in the stack. The processing of event finishes when the stack is emptied.
Lifetime of particle can be described by four types of objects: Track, Step, Step point,
and Trajectory. Track represents a snapshot of a particle and is updated by steps. Track
contains information about position, momentum, kinetic energy, proper time (time in its
rest frame) of the particle, and its status. Step consists of two step points - PreStep and
PostStep - and delta information - step length, increment in position, energy deposited,
and others. After each step, the status of track is updated. The tracking of the particle
ends when it loses its kinetic energy (and there is no rest process applicable), it leaves
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the area of interest, or it decays. Additionally, particle track can be deleted by user. It
must be mentioned that track and step are not persistent, they are deleted at the end of
the event. To store information about the lifetime of particle, one has to use Trajectory
and TrajectoryPoint objects. These object copy some properties of the track and of the
step. Default implementation represented by G4VTrajectory and G4VTrajectoryPoint
stores only few properties. By subclassing these classes, it is possible to achieve desired
behaviour.

Collection of events which share the same detector setup and the same participating
particles and processes is called run.

3 Working with Geant4

3.1 General remarks

Working with Geant4 requires a decent knowledge of the C-++ language and at least
basic concepts of the object—oriented programming, especially the inheritance and the
polymorphism. Geant4 is a large collection of classes. Many of these classes are abstract
and many methods contain a dummy implementation - they do nothing. Application
programmer must use the inheritance and provide his or her custom implementation in
derived classes. Geant4 still does not offer its namespace, instead classes are prefixed by
G4 prefix. To ensure portability across platforms (GNU/Linux, MS Windows, Mac OS),
Geant4 uses its own data types such as G4int or G4double.

Geant4 introduces several features provided by the CLHEP? library. The most notable
is probably the system of physical units. Each numerical value must be accompanied by
corresponding units. Additionally, Geant4 includes the G4BestUnit class which prints
the value with the most suitable unit in given category (length, energy, density, etc). See
the following listings for example:

G4double density = 11.35%xg/cm3; //Pb
G4double pressure = 1.0xatmosphere; //atmospheric pressure
G4cout << "Step length: "

<< G4BestUnit (fStep —GetStepLength (), "Length") << G4endl;

Note that Geant4 replaces the output streams cout and cerr from the C++ standard
template library by its own streams G4cout and G4cerr. Random number generator in
Geant4 is also taken from CLHEP. Several engines (James, Ranecu) and several distri-
butions (uniform, Gauss, Poisson) are supported.

3.2 The main function

Geant4 does not provide its main function, it is the application programmer’s responsi-
bility to write one. Several tasks must be implemented in the main function. At first,
programmer should create an instance of the G4RunManager class. The run manager
initializes the simulation, starts the run, and manages the event loop. To complete the

2A Class Library for High Energy Physics, see http://www.cern.ch/clhep
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initialization, the programmer must define the apparatus, the particles and processes
involved in the simulation, and the source of primary particles.

Detector construction To construct a model of the detector, it is necessary to subclass
the abstract G4VUserDetectorConstruction class. This class contains one pure virtual
method called Construct. This method must be implemented in the subclass. Detector
construction includes at least definition of materials and geometry. Additionally, one can
define visualisation attributes, apply magnetic field, and assign sensitive detector.

Materials in Geant4 are represented by three class: G4Element, G4Isotope, and G4Ma-
terial. New chemical element may be constructed directly by passing its name, symbol,
atomic number, and molar mass to the constructor of G4Element class. The other method
is based on mixing of isotopes. In this case, one passes name, symbol, and number of
components to the constructor and then adds the isotopes by calling AddIsotope method.
This method takes two parameters: the isotope to be added and its relative abundance.
In the following example, two elements (oxygen and enriched uranium) are created:

G4Elementx O = new G4Element("Oxygen", "O", 8., 16.00%xg/mole);
G4lsotopex U235 = new G4lsotope ("U235", 92, 235, 235.01*g/mole);
G4lsotopex U238 = new G4lsotope ("U238", 92, 238, 238.03xg/mole);
G4Elementx U = new G4Element("Enriched uranium", "U" 6 2);
U—>AddIsotope (U235, 90.xperCent);

U—>AddIsotope (U238, 10.xperCent);

By mixing chemical elements, it is possible to construct molecules. It is also define
new materials by mixing existing materials with elements or materials with materials.
Geant4 also contains table of elements and materials provided by the National Institute
of Standards and Technology [4]. In order to access this table, the G4NistManager class
must be used; for information, see |7].

G4BREPSolid G4Material | G4VisAtributes || G4VSensitiveDetector

G4LogicalVolume G4VPhysicalVolume

G4VSolid

G4CSGSolid G4BooleanSolid | | G4PVPlacement | G4PVReplica | | G4APVParameterised

N

G4Tubs | G4Sphere || G4Box || G4UnionSolid | G4intersectionSolid || G4SubtractionSolid

Figure 1: Simplified UML class diagram

Detector geometry consists of several volumes. Each of these volumes is described
by a solid, a logical volume, and a physical volume. A solid defines a shape and size of
a volume. Geant4 contains predefined classes for the most used shapes such as a sphere,
a cuboid, or a cylinder (see Figure 1 for corresponding Geant4 classes). One can define its
own solid by subclassing the G4CSGSolid. More complicated shapes can be created us-
ing Boolean operation: union, intersection, and subtraction. Finally, class GABREPSolid
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provides the boundary represented shapes. Second layer, the logical volume, adds infor-
mation about material, visualisation attributes, sensitive detector, magnetic field, and
position of daughter physical volume. The sensitive detector is used to obtain informa-
tion about passing particle(s). When the step enters the logical volume with associated
sensitive detector, the ProcessHits method is called. The physical volume completes the
definition by adding information about position and rotation of a logical volume. Logical
volume can be placed once (using the G4PVPlacement class) or many times (G4PVRepli-
ca and G4PVParameterised classes). Volumes are organised into the mother—daughter
hierarchy. Each volume, with the exception of the root volume, must have mother volu-
me, each volume can have several daughters. Daughter volume must be fully contained
within its mother volume. The root volume, also known as the World, defines the global
coordinate system with the origin in the center. Position of a particle is given in this
system. The above mentioned Construct method must return the pointer to the world
physical volume. Because of the mother—daughter hierarchy, information about whole
geometry is available through this pointer.

The geometry can be described by the GDML? which is a dialect of the XML |[3].
GDML file stores the information about geometry in a human-readable form and allows
exchanging geometry data among application; for example Java—based Graphical Geom-
etry Editor (GGE) stores geometry in this format. Geant4 can import as well as export
GDML files.

Some very complex geometries have been modeled in Geant4. For example, detector
for the LHCDb experiment consists of roughly 5000 logical volumes, detector for the CMS
experiment of even more — 15000 volumes |[2].

Particles and processes After constructing the detector, programmer must also con-
struct list of particles, range cuts for the particle production, and physical processes
involved in the simulation. The base abstract class G4VUserPhysicsList contains pure
virtual methods ConstructParticle, ConstructProcess, and SetCuts. These methods
must be implemented in derived subclass.

Geant4 divides particles into six categories: baryons, bosons, ions, leptons, mesons,
and short-lived particles. Each particle has its own class derived from the G4Particle-
Definition class and each of these classes has a single object accessible via a static
method. When this method is called for the first time, the corresponding single object is
created. All required particles must be created in this way before the definition of pro-
cesses. There are also six auxiliary classes that contain a method ConstructParticle
that constructs all particles in the respective category. The following code snippet demon-
strates how to create a proton and all mesons:

G4Proton :: ProtonDefinition ();
G4MesonConstructor constructor ;
constructor . ConstructParticle ();

Geant4 offers a wide range of a physical processes including transportation, electro-
magnetic, hadronic, and optical processes, decay, and others. Additional processes can be
added by user by subclassing the G4VProcess class. Process can occur at any combination

3Geometry Description Markup Language



Detector simulation with Geant4 77

of the following three states: AtRest (e.g. positron annihilation), AlongStep (ionisation),
and PostStep (decay in flight). Each particle has a process manager. It manages process
in which the particle participates. New process is added by the AddProcess method. The
following example registers three processes for an electron: multiple scattering, ionisation,
and braking radiation:

G4String particleName = particle —>GetParticleName ();

if (particleName =— "e—"){
pmanager—>AddProcess (new G4eMultipleScattering, —1, 1, 1);
pmanager—>AddProcess (new G4elonisation , -1, 2, 2);
pmanager—>AddProcess (new G4eBremsstrahlung , -1, 3, 3);
} else if(particleName = "gamma){

The three integer parameters in the AddProcess represent the ordering of the pro-
cesses. The first integer corresponds to the AtRest, the second to the AlongStep, and the
third to the PostStep. Value —1 means that the process is inactive in respective state.

Application programmer must also set production thresholds for certain electromag-
netic processes. Bellow this threshold, no secondary track will be produced. Geant4
provides the SetsCutsWithDefault method that set the production threshold globally
to a default value (1 mm). However, it is also possible to set different thresholds for
different particles and also for different parts of the detector.

Production of primary particles In the last obligatory step of Geant4 initialization,
programmer defines the source of primary tracks. This step also involves subclassing:
the G4VUserPrimaryGeneratorAction serves as the base class. In its subclass, program-
mer must construct the primary generator object and implement the GeneratePrimaries
method. This method is called at the beginning of each event. The particle generator is
represented by the G4ParticleGun class. Via the set methods of the particle gun, it is
possible to specify the number of primary particles, their type, energy, momentum, and
polarisation. Particle gun does not randomize these parameters itself. The randomiza-
tion, if necessary, must be implemented manually. The primary particles are generated
by calling the GeneratePrimaryVertex of the particle gun.

Alternatively, Geant4 provides another primary generator class, the GAHEPEvtInter-
face. This generator reads and processes an ASCII file produced by some external

generators (e.g. Pythia). Thus, this class works as an interface to other generators. The
format of the ASCII file is described in [7].

Optional user action classes Optionally, it is also possible to set up the user interface,
visualization manager, and additional user action classes. These custom user classes can
be used to extract information about the run, event, or step. For example, the G4User-
RunAction class contains the BeginOfRunAction method. It is called at the beginning
of each run, its implementation in the G4UserRunAction class is empty. By overriding
implementation of this method in derived class, programmer has the opportunity to
modify the start of the run. For example, one can instantiate some histograms. Similarly,
to modify the end of run, one has to override the End0OfRun method. This is a suitable
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place to save the histograms to a file. The other user action classes such as the G4User-
EventAction or G4UserSteppingAction are described in [7].
The essential part of a typical main function can be found in the following code listing:

G4RunManagerx runManager = new G4RunManager;
MyDetectorConstruction* detector = new MyDetectorConstruction;
runManager—>SetUserInitialization (detector );
runManager—>SetUserInitialization (new MyPhysicsList);
G4VUserPrimaryGeneratorActionx gen action =

new MyPrimaryGeneratorAction(detector );
runManager—>SetUserAction(gen action)
runManager—>SetUserAction (new MyRunAction);

runManager—Initialize ();

In the rest of the main function, it is possible to set up visualisation and/or user
interface. Visualization may be useful for studying the geometry, detecting overlapping
volumes, or publication purposes. Geant4 supports several visualisation drivers including
the industry standard OpenGL. To use visualization in the application, the G4VisManager
object must be constructed and initialized in the main function.

By default, the simulation process is hard—coded in the application. This means that it
is necessary to modify source codes and recompile them to modify simulation parameters.
This is not very flexible solution, so Geant4 offers to possibility to set up a batch mode.
In this mode, the application reads and interprets a macro — a text file with instructions.
Geant4 contains many commands, others can be easily implemented by user. These
commands allow to start a new run, modify materials, visualisation attributes, or enable
and disable certain processes. No recompilation is needed in this case. The following
listings demonstrate the way in which macro file is executed:

G4Ulmanagers Ul = G4Ulmanager:: GetUlpointer ();
if (arge!=1){
G4String command = "/control/execute ";
G4String fileName = args|[1];
UI—ApplyCommand (command+fileName ) ;

}

The first command-line argument of program is taken as the location of the macro
which will be executed using the command /control/execute. Moreover, Geant4 sup-
ports creating interactive applications. In such applications, users control the simulation
directly from command interpreter or even from graphical user interface. Simulation thus
can be modified by people who do not know the C-++ language.

4 Conclusion and outlook

Geant4 is very complex toolkit for the simulation of detectors and this paper covers only
the most essential aspect of Geant4. More complete description can be found in [1], [7],
or |12].



Detector simulation with Geant4 79

The author of this paper is a member of the Joint Czech Group at the experiment
COMPASS (COmmon Muon and Proton Apparatus for Structure and Spectroscopy)

[9]. He is expected to use Geant4 to perform simulations of the Ring Imaging Cerenkov
detector (RICH).
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Abstract. We study the dynamics of a classical non-relativistic charged particle moving on
a punctured plane under the influence of a homogeneous magnetic field and driven by a periodi-
cally time-dependent singular flux tube through the hole. We exhibit the effect of the resonance
of the flux and cyclotron frequencies. The particle is accelerated to arbitrarily high energies
even by a flux of small field strength. The cyclotron orbits blow up and the particle oscillates
between the hole and infinity. We support this observation by an analytic study of von Zeipel
first order approximation.

Abstrakt. Zabyvame se studiem klasické nerelativistické nabité ¢astice pohybujici se v propichlé
roviné pod vlivem homogenniho magnetického pole a periodicky ¢asové zavislym singularnim
tokem, ktery prochazi otvorem v ploge. Odhalujeme rezonantni efekt mezi frekvenci singularniho
toku a cyklotronovou frekvenci. Energie ¢astice roste nad v8echny meze i v piipadé ze amplituda
singularniho toku je mald. Bé&hem svého pohybu v roviné se ¢astice dostane libovolné blizko
k otvoru ale i libovolné daleko od néj. Toto pozorovani je zaloZeno na analyze piiblizného
systému ziskaného pomoci von Zeipelovy poruchové metody.

1 Introduction

Consider a classical point particle of mass m and charge e moving on the punctured plane
R2\.{0} in the presence of a homogeneous magnetic field of magnitude b. Suppose further
that a singular flux line whose strength ®(¢) is oscillating with frequency ) pierces the
origin. This is a Hamiltonian system with time-dependent Hamilton function

1 2
H t) = —(p—eA(g,t
(¢:0,1) = 5—(p = eAlg, 1)),
which is defined on the phase space P = (R2 N {0}) x R? and where the vector potential
A is given by

o(1)
27 |q|?

Alg ) = (—g+ )a. (@.0) € (B~ {0)) x B.

We use a shorthand ¢+ = (—q2, q1).

*The author wish to gratefully acknowledge support from the following grants: Grant No. LC06002
of the Ministry of Education of the Czech Republic and Grant No. 202/08/H072 of the Grant Agency
of the Czech Republic.
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Motivated by the rotational symmetry of the system we pass to the polar coordinates
in the plane, ¢ = r(cosf,sin6). The new Hamiltonian in these coordinates reads

1 1 ed(t eb \°
H(Tueaphpﬁat):%< 3+(;(p9_ 27(_‘_))+5T) )

Obviously, the angular momentum py is an integral of motion. Consequently the problem
reduces to the analysis of one-dimensional system. From now on we set

e=m=1,

and thus the cyclotron frequency equals just to b. Without loss of generality it can be
assumed that b > 0. The radial Hamiltonian, whose dynamics is to be understood, is

H(r,py,t) = %(pf + (@ + gr) > a(t) = pg — %@(t).

If the flux function ® is constant, then the system is integrable. Motivated by this
observation we construct a canonical transformation to the so called action-angle coordi-
nates o, . The generating function of this canonical transformation is time dependent

41 — br? + 2|a(t)] )
\/8bIr2 — (br? — 2a(t)])?

2 7 _ D)
_a(®)] arctan (br? + 2]a(t)])\/8bIr% — (br? — 2|a(t)]) )
2 b27"4 4bIr? + 4|a(t)|?

S(r,1,t) \/8blr2 (br? — 2|a(t)])? — I arctan (

The canonical transformation of variables, from (r, p,) to anction-angle variables (¢, I),
is then at each instant of time ¢, given by

2 la(?)] N\ 2
—%([—i- 5 + I(I+\&(t)\)smgp) ;oPr= I(I + |a(t)]) cos ¢,

and, conversely,

1 a(t)? b2 1 la(t)]  br\”
= —arctan [ — [ p? + —— — — I=—|p+—= =] |
7 archan (bpﬂ“ (pr * 72 4 ’ 26 \ " * r 2

The new Hamiltonian reads
oS (u, It
HC(@: ]7 t) - H<T(QO7 Ia t)7p7‘(307 Ia t)7 t) + %
=r(p,1,t)

\/Tcosgo
VI + |a(t) —i-\/fsmcp

and the Hamiltonian equations of motion take the form

= bl — sign(a(t))d'(t) arctan

cos a

=b—
v 2/1(I + |a] 2I+\a|+2\/ (I +a|sing’
o3 ol )
2 21 + |a] + 2+/1(I + |a|) sin ¢
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Where we have suppressed the time dependence of a. We restrict ourselves to the case
when a(t) is a strictly positive function. More precisely, the angular momentum py is
supposed to be positive and much greater then amplitudes of ®.

If we introduce

2/ () v
o= 2 (1 M T )

then from the coordinate transformation we see that

1 1
r? = i(ri + r%) + é(ri — r%) sin .

Thus if ¢ increases then r oscillates between r_ and r, (though r_, r, themselves are
also time-dependent). Moreover, if a(t) is bounded and I — oo as t — oo then r; — o

and 5

r_(t) = bl“ii((tt))‘ — 0.
Therefore in this case the trajectory in the g-plane periodically returns to the origin and
then escapes far away from it. With the growing time, on one hand, the trajectory gets

closer to the origin and, on the other hand, it approaches infinity.

2 The von Zeipel averaging method

Let us first introduce necessary notation. The symbol T¢ stands for the d-dimensional
torus. For f € O(T¢) and k € Z? we denote the kth Fourier coefficient of f by

1
(2m)¢ Jpa

Flflk = flp)e™*dp.

We introduce supp F|f] as the set of indices corresponding to nonzero Fourier coefficients
of f. For f € C(T%) and L. C Z¢ put

(flohr =D Flflke?.

kel

We assume the following form of the flux function
O(t) = 2me f(Q)

where f is a 2m-periodic real function such that
> k| Flfl] < 0.
k=1

Hence f € C'(T'). The coefficient € > 0 is regarded as a small parameter.

We wish to study the model with the aid of the von Zeipel method which is an
averaging method taking into account possible resonances (see [1| for the method, and
also 5] for a general concept of the mathematical averaging theory).
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2.1 Summary of basic formulas

Consider a completely integrable Hamiltonian in action-angle coordinates, Ko(I) = w- I,
with I € B C R? ¢ € T¢ where B is a domain in R? and w € R? is a constant
vector of frequencies. One is interested in a perturbed system with a small Hamiltonian
perturbation so that the total Hamiltonian reads

K(QD,[7€) = KO(I>+€K*(907[>€) :KO([) +€K1((107I)+82K2((107I)+

The function K, (g, I,¢€) is assumed to be analytic in all variables. The corresponding
equations of motion represent a slow-fast system; the action variables vary slowly while
the angle variables ¢ rotate with frequencies close to w provided ¢ is small.

Let K the lattice of indices in Z¢ corresponding to resonant frequencies and K¢ be its
complement,

K={w}tnz K =7Z\K.

In the von Zeipel method one applies a formal canonical transformation of variables
(I,¢) — (J,1), so that the Fourier series in the angle variables 1) of the resulting Hamilto-
nian IC(¢, J, €) has nonzero coefficients only for indices from the lattice K. The canonical
transformation is generated by a function S(p, J, €) regarded as a formal power series,

S(p,J,e) = - J+eSi(p, J) +e*Sa(p, J) + ...,
and the new Hamiltonian (1), J, €) is also sought in the form of a formal power series,
K, J,e) = Ko(J) + elCy (b, J) + e Ka(tp, J) + ... ..
Thus one arrives at the system of equations

Ko(J) = Ko(J) = w - J,

0S1(p, J
Kalp, 1) = w- 20T g ),
¥
0S;i(p, J ,
Kj(@? ‘]) =w- M + ‘PJ(QO7 J)uj > 27
ofte
where the terms P; depend linearly on Ki,..., K;, Ky,...,K;_1, and on derivatives of

these functions, and polynomially on 05;/0J,...,05;-1/0J, 051/0¢,...,05;_1/0¢.
The formal von Zeipel Hamiltonian K(1, J, €) is defined by the equalities

K1(¢7J) - <K1(¢7‘])>]K7
Ki(, J) = (P;(¥, )k, for j = 2.

Coefficients S;(p, J) of the generating function S(¢p, J,¢) are then solutions of the first
order differential equations

w0 IO e e

= _<Pj((107 J))KCa fOI"j > 2.
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In practise one truncates IC(¢, J,e) at some order m > 1 of the parameter ¢; this
defines the mth order averaged Hamiltonian

Ky (0, J,€) = Ko(J) + eKa(00, J) + . .. + ™K (1), J)

Similarly, let () (¢, J, €) be the truncated generating function. If (¢(¢), J(t)) is a solution
of the Hamiltonian equations for K¢, (¢, J,€), and if (¢(t),1(t)) is the same solution
after the inverted canonical transformation generated by S, (p, J,€), then (¢(t), I(t))
is expected to approximate well the solution of the original system (governed by the
Hamiltonian K (¢, I,¢) for times of order 1/¢™ (see [1] for a detailed discussion).

Suppose there exists a basis of the lattice K over Z formed by integer vectors rq, ..., r,.
An important fact is that the von Zeipel Hamiltonian /C(,)(¢, J,€) (for any m) has
additional d — s integrals of motion which are linear combinations with integer coefficients
of the action variables Ji,...J;. In fact, let R be a unimodular d x d matrix with
integer entries such that its first s rows coincide with the vectors r; (such a matrix is
known to exist, see [2]). Consider yet another canonical transformation of coordinates,
(J,1p) — (L, x), generated by the function S(¢, L) = L - Re. Hence y = Ry, J = RTL.
The resulting Hamiltonian depends only on the first s angles xi,...,Xs, and so the
momenta Lg.q, ..., Ly are integrals of motion.

3 Dynamics of the Averaged System

In order to apply the von Zeipel method to the problem at hand we first pass to the
extend phase space by introducing a new phase oy = Qt and its conjugate momentum /5.
The old variables ¢, I are redenoted as 1, [;. The Hamiltonian on the extended phase
space is defined as

K(p1, 92, 1, 1) = Qs + He (1, 11, 02/$2).

The systems of Hamiltonian equations for H. and K are equivalent provided the ini-
tial conditions are properly matched (if ¢(0) = ¢ on the original phase space then
(p1(0),¢2(0)) = (¥0,0) on the extended phase space). To adjust the notation to the
general scheme, as explained above, we also set

w1 = b, Wo = Q.
Thus one starts from the Hamiltonian on the extended phase space
K(p, I,e) =wilhi +wilo +eF(p,1,¢)

where

V1 cos )

F(p,I,e) =wyf’ arctan
(0, 1,8) = w2 f'(ip2) <\/Il+pg_€f(¢2)+\/Esiw1
We assume that 0 < € < py.

If the ratio wy/w; is irrational then the lattice K is trivial, K = {0}, and the von
Zeipel method reduces to the ordinary averaging method in angle variables ¢. The aver-
aged Hamiltonian depends only on action variables I and trajectories are then obviously
bounded. Instead we focus on the case when

po=2-0
w1 q
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and p,q € N are coprime. As we shall see, a resonance is exhibited already in the first
order of the von Zeipel method to which we restrict our discussion.
We have
K(p,I,e) =wil) +woly + K (o, 1) +*K(p, I ,¢)

where K (¢, I,¢) is an analytic function in ¢,

Ki(p, I) = wa f'(02) Fi(e1, 1),

and
V1 cos o )
F , [) = arctan - .
en 1) (v11+p9+v118m901
For |f] < 1,

A AL
F I = — for k F I = 0.
FF (o1, 1)k 5% (Il—l-pa) , for B #0, FlFi(p1,11)])o=0

Obviously, the Fourier image of K;(p,I) takes nonzero values only for indices (k,1),
k€ Z ~ {0}, | € supp F[f] ~ {0}, and

FIK1 (0, D]y = tdwa F [ f ()1 F[Fi (o1, 1)k

Next we proceed to the von Zeipel canonical transformation of the first order. Set

Ji

ﬂ:ﬂ(b]l): J1+p9'

The resonant lattice is given by K = Z(p, —¢), and one has

Ki(,J) = FIK (0, )] me™

meK

w2 n, n| wm -
=5 Z FLf]ngt™ By Pml g —avz)

neZ~{0}
S1(p, J) is a solution to the differential equation

W - asl(gpa J)

Seeking S} (¢, J) in the form
Si(p, J) = Zj:[f/]k<Gk(901> Ji) + Gr(er, J1)67”w2>
k=1

one finally arrives at the countable system of equations

n+1

0
<— + zk’/) Gilpr, ) =v Y Z2n

8@1 n€Z~{0},n#—kv

B(Jy)lmlemer,
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For the solution we choose

_ v Inl ingos
Ao =r S e
n€Z~{0},n#—kv

Of course, if kv ¢ Z then the restriction n # —kv is void. On the other, if kv € Z, and

this happens if and only if k& € Zg, then the solution G (¢1, J1) is not unique.
Thus one finds the von Zeipel Hamiltonian of the first order,

Koy (, ) = %(qu +po) +eKa (1, J).
Since p and ¢ are coprime there exist r, s € Z such that sp +rq = 1. Put
)
r s
and consider the canonical transformation y = Ry, J = RV L. In particular,
X1 =p¥1 — qa, Lo =qJ1+pJa, J1 =pLli+rLs.

The momentum L is an integral of motion for the Hamiltonian KC1)(1), J). Let us define

Z(Xl, Jl) = 6plC1(R_lx, J)

Then
/ _ az(xlv‘]l)
Xl(t) - aJI )
X1

Thus the evolution in coordinates xi, J; is governed by the Hamiltonian Z(y, J).
Set

h(z) = —epwr Y FIf]ngt™"
n=1

and

p(fv)zﬂ(w)p=< : )/ >0

T + py

Then h(z)_is holomorphic on the open unit disk B; C C and according to our assumptions
h € CY(By). One has Z(x1,J1) = Re[h(p(J;)e')]. We will investigate the dynamics
generated by such a Hamiltonian in a more general setting.

3.1 General results

In this subsection we assume the following. Let p :]0, +00[—]0, 1[ be continuously differ-
entiable function such that p'(z) > 0 for all > 0 and lim,_ 1, p(z) = 1 and p(0;) = 0.
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Our aim is to investigate the dynamics of a Hamiltonian system with Hamilton function
defined on Rx]0, +oo[ by

Z(x,J) =Re [h(p(J)eZX)}, (1)

where h is a nonconstant holomorphic function on B; and h € C*(B;). The corresponding
Hamiltonian equations of motion can be written in the following form

a /
T
J= —g—i = Im[z//(2)]r, (2)

where z = p(J)e'X.

Lemma 1. Let Q2 C C be a domain and f holomorphic in ). If v is a closed path in €
and Ref is constant along v then f is constant in §2

Proof. Since Ref is harmonic in the interior of v, denoted int v, Ref is constant also in
the int v. According to the Cauchy-Riemann equations Imf is constant in int~y. Hence
f is constant in int v and consequently in 2. O

Theorem 1. Let h and p be as above and Z(x,J) as in (1). Then for almost all initial
data (x(0), J(0)) the corresponding Hamiltonian trajectory fulfils

Jm x(t) = x(co) € R, lim J(t) = +oo, (3)
and
i — ux(00) 1,/ ( p1x(20)
tllIJEloo J(t) =1Imle W (e )] >o0. (4)

Proof. Set R(z) = Re[h(z)] for = € B;. Then D.R = (Re[l/[2]], ~Im['[2]]). Hence
D.R = 0 if and only if A/(z) = 0, and the set of critical points of R in B; is at most
countable and has no accumulation points in B;. By the Sard theorem, almost all y € R
are regular values of R | 0B;. If y is a regular value both of R and R | 0B then the level
set R~1(y) is a compact one-dimensional C* submanifold with boundary of B;. Moreover,

(R (y)) =R '(y) N OBy,

R~!(y) is not tangent to B at any point, and R~ (y)N B is a smooth submanifold of B;
(for more details see [4, 3]). By the classification of compact connected one-dimensional
manifolds [3], every component of R~!(y) is diffeomorphic either to a circle or to a closed
interval. But the first possibility is excluded by the Lemma 1. Thus every component
I of R7(y) is diffeomorphic to a closed interval, oI' = {a,b} = T N JBy, and T is not
tangent to 0B; neither at a nor at b.

Let z € B; be such that D,R # 0. By the local submersion theorem [3|, R is locally
equivalent at z to the canonical submersion

R?> (z,9) — z € R.
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Hence z possesses an open neighborhood U such that R(U) is an open interval and almost
every y € R(U) is a regular value both of R and R | dB;. By the Fubini theorem?, for
almost every w € U, R(w) is a regular value both of R and R [ 0B;. The same claim
is true for almost all w € B; because the set of critical points of R in B; is at most
countable. It follows that for almost all (y,J) € Rx]0,4+o00], R(p(J)e™X) is a regular
value both of R and R | 0B;.

Suppose now that an initial condition (x(0),J(0)) has been chosen so that y =
R(p(J(0))eX®) is a regular value both of R and R | dB;. Let ' be the component
of R™!(y) containing the point p(J(0))eX®. Since the Hamiltonian Z(x,J) is an in-
tegral of motion the Hamiltonian trajectory z(t) = p(J(t))eX®) is constrained to the
submanifold I' C B;. We have to show that z(¢) reaches the boundary dB; as t — -+o0.
The tangent vector to the trajectory at the point z(t) equals

dz(t)
dt

= (J () o' (J (&)1 (2(¢)).

Since p'(J) > 0 for all J > 0 and h'(z) has no zeros on I' (because y is a regular value)
it follows that z(t) leaves any compact subset of B; in a finite time. It remains to show
that z(¢) does not reach 0B in finite time. But by equation of motion (2)

! < !/
7] < max [W'(2)]
and so J(t) cannot grow faster than linearly.
This reasoning clearly shows that (3) is valid. Using the equations of motion once
more one can deduce (4). Obviously the limit must be nonnegative. Denote R = R | Bj.
Then OR can be regarded as a function of the angle variable, OR(z) = Re[h(e"")], and

one has
OR'(x(00)) = —Im [eZX(OO)h'(ezxwo))} #0

because y = OR(x(c0)) is a regular value of OR. O

3.2 Conclusion

It is now straightforward to apply the results of the preceding subsection to our problem.
Remember first that one has to apply the inverted canonical transformation, from (¢, J)

to (p, 1),
aSl (907 ‘]) _ aSl (907 ‘])
57 I=J+¢ P

In the present case, wy/w; = p/q, p and ¢ are coprime and ¢ is such that

supp F[f] U (Zgq ~ {0}) # 0,

Y=p+e

so h is nonzero and the averaged system is nontrivial, and we can use the results of
Theorem 1. By a tedious calculation it is possible to estimate the partial derivatives of

'Let n = k+1, A be a closed subset of R” = RF x R!, and P, the canonical submersion of R” into R’.
If P,(AN ({c} x RY)) has a measure zero in R for each ¢ € R¥ then A has measure zero in R".
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S and obtain the asymptotic behaviour of the original action-angle coordinates. More
precisely, in the resonant case and for almost all initial conditions (¢;(0), 1,(0)),
Ii(t)

lim (p1(t) —wit) =a€R, lim — = C > 0.

t—4o00 t—4o00

Therefore, in this case the trajectory in the ¢g-plane can be described exactly as at the
end of Section 1.
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Abstract. We study a non-standard numeration system for p-adic numbers which is based on
the rational base system proposed by S. Akiyama, C. Frougny, and J. Sakarovitch. We also
briefly introduce p-adic version of §-expansions.

Abstrakt. Zkoumame nestandardni numeracni systém pro p-adicka cisla, ktery je zaloZen na
systému navrzeném S. Akiyamou, C. Frougny, and J. Sakarovitchem. Dale také zminime p-
adickou obdobu B-rozvoji.

1 Introduction

The field of p-adic numbers, denoted by Q,, is an extension of the field Q@ of rational
numbers in a way complementary to the classical extension: the field R of real numbers.
The letter p refers to a prime number p and so there exist an infinite number of p-adic
fields, each corresponding to one prime number. The topological structure of p-adic fields
and of the field of real numbers are very different; in fact, one can find the topology of
Q, very nonintuitive. Nevertheless, it is still reasonable to be concerned with such an
unusual construction since, due to the celebrated Ostrowski’s theorem from 1918, the
p-adic fields and the field of real numbers are in some sense all possible completions of Q.
Although the Ostrowski’s theorem clarified the full significance of p-adic numbers, they
have been introduced and systematically studied earlier by Hensel; his first work [4] on
this topic is from the year 1897.

Since the construction of @Q, is analogous to R, there exists a good reason to study
number theory at all these completions simultaneously. The theory of p-adic numbers
serves as a useful tool in solving many problems of number theory. Many objects from
real analysis has its p-adic analogies. Furthermore, imitating the construction of C from
R, one can construct C,, the p-adic analogue of the complex numbers.

There is a rich literature devoted to the p-adic analysis and number theory. Nice
historical review and further references can be found in [5], very friendly and accessible
introduction to p-adic numbers is [3]. Our aim is to propose new non-standard way how to
represent p-adic numbers; the standard way is a representation in base p with digits in the
alphabet A, = {0,1,...,p—1}. Every p-adic number has then unique such representation
in the form of a left infinite word over 4,,. We will study a possibility of using rational base

*This work has been suported by the Czech Science Foundation grant 201/09/0584 and by the grant
LC06002 of the Ministry of Education, Youth, and Sports of the Czech Republic.

91



92 K. Klouda

representation. Our starting point will be the rational base number system introduced
in [1]. This system turns out to be natural generalization of the standard one. We will
find answers to questions usually connected with numeration systems:

1. How many representations of a given number exist?
2. Which numbers have finite representation?

3. Which numbers have (eventually or purely) periodic representation?

1.1 Construction of the field of p-adic numbers Q,

As we said above, the construction of Q, is analogous to the construction of R; as well as
R is a completion of Q with respect to the classical absolute value, the set QQ,, p prime,
is defined as a completion of Q with respect to the p-adic absolute value.

Definition 1. Let p be a prime number. The p-adic valuation on Z is the function
v, : Z\ {0} — R given by
n=p*™n  with ptn'.

The extension to the set of rational numbers is as follows: for x = ¢ € Q
vp() = vp(a) — vp(b).
And, finally, the p-adic absolute value on Q is defined by
‘I|p = _pvp(x)-

One can say that the value v,(z) measures “divisibility” of x by p. To make this tricky
notion a bit clearer let us consider several examples: v,(p") = n and so [p"| = p~" and p"
converges to 0; if ¢ is a prime number different from p, then v,(¢") = 0 and |¢"| = p™° = 1;
if © = pi*---py*, where p; are prime factors of z, then |z|,, = p~® and |z|, = 0 for all
other primes q.

Recalling that two absolute values are equivalent if they define the same topology, we
can say, by the following theorem, that we have found all the absolute values on Q.

Theorem 2 (Ostrovski). Every non-trivial absolute value on Q is equivalent to the clas-
sical absolute value | | or to one of the absolute values | |,, where p is prime.

For the proof and other details on p-adic numbers see [3].

1.2 Standard representation of p-adic numbers

Standard and well studied way how to represent p-adic numbers is the representation in
the form of a power series in p.

Theorem 3. Every x € Q, can be written in the form
T = bogp ™+ tag+aptap’ +oagpt 4

= Z akpk

k>—ko

with ar, € A, and —ko = v,(x). This representation < x >,= -+ -a2a1ap + a_1 - - - G_, Of
the form of a left infinite word over A, is unique.
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Of course, the infinite sum converges to x only with respect to the p-adic absolute
value. There are several ways how to calculate the word < = >,. The most convenient
for our purposes is the following algorithm:

Algorithm 4. Let' z € Z \ {0}, put so := x and for all i € N define s;11 by
Si = pSit1+ai, a; € Ap.

Hence we have for all n > 0
T=s)=81p+ag=sp +ap+p= ~--:snp”—|—2akpk.

It is easy to show that the sequence s, is bounded, i.e. eventually periodic (for positive
x it is even eventually zero), and so

n—1
xTr — E akpk
k=1

= ‘3n|p‘pn‘p = \Sn|pp_n — 0 asn— oo.

p

Hence, we know how to obtain the representation of integers; however, the algorithm can
be easily modified for rational x = $, where s, are the lowest terms:

Algorithm 5. Let x = 3, p and t mutually prime. Put so := s and for all i € N define
Sit1 by

S S

_Z:pil—i_aia afZ'EAp'

t t

If ¢ and p are not mutually prime, i.e., v,(s/t) < 0, multiply « by p until  can be writ-
ten as StL,Z with ¢’ co-prime to p. Then apply the algorithm obtaining < ap° >p= -+ (2a200.
Then, clearly, <  >,= ---as1a¢« ag—1 - - - ag. Thus there is no lost of generality.

As in the case of integral z, s, is eventually periodic (but not eventually zero!).
Moreover, employing the fact that in @, we have ano pt = ﬁ, it can be proved that
each eventually periodic word represents some rational number. Putting all this together,
we have answers to all three questions from the introduction:

Theorem 6. Let v € Q,. Then < x >, is
1. uniquely given,
2. finite if, and only if, x € N,

3. eventually periodic if, and only if, x € Q.

1 As usual, zero is represented by the empty word «.
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2 Representation of p-adic numbers in rational base

Every real number = can be written as a power series in an integer b > 1 so that x =
> k<ko apb®, where a; € A, = {0,1,...,b—1}. We say that x is represented by the right
infinite word ag,ag,—1 - -apa_1---. Regarding answers to our three questions for this
numeration system, they are all very similar for all values of b. As we will see, it is not
the case for p-adic numbers.

There are several generalizations of this classical integer base system. Very famous
one arises if the integer b > 1 is replaced by a general real number 3 > 1 and the alphabet
by A|); the result is co-called B-expansion proposed by Rényi [6] (for details see, e.g, [2]).
The possibility of introducing an analogue of S-expansion for p-adic numbers is a subject
of the last section. However, our main results apply to another generalization proposed
in [1], which we will now describe.

2.1 MD algorithm

In what follows we assume that p > ¢ > 0 are co-prime positive integers. Let us consider
the following algorithm introduced in [1] and named modified division (MD) algorithm?:

Algorithm 7. Let s be a nonzero integer and t a positive integer co-prime to both p and
q. Put so := s and for all© € N define s;1 by

S S
P POl G g € A, (1)
t t

The uniquely given word ---asaiag s called é%’—r@presentation of v = % and denoted

by <x >1p.
q

QI3

Example 8. Let p = 3,q = 2, then:
<5 >1p= 2101 with (Si)izo =95,3,2,1,0,0,---,
qq
< =b >1p=---2222102 with (s;);>0 = =5, —3,—2,—2, =2, -,
q

Q|-

< 11/4 >1,= 201 with (s;)i=0 = 11,6,4,0,0,- -,
q4q

<11/8 >1p=--- 111111222 with (s;)is0 = 11,2, —4, —8, —8, —8, - - -,
q4q

< 11/5 >1p=---020202022112 with (s;)=0 = 11,4,1, —1, =4, —6, —4, —6, - - -,
q4q

For each n > 0 we have

thus
s nfla » k D nS
%‘,;z(g) -(5)

It means that the sum converges in R (i.e., with respect to the classical absolute value
| |) to s/t if and only if (s;);>0 is eventually zero. But we have learned that there are

2 Actually, in the article the MD algorithm is defined only for integers, i.e., only for ¢ = 1.
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other absolute values definable on Q, namely the p-adic absolute values. In order for the

sum converges to s/t, the sequence <§) must converge to zero (note that (s;);>¢ is again

bounded). But it happens only with respect to absolute values | |., where r is a prime
factor of p (we did not assume p is prime!).

2.2 %g-representation of integers

The case of positive integers is well studied in [1]: %g—represen’cation of a positive integer is
always finite since (s;);>o is eventually zero. On the other hand, if we start with negative

Sp, then s; is negative for all i and so < sy >1p is infinite (= not ending in infinite
949

sequence of zeros). In fact, we can prove even more:
Lemma 9. Let s € N\ {0}. Then:

(i) < s>i1p=ay,- - ajag is finite and

Q3

1
q

(ii)) < —s >1p=---asaiaq is eventually periodic with period 1, i.e., a,x = b for some
q4q

n and all kK > 0 and .
ag (P

530
—o 4 \4

in Q, if, and only if, r is a prime factor of p.

Moreover, if s(p —q) <p—1, then b= s(p — q), otherwise b = Lp;lJ (p—q).

pP—q

2.3 Finite ég—representation

Let
n ax (p) k
()
r—o 1 \4
then, clearly, v = qn% for some m € N. Hence, if x has a finite %%’—representa’cion of length

n, then it is of the form qn%. But not all numbers of this form have a finite representation,

e.g., v = 11/8 from Example 8 has eventually periodic representation ---111111222. To
understand this better, we rewrite Equation (1) from the definition of the MD algorithm
for this special case when t = ¢" ! as follows:

_ n+1
PSi+1 = qS; — a;q .

Now, employing the trivial fact that s is a multiple of ¢, we can see that s; is a multiple
of ¢'. In this way we can prove that s; is a multiple of ¢’ if i < n + 1, and that s; is a
multiple of ¢"*! otherwise. It implies that after at most n + 1 steps of the MD algorithm
we obtain a integer on the left side of (1). As we know from the previous subsection, if
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this integer is nonnegative, the sequence ends in infinitely many zeros, if it is negative,
the sequence is eventually periodic with period 1. And this idea is a stepping stone for
the proof of this lemma:

Lemma 10. Denote F(L) = {k € N | q% has infinite %g—representation}. Then F(1) =0
and
F(L+1)={{-kp+m¢" |k>1me A}NN}U{pk+mq" |ke F(L),meA,}.
Since the recursive relation for F'(L) is a bit tricky, let us consider an example.

Example 11. Let p=3,q=2. Then F(1) =0 and

1
F(2) = {-3+2x2}={1}, indeed 1 has an infinite representation,
FB3) = {-6+4+2%4,-3+1%4,-3+2+4}U{1x3+0x4,1%x3+1%x4,1%x3+2x4}
= {2,1,5,3,7,11},
F(4) = {1,2,3,4,5,6,7,9,10,11,13,14,15,17,19, 21,22, 23, 25, 29, 31, 33, 37, 41, 49}.

2.4 Representation of r-adic numbers

In this subsection, we will consider the general case of %g—representations of r-adic num-
bers, r prime. We again do not assume that p is a prime number, only that p > ¢ > 1
are co-prime. First question we will answer is the question on the number of such repre-
sentations of a given z € Q.. To be able to do so, we need to know some simple facts,
for proofs see again [3].

Lemma 12. Let r be a prime, then | |, is ultrametric, i.e., for all x,y € Q, it holds that
|z + ylr < max{|zl, [y].}.

Lemma 13. Let r be a prime, x € Q, such that |z|, < 1, and n € N. Then there exists
a unique o, € {0,1,...,r" — 1} such that

|z — ol <77

It is a direct consequence of the construction of the r-adic absolute value that the

1
infinite series of the form % (g) converges only in Q. where r is a prime factor of p.

That is why we will restrict ourselves to this case.

Lemma 14. Let r be a prime factor of p with multiplicity® i and let x € Q,. Ifa =
Cea1a0a—y - Ggy, a; € Ay, such that

[e'¢) k
ag (P

e Z q (_) ’
a4
then we have for all integers n > —{y

-£30)

4 \da

< (D)

T

3Tt means that i is the maximal integer such that r* divides p.
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Proof. We have
n k e8] k
ap (P ag (P
() -x5)
k=—fo k=n+1
Denote
= ag (P :
Bum= Y —(—) . with n > €5, m > 0.
k=n+1 q q

For all such integers n and m we get by hypothesis on  and ¢ and by the fact that r-adic
absolute value is ultrametric:

k

a .

‘Bn,m’r < max ar (P < 7“_("+1)Z,
k=n+1,...,n+m ¢ q

Since it is true for all m, we are done.
O

So we know that it is enough to consider only those %%’—representation of z € Q. whose

i

“speed of convergence” is proportional to »—*. All such representations are described by

the following proposition.

Proposition 15. Let r be a prime factor of p with multiplicity i and let x € Q,, |z|, < 1.

Then:
(i) There exist uncountably many %%’—representations a=---asaya9,a; € A, of v such
that
n a k '
B3 (p) < g, (2)
o 4 \4
- T

Each of these representations is determined by an infinite sequence (m;);>o, m; €
{0,1,...,7 — 1}, where p = r'r.

(11) If p is a prime number, thus r = p and i = 1, then x has a unique %g—representation
satisfying (2).

Proof. If |z|, < 1, then |gz|, < 1 as well. By Lemma 13 we know that there exits a
unique ug € {0,1,...,7° — 1} such that

lqr — ug|, =< 17"

Since the r-adic absolute value is ultrametric, we have for all m € N
lqz — (uo + mr")|, < max{|qx — ug|,, |mr*)|,} < r "

Put ag = ug + mgr?, for some mo € {0,1,...,7 — 1}, then

lgz — agl, = |z — @| <7 with ay € A,.

The integers ay of this form are the only integers of A, satisfying this inequality.
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Now, since |1/p|, = r*, by multiplying the inequality by |1/pl|, we get

ag
q

xr —

p

<1

T

and so, as above, we have unique u; € {0,1,...,r" — 1}, arbitrary m; € {0,1,...,7 — 1}
and a; = u; + mqy7r® such that

r2

O

This lemma can be even generalized using a bit more sophisticated notation and
considering only rational x.

Definition 16. Letp = Tfl - -’I“ik be a prime factorization of p, r; are prime numbers > 1
and l; > 0. Lety = (y1,- -+ ,yx) € {0,061} x---x{0,£,}\(0,0,...,0), thenry = r{* .. r{*
Iy)=A{j|y; =4}, and Y is defined by p = r¥ry.

Now, for all admissible y, if you consequently replace r by all r;,j € I(y), and 7
by r¥, the lemma is still true, i.e., for any y, there exists %g—representa’cion of € Q
which converges to 2 with respect to | |, for all j € I(y); moreover, the number of such

representation is given by the number of sequences (m;);>o with m; € {0,...,7¥ —1}.

Corollary 17. Let r be a prime number. Then x € Q, has a %g—representation iof, and
only if, v is a prime factor of p.
In particular, there exists a unique 2-representation over the alphabet {0,1,... 7" —

aq
1}, where i is a multiplicity of r in p.

After going through the proof of Proposition 15 (or better of its generalization men-
tion below the proof) carefully, one can come up with an algorithm returning all possible
%%—representations of a given rational number. As this algorithm is a straightforward
generalization of the MD algorithm, we call it generalized modified division (GMD) algo-
rithm.
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Algorithm 18. Let y be fized but arbitrary for a given p (see Definition 16) and x =
2 € Q such that t is co-prime to r; for all j € I(y). Put so = s,to =t. Further:

tj — tj,1T7 - to(?"_y)J
=L = Ty 9 withu; € {0,1,... 0¥ — 1},
t t t
choose m; € {0,1,...,7Y — 1} at random and put
CLj = Uj + ijy
Sj+l = Sjy1 — Myt
Denote the set of all possible outputs a = - - - asayag by GMD(x).

Lemma 19. Let'y and s/t satisfy assumptions of the previous algorithm. Then a is %%’—
representation of s/t converging in all spaces Q,,,j € I(y), if, and only if, a € GMD(x).

Corollary 20. If t is co-prime to all prime factors of p, then there exists a unique

é%’—r@presentation of s/t which represents s/t in all spaces Q,,, j = 1,... k. This repre-

sentation is equal to < s/t >1» the output of the original MD algorithm.
q4q

Example 21. Let p = 12 = 22x3,¢ = 7. Then GMD(1) for y = (2,0) contains:
---0123331000321113313, - - -6744645665754667767, these representations (aperiodic!) con-
verges to 1 with respect to | |2. The first one is the unique representation over the alphabet
{0,1,2,3 =22 —1}.

The (finite) representation < 1 >
---0007).

» corresponds to'y = (2,1) and is equal to 7(=
q

1
q

Note that even positive integer can have infinite aperiodic %g—representation! In fact,
the following holds:

ip

qq—representation a of x is

Lemma 22. Let v € Q,,r a prime factor of p. Then a
eventually periodic if, and only if, x € Q and a =<z >

1
q

QI3

3 (-expansions of r-adic numbers

In the present section we briefly summarize some consequences of what we have done so
far for S-expansions of r-adic numbers.

Definition 23. Let 3 € Q,,r prime, such that |3|, <1, i.e., |8, = v~ for some £ > 0.
Define the alphabet Az = {a € N | a < (|8],)7'} = {0,1,...,7" — 1} (an analogue to
Ag| in the real case). Then for a given x € Q, any left infinite word a over this alphabet
satisfying

=S

is called a (-expansion of z in Q,.
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After a slight modification of the proof of Proposition 15 we can get the same state-
ment for ——representation. Hence, as its corollary, we have:

Proposition 24. Let 8 € Q,,r prime, such that |3|, = r=* for £ > 0. Then for every
r € Q,, |z|, <1 there exists a unique word a = ---ayag over the alphabet Az such that

o0

= Z azﬂi-

i=0
Moreover, for alln € N:

xr— iazﬂi

1=0

T

Now, considering only rational § = %’, we can prove an analogue of Lemma 22 for
——representamons The main idea is to replace equality ¢ = pslgl + a; in MD algorithm

byq

sz+l

+ a;q. Then we have

n n—1 k
So  PSi1 P Sn p
togt 0 (q) t 2 a (Q)
k=0
i.e., a representation of the form of ——representation analogous to < s/t > ip. It is possible
to prove that if £ E—expansmn of x € QT is eventually periodic, than = € Q, but the reverse

implication is not true (see GMD(1) in Example 21, analogous results can be proved for
g—representations). It would be also interesting to study [-expansions for not-rational 3,

e.g., for r-adic analogue of /2 (the solution of 2 = 2 in Q,). So far, we have no idea
how to attack such a problem.
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Abstract. Structure of each Compositional model can be visualized by a tool called persegram.
Every persegram over a finite non-empty set of variables N induces an independence model
over N, which is a list of conditional independence statements over N. The equivalence problem
is how to characterize (in graphical terms) whether all independence statements in the model
induced by persegram P are in the model induced by a second persegram P’ and vice versa.
This problem can be solved either by direct od indirect characterization.

In this paper we give the motivation and introduction for direct characterization of equiv-
alence. We have found some necessary invariant properties among equivalent persegrams that
have to be satisfied. The opposite implication (whether these properties are sufficient too) is still
missing. However, a very powerful tool to recognize non-equivalent persegrams is introduced in
the paper.

Abstrakt. Kazdy kompoziciondlni model indukuje svoji strukturou mnozinu nezavislosti - tzv.
indukovany nezévislostni model. Struktura kompozicionalniho modelu se obvykle znazoriuje
pomoci persegramu. Proto fikdme Ze nezéavislostni model je indukovin persegramem. Rozhod-
nout, zda dané dva persegramy indukuji stejny nezavislostni model neni jednoduché. Tento
problém se oznacuje jako problém ekvivalence. P¥ipadné persegramy jako ekvivalentni. Regenfm
je pfima nebo nepfimé charakterizace.

Tento ¢lanek se zabyva piimou charakterizaci. Jsou publikovany nékteré nutné podminky
(invariantni vlastnosti) ekvivalentnich persegrami. Ptestoze ditkaz zda jsou podminky postacu-
jici stale chybi, predstavuji publikované invariantni podminky silny néstroj na fesSeni problému
ekvivalence.

The ability to represent and process multidimensional probability distributions is a
necessary condition for the application of probabilistic methods in Artificial Intelligence.
Among the most popular approaches are the methods based on Graphical Markov Mod-
els, e.g., Bayesian Networks. The Compositional models are an alternative approach
to Graphical Markov Models. These models are generated by a sequence (generating se-
quence) of low-dimensional distributions, which, composed together, create a distribution
- the so called Compositional model. Moreover, while a model is composed together, a
system of (un)conditional independencies is simultaneously introduced by the structure
of the generating sequence.

*The research was partially supported by Ministry of Education of the Czech Republic under grant no.
2C06019, 1M0572, and by Czech Science Foundation under grants no. ICC/08/E010 and 201/09,/1891.
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The structure can be visualized by a tool called persegram and one can read induced
independencies directly using this tool. That is why we can say that every persegram
over a finite non-empty set of variables N induces an independence model over N - a list
of conditional independence statements over N. The equivalence problem is how to char-
acterize (in graphical terms) whether all independence statements in the model induced
by persegram P are also in the independence model induced by a second persegram P’
and vice versa.

1 Notation and Basic Properties

Throughout the paper the symbol N will denote a non-empty set of finite-valued variables.
From the next chapter on, variables will be represented by markers of a persegram.
All probability distributions of this variables will be denoted by Greek letters (usually
7, k); thus for K C N, we consider a distribution (a probability measure over K) m(K)
which is defined for variables K. When several distributions will be considered, we shall
distinguish them by indices. For a probability distribution 7(K) and U C K we will
consider a marginal distribution w(U).

The following conventions will be used throughout the paper. Given sets K, L C N
the juxtaposition KL will denote their union K U L. The following symbols will be
reserved for special subsets of N: K, R, S. The symbol U, V, W, Z will be used for general
subsets of N. The symbol |U| will be used to denote the number of elements of a finite
set U, that is, its cardinality. u,v,w, z denotes variables as well as singletons {u}, ...

Independence and dependence statements over N correspond to special disjoint triples
over N. The symbol (U, V|Z) denotes a triplet of pairwise disjoint subsets U, V, Z of N.
This notations anticipates the intended meaning: the set of variables U is conditionally
independent or dependent of the set of variables V' given the set of variables Z. This
is why the third set Z is separated by a straight line: it has a special meaning of the
conditioning set. The symbol 7 (N) will denote the class of all disjoint triplets over N:

T(N)={{UVI|Z);UV,ZCN UnNnV=VnZ=ZnU-=10}

To describe how to compose low-dimensional distributions to get a distribution of a
higher dimension we use the following operator of composition.

Definition 1.1. For arbitrary two distributions 7(K) and (L) their composition is given
by the formula

m(K)x(L) se _|KNL IKNL
m(K)> k(L) = r(KNL) if <K ’
undefined otherwise,

where the symbol (M) < k(M) denotes that 7(M) is dominated by (M), which means
(in the considered finite setting)

Vo € XjenX;; (k(z) =0= n(z) =0).
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The result of the composition (if defined) is a new distribution. We can iteratively
repeat the process of composition to obtain a multidimensional distribution - a model ap-
proximating the original distribution with corresponding marginals. That is why the mul-
tidimensional distribution (and the whole theory as well) is called Compositional model.
To describe such a model it is sufficient to introduce an ordered system of low-dimensional

distributions 7, mo, ..., m,. If all compositions are defined, we call this ordered system a
generating sequence.
From now on, we consider generating sequence m1(K7), mo(Ks), . .., m,(K,) which de-

fines a distribution (where the operator > is applied from left to right)
m (K1) > mo(Ko) > ... > m(K).

Therefore, whenever distribution 7; is used, we assume it is defined for variables K;.
In addition, each set K; can be divided into two disjoint parts. We denote them R; and
S; with the following sense:

Ri=K\(KiU...UK;_1),S;=K,N(KyU...UK; ;)

R; denotes variables from K; with the first appeared with respect to the sequence
(meaning from left to right). S; denotes the already used.

1.1 Graphical concepts

It is well-known that one can read conditional independence relations of a Bayesian net-
work from its graph. A similar technique is used in compositional models. An appropriate
tool for this is a persegram. Persegram is used to visualize the structure of a compositional
model and is defined bellow. The example of persegram can be found in the Example
1.5.

Definition 1.2. Persegram P of a generating sequence is a table in which rows correspond
to variables (in an arbitrary order) and columns to low-dimensional distributions; ordering
of the columns corresponds to the generating sequence ordering. A position in the table
1s marked if the respective distribution is defined for the corresponding variable. Markers
for the first occurrence of each variable (i.e., the leftmost markers in rows) are squares
(we call them box-markers) and for other occurrences there are bullets.

Since the markers in the i-th column represent variables K;, we denote markers in
i-th column as K;. Box-markers in ¢-th column of P are denoted like R; and bullets like
S;. K; = R; U S;. The symbol |P| will be used to denote the number of columns of P,
that is, its length. This notation is purposely in accordance with notation of variable sets
in generating sequences to simplify readability and lucidity of the text.

Persegrams are usually denoted by P and if it is not specified otherwise, P corresponds
to the generating sequence my(Ky),...,m,(K,) where K; U...U K, = N. We say that
P is defined over N. (i.e. P over N has n columns with markers K, ..., K, where
KyU...UK,=N.)

To simplify the notation we will use the following symbol: Let P be a persegram over
N. We introduce a function |[p: N — N, which for every variable v € N returns the
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index of set K; with the first appearance of u in the persegram P. Due to the previously
established notation can be said that Kj,, is a column K; where u € R;. In other words:
lu[p=1i:u € R;.

Definition 1.3. Let P be a persegram over N and <p a binary relation. For arbitrary
u,v € N we denote u <p v if Ju[p<|]v[p. Moreover we introduce the relation <p: u <p
v u=pv AND v 4p u.

The following convention will be used throughout the paper: Given variables u, v, w €
N and P over N, the term u,v <p w denotes that u <p w and v <p w. The symbol P
may be omitted, if the content is clear.

1.2 Conditional independence

Conditional independence statements over /N induced by the structure of Compositional
model can be read from its persegram. Such independence is indicated by the absence of
a trail connecting or avoiding relevant markers. It is defined below.

Definition 1.4. Consider a persegram over N and a subset Z C N. A sequence of
markers my, ..., my 1s called o Z-avoiding trail that connects mg and my if it meets the
following 4 conditions:

1. for each s = 1,...,t a couple (ms_1,my) is in the same row (i.e., horizontal con-
nection) or in the same column (vertical connection);

2. each vertical connection must be adjacent to a box-marker (one of the markers is a
boz-marker);

3. no horizontal connection corresponds to a variable from Z;

4. wertical and horizontal connections reqularly alternate with the following possible
exception: two vertical connections may be in direct succession if their common
adjacent marker is a bor-marker of a variable from Z;

If a Z-avoiding trail connects two-box markers corresponding to variables u and v, we also
say that these variables are connected by a Z-avoiding trail. Suppose (U,V|Z) € T(N)
is a disjoint triplet over N. One says that U and V are conditionally dependent by Z,
written UL V| Z[P], if there ezists a Z-avoiding trail between variable u € U and variable
v eV inP. In the opposite case one says that U and V' are conditionally independent by
Z in P, written ULV |Z[P]. We also say that (U,V|Z) is represented in P. The induced
independence model Z(P) and the induced dependence model D(P) are defined as follows:

I(P) = {(U,V|Z) € T(N);ULV|Z[P]}
D(P) ={{U,V|2) € T(N); ULV|Z[P]}

Example 1.5. Consider persegram from Figures 1 and 2.

In Figure 1 a \-avoiding trail is depicted. Therefore ull z|0). Moreover, one can replace
0 by any subset of {v,w,z,y} which is avoiding Z as well. In Figure 2, there is depicted
another trail connecting u and x. Therefore ullx|z. On the contrary to Figure 1, one
can not replace z by any other variable except v. Otherwise, the condition 3. from the
Definition 1.4 will be corrupted. (i.e. ulx|y[P] for example)
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Figure 1: P :ull 2|0, u z|v Figure 2: P :u x|z

The following specific notation for certain composite dependence statements will be
useful. Given a persegram P over N, distinct variables u,v € N and disjoint set U C
N\ {u, v} the symbol w)fv| + U[P] will be interpreted as the condition

ufv| + U[P] = VW such that U CW C N\ {u,v} one has vl v|W][P].

In words, u and v are (conditionally) dependent in P given any superset of U. If U is
empty we write * instead of +0. Le.

ufv| * [P] = VW such that W C N\ {u,v} uwllo|W[P].

We give a certain graphical characterization of composite dependence statements of this
kind below.

2 Equivalence problem

By the equivalence problem we understand the problem how to recognize whether two
given persegrams P, P’ over N induce the same independence model (Z(P) = Z(P’)). It is
of special importance to have an easy rule to recognize that two persegrams are equivalent
in this sense and an easy way to convert P into P’ in terms of some elementary operations
on persegrams. Another very important aspect is the ability to generate all persegrams
which are equivalent to a given persegram.

Definition 2.1. Persegrams P, P’ (over the same variable set N ) are called independence
equivalent, if they induce the same independence model Z(P) = Z(P’).

Remark 2.2. One may easily see that the above mentioned definition could be formulated
with the term of dependence model. Persegrams P, P’ (over the same variable set N)
are independence equivalent, iff D(P) = D(P’). This alternative is used in most proofs
primarily.

2.1 Direct characterization

The solution of equivalence problem can be done in several ways. Some kind of direct
characterization of equivalence follows was done in the paper [5] where we introduced
two invariant properties of equivalent persegrams. Let us remind these invariant together
with necessary definitions of connection and ordering condition. Proofs can be found in
[5] as well.
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Definition 2.3. Let P be a persegram over N and u,v € N be two distinct variables,
and v =p v. u,v are connected in P (u <p v) if u € Kj,. The set of all pairs
E(P) = {{(u,v) : u,v € N,u <>p v} is called a connection set of P.

The following convention will be used throughout the paper: Given variables u, v, w €
N and P over N, the term u,v <»p w denotes that u <»p w and v <»p w. The symbol P
may be omitted, if the content is clear.

For the purpose of the following text one should realize the obvious parallel between
relation u < v and columns order and content. This parallel is summarized in the
following remark.

Remark 2.4. Let u,v are two different variables in P and u <p v. Then
up v u€ Ky
Lemma 2.5. Let P be a persegram over N and u,v € N are distinct variables. Then
u —p v & wlo|x [P

Definition 2.6. Let P be a persegram over N. An Ordering condition induced by P is
a triplet of variables u,v,w € N where u,v < w; u,v < w; and u < v in P. Such an
induced ordering condition is denoted by [u,v] < w[P].

Lemma 2.7. Let P be a persegram over N, u,v,w € N distinct nodes. Then
[u, v] < w[P] & uwlv| + w[P].

The previous lemmata show two invariant properties of equivalent persegrams. Two
persegrams, if equivalent, have the same set of connections and induce the same set of
ordering conditions.

Corollary 2.8. Let P, P’ be two persegrams over N. If Z(P) = Z(P') then E(P) = E(P’)

and they induce the same set of Ordering conditions.

3 Column approach

In the previous section two invariant properties were introduced. However, the condition
of the same Connections set is not so simply verifiable on the contrary to Bayesian
networks. It will be nice to transform this condition into some other condition about
columns.

The following lemma gives an interesting assertion about columns with mutually con-
nected set of variables. Basically, it is a generalization of the Remark 2.4.

Lemma 3.1. Let P be a persegram over N, U C N be a set of mutually connected
variables in P (Vu,v € U;u <p v). Then Ju € U such that U C Ky,
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Proof. The proof is done by induction on |U|. The induction hypothesis for n > 2 is that
the lemma holds for any U with |U| < n. It is evident for |U| = 2. It follows from the
Definition 2.3 or from the Remark 2.4 as well.

Assume n = |U| > 2 and that the implication holds for subsets with cardinality
smaller than n. Choose u € U such that all other v' € U u =<p «/. This choice is
always possible and ensures that u € Kj,/; by Remark 2.4 for all v’ € U. Introduce U’ as
U’ = U \ {u}. By the induction hypothesis, Ju” € U’ such that U" C Kj,/[. By choice of
u, it is easily verified that U C Kj,»[. U

The above mentioned lemma can be further generalized.

Lemma 3.2. Let P, P’ be two equivalent persegrams over N, K¥ an arbitrary column
of P, and an arbitrary subset U C K” with at least one boz-marker U N R” # (. Then
Ju € U such that U C K}ZE inP.

Proof. One can easily divide U into two groups. Let R = U N R” be the part composed
from box-markers and S the rest. U = RUS.

If |S| < 2, then the lemma is a trivial corollary of the Lemma 3.1 (By definition,
variables in R are mutually connected, and every variable from S is connected with
all variables from R. Since |S| = 1 then all variables from U = R U S are mutually
connected.) Suppose |S| >= 2 and M = R is a set of mutually connected variables.
Then two possibilities exist for every s € S.

1. s « & for all other s € S. In that case, s can be added into a set of mutually
connected variables M = M U {s} and by the Lemma 3.1 there exists m € M such
that M C K[

2. 3’ € S such that s <» §'. Then [s,s] < r;¥Vr € R. By Corollary 2.8 and Remark
24 Vr € R;s,8 € K]f[' It follows from the previous step that dm € M such

that R C Kf;/[ and therefore by Remark 2.4 R <p m. Since s,8 <pr R <pr m.
Therefore s, s’ <p: m. By definition of M s,s" <+ m. Then by Remark 2.4 s,s" €
KT

Jm[®

One can expand the previous assertion by induction into the following corollary.

Corollary 3.3. Let P, P’ be two equivalent persegrams over N. Then every column K
of P with a square-marker either exists also in P’, or it is a subset of some other column
in P with at least one box-marker - out of K.

Anyway there is one column which definitely exists in an equivalent persegram. It is
the last column with a box-marker. It is obvious. The last column may not be a subset
of any other, since there is no column after.

This lemma can also be proved without the knowledge of the previous Lemma 3.2,
only on the basis of independence invariants summarized in the Corollary 2.8.
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Lemma 3.4. Let P, P’ be two equivalent persegrams over N. If the last column of P -
K|77)>\ contains a box-marker, then this column is contained in P’ as well. (i € 1..|P’|

such that K" = K[},)

Proof. By the assumption the last column of P has to contain at least one box-marker
te RIP\ Denote other variables from K”,‘ \ {t} by S. SU{t} = K‘P|

Since both persegrams are defined over the same variables set, then K]f[ exists. By

the Corollary 2.8 £(P) = £(P’) and it implies that K}P[/ K[ Let C = K[, \KP/ If
C =, then KIP\ = K]f[' and the proof is done. Suppose C # (.

By Remark 2.4 Ve € C; t <pr c.

Choose ¢ € C and corresponding Kfc)[/ such that other ¢ € C;¢ =<p/ ¢. This choice is
always possible and ensures that by remark 2.4 t < ¢[P'] and Vs € S; s <p/ c.

The next step is to observe that S C Kfc)f Indeed, suppose that s <»p/ ¢ for some
s € S. Then, s <»p c by E(P) = &E(P’), and s <>p t, ¢ <>p t by definition. Since ¢ is in
last column of P only, one has [s, ¢] < t[P] and [s, ¢] < t[P’] by Lemma 2.7. This however
contradicts the choice of ¢ where t <p/ ¢. Thus necessarily s «<p/ c.

Another observation is that K7' C SU{t}. Indeed, suppose that there exists v € N\.S;
v # t such that v € K} Since v ¢ S one has v <»p t and therefore v «<»p: t. It implies

that v € Sﬁ[ and therefore v <p/ ¢ (otherwise, since ¢t € K}C[ and v € R]C[ then ¢t «p/ v).
Thus [v,t] < ¢[P'] implies [v,t] < ¢[P] by lemma 2.7. This contradict the fact ¢ <p ¢.
Then Kfj[' = Kﬁ)‘ necessarily. U

Remark 3.5. The box marker t was chosen randomly in the previous proof. Thence it
follows K]f[ K(;' but also Rﬁ)‘ - Rﬁ[ l.e. FEvery variable with box-marker in K(;' has
a box-marker in K] [ .

In addition to this remark we would like to know whether Kﬁ is the only column in
P’ containing R“,‘ Suppose that t € K]Z[ such that x >p/ ¢ and therefore z « t[P’].

This contradicts the fact = & K“,‘

In the above paragraphs we supposed that the last column of P contains at least one
box-marker.

However, the condition of the same Connections set £(P) is a little bit difficult to
verify. In case of graphs (e.g. in Bayesian networks) one simply put the graphs crisscross
and the result is obvious. We will appreciate some rule concerning columns in case of
persegrams.

Let us extend the Lemma 3.2 and Corollary 3.3.

Remark 3.6. Let K7

jul C Kﬁ[, then Yu' € K}Z[ holds that v’ <p v.

The assertion of the above mentioned remark is very simple. If even u € Kj, then
u < v. Therefore Ju[<]v[ and all variables from K, appear sooner than v.

Let us thing about the problem more further.

Let P, P’ be equivalent persegrams over IN. Suppose that there is a column K with
box-marker corresponding to r € N (i.e. K = Kj,[) that has no corresponding column in
P’. By the Lemma 3.2 3K’ € P’ such that K DO K’ and at least one of K is a box-marker
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in K'. Let U =K' e K\ K. |U| # 0 by the assumption. (See the areas of interest on
Figures 3 and 4 in the Example 3.7.)

Choose u € U and the corresponding Kﬁ[ such that other v’ € U u =<p u’. This choice
is always possible and ensures that all other u € U N K),,| are box-markers as well.

The next step is to observe that K C K]Z[. Indeed, since {u} U K belongs to K" and
at least one of them is a box-marker then by the Lemma 3.2 there is a column containing
K U{u} and by the Remark 3.6 u is a box-marker. Then this column coincide with K}Z[.

Another observation is that Sﬁ[ = K]f[. Indeed, Let V = S]Z[ \ K]f[ and suppose
|V| # 0. Then there is some v € V such that v € S},;. By the Lemma 3.2 and the
Remark 3.6 there is a column K}’U[ containing all marker from Kj,pi.e. {r,u,v} etc. It
means that [r,v] < u[P. This contradicts the fact v =p/ u.

Then V' = () necessarily.

Example 3.7. This previous problem analysis is depicted on the following Figures 3 and
4. The following convention is used in the consequent figures. The symbol X represents
marker of which we are no sure whether it is a boxr-marker or a bullet. The meaning of
set of markers X in one column is that at least one of these markers is a box-marker but
we do not know which one.

Figure 3: P : [v,7] < u[P] Figure 4: P': v >pr u

The previous paragraph extends the Lemma 3.2 in a very interesting way.

Corollary 3.8. Let P, P’ be two equivalent persegrams over N. Then every Yu € N,

either there exists a corresponding column to Kﬁ[ in P" or Jv € N such that K}Z[ = Sﬁ[.

Definition 3.9. Let P be a persegram. Then P is reduced if there is no pairi,j € 1..|P)|
such that K; = 5.

Corollary 3.10. Let P, P’ be two equivalent reduced persegrams over N. Then these
persegrams consists from same columns (regardless of the markers shape).

4 Conclusion

In this paper a short introduction into equivalence problem was given. This problem
includes several sub-problems where one of them is how to recognize whether two given
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persegrams are equivalent "on the first sight". The partial solution to this problem
is a direct characterization involving some invariant properties that are necessary for
equivalence. Two such a properties were introduced: Connections set and Ordering
conditions.

On the contrary to probability models using acyclic directed graphs (DAG) to visualize
the structure, the Connections sets can not be so simply compared. (In case of DAGs
one puts the graphs simply crisscross.) That is why we introduced the other invariant
property: the Columns set. However, the corresponding persegrams need to be in a
special reduced shape. Are these invariants are sufficient to decide whether two given
persegrams are equivalent? Despite the promising recent research, this question remains
open.
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Abstract. This work formulates the problem of renewable resources exploation in a discrete
environment and provides methods that can be used for this problem. A particular instance
of this problem has been examined in more detail: exact solution has been found by means
of dynamic programming and compared with solutions given by designed evolution technique,
using simple reactive rules.

Abstrakt. Tato préace formuluje problém tézby obnovitelnych zdroji v diskrétnim prostiedi a
nabizi metody, které jej mohou fesit. Zaroven je zkoumana konkrétni instance tohoto problému
podrobnéji: pomoci dynamického programovani je nalezeno exaktni FeSeni, které je porovnano
s navrzenou evolu¢ni metodou vyuzivajici jednoduché reaktivni pravidla.

1 Introduction

This paper deals with with renewable resources. Renewable resources are natural re-
sources that tend - spontaneously or with some assistance - to the original state after an
external action. The modeling of renewable resource dynamics has been assessed already
in several works [8] or [15] also the negotiation about them [6], [4], and other decision
making issues [14]. The most important for this paper are - however - works focusing
possibly most efficient usage of the resource [1],[13], [18] and causes of over-exploitation
[16]. There also works addressing the action of several agents in the resources grabbing
[9]. Finally, some aspects of efficient exploitation were treaten in [10].

2 Terminology

We consider the time-line as a totally ordered set T with time instants t € T. The
environment is represented by an arbitrary set of places P. In order to describe the
actual state of the environment, a tupple of properties will be used. In our case, we
require only local properties, i.e. properties related to a place. Formally, we can speak
about a set of mappings {x1,22... 2y} where z; : T X P — L; Vi€ M. The set L;is
the property range, usualy a set of numbers or strings.

111
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In the environment agents are placed. In this moment, it is not necessary to define an
agent explictely. We can consider agents just as an arbitrary set A. The actual position
of an agent is given by mapping y : T'x A — P, i.e. given time instant and agent, the
position is unique. Agents are able to make decision. The set of possible decisions is D.
Actual agent’s decision can be represented by mapping a : T'x A — D.

Values of mappings x1, ..., zy, a, y are constructed incrementally as system dynamics
evolves. Let state in time t € T be s(t) = (t,y(t,-), x(t,-), a(t, ) and s* set of all possible
states. Let s be initial state. Let history be h(t) = (), ., S(7) and h* set of all possible
histories. Let trajectory be ¢ = (), o S(7) and ¢* set of all possible trajectories. The
dynamics of the system is defined as triple of procedures (Evolve, Move, Decide):

zi(t,:) < FEvolve(H(t),r(t)) Vie M (1)
y(t,") «— Move(H(t),r(t)) (2)
a(t) <« Decide(H(t),r(t)) (3)

where r(t) is taken random from [0, 1]#®) and R(t) is number of random values required
for time instant ¢.
We will use following notation:

1. o € DTl is a strategy, i.e. for all agents and all time instants.
2. %(t) € L'lp‘ XX L'AIZ‘ is the actual environment state, i.e. all local values considered.
3. y(t) € Pl are actual agents’ positions.

All these three procedures define the system as such. We will examine them in more
detail.

Procedure Fvolve models the behavior of the environment. It may given by differential
equations, celuar automata rules etc. Procedure Fvolve involves also impacts of decision
made before in the past. The result of this procedure may be stochastic, i.e. the history
and the procedure determine only a probability distribution of new local states from
which new state is drawn. Procedure Move is very similar to the procedure Fvolve.

Procedure Decide determines next agents’ actions. These actions reflects the history
and both actual positions and local states. Procedure Decide strives to solve a decision
making problem. The class of possible problems is wide. However, all problems has
one or several criteria that are to be optimized. These criteria depend on the entire
trajectory in a given horizon h(ty.,) that may be finite or infinite which is less typical.
All information about the history is not always in place. Agents work under uncertainity.
Procedure Decide is not an action. The result of decision is given by Move and Fvolve.
A part of decision may not impact the system, but only change agent’s inner state.

Next, we will introduce the preference and the objective function The preference of
agent ¢ € A is defined as a partial ordering <; on ¢*. The objective function objective
function is a function f: A x ¢* — R such that Vq1,q2 € ¢*Vi € A f(i,q1) > f(i,q0) =
q1 <i q2. Of course, there may be more objective functions in place, e.g. for different
criteria, or for each agent etc. The combination of them is an interesting branch of
decision making. In our case, we will work with a signle objective function.
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Finally, a multi-agent dynamic system be MADS = (P, A, T, s(0), Evolve, Move, Decide, f)
, where P are places, A are agents, T is time, sq an initial state, f is an objective func-
tion and (Fwvolve, Move, Decide) are dynamics. Given a M ADS, multi-agent dynamic
decision problem is task to design function Decide so the expected value of f are maximal.

Now, we will introduce a specific M ADS and a specific problem that will be treaten
in next parts of this work.

The Discrete exploation of renewable resources system is a multi-agent dynamic system

DERRS = (E, A, T, so, Evolve, Move, f) where
e P is a finite set

A is a finite set

T=1{1,2,.. . tmax}

e FEvolve(H(t)) is defined by procedures Natural Evolve and Exploitation so that
x(t,e) = Natural Evolve(x(t — 1,-)) — Exploation(t,e) where Exploation(t,e) =
Natural Evolve(x(t—1,-)) if i € A y(t,i) = e and Explotion(t,e) = 0 otherwise.

e a(t,-) = Decide(H(t),r(t)) is restriced by accessibility of places C C E x E, i.e.
a(t,i) € {y'|(y(t,i),y) € C}

(
y(t,-)Move(H(t),r(t)) = Decide(t — 1), i.e. the agent moves to a place for which
he decided before.

o Vic Af(i,Q) = S > Exploitation(t, e)

3 Dynamic programming and exact solution

Above formulated problem may be interpreted as a problem of dynamic programming
which stands for a well established reasearch field [5]. The dynamic programming solu-
tion will provide exact optimal solution, but it requires much computational time. This
solution has been designed and implemented so a comparison for heuristic methods is
available.

Basic idea of DP approach is to solve from the final time t,,,,. Since decisions have
impact always in the next time instant, for this time no decision is made. At the instant
before, i.e. t,,,. — 1, the decision is made so the sum of exploation in the last instant
is maximal etc. Thus, all configurations are treaten for each time horizon. The number
of configurations grows linearly (each time horizon is solved individualy), but it is huge.
In case of a very simple example defined below, the number of possible configurations is
giant: 5% - 92 = 158,203, 125 where 5 is number of possible values of z, 9 is cardiality of
%, and finally 2 is number of agents. Therefore, we will consider all ways from beginning
till the end. In this case, however, we will probably evaluate one situation more times
and the solution will grow exponentially®.

LOf course, an improvement can be done by saving so far known strategies. This will ensure the linear
grow. However, this was not implemented yet
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Let us describe the algorithm formally. Algorithm (1) shows the pseudocode of pro-
cedure Evaluate that is called recursively. This procedure calculates maximal gain for
given x and y if there remain r time instants. First of all, procedure Fwvolve is called
which is divided into three subprocedures Natural Evolve, Exploited, and Exploation.
The Ezploited procedure returns gains. Afterwards, if there are some next steps to be
considered, all possible decisions are tested: the optimal one is found recursivelly. The

Algorithm 1 Dynamic Programming Procedure
1: procedure EVALUATE(y(t),%(t),r) > Returns maximal f as sum of future gain v
and actual gain g

2: V— —0

3: %(t + 1) < NATURALEVOLVE(x(t))

4: g « EXPLOITED(x(t + 1), y(t))

5. x%(t+1) < EXPLOITION(x(t + 1), y(t))

6: Thext < T — 1

7 if 7hext # 0 then

8: for all a(¢) € POSSIBLENEXTDECISION(C, y(t)) do
9: y(t+1) «— a(t)

10: Vnext = EVALUATE(Y (¢ + 1), 2% + 1), 7pexst)
11: UV < Upext

12: if v > v then

13: V0

14: a(t) = a(t)

15: end if

16: end for

17: else

18: v 0

19: end if
20: return v +g
21: end procedure

DP solution provides guaranteed optimal results, but the time complexity is very high.
If C' would define a k-regular graph, then there would be (k - n,)™™ possibilities to be
tested. This limits the applicability of the algorithm very significantly.

Possible improvement can be reached by: symetry, saving known calculations, ie
Memory vs Speed.

4 Reactive Solutions

Alterantive way towards an satisfactory solution are simple rules. The discussion about
thumb rules, usual for reactive agents, and dynamic programing in [7]. Such reactive
rules provide usualy a suboptimal solution, but somehow good in average. This solution
is provided in a moderate time and is robust, i.e. if the system is changed unexpectly,
e.g. a new agent comes, the result is yet relatively good. More about heuristic decisions
in dynamic programming was threaten in [11].
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This section’s aim is to formulate some simple approximative ways how to instruct
agents in above defined DERRS.

Random Walk - agents walk through the graph randomly. At each moment, the agent
draws from neigbohrs one uniformly randomly and goes in this direction.

Greedy Crowd - agents strive to exploit maximum in the next time instant. At each
moment, the agent tests local properties of the neighorhood and does to the neighbohr
with the maximum.

Greedy Lions and Hyenas If more neighohrs have the same value, the agent prefers
minimal index of the agent. Agents make their decisions sequentially. Therefore, if an
agent is already decided to go somewhere, other greedy agents, not decided so far, wont
go to this place if they have another possibility.

Aroma Tracking is a modification of both greedy approaches. The aroma of a place
e € F equals to weighed average of material in its neighborhood. The agents select next
position in a greedy way.

Global Pheromone Averse is also a modification of both greedy approaches. If an
agent enters a field, a pheromone trail is left (some amount of pheromone is added).
However, each time instant some pheromone evaporates (the amount of pheromone is
multiplied by a constant from (01) interval). The agent chooses a neighbor with minimal
pheromone.

Friend’s Pheromone Tracking - agents leave individual pheromone trails in the way
described above. Each agent ¢ has one friend agent j that is tracked, i.e. i selects the
neighbor where the pheromone trail of j is maximal.

Short Term Planning - agents will plan their actions so they are optimal in a short
term horizon so the planning is possible. After each action, the planning is run again.
For time horizon ¢, = 0 we can call Greedy Commando.

Of course, these simple approaches can be combined in arbitrary way. Each agent
may have more rules. These rules can be combined, e.g. aroma and friend tracking
where both imputs have own weights. Or, the actual rule can be chosen randomly. This
sampling must not necessarily from the uniform distribution. The distribution can be
also updated, e.g. by reinforcement learning.

If there are more agents in the system, each of them can have other rules, e.g. one
agent A can combine aroma and friend’s pheromone trackings while another agent B -
the friend of A - can combine random walk with a greedy approach.

5 Evolutionary Solutions

Other way to find optimal control strategy is the evolutionary algorithms. They iterative
heuristics which search optimal solution in the input space working with sereval points



116 K. Macek

(population) in the input space [3].

Application of evolutionary algorithms in dynamic decision problems is nothing new
[19] since discrete dynamic programming stands for a combinatorical problem [20].

The most simple approach in this way is random shooting. Here, random strategy
is generated and compared with the so far best known strategy. For the random strate-
gies, relation C' is used so the correctness of generated strategies is ensured. Advanced
techniques work with usual evolutionary operations.

Initialization - strategies are generated randomly (random walk).

Selection - py,p, € [0, 1] percent of the best individuals are copied, psampie € [0, 1] percent
of individuals are re-sampled randomly. The rest is used for evolutionary operation. Two
individuals are selected for the crossover. The population is ordered by the fitness, i.e.
value how is which strategy successful. The probability of selection is proportional to the
ranking. This ranking is used for the sampling instead of the fitness values because they
will very probably tend to be similar. Thus, the local minima problem can be avoided.

New sub-strategies - at the beginning, the strategies are generated via random walk.
For cross-over and mutation, however, more advanced approach is used. The strategy
is generated piecewise. First, the generating method is chosen randomly (random walk,
greedy lions and hyenas, short term planning) for the next part of strategy. Afterwards,
the length of the part is determined randomly as well. Finally, the sub-strategy is gener-
ated by given method and returns also final state z that is used for next generation.

Cross-over - two strategies o', o® are merged. Usual cross-over is often not usefull in
specific problems [17]. It is also in this case because two parts of two different strategies
may not be connected in terms of the relation C. Therefore, the first part from the parent
a! is taken (the length of this part is random). If the part from the parent o® follows
respecting C', the part is mergered. Otherwise, next decisions are generated as described
above from the last decision until they match the parent 2.

Mutation - is practically identical with the cross-over. First part is taken from the
individual, the rest is generated as a new substrategy described above.

Resetting - sometimes, the population is infected by a local extreme and it is difficult
to move. Therefore, if the so far best known solution was not improved too long, the
process is reset. The condition is ¢;/t > «a where a € (0,1) and ¢; is the time without
improvement. Thus, the longer run of the algorithm, the longer trial is provided until
next reset.

6 Results of experiments

For demonstrative and testing purposed, an instance of the above mentioned problem
was formulated:
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Figure 1: Set of places P in the environment and accessibility relation C used for the
demonstration example.

Tmax 1 2 3 4 5 6 7 8 9 10 11
fopt 4 10 18 28 37 45 54 61 70 78 87
fopt/tmax 4 5 6 7 74 75 7714 7.625 7.777 7.8 7.909

Table 1: Exact solution for different horizon ¢,

P ={1,2...,9}, in fact points on a small chess-board 3 x 3

A=1{1,2}

Natural Evolve(t, e) = max(x(t — 1,e) + 1,5)

C' is given by neiborhood on the chess-board, e.g. (1,2),(1,4) or (5,6) € C.

This problem can be solved for small ¢,,., exactly. The graph given by C' evidently does
not contain Hamiltonian cycle which can be shown by contradiction. Thus, there is no
possibility to go through the graph in a cyclical way [12] which would enable efficient
patroling [2]. The dynamics, i.e. linear grow up to 5 disables trivial solutions where
agent have always a vertex with maximal possible value available for next turn. This
example is therefore complex enough for testing. Furthermore, it is demonstrative, so the
solution can be insighted easily.

This experiment was tested. For ¢, = 10, the exact dynamic programming solution
required 14 hours and 21 minutes. Optimal values are given in Table 1. Markedly, for
these cases the average gain of one time instant grows, as the third line shows.

6.1 Evolutionary solution

Because of high time consumption of the exact solution (growing exponentially), the
above proposed evolutionary algorithm was used. It was tested with respect to different
parameters and different horizons t¢,,,,. The parameters were as follows:
e Maximal computer time - how long may the method try to find the solution maxi-
mally. Value: 10752fm=x in days.
e Population size - how many solutions are in the population. Tested values: {10, 50, 100, 1000}
e Copying ratio - how many of best solutions will be copied for the next generation.
The absolute number is rounded up (ceiled). Tested values: {0.01,0.1,0.3}
e Sampling ratio - how many of worst solutions will be replaced by random ones. The
absolute number is rounded down (floored). Tested values: {0,0.1,0.3}
e Resetting parameter - how many usuccesfull iterations cause the reset (as a ratio
of unsuccessfull iterations to all iterations). Used value: 0.5.
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Population size Copying ratio Sampling ratio

10.0000 0.3000 0.1000
10.0000 0.3000 0.3000
50.0000 0.3000 0.3000

Table 2: Best parameters for t .« =7

tmax Systematic genetic
1 9.03E-07  5.44E-09
2 0.00E+00 1.85E-09
3 1.74E-07 0.00E+00
4 2.35E-06  4.48E-07
5 1.81E-05 4.00E-06
6 1.58E-04  3.52E-05
7
8
9
0
1

1.20E-03  2.06E-04
1.01E-02  1.10E-04
7.44E-02  2.79E-04
6.48E-01  1.15E-03
4.76E+00  3.01E-03

Table 3: Comparing results achieved by evolution and direct solution

All combination of these parameters (in fact of the first three ones) were tested. Each
combination and t,,, = 7 was tested 100 times since the methods are stochastic so
the statistical comparison is possible. Comparing results by the t-test, the best results
were achieved in three cases shown in Table 2. For these parameters the function of the
algorithm was tested up to t,,.x = 12. The results were significantly better as for the direct
solution, as shown in Table 3. If we fit the data by an exponential model f(ty.y) = ab'™>,
we obtain b = 7.28 for systematic solution, but b = 2.25 for the evolutionary solution.

7 Further work

In next steps, I intend to address similar problem for continuous cases, i.e. P C R™.
The exact solution will be hardly detected (maybe by variational calculus), but more
practical problems can be solved, e.g. wild-fire extinguishing, difussion models etc. The
agents will become more deliberated and independent. They will coordinate their actions
by sharing information and knowledge. They may consider more objectives (egoistic,
altruistic, ecological).

Other, significantly different improvement is to consider the environment as a cognitive
map or neural network with switching on and off. But this idea is maybe too challenging.

Next, the algorithm could be improved by storing so far best strategies and substrate-
gies. If there is an evidence a substrategy is optimal, it can be used directly and the
alternatives has not to be evaluated. This may require advanced data structures.

Finally, optimal parameters for the optimiztion may be found by an external opti-
mization method for global optimization.
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8 Conclusion

One of the most important abilities that is discussed in the multi-agent systems, is the
cooperation. In the case of evolutionary and dynamic programming approaches, there
was a full coordination since the agents were considered as only one agent with several
outputs, in fact. On the other way, some reactive solutions did not reflect other agents
completely, e.g. the Random Walk, Greedy Crowd, or Aroma Tracking. However, a kind
of indirect coordination was in place by the pheromomone methods and Greedy Lions
and Hyenas.

In real system with renewable resources, however the full coordination is not possible
and no coordination (or only implicit coordination) is not desirable. This open quite wide
space for negotiation situations that are usualy very complex and seems to be complex
also in this field.
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Abstract. In this contribution we study one particular reaction-diffusion system — the Gray
Scott model. We focused on quantitative comparison of two numerical schemes which solve
the model in 2D. One is based on FDM, the other is based on FEM and uses the mass-lumping
technique. Both schemes are explicit and uses structured numerical grids. Modified Runge-Kutta
method with adaptiv time-stepping is used for time-integration. Our numerical simulations
suggest that for certain combinations of initial data and model parameter values we may not
get an agreement of numerical results provided by these numerical schemes while refinning the
numerical grid. Example results are given.

Abstrakt. V pfispévku se zabyvame kvantitativnim porovnaim dvou numerickych schémat na
feSeni Grayova-Scottova modelu ve 2D. Jedno je zaloZeno na FDM, druhé na FEM s vyuzitim
metody mass-lumping. Obé schémata jsou explicitni a vyuzivaji strukturované sité. K integraci
v Case vyuzivame modifikovanou Runge-Kuttovu metodu s adaptivni volbou Casového kroku.
Nase numerické simulace ukazuji, Ze existuji kombinace pocatecnich dat a parametru modelu
pro které porovnavanéd numerickd schémata poskytuji rozdilné vysledky.

1 Introduction

Reaction-diffusion systems are a class of systems of partial differential equations of
parabolic type. It includes mathematical models describing various phenomena e.g. in
the fields of physics, biology and chemistry. Gray-Scott model is one of these models.
It was first introduced in 1984 by P. Gray and S. K. Scott [1]. It is a mathematical
description of the following autocatalytic chemical reaction

U+2V —3V, V— P, (1)

where U, V are reactants and P is product of the reaction. Chemical substance U is being
continuously added into the reactor and the product P is being continuously removed
from the reactor during the reaction. Later it has been extensively studied e.g. by Wei
[2], Winter [3], Ueyama [5], Dkhil [6], Doelman [7]. This model is well known to exhibit
rich dynamics, see e.g. Nishiura [4]. There exist chemical systems exhibiting features
similar to those of the Gray-Scott model, see e.g. [8] and references therein.
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2 Problem formulation

We study the Gray-Scott in 2D. Assume that Q@ = (0,L) x (0,L) is an open square
representing the square reactor where the chemical reaction (1) takes place, 09 is its
boundary and v is its outer normal. Then initial-boundary value problem for the Gray-
Scott model we solve is a system of two partial differential equations of parabolic type

Ju 9
5 = alAu — uwv® + F(1 — u),
% = bAv+uv® — (F+kw in Qx(0,7) (2)

with initial conditions u(+,0) = n;, v(+,0) = v;,; and zero Neumann boundary conditions
% 19o=0, 22 |pgo= 0. The system of PDEs (2) modelling the reaction (1) may be rewriten
in several dimensionless forms. We use one which is used also e.g. in [3, 8, 9]. In the
system (2) u, v are unknown functions representing concentrations of chemical substances
U, V. Parameter F' denotes the rate at which the chemical substance U is being added
during the chemical reaction, F' 4 k is the rate of V' — P transformation and a, b are
constants characterizing the environment where the chemical reaction takes place.

3 Numerical schemes

Computational studies of the Gray-Scott model show difficulties in convergence. We
compare two numerical schemes for the initial-boundary value problem defined in Sect. 2
in order to disclose details of these problems. Both of them are based on the method of
lines. For spatial discretization we used structured numerical grids consisting of squares
for the finite difference method (see Fig. 1a) and of triangles for the finite elements method
(see Fig. 1b). To solve resulting systems of ordinary differential equations Runge-Kutta-
Merson method (see [11], [12] or [13]) was used.

(a) (b)

Figure 1: Structured numerical grids for FDM based numerical scheme (a) and for FEM
based numerical scheme (b) we used for our numerical simulations.
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3.1 FDM based numerical scheme

Let h be mesh size such that h = ﬁ for some N € N*. We define numerical grid as a
set

wn = {(ih,jh) |i=1,...,N=2,j=1,...,N =2},
on = {(h,jh)|i=0,....,N—=1,7=0,...,N —1}.

For function u : R? — R we define a projection on @y, as u;; = u (ih, jh). We introduce
finite differences

Wit1,j — Uiy Uij — Ui—1,

u$1 ij — 4 z ) ufl ij — J J
’ h ’ h

Ui j+1 — Ui Ui — Ujj—1

uIQijzij ],U@z‘jzij —,
’ h ’ h

and define approximation Aj, of the Laplace operator A as Apu;; = Uz 2,15 + Uzyzs.ij-
Then semi-discrete scheme has the following form

d

i(t) = alnuy + F(1—uy) = Uiy,

d

&vij(t) = DAy — (F + k)vij + ugvi, (3)

plus discrete initial and boundary conditions.

3.2 FEM based numerical scheme

To induce the semi-discrete scheme we begin with variational formulation of the problem
in Sect. 2. Let p1(z), p2(z) € C3°(Q2) be test functions and denote fi(u,v) = F(1 —u) —
uv?, fo(u,v) = —(F + k)v + uv? denote right-hand sides of system (2). Using standard
approach (see [10]) we induce weak formulation of the problem

o) +a(Va, V) = (frg),

dt
d
E(U’%) +b6(Vo,Vg) = (f2,92),
U(,O) = Ujni,
U('? 0) = Uing,s (4)

with solution u, v from the Sobolev space WQ(I)(Q). We are looking for Galerkin ap-
proximation up(t) = SN ai(t)®;, va(t) = SO, Bi(t)®; of this weak solution in the
finite dimensional space S), C WQ(I)(Q), where ®q,...,®y are its basis functions. Func-
tions «y, ; are real functions which we get using common technique as solutions of
initial value problems. Choosing basis functions ®; in the form of pyramidal functions
®,(P;) = 0;; for all grid nodes P;, and using mass-lumping we can rewrite the problem
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for finding functions «;, (3; in the following form

d 2a
dtuz] (t) = 32 —[Wit1,; + Wit j+1 + Wi jo1 + Wije1 + Wic1j +
g1 — Gug] + F(1—ugy) — uivy
d 2b
Qi (t) = W[UZ‘JA,J’ + Vigt141 T Vi1t Vg1 + Vo1 +
Fim1 a1 — 6ug] — (F + Ek)oiy + ugvg; (5)

plus corresponding initial and boundary conditions.

4 Numerical simulations

We performed a series of computations to compare our 2D numerical schemes. According
to our results the Gray-Scott model is sensitive on the mesh parameter size, which means,
the numerical solution may change notably when refining the computational grid.

, FDM, grid 400 x 400 , FEM, grid 400 x 462

, FDM, grid 800 x 800 , FEM, grid 800 x 924

Figure 2: Dependence of pattern in numerical solution on numerical scheme and grid size
for given model parameters (a =1-107°,b=1-10"° F = 0.025, k = 0.05, L = 0.5) and
initial data (three pulses along minor diagonal) at fixed time ¢=23000.

We met initial data and model parameter values combinations for which the following
situations occured. First, we have results where FDM based numerical scheme is less
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, FDM, grid 350 x 350 , FEM, grid 350 x404

, FDM, grid 800x 800 , FEM, grid 800x 924

Figure 3: Dependence of pattern in numerical solution on numerical scheme and grid size
for given model parameters (a =1-107°,b=1-10"% F = 0.025, k = 0.05, L = 0.5) and
initial data (single pulse in upper left corner) at fixed time ¢t=400.

dependent on the space stepping, that is, the numerical results are visually more similar
in wider range of mesh parameter sizes then in case of the FEM based numerical scheme.
We have also results, where the FEM based numerical scheme is less dependent on the
space stepping. We were able to see agreement in numerical results obtained in both of
these cases from certain mesh parameter size. But we have also met combinations where
we were not able to see the solutions becoming visually more and more similar while
refining the numerical grid. Examples are given below.

In our numerical simulations we use square domain € = (0.0,0.5) x (0.0,0.5). Initial
data are considered such that w;,; + v;,; = 1 hold within the computational domain 2
and v;,; consists of one or several spots.

In [7] is suggested in agreement with our experience that when one of the concentra-
tions is large, then the second one is small. That means that seeing the pattern in solution
for one concentration we can have a rough idea how the pattern in the second solution
component looks like. That is why we show in figures below only spatial distribution of
concentration v in domain 2. Dark blue implies almost zero concentration, lighter color
means higher concentration.

In Fig. 2 we demonstrate the case, where FDM based numerical scheme produces
solution less dependent on mesh parameter size. We choosed solution at time ¢ = 3000.
It can be seen that the pattern in solution by the FDM based numerical scheme (left
column) do not change notably between selected coarser and finer grid as apposed to
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, FDM, grid 800 x 800 , FEM, grid 800 x 924

Figure 4: Dependence of pattern in numerical solution on numerical scheme and grid size
for given model parameters (¢ = 2-107°, b =1-10"°, F = 0.0737, k = 0.061882, L = 0.5)
and initial data (one spot in the middle of the domain) at fixed time ¢t=8000.

I

), grid 800 x 800 ), grid 800 x 800

Figure 5: For the same model parameters as in Fig. 4 an agreement of numerical results
was observed for different initial data.

the solutions provided by the second numerical scheme (right column). Here we can see
difference in the upper left corner of the domain. From numerical grid of size 800 x 800
and corresponding size of triangle grid above (mesh parameter i ~ 6 - 10~* and smaller)
we were able to see agreement of numerical results in this case.

In Fig. 3 we demonstrate the case, where FEM based numerical scheme produces
solution less dependent on mesh parameter size for certain model parameters and initial
data combination. We choosed solution at time ¢ = 400. It can be seen that solution by
the FEM based numerical scheme (right column) do not change notably between coarser
and finer grid as apposed to the solutions provided by the second numerical scheme (left
column). Here we can see difference in the shape of interior object. In the solution by
the FDM based scheme at coarser grid of 350 x 350 we can see the object to be more
square-like. It is changing into perfect circle with finer grid of 800 x 800. Refining the
numerical grid helped to obtain agreement of numerical results.

In Fig. 4 we demonstrate the case, where we were not able to obtain agreement
of numerical results by the numerical schemes from Sect. 3. Using the same model
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parameters and initial data we could see lines growing in ortogonal directions. Depicted
are solutions at time ¢ = 8000. Each of numerical schemes provided the same pattern in
wide range of grid sizes. We tried to succesively refine the numerical grid up to 2000x2000
and corresponding size of triangle grid. We also tried to perform simulations for the same
model parameters (see Fig. 4) and different initial data. When starting simulation with
single pulse in upper left corner we could see an agreement of numerical results. The
solution at time t=15000 is depicted in Fig. 5a. The same situation occured when using
three pulse along minor diagonal. Solution at time ¢t=4000 is depicted in Fig. 5(b).
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Abstract. This paper deals with the numerical simulation of dislocation dynamics. Disloca-
tions are described by means of the evolution of a family of closed and open smooth curves
[(t) : S — R% ¢ = 0. The curves are driven by the normal velocity v which is the func-
tion of curvature x and the position vector = € T'(¢). In this case the equation is defined this
way: v = —k + F. The equation is solved using direct approach by two numerical schemes, ie.
semi-implicit and semi-discrete. Results of the dislocation dynamics simulation are presented.

Abstrakt. Tento ¢lanek se zabyva numerickou simulaci disloka¢ni dynamiky. Dislokace jsou
popsény pomoci ¢asového vyvoje mnoziny uzavienych a otevienych hladkych kiivek T'(t) :
St — R2%, t > 0. Vyvoj kiivek je ovliviiovan normélovou rychlosti v, jenz je funkef kiivosti x
a polohového vektoru = € I'(t). V tomto pfipadé mé rovnice tvar v = —k + F. Rovnice je
feSena piimou metodou pomoci dvou ruznych numerickych schémat, semi-implicitnim a semi-
diskrétnim. Vysledky simulace disloka¢ni dynamiky jsou také uvedeny.

1 Introduction

Tthe dislocations are defined as irregularities or errors in crystal structure of the material.
The presence of dislocations strongly influences many of material properties. Plastic
deformation in crystalline solids is carried by dislocations. Theoretical description of
dislocations is widely provided in literature such as [17-19]. Dislocation is a line defect of
the crystalline lattice. Along the dislocation curve the regularity of the crystallographic
arrangement of atoms is disturbed. The dislocation can be represented by a curve closed
inside the crystal or by a curve ending on surface of the crystal. At low homologous
temperatures the dislocations can move only along crystallographic planes (gliding planes)
with the highest density of atoms. The motion results in mutual slipping of neighboring
parts of the crystal along the gliding planes.

This justifies the importance of developing suitable mathematical models [9-14]. From
the mathematical point of view, the dislocations are defined as smooth closed or open
plane curves which evolve in time. Their motion is two-dimensional. The evolving curves
can be mathematically described in several ways. One possibility is to use the level-set
method [1-3], where the curve is defined by the zero level of some surface function. One
can also use the phase-field method [4]. Finally, it is possible to use the direct (parametric)
method [6,7] where the curve is parametrized in the usual way.

*This work is supported by grant no. MSM 6840770010, project no. LC06052 of Necas center for
mathematical modeling.
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2 Parametric description

When using the parametric approach, the planar curve I'(¢) is described by a smooth
time-dependent vector function

X:SxI— R

where S = (0,1) is a fixed interval for the curve parameter and I = (0,7) is the time
interval. The curve I'(¢) is then given as the set

L(t) ={X(u,t) = (X' (u,t), X*(u,t)),u € S}.
The family of curves satisfies the equation of motion
v=—kKk+F, (1)

where v is the normal velocity of the curve evolution, x is the curvature, and F' is the
forcing term which can depend on position vector x and time ¢.

The evolution law ( ) is transformed into the parametric form. The unit tangential
vector T is defined as T' = 8,X/|8,X|. The unit normal vector N is perpendicular to the
tangential vector and N -T =0 holds. In case of closed curve, N is the outer vector to
the interior of the curve. In case of open curve, N has a selected, pre-defined direction
(e.g., upwards). The orientation of the curve is clockwise. The curvature k is expressed
as

. 0, X+ 0 X _ N OuuX
0.X] [0.XP o

where X+ is a vector perpendicular to X. The normal velocity v is defined as the time
derivative of X projected into the normal direction,

9,X*
0. X

/U:atX

The equation (1) can now be written as

0. XY DX 0,X*

0 X - = . F(X, t
X BX] ~ TouxE Jaux] TG
which holds provided
OyuX Oy Xl
X == _+F(X,t 2

This equation is accompanied by the periodic boundary conditions for closed curves, or
by fixed-end boundary condition for open curves, and by the initial condition. These
conditions are considered similarly as in [6]. The solution of (2) exhibits a natural redis-
tribution property which is useful for short-time curve evolution [8,12]. The redistribution
of curve discretization points is operated by tangential forces discussed below.
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The term 9, X/]0,X|* in (2) contains a tangential component which makes the curve
points to move along the curve. To modify or cancel this tangential force, a term « in
the tangential direction can be considered as follows

O X 9, X 0, X+

X = 9, X _a\aqu +F(X’t)—\auX|' (3)

Hence the tangential term contained in equation (3) has the form

OuuX - 0y X
=T aXP )

Then the equation without a tangential force has the following form:

0uX  9uX - 0.X
0. X2 0. X

1
0.X + P(x, 25 (5)

X =
t |0, X|

This equation is not suitable for numerical simulations because the curve points do not
move along the curve and can accumulate in some parts or move from each other in other
parts of the curve. This can cause a slow-down in computation. The equation (2) is
better for numerical simulations but still for long time simulations similar accumulation
of points can happen. Additional algorithm for tangential redistribution of points has to
be considered.

For long time computations with time and space variable external force F'(X,t), the
algorithm for curvature adjusted tangential velocity is used. This algorithm moves points
along the curve according to the curvature, i.e., areas with higher curvature contain
more points than areas with lower curvature. This improves numerical stability and also
accuracy of computation. The term « is based on the relative local length between points.
Details are described in [16]. Another approach based on finite-element discretization
of equations for curve parametrization is in [21], where existing multiple junctions are
treated as well.

3 Numerical scheme

For numerical approximation we consider a regularized form of (3) which reads as

i

O (0K e X (6)
Q(0.X)? Q(0.X) Q(9.X)
where Q (1, 22) = /2?2 + 23 + £2 with £ being a small parameter. Two numerical schemes
are used for numerical solution of the differential equation (3), i.e., backward Euler semi-
implicit and semi-discrete method of lines. With two numerical schemes it is possible to
compare the solution and error of computation.

In the semi-discrete scheme of method of lines, spatial derivatives are approximated

by fourth-order central differences. The first derivative is approximated as

0 X =

Xj ,—8X} | +8X) - X/, X7 ,-8X? ,+8X7,, - X7,

J Jj+2 J

12h ’ 12h ’

8uX\u:jh 2



132 P. Paus

and the second one as
X1 o+ 16X1 1= 30X1 + 16XJ1+1 X}Jr2
12h2 ’
—X2 5+ 16X2 1— 3OX2 + 16X]2Jrl XfH]
12h2

where X7 denotes an approximation of X*(jh,-),i € {1,2}, h = 1/m. Here m is a number
of intervals dividing S. The difference expressions above are denoted as X, for the first
difference and X, for the second difference.

The equation (6) in the semi-discrete scheme of method of lines has the following
form:

Oun Xy~ |

Y

dX; X, X, X
= — + F(X,t)—2L_,
&) Vgt T
j=1,--- m—1,t€(0,7), (7)
where again Q(x1,12) = /2i + 13 + €2, Xul,j is a vector perpendicular to X, ;, and

o is the redistribution coeficient. The term with € serves as a regularization to avoid
singularities when the curvature tends to infinity. This scheme is solved by the fourth
order Runge-Kutta method [5].

The second approach uses the backward Euler semi-implicit scheme. In this case lower
order differences are used. The first derivative is discretized by the backward difference
as follows
J

h

0. X|

u]h

1 1 2 2
h ) bl

and the second derivative as
X -2X;+X) Xf+1 2X7 + X7,
h? h? ’

aqu‘u =jh ™ |:

The approximation of the first derivative is denoted as X ; and of the second derivative
as Xgu,j-
The semi-implicit scheme for equation (3) has the following form

) 1 X4 ) ) 1k
Xkl B 4 = X; +7F(X} kT )
P TG 5+ )

j=1,-,m—-1Lk=0,--- ,Np—1, (8)

where Q(x1,22), XQ%,J-, m, and «; have the same meaning as for semi-discrete scheme.
X]’-€ ~ X(jh, k), T is a time step and Np is the number of time steps. The matrix of the
system (8) for each component of X**! has the following tridiagonal structure:

TQ —T 0

1 + h2Q2 - m R2Q2

7 g
0
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The scheme (8) is solved for each k by means of matrix factorization. Since there are
two components of X, two linear systems are solved in each timestep.

4 'Topological changes

In curve dynamics in general, and in dislocation dynamics in particular, topological
changes may occur (e.g., connecting or splitting, closing of open curves, etc.). The para-
metric approach does not handle them intrinsically, and we therefore need an additional
algorithm allowing for such changes of discretized curves.

The algorithm we present is not supposed to be universal for every situation and
possibility. Main purpose is to simulate topological changes that can happen during
dislocation dynamics (see [13]), i.e., topological changes such as merging or splitting of
curves, closing of open curves, etc. As the initial condition, we consider only curves
which do not intersect itself and do not touch each other. The orientation of curves is
clockwise.  The algorithm is designed for topological changes of curves which touch
only at one point. More complex changes can be treated by multiple application of the
algorithm in one timestep. The evolution after merging or splitting behaves as expected.
Normal vectors and evolution speed correspond to the situation captured by the level-set
method. The results of the algorithm were compared with the level-set method in [15].

Let us consider two closed or open curve parametrizations discretized as X =
{z1, 29, -+ ,w,} and Y = {y1, ¥y, - ,ym} in R%. Curves evolve independently according
to the equation (3). The algorithm for merging two curves is as follows:

1. Compute the distance between X and Y and find one point from each curve where
the minimum is reached. Let us denote the distance as d, the point from X as x,,,;
and from Y as Ymaz-

2. Check if the distance d between curves is smaller than a given tolerance §. If not,
compute new timestep and go to 1.

3. Create new empty curve Z. We must take into account the type of merged curves.
Merging two closed curves will produce one closed curve. Merging one open and
one closed curve will produce one open curve and merging two open curves will
produce two open curves.

4. Copy points from X from the begining (i.e., from 1) up to Ty to Z.
5. Copy points from Y from ¥4, up to the end (i.e., up to y,,) to Z.

6. Copy points from Y from the begining (i.e., from y1) up to Ymae to Z.
7. Copy points from X from z,,,, up to the end (i.e., up to z,) to Z.

8. Delete X and Y.

9. Compute a new timestep for Z and go to 1.
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We also consider that one curve can intersect itself and thus split itself into 2 parts.
Let us consider a closed or open curve discretized as X = {1, 29, -+ ,x,}. The curve
evolves independently according to the equation (3). The algorithm for splitting into two
curves is as follows:

1. Compute the distance between points in X and find two points where the minimum
was reached. Let us denote the distance as d, and the points as 2,41 and x,,4.0. We
do not consider several points in the neighbourhood of each point when measuring
the distance to avoid finding minimal distance for two neighbor points. The number
has to be computed according to the value of a given tolerance 0 (see the next step).
We recommend to omit all points with the distance smaller than at least 44.

2. Check if the distance d between points is smaller than a given tolerance 4. If not,
compute new timestep and go to 1.

3. Create two new empty curves X, .1 and X,c.2. If X is an open curve, X1 will
be open and X2 closed curve. If X is a closed curve then X,.,1 and X,,c0 will
be closed curves.

4. Copy points from X from the begining (i.e., from 1) up to Zmaz1 10 Xyew:-
5. Copy points from X from x,,4,1 Up t0 Ziaeo 10 Xpews-

6. Copy points from X from 2,42 up to the end (i.e., up to ;) to Xyew1-

7. Delete X.

8. Compute new timestep for X,.,1 and X2 and go to 1.

The numerical simulation is shown in Figure 4.

5 Application in dislocation dynamics

Dislocation curves as defects in material evolve in time. The dislocation evolution history
contains shape changes of open curves, closing of open dislocation curves up to collision
of dipolar loops (see [17]). Interaction of dislocation curves and dipolar loops has been
studied, e.g., in [9-11].

Dislocations can interact with other defects through the stress field. In this case,
dislocation curve can be blocked by a potential barrier. Fig. 1 illustrates the evolution
of a dislocation curve through an obstacle in material. In the example, the obstacle
has a form of circle located at [0,1] with a radius of 0.1. Due to external force, the
dislocation curve expands but the obstacle blocks the evolution. The curve surrounds
it. At a certain time, it touches itself and splits into two curves, an open curve and a
closed curve. Closed curve cannot evolve anymore because of the obstacle. Open curve
continues expansion. The simulation was performed with the following parameters. The
number of discretization points is M = 200, the external force applied to the dislocation
Fp = —5.0, the force of the obstacle Fp = 20.0, the time of simulation ¢ € (0,1.2). The
initial condition was given as a half-circle with a radius of 0.5 located at [0, 0].
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Figure 1: Evolution through a strong obstacle, Fp = 20.0, Fp = —5.0, ¢t € (0, 1.2), curve
discretized by M = 200 nodes.

Fig. 2 illustrates the behavior of an open dislocation curve in an infinite channel.
The channel is created by a spatially variable external force Fiz = 20.0 for y < 0.0 and
y > 1.5. The curve expands upwards due to external force Fp = —5.0 applied to the dis-
location. The upper channel wall restricts its movement. The curve can therefore evolve
aside only. The algorithm for curvature adjusted redistribution of points allows to rarify
number of discretization points along straight parts of the dislocation and accumulate
discretization points at parts with higher curvature. This results into more accurate and
faster computations. The parameters of simulation are ¢ € (0,0.444), M = 128.

The simulation of cross-slip of two dislocations is shown in Fig. 5. The dislocations are
moving in the channel created by a spatially variable external force Fi = 20.0 for y < —0.6
and y > 0.6. At a certain time, they touch each other and connect. In real material, each
dislocation can evolve in a different parallel plane. This case is not yet covered by the
described model. Parameters of the simulation are Fp = —5.0, t € (0,0.164), M = 75.

The example in Fig. 4 shows the simulation of the Frank-Read mechanism (see [17,
19])which describes how new dislocation loops are created. An external force Fp = —2.5
is applied to the dislocation line forcing the curve to expand until it touches itself. At this
moment, the curve splits into two parts, i.e., dipolar loop and dislocation line. The loop
continues in expansion. The dislocation line will again undergo the same process. The
initial condition was given as a half-circle with a radius of 1.0 located at [0, 0]. Parameters
of the simulation are ¢ € (0,2.9), M = 200.

6 Conclusion

The simulation of dislocation dynamics is important in practice as dislocations affect
many material properties. Dislocation dynamics can be mathematically simulated by
the mean curvature flow. We presented a method based on a parametric approach and
two numerical schemes. We applied the model to situations similar to the real context
including a mechanism of creating new dislocations (i.e., Frank-Read source). The scheme
had to be improved by an algorithm for tangential redistribution of points and by an
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1.5 N

Figure 2: Single dislocation in an infinite channel, F = 20.0, Fp = —5.0, t € (0,0.444),
curve discretized by M = 128 nodes.

algorithm for topological changes for parametric model.
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Abstract. We study infinite words u which generalize Sturmian words for a multiliteral alphabet
A. The generalization is defined by property

PE :  every palindrome of u has exactly one palindromic extension in u.

We focus on infinite words with the language closed under reversal and complexity (#A4—1)n+1.
A sufficient and necessary condition of property PE is shown.

Abstrakt. Studujeme nekonec¢na slova u, kterd zobeciiuji Sturmovska slova na vicepismenné
abecedé A. Zobecnéni je definovano vlastnosti

PE :  kazdy palindrom u mé pravé jedno palindromické rozsifeni v u.

Vénujeme se nekoneénym sloviim s jazykem uzavienym na reverzi a komplexitou (#A4—1)n+1.
Dokézeme postacujici a nutnou podminku vlastnosti PE.

1 Introduction

Combinatorics on words is a relatively new research domain. The first works date to the
beginning of the 20th century. Since then the domain has greatly developed and found
many applications in different fields. These fields are for instance theoretical informat-
ics, symbolic dynamics and music theory. One of the most intensively studied topic are
Sturmian words which appeared already in 1940. They were introduced by Morse and
Hedlund [8] as aperiodic words with the minimal possible complexity, i.e., with the com-
plexity C(n) = n+ 1 for any n € N. (N stands for nonnegative integers.) The complexity
of a given infinite word u is the function C : N +— N defined by

C(n) = number of factors of length n occurring in u,

where a factor stands for a subword of finite length that can be read in the u without
skipping any letters. The set of all factors occurring in u is called the language of u
and denoted throughout this paper by L£(u). There exist many equivalent definitions
of Sturmian words. Already in [8], Sturmian words are characterized by their balance
property. In the center of our attention will be another characterization of Sturmian

*This work has been suported by the Czech Science Foundation grant 201/09/0584 and by the grant
LC06002 of the Ministry of Education, Youth, and Sports of the Czech Republic.
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words, proved in [5]. This characterization uses the palindromic complexity of u, which
is the function P : N — N defined by

P(n) = number of palindromic factors of length n occurring in u.

A palindrome is a word read the same backward and forward. Droubay and Pirillo proved
that an infinite word u is Sturmian if and only if its palindromic complexity is

1 if n iseven,
Pl _{ 2 if n is odd.

Since the empty word is the only palindrome of length 0 and the letters of the alphabet A
are the only palindromes of length 1 in u, the previous property can be rewritten in
a compact form for infinite words over a 2-letter alphabet as

P(n)+P(n+1)=3 forany n € N.

Being inspired by Sturmian words, we generalize the previous property for infinite
words over any alphabet A as

P P(n)+Pn+1)=1+#A foranyneN.

It is again readily seen that the property P is equivalent to the property

1 if n iseven,
Pn) :{ #A if n isodd.

Examples of infinite words over multiliteral alphabets satisfying the property P are
Arnoux-Rauzy words (also called strict episturmian words, see |7]) and nondegenerate
words coding the r-interval exchange transformation with the permutation 7 = (r,r —
Lr—2,...,2,1) (see [1]).

When studying in details the proof of Droubay and Pirillo, we learn that a binary
word u is Sturmian if and only if u satisfies the following condition

PE - any palindromic factor of u has a unique palindromic extension in u.

In other words, for any palindrome p € £(u) there exists a unique letter a € A such that
apa € L(u). In fact, our two examples of words with the property P - namely Arnoux-
Rauzy words (see [7]) and words coding interval exchange - have even the property PE
(see [1]).

Infinite words over a multiliteral alphabet satisfying the property P or PE€ may be
understood as one of the possible generalizations of Sturmian words. It is evident that P&
implies P. The validity of P or PE guarantees that the language £(u) contains infinitely
many distinct palindromic factors. Such a language need not contain the mirror image of
every its element, i.e., be closed under reversal. Nevertheless in the sequel, we concentrate
on the study of words whose language is closed under reversal. It is readily seen that
such words are recurrent and their Rauzy graphs have a non-trivial automorphism that
will serve as a powerful tool in our consideration.
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For the description of PE we will use a notion characterizing how many different
extensions of a given factor w exist in £(u). The number denoted b(w) called the bilateral
order of factor w is defined by

b(w) := #{zwy € L(u) | z,y € A}—#{zw € L(u) |z € A}—F#{wy € L(u) |y € A}+1.

Factors having their bilateral order 0 are called ordinary. We will prove the following
theorem:

Theorem 1. Let u be an infinite word over a k-letter alphabet whose set of factors L(u)
is closed under reversal and whose factor complexity is C(n) = (k — 1)n+ 1. Then L(u)
satisfies PE if and only if all factors from L(u) are ordinary.

The property P is more difficult to characterize. However we know (see [2]|) a sufficient
condition for a ternary alphabet.

Theorem 2 (|2]). An infinite ternary word whose language is closed under reversal has
the property P if its complexity satisfies C(n) = 2n + 1.

Let’s recall another result from [2]. Properties P and PE are in fact equivalent on a
binary alphabet. However, they are no longer equivalent on a ternary alphabet as there
exists a word on a ternary alphabet that serves as a counterexample.

It is interesting to mention three corollaries of the previous theorems. Vuillon [9]
showed that a binary infinite word is Sturmian if and only if each of its factors has
exactly two return words, i.e., Sturmian words are precisely binary words satisfying the
property

R : any factor of u has exactly #.A return words.

In the paper [3], it is shown that a uniformly recurrent (every factor occurs with bounded
gaps) word with all factors having nonnegative bilateral order has the property R if and
only if its complexity satisfies C(n) = (#A — 1)n + 1. Using Theorem 1 we conclude as
follows.

Corollary 3. Let u be a uniformly recurrent infinite word over k-letter alphabet whose
language is closed under reversal and satisfies C(n) = (k — 1)n+ 1. Then PE implies R.

In the same paper [3], it is also shown that a ternary infinite uniformly recurrent word
u has the property R if and only if its complexity satisfies C(n) = 2n + 1 and u has no
maximal left special factor. As the last two conditions imply that all factors are ordinary,
this gives rise to the following corollary.

Corollary 4. For ternary infinite words with the language closed under reversal, R im-
plies PE.

Theorem 2 says that for infinite words whose language is closed under reversal and
whose complexity satisfies C(n) = 2n + 1, the following equation holds

Pn)+Pn+1)=2+C(n+1)—C(n). (1)
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Infinite words fulfilling the above equation are in a certain sense the richest in palindromes,
since according to [1]|, any infinite word whose language is closed under reversal satisfies

Pn)+Pn+1)<24+C(n+1)—C(n).

(In fact, the above relation is stated in [1] only for uniformly recurrent words, however
the proof requires only recurrent words.)

In [6], it is shown that for infinite words with the language closed under reversal, the
words defined by the equation (1) are exactly the so-called rich words. Let us recall that
an infinite word is called rich if every its prefix w contains |w| + 1 distinct palindromes.
Consequently, we have the following corollary.

Corollary 5. Infinite ternary words with the language closed under reversal and the
complezity C(n) = 2n + 1 are rich.

In Section 2, we recall basic notions from combinatorics on words. Section 3 contains
the proof of Theorem 1.

2 Preliminaries

By A we denote a finite set of symbols, usually called letters; the set A is therefore called
an alphabet. A finite string w = wow; ... w,_1 of letters of A is said to be a finite word,
its length is denoted by |w| = n. Finite words over A together with the operation of
concatenation and the empty word ¢ as the neutral element form a free monoid A*. The
map

W= WoW1 ...Wp_1 +FH W= Wy_1Wp_9...Wo

is a bijection on A*, the word w is called the reversal or the mirror image of w. A word
w which coincides with its mirror image is a palindrome.

Under an infinite word u we understand an infinite string u = ugujus ... of letters
from A. A finite word w is a factor of a word v (finite or infinite) if there exist words
w® and w® such that v = wMww®. If w = ¢, then w is said to be a prefiz of v, if
w®? = ¢, then w is a suffiv of v. The language £(u) of an infinite word u is the set of
all its factors. The factors of u of length n form the set denoted by L,(u). Using this
notation, we may write £(u) = UpenLp(u). We say that the language L£(u) is closed
under reversal if L£(u) contains with every factor w also its reversal w.

For any factor w € L(u), there exists an index i such that w is a prefix of the infinite
word u;u; 11Ut . ... Such an index 7 is called an occurrence of w in u. If each factor of u
has at least two occurrences in u, the infinite word u is said to be recurrent. It is easy to
see that if the language of u is closed under reversal, then u is recurrent.

A complete return word of a factor w is a word v € L(u) which has exactly two
distinct occurrences of w, one as a prefix and one as a suffix.

The complezity of an infinite word u is a map C : N — N, defined by C(n) = #L,(u).
To determine the increment of the complexity, one has to count the possible extensions
of factors of length n. A right extension of w € L(u) is any letter a € A such that
wa € L(u). The set of all right extensions of a factor w will be denoted by Rext(w). Of
course, any factor of u has at least one right extension. A factor w is called right special
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if w has at least two right extensions. Clearly, any suffix of a right special factor is right
special as well. A right special factor w which is not a suffix of any longer right special
factor is called a mazimal right special factor. Similarly, one can define a left extension,
a left special factor and Lext(w). We will deal only with recurrent infinite words u. In
this case, any factor of u has at least one left extension. If a € A and p is a palindrome
and apa € L(u), then apa is said to be a palindromic extension of p. We say that w
is a bispecial factor if it is right and left special. The role of bispecial factors for the
computation of the complexity can be nicely illustrated on Rauzy graphs.

Let u be an infinite word and n € N. The Rauzy graph T',, of u is a directed graph
whose set of vertices is £,,(u) and set of edges is £,,11(u). An edge e € L,,1(u) starts at
the vertex x and ends at the vertex y if x is a prefix and y is a suffix of e.

€ = WoWy * " Wp-1Wn,

°
T = WoWq *** Wp—1 Y=wy1- - Wp_1Wn,

Figure 1: Incidence relation between an edge and vertices in a Rauzy graph.

If the word u is recurrent, the graph I',, is strongly connected for every n € N, i.e.,
there exists a directed path from every vertex x to every vertex y of the graph.

The reversal mapping acts on a Rauzy graph by sending vertices and edges to their
mirror images and changing the orientation of edges.

The outdegree (indegree) of a vertex x € L,(u) is the number of edges which start
(end) in z. Obviously the outdegree of x is equal to #Rext(x) and the indegree of x is
#Lext(z).

A simple path is a path in I',, which begins with a special factor, ends with a special
factor and contains no other special factor. The reduced Rauzy graph of order n, denoted
I, is constructed from I, by considering only special factors, i.e., vertices with indegree
or outdegre grater than 1. There is an edge in I} going from a vertex v to a vertex w if
there is a simple path in I', beginning with v and ending with w.

The sum of outdegrees over all vertices is equal to the number of edges in every
directed graph. Similarly, it holds for indegrees. In particular, for the Rauzy graph we
have

Z #Rext(z) = C(n+1) = Z #Lext(z) .

z€Ly (u) z€Ln(u)

The first difference of complexity AC(n) = C(n + 1) — C(n) is thus given by

AC(n) = Z (#Rext(z) —1) = Z (#Lext(z) — 1) .

€L, (u) €L (u)

Let us restrict our consideration to recurrent words, then a non-zero contribution to AC(n)
is given only by those factors € £, (u), for which #Rext(z) > 2 or #Lext(z) > 2, i.e.,
for right or left special factors. The last relation can be rewritten as

AC(n)= Y (#Rext(x)—1) = Y (#Lext(z)—1) .

x€Ln(u), x right special x€Ln(u), x left special
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Cassaigne |4] introduced the following formula for the second difference of complexity
A?C(n). Since every factor of length n + 2 can be written as zwy, where z,y € A and
w € L(u), it holds

C(n+2) Z #{zxwy | zwy € L(u)}.

weLy(u)
We will denote the set of both-sided extensions of w by Bext(w):
Bext(w) := {zwy | zwy € L(u),z,y € A}.

Similarly,
Cln+1) Z #Lext(w Z #Rext(w

WEL (1) WELy(u)

The second difference of complexity A2C(n) = AC(n+ 1) — AC(n) = C(n +2) — 2C(n +
1) + C(n) may be obtained as follows

A2C(n Z (#Bext — #Lext(w) — #Rext (w) + 1). 2)

Denote by b(w) the quantity

b(w) := #Bext(w) — #Lext(w) — #Rext(w) + 1.

The number b(w) is called the bilateral order of the factor w. It is readily seen that if w
is not a bispecial factor, then b(w) = 0. Bispecial factors will be distinguished according
to their bilateral order in the following way

e if b(w) > 0, then we call w a strong bispecial factor,
e if b(w) < 0, then we call w a weak bispecial factor,
e if b(w) = 0 and w is bispecial, then we call it ordinary.

Evidently, for the value of A%C(n), only strong and weak bispecial factors are of impor-
tance.

3 Proof of Theorem 1

The proof is divided into following lemmas. First we prove the if part of the theorem.

Lemma 6. Let u be an infinite word whose language is closed under reversal. If a
bispecial factor w € L(u) has its bilateral order b(w) even, then its number of palindromic
extensions s odd.

Proof. Let w be a bispecial factor of £(u) and its bilateral order b(w) is even. As the
language is closed under reversal, we have #Lext(w) = #Rext(w). From the definition of
bilateral order one can see that #Bext(w) has to be odd. Let z,y € A. As zwy € L(u)
implies ywz € L(u), it is clear that the number of palindromic extensions zwzx has
different parity then b(w) and therefore is odd. O
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Lemma 7. Let u be an infinite word whose language is closed under reversal and its
factor complezity is C(n) = (#A — 1)n + 1. If all palindromic factors of L(u) have even
bilateral order, then PE is satisfied.

Proof. 1t is clear that the property PE can only be violated on a palindromic bispecial
factor.

We suppose that all palindromic factors have even bilateral order. According to the
previous lemma they have odd number of palindromic extensions.

Since the language is closed under reversal we have for all n

Pn)+Pn+1)<24+C(n+1)—C(n). (3)

Let w denote the shortest palindromic bispecial factor that doesn’t have exactly one
palindromic extension. Denote N = |w|. Then we have for all n < N,

Pn)+Pn+1)=2+C(n+1)—C(n),

i.e., the maximum number of palindromes is attained.

Since w has to have at least 3 palindromic extensions, oen can see that P(N + 2) >
P(N) + 2. Thus, for n = N + 1 we have a contradiction with (3) as the right-hand side
is constantly equal to 1+ #.4 and the inequality is no longer satisfied. We conclude that
PE holds. O

The last lemma proves the if part of the proof. The following three lemmas will serve
to prove the other direction of the equivalence.

Lemma 8. Let u be a rich infinite word whose set of factors is closed under reversal.
Then all its bispecial factors are palindromes.

Proof. Let us denote by RS(n), LS(n) and BS(n) the number of right special, left special
and bispecial factors in £, (u).
Let’s fix n and consider the reduced Rauzy graph I"/,. We have

#{edges in I} = Z #Rext(w) + Z 1
weLn(u) w€Ln(u)
#Rext(w)>1 #Lext(w)>1,#Rext(w)=1
= Y (#Bext(w)-1)+ > 1+ > 1.
weELy(u) wELy(u) wELp(u)
#Rext(w)>1 #Rext(w)>1 #Lext(w)>1,#Rext(w)=1
Aar(n) R;?n) LS(n):rBS(n)

On the other hand we have

#{edges in I} = #{edges in I invariant under reversal}

~
P(n)+P(n+1)—+#{special palindromes of length n}

+ #{edges in I}, not invariant under reversal}.
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Putting both sides into one equation we find

AC(n) + RS(n) + LS(n) — BS(n) = P(n) + P(n + 1)
—#{special palindromes of length n} + #{edges in I';, not invariant under reversal}.

The last term can be estimated by the lowest number of edges that need to go to a
different vertex so that the graph is strongly connected. As LS(n) = RS(n) we have

#{edges in I'), not invariant under reversal} > 2 (LS(n) — 1).
After simplification we obtain
—BS(n) + #{special palindromes of length n} > P(n) + P(n+ 1) — AC(n) — 2.
Since we assumed u rich, the right-hand side is equal to 0. Therefore we have
BS(n) < #{special palindromes of length n}.

As the language is closed under reversal, special palindromes are bispecial factors. The
last inequality is in fact an equality, i.e., every bispecial factor is a palindrome. O

Lemma 9. Let u be an infinite rich word whose set of factors closed under reversal.
Then for a bispecial factor w € L(u) we have

#Bext(w) > 2 (#Rext(w) — 1).

Proof. As w is bispecial, according to the previous lemma it is also a palindrome. Let
n denote its length. Let [ denote the number of its right (or equally left) extensions
[ := #Rext(w). Let 1, ..., x; denote the [ distinct letters that extend w.

We will look at the Rauzy graph I',, ;1 where the extensions of w are vertices. Figure 77
shows all possible edges z;wx; connecting these vertices. To evaluate the minimal value
for #Bext(w), we need to know how many of these edges need to exist in I', ;. The
minimum value is given by the fact that a Rauzy graph (of a recurrent word) is strongly

connected.
@)
.le T T 'y’wﬂﬁl
T1wI; '
N
wa ............................ wan
4
Al
xlw ........................... wxl

Figure 2: Part of I',;1: the vertices containing w are drawn together with all possible
edges connecting them. Only edges going from z,w are labeled.
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Let 1 > 4,57 > [ be two indices. As the word u is rich, all complete return word to
palindromes are palindromes (see [6]). The existence of such return word implies that
there is at least one path from wx; to z;w in T, ;. Let us divide the set {x1,...,2;} into
two non-empty disjoint sets X and Y. Let Xw denote the vertices {zw | x € X} and
wY the set {wy | y € Y}. Assume there is no edge going from Xw to wY. As ',y is
strongly connected, there has to be a path from wX to Yw which doesn’t include any
other vertex from X or Y than at the beginning and at the end. This implies existence
of a word beginning with wx, € X, and ending with yw, y € A, without any other
occurrence of w. Such word would be a non-palindromic return word of w which is not
possible. Together with the independence of choice of the sets X and Y, we can conclude
that there is no path going from wz; to x;w, ¢ # j, without passing any other vertex
containing w.

Therefore the minimum number of edges z;wx; that need to be placed is the minimum
number of edges so that the graph is strongly connected while taking into consideration
the previous conclusion. As the language is closed under reversal, one can see we need to
place at least [ — 1 pairs z;wz; and x;wx; which proves the claim. O

Corollary 10. Let u be an infinite rich word whose set of factors is closed under reversal.
Then all its factors have their bilateral order b(w) greater or equal to —1. Furthermore,
if for a factor w we have b(w) = —1, then w has no palindromic extension.

Proof. If a factor w is not bispecial, b(w) = 0. If w is bispecial, we apply the previous
lemma to evaluate its bilateral order:

b(w) = #Bext(w) — 2#Rext(w) + 1 > 2 (#Rext(w) — 1) — 2#Rext(w) + 1 = —1.
If the bilateral order is equal to its minimum, b(w) = —1, we can see from the proof of the
previous lemma that there are no edges x;wx;, i.e. w has no palindromic extension. [

Lemma 11. Let u be an infinite word over a k-letter alphabet whose set of factors is

closed under reversal and complexity satisfies C(n) = (k — 1)n+ 1. If the property PE is

satisfied, we have Yw € L(u), b(w) = 0.

Proof. The property PE and complexity (k — 1)n + 1 imply
P(n)+Pn+1)=AC(n)+2, foralln.

Therefore the word u is rich.

Let w be a bispecial factor. As it has exactly one palindromic extension, using Corol-
lary 10 we see that we need to add 1 to the minimal value of b(w). Therefore we have
b(w) > 0. On the other hand

Z b(w) = A*C(n) =0, for all n.
weELy(u)

Since all non-bispecial factors have their bilateral order 0, these two conditions imply
b(w) = 0 for all bispecial factors.
O

The last lemma completes the proof:

Proof of Theorem 1. The only if part is given exactly by the Lemma 11. The if part
follows from Lemma 7. O
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Abstract. This contribution describes the proposed neural tract visualization technique based
on the MR-DTI data. The cornerstone of the algorithm is a texture diffusion procedure modeled
mathematically by the problem for the Allen-Cahn equation with diffusion anisotropy controlled
by a tensor field. Focus is put on the issues of the numerical solution of the given problem,
using the finite volume method for spatial domain discretization. Several numerical schemes are
compared with the aim of reducing the artificial (numerical) isotropic diffusion. The remaining
steps of the algorithm are commented on as well, including the acquisition of the tensor field
before the actual computation begins and the postprocessing used to obtain the final images.
Finally, the visualization results are presented.

Abstrakt. Piispévek popisuje techniku zobrazovani nervovych traktt na zakladé dat ziskanych
metodou MR-DTI. Algortimus je zaloZen na difuzi Sumové textury modelované pomoci tlohy
pro Allenovu-Cahnovu rovnici s anizotropii difuzniho ¢lenu ¥izenou tenzorovym polem. Préce
se soustiedi na numerické feseni tlohy a metodu koneénych objemut pouzitou pii jeji prostorové
diskretizaci. Je srovnavano nékolik schémat s cilem omezit numerickou izotropni difuzi. Pro-
brany jsou vSak i ostatni kroky celé procedury. Nakonec jsou prezentoviny vysledky vizualizaci.

1 Introduction

The MR-DTI (Magnetic Resonance Diffusion Tensor Imaging, [4]) technique belongs to
the family of noninvasive medical examination methods based on magnetic resonance
phenomenon and indicated in a wide variety of human health problems. In particular,
DTT is dedicated to examining anisotropic structures in tissues, such as heart muscle
fibers or neural tracts in human brain.

Denote by €y the examined volume of the brain. By means of DTI, the strength
and directional distribution of water molecule diffusion in each volume element (voxel)
of € is measured and encoded into a symmetric positive definite diffusion tensor field
D : Qp— R33. At a given point & € €, it can be interpreted by the diffusion ellipsoid
defined as

I'(xz)={ne R3}nTD(a:)_1n: 1}.

The diffusion strength along the vector v is proportional to the distance from the origin
to I' () in the direction of v and the eigenvalues of D (x) represent the lengths of the
principal axes of I' (x).

149
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FiberTracking Diffusion tensor dataset (ASCII) Tensor "stretching"

(6 fixed gradients only) +Fractional Anisotropy (ANALYZE) +FA computation
Input datasets
(ANALYZE format)
MedINRIA Asclepios 3 [

DTI Track module Diffusion tensor dataset (VTK) Aggregate tensor
+FA dataset (NetCDF)

Slicing & coloring
Final image set fgkﬂion data (oo Anisotropic diffusion
process

Figure 2.1: MEGIDDO data processing workflow.

It has been observed that diffusion prevails in the direction parallel to the neural fiber
tracts |[4]. Hence, it is possible to perform MR tractography (9], i.e. to recover a model
of the fiber bundles by following the pathways of the strongest diffusion. However, some
explicit fiber reconstruction algorithms [6, 16] may experience local ambiguities e.g. at
fiber crossings as the tensor representation only provides a second order approximation
of the general directional distribution.

2 Overview of the proposed visualization algorithm

Principle of the method. We have elaborated an algorithm based on globally imi-
tating the diffusion processes taking place in the brain tissue, similar to the technique
introduced in [15]. The idea is to apply an anisotropic diffusion process [12]| to a noisy
3D texture contained in a region of interest (ROI) Q C €. The anisotropy of the diffu-
sion is controlled by the tensor field D so that the distribution of the texture diffusion
strength corresponds to the physical process measured in the brain. As a result, the ini-
tial noisy image is smeared in such a way that the streamlines of the tensor field become
distinguishable. The 3D volume €2 can then be sliced to produce human readable planar
images.

The described steps have been implemented in the MEGIDDO (Medical Employment
of Generating Images by Degenerate Diffusion Operator) software kit. In the following
paragraphs, we will focus on the details of its data processing workflow (see Figure 2.1).

Data acquisition. Raw DWI (Diffusion Weighted Image, [4]) datasets are delivered
from the scanner either in a proprietary format used for the vendor supplied software or
in the well documented ANALYZE 7.5 or DICOM formats. Currently, the DTI module
of MedINRIA (developed within the ASCLEPIOS project at INRIA, Sophia Antipolis,
France) is used to process these images and to compute the diffusion tensor field, which
may also involve thresholding and smoothing to cope with noise in the input data [14].

Fractional anisotropy and diffusion ellipsoid stretching. Denote by Ay > Ay > A3
the eigenvalues of D (x) for some x € Q) and let v, represent the eigenvector corresponding
to A;. The diffusion strength therefore assumes its maximum in the direction of v, and is
proportional to A\;. Hence, v; may also represent the tangential direction of the possible
neural tract at the point . The number of neural fibers actually present at this location
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may be considered proportional to the anisotropy strength, which is quantified by the
fractional anisotropy (F A, see e.g. |4]) defined as

V3 (0 =07+ O = 22+ (A — 1))

FA=
V2 (AT + A2+ 3

, (2.1)

where
1

3

It is easy to verify that FFA € [0,1), where 0 indicates perfect isotropy (one should not
expect any anisotropic structures, i.e. fibers, at the point @) and 1 would mean perfect
anisotropy (As = A3 = 0, I" degenerates to a line segment). Generally, the greater the
value of F'A, the more neural fibers are present. However, the converse does not hold: As
the diffusion ellipsoid is a quadric surface, it cannot represent the focusing of anisotropy
to more than one main direction (e.g. fiber bundle crossing). In such a case, F'A would
approach zero.

Even though the idea was to use the original tensor field D for the visualization
process, the anisotropy strength described by D has proved to be too weak to produce
observable streamlines. To overcome this difficulty, a preprocessing utility has been cre-
ated to modify D so that the corresponding diffusion ellipsoids are stretched along their
largest principal axis. For each voxel x, the positive eigenvalues \; are calculated by an
explicit formula for finding the roots of the characteristic polynomial of D (), operating
in R. Afterwards, the symmetry of D (x) is used with advantage to find an orthonormal
set of eigenvectors v;. The fractional anisotropy and the modified tensor field D are then
computed and saved together to a single NetCDF dataset.

A== (A4 A+ As).

Anisotropic diffusion by the Allen-Cahn equation. When the tensor field is ready,
the actual visualization phase takes place. Generally, the diffusion process found in
various contexts can be described by a mathematical model formulated as a problem for
a partial differential equation with a diffusion term [3|. For the purposes of the proposed
algorithm, the Allen-Cahn equation [2] has been chosen.

Consider the time interval J = (0,7), the domain 2 C R? in the form of a block
and the diffusion tensor field D : Q — R3*3 representing the input data. The initial
boundary value problem for the Allen-Cahn diffusion equation reads

0 ~ 1
S =&V-DVp+ £ holr) in 7 x Q, (2.2)
dp
ol = 0 on J x 0%, (2.3)
Plico =1 in Q, (2.4)

where p is the unknown function p : J x Q — R interpreted as the texture intensity,
I represents a noisy initial condition and fy (p) = p(1 —p) (p — %) acts efficiently as a

contrast increasing term provided that the small parameter £ > 0 and the final time 7" are
chosen appropriately (in our case by experiment). For the original physical interpretation
of fo and &, see e.g. [1].
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The problem (2.2-2.4) is solved numerically on a structured rectangular grid, which
will be discussed in more detail in the next section. In principle, the procedure consists
of the following steps:

1. The tensor field is interpolated from the original voxel grid onto the computation
grid, which is finer in order to achieve greater resolution of the resulting streamlines.
Trilinear elementwise interpolation is employed.

2. The initial condition containing random impulse noise is generated on the compu-
tational grid.

3. The numerical solution of the given problem is found. The solution is a function
of both space and time and its value at some final time 7" > 0 is considered the
visualization result.

Colorization and slicing. After the diffusion process is completed, the postprocessing
phase begins, involving slicing and colorization. The 3D grid is divided into slices cut in
one of the principal planes of the human body: transverse, sagittal, or coronal plane [7].
These planar grayscale images are then colorized by multiplying the brightness of each
pixel by the color representation of F'A at the corresponding voxel of the domain €2 (see
Figure 5.3). The color is obtained by using a linear function mapping the interval

{o max FA (z )}

xeNo

onto the color scale. The NetCDF dataset produced by performing the diffusion process
can be reused to generate several sets of slices.

3 Numerical solution of the problem for the Allen-
Cahn equation

For numerical solution, the method of lines [10] is utilized. Applying a finite volume
discretization scheme in space, the problem (2.2-2.4) is converted to a system of ODE in
the form of a semidiscrete scheme

5%]91( =¢ Z FKU’ )+ fOK() VK € T (3.1)

oefk

where 7 is an admissible finite volume mesh 5], K € 7 is one particular control volume
(cell) and Ek is the set of all faces of the cell K. Fk, (t) represent the respective numerical
fluxes at the time ¢, which contain difference quotients approximating the derivatives d,p,
Oyp, 0,p at the center of the face 0. To solve (3.1), we employ the 4th order Runge-Kutta-
Merson solver with adaptive time stepping.

Artificial dissipation and finite volume scheme design. One can assess the behav-
ior of the numerical solution with respect to artificial (numerical) dissipation depend-
ing on the exact form of Fk ,. This phenomenon demonstrating itself as an additional
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A 7]
t=0.0004= 7 5 77
77 //{/

Schemes used:

574
b =7
%
%

. Initial condition
1. FV, MPFA
(4th order),

cubic interpolation
2. FV, MPFA,

(4th order),

linear interpolation
3. FV, 2nd order central

difference
4. Finite difference,
1st order

forward-backward

Figure 3.1: Artificial diffusion in different numerical schemes. 2 time levels for 2 different
initial conditions.

wsotropic diffusion may significantly deteriorate the visual quality of the result. This
is because the streamlines emerging in the solution are thin high frequency structures.
To be treated correctly, they require the difference operators used in F, to be of an
appropriate order [13, §].

Having the results obtained using different schemes available, one can decide on the
best of them by mere visual comparison. We have compared finite volume schemes based
on three different discretizations of F, together with a standard 1st order forward-
backward finite difference scheme. The comparison performed in two different settings
was restricted to R? and is shown in Figure 3.1. In both cases, the initial condition
depicted on the very left underwent a process of anisotropic diffusion directed along the
axis y = x. Least artificial dissipation was produced by the multipoint fluz approzimation
(MPFA) scheme where the numerical flux Fy , was obtained using the rules below:

e The difference quotient approximating the derivative in the direction perpendicular
to the face o uses a non-equidistant point distribution in order to avoid redundant
interpolation (Figure 3.2a). Its 1-dimensional analog for a function u € C! (R) can
be represented by the formula

du 1
-— ~ % (ui_l — 27@62 + 27Ui+1 — U/Z‘+2)

i+l
where z; = j - h, u; = u(x;) for j € Z,h > 0.

e The remaining derivatives are approximated using a uniform 5-point stencil. Again,
its 1D analog can be written as
du 1

a1z R 1oh (Ui—g — 8uj—1 + 8ujt1 — Ujta) .

T4
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Figure 3.2: Point stencils of difference quotients for derivative approximations in
the MPFA finite volume scheme.

Moreover, the stencil points (the crosses along the dashed line in Figure 3.2b) are
interpolated from the neighboring grid nodes using 1-dimensional cubic interpola-
tion.

4 Convergence properties

We have been dealing with the derivation of the error estimate for a general finite volume
scheme with first order flux approximation on a general mesh. For all K € 7, denote
by pl the value obtained by numerical solution of 3.1 approximating p (xx,nk) where
rx € K. The pointwise error is then given by

ek =D (Tx,tn) = Pi-

The goal is to prove a first order error bound

S (er)?m(K)<C(h+k)  Ynnk<T
KeT

so far available for the isotropic case and a special centered difference scheme only (see
also [5]). Here we only discuss the experimentally measured convergence rates, suggesting
the limitations and possibilities of the theoretical error estimate.

The experimental order of convergence (EOC) is obtained by computing the solution
on a sequence of gradually refining grids and is defined as

Error; h;
EOC; =1 — 1 ),
OC; = log (Erroril) / og (hil)
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h ] Lo(7:12(Q) EOC in | Loo(J; Lu(92) EOC in

error X107 | Lo (J;L2(Q)) error X107 | Loo(J; Loo(Q))

0.00990 2.5560 - 5.5110 -
0.00497 0.6389 2.015 1.3560 2.038
0.00332 0.2844 2.005 0.6097 1.979
0.00249 0.1601 2.002 0.3431 2.004

Table 4.1: EOC results for the standard central difference scheme.

h | Loo(J;L2(2)) EOC in | Loo(J;Lo(92)) EOC in

error x107% | Lo (J;L2(Q)) error x107? | Loo(J; Loo(Q))

0.00971 3.2350 - 2.2190 -
0.00493 1.6190 1.021 1.1140 1.016
0.00330 1.0790 1.012 0.7440 1.008
0.00248 0.8095 1.008 0.5585 1.005

Table 4.2: EOC results for the MPFA scheme.

where h = maxy diam(K) is the mesh size and Error; is the difference of the i-th solution
from the precise (analytical) solution measured in an appropriate norm. To be able
to calculate the analytical solution, we modify the right hand side of (2.2) to obtain
an alternate problem with any prescribed solution of class C? (Q X j). Of course, the
prescribed solution must satisfy the initial and boundary condition. For two of the
schemes compared in Figure 3.1, the results of the experimental convergence analysis for
D constant are summarized in Tables 4.1 and 4.2.

5 Visualization results

In Figures 5.1 and 5.2, we demonstrate the function of the MEGIDDO visualization kit
on two sample input datasets. The streamlines of the tensor field indicate the location
and direction of the neural tracts. Colorization by the value of fractional anisotropy F'A
is obtained by performing the color mapping procedure depicted schematically in Figure
5.3 and explained in detail in the last paragraph of Section 2.

Tractography in Figure 5.2 depicts pathological morphology in the patient’s cerebrum.
The corresponding source dataset has been obtained by a modern 3T scanner at IKEM,
Prague.

6 Conclusion and additional remarks

We present a fully functional implementation of the DTI visualization procedure based
on anisotropic diffusion of a noisy texture. This approach may represent a suitable
complement to the established tractography techniques utilizing explicit fiber tracking
algorithms. It provides a global overview of the fiber tract structure in the whole brain
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il > - T L
Transverse layer, slice 200 of 445 Coronal layer, slice 480 of 900

Figure 5.1: Slices of the DTI complete brain visualization, examination of a healthy vol-
unteer. Dimensions: 900 x 751 x 445 voxels.

or in the specified region. The procedure has significant resource demands in terms of
memory and CPU time and therefore has been implemented as a parallel algorithm by
means of the MPT interface [11].
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max

Transverse layer, dice 156 of 397 Coronal layer, slice 320 of 900

Figure 5.2: Slices of the DTI complete brain visualization, examination of a patient.
Dimensions: 900 x 704 x 397 voxels.

Raw solution slice FA image using color scale Final colorized dlice

Figure 5.3: Colorization of the raw result of the visualization process.
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Abstract. The paper concerns an approximate dynamic programming. It deals with a class of
tasks, where the optimal strategy on a shorter horizon is close to the global optimal strategy.
This property leads to a new, specific, design of the Bellman function estimation. The paper
introduces the proposed approach and provides an illustrative example performed on the futures
trading data.

Abstrakt. Clanek se zabyva oblasti aproximoveného dynamického programovani, konkrétné
tlohou, kde optimalni strategie pro kratsi horizont je blizka nebo stejné jako optiméalni strategie
pro cely horizont. Tato vlastnost vede k nové metodé vypoctu Bellmanovy funkce. Clének pouze
uvadi prvni kroky v praci s danym typem tlohy a v8e demonstruje na piikladu obchodovani s
futures kontrakty.

1 Introduction

The motivation of the research originates from the future trading, with the main aim
to design a profitable strategy of buying/selling of commodities, betting on the in-
crease/decrease of the future price [3].

To this aim, the available historical price-data covering 35 markets from the last 15
years has been analyzed. Comparison of the trading strategies designed for different
values of time horizon has shown that an increase of amount of data causes only partial
change of the strategy designed. Moreover the non-changing part of the strategy is always
situated at the beginning and is similar to the best strategy designed for a much larger
horizon. This property, specific for futures trading data, has been exploited to design
and implement the proposed approach on the approximate dynamic programming.

The paper introduces the mentioned property in more details as well as outlines
possible application to dynamic programming.

The dynamic programming is an optimization method based on the idea presented
in [1]. The dynamic programming maximizes the gain G over a sequence of decisions
Ttyeuuy e

max G, (1)

Ttye ey T

*This work has been supported by cooperation with Colosseum a.s., CNR-IMATT and grants GACR
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where t € {1,...,T} is a discrete time and 7 is finite, possibly large, horizon. The set
{1,...,T} is called a decision period.

While dynamic programming searches the argument maximizing arg max,, ,, G, the
maximum the optimal value can be obtained by maximization V; = max,, ., G is char-
acterized by the Bellman function V; [1]. The main drawback of dynamic programming
is the curse of dimensionality (see [5]), therefore the approximate solutions should be
searched for.

This paper contributes at the approximation of Bellman function. The proposed
approach is useful for the tasks arising in economic analysis and trading and can be of
interest for other applications.

The Section 2.1 introduces the dynamic programming and formulates the Bellman equa-
tion. The Section 2.2 deals with the method of a comparison of two strategies, which
leads to a design of a system of Bellman equations. The system can be used for an esti-
mation of the Bellman function in a parametric shape (see 2.4). The paper is concluded
by an example in Section 3, where the proposed approach is applied to futures trading
data.

2 The Field of Interest

2.1 Dynamic programming task

A dynamic programming is an method applicable to the problems when it is necessary
to find the best decision one after another. The decision making task assumes a decision
maker and a system. The system is a part of the world, which is of interest for the
decision maker. The system can be very complex to be fully characterized, moreover the
knowledge about the system is usually partial.

The decision maker has own aim related to the system. The aim are expressed in the
form of a gain function GI, which quantifies the degree of reaching the aim on (7,7).
The decision maker applies a sequence of decisions (z1,...,x7) to reach his aims, i.e.
maximizing his gain function over the decision period:

T
Jmax Gy (2)
The decision maker observes a system output (yi,...,yr). The information avail-

able to the decision maker at time ¢ to design a decision z; is called knowledge. The
knowledge P, contains a history of the system output and previous decisions: P; =
W1, YT, ).

The system and the decision maker form a closed loop. The decision maker enriches
his knowledge by system output ¥, and designs a decision x;. The decision can be realized
as a system input, which influences the further behavior of the system. This process is
repeated at each ¢ up to the horizon T'.

At time ¢, the decision maker maximizes:

max G}. (3)

TtyeorsTT
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The gain function GY depends on the system output over the whole time horizon (y;, . .., yr).
However the information available to the decision maker at time t is P;. Therefore the
decision maker is forced to use the expected value:

£ (alb) = / _ af(alt)da

where £(a|b) is the expected value of the variable a conditioned on the knowledge of
variable b and f(a|b) is the probability density function of a defined at the set a* and
conditioned on b.

Thus, the decision maker maximizes the expected value of the gain at time t:

V(Pt) = Inax 5(G?|P¢, Tty ,ZET),
Ttyeeoy @

which defines the Bellman function V(P;).

The assumption of an additive gain function

G =G, +Gz2, fort;<t<t

and the optimality principle [2| allow us to rewrite the Bellman function in the recursive
shape:

V(Pt) == . m%:X S(G?rh -+ V(,Ppthrl)‘,Pt, Ty ono ,xt+h)), (4)
ty-slt+h
where the maximum arguments x;, . .., ;. are the proposed decisions and h is constant,

which allows the design of multi-step decision, its value is connected with shape of gain
function or kind of task.

The described formulation is too general for the class of tasks considered in futures
trading area, therefore the following assumptions are accepted from here onward:

2.1.1 Discrete decisions

the decisions are chosen from a finite, discrete and predefined set.

2.1.2 Open loop

the decision has no influence on the system.

2.2 Similarity indexes

For each time ¢, there is a system output sequence (yi,...,y;) available. We design the

optimal strategy X' = (x1,...,x;), where we use the time ¢ as horizon. The strategy is

optimal only on the time interval (1,...,t), and is denoted by the superscript ¢.
Designing the strategy X' at each time ¢, a sequence of enlarging strategies is obtained:

{u1} = {z1} = X,
{yby?} = {ZE%,ZE%} — X27
{ylay27y3} = {xix%umg} — X37

{y1, ... et o= o oty = X1
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Let compare the designed strategies with the longest strategy X7 for t = T. The
strategy X7 is called the optimal strategy, because it is optimal for the decision period
,i.e. {1,...,T}. The other strategies are called suboptimal strategies, because they are
not optimal for the whole decision period, but only for the respective sub-periods.

Let us assume that the suboptimal strategies X' converges to the optimal strategy
X7T with the growing ¢ and let take the first ¢ elements of the strategy X7.

Now we can compare two sequences: (z1,...,z!), which is the beginning part of the
optimal strategy XT and (zf, ..., z!), which is the suboptimal strategy designed at time
t. To compare these sequences, we used the following similarity indexes:

o Similarity index Sy :
t
St = Z 5(If7 x;r)a (5)
i=1

where 0(z,y) =1 for z = y and 6(x,y) = 0 for = # y.
The similarity index S; is a number of identical elements in the sequences (z7, ..., z;
and (2%, ..., zt).

e Strict similarity index Sy :
s =max{i; (Vj e N)(j <i= o} =x])}. (6)

The strict similarity index is the maximal length of the non-broken identical sub-
sequence beginning by the first element.

The definitions of S; and s; imply s; < .S; < t.

To illustrate the introduces notions, let us consider the following suboptimal and
Xt= {1 11101 1 0...0},
XT= {1 1111 1 1 1...1},
where the sequence X7 is cut to have the same length as X*. Sequences have 4 elements
identical, the fifth element differs, the sixth and seventh elements are identical and then
sequences differ.

There, the similarity index S; = 6, because there are 6 identical elements in the
sequences. The strict similarity index s, = 4, because the fourth element is the last
element, before the first difference occurs.

optimal strategies:

2.3 Bellman equation and similarity indexes

The solution of Bellman equation (4) is the most important part of the dynamic program-
ming task. The term ’solution’ means finding the Bellman function, a task that can be
very complex due to the backward recursive shape of the equation. The optimal actions
are only by-products of this solution.

The use of similarity indexes s; and S; could is useful, if they grow with the time
sy~ t, S ~t.

At each time %, the sequence of optimal actions of length s; is known and the set of
the Bellman equations is:

V(Pr) = max E(G" + V(Prins1)|Pro Ths - - Titn)), (7)

Ty sTh+h
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where k € {1,...,s, — h}.
The maximization can be carried out by substitution of suboptimal actions X! =

(1, ..., 24):

V(Pi) = EG +V(Prsni)|Pr s - - - Thin)
for ke{l,...,ss—h}. (8)

Due to k < t, the expected values converges to substitution of known values Py, (27, ..., ).
Thus, the system of functional equations (8) should be solved to obtain the Bellman func-
tion.

2.4 Parametric shape of Bellman function

A lot of technical details should be resolved before full use of the described approach. We
restrict the design to parameterized form of Bellman function:

V(P) = V(Pi; ©), (9)

where © € ©* is a vector of unknown parameters. Then, the solution of the Bellman
equation converges to estimation of the parameters © and data prediction. Inserting (9)
into the system of equations (8), one can write:

V(Pi;©) + ke = E(GE +V (Prani1; O)|Pry @y .o, Thsn) (10)
for ke{l,...,s;—h}.

where K is an error caused by approximation.
The system of functional equations (8) is further reduced to the system of algebraic
equation (10).

2.5 Task classification

Presented design assumes that s; grows approximately with time ¢. This is, of course,
only the ideal case. Generally there are three types of tasks:

e Task with a strong similarity - is a task, where s; and S; grow with the time.
Therefore, the number of equations in system (8) or (10) grows with ¢. Thus, the
presented design can be applied.

In case of use parameterized shape and system (10), it can happen that the number
of independent equations overgrows the degree of freedom and the desired solution
should be searched respecting that.

e General task without a similarity - where s; and .S; are small constants independent
of t. In this case, the system has a small number of equations. The number of
equations in (8) and (10) do not grow, or grow by jumps. There could not be
enough equations to find a solution. In this case, different design of the Bellman
function should be used. However even the available "poor" system of equations
can be used as a prior information about the Bellman function.
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e Task with a weak similarity - where s; is a small constant or growing only by jumps,
but S; grows with ¢. The proposed approach can be used, but systems (8) and (10)
must be written for ke {1,...,S; —h}.

The approach can be applied carefully not all - but almost all - equations in systems
(8) and (10) are valid. Thus the design systematically uses invalid equations and
this must be respected.

2.6 Causality problem

Presented classification is non-causal, because the optimal strategy X7, designed over all
decision period should be known for the calculation of s; and S; and the approach can
be used for off-line experiments only.

On-line use needs to study the behavior of sequences of the suboptimal strategies
X', X2, ..., X" and to estimate the value of s;.

3 Example: Futures Trading

Futures trading task is a task typically solved by exchange speculators, who know the
past price sequence and try to decide, whether to buy or sell an object of interest. A
profit is made, when the speculator guesses the direction of the price evolution, otherwise
the speculator loses.

3.1 Futures trading as a game

From out point of view, the futures trading task can be interpreted as turn based game:
The player obtains a price y; at the beginning of each turn ¢t € {1,2,...,T}. He chooses
his decision x;, whether the price should increase x; = 1 or decrease x; = —1, or player
can decide not to play for the turn x; = 0. If player changes the choose x; according to
previous decision x;_1, then he pays a transaction cost C|z;_; — x;|. At the beginning of
next turn ¢ + 1, the player makes profit of (y;11 — y¢)x, therefore when player bets the
right way, he makes money, otherwise he loses.

The player tries to maximize his profit up to horizon 7"

T

G = Z(yt —yp1)xp—1 — Clzig — x4

t=1

The initial decision is necessary to be defined as xzy = 0.

The described game is a typical optimization problem of dynamic programming (see
[2]) and as such it should be solved.



A New Approach to Estimating the Bellman Function 165

3.2 Similarity indexes

It is useful to characterize the systems (8) and (10) according the time ¢, instead of

ke {l,...,s; —h}. Thus, we calculate following constants:
= tel?ﬁ.XT}(t — 5, (11)
_ _ 12
€= mex }(t St), (12)

and characterize the systems (8) and (10), which is subset of the original set of equations.
The constants c;, ¢y characterize maximal number of non-optimal decisions in X?,
which is related with the risk of usage the invalid equations in systems of equations (8)
and (10). Hence, the less value of ¢, ¢, is better.
The causal estimation of similarity indexes can be done by analyzing differences be-
tween the two suboptimal strategies X*~! and X', ¢f. (5) and (6):

t—1

Soo= Y ol ), (13)
i=1

$ = max{i;(Vj e N)(j <i= a2l =al)}. (14)

Analogically can be obtained causal estimation of the constants ¢; and ¢y at the time ¢:

. 4, e
oLt iera?.)ft}(z %) (15)
ot = — S, 16
Cort Z-J{ri?.’ft}(l ), (16)

The final value of ¢;; and ¢y is not so important as their behavior at time ¢t < T'. The
values of ¢;; and ¢y increase with the time ¢. It is expected that their values converge to
a small constant, which is reached very early, therefore the time of the last change ¢,
and .42 is documented.

We have 35 price sequences available for the offline experiments. The data were
collected once a day, when the exchange was closing, each data set contains data from
1990 to 2005, which makes about 4000 samples all together. Five price sequences were
chosen as a representative for the further experiments: Cocoa - CSCE (CC), Petroleum-
Crude Oil Light - NMX (CL), 5-Year U.S. Treasury Note - CBT (FV2), Japanese Yen -
CME (JY) and Wheat - CBT (W). All constants defined above were estimated for the
five reference markets (see Tab. 1).

The table shows good results, because the constants c¢; and ¢, are the same and
c1,co < T. Moreover, four of sequences have ¢; equal to ¢y for each ¢, which implies that
s, is equal to S;. The values of t.,.; and .2 show the expected fact, that the values of
¢1¢ and €9, do not change often and the causal estimation of ¢; ; and ¢, gives satisfactory
results near to non-causal values. All these facts led to a conclusion that futures trading
task is the task with a strong similarity, as was described in Sec. 2.5.

The exception with a weak similarity is the market with ticker CL. The obtained
similarity indexes are depicted in Fig. 1 and Fig. 2. The difference between s, and ¢ is
markable but it has only a local character, therefore the approach can be used - with the
expectation of worse results related to the intervals with a weak similarity.
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Figure 1: Example of similarity indexes S; and s; for CL

3.3 Estimation of Bellman function parameters

Let the parametrized form of Bellman’s function be:
V(Pr) = g() ¥y, (17)

where Uy = (Y4, Ys—1,---,Yi—n)? is regressor and g(x;) is a row vector function.

For illustration purpose, the admissible values for x; are chosen from a set z* =
{—1,0,1}. Thus, the vector function g(x;) is fully characterized by 3(n + 1) parame-
ters, which are the elements of vector © introduced in Section 2.4. We denote g(z;) =
(02,1,02,2,...,04.n11). Bach element O, ; is a function of ;. Due to the chosen set
x*, the function ©,, ; is fully characterized by three values.

Substituting (17) into (10), we obtain:

9@V — g(@h ) Vernar = GET — Ky, (18)

for
kE{l,...,t—Cl—h},

Table 1: Dominating constants c; and ¢y

Market ‘ cir ca Cir Cor  tena  teno ‘ T
CC 6 6 7 6 342 342 | 3822
CL 444 6 446 5 847 2205 | 3863
FV2 8 8 9 8 383 383 | 3766
JY 4 4 5 4 50 50 | 3871
W 7T 8 7 2452 2452 | 3822
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Figure 2: Example of similarity indexes S; and s; for CL (detail)
we get a system of linear equations
Ar=b—-K (19)
where
r = (6—1717 cee 6—1777»4-17 @0,17 CICEI) @0,n+17
@1,17 R @1,n+1)'
and K = (K1, K2, -, Ki—ey—h)-

The system of linear equations must be solved for each time ¢ to obtain the estimation
of the Bellman function values. The number of equations in the system increases by one
in each time step. Due to the approximation of the Bellman function, the system need
not to be solvable, when the number of equations grows over some threshold. And, an
approximate solution of system should be searched. We have applied least square method

to minimize the vector of approximation errors K.

Table 2: Results of experiment

Market H MPC ‘ IST

CC -6 450 | -1490
CL -12 350 3 390
FV2 -5 701 | 10 727
JY -26 568 | -35 247
W -9792 | -1923
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3.4 The results

The obtained parameters are inserted into the parametrized form (17), which is used for
maximization of (4). This method corresponds with iterations spread in time (IST) see
[4]. To calculate the expected gain, causal predictions generated by autoregressive model
were used (see [4]).

As a reference, the results calculated via model predictive control (MPC) were used.
The predictive model and task setup were the same for IST.

Final results are summarized in Tab. 2. Presented IST method reaches better results
than MPC method at four of the five datasets. Neither MPC nor IST gave enough good
results satisfactory to the use for real trading. However, the results obtained by IST are
slightly better.

4 Conclusion

The proposed design of the Bellman function is based on searching and analyzing of
suboptimal strategies based on known data. The design leads to system of functional
equations, but using parametrized shape of Bellman function, the system can be trans-
formed to a system of algebraic equations.

The main idea is to analyze, if the suboptimal strategy contains at least part of the
optimal strategy. The task with this property can be either strong or weak similarity.
The paper deals with a problem of causal and non-causal analysis leading to a decision
which kind of similarity the task exhibits.

The approach is applied and demonstrated on an example of futures trading, which
is a typical economic decision making task. The kind of similarity is tested and the
behavior of tested method is presented. Then, the new design of Bellman function is
applied. Results of experiments are presented and compared to the results of a MPC
method and are slightly better.
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Abstract. Efficient data transfers and placements are paramount to optimizing geographically
distributed resources and minimizing the time data intensive experiments’s processing tasks
would take. We present a technique for planning data transfers to multiple destinations in
multi-user environment. We explain the architecture, design and concept of the components
of the automated system. The constrained based planning technique, which we have studied
and explained in our previous work is outlined in the last section. After the early tests and
evaluations in the real world the concept and chosen approach seems to be promising.

Abstrakt. Efektivne datové prenosy a rozmiestnenia st kIu¢ovym prvkom pri optimalizovani
geograficky rozmiestnenych zdrojov a zarovenn minimalizovani Casu, ktory vyzaduju datovo inten-
zivne tulohy experimentov. Predstavime techniku na planovanie datovych prenosov do skupiny
destinacii vo viac uzivatel'skom prostredi. Vysvetlime princip architektury, design a koncept jed-
notlivych komponent automatizovaného systému. Pldnovacia technika zalozena na podmienkach,
ktort sme Studovali a prezentovali v nasich minulych pracach je naértnuta v poslednej ¢asti textu.
Po prvych testoch a vyhodnoteniach implementicie v redlnom prostredi sa koncept a zvoleny
princip zdaju byt slubné.

1 Introduction

1.1 Problem area

Computationally challenging experiments such as the one from the High Energy and
Nuclear Physics (HENP) community have developed a distributed computing approach
to face the massive needs of their Peta-scale experiments. The era of data intensive
computing has surely opened a vast arena for computer scientists to resolve practical and
exciting problems. One of such HENP experiments is the STAR [5] experiment located
at the Brookhaven National Laboratory, USA.

In addition to a typical Peta-scale data challenge and large computational needs, this
experiment, as a running experiment acquires a new set, of valuable real data every year,
introducing other dimension of safe data transfer to the problem. From the yearly data

*The investigations have been partially supported by the IRP AVOZ 10480505, by the Grant Agency
of the Czech Republic under Contract No. 202/07/0079 and 205-13/201457, by the grant LC07048 of
the Ministry of Education of the Czech Republic and by the U.S. Department Of Energy.
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sets, the experiment may produce many physics-ready derived data sets which differ in
accuracy as the problem is better understood as time passes. Thus, demands for a large-
scaled storage management [6] and efficient scheme to distribute data grows as a function
of time, while on the other hand, end-users may need to access data sets from previous
years at any point in time. Coordination is needed to avoid random access destroying
efficiency due to the sharing of common infrastructure.

This includes replication/distribution of centrally acquired data to other computing
sites with an emphasis on efficient further processing. Even at the level of a given site,
several storage services exist and it is not always all clear on where the files/datasets
should be taken from. In this paper we focus on one block of this complex task which is
of immediate need by the physicists: “how to bring the desired datasets to the requested
destinations in a shortest time?” This problem can be addressed as multiple path planning
with shared links and minimizing makespan. Assuming the files from the requested
dataset are replicated at several sites and their services, the aim is to select transfer paths
for atomic chunks (files) commonly sharing the links/services together with a limited
bandwidth and an objective to minimize the makespan. In other words, we want a
unique capability of the system to tell from which services to grab what portion of
requested files and which transfer path to use in any time.

In this paper we will concentrate on overview of the design, architecture and important
aspects of implementation of the framework. Last but not least, we will describe the
planner, brain of the system and underlying mathematical model.

1.2 Related works

The needs of large-scale data intensive projects arising out of several fields such as bio-
informatics (BIRN, BLAST), astronomy (SDSS) or HENP communities (STAR, ALICE)
have been the brainteasers for computer scientists for years. Whilst the cost of stor-
age space rapidly decreases and computational power allows scientists to analyze more
and more acquired data, appetite for efficiency in Data Grids becomes even more of a
prominent need.

Decoupling of job scheduling from data movement was studied by Ranganathan and
Foster in [8]. Authors discussed combinations of replication strategies and scheduling
algorithms, but not considering the performance of the network. The nature of high-
energy physics experiments, where data are centrally acquired, implies that replication
to geographically spread sites is a must in order to process data distributively. Intention
to access large-scale data remotely over wide-area network has turned out to be highly
ineffective and a cause of often sorely traceable troubles.

The authors of [10] proposed and implemented improvements to the Condor, a pop-
ular cluster-based distributed computing system. The presented data management ar-
chitecture is based on exploiting the workflow and utilizing data dependencies between
jobs through study of related DAGs. Since the workflow in high-energy data analysis
is typically simple and embarrassingly parallel without dependencies between jobs these
techniques don’t lead to a fundamental optimization in this field.

Sato et al. in [9] and authors of |7] tackled the question of replica placement strate-
gies via mathematical constraints modeling an optimization problem in Grid environment.
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Solving approach in [9] is based on integer linear programming while |7| uses Lagrangian
relaxation method [1]. The limitation of both models is a characterization of data trans-
fers which neglects possible transfer paths and fetching data from a site in parallel via
multiple links possibly leading to the better network utilization.

We focus on this missing component considering wide-area network data transfers
pursuing more efficient data movement for multi-site multi-user environment. An initial
idea of our presented model originates from Simonis [11] and the proposed constraints
for traffic placement problem were expanded primarily on links throughputs and con-
sequently on follow-up transfer allocations in time. One of the immense advantages of
the constrained based approach is a gentle augmentation of the model with additional
real-life rules.

2 Design

In this section we will outline the most important attributes and features we require from
the framework.

2.1 Motivation and requested features

To understand the meaning of optimal selection and utilization of the resources let us
suppose the following situation. Two users are requesting the same file in two different
destinations (Fig. 1 - left). The planner should consider all possible repositories (in
this example HPSS ([12]) or Xrootd service ([|4])) of the file, together with available
transfer paths from these origins to requested destinations. This consideration includes
reasoning about the response and transfer time from services at current site to the local
cache (LAN) but also about the bandwidth for site-to-site transfers (WAN). The returned
optimal configuration should provide minimal waiting time for users. In our example the
file is planned to be staged from Xrootd service to the local cache at BNL site and after
that two copies are being further transferred to the requested destinations. As we can see
the configuration with overlapping links was preferred which leads to better utilization
of the resources.

The system must be also adaptive to the changes and fluctuations of the network,
hence we cannot allow creation of plans which execution lasts too long. Instead, the plan
should be realized iteratively more often and for smaller batches of files. On the other
hand it has to consider also the current utilization of the links resulted from previous
plans (Fig. 1 - right). In particular, a number of either active or queued files per a link
has to be checked and to estimate the time the link will be not available (in the figure
represented as Gantt charts) and this information has to be used during reasoning about
links.

Since the system is supposed to be deployed in a multi-user environment, the fair-
share operation is required as well. In particular, the framework should allow to adapt
any queue-based policy providing the required level of fair-shareness. This is naturally
offered by batch attitude, where the selection of files into the current batch can follow
the proffered fair-share function.
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Figure 1: Example of requested features. The left part depicts the plan consisting of paths
sharing a link to two different destinations. The right one symbolizes the utilization of
the links using Gantt charts.
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Figure 2: Architecture overview on the left and the scheme of the Data Mover component
on the right.

2.2 Architecture

In the Fig. 2 is depicted the scheme of the architecture and concept of the components.
To understand their roles we will describe the process flow in the system.

Users enter their requests, which are in the form of meta-data queries consisting for
instance of a production year or energy selection, via Web interface. The queries are
stored in a centralized SQL database and the database is further populated with a full
list of files associated with queries. This is the role of a Feeder that contacts the global
File catalog and stores information about received files, such as available repositories or
size. The subset of files is selected according to a queue-based policy and passed to the
Planner in the next batch. The result from planner, selected transfer path for every file,
is stored back to the database.

2.3 Data Mover

Data Mover component is deployed at each computing site and its role is to execute
the computed plan for appropriate links. One instance of Data Mover is responsible of
transferring files to/from the local data services and of pulling files from remote sites.



Efficient Scheduling of Data Transfers in Distributed Environment 173

The concept of classes (Fig. 2 - right) is following: the Dispatcher class starts one thread
for each data service (either local or remote). The thread is waiting for the planned
transfers with a ‘Queued‘ status on its link by querying the database. As soon as some
files are available, the transfer is executed calling appropriate back-end tool. After the
either successful or failed transfer the status is updated so other Data Movers are aware
of action.

3 Planner

The planner is responsible for generating the transfer paths for a given set of files, which
are supposed to be optimal in the sense of minimal makespan as an objective. Our
underlying mathematical model is based on constraints and we have studied two solving
approaches. First one uses Constraint Programming technique and detailed description
can be found in [15], while its search heuristic was published in [14]|. The second approach
uses Mixed Integer Programming (MIP) method and more detailed description can be
found in [13]. Since it provides a fairly better efficiency we will outline this one in the
following text.

3.1 Formal model

The problem to be solved and its constraints driven by environmental realities need to
formalized using mathematical constraints.

The first part of the input represents the network and file origins. The network,
formally a directed weighted graph, consists of a set of nodes N and a set of directed
edges E. The nodes represent the computing sites and the storage elements with extensive
access times (e.g. Mass Storage Systems) while the edges transfer links between the nodes.
The weight of an edge corresponds to the link bandwidth (bw(e)) between two sites or
average latency time for the storage elements (e.g. the time to stage the file from the
tape system). The information about file’s origins is a mapping of that file to a set of
nodes where the file is available.

The second part of the input consists of the requests from the users, namely the set
of files that are going to be transferred and their destination sites (a single file can be
requested at multiple destinations). The goal of the solver is to produce:

e the transfer paths for each file, i.e. the selection of origins and a valid path starting
from the origin node and leading to the destinations such that

e the resulting plan has the minimum makespan (the finish time of the last transfer)

The set OUT(n) consists of all edges leaving node n, the set IN(n) of all edges leading
to node n. The input received from the users is a set of file names F, where for every file
f € F we have a set of sources orig(f) - sites where the file f is already available and a
set of destinations dest(f) - sites where the file f is supposed to be transferred.

The essential idea is to use one decision variable for each file, its destination and edge
in a graph. We will refer to this {0, 1} variable as X s.4, denoting whether file f is routed
(value 1) over the edge e of the network or not (value 0) to its destination d. Mathematical
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Figure 3: Two independent paths are glued together, so the file using their common links
will be transferred only once (e.g. the file is staged only once, then transferred to two
different destinations)

constraints (1-2), ensuring that if all decision variables have assigned values the resulting
configuration contains the independent transfer paths, are analogous to the Kirchhoff’s
circuit laws.

Vf €F, Vd € dest(f) :
Xfea =1, > Xpea=0, Y. Xfea=0, » Xpea=1 1)

ecUOUT (n|n€corig(f)) ecUIN(n|n€corig(f)) ecOUT(d) ecIN(d)

Vf €F, Vd € dest(f), Vn ¢ orig(f) U{d}:

2 ceouT(n) Xfed <1 o
DceIN(n) Xfeda <1 Z Xfed = Z Xfea
e€OUT(n) e€IN(n)

Having generated all independent paths for a file to each of its destination, we need
to glue them together. One can look at it as creating a forest using the terminology from
the graph theory (Figure 3). We achieve it by defining new binary two-index variable X,
stating whether file f uses link e (apart from reasoning about destinations).

VfeF, VecE, Vd € dest(f): Xfeq < Xye (3)
VfeF, YVecE: Z Xfea > Xge (4)
dedest(d)
VfeF, Vn ¢ orig(f)U{d}: Z Xpe <1 (5)
e€IN(n)

Finally, since we are minimizing the makespan, the time to transfer all files to the
requested destinations, we define the constraints (6) for estimation of the completition
time T variable and appropriate objective function: minimize T

o size(f) - Xye
VeeE.;T(e) <T (6)

3.2 Implementation

The model explained in the previous section consists of all linear constraints using binary
(X) and real (T') variables. As explained in [14] for realization of file transfers we do
not need an exact schedule, only the plan (the transfer paths) that will be followed by
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Figure 4: Computing centers in STAR experiment.

Filess | 10 | 25 | 50 | 75 | 100 | 200
Time (s) | 0.024 | 0.258 | 0.786 | 1.324 | 2.518 | 9.574

Table 1: Average time in seconds to find optimal transfer paths.

the distributed link managers. Therefore, after the comparison of solving techniques we
chose MIP approach which provides the most efficient results. As the backend MIP solver
we use GNU Linear Programming Kit (GLPK [2]) from Java programming language via
SWIG interface ([3]).

All presented experiments were performed on laptop with Intel Core2 Duo CPU@1.6GHz,
2GB of RAM, running a Debian GNU Linux operating system. The real-life network
structure among Tier-{0,1,2} sites in STAR experiment is depicted in Figure 4. The
distribution of files is taken from empirical data, where 100% of the files are kept at MSS,
60% at LBNL, 20% at KISTT and 5% are spread among Tier-2 sites.

According to the results (Table 1) planning in batches of files (to achieve adaptiveness
to the network and fair-shareness to the users) seems to be realizable and payed-off by
the gained optimality.

4 Conclusions

In this paper we tackle the complex problem of efficient data movements on the network
within a distributed environment. The problem itself arises from the real-life needs of
the running nuclear physics experiment STAR and its peta-scale requirements for data
storage and computational power. We concentrated on the detailed explanation of the
requested features from the automated system we have been developing, architecture and
concept of the key-stone components. The planning mechanism based on constrained
model was presented as discussed in our previously published work. Our main focus
is in the implementation of the components, currently being developed and deployed.
The early tests in real-world environment point promising indication of correctness of
the chosen approach. In the nearest future we will continue with implementation and
measurements in the heavy-loaded environment.
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