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Predmluva

Smyslem doktorského studia je vychovat nastupujici védeckou generaci. Védeckou pti-
pravu na samotny vyzkum vSak musi nezbytné doprovazet i pfiprava na prezentovani vy-

-----
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Letos se konaly jiz po treti, a to ve dnech 7. a 21. listopadu 2008.

Témata pokryta prednaskami na workshopu Doktorandské dny sahaly od ryze teore-
tickych problémil matematické fyziky, pres matematické modely pfirodnich procesi, az po
zpracovani obrazu, ¢i databazové systémy. Hlavnimi prednasejicimi byli studenti v preze-
néni formé doktorského studijniho programu Aplikace ptrirodnich véd oboru Matematické
inzenyrstvi. Jejich prispévky predklddame v tomto sborniku.

O pozitivnim ohlasu Doktorandskych dnti z minulych let svédci i to, ze k prezentaci
na workshopu se hlasi i doktorandi z jinych kateder, a na prednasky prichazeji hosté z rad
odborné verejnosti. Prejme si, aby tato kazdoroc¢ni akce pro doktorandy ziskavala stale
vice priznivci.

Editori






Paralelni algoritmy pro numerické reseni
hydrodynamiky laserového plazmatu

Lubos Bednarik

1. ro¢nik PGS, email: Lbs@centrum. sk

Katedra matematiky, Fakulta jadrové a fyzikalne inZinierska, CVUT
skolitel: Richard Liska, Katedra fyzikalni elektroniky, Fakulta jaderna
a fyzikalné inZenyrska, CVUT

Abstract. For solution of laser plasma hydrodynamic we introduce model of Lagrangian equ-
ations, which includes heat conductivity and laser absorption. We show us the discretization of
hydrodynamical equations as well as heat conductivity equation and describe one step of the
difference schema. Further we introduce the paralelization and by obtained results we determine
its efficiency.

Abstrakt. Pre rieSenie hydrodynamiky laserovej plazmy sa v iivode zoznamime s modelom Lag-
rangeovskych rovnic, ktory v sebe zahfiia aj tepelnt vodivost a laserovii absorpciu. Ukazeme si
diskretizaciu jak hydrodynamickych rovnic tak aj rovnice vedenia tepla a popiSeme jeden cyklus
diferen¢nej schémy. Dalej si predstavime prostriedky pre paralelizaciu a ziskanymi vysledkami
urcime jej efektivitu.

1 Formulacia ulohy

Laserova plazma, ktora vznika pri interakcii laserového ziarenia s hmotou, je typicky mo-
delovana ako stlacitelnd kvapalina prostrednictvom Eulerovych rovnic s tepelnou vodi-
vostou a laserovou absorpciou. Simuldciou vznikaju oblasti, ktoré sa vyznacuju vysokou
expanziou resp. kompresiou. Popis systému v Lagrangeovskych stradniciach je preto
vhodnejsi nez klasicky Eulerovsky popis, ktory nie je vhodny pre problémy, kde nasta-
vaju velké zmeny vo vypoctovej doméne (podrobny popis transformacie mézeme najst v
[6, 7]). Budeme sa teda venovat problému, ktory v Lagrangeovskych stradniciach (.5, 1)
ma tvar

dn

— 1
dt vs (1)
dv

- _ 2
o Ps (2)
de
— = — —Ws — L 3
dt PUs S S ( )

kde n = 1/p, p je hustota, v rychlost, p tlak, ¢ vnttorna energia, W je tepelny tok
a L je hustota toku energie (intenzita) laserového Ziarenia. Jednotlivé rovnice vyjadruji
postupne zakon zachovania hmotnosti (1), zdkon zachovania hybnosti (2) a zakon zacho-
vania energie (3). Systém dopliiujeme dalej este o stavové rovnice p = p(e, p), T' = T'(¢, p),
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ktoré pre idealny plyn uvazujeme v tvare:

p = ep(y—1) (4)
A P kB

i = =2 5

Z+1cyp’ A (5)

kde v = 5/3 je plynova konstanta, Z stupen ionizacie, A atémové ¢islo, kg Boltzmanova
konstanta a m, = 1,6605.102*¢ atémova hmotnostna jednotka.

Systém rovnic (1), (2), (3) riesime v dvoch krokoch. V prvom kroku rieSime samos-
tatne systém hydrodynamickych rovnic

dn

= 6
dt vs (6)
dv
& 7
yr ps (7)
de
o = TPbus (8)

V druhom kroku riesime samostatne rovnicu vedenia tepla so zahrnutym c¢lenom pre
laserove Zziarenie

de
= - Ws— L 9
dt 5 s (9)

2 Diskretizacia

Systém rieSime numericky diskretizaciou v ¢ase aj v priestore, pricom parcialne derivacie
nahradzame diferenciami. Nech teda dana oblast, v naSom pripade interval (a,b), je
lubovolne rozdelena bodmi x; aZ x,,,1 na m subintervalov, kde x; = a a x,,.1 = b. Tieto
subintervaly budeme nazyvat primdrna sietka. Primdrne body definujeme ako stredy
tychto subintervalov a znac¢ime postupne x3/2, T5/2 aZ Tpy—1/2, Tm41/2. Vrcholy primarne;j
siefky tvoria tzv. dudlne body, ktoré oznacujeme indexom s celociselnym argumentom.
Dudlna sietka bude obsahovat dudlne body vnitri svojich buniek, a teda jej vrcholmi st
primarne body. Ozna¢me dalej At ¢asovy krok a t" = nAt, n=0,1,2,....

2.1 Diskretizacia hydrodynamickych rovnic

Najskor zdiskretizujeme systém hydrodynamickych rovnic (6),(7),(8). Casové derivécie
nahradime jednoduchymi diferenciami:

U

Jo_ . )i 10

dt At ( )
kde fI* = f(x;,t™). V rovniciach pre zédkony zachovania hybnosti a energie navyse pouzi-
jeme ¢len pre umeld viskozitu ¢, definovani vztahom

0 pre vy —v;' >0
q?—}—l/? = 3.n n n n Zn—i— Zn (11)
_§pi+1/2(vi+1 =)y /(v — 1)75i+1/2 pre vy, — v <0
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Zéakon zachovania hybnosti diskretizujeme podla schémy

n+1 n 7 n _ _an

;U Pivij2 T Qig172 — Piciy2 — Qim1)2 .

: L=— ,prei=2,..m—1 12
At m; p (12)

(Y

Rychlosti v; a v; st dané okrajovymi podmienkami. Ak pozname rychlosti vo vsetkych
bodoch sietky, potom podla nasledujiceho vztahu stanovime pohyb sietky:
n+l _ " ’UZ»nJrl 4 ,Uln

1 3 — 1
At 2 (13)

X

Zéakon zachovania energie diskretizujeme podla schémy

n+1 n
Civ1/2 — Civ1/2 n n
— A — (P12 + Ao

1/,,n+1 n 1/, n+1 n
sWwiny o) — 5 o
)2( i+1 z+1) 2(1 1)7 preizl,..,m (14)

Mit1/2

Hustota je dana pohybom sietky, pretoze hmotnost zostéava v kazdom case pre kazdu
bunku konstantna:

n+l __ mi+1/2 (15)
Piv1/2 = "1 _ _ntl
Tiv1 — T4

2.2 Diskretizacia rovnice vedenia tepla

Rovnicu vedenia tepla (9) zdiskretizujeme po prechode od systému (S,t) k (z,t), a tak
podla [5] mé tato rovnica po tejto transformécii tvar:

de
—=-W,—-L, 16
P (16)
kde W = —kT, a k je koeficient tepelnej vodivosti. Z rovnic (4) a (5) dostavame
T(Z + 1)c
e(T,p) = —F—L- (17)
( Aly=1)

kde vidime, Ze vnitorna energia je pre idealny plyn funkciou iba teploty ¢ = (7). Kedze
pre totalnu casovi derivaciu vnutornej energie plati

de O 0T 0 dp
Crpy =L 9 1
2 TP =518 T oo (18)
a z (17) vyplyva de/0p = 0, potom mdzeme vztah (16) prepisat do tvaru
1 1
T, = —(kTy)e — —0L, (19)
PET PET

Parcidlna derivécia er je pre idedlny plyn nezéavisla na teplote a zo vztahu (17) ju doka-
zeme vyjadrit:
(Z+1)c,
e = 211G (20)
Aly—1)

Ozna¢me symbolom V; objem bunky, ktora obsahuje vnutri dudlny bod z;, tj.

Vi= Tit1/2 — Ti—-1/2 (21)
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a symbolom V;;/, objem bunky obsahujticej primarny bod x;11/s, tj.

Vi = Tiy1 — (22)
Stavové veliciny 7', p,p, €, x s dané na primarnej sietke, tj. v bodoch x;1/s, veli¢iny v,
L na duélnej sietke v bodoch x;. Potom ¢asovt derivéaciu teploty nahradime

U
_Tit1/2 i+1/2
[Tt]iH/Q - Ant (23)

kde symbol A,t = t,;1 — t,. Indexy pri hranatych zatvorkich oznacuji body sietky.
Derivéciu podla 2 nahradime podobnym sposobom

Tn+1 _ Tn+1
T,]. S n o S B 24
L (24

Analogicky nahradime aj druht derivéciu, a tak naslednym dosadenim do (19) dostavame
vysledni schému:

T, =T / 1 K
n i+1/2 i+1/2 i+1 (n41 n+1
Pit1/2€T = (T - T ) —

Ant ‘/i+1/2 ‘/’L'Jrl i+3/2 i+1/2

n
R

Vi

(713:}2 - Tznj}z) - (L?-I—l - L?)
(25)

Tato implicitna schéma predstavuje systém m — 2 rovnic pre m mezméLmyChT[jj}2 pre
1=1,..,m a ma tvar
a T} + 0T + Tl = Riy i =2,..,m — 1
kde koeficienty a;,b;, ¢; a R; vyplyvaju z (25)
Ki At
_Vz‘ Vz‘+1/2pz‘+1/2€T

4 % Ant
bi = 1—|—(I€+1_}_K_)

a; —

Vit Vi Vz‘+1/2pz‘+1/2€T
Kit+1 At
a = _Vi+1 Viv1/2piv1/26T
Re = Thup— (L= B)g— (20
Zostavajuce dve rovnice
hTys' +aTlyt = R (27)
aNTnZﬂ/2+bNT:zﬁ/2 = I (28)
vyjadruju okravojé podmienky. Systém sa da zapisat maticovo ako
bhoev 0 .. 0 0 0 T35 R,
as by co ... 0 0 0 T;/;l R
SEETEE . . : : _ : (29)
0 0 0 -1 bm-1 Cm—1 AR Ry1
0 0 0 0 Qm, b TZH /2 R,

kde ako vidno ma matica systému tridiagonalny tvar, kde nenulové prvky sa nachadzaja
na diagonale a nad a pod diagonalou.
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2.3 Diferenéna schéma - cyklus

Predpokladajme dalej, Ze na zac¢iatku prvého kroku diferencnej schémy mame dané sta-
vové veliciny pg, vo, €0 a po = p(po,<o),To = T(po,c0). Vyriesenim systému hydrody-
namickych rovnic, kde uvazujeme okrajovii podmienku pre rychlost alebo tlak, ziskame
nové hodnoty veli¢in, ktoré oznacime p, v, 1. Zo stavovej rovnice dopocitame

T, = T(p1,€1)

ako pociatocné riesenie pre rovnicu vedenia tepla. Pre idealny plyn je dokonca teplota
funkciou iba vnutornej energie. Nasleduje vyrieSenie rovnice vedenia tepla, ¢im ziskame
novt teplotu 75. Casovy krok musi byt pre obidva subkroky rovnaky. Ak sa ligia, zvolime
obidva podla mensieho z nich. Finélne uz iba staci, ked zaktualizujeme vnitornt energiu

€2 = 5(T2>P1)

a ako nové pociatoéné podmienky do dalsieho kroku vezmeme hodnoty pq, vy, €.

2.4 Absorpcia laseru

V nasej rovnici vedenia tepla (9) sa vyskytuje ¢len L, ktory v sebe zahriiuje energiu preda-
vana systému v dosledku absorpcie laserového ziarenia. Hodnotu tohto ¢lenu spocitame
zo vztahu

I _ 0  prep=p
1" pre p < p,

kde I* = I*(t) je intenzita laserového Ziarenia popisand dalej a p, je tzv. kriticka hustota,
pre ktoru plati

B A1
Pec = ]_, 86 x 10 2)\—3
kde )\, je vlnova dlzka laseru v pum. Uvazujeme pritom dopad laserového Zziarenia s
I K
profilom Gaussovského pulsu, tzn. pre intenzitu pouZijeme vztah

—(t—tg)%4in2
I —

"ty =1t e= -

max

kde L je maximalna intenzita Ziarenia, t, je posunutie maxima vzhladom k ¢asu ¢t = 0
a 7 je Sirka pulsu v polovici maximalnej vysky (FWHM).

3 Paralelizacia

Pre urychlenie vypoc¢tu sme sa rozhodli na§ program sparalelizovat, a to prostrednictvom
OpenMP. V tomto pripade sa beZiaci proces rozdeli na niekolko vldkien a na nich prebie-
ha paralelne vypocet. V jazyku C je OpenMP implementované prostrednictvom direktiv
prekladaca riadiacich samotnt paralelizaciu a mensou skupinkou pomocnych funkcii, kto-
ré umoznuju kontrolovat a riadit jednotlivé vlakna. Direktivy maji tvar #pragma omp
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a k tym dolezitejsim patria #pragma omp parallel for a #pragma omp sections. Vo
fortrane je to takmer take isté, rozdiel je v tom, ze direktivy a pomocné funkcie maja
odlisnu syntax. Napriklad spomenuté dve direktivy maji vo fortrane tvar !$omp do a
'$omp sections.

Prva z uvedenych direktiv sa pouziva pre paralelizaciu cyklov for. Direktiva s prislu-
Snymi parametrami vravi prekladacu, Ze proces sa mé rozdelit na viac vlékien, nasledujuici
cyklus rozdelit na zodpovedajtci pocet Casti a potom sa opif spojif. Dolezité je, ako sa
prideluje praca jednotlivym vldknam. Mame niekolko moznosti:

e Staticky, kde sa cyklus rozdeli na niekolko blokov konstantnej velkosti a tieto bloky
sa hned na zaciatku pridelia jednotlivym vldknam.

e Dynamicky, kde sa cyklus rozdeli opéf na niekolko blokov konstantnej velkosti, ale
tieto sa prideluji vldknam podla potreby. Ktoré vlakno dokondci svoj blok, dostane
dalsi.

e Riadene, kde sa meni aj velkost pridelovanych blokov.

Je dolezite tiez urcif, ktoré premenné maju byt zdielané (napriklad déta, na ktorych
pracujeme), a ktoré sikromné (napriklad itera¢nad premenné, ktora mé pre kazdé vlakno
int hodnotu).

Niekedy je nutné vykonat dant operaciu napriklad len jednym vldknom, alebo viacery-
mi ale odlisne. K tomuto ucelu sltzi druhd spominand direktiva #pragma omp sections,
kde pre kazdu sekciu kédu sa dé nastavit, ako sa mé spracovavat. Zo zakladnych sposobov
mozme uviest:

e Jednotliva sekcia uréuje Cast kédu, ktory sa vykond len jednym vldknom (napr.
vstupné a vystupné operacie).

e Kriticka sekcia urcuje ¢ast kddu, ktord sa smie vykonat maximalne jednym vlak-
nom v tom istom Case (pristup k hardwaru).

e Zarazka nastavuje miesto, kam musia vSetky vldkna dospiet a pockat na seba.

e Zoradeny kdéd, ktory je vykonavany v rovnakom poradi ako pri sekvenc¢nom algo-
ritme.

V niektorych pripadoch potrebujeme poznat aktuédlny pocet vldkien pripadne ¢islo vldkna
a k tomu ndm OpenMP poskytuje vstavané funkcie omp_get _num_threads (vrati pocet
vlakien) a omp_get_thread num (vrati ¢islo vldkna).

Napisany program kompilujeme vybranymi preklada¢mi podporujuci standard OpenMP
s pouzitim prislusnych prepinacov. Pre intelovské prekladace je to prepina¢ -openmp,
pre standardné GNU prekladace, volne dostupné v kazdej distribtcii linuxu, prepinac
-fopenmp.

4 Vysledky

Vicsina simulacii prebiehala na pocitac¢i pozostavajiceho zo 4 dvojjadrovych procesorov
Intel Xeon s frekvenciou 2667 MHz a 24 GB RAM. Mohli sme tak spustif vypodet az na
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8 procesoch. Uéinnost paralelizacie vypocitame podla nasledujiiceho vztahu

: (30)

kde t; je doba vypoctu jednym procesom a t,, doba vypoc¢tu n procesmi. Pomer :—711 pritom
urcuje dosiahnuté zrychlenie.

V simulacii uvazujeme penovy tercik, modelovany sériou stien a medzier s danymi
vlastnostfami, na ktory sprava dopadé laserovy zviizok. Na obrazkoch y-ova os zodpo-
veda urcitej Casovej hladine a na x-ovej osi st vynasané hodnoty konkretnej fyzikalnej
veli¢iny. Uvazeme pokrocilejsi model absorpcie laseru, kde laser je absorbovany nielen
v tzv. kritickom mieste, tj. mieste s kritickou hustotou, ale aj v jeho okoli. V kazdej
dvojici obrazkov vrchny zobrazuje simulaciu bez vedenia tepla, dolny zobrazuje simula-
ciu s tepelnou vodivostou, pri¢om mézeme vidief postupne zobrazenie laseru (obrazok 1),
zobrazenie hustoty (obrazok 2) a zobrazenie teploty (obrazok 3).

Porovnanim prvych dvoch dvojic obrazkov vidime, Ze laser nie je absorbovany len v
mieste dopadu, ale aj hlbsie v materiéli. Na tretej dvojici obrazkov (obrézok 3) potom
vidime vplyv rovnice vedenia tepla.

1
= S —
s
—
=

Obrazok 1: Simulécia absorpcie laseru, zobrazenie laseru, horny obrazok bez vedenia tep-
la, dolny s vedenim tepla.

R
LRV WU

Obrazok 2: Simulacia absorpcie laseru, zobrazenie hustoty, horny obrazok bez vedenia
tepla, dolny s vedenim tepla.

T
w
Lo e —
.,
S
e

Obrazok 3: Simulacia absorpcie laseru, zobrazenie teploty, horny obrazok bez vedenia
tepla, dolny s vedenim tepla.
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Dobu vypoc¢tu ako aj zrychlenie a efektivitu pri pouziti siefky zloZzenej z 250 buniek *
vidime v tabulke 2. V prvom stipci mame pocet procesov (resp. vlakien), na ktorych bol
vypocet spusteny. V druhom a trefom stlpci st zaznamenané namerané doby v§poctu.
Druhy stipec zobrazuje skutoénit dobu vipoétu, tj. odkedy sa vipocet spustil az po jeho
skoncenie, zafial ¢o v trefom stlpci sa nachadza ¢as procesu, ktory je stétom ¢asov na
jednotlivych vlaknach. V posledngch dvoch stipcoch sa nachadza zrychlenie a dosiahnuté
efektivita, ktord je pocitand pomocou vztahu (30). Nizka hodnota tejto efektivity je
sposobena okrem nizkeho poc¢tu buniek aj tym, ze v celkovej dobe vypoctu je zahrnutéa
aj doba neparalelizovanych vypoctov.

‘ Procesy ‘ Cas ‘ Cas procesu ‘ Zrychlenie ‘ Efektivita ‘

1 320 319 1 1

2 235 333 1,36 68.1 %
4 209 382 1,53 38.2 %
8 193 416 1,65 20.7 %

Tabulka 1: Vysledok paralelizécie na sietke s 250 bunkami - celkovd doba vypoctu.

Ak sa zameriame iba na dobu paralelizovanej casti vypoctu, konkrétne o hydrodyna-
micki ¢ast, mdézeme pozorovat lepsie vysledky (vid. tabulka 2). Vypocet opet prebiehal
na oblasti s 250 bunkami. Vysledky obidvoch tabuliek spolu s dalsimi simuldciami pre
125, 500 a 1000 buniek vidime na obrazku 4. Mozeme pozorovat, Ze zvySujicim sa po¢tom
buniek sa zvysuje aj efektivita paralelizacie.

‘ Procesy ‘ Cas ‘ Cas procesu ‘ Zrychlenie ‘ Efektivita ‘

1 199 199 1 100 %
2 113 211 1.76 88,3 %
4 69,8 241 2.85 71.3 %
8 38,8 258 5.12 64.0 %

Tabulka 2: Vysledok paralelizacie na sietke s 250 bunkami - doba vypoc¢tu paralelizovanej
hydrodynamickej c¢asti vypoctu.

5 Zaver

Zoznamili sme sa s modelom Lagrangeovskych rovnic pre riesenie hydrodynamiky lasero-
vej plazmy, ktory v sebe zahriiuje aj tepelnt vodivost a laserovii absorpciu. Dalej sme si
ukazali diskretizaciu a predstavili prostriedky pre paralelizaciu tohto problému. Ziskany-
mi vysledkami sme sktimali efektivitu paralelizacie a overili, Ze pre dany pocet procesov
(resp. vldkien) sa efektivita zvySuje so zvySujicim sa poc¢tom buniek na sieti.

INizky pocet buniek je zvoleny zamerne. Pre vysoké pocty buniek a maly pocet procesov (vlakien)
vychadza efektivita velmi vysoka. My sme vSak chceli ukézat, kde sa nachddza spodna hranica poctu
buniek, tak aby mala paralelizicia este zmysel.
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Abstract. The goal of this contribution is to describe the transport of colloids in the porous
media. This work includes equation describing the flow field, transport of colloids and deposition
of colloids in the porous media. Then there is a numerical discretisation of the system of
equations describing the colloid transport with known flow field by means of the upwind scheme.

Abstrakt. Hlavnim cilem tohto prispévku je popis transportu koloidii v poréznim prostredi.
Tato prace obsahuje rovnici popisujici proudové pole, transport koloidli a jejich uklddani v
poréznim prostiedi. Dale je v praci obsazena numerickd diskretizace tohoto systému rovnic
popisujiciho transport koloidd pfi zndmém proudovém poli za pouziti upwindového schématu.

1 Introduction

This contribution is a review of colloidal transport in porous media. The Contribution
contains equations describing this complicated but important system. Colloids are small
particles with at least one dimension less than 100 nm. Examples of colloids are bacteria
or viruses. Colloids have many usages. One of reasons for studying colloidal the transport
in the porous media is that colloids are able under certain conditions to make contaminant
transport in porous media faster. One case was measured for example in Los Alamos,
where Pu transport was measured and Pu particles reached 1200 times farther than was
predicted by classical transport model. Colloids stimulated this phenomenon [5].

2 The physical model

This section presents equations describing the colloidal transport in porous media [1].

2.1 Flow field

To describe the transport of colloidal particles in the porous media three equations are
necessary. The first is describing the flow field and we will call it the flow equation. We
can write it in this form:

oh
ot
where Sg is the specific storage, t is time, h is the hydraulic head, K is the hydraulic
conductivity and () is the pumping or recharge rate. After time the water flow in the

11



12 P. Benes

porous media comes to the steady state. Then is possible to measure the hydraulic head
and use the Darcy law to obtain the Darcy velocity q:

q=—KVh. (2)

2.2 Colloid transport equation

This equation can be derived from the mass balance of colloids over the REV (repre-
sentative element volume). There are three main mechanisms controlling the colloidal
transport: hydrodynamic dispersion, advection and colloid deposition and release. This
can be described by the generalized advection dispersion equation:

o0 _
ot

V~(DV0)—V-(VC)—%%, (3)

where C' is the mass concentration of colloids in aqueous phase,

_colloid mass captured by solid matrix

S

total mass of solid matrix ’

D is particle hydrodynamic dispersion tensor, V is particle velocity tensor, € is the
porosity and g, is the bulk density of porous media. Because the colloid particle size is
much smaller than the pore size, it is possible to take V like interstitial fluid velocity. In
two dimensions it is possible to take

_ \TATA
Dij = OéTV(SZ‘j + (OéL - OéT> Vj + DdT(sij,

where Dy is the Stokes-Einstein diffusivity, VZVJ are components of the interstitial velocity,
ay, is the longitudinal dispersivity, ar is the transverse dispersivity and T is the tortuosity
of porous medium. Further we will use the equivalent of (1), where the unknown is the
particle number concentration n:

on f o0

= = (®)

where 6 is the specific surface coverage, defined as

total cross-section area of deposited colloids

interstitial surface area of the porous media solid matrix’
f is specific surface area

interstitial surface area

porous medium pore volume’

and a, is radius of colloidal particles.
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2.3 Colloid deposition and release

Let X\ be the percentage part of the solid matrix with favorable conditions for colloid
deposition. This can be for example areas with iron oxides on its surface. These surfaces
are typically positive charged and colloids are typically negatively charged. Deposition
on the surfaces is usually irreversible. On the rest (1 — \) of the solid matrix surface are
unfavorable conditions for the colloidal deposition. Deposition takes place on both parts,
but difference in rates can be huge. For particle surface coverage rate we can adopt this

patch wise model:
00 00 00,
T\ )
oMo TN (5)

where 0; is favorable surface fraction and 6, is unfavorable surface fraction. For there
rates exists partial differential equations:

00;

50 = Tazkacp B (0r) — haer, 0 R(0;), (6)
00,
E = Wa;kdep,uTLB(Qu) - kdet,uguR(QU>7 (7)

where kg, is the colloid deposition rate constant, kg is the colloid release rate constant,
B(#) is the dynamic blocking function and R(f) is dynamic release function. Colloid
deposition rate coefficient k4., can be expressed by means of single collector efficiency 7:

neV. aneV

4 4 ®)

kdep -

where V' is the fluid advection velocity, ¢ is porosity and 7, is the favorable single collector
removal efficiency.

2.4 Dynamic blocking and release functions B(6), R(0)

Dynamic blocking functions characterize particle deposition [4]. When is the collector at
the beginning particle free has blocking function value B(#) = 1. As deposited particles
blocking the surface more and more B(f) decreases and when at maximum attainable
surface coverage 0 = 0,,,, (jamming limit) it is B(6) = 0. We will present two models of
this function here.

2.4.1 Langmuirian dynamic blocking function

This blocking function is a linear approximation:

B(O)=1— —0.

Omaz

This model was made for point size particles. For larger (finite size) particles linear
description is not sufficient. For this reason we will show non-linear blocking function
here: the RSA model.
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2.4.2 RSA dynamic blocking function

For colloidal particles depositing on the oppositely charged collector surface these condi-
tions for use of RSA model are given:

e attachment is irreversible as long as conditions do not change
e surface diffusion is negligible

e particle-particle contact is prohibited
For low and moderate surface coverage the function has this form:
0 6V3 0\ 40 176 0\’
BO)=1—-40——+ — | Oo—— — — — | | O— | ,
( ) ‘gmaa: * m ( ‘gmaa:) * (\/g’/T 377—2) ( ‘gmaa:)
where 6, is the hard sphere jamming limit. For coverage approaching 0,,,. (6 > 0, 80,,42)

B(o) = L= )

1)
2

where m is the jamming limit slope.

2.4.3 Dynamic release function

Dynamic release function describes the probability of colloid release from the porous
media surface covered by retained colloids [1]. This function should in general depend
on colloid the residence time and the retained colloid concentration. Because the colloid
release is not well understood we will use R(6) = 1. Then equations (6) and (7) represent
first order kinetics release function.

3 Solved equation

This section shows solved equation, initial and boundary conditions. By substituting
equations describing the colloid deposition and release (5), (6) and (7) to (4), we obtain
the following expression:

on _
ot

V- (DVn)—=V-(V-.n)— #((Awaikdepny(Hf) + (1 = N 7aZkaepu B(0))n —
P

(AT Kder, 107 B(0f) + (1 = A)Raepubu R(60)). (9)

Now we assume that K () = 1 (first order kinetics release mechanism) and use the
following notations:

_f
Ka(igf, Qu) = Wa;[Akdep,fB(Qf) + (1 - A)kdep,uB(Quﬂa (11)

Kr(ef, 6u) = )\’/deemvef -+ (1 — )\)kdep,ueu. (12)
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After application of these assumptions the following equation is obtained:

871 Ka(Qf,Hu) KT(Hf,Hu)
TV (DVR)— V- (V-n) -
T (DVn) (V-n) " n+ Y
Now we will complete this system of equations by means of equations:(1), (2), (6) and

(7):

. (13)

oh
Ssp =V (KVh) =@, (14)
q=—KVh,
v_4d
n?
00
8—tf = W@ﬁkdepjnB(Hf) — kdet,fef, (15)
00,
E = Waikdep,unB(Qu) — k‘det’uef. (16)

To solve this system, we will need boundary and initial conditions for each equation
(13),(14),(15) and (16).
Let us have rectangular domain oriented in directions of axis x, where lower boundary is
denoted I'y, right I'y, upper I'; and left 'y (fig. (1)).

For concentration equation (13) will have initial condition given by some function ng(x)
and boundary conditions will describe sources of colloids, so there are some functions
n;(x,t), where i € 1,... 4.

For equation describing the flow field (14), we will have some initial hydrodynamic head
e.,g. h(x) = ho for t = 0, Dirichlet boundary condition on I'y and I'y e.,g. h(x,t) = h;(x)
%2( x € I';,t > 0 for i« = 2,4 and zero Neumann boundary conditions on I's and I'; e.,g.

WZOOHX€F173,t>O.

For equations (15) and (16) there are initially no deposited colloids so (§; = 6, = 0)

and then there are zero dispersive flux boundary conditions for t > 0 e.,g. % =0 on
x €3 and agajafx =0onx€ly fort>0and j=fu.

4 Numerical solution

Now we discuss how numerically solve the system above [1], [2], [3]. Let us suppose that
the flow field is time independent and that the flow field is given. In this case it will not
have to solve equation (14) and we will know velocity V. If the flow field is not known it
is necessary to solve equation (14) in each time step, like first one. For known flow field
we have to solve three coupled equations (13),(15) and (16) with initial and boundary
conditions given in the previous chapter. First thing to do in numerical solution is the
numerical grid. We will use triangulation on our domain 2. It is called the primary
grid. On the primary grid we will construct the dual grid. We will connect midpoints of
triangle with all its sites in each triangle from primary grid. In this way we will obtain a
polygon around each node from the primary grid (on the boundary of the domain (052),
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o0

I'y

Figure 1: The domain ).

polygons are incomplete). For primary mesh node i, we will call this polygon B; exclusive
subdomain of node 7. B; consists of several abscissae and each of abscissa belongs to one
abscissa connecting node ¢ with his neighbor m. For each couple ¢, m there two abscissae,
we will denote them OB;, . The middle point of the abscissa 0B, is denoted v0B! ,
(fig. 2). Time step will be denoted by upperscript k. By |”something”| is denoted the
area or the length of ”something” (for example |0B!, | is the length of abscissa 9B;,,).

The coupled system of equations is solved as follows. First the number concentration
n based on the coverage at old time level is computed. Then new surface coverage is
computed.

We will show how to solve equation (13). First we will integrate this equation over
domain €2:

/Q {% * Ka(e,f’e“)n - K’"(ej’e“)} ds = /Q [V (DVn)—V-(V-n)dS. (17

Now we will use Gauss formula on the right hand side of the equation (17):

/Q[v'(Dvn)—v-(V~n)]dS:/

(DVn) . l’lanl — / (V . n) : l’lanl (18)
o0

o0
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0B?

1,m

Figure 2: The exclusive subdomain for node 1.
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where 0 is boundary of €2 and ngq is the normal vector to 02 But the mass balance has
to be satisfied not only on the whole domain 2 but also on each exclusive subdomain B;
which belongs to the primary mesh node ¢:

/ |:a_n + Ka(‘gf?Qu)n_ Kr(efyeu):| dS:/ (DVn)naBldl—/ (Vn)naBldl (]_9)
B, L Ot vy 0% OB, dB;

Now we will approximate the left hand side of (19).

/ {a_n_i_ Ka(‘gf?QU)n_ Kr(efv‘gu)} ds ~

ot ¥ ¥
n§+1 _nf Ka(H?weSZ) k (9?276uz) B 20
R e Sl ) (20)
Approximation of the first therm on the right hand side of (19):
/ (DVn) - ngp. dl = Z / (DVn) -nyg dl
dB; oB! o
(21)

NZ[ (o, ) (V1) (o)) * Mot 10BL]

where (Vn)¥) is the approximation of Vn from concentration values from time step k.
Approximation of the second therm on the right hand side of (19)

Ja Ve mondt =3 [ (V) i) OBl (22
dB; oBL .

where upwind value is given as:

. :{ ng for Nop! 'V('VaBﬁ’m) >0

for mnyp ‘V(”YaBl. )SO (23)

m

The approximation (22) is called the first order upwind scheme and helps us to avoid
oscillations in the solution, but suffers of the numerical diffusion. To obtain smaller
numerical diffusion without oscillations higher order upwind scheme with limiter (without
limiters, there are small oscillations in the solution) can be used.

Values of BF on the boundary 9 are taken from the boundary conditions. 6; and 6,
for the first time step can be 6; and 6, taken from the initial condition for them. Than we
will give approximations (20), (21) and (22) together, find n/™ and obtain the explicit
scheme.

We can use explicit scheme for equations (15) and (16) to obtain from known surface
coverage from old time step 6 and calculated number concentration nf“ to obtain new

particle coverage 9{”1 for favorable case [ = f and unfavorable case [ = u:

el’fjl — e){fi + m,,kdep,l,mf“B(e{fi) — kdet’l’ie;fi [ € fu (24)

where Hlki, Kdep1,is Kdet1,i are values of 9{", Kdepi, Kder;y in the node <.
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5 Conclusion

In this contribution a summary of equations describing the colloid transport was presented
and discretization of equations by means of first order upwind scheme was derived.

Future work will be focused on behavior of colloids in the porous media and especially
of nanocolloids.
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Abstract. Whenever you have to deal with a device that is generating data either based on
external triggering events or that is constantly delivering realtively huge amounts of somehow
acquired data and has no means to store them locally in itself for longer periods of time or
just the possibility to deliver them on request, there are just two things you can do about it
to handle the device in a proper way. Either you have to run on a hard-real-time operating
system, or you stick with the classical time-sharing OS, but have to have a mechanism that
would do the best possible effort to service the data under given circumstances to prevent any
losses. And this is the point where the Q-Buf engine takes place.

Abstrakt. Kdykoliv méate co do ¢inéni se zafizenim, které bud generuje data na zdkladé externé
triggerovanych udalosti nebo které konstantné produkuje relativné velké mmnozstvi néjakym
zpusobem ziskanych dat a nema zddnou moznost tato data v sobé po delsi dobu skladovat ¢i je
zkratka zaslat vzdy jen na pozadani, pak jsou jen dvé moznosti, jak zafizeni spravnym zptisobem
obslouzit. Bud bézet pod hard-real-time operacnim systémem nebo zlistat na klasickém time-
sharing OS, ale pak je tfeba mit k dispozici mechanismus, ktery se bude snazit obslouzit toto
zalizeni nejlepsim moznym zptisobem za danych podminek tak, aby pokud mozno piedesel
jakymkoliv ztratdm dat. A to je pravé to misto, pro které byl konstruovan Q-Buf engine.

1 Introduction

In project INDECS [1] we collect raw data signals from the position sensitive detectors
(PSD) using an ADLink PCI-9812 data acquisition card [2]. Up until now, the data
had to be collected under RTLinux hard-real-time operating system, so that we miss as
little of the incoming neutron events as possible. Partially also because of the nowadays
relatively slow and old PC hardware where the data acquisition card was installed (PII
400 MHz).

Using the free (or also called Open) variant of the RTLinux [3]| does have its advantages
in data acquisition, since it provides a true hard-real-time OS below the classical time-
sharing variant of Linux kernel. However, it also has its drawbacks.

For a long time there have only been free RTLinux patches for the old 2.4 variant of
the Linux kernel, but no recent Linux distribution uses these types of kernel. And even
when you do manage to compile such a kernel on any recent distribution, it lacks a lot
of features (drivers for recent hardware, security patches, and so on). Recently a free

*This work has been supported by grants MSM6840770040 and MPO contract IMPULS No. FI-
IM3/136.
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RTLinux patch for the 2.6.9 Linux kernel appeared. But 2.6.9 is also a history today. So,
keeping up-to-date with current linux kernels is always a bit of a problem when you want
to use RTLinux.

Another task, that was there to face (this time not related to project INDECS), was to
write a reliable driver for the DAKEL’s DTR devices used for data acquisition from and
transmission to multiple ultrasound probes. Unlike the PCI-9812 DAQ card, which uses
about 10 times higher sampling rates, but just one short discrete burst on each detected
neutron event, this is a true continuously streaming device and loosing samples would be
perhaps even more unacceptable than in case of the PSD in project INDECS.

Nonetheless, there was another obstacle related to this particular driver. The DTR
device requires very fast and huge hard disks at its disposal to store all the streaming
data and that means recent computer hardware and for that also recent drivers. So, going
for the free RTLinux solution was not the best option to choose, not withstanding the
additional licensing difficulties that might (or migt not) matter in this case.

Q-Buf kernel streaming engine was created to solve these two problems. It is just a
module of the standard 2.6 Linux kernel [4] maintained compatible with all of the up-to-
date 2.6 kernels (at the time of writing this article, the most recent is the 2.6.26 kernel)
and perhaps one day we manage to include it directly into the linux kernel source tree,
so that it would be kept compatible with all the kernel changes automatically.

2 Concept
There are several simple ideas behind the concept of the Q-Buf engine:

o First of all, whenever there are some incoming data available, receive them as soon
as possible, without any unnecessary delays.

o Try all available options before giving up on the data.

o Try keeping some extra memory reserves if possible, so that you don’t get caught
in a situation, where there is no memory available immediatelly, when it is needed
the most.

o Try to keep the obtained data as long as necessary before the user-space application
processes them.

o If it is about memory consumption, this device has the absolute priority. Meaning
that it is allowed to consume all memory available, no matter how much the other
processes on the system may suffer because of that. However, to prevent the total
consumption of all memory which would probably result in a collaps of the system,
this consumption is limited by an arbitrary preset value.

This idea together with the previous one is generally considered a bad and at least
impolite behaviour among kernel-space code. However, as stated above, the data
generated by the device that is using the Q-Buf engine are considered so valuable,
that they outweight almost every other data with which they may possibly compete
for memory space, and thus, such a behaviour is well justified.
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Figure 1: Block schematics of the Q-Buf engine data flow.

o Keep the interface to the driver using the Q-Buf engine simple and let the driver
implement only the necessary parts of the whole mechanism, that are different for

each device.

o Clean up the claimed resources when the device is not going to need them anymore,
so that even if the device consumed a lot of resources, the system may operate
smoothly again when the device no longer needs them.

o On the other hand, while the device is still transfering, it may be wise to keep the
resources it consumed so far, because there is a high probability that it would need
them again soon, and freeing and acquiring them again later would consume the
valuable time, and thus, increase the odds of loosing data.

With all these ideas in mind, the concept of static and dynamic streaming buffers was
introduced.

2.1 Buffers

The basic structures for data transfer within the Q-Buf engine are referred to as Buffers.
Buffers carry reference to the actual data buffer, reference to a custom structure of the
driver, should the driver have some information bound to the buffer (usually some struc-
ture related to the actual data transfer over the appropriate bus), position of the carried
data in the stream, and several other information related to the buffer and the data

within.
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Careful thought must be taken when allocating the data buffers. We want it to be
able to both do the DMA transfers to and/or from the device and be able to do memory
mapping into user-space. The first condition requires a consistent continuous block of
memory for each buffer, since lots of the devices (such as most USB host controllers,
for example) cannot do scatter—gather (or so called vectored 1/0) DMA. The second
condition requires us to have the data buffers alligned to pages in both size and memory
position, because memory mapping can be done only by entire pages and exposing any
area not dedicated to the actual data buffer would be a potential security risk.

Since most systems use pages of 4 KB! in size, the above means that we would have
to have transfers quantized by the multiples of that size. However, that is not always the
best option. The transfer packets for the appropriate bus usually have different size, not
necessarily even size of power of 2. This problem is solved by allocating space for the
buffer that would comply to the two constraints mentioned in the previous paragraph,
but the actual buffer would use only a subregion of the allocated area.

Considering that that would be a fair waste of memory, had the packet size been
significantly smaller than the page size, we allow multiple consequent transfer packets
per buffer. The choice of the number of packets per buffer can be chosen by the driver
that uses the Q-Buf for the particular device. In fact the usage of the whole buffer area
is left up to the driver, the Q-Buf engine just supports slicing the buffers into smaller
areas for data exchange and the driver decides what slicing is best suitable for the device.
There may even be an unused area at the end of the buffer, if the buffer size is not
divisible by the packet size or if there is artificially less packages assigned for one buffer
than the maximum possible. And while the bus transfers need not be reliable in some
cases, some packets may even deliver no data, so, there may be gaps between some data
within a buffer. To make it short, Q-Buf also supports subdividing the occupied buffer
space by discrete sparse data blocks.

Another problem of the conditions mentioned three paragraphs before is that allocat-
ing memory areas consisting of more than one consequent memory page may stress the
memory allocator quite a lot due to the memory fragmentation effect. That means, that
allocating a buffer may take relatively a lot of time, if the memory is too fragmented,
and it may even not succeed at all because of it. Let alone if we consider that the data
buffer should be in the DMA region of that particular device, which for some devices
may not even be the entire area of physical memory, but just its subsection. For example
devices with a 32-bit (or less) DMA controller on a 64-bit system with more than 4 GB
of physical system memory.

2.2 Dynamic Buffers

The one thing, in which the Q-Buf engine even has a slight advantage over the true
hard-real-time approach is the fact, that it is allowed to allocate new buffers even after
initialization and while the transfer is running.

The defining quality of a hard-real-time operating system is that it guarantees the
maximal response time to external events (that means even in the worst case scenario).
Simply put, if you have a code that is servicing some external event, let’s say an interrupt,

1Or more. The page can be as much as 4 MB in size depending on hardware and system configuration.
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and you run that code as a real-time thread, then the real-time OS guarantees (and this
word is essential) you that it would be scheduled to run within certain very short and
well defined period of time from the point where the interrupt occured in time, no matter
what the rest of the system does at the moment or is just about to do.

However, that comes at a price. The real-time threads are very limited in what are
they allowed to do (at least in the RTLinux, but other real-time OSes have it similarly).
One of the major restrictions is, that a real-time thread can not allocate new memory
while it is running. Only during the initialization of that thread.

The reason for that is that it is a non-deterministic operation. System needs to run
through the page tables and find an appropriate number of free physical pages which it
then maps into the virtual space of that thread. That by itself may take some time, if
there is a lot of pages and high memory fragmentation. But when there is not enough
physical memory available, system has to move some pages into a swap space, suspend
the thread, wait until the transfer is done, and then acquire those pages that have been
freed that way. This is totally unacceptable to be done in a real-time thread, since it is
not possible to predict in advacnce how long shall that take, and it may take a lot.

This results in the necessity to preallocate all the buffers that the real-time thread is
going to use for data transfer before the thread is launched and there can be no more
added later. If it then turns out that the preallocated buffers are insufficient because the
application that does the processing fails to catch up (perhaps because of the hard drive
where the data are stored or for whatever other reason), you may possibly loose data.?
Problem is to determine how many buffers are going to be necessary. If we preallocate
too little, we loose data. If we preallocate too much, we may have blocked too much of
the physical memory and that may slow down the whole system significantly.

In standard time-sharing OS, we don’t have this problem. We can allocate as much
as we want to and almost any time we want to. So we use it. But to prevent loosing data
for the same reason why real-time thread cannot allocate buffers, we try to preallocate.
The Q-Buf engine launches another parallel thread, which allocates several buffers when
there is less than some threshold empty buffers available. Both the threshold and the
amount of preallocated buffers at a time can be preset. As this runs in parallel, it can do
the dirty job for the main thread without delaying it and though increasing the chance
of loosing data. Also the higher the threshold is set, the more time the thread has to
preallocate the buffers before they run out.

Buffers that the Q-Buf engine allocates this way we refer to as dynamic buffers and
they receive special treatment. These buffers can compensate for a lot of throubles that
the driver of the device we are talking about might otherwise have. We restrict the
amount of physical memory that the buffers can occupy all together to prevent system
crashdown by running completely out of physical memory.

2.3 Buffer Queues

Buffers are organized in buffer queues. Each buffer queue is implemented by a standard
doubly-linked list with a sentinel node. Every buffer that is put to active duty has to be

2Though this situation should also be handled by a real-time thread to be guaranteed to make it in
time. But that also brings in other restrictions.
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linked in exactly one buffer queue at a time depending on its current status.

2.3.1 Empty Static Buffer Queue

Empty Static buffer queue holds the so called static buffers when they are not used.
Static buffers are the buffers that are allocated at the time when the Q-Buf engine is
initialized for the specific device. These buffers live in the system for as long as the
device exists. They do the most of the work. If an empty buffer is needed, static buffer
is always preferred to the dynamic one.

2.3.2 Empty Dynamic Buffer Queue

Empty Dynamic buffer queue contains all the dynamic buffers when they are not used.
Unlike Empty Static buffer queue, this buffer queue is initialized empty and is populated
with buffers only when there is not enough buffers in the system to do the job. All the
dynamic buffers in this queue live only as long as the device is opened by at least one
application. As soon as the device is closed, all the dynamic buffers are released.

Reason for this behaviour is in that we do not want to block the memory occupied
by the dynamic buffers for longer than necessary, but on the other hand when at some
point more buffers were necessary, there is a good chance, that while the transfer is
still running, those buffers shall be needed again. Releasing the dynamic buffers after
the device is closed seems to be a reasonable compromise between memory usage and
complexity of the mechanism that handles the living period of the dynamic buffers.

If this prooves to be insufficient, other methods may be introduced. Such as for in-
stance checking the time from the last usage of a dynamic buffer. If one would not be
used longer than some threshold period, it shall be freed. This would be even better
with respect to the memory consumption, but it has an unnecessary and not completely
insignificant processing overhead, which is the reason why it is currently not used. How-
ever, at least for the moment, the currently used method seems to be sufficient for the
task.

2.3.3 Link Buffer Queue

Link buffer queue contains the buffers that are currently transferring data to or from
the device or those that are scheduled for the transfer by the system already. While the
transfer is running, this buffer queue must never get empty. If it does then it means that
either there is not enough empty buffers available to handle the incoming data (in case
of data reception) or the application is unable to deliver data as quickly as needed (in
case of data transmission). Either way this means trouble, either we loose data or the
transmitted stream will have discontinuities.

2.3.4 Full Buffer Queue

Buffers in the Full buffer queue are filled with data and are waiting for further processing.
Either they can go for transfer in case of transmitting direction, or to user application in
case of receiving direction.
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2.3.5 Processed Buffer Queue

Processed buffer queue holds buffers that are currently directly or indirectly mapped to
the user.

2.4 Offsets

Initially buffers were meant to be mapped into user-space directly one by one. Nontheless,
Preliminary tests indicated that this would cause very frequent switching between user-
space and kernel-space, and thus, bring a significant overhead delaying the user-space
processing. The smaller the buffers the higher the overhead. But we should not have
very big buffers if we are to pursue the data in something close to real time.? This effect
was observed when dealing with the streaming DAKEL DTR device.

To make things more flexible, a structure called offset was introduced to the process.
This structure is used to memory map the data buffers into the user-space and it can
contain and thus map more buffers at once. The number of buffers is limited by some
upper threshold, which can again be preset, and the consideration on the correct value of
this threshold should account for the size of each buffer and the data rate of the device.

The main idea behind this was to let the amount of data be determined by the time
when the user-space application asks for it. If the processing of the data does not take too
much time relative to the acquired data flow, then the application can allow to ask for the
data more often and it gets just few buffers each time, because there would be no more
available at the time. However when the processing takes more time either regularly or
occasionally due to some external unexpected delays, the time between subsequent data
requests from the user-space application would be relatively long and the driver may
accumulate more buffers in that period, so the application would get more of them* at
one request, so that the data are processed quicker.

Buffers within one offset are mapped at the same time, which also means that they are
released at the same time as well. Until all of the data are processed, all buffers within
the offset remain mapped, and though, occupied. That is also necessary to account for.

Before the buffers within an offset are mapped into the user-space, the data areas of
all the contained buffers are concatenated together and can be sliced by the driver into
sparse subblocks. The application is then provided with a map of the areas where the
data are. The advantage of this approach is that when the data areas are filled completely
with acquired data for each buffer, the application sees it as one continuous block of data.
But when that is not true for some reason, the application knows where the data can be
found, but it has to be aware of that fact and not just blindly read everything.

2.4.1 Offset Queues

All offsets are also dynamically allocated resources, that are stored in special offset queues.
There are just two of them. One for the offsets that are currently in use® and one for

3In this case not refering to the real-time OS, but rather to actual human sensed perspective of
watching the data as they are received, which is usually desired.

4Up to the upper threshold, of course.

5Meaning that they contain buffers and provide a user-space mapping.
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the offsets that are currently unused. Each offset structure has its defined offset in the
device-space® from which it can then be mapped into the user-space memory.

2.5 Application Interface

To make the usage of a device that is using the Q-Buf engine simpler, there are two
userspace interfaces that can be used to handle the data.

First there is the mmap(2) interface to fully use the potencial of the Q-Buf engine.
This interface allows to directly access the DMA buffers of the device. However to
know where to map them from and how the data are organized within these areas, the
appliaction has to use the special ioctl(2) call with the IOCTL_.MMAP command for the
device prior to the mmap(2) to get the specific information. It is a bit more complicated
to deal with it, but on the other hand, it is the most effective way, since there is no
unnecessary overhead of copying the data in the kernel-space and that may be significant,
since there can be great amounts of data transferred.

To let the device be operated easily perhaps by common applications and system
commands (like ep(1), dd(1), etc.) astandard read(2)/write(2) interface was also added to
the Q-Buf interface. But the luxury of usage by the common applications and continuous
data stream is paid by the possibly significant overhead of another copy from the buffers
of the Q-Buf engine to the user-space buffers of the application.

3 Conclusion

The described Q-Buf engine seems to fulfill the expectations and it makes the servicing
of the DAKEL’s DTR devices and the PCI-9812 DAQ card for project INDECS possible
even without the hard-real-time OS. The first case is already being successfully used in
the real applications of physics for quite some time. The latter case is still in early testing,
but the preliminary results look very promissing.
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Abstract. In order to investigate effects of the dynamic capillary pressure-saturation relationship
used in the modelling of flow in porous medium with material discontinuities, a one-dimensional
fully implicit numerical scheme is proposed and its validity is discussed by means of semi-
analytical solutions developed by McWhorter and Sunada and by the authors. The numerical
scheme is used to simulate experimental procedure using the measured dataset for the sand
and fluid properties. Results of the simulation using different models for dynamic effect term
in capillary pressure - saturation relationship are presented and discussed.

Abstrakt. V ¢lanku je prezentovan jednorozmérny model dvoufazového nemisivého a nestlacitel-
ného proudéni ktery je pouzit na zkouméni vlivu dynamického efektu pro model kapilarniho
tlaku v zéavislosti na saturaci v poréznim prostiedi. Navrzené numerické schéma je plné implic-
itni v Case a je porovnano se semi-analytickym feSsenim McWhortera a Sunady. Takto ovéfeny
numericky model je pouzit k simulaci laboratornich experimentti s cilem posoudit vliv riiznych
modell pro koeficient dynamického efektu na feSeni jednorozmérné tlohy.

1 Background

This manuscript focuses on the dynamic phenomena in the capillary pressure - saturation
relationship that has been examined in various papers in the past decades. The main ob-
jective is to propose a numerical scheme that implements the dynamic capillary pressure
- saturation relationship for heterogeneous porous media.

Fundamental constitutive quantities used in modelling of flow in porous media are
described in the following subsections. Thorough definitions, descriptions, and examples
can be found in [7], [17], [1], [16], or [2].

1.1 Wettability

As two immiscible phases are present in the porous media, a meniscus of fluid-fluid
interface is formed as a result of the presence of the solid phase (sand grains). The
interaction between adhesive and cohesive forces within the fluids leads to the specific
angle 9 between the solid surface and the fluid-fluid interface. The wettability of fluid is
then determined as:
¥ =0 Ve (0,3) V> 5
completely wetting, partially wetting, non-wetting.
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1.2 Saturation

The fluid distribution in immiscible multiphase flow in porous media is described by
the saturation S, [—|. It indicates the volumetric portion of void space within the pores
occupied by the fluid phase «, hence, S, is always between 0 and 1. The sum of saturations
S, of all fluids present in the porous media is 1, i.e., > .S, = 1.

Since not all volume of the fluid phase can be displgced in the multiphase flow from a
porous medium due to hysteretic effects, the a-phase residual saturation quantity Sy, [—|
is introduced. It expresses the minimal saturation of the phase o that will retain in the
porous medium due to adhesion effects with respect to the solid matrix. Therefore, the
effective saturation S¢ [—| that describes only volumetric portions of displaceable fluid
phases is introduced as

Se Sa - Sra

cTIo5 8, (1)
E

1.3 Capillary pressure

Following the standard definitions in literature, the capillary pressure p. [M L™'] on the
pore scale is defined as the difference between the non-wetting phase pressure p,, [M L]
and the wetting phase pressure p,, [M L], i.e.,

De = P — Du- (2)

The capillary pressure function has been commonly considered as a function of wetting
phase saturation only and it has been widely used in model equations in literature, see
for instance [20], [11], [8], or [9].

1.4 Dynamic capillary pressure

The classical capillary pressure - saturation relationships such as [4] or [23] has been used
in almost all mathematical studies on modelling of porous media flow in the past decades.
Recently, theoretical studies [15], [14], [6], [12], [13], [3], as well as the empirical approach
in [22] have produced new aspects in the two-phase flow theories. The most important
result is that the classical capillary pressure - saturation relationship holds only in the
state of thermodynamic equilibrium. Therefore, the classical approach cannot be used
in the modelling of capillarity when the fluid content is in motion. Consequently, a new
capillary pressure - saturation relationship is proposed in the following form:

0S,
Pe = Pn — Pw :piq_Tﬁa (3)

where p¢? is the capillary pressure - saturation relationship in equilibrium and 7 [M L™'T~1],
the dynamic effect coefficient, is a material property of the system.
Early in 1978, Stauffer [22] proposed a linear dependence in (3) and proposed the

following definition of 7:
2
aSﬂwq) DPa
- e 4
o= Sl (2] (@




Implicit Numerical Scheme for Modelling Dynamic Effect in Capillary Pressure 31

where ag = 0.1 [—] denotes a scaling parameter, p,, [M L~'T~1] is the wetting phase dy-
namic viscosity, ® [—] is the porosity of the material, K [L?] is the intrinsic permeability,
pw [ML73] is the wetting phase density and g [LT?] is the gravitational acceleration
constant. Both A and p, are the Brooks and Corey parameters ([4]) that can be experi-
mentally estimated. Thus, the coefficient 75 can be calculated for a given porous medium
and wetting fluid.

The Stauffer model for the dynamic effect coefficient 7 was obtained by correlating
experimental data. The values of g vary between 7¢ = 2.7-10* Pas and 74 = 7.7-10* Pas,
see [17, page 27]. However, other researchers suggest that the magnitude of 7 should be
in the order of 10 — 10 Pas, [5], or, on the other hand, it should be also in the order
of 10* — 10% Pa s as estimated in [14].

Recently, a more general nonlinear dependence 7 = 7(95,,) is assumed to be more
relevant in modelling of realistic two-phase flow displacement [21]. In this manuscript,
both constant and linear model will be used in numerical simulations.

2 Mathematical model

A mathematical model describing the two-phase flow in a onedimensional domain is
presented in this section. The aim is to investigate how the inclusion of the dynamic
capillary pressure relationship (3) instead of the classical relationships in thermodynamic
equilibrium influences solution of the two-phase flow system of equations (5).

2.1 Governing equations

The governing two-phase flow equations in one-dimensional domain [0, L] are given by
the p,, — S, formulation [1]:

a8, 0 [K 0
d—= = — _kra a_ Ww 6an c) = Pa ) 5
o a:c[ - (ax(p + Oanpe) — P g)] (5)
S, Saturation [—], Po  Pressure [ML™'T72|
po  Density [ML73], fo  Dynamic viscosity [ML™1T71],
g  Gravitational acceleration [LT72], ®  Porosity [—],
K Intrinsic conductivity [L?], k.o ~Relative permeability [—],

where Sy, + S, = 1, 04, is the Kronecker symbol, and o € {w,n}. The wetting fluid (wa-
ter) and non-wetting (air, NAPL!) fluid are indexed by w and n, respectively. The initial
and boundary conditions for (5) are given separatedly for each experimental problem.

2.2 Discrete problem

A standard finite difference discretization technique is used in order to determine approxi-
mate discrete solution S¥ ;, pf, ; of the problem (5), generally defined as fF = f(kAt,iAz),
where i =0,1,...,m,mAz=L,and k=0,1,.. ..

!Non-Aqueous Phase Liquid
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Since the nonlinear problem (5) involves the dynamic capillary pressure function de-
fined in (3) that includes time derivative of S,,, an implicit numerical scheme is proposed
in the following form:

S(I;ng . Ség” ukJrl _ ukJrl

o, a,i—1
— %t o 6
At Az ’ (6)

where o € {w,n} and the discrete Darcy velocities u, are given as follows

k+1 k+1 k+1

k+1
k+1 k+1 i+l X i+l ,
uo:g :__akroz(soz,J1erz1))<\wZ AI b +6om L AI = _pa.€>> (7)
Ad,
Sk+1 . Sk
k+1 k+1 n,t n,i

and S S,JL;IW is the saturation taken from the upwind direction with respect to gradient of

the phase potential ¢, i.e.

Skity i Ay > 0.
Sk—i—l _
o,Upw

SKEL i Ad, < 0.

The numerical scheme is solved using the Newton-Raphson iteration method. The
Jacobi matrix used in the Newton iteration method is block tridiagonal.

3 Numerical experiments

3.1 Validation of numerical scheme

The numerical scheme (6) is validated using the McWhorter and Sunada semi-analytical
solution [18], [19], [24], [9], and [10]. A special configuration of the problem (5) is assumed
in order to obtain such a semi-analytical solution. Neither gravity nor dynamic effect is
considered and the inflow boundary condition at x = 0 consists of a time-dependent input
flux u,(t,0) = A/v/t, [7], [9], and [10]..

In Figure 1, the numerical solution is compared to the semi-analytical solution ob-
tained for the same sand and fluid properties. As the numerical grid gets finer, the
agreement of the numerical solution with respect to the semi-analytical solution is ap-
parent. However, estimation of the error of convergence (EOC) cannot be used in this
case because the semi-analytical solution cannot be obtained with a sufficient precison
for finer grids Hence, only graphical representations are relevant.

3.2 Column experiment

The dynamic effect coefficient 7 = 7(95,) was estimated as a result of a laboratory
experiment held in CESEP, Colorado School of Mines for a given sand. In this section,
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Figure 1: Numerical solution and semi-analytical solution at time ¢ = 1000 s.

the experimental setup is approximated by the one-dimensional problem (5) and the
experimental dataset is used in numerical simulations.

The laboratory experiment consists of a single, vertically placed, 10 cm long tube
filled with sand. Initially, the column is flushed with water such that no air phase is
present inside. Then, a series of drainage and imbibition experiments is proceeded and
values of the capillary pressure and the saturation of air are measured by probes in the
middle of the column. As a result, two models of 7 = 7(5,,) were estimated : constant
7(Sy) = C and linear 7(S,,) = C(1 — S,).

The numerical scheme is used to simulate drainage of the column with exponentially
decreasing outflow of water at = 10 ¢m for three different models for capillary pressure:
static capillary pressure (7 = 0), constant, and then linear model for dynamic capillary
pressure. The numerical solutions plotted versus time in the middle of the column are
shown in Figure (2).

As expected, the saturation profiles does not exhibit large differences between the
models of dynamic effect term. On the contrary, the capillary pressure temporal profile
for the constant model for dynamic effect term has completly different history than that
of static capillary pressure or linear model for dynamic effect term. As a result of this
observation, the constant model for dynamic effect gives significantly different results with
respect to temporal monotonicity than the linear model or the static capillary pressure.



34 R. Fucik

0.4r 7, b

0.3

0.2r : b

Air saturation Sn -]

1 — = 0
constant
d = = =lineart

1

0 500 1000 1500 2000 2500 3000
t[s]

5000
4800} -7

4600} - -

Cc

4400 -
4200 -

4000 -

Capillary pressure p_[Pa]

3800 ! :
| —1=0

3600 /= constant T

= = =lineart
Il

3400

0 500 1000 1500 2000 2500 3000
t[s]

Figure 2: Numerical solutions of the column drainage simulation. Values of saturation
and capillary pressure in the middle of the column are plotted versus time.
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4 Conclusion and future work

This manuscript presents recently obtained numerical simulations using the non-classical
dynamic capillary pressure in simulating two-phase incompressible flow in porous medium.
Two main models for dynamic effect term 7 = 7(.S,,) were used in order to determine
their influence on a two-phase flow drainage problem.

As a result of the numerical simulation, the temporal profile of capillary pressure in
the middle of the column is significantly different for the constant model of 7 than for the
linear model of 7 or the static capillary pressure, but the differences between temporal
profiles of air saturation were small.

These results indicate, that the dynamic effect may not be so important in drainage
problems in homogeneous porous media. On the other hand, it may be of great im-
portance in the highly heterogeneous media where the capillarity governs flow through
material interfaces.
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Abstract. This paper describes a method for seamless enlargement or editing of difficult colour
textures containing both regular periodic and stochastic components. Such textures cannot be
modeled using neither simple tiling nor using purely stochastic models. However these tex-
tures are often required for realistic appearance visualization. The principle of our near-regular
texture synthesis and editing method is to automatically recognize and separate periodic and
random components of the corresponding texture. The regular texture part is modeled us-
ing the roller method, while the random part is synthesized from its estimated exceptionally
efficient Markov random field based representation. Both independently enlarged texture com-
ponents from the original measured texture are combined in the resulting synthetic near-regular
texture. In the editing application both enlarged texture components can be from different mea-
surements. The presented texture synthesis method allows large texture compression and it is
simultaneously extremely fast due to complete separation of the analytical step of the algo-
rithm from the texture synthesis part. The method is universal and easily viable in a graphical
hardware for purpose of real-time rendering of any type of near-regular static textures.

Abstrakt. Clanek popisuje metodu pro zvétsovani nebo editaci slozitych barevnych textur,
které obsahuji pravidelnou periodickou i stochastickou slozku. Tyto textury nelze modelovat
ani jednoduchym dlazdicovanim, ani ¢isté stochastickymi modely. Ovsem jsou ¢asto potieba
pro realistickou visualizaci. Princip popisované metody pro syntézu a editaci textur je zalozen
na automatickém rozpoznani a oddéleni periodické a nahodné slozky textury. Pravidelna ¢ast je
pak modelovana metodou Roller, zatimco ndhodna slozka modelem vyuzivajicim reprezentaci
pomoci Markovskych ndhodnych poli. Obé nezavisle zvétsené slozky textury jsou pak zkom-
binovany ve vyslednou syntetickou texturu. Pri aplikacich editace textury lze zvétsené slozky
kombinovat z riiznych texturnich méreni. Prezentovanad metoda pro syntézu textur umoznuje
vysokou kompresi a soucesné je extrémné rychld, a to diky kompletni separaci analytické casti
algoritmu od ¢asti syntézy. Metoda je univerzalni a je mozné ji implementovat v grafickém hard-
ware za Ucelem renderingu libovolnych statickych periodicko-stochastickych textur v realném
case.

1 Introduction

Physically correct virtual models require object surfaces covered with realistic nature-
like colour textures to enhance realism in virtual scenes. To make virtual worlds realistic
detailed scene models must be built. Satisfactory models require not only complex 3D
shapes accorded with the captured scene, but also lifelike colour and texture. This will
increase significantly the realism of the synthetic scene generated. Textures provide useful
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cues to a subject navigating in such a VR environment, and they also aid in the accurate
detailed reconstruction of the environment.

We define near-regular textures as textures containing global, possibly imperfect, reg-
ular structures as well as irregular stochastic structures simultaneously. This is more
ambitious definition than to view [8] a near-regular textures as a statistical distortion of
a regular texture. Our definition comprises types I and II from the near-regular texture
categorization [8] while their type III is stochastic texture. Near regular textures are
difficult to synthesize, however, these textures are ubiquitous in man-made environments
such as buildings, wallpapers, floors, tiles, fabric but even some fully natural textures such
as honeycomb, sand dunes or waves belong to this texture category. These textures can
be either smooth or rough (also referred as the bidirectional texture function - BTF [3]).
The rough textures which have rugged surfaces do not obey the Lambert law and their
reflectance is illumination and view angle dependent. Both types of such near-regular
textures occur in virtual scenes models.

The purpose of any synthetic texture is to reproduce a given digitized texture image
so that ideally both natural and synthetic texture will be visually indiscernible. However
modeling of an existing measured real texture is a very challenging and difficult task,
due to unlimited variety of possible surfaces, illumination and viewing conditions simul-
taneously with the strong discriminative functionality of the human visual system. The
related texture modeling approaches may be divided primarily into intelligent sampling
and model-based-analysis and synthesis, but no ideal method for texture synthesis exists.
Each of the existing approaches or texture models has its advantages and limitations.

Neither model-based or simple sampling algorithm alone can satisfactorily solve the
difficult problem of near-regular texture modeling. Existing work [10, 7, 8, 12, 2, 9,
1, 11] usually tries to overcome this problem by user assisted modeling of the regular
structures and then relies on regular tiling. However Lin et al. [2] experimentally observed
that several of these general purpose sampling algorithms fail to preserve the structural
regularity on more than 40% of their tested regular textures.

The presented fully automatic method proposes to combine advantages of both basic
texture modeling approaches by factorizing a texture into factors that benefit best from
each of these two basic different modeling concepts. The principle of the method is to
separate regular and stochastic parts of the texture, to enlarge both parts separately and
to combine these results (texture enlargement) or results from several different textures
(texture editing) into the required resulting texture. The proposed solution is not only
fully automatic, very fast due to strict separation of the analytical and very efficient
synthesis steps, but it also allows significant data compression. Due to its stochastic
modeling it completely eliminates visible repetitions (contrary to all mentioned tiling
approaches) because there are never two identical tiles. Finally the method can be easily
used to near-regular texture editing by either combining texture parts from different
measurement or by changing stochastic model parameters.

The following section describes an automatic separation of the regular and stochastic
texture parts. Section 3 is devoted to the regular part modeling using our simple sampling
approach based on the repetition of a double toroidal tile carved from the original regular
part texture measurement, while the subsequent section 4 defines our fast Markov random
field model of the stochastic texture part. The overall algorithm results are reported in
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Figure 1: Presented method schema. the resulting toroidal tile.

the section 5, followed by conclusions in the last section.

2 Periodic and Non-Periodic Texture Separation

We can legitimately assume that the near-regular input textures have distinct amplitude
spectrum parts for both periodic and random components. Otherwise the method would
not be able to separate both texture parts. The overall schema of the method is illustrated
in Fig.1 and detailed in the corresponding following sections. Periodic and non-periodic
texture part are detected in the simplified monospectral texture space. The input colour
texture is spectrally transformed using the principal component analysis (PCA). Let the
digitized colour texture Y isindexed on a finite rectangular three-dimensional M x N xd
underlying lattice I, where M x N is the image size and d is the number of spectral bands
(i.e., d = 3 for usual colour textures). PCA is performed on data vectors Y, o, where the
multiindex r has two components r = [r1, 73], the first component is row and the second
one column index, respectively, the notation e has the meaning of all possible values of the
corresponding index. Then the periodic texture part is detected on the most informative
transformed monospectral factor (first principal component), which corresponds to the
largest eigenvalue.

2.1 Textural Periodicity Direction

Near-regular measured textures can have arbitrary periodicity directions (Fig.2), not
necessarily simple axis aligned periodicity. The periodicity in two directions is detected
from the spatial correlation field restricted with the help of Fourier amplitude spectrum
(Fig.2-upper right). The method finds two largest Fourier amplitude spectrum coefficients
provided that they do not represent parallel directions.

Tolerance sectors (Fig.2- bottom left, right), which accommodate for possible local-
ization imprecision of local amplitude spectra maxima, are specified and for all their
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Figure 4: Near regular texture Fourier ampli-
tude spectrum and its filtered ver-
sion for the upper (two leftmost im-

Figure 3: Near-regular measured textures ages) and the middle row textures
and their detected periodic parts. in Fig.3.

indices the corresponding spatial correlations are evaluated. Local spatial correlation
field maxima, larger than a threshold, are detected and the minimal periodicity max-
imum is selected. Detected periodicity (6"",6%") and its direction specify a rhomboid
which contains the largest periodic part from the input texture. The rhomboid is fur-
ther transformed to the rectangle to make periodic texture part detection as precisely as
possible.

2.2 Amplitude Spectrum Filter

The texture cutout is re-sampled to the lattice size of power two required by the fast
Fourier transformation based filter. Let A,., is the Fourier amplitude spectrum max-
imum coefficient detected from the Fourier amplitude spectrum (Fig.4-1.,3. leftmost
images). The filter removes such coefficients, for which any of the following conditions
(1), (2) holds (Fig.4-2.,4.).

A, < kApax (1)
A ¢ M ANTEL,, (2)

where M is a set of amplitude spectrum local maxima, k € (0;1) is a parameter and
I,, is a contextual neighbourhood (we use the hierarchical neighbourhood of the first or
the second order) of such a local maximum. Applying the inverse Fourier transformation
and re-sampling the filtered tile back to the original size we get the filtered cutout.

2.3 Periodic Structure Separation

The filtered tile is binarized using a threshold ¢, € (0;1). One label determines the
periodic texture part and the remaining one the stochastic part. To find the labels corre-
spondence to both periodical and non-periodical parts of the original texture Fig.3, the
binary image is tested for periodicity 6", 6. The majority label complying to the
periodicity test denotes the original texture periodic sites (Fig.3-right). When both peri-
odic and stochastic parts are separated they can be independently modeled and enlarged
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Figure 6: The optimal tile

Figure 5: The double toroidal tile modeling principle - upper cuts in horizontal
row input texture and toroidal tile, bottom row tex- and vertical di-
ture generation and the result, respectively. rection.

to any required size as it is detailed in two following sections. The required near-regular
texture is simple composite of both synthetic parts.

3 Periodic Texture Modeling

The regular part of the texture is enlarged using a simplification of our previously pub-
lished [5] method. The method selects double toroidal tiles as small as possible to com-
press the original measurements. The method starts with the minimal tile size detection
which is limited by the size of texture measurements, the number of toroidal tiles we are
looking for (n) and the sample spatial frequency content.

The optimal cuts for both the horizontal and vertical edge is searched using the
dynamic programming method. Alternatively we can use some other suboptimal search
such as the A* algorithm if necessary to speed up also the analytical part of the method.
The combination of both optimal vertical and horizontal cuts creates the toroidal tile as
is demonstrated on the Fig.6.

Some textures with dominant irregular structures cannot be modeled by simple one
tile repetition without clearly visible and visually disturbing regularly repeated effects.
These textures are modeled by using multiple toroidal tiles which have the same border
but differ in their interior.

Finally, the enhancement of any required periodic texture is simple repetition of either
single double toroidal tile or randomly alternating repetition of several double toroidal
tiles in both directions until the required texture is generated Fig.7.

4 Random Texture modeling

The random part of a texture is synthesized from the original input texture from where
the detected periodic component was removed as described in section 2. If the stochastic
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texture patches are too small (few hundred pixels area) to reliably learn the random field
model statistics, we replace occluded stochastic texture areas by using a modification of
the image quilting algorithm [4] (see Fig.8-left).

The random part of the texture is synthesized using an adaptive probabilistic spatial
model, a multiresolution 3D causal autoregressive model (CAR) [6], which is an excep-
tionally efficient type from the Markov random field (MRF) family of models. The CAR
model allows extreme compression (few tens of parameters to be stored only) and can
be evaluated directly in procedural form to seamlessly fill an infinite texture space. An
analyzed texture is decomposed into multiple resolutions factors using Laplacian pyramid
and the intermediary Gaussian pyramid [6] which is a sequence of images in which each
one is a low-pass down-sampled version of its predecessor. The Laplacian pyramid con-
tains band-pass components and provides a good approximation to the Laplacian of the
Gaussian kernel. It can be constructed by differentiate single Gaussian pyramid layers.

The CAR model synthesis is very simple and the CAR random field can be directly
generated from the model equation using a multivariate Gaussian generator. The fine-
resolution synthetic texture is obtained from the pyramid collapse procedure (Fig.8).
The CAR model offers huge compression ration because only few parameters for each
texture have to be stored or transmitted. The resulting near-regular texture is simple
combination of both regular and stochastic synthesized factors.

Figure 7: Periodic texture part synthesis Figure 8: Stochastic texture part synthesis
(right). (right).
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5 Results

Figure 9: Near-regular textures and their = Figure 10: Near-regular textures and their
synthesis (right). synthesis (right).

Figure 11: Near-regular texture with two
types of regular structures
(bricks and lattice - edited  Figure 12: Near-regular texture editing. Input
from two separate measure- textures (upper row) and resulting
ments) and its synthesis. lattice and edited textures.

We have tested the presented method on near-regular textures from our extensive
texture database, which currently contains over 1000 colour textures. Tested near-regular
textures were either man-made such as three textures on Fig.10 or combinations of man-
made structures with natural background (Fig.9) such as grass, wood, plants, snow, sand,
etc. Several of these results are demonstrated in the following images Figs.9,10. Both part
of modeling were separately successfully tested on hundreds of colour or BTF textures
with results reported elsewhere ([5]). Such unusually extensive testing was possible due
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to simplicity and efficiency of both crucial parts of the algorithm and it allowed us to
get insight into the algorithm properties. The method is even capable to synthesize some
near-regular textures combined from two distinctive types of regular structures Figs.11,12
provided they can be adequately separated in the Fourier domain.

Resulting textures are mostly surprisingly good for such an automatic and fast algo-
rithm. For example our results on the text texture ([5]) are indistinguishable (see [4])
from results on the same texture using much more complicated and slower image quilt-
ing algorithm [4]. Obviously there is no optimal texture modeling method and also the
presented method fails on some textures. These are near-regular textures with similar
amplitude spectrum parts for both periodic and random components, where our spectrum
filter cannot separate both texture types without visible errors.

6 Conclusions

The test results of our method on available near-regular texture data are visually in-
discernible from the measured textures for most of the tested colour textures. The test
results of the method on our natural near-regular texture collection are encouraging.
The presented method is extremely fast due to strict separation of the analytical and
very efficient synthesis steps and fully automatic. The regular part modeling is easily
implementable even in the graphical processing unit. The method offers larger compres-
sion ratio than alternative tiling methods for transmission or storing texture information
due to the periodic part modeling approach. The MRF based random part model can
reach itself a huge compression ratio, hence its storage requirements are negligible, and
simultaneously eliminates visible repetitions typical for tiling approaches. The overall
method is very fast - it has negligible computation complexity for the periodic model and
exceptionally efficient computational model for the random part as well. The method’s
extension for alternative texture types, such as BTF textures or some other spatial data
such as the reflectance models parametric spaces is straightforward. Finally the method
can be easily used to near-regular texture editing by either combining texture parts from
different measurement or by changing stochastic model parameters.
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Abstract. The paper presents a scheme for estimation of spatio-temporal evolution of a quan-
tity with unknown model error. Model error is estimated on basis of measured—minus—observed
residuals evaluated upon measured and modeled values. Methods of Bayesian filtering are ap-
plied to the problem. The main contribution of this paper is application of general marginalized
particle filter algorithm to the linear—Gaussian problem with unknown model error covariance
structure. Methodology is demonstrated on the problem of modeling of spatio—temporal evolu-
tion of groundshine—dose from radionuclides deposited on terrain in long—time horizon.

Abstrakt. Prispévek se zabyva asimilaci casového vyvoje prostoroveé rozlozené veli¢iny s méfeni-
mi. Pokud je feSeny problém chapan jako linedrni s gaussovskym rozdélenim sumu, miize byt za
predpokladu znalosti kovarianéni struktury chyb modelu a méfeni resen Kalmanovym filtrem.
Pokud kovarian¢ni strukturu chyb modelu nezname, musi byt nejprve odhadnuta. V ptispévku
je popsana metodika aplikace marginalizovaného particle filtru na linedrné-Gaussovské prob-
lémy s neznamou kovarian¢ni strukturou, ktera je odhadovana pomoci sekvenénich M—C metod.
Metodika je prezentovana na odhadu vyvoje davky z depozice radionuklidd na terénu.

1 Introduction

The task of estimation of time evolution of a spatially distributed quantity is widely
applied in different branches of “Earth sciences” such as meteorology and oceanography
[12]. During the last years, there have arisen tendencies for application of an advanced
data assimilation algorithms also in the field of radiation protection [16], [19], [20]. It is
related to the renaissance of nuclear energy which can be observed. The application of
advanced statistical methods can increase reliability of consequence predictions of possible
releases from nuclear power—plants. Their reliability is in the field of radiation protection
mission—critical as the problem deals with the population health.

There were developeded several models for modeling of evolution of living environment
contamination for different release scenarios. The only connection with physical reality
are measurements with errors (sparse both in time and in space). In our work, we attempt
to make groundshine-dose model predictions more reliable in a way of adjusting them
towards measurements incoming from terrain. This process is called data assimilation

*This work has been supported by the grant project GACR No. 102/07/1596, which is funded by the
Grant Agency of the Czech Republic.
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[12]. Its principle consists in combining of the information provided by the model with the
measured data. Exploiting information on sources of uncertainty, we are able to produce
improved estimate of the true situation on terrain.

If the problem is treated as linear—Gaussian, it can be successfully solved via Kalman
filter (KF) [11]. The unavoidable condition for utilization of Kalman filter is knowledge
of model error covariance structure but in many cases it is unknown due to the problem
background. In this paper is presented methodology for application of the Kalman filter
to the problems where the model error covariance structure is unknown and has to be
estimated upon actual data before application of the filter. This results in marginalized
particle filter described in [22].

Model error covariance is represented by a covariance matrix. As the total number
of its elements is much higher the number of measurements, we can’t estimate all of
them. Simplified model error covariance structure parametrization based on idealized
assumptions is introduced. For finding the most plausible values of these parameters, the
similar approach as proposed in [3] or [15] based on modeled—minus—observed residuals
is used. Instead of maximum likelihood estimates, we use marginalized particle filter for
estimation of both the model error covariance parameters and groundshine—dose distri-
bution. The marginalized particle filter is a powerful combination of the particle filter
and the Kalman filter, which can be used when the underlying model contains a linear
substructure which is being subject to Gaussian noise.

The performance of this methodology is demonstrated on modeling of groundshine—
dose evolution in long-time horizon of several months [6]. As the problem is complex,
the groudshine—dose evolution model is an idealized approximation of the true physical
process. Calculations are performed on a subset of polar network around the source of
pollution. The model error covariance parametrization proposed here follows the physical
background of the problem.

The outline of this paper is as follows. Section 2 briefly discusses Bayesian filtering.
Kalman filter, particle filter and marginalized particle filter are successively presented
there. In Section 3, the assimilation algorithm is proposed and the problem of model error
covariance estimation is described. Application of the algorithm on modeling of long—
term evolution of groundshine-dose from radionuclide deposition on terrain is presented
in Section 4. Specific model error covariance parametrization suitable for the problem
is developed there. In Section 5, experimental results with simulated measurements are
demonstrated and the conclusion is given.

2 Bayesian filtering

Bayesian approach to filtering is applicable to all linear or nonlinear stochastic systems
[7], [13]. Let the stochastic system be defined by discrete-time state-space transition
equation (1) and observation equation (2)

x, = f(xi1) + by (1)

Y, = h(z) + & (2)
Here, ¢ is time index, a; is unobservable system state vector, b; is the additive dynamic
noise vector. Vector y, is the measurement vector which provides us indirect information
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about the system state and €, its noise. Both the densities of noise terms are assumed
to be independent and known. Functions f(-) and h(-) are generally non-linear. State
transition function f(-) propagates the prior state to the current one. Forward observa-
tion operator h(-) transforms vectors from state—space to the measurement space, thus
constitutes relation of the actual measurements to the current state.

The goal is to acquire posterior density p(x;|Y ;) where Y, = {y,, ..., y,} are available
measurements. In the following text, the state process {;} is assumed to be Markovian
of the first order. It means that given the present state, future states are independent of
the past states:

Pl @iy, o, ..., x0) = p(ai|Ti_1) (3)

Realization of the process at time ¢ contains all information about the past, which is
necessary in order to calculate the future behavior of the process.

Bayesian estimation procedure consists of two recursively repeated step. The first
step transits the state estimate to the next time step according to the probability density
function (PDF) p(x;|@;_1). This step is called time update (4). In the second step called
data update (5), the information provided by actual measurements vy, is included into
the current estimate given by the PDF p(x;|Y;_1).

p(@e| Y1) = /p(wt|wt—l)p(wt—l‘Yt—l)dwt—l (4)

p(wt|Yt> _ p(yt‘wt>p(wt|Yt—1) (5)
S p(yilz)p(@] Y1) d,
The state evolution is initialized by a probability density function p(a|Y _1) = p(xo)
which represents all the prior information on the problem and also our subjective judg-
ments. This density is often called background—field or just the prior.
If both the measurement density p(y,|xz;) and the state transition density p(a;|x:—1)
are parametric, the problem can be solved analytically. Provided that the system is
linear—Gaussian, the integrals (4, 5) lead to KF recursion.

2.1 Kalman filter

In the following text N(u, Q) is assumed to be a Gaussian PDF with mean value g and a
covariance matrix ). KF is simple implementation of the Bayesian filter and it provides
the optimal Bayesian solution. Its usage is limited to the case of linear estimation with
the Gaussian noise where

p(xi|zi 1) = N(Mz 1, Q,) (6)
p(yl®:) = N(Hzy, R;) (7)

Matrices M and H are matrices of linear (linearized) operators f(-) and h(-), respectively.
Matrices @ and R are known error covariance matrices of model error and measurement
error, respectively. Under these assumptions (4, 5) lead to KF equations for time update
and data update steps [11]. The equations perform recursive update of the first two
moments of estimated Gaussian distribution p(x|Y’) = N(&, P) — the mean value & and
its covariance matrix P.
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2.2 Particle filter

In more general cases where analytical solution of integrals (4, 5) is not known, there are
their numerical approximations based on sequential Monte Carlo methods also known as
particle filters.

Particle filter (PF) is more general implementation of Bayesian filter which can be
used to approximate the posterior density function for the state in non-linear and non—

Gaussian filtering problems [7]. It is based on recursive estimation of the PDF p(x:|Y)
which is represented as a set of M so called particles :cg) and its associated normalized
weights Q“t(Z) as {Q“§Z), xﬁ“}p:l,_, - The posterior PDF p(x;]Y;) can be approximated with

their help as p(x;|Y ).

1

M:

p(wt‘Yt) «’Bt|Yt wt - wt )7 (8)

=1

where §(-) is the Dirac J-function and wgi) are samples from approximated PDF. In (8),
all the weights cjt(l) are equal to ﬁ Our goal is usually to estimate the mean value of a
function defined on our approximated distribution FEj, v,)[g9(2:)]. The approximation

p(x|Y;) satisfies condition

Mlig_l E; (iBt\Yt)[g(wt)] = Ep(wt|Yt)[g(wt)]> (9)

where “3 means almost sure convergence and g(ax;) is arbitrary function bounded for
support Q = {@|p(x:|Y ;) > 0}.

In real cases we are not able to sample directly from p(z;|Y;) but we are able to
evaluate it in discrete points (at least up to proportionality). We can draw independent
samples " from a chosen known proposal distribution (importance function) q(x;|Y)
and use them for approximating of p(x;|Y;). The estimated density p(x:|Y), its ap-
proximation p(x;|Y ;) and importance function ¢(x;|Y,;) are related as follows

p(wt‘Yt)
Y,) =———= Y, ~
p($t| t) q(wt|Yt>q($t‘ t)
) p(z"|Y) 1 (i)
~ p(x|Y 25.7—533—:1: , 10
( t| t) — q(wgz)‘Yt)M ( t t ) ( )

where ZZ L0(xe — 2\") is an approximation of q(x;|Y;) since x\” are sampled from

) (%)
this PDF. If we denote qt(l) = Emf):iti 7, the estimated PDF can be approximated as
q t
Pl Yy) = Z% mt_wt))7 (11)

where qt = C]t /Z] 1qt , ZM i =1, cjt(i) > 0 are normalized weights. This nor-
malization will for finite M 1ntroduce a bias in the estimate. However, from the strong
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law of large numbers the estimate is asymptotically unbiased. This algorithm is called
sampling-importance-sampling (SIS).

If we choose the posterior PDF from the previous step as proposal distribution in the
current, we can via recursive evaluation of normalized weights perform Bayesian filtering.
In this case will weight update result in

a0 g p(y,le”) (12)
This algorithm also suffers from degeneracy problem, so we have to implement a resam-
pling algorithm, more in [4]. Resampling should eliminate particles with small weights and
multiply particles with large weights. After resampling all the weights are set to ﬁ If we

perform resampling in each step, the weights can be computed as q(i) = p(yt|w§i)). This
modification of SIS algorithm with resampling in each step is also known as sampling—
importance-resampling (SIR).

Disadvantage of this method is that we have to be able to generate random samples
from complicated distributions and this is for high dimensional problems computationally
prohibitive. The computational complexity rapidly increases along with the state—space
dimension.

2.3 Marginalized particle filter

When structure of the model (1, 2) allows analytical marginalization over a subset of
states, we can reduce the computational burden. Let’s consider factorization of the state
vector x, = [a:i azﬂT where ! is a subset of analytically tractable states and =7 is
the rest. Provided that the ! and x are conditionally independent, substitution of the

factorization into (8) and application of the chain rule gives
p(wtv Ly ‘Yt) (33“33?, Yt)p(wﬁYt)? (13)

where p(x!|z?,Y;) is analytically tractable and &7 is given by the particle filter. Assum-
ing that }, ~ N(&¢, Py) and to be governed by a linear model implies that p(x!|x},Y;) is
conditionally linear-Gaussian and can be computed via Kalman filter [23]. Substitution
of (8) into (13) for &} leads to

p@]Yy) ~ th P NN (@Y, PYY (14)

The joint PDF is estimated as a mixture of a parametric distribution of Gaussian type
and of a nonparametric one. The estimated PDF is represented by a weighted sum of
Gaussians, where each particle has a Gaussian distribution attached to it. This modifica-
tion of PF is called marginalized particle filter (MPF) and details on its implementation
can be found in [22], [23].

3 Assimilation procedure based on MPF

The unavoidable condition for application of Kalman filter is knowledge of model error
represented in (1) by the noise vetor b;. We assume {b;} to be the white noise process
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where b, ~ N(0,Q,). Matrix @, is corresponding covariance matrix. The value of Q
should reflect total (unknown) model error, which is in each step contribution to the
forecast error due to differences between the model and the true process. In KF [11],
forecast error covariance matrix P evolves as

Py, = Mt\tflptfl\tflMZ[t_l + Q, (15)

where M is matrix of linear (linearized) operator for the state transition from time ¢t—1 to
t. It is obvious that if @ is neglected, the predicted forecast error will be underestimated.
This could cause divergence from the true state (its good estimate) because smaller model
error will handicap the information provided by measurements.

We assume that the @ is unknown and attempt to estimate it in each assimilation
step. As the total number of elements of @ to be estimated is much higher than the
number of measurements, we can’t estimate all of them. Simplified covariance model
based on idealized assumptions has to be introduced.

Schematically, let the model error covariance matrix be approximated as a function
Q(O) : RUmO) _, gldim@).dim@)] of 5 parameter vector @, where RI™" is a space of real
matrices of dimension m X n.

Q, = Q:(0:) (16)
Function () has to be chosen properly in order to produce positive semi—definite symmetric
matrices which can be covariance matrices.

For finding the most plausible values of € a similar approach as proposed in [3],
[15] based on modeled-minus-observed residuals is used. Instead of maximum likelihood
estimates proposed there we use MPF introduced in Section 2. When the measurements
are available, we can evaluate residual vector v; = y, — H&,; having the same dimension
as the measurement vector. Covariance of v derived in [3] has the form

E[’U{U?] = HtPt|t,1H? + Rt = St (17)

We assume vy ~ N(0,S;). If we substitute (15) into (17) for P,;_; and use covariance
parametrization (16) of @, we obtain

S.(0) = H[M,P; 1, 1M +Q,(0)|H, + R, (18)

From (15) can be seen that the parametrization of model error covariance leads to
parametrization of forecast error covariance P. The most ?laumble value of parame—

ters are found in each time step via PF from likelihood p(v \O(Z N(0,S (6")) for
random parameter vectors Ot ,...,0§M) and corresponding r651dual vectors vgl). The

likelihood is the higher, the higher is the probability that difference between modeled
and measured values is zero given covariance (18). These parameters are then used in
(15, 16) for forecast error propagation. Incorporation of this algorithm into KF assimila-
tion scheme results in MPF for estimation of joint PDF p(x;, 8;|Y ;) which is the mixture
of Gaussian and nonparametric distributions

p(xe, 0,]Y 1) = p(x|0:, Y () p(0:]Y ), (19)
N ~~ J/ N ~~ J/
MPF KF PF

where x; is the state vector and 6; is the vector of parameters used for estimation of
current model error covariance structure.
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4 Assimilation scenario

The algorithm described in Section 3 is demonstrated on assimilation scenario introduced
in this section.

In case of an accidental aerial release of radioactive pollutants into the living environ-
ment, the radioactive plume is depleted during passing over the terrain. This phase is
called the plume phase. Due to the deposition processes the plume leaves a radioactive
trace on the ground.

After the plume phase (when the radioactive cloud exits the area of interest) post—
emergency phase follows. It covers latter stages of accident consequence evolution. Post—
emergency phase may extend over a prolonged period of several weeks or many years
depending on the source of radiation and local conditions. It ends when environmen-
tal radiation levels resume to normal. The main exposure pathways in this phase are
groundshine and ingestion. The deposited material cause irradiation and through the
root system migrates to the edible parts of crops consumed by people and livestock.
Among many radionuclides released during emergency situations we focus only on ¥"C's
since it is one of the most important nuclides in long—time perspective. Its half-time of
decay is long (30 years) and also analysis after the Chernobyl accident had shown that
it is one of the most significant nuclides in these types of accidents having detrimental
long—term effect on population health.

Our assimilation scenario covers the post—emergency phase. The source of pollution
is placed into the centre of polar network. We perform our calculations on subset of
this network in successive time steps t € {0, 1,...,ty4x}. Groundshine-dose in ordered
set of analyzed spatial points forms our state vector . We assume & ~ N(&, P). Let
o be an initial estimate of groundshine-dose and P its corresponding error covariance
matrix. This background—field is given by probabilistic version of Atmospheric Dispersion
Model (ADM) and constitutes the prior characterization of the problem. It is based on
segmented Gaussian plume model and it is part of the HARP system, more in [16]. We
assume sparse measurements y, of actual gamma dose-rate to be available in each time
step. These measurements are assumed to be conditionally independent with known
error. Assimilation procedure consists of two iteratively repeated steps: In time update
step (4) current state estimate together with its error covariance matrix are propagated
forward in time. The model error is estimated and accounted for. Following data update
step (5) produces so called analysis — adjusts the model prediction to be in accordance
with actual measurements. Along with this two Kalman filter steps is in each time step
estimated model error covariance structure.

4.1 Model error covariance parametrization

The idealized model of @ chosen for this example has three parameters @ = (o, 5, L)| a.5.0>0

Q= Q"+ 5QP (L) (20)

The model error is formally partitioned into two components representing different sources
of uncertainty. The partitioning has physical background. Matrix Q(l) concerns the
uncertainty of forecast model parameters introduced in [10]. This component is found as
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a covariance of sample obtained via Monte—Carlo simulation with many different settings
of model parameters. Component Q. scaled with 3, is structured, homogeneous and
isotropic error. All other sources of uncertainty are accommodated by introduction of
Q'?. This component is generated by means of second order autoregressive function

pr(r) of length—-scale parameter L and Euclidean distance between two spatial locations
r [5].

pr(r) = <1 + %) exp (—%) (21)

The value of length—scale parameter L controls how fast the correlation between two
points decreases with their growing distance. The overall covariance is scaled with a.
This parametrization allows for mutual scaling of unstructured noise component Q)
given upon numerical simulation and “additional” structured noise given by Q(Q). MPF
algorithm according to [21] modified for this case is listed in the box ALGORITHM.

In Step 1), the particles are initialized with a prior distribution. In Step 2) are
evaluated residuals upon measured and modeled values for purpose of normalized weights
evaluation for different covariance parameter vectors 0?). For each particle, the overall
covariance given by (20) has to be evaluated. During Step 3) are particles resampled
— those with small weights are replaced with particles “better” in terms of likelihood.
Sometimes is also in this step introduced an artificial noise to prevent particle degeneracy
problem — to maintain high diversity of particles. In Step 4) is performed data and time
update of KF and time update of PF. If we omit Steps 4a) and 4c) we get the standard
PF. In Step 4b) is set new importance function for the next time step.

5 Experimental Results and Conclusion

For experimental demonstration of the algorithm, an artificial scenario with local rain
during the fifth hour of the plume phase was chosen. The rain increases depletion of the
plume due the wet deposition. The area of interest is subset of polar network comprising
of N =91 analyzed points.

The measurements were simulated from the measurement equation (2) via linear for-
ward observation operator H where the true initial deposition &, was assumed to be
two times higher than the prior estimate &, obtained from ADM. The background—field
(initial distribution in time ¢t = 0) was N(&¢, Py) where forecast error covariance P, was
calculated according to

P, =2P,09Q, (22)

where € is covariance matrix generated from (21) and the o stands for element—wise
matrix product (Schur product) [15]. This was done because the background—field error
covariance matrix P, was modeled as sample covariance from multiple calls of ADM
where the rain intensity was treated as a random variable. This accommodated the
uncertainty in rain intensity into P, and provided us a valuable physical knowledge but
this process also introduced strong covariances between states. In (22), these covariances
were reduced, so the background—field became more conservative.

Initialization of particles in the very first step was following: a; ~ Gamma(l,1),
ay ~ N(10%/10%) and L ~ N(103,10°%). The prediction was evaluated for the first eighth
months of the post—emergency phase. Measurements were assumed to be available each
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month. At each time step were simulated 10 irregularly spaced measurements.

For

clarity, all the measurements in this example are during computation located in the same

positions, so the observation operator H; = H is constant.

ALGORITHM

1. Initialization:
(a) Fori=1,..., M initialize 8 ~ p(6,)
(b) Set {z) . Py} = {20, Po}
2. Normalized weights evaluation:
Fori=1,..., M evaluate:
(a) Residuals v\ = y, — H&\"

(b) Model error covariance matrix parametrization:

Q" =Q (0 = {5 1"}

parameters settmg
ii. Evaluation of Q" 2)(L( ) via (21)
ili. Evaluation of overall covariance via (20)

Ei) _ agi) (l (1) + 8 )Q 1),(2) (L(z )

(¢) Residual covariance matrix S (BEi)) via (18)

(d) Importance weights ¢\” = N (0, S(6"))

, @)
(e) Normalize weights ¢\ = —% "o
j=14t

3. PF measurement update — resampling:
Resample M particles with replacement

Pr (ei\t ei\Jt) 1) = q~t(j)

4. KF data/time update and PF time update

(a) KF data update:
j:(b) = j:t/‘bt)*l + K1<5L) [yt - Ht:i:ilzzfl}

t|¢

H"(H,P! H'+R)"

tlt—1

K% = pW

tlt—1

P\ =(I- KH,P} |

tt —

(b) PF time update — prediction of new particles:

o(i)

t+1 ™ P(O% |0§Z))

(c) KF time update:

~ () ~ (%)
Z, 0, = Mz,
_ DagT
Pt+1\t MPt\tM + Q4 (0 t+1)

5. Iterate from step 2) with ¢ := ¢+ 1

i. Evaluation of Qt D) yia M-C simulation with multiple groudnshine model
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Multinomial resampling described in [4] was used as a resampling algorithm in MPF.
Measurement error was set according to expert judgment based on the fact that the
small measured values have higher relative error than high values due to the measure-
ment methodology. In each step, first two moments of groundshine—dose distribution
approximating the truth were predicted and updated.

The results are in compliance with our expectations for this special scenario. Model
predictions were successfully adjusted in accordance with the measurements correcting
the speed of dose mitigation. Even thought it seems that the methodology has a potential
for improving of reliability of predictions in the late phase, the algorithm still has to be
improved in terms of robustness and carefully tested.
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Abstract. In last years we presented a method for interactive presentation of census results by
means of the probabilistic expert system. The method is based on estimating a propabilistic
model of the original microdata in form of a discrete distribution mixture of product components.
The statistical information is derived from the estimated model without any risk of disclosure
of individual respondents.

Now we managed to get the real microdata from census 2001 from the Czech Statistical
Office and we present results of our first experiments made with these data.

Abstrakt. Vyuziti statistického modelu pro prezentaci vysledki ze s¢itani lidu je metoda, ktera
novym zpusobem umoziiuje reprodukovat statistické vlastnosti populace pii automatickém za-
chovani bezpecnosti osobnich idaji. Problematikou se zabyvame jiz velmi dlouho, teprve ne-
davno se vsak podaiilo ziskat Cesky statisticky tufad pro aktivni spolupraci, ¢im# bylo kone¢né
umoznéno aplikovat zkoumanou metodu na realnych datech.

V névaznosti na nékolikaletou snahu prezentujeme vysledky tiimési¢ni prace s realnymi daty
ze s¢itani lidu v Ceské republice v roce 2001. Na préaci je pohliZzeno jako na pilotni studii ovétujici
moznosti aplikace této metody na redlné vyuziti pro s¢itani lidu v roce 2011 a zaroven jako na
vytvoreni datového zazemi pro nasledné zkoumani shlukovacich metod pro kategorialni data.

1 Uvod

Scitani lidu je nadkladné Setieni, které produkuje obrovské mnozstvi dat. V disledku nut-
nosti ochrany osobnich tidajt respondent je vSak mnozstvi verejné dostupnych informaci,
které v pracné a nakladné ziskanych datech jsou, zna¢né omezené.

Z jednotlivych dotaznik® jsou sice odstranény osobni udaje, je vSak obecné znamo,
ze i takto anonymizovany dotaznik miize byt s vyuzitim obecné dostupnych informaci
jednoznacné identifikovan. Proto nemohou byt ani dotazniky zbavené osobnich udajt
volné pristupné verejnosti.

Vysledky sc¢itani lidu se tedy obvykle zvefejnuji souhrnné pro jednotlivé administra-
tivni Gzemi ¢asti, napt dle s¢itacich okrski. Takto agregované iidaje pak predstavuji velmi
podrobnou a uziteénou informaci z hlediska geografického, avSak velka cast obsazené in-
formace se tim ztrati.

Jinou moznosti publikace vysledki jsou tisténé tabulky, timto zpiisobem vsak lze
zvefejnit jen velmi malou ¢ast zajimavych idaji, nebot pocet tabulek velmi rychle narist4,
zacneme-li uvazovat o subpopulacich podminénych kombinaci nékolika proménnych.

*This research was supported by the grant GACR 102/07/1594 of the Czech Grant Agency and by
the projects of the Grant Agency of MSMT 2C06019 ZIMOLEZ and 1M0572 DAR.
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Metoda interaktivni reprodukce vysledkil sc¢itani lidu pomoci statistického modelu
(viz [2]) nabizi v této souvislosti novy, uzivatelsky pohodlny pfistup k vysledkim séitani
lidu pii dokonalém zabezpeceni ochrany dat. Jakakoli identifikace respondentii pomoci
statistického modelu je znemoznéna klesajici spolehlivosti histogrami odvozenjch pro
malé ¢asti populace (viz [2]).

Prace tizce navazuje na vyzkumy provadéné na vzorku dat prazskych domacnosti ze
s¢itani lidu v CR v roce 1991 (viz napi. [2], [10] a [11]) a rozvadi ji aplikaci teoretickych
vysledkti na redlna data ze sc¢itani lidu v roce 2001, ktera se podafilo ziskat az teprve v
¢ervnu tohoto roku. Oproti ptivodnim datim je zde treba Tesit jesté skutecnost, Ze ne
vzdy jsou vSechny otazky vyplnéné.

Cilem stavajiciho vyzkumu je ovéfit moznosti metody na redlnych datech a pfipravit
tuto moznost pro planované s¢itani lidu v roce 2011. Druhym cilem je pfipravit podminky
pro zpracovani dat pomoci metod informacni a shlukové analyzy pro kategorialni data,
které byly zkoumany v predchozich letech (viz napf. [9]).

1.1 Stavajici zpusoby prezentace vysledku

Soucasné moznosti publikace statistickych informaci ze s¢itani lidu 1ze zaradit do nékolika
kategorii

Vo vevs

e Publikace vysledku v tisténé podobé predstavuje nejtradiénéjsi cestu zpiistupné-
ni zjisténych statistickych vlastnosti populace. Tisténé publikace se ovSsem nutné
omezuji na nejzakladnéjsi idaje a nejcastéji diskutované aspekty dat. Jak jiz bylo
zminéno v predchozim odstavci, tisténé materidly mohou pokryt jen malou cCast
realné moznych otazek, které mohou byt ve specifickych situacich formulovany riz-
nymi uzivateli.

e Komer¢ni sluzby statistickych aradia. Jakykoli dotaz tykajici se séitani lidu lze zod-
poveédét na zakladé specifického vypoctu s vyuzitim pivodni databaze statistického
uradu. Bohuzel, pisemné zadani odpovidajici zakazky prislusnému statistickému
uradu predstavuje tézkopadny a zdlouhavy zptisob ziskavani informaci, ktery neni
vhodny pro interaktivni vyzkum, kdy formulaci otazky je tieba upfesnovat podle
zjisténych vysledki.

e Agregace dotazniku dle vybranych kritérii Jednotlivé dotazniky jsou agregovany
napi. dle scitacich okrski. Tato metoda umoziuje presné zobrazeni rozlozeni riz-
nych vlastnosti populace dle geografického hlediska, ale jiz neumozinuje sledovat
vlastnosti populaci, které jdou napri¢ ¢lenénnim pouzitym k agregaci.

e Generovani a publikace tabulek. Obvykle mohou byt uloZeny a na ruznych pa-
métovych médiich distribuovany pouze tabulky nizkého fadu (6 - 10 proménnych).
Je zirejmé, ze kazda tabulka popisuje pouze statistické vztahy mezi tabelovanymi
proménnymi. Vybér subpopulace je tak omezen vzdy jen na kombinace hodnot ta-
belovanych proménnych. Nabizené tabulky je navic nutné ovérovat z hlediska spo-
lehlivosti ochrany dat a vhodnym zptisobem anonymizovat identifikovatelné tdaje
[6]. Omezeni identifikovatelnosti dat je ovSem nutné spojeno se ztratou informace
a vnasenim nepresnosti.
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e Poskytovani podsouboru anonymizovanych mikrodat. Z ptvodniho souboru indi-
vidualnich dat jsou vybirany podsoubory a upravovany pomoci riznych technik,
jako je zaména udaji, pozménovani dat a pod., s cilem znemoznit jakoukoli identi-
fikaci osobnich udaji respondentii [6]. Soubor mikrodat predstavuje nejdokonalejsi
formu poskytovani informaci, kterd umoznuje analyzu dat v plné obecnosti bez ja-
kychkoli formalnich omezeni. Presnost udaji, které lze odvodit z daného souboru
mikrodat, bohuzel klesa s jeho velikosti, zavisi na kvalité provedeného vybéru a
také na mife znehodnoceni zptisobené ochrannymi anonymizacnimi postupy. Ome-
zuji se také moznosti analyzy malych subpopulaci. Pristup k souboriim mikrodat je
umoznén ve vétsiné zemi EU a je povazovan za doklad vysoké trovné statistického
servisu. Na druhé strané je tento postup znacné citlivy z hlediska ochrany osobnich
udaji. Moznost pracovat s mikrodaty zpravidla podléha schvalovaci proceduie a
neni zarucena automaticky kazdému zadateli.

Ukazuje se, ze ochrana osobnich udajt, jakkoli nezbytnd, je znacné omezujici z hle-
diska obvyklych pozadavki ekonomickych a socidlnich vyzkumt. V popfiedi zajmu je
proto vytvareni novych pristupti a metod, které mohou zkvalitnit a rozsifit informacni
nabidku statistickych uradia. Cilem je dosazeni optiméalni rovnovahy mezi nutnou ochra-
nou osobnich tdajt a dostupnosti uzitecnych informaci.

2 Vstupni datovy soubor

Datovy soubor obsahuje vybrané odpovédi z dotaznikli ze sc¢itani osob, byt a domu
Ceské republiky z roku 2001. Jednotlivé vektory v souboru se skladaji z vybranych tdajti
z dotazniku osob doplnéné o idaje z odpovidajiciho bytového dotazniku. Vysledny soubor
obsahuje 10230060 zaznamt s odpovédmi na 24 otazek, pricemz ne vsechny odpovédi jsou
vyplnéné.

Formalné tedy uvazujeme koneény diskrétni N rozmérny prostor X (N = 24)

X = Xl X XQ X ... X /YN, Xn = {§n717 ...,fn,Kn}, (1)

kde &, reprezentuje mnozinu moznych odpovédi na otazku ¢islo n. Dale uvazujme datovy
soubor S

S = {az(l),az(2), ...,az(K)} , 2 e X =X X Xy X ... x Xy, X, = X,U {&n0}
(2)

kde hodnota &, o reprezentuje skutecnost, ze odpovidajici otazka v dotazniku nebyla zod-
povézena. Jedna se tedy o tzv. chybéjici udaj.

Graf 1 ukazuje nepravidelnost rozlozeni chybéjicich tidaji dle jednotlivych otazek.
Graf 2 zobrazuje pocty vektori dle poc¢tu chybéjicich tdaji ve vektoru. Z obrazku lze
napr. vycist, ze u 32875 vektorti chybi vice jak polovina odpovédi.

V celé problematice se zabyvame prakticky vyluéné o takové podmoziny prostoru X
resp. souboru S, které lze urcit kombinaci nékolika odpovédi. Mé&jme tedy vektor xo s
kombinaci ¢ odpovédi na c riiznych otazek

o = (5“1,]6175712,]62? "'7€nc,kc)’ Tco € XC = Xm X ..o X cha (3)
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Pocty chybéjicich udaja pro jednotlivé otazky
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Obrazek 1: Pocty chybéjicich tdajt u jednotlivych otazek
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Obréazek 2: mnozstvi vektort dle poc¢tu chybéjicich idaji ve vektoru

kde 1 < ¢ < N a C predstavuje indexovou mnozinu odpovidajici vybéru otazek C' =
{nl, Nnao, ..., nc}.

Potom subpopulaci A(x¢) definovanou podminkou ¢ rozumime takovou podmozinu
prostoru X', pro kterou plati

Alxe) ={y € X| (Yn,: Ynys -+ Yn,) = T} (4)

Typickym prikladem takové subpopulace je mnozina vSech nezaméstnanych v praze
apod. Skutecnou velikosti suboppulace A(x¢) pak rozumime ¢etnost vyskytu kombinace
xc v souboru S. Tj.

sizeof (A(xe)) = Z(S(?J@ xc), Yo = (?Jn1> Yngs - ync) (5)
yeSs

kde d(a, b) znaci standardni delta funkci, tj. (a,b) = 1 pokud a = b, jinak §(a,b) = 0.

3 Reprodukce statistickych vlastnosti souboru
pomoci smeési

Je obecné znadmym faktem, ze sCitani lidu predstavuje jednorazové Setieni, které nelze
opakovat jako nahodny experiment. Formalné vSak mtzeme na vyplnény dotaznik po-
psany vektorem a pohliZzet jako na realizaci né€jakého neznamého nahodného vektoru v
nabyvajici hodnot z X a na soubor S jako na posloupnost nezavislych realizaci tohoto
vektoru.
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Veskeré statistické vlastnosti ndhodného vektoru v jsou potom popsany jeho sdruze-
nym rozlozenim pravdépodobnosti P(x), které, zjednodusené feceno, popisuje chovani
nahodného respondenta. Pravdépodobnost vyskytu vektoru x v souboru S pak aproxi-
mujeme pomoci diskrétni distribu¢ni smési soucinovych komponent

P(x) = Z W Hpn(xn\m), x ek, (6)

n=1

kde M je pocet komponent smési, w,, jsou jednotlivé vdhy komponent a p,(.|m) jsou
jednorozmeérné podminéné distribuce v komponenté.

Protoze prostor X je konec¢ny, vime, Ze existuje smés s kone¢nym poctem komponent
M < |X|, ktera popisuje rozlozeni pravdépodobnosti na prostoru X zcela presné. Stejné
tvrzeni plati i za pfedpokladu, Ze je konecny soubor S (potom stac¢i M < |S| komponent).
Miuzeme tedy tvrdit, ze dany soubor S jsme schopni popsat konecnou smési libovolné
presné. Abychom vSak zajistili bezpecnost osobnich tudaji, nemtze byt model pfesny
prilis.

Velkou vyhodou uvedeného modelu je velmi jednoduché vyjadieni odhadu relativni
velikosti subpopulace A(x¢) definované podminkou x¢ (viz (4)). Ten je roven pravdé-
podobnosti P(x¢), kterd lze vyjadfit prostym vynechanim ¢lent v soucinu ve vyrazu

(6)

P(.’Dc) = Z P(y) = Z W, Hpnz(xnz m) (7)

YEA(zy)

Tato vlastnost umoznuje velmi rychlé odvozovani pravdépodobnosti, které nas pie-
vazné zajimaji a které jsou potieba jako vstupni informace pro interaktivni pravdépo-
dobnostni expertni systém, ktery je soucasti projektu.

4 Odhad parametria modelu

Standardné se pro odhad parametri smési v podobnych pripadech vyuziva itera¢niho
EM algoritmu, ktery hledd maximalné vérohodny odhad tim, Ze monoténné zvysuje hod-
notu vérohodnostni funkce. Jako pocatecni feseni volime nahodné zasuméné uniformni
rozlozeni. Pouziti tohoto algoritmu bylo popsano napf. v [3].

Pro odhad parametri modelu na datech s chybéjicimi tidaji je mozné modifikovat
schéma algoritmu prostym vynechanim odpovidajicch soucinitelt v kroku E (viz [1]).

E-krok : (m e M, x € 5)

t N t
wl) || P €m0 p§l>(g;n|m)

t N t .
Zje/\/t wj( ) Hn:l,xn;ﬁfn’o pgl) (.Tn|j)

¢ (mlx) =
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M-krok : (m € M)

) = 2 (Ol )

:BES

ptY(Elm) = Za zi, §)q" (mla) (10)

zmesq (mle) 2~

Dalsiho zptesnéni modelu lze dosdhnout doplnénim chybéjicich tdaji pomoci modelu
optimalizovaného pomocni uvedenémo schématu (8) a naslednym upfesnénim modelu na
souboru s doplnénymi tdaji. Vlastni vypocet se potom sklada ze t¥i fazi - uceni se na
neuplnych datech, doplnéni dat a uceni se na doplnénych datech.

5 Ovérovani presnosti

Pfirozenym kritériem pro méfeni presnosti je primérna absolutni chyba odhadu pravdé-
podobnosti vSech moznjch podmnozin prostoru X'.

= o7 2 IP(4) = Pal (1)

AcA

kde A je t¥ida vSech podmnoZin prostoru X, P(A) je pravdépodobnost mnoziny A odvo-
zena ze statistického modelu
=) P(), (12)

€A

a P(A) je (skutecna) relativni Getnost vyskytu dotazniktt z mnoziny A v pivodnim sou-

boru S
= Z@A(w)> (13)

€S

(pa(x) je charakteristickd funkce mnoZiny A rovnd 1 pro @ € A a rovna 0 pro « ¢ A).

Je zfejmé, Ze toto kritérium je vhledem k rozsahu mnoziny A prakticky nepouzitelné.
Vzhledem k tomu, Ze se v nasem pripadé zabyvame zejména odvozovanim pravdépodobnos-
ti podmnozin, které lze ucit kombinaci hodnot, zjednodusime vypocet kritéria tim, ze se
omezime pouze na podmnoziny A, které lze ur¢it pomoci kombinace nékolika hodnot (viz
pojem subpopulace popisovany v (4)).

Dale, uvazime-li, ze nasim cilem je reprodukovat pouze dostatecné velké subpopulace,
omezime se pouze na tzv. relevantni podmnoziny, coz jsou ty, jejichz skutecna velikost
je vétsi nez 1570. Hodnota tohoto prahu vychézi ze statistické presnosti odhadu, kdy
pozadujeme presnost alesponi 5% na trovni spolehlivosti 95%. Odvozeni tohoto prahu je
mozné nalézt napi. v [11] ¢ [8].

Oznacme tedy A,, tfidu vsech relevantnich podmozin, které lze ur¢it pomoci kombi-
nace maximalné n odpovédi.

Avn = {A(zc) € Alzc € Xe, |C| < n A P(A) > 1570} (14)
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Primérnou relativni ez resp. absolutni €4 chybu pak pocitame nasledovné

1
| Arn|

€a(Arn) Y IP(A) = P(A), er(Anw)

AGAT"’I

[Aval A€Am P(A
Poznamka 1. U zakladni verze EM algoritmu plati, Ze jednorozmérné marginalni prav-
dépodobnosti jsou reprodukovany zcela presné hned po prvni iteraci agoritmu (tzn.
ea(A.1) = 0). V ptipadé modifikace pro neuplna data tato skutecnost jiz obecné neplati.

6 Experimentalni ¢ast

6.1 Vypocty modelua a jejich presnost

Na ziskaném datovém souboru ze sc¢itani lidu 2001 bylo provedeno nékolik rtznych vy-
poctl. Tabulka 1 obsahuje vypocty pro modely z riznym poctem komponent m, hodnotu
dosazeného vérohodnostniho kritéria a priimérnou relativni chybu. Pocatecni feseni bylo
vzdy voleno ndhodné a vypocet byl zastaven v pripadé, ze prirtustek vérohodnostniho
kritéria klesl pod stanoveny prah, resp. drive, pokud vypocet trval prilis dlouho.

Pocet komponent | orientacéni ¢as vypoctu | kritérium L | relativni chyba eg(A,3)
10 1 min -28.0078 0.2903

100 7,5 min -21.7319 0.1357

1000 1h -21.1125 0.0677

10000 30 h -20.9682 0.0521

Tabulka 1: Presnost a dosazena hodnota vérohodnostniho kritéria pro riizné slozité mo-
dely. Relativni chyba byla pocitdna na mnoziné relevantnich subpopulaci,
které lze urcit az tfemi podminkami.

6.2 Presnost souboru mikrodat

Reprodukce statistickych vlastnosti datového souboru pomoci distribuc¢ni smési je alter-
nativou k dosud pouzivanym souborim mikrodat. Soubor mikrodat je ndhodny vybér
vzorkl z datového souboru, vétSinou 1 - 10% ptvodniho pocétu. V praxi jsou soubory
dale upravovany tak, aby byla zajisténa pozadovana ochrana osobnich udaji, tj. aby byla
vyloucena moznost identifikovat tidaje o jednotlivcich.

Pro porovnani presnosti statistického modelu a souboru mikrodat bylo vybrano né-
kolik nahodnych podsouborti, u kterych byla méfena chyba odhadu na stejném souboru
kontrolnich subpopulaci A,3. Anonymizacni procedura nebyla vzhledem k jeji naro¢nosti
aplikovana, da se vsak ocekavat, ze by vedla pouze k nepatrnému zhorseni presnosti.

Pti porovnani tabulek (1) a (2) vidime, Ze smés s m = 1000 komponent je jiz z hlediska
relativni chyby presnéjsi nez soubor mikrodat obsahujicim cca 1% vektort z ptivodniho
souboru. Z hlediska presnosti je tedy popisovand metoda publikace vysledktl s¢itani lidu
srovnatelna s vyuzitim souborti mikrodat, které v soucasnosti patii k nejdokonalesim
pouzivanym zpusobtim publikace takovych dat.
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velikost | pocet vektort | relativni chyba €,3
1% 102405 0.0793

5 % 511213 0.0348

10 % 1023442 0.0240

Tabulka 2: Presnost rtzné velkych ndhodné vybranych soubori mikrodat. Skutecna ve-
likost a relativni chyba byla spoctena jako primeérna hodnota pro vzdy tti
nahodné vybrané podsoubory pro kazdou pozadovanou velikost

6.3 Interaktivni prezentace vysledku

Navrhovana metoda podstatné vyuziva faktu, ze kone¢na smeés souc¢inovych komponent je
pfimo pouzitelna jako béze znalosti pravdépodobnostniho expertniho systému PES (viz
napr. [7]).

Tento systém nabizi uzivateli srovnatelné moznosti jako primy kontakt s piivodnim
datovym souborem prostfednictvim databazového systému. Expertni systém odvozuje
statistické informace pfimo z odhadnutého modelu, bez nutnosti jakéhokoliv pfistupu k
puvodnimu datovému souboru. Ochrana osobnich dat je tak dokonale zarucena, protoze
smésovy model neumoznuje identifikaci jednotlivych dotazniki.

Informace expertniho systému jsou uzivateli nabidnuty ve formé podminénych histo-
grami pro zadané subpopulace.

7 Zavér a dalsi prace

Préace obsahuje prvni vysledky zpracovani realného datového souboru ze sc¢itani lidu v roce
2001, kdy se po dlouhé dobé podaiilo ziskat Cesky statistiky tiad pro aktivni spolupraci.
Na toto zpracovani je pohliZzeno jako na pilotni projekt testujici pouzitelnost navrhované
metody pro pripadné pouziti pro s¢itani lidu v roce 2011.

Navrhovand metoda umoznuje zpristupnit statistické informace Siroké vefejnosti v
daleko vétsi mife, nez je tomu u stavajicich forem zverejnovani vysledka scitani lidu.
Zaroven garantuje zachovani bezpec¢nosti osobnich tidaji, nebot piesnost modelu klesa u
malych subpopulaci.

Vysledky uvedené v této praci jiz umoznuji tvrdit, Ze z hlediska presnosti mérené
na mnoziné relevantnich subpopulaci je navrhovand metoda alespon srovnatelna se sou-
bory mikrodat, které také umoznuji velmi obecné zkoumat statistické vlastnosti datového
souboru.

Jako dalsi navazujici aktivitu planujeme zkouméni moznosti informacni a shlukové
analyzy kategorialnich dat na zpracovavaném datovém souboru, ktery je typickym piikla-
dem tohoto druhu dat.
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Abstract. The dynamics of a classical charged particle confined to a plane, under the influence
of a homogeneous magnetic field perpendicular to the plane and a time-periodic singular flux
tube (so called Aharonov-Bohm flux) is investigated. For the description of the system we
use the action-angle coordinates. The main tool of our analysis is von Zeipel’s method, which
is a classical perturbation method. We are interested especially in the resonant phenomena
between the strength of the field and the frequency of the singular flux.

Abstrakt. Tento prispévek se zabyva klasickou dynamikou nabité bodové castice pohyhujici
se v roviné pod vlivem homogenniho magnetického pole, které je na tuto rovinu kolmé, a sin-
guldrniho ¢asové periodicky zavislého magnetického toku (tzv. Aharonova-Bohmova toku).
Vychozim bodem pro studium stability tohoto systému jsou soutfadnice akce-tthel. Hlavnim
nastrojem pak klasickd poruchova metoda pochéazejici od von Zeipela. Hlavni diraz je kladen
na odhaleni rezonancnich efekt mezi silou magnetického pole a frekvenci singularniho toku.

1 Introduction

In the present contribution we are interested in the qualitative behaviour of a classical
charged particle which is under the influence of a homogeneous magnetic field and the
time-dependent singular flux tube! piercing the origin of coordinate system. The basic
description of the system is given in the following paragraphs. In the subsequent sections
we will invoke standard perturbation technique due to von Zeipel. This method gives
much better results than the Bogolyubov’s averaging (see for example [5]) used in [4].

Let the Cartesian coordinates in the plane be denoted by ¢ = (q1,¢q2) € R% The
vector potential A consists of two parts. The homogeneous magnetic field of strength
b > 0 (such choice can be made without loss of generality) perpendicular to the g-plane
is generated by the potential

b |

Ah(q) = 7(] )

*I would like to express thanks to Dr. Joachim Asch from C.N.R.S. Marseille for many valuable
discussions and help during my stay in Marseille.
1Sometimes also called Aharonov-Bohm flux tube.
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where ¢- = (=, q1). The second part corresponds to a singular flux through the origin
of the coordinate system and is given by
@)

Ap(q,t) = T mELE

where |¢| = \/¢® + ¢3 and ® : R — R is a periodic function. The total vector potential
is given as a sum A, + Ay. Passing to the polar coordinates and using the Legendre
transform it is straightforward to arrive at the Hamiltonian

ed(t)
1 Do — —— eb \2
Bt = - (12 (5 D)) 1
(T7 y Prsy Do, ) m <pr+ r + 2T ( )
considered on phase space (RT x S;) x R?. The equations of motion are
_ OH . OH  po— 20 g
Pe 00 ’ Opy mr? * 2m (2)

It is obvious that € is a cyclic coordinate, therefore py is an integral of motion. This fact
enables us to treat py as constant. And the question of stability is essentially contained
in the single ordinary differential equation for radial distance r
272 ed) 2
e“b -5
g OV 5) (3)

4m? mr3

From now on we set the charge and mass of the particle equal to one. In order to
use classical perturbation techniques it is necessary to transform the system to the so
called Action-Angle coordinates (for more details see [1]). In [4] it is shown that there is
a canonical transformation from r,p, € RT x R to (¢,I) € S; x R coordinates which
transforms the Hamiltonian (1) to new one

(4)

H.(p,I,t) = bl —sgn(a(t))a(t)arctan ( VI cosp >

I+ la(t)] + VIsing
And equations of motion are given by

aa  cos 1

@:b__ . )
2 \/I(I+la|)2I +|a| +2+/I(I + |a])sine

f=-E Jalé . (6)
2 21 + |a| + 2/1(I + |a]) sinp

Moreover, in [4] it is also shown, that the question of stability is answered by the behaviour
of the action coordinate I. More precisely, if (for certain initial conditions) the solution
I(t) of the above equation is bounded then also the radial distance of the particle is
bounded. Or, in other words, the particle will not leave some bounded region of the
plane. On the other hand, if it happens that I(t) — +oc as ¢ — oo, then the particle
will get arbitrarily close to and far from? the flux tube during the time evolution.

()

2This means that 0 and +oo are accumulation points of the particular trajectory {r(t)}:>o.
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2 Dynamics Generated by the Time-dependent Singular
Flux Tube

In order to become acquainted with the dynamics of the system, it is appropriate to
investigate the influence of magnetic field and time-dependent flux separately. If the flux
is turned off, i.e. the particle is influenced only by the homogeneous magnetic field, then
the classical trajectories are circles in the ¢-plane. This fact is a well known elementary
result.

Let us investigate what happens if we turn off the magnetic field. To answer the
stability question we look at the behaviour of solutions of equation (3) - of course we
again put e = m = 1 and in addition also b = 0. In this subsection the flux need not to
be periodic, but it must satisfy the conditions (7). The basic result is formulated in the
following

Lemma 1. Suppose that a € C(R) is such that a(t) # 0 for allt € R and
) a/(t)Q -T a(t)2 o0 -T
/T t—th < 00, /OO t—th < 00, /T a(t)dt = /OO a(t)’dt = +o0. (7)

for certain T > 0. Then for any (ro,vo) € RT X R there exists an unique solution r(t),
defined on R, to the initial value problem

a(t)”
r(t)?’

Moreover, the solution satisfies the condition r(t) ~ cit ast — foo where ¢y > 0 and
c_ <0.

r’(t) =

r(0) = 1o, r'(0) = vp. (8)

Proof. The differential equation is equivalent to the dynamical system

T2
= f(t,x) = (a(t)Q/x‘I’)’ relU=R"xR.
Since f € C(R x U,R?) is locally Lipschitz continuous in the second argument one can
use Picard-Lindel6f theorem to establish existence and uniqueness of the local solutions.
Thus, the solutions are either defined for all ¢ € R, or they approach the boundary of R*
in finite time (more precisely they escape to infinity » — oo or fall on the zero r — 0).
We will analyse the case ¢t > 0, the rest is analogous.

First of all observe, that generally 7/(¢) is increasing function. Therefore we will
consider three situations according to the initial velocity.

Suppose that vy > 0 and that we have solution r(t) of the IVP (8) defined on the
interval (T_,T,). Hence r(t) is increasing for all ¢ € [0,T), so there always exists®
limyyr, 7(t) > 79 > 0, therefore the solution can be prolonged to the infinite interval. We
can assume that 7'y = +o0. For any ¢ > 0 it is true that

a(s)’
r(s)?

t t
r(t) =19+ / r'(s)ds > ro +vot, 7(t) =10+ vot + / (t—s)
0 0

3The symbol lim;1, denotes limit from the left.
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The claim of the Lemma is equivalent to the existence of positive finite limit

b o [ 0 o [ 7))

But this is true since 1/r(t) < 1/(rg + vot) for any t > 0 and [ a(s)?/s*ds converges.
The positivity of the limit is obvious.
Suppose now that vy = 0. Since a? is positive it is true that

r'(t) = /0 zg;?’ds >0

for ¢t from domain of definition of r. Hence we can immediately pass to the preceding
point.

Finally assume that vy < 0. Since 7/(¢) is increasing our objective is to show that there
exists ¢t > 0 such that 7'(¢) = 0 and then again we can use the preceding considerations.
Let us first show, that the solution can not approach the boundary r = 0 in finite time.
Let r(t) be a solution of IVP (8) defined on (T_, T ), T\ € R*, such that limz, 7(¢) = 0.
It must hold that for all ¢t € [0,7".) it is true that 7/(¢) < 0. But

t 2 1/r(t) -1 2
lim 7'(¢) = vo + lim a@)ﬁzﬂm+hm g&;éﬂ@L
" wE Jo T(s) I G
T pa(r—1(1/p))?
- / palr_ (/o)) g,
irg —7' (7 (1/p))

because the denominator in the integrand tends to zero or some constant and a is nonzero.
This contradicts our hypothesis. Also in this case (vy < 0) the solution r(¢) of the IVP
(8) can be prolonged to infinite interval. It remains to show that there is some t* > 0
such that 7/(t*) = 0. So assume that we have solution obeying lim; ., r(¢) = R > 0 and
r'(t) < 0 for all ¢ > 0. Therefore r(t) is decreasing. But now we have

= +OO,

'(t) +/t LGN Y (s)2ds — + t—+
r'(t) =wv s>uvg+ — [ a(s)’ds — +o0, as t — +o0.
’ o 7(s)? ’ 16 Jo ’
This is impossible due to (7). O

With a little more effort we can treat also zeros of a:

Lemma 2. Suppose that a € C*(R) is such that if a(t*) = 0 for some t* € R then
a'(t*) # 0, and let the conditions (7) of Lemma 1 hold. Then all claims of Lemma 1 are
true.

Proof. The only part of proof of Lemma 1 which has to be changed is the proof of
extensibility. In particular, suppose that r(¢) is a solution with domain (7,7, ) of the
initial value problem (8) with vy < 0, limyp, r(¢) = 0. If it happens so that a(T;) # 0
one can use the same argument as in the proof of Lemma 1. However what if a(7%) = 07
Then we may write

) — o t@ﬁfszv tMUM+d®J@—ﬂw28
Mw—oﬁédﬁd 0+AOﬂM+Mw@_ﬂwdﬁewﬁg
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where 7, & € (s,T). But the last integral diverges logarithmically as ¢ T 7' since
[Ty, , L ftaer,

o (r(Th) +7"(ns)(s = T4))° (—vo)* Jo T4 — 5
and a'(§5) — a/(Ty) as s T T O

»
vV

To complete our picture it is necessary to look at the equation for polar coordinate
0, (2). We immediately see that § — const as t — +oo. In other words the particle
is "pushed from the origin”. More precisely if the particle approaches from the infinity
then it is deflected by the origin and asymptotically moves freely. All trajectories are
unbounded, the particle escapes to infinity.

3 Von Zeipel’s Method

Let us now look at the system with Hamilton’s function (4) more closely. Suppose that
a(t) is a smooth periodic function with frequency Q and that a(t) = f(2t) > 0, where f
is a 2m-periodic function. Therefore we have

VT cos ¢
VI + f(Qt) +\/Tsin<,07

In order to get rid of the time dependence let us introduce new phase @y = €t and
its conjugate variable I (old variables ¢, I are denoted by 1, I;). We obtain so called
extended Hamiltonian K which reads

H.(p,I,t) =bl — Qf'(Qt) arctan p €Sy, [ eR".

T
VI cos o1 o eT?, [ eR xR

VI + f(p2) +\/_smg017 o)
9

Hamiltonians H, and K are equivalent (in the sense that the corresponding solutions
of Hamiltonian equations are the same up to parametrisation), provided that the initial
conditions are properly matched (e.g. if p(0) = o then p2(0) = 0 and ¢1(0) = ¢yp).
The extended Hamiltonian is in a form which is suitable for application of von Zeipel’s
method. This is a classical canonical perturbation method. The fundamental steps will
be mentioned in course of the following computation. More details can be found in [2] or
[3].

As a simple demonstrative example take ®(t) = —27e sin Q¢ (the procedure described
below can be applied without any modification to more general fluxes, e.g. fluxes with
finite number of nonzero Fourier coefficients). So f(x) = pg + esinx and suppose that
0 < & < pg. We will compute the approximate Hamiltonian up to order O(g%). For the
sake of simplicity denote (w1, ws) = (b,€2). Let us assume that (resonance condition)

K(p,I)=(b,Q) - I — Qf'(¢2) arctan

wy _p

)

w1 q
where p, g are natural co-prime numbers. The extended Hamiltonian reads

\/[_1(305 ¥1

VT + py — esingy + /Tisingy’

K(p,1,e) =w - I+ cwycos(py)arctan
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Let us expand the Hamiltonian up to order O(g?)
K(p,I,e)=w-T+eKi(p,I)+*Ko(p, I) + O().

The first step of Von Zeipel’s method consists of a near identity canonical transforma-
tion to new canonical coordinates ¢ and .J. The generating function of the transformation
is sought in the form

5(907 ']7 5) =@ '] + SSl(gD, J) + 5252((107 ']) + 0(53)‘
And one seeks new Hamiltonian in a similar form
H (), Je) =w-J+ed(, )+ 2 H5 (¢, J) + O(e%).

Coefficients S, Sy and 77, %5 are to be determined. Of course one can try to compute
also higher order terms but the task is more and more difficult. The relation between the
old and new Hamiltonian is given by the equality

K(p,0,5,¢) = 20,8, J,¢),
from which one finds that

‘%/1(9@ J) Kl(@? J)+w'agosl(90> ‘])7
%((pv J) = K2(907 ‘]) + a]Kl(SO, J) : a«psl((pa J) - agw%/l((pa J) : a(]511(907 ‘])
+w - 0,5 (0, J).

In the present situation the lattice of resonant frequencies is given by K = Z(p, —q).
Terms in the expansion of the new Hamiltonian .#" are chosen in the following way

%(90, J <K1(907 ‘])>K7
Koo, J) = (Kalp, J) + 0;K1(p, J) - 0,51(p, J) — Dp i (0, J) - 0151 (0, J) k-

The notation (-)x means that we keep only resonant frequencies in the Fourier expansion.
More precisely for a function 7 : T" — C with Fourier expansion

) =
) =

1

2m)™ Jpa flo)etade,

n(e) = > Zh(e)rexp(ik- @), Fn(e) =

put
ek =Y Zn(p)lk exp(ik - @).

keK

The bracket (-)k is sometimes called the averaging operator. Functions Sy (g, J), Sa(p, J)
are then obtained as solutions of the partial differential equations

w - élpSl(go, J) = _<K1(807 J))Kca
w - 0,51(p, J) = =(Ka(p, J) + 0, K1(p, J) - 0,51(p, J) = Op0(p, J) - 0551, J) ke

where K¢ = 72 \ K. It is possible to give solutions of these equations in form of formal
series, but one has to be careful since it is here where the problem of small denominators
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appears. However, if our flux function has finite number of nonzero Fourier coefficients
then there is no problem.
For the computation below it is convenient to set

2!

p=p(h)= Tt o0

Using crucial results from Appendix of [4] it is easy to derive that only the following
Fourier coefficients, which we will need, are nonzero

w: T
FKi(o,D]az) = 4—25‘” exp <zl§>,

wapg sgn(l) plHi+2 T
F o Ki(, I)]@,+1) = apo sgu(l) 3 exp <zl§>,

8i IE
wo sgn(l LT
F(Kap, D]tz = 217]99()(1 — )" exp (il5 ), 1£0,

With these coefficients it is possible to compute terms 77, #5, 51, Se. There are three
situations which need a separate treatment, in particular ¢ = 1, ¢ = 2, and ¢ > 3. In the
following subsections only results are presented, the computation itself is straightforward
but tedious and space-consuming. The formulae were computed by hand and checked
using the computer algebra system Mathematica 6.0.

3.1 The case of ¢ =1

In other words we have here

5) B Q .
w—l = Z =pEc N.
Under this assumption one can compute that
A, ) = 5o sin (g + py ),
_ pwa 1 21 9 5 ) e [Ar—n) 4 g=2(p—n)
Aol 0) =15 (5 - 6) <5+(ﬁp+ﬁ (1= + 3 p +
(=DPpwz (1 N2 —~ 3
+ 87]79 <B — ﬂ) (111(1 — 52) + lzzl: T) COS(Q])’(M — 2¢2)+
+ (_gﬂ(l — 3%) 3% cos(2pyy — 2iby).
Do

Further, it is possible to give a closed form expression for S; but we will not need it
here. It is important to observe that the new Hamiltonian system obtained by von
Zeipel’s method has additional integrals of motion, while in general the original system
has only one integral of motion (namely the Hamiltonian K itself). The number of
integrals produced depends on the number of independent resonance relations and the
dimension of the phase space. Moreover, these integrals does not depend on the order of
approximation, but only on the resonance relations.
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_( p -1
R_(l_p 1).

The matrix R is chosen such that it has the basic resonant vector (p, —1) in the first row
and has unit determinant and integer entries. Next step is canonical transformation from
1, J coordinates to x, P coordinates generated by the function

W (¥, P) = P Ry,

To see this, let us denote

Therefore
x=0pW =Ry, J=0,W=R"P

The point is that the Hamiltonian in these new coordinates J# (y, P) does not depend on
X2, therefore P, = J; +pJs is an integral of motion of the approximate system. Moreover,
in new coordinates one has

H (X, P) = wi Py +e(x, P) + e25(x, P) + O(®). (10)

Since P, is integral of motion and the Hamiltonian does not depend on x» we can plot
the level curves in the x1, Pi-plane. This is done in Figure 1. Let us first look at the level

5k 5F N
4 4
3 3+
— —
[a [a
2+ 2
1+ 1
0L I I Op——— J I L ”””””” |
0 n 2 0 n 2n
X1 X1

Figure 1: Typical level curves of Hamiltonian (10) without (left column) and with (right
column) the O(e?) term in the case of ¢ = 1. Note that in the left picture the
curved lines does not approach asymptotes x; = m/2, 37/2.

curves of the first order approximation. If we fix initial conditions x(0) € T?, P(0) € R?
then the equality
H (x, P) = 2 (x(0), P(0))

defines implicitly P, as a function of y;. Since P, is conserved one gets
<5>P sin (p5 +x1(0))

o sin <p% + Xl)




Resonant Effect for Singular Flux and Homogeneous Magnetic Field 79

if sin <p7r/2 + Xl(O)) # 0. Note that

0< 3= ph+ (1= PP <1
pP+ (1 —p)P+ po ’

therefore y; varies between two roots of equation
. sin <p§ + Xl(O))
ﬁo - -

sin <p% + x)

which are nearest to x1(0) and P; approaches infinity as x; tends to these roots. On the

other hand, if sin <p7r/2 + X1(0)> = 0 then x; = x1(0) and P, can be arbitrary (more

precisely bounded from below by pTTng (0)). This exactly corresponds to the left picture
of Figure 1.

Since the second order correction %5 is complicated, it is impossible to carry out the
procedure described above. However, since limy, o, #3(¢, JJ) = 0 for any 1 € T? one
can argue, that the picture described by the first order approximation will not be spoilt
by the second order term. Also note that because J; = pP; + (1 — p) P> and J; plays role
of I; which was originally the action I, we just showed, that in the case /b € N the
resonant behaviour described at the end of Section 1 will occur.

3.2 The case of ¢ = 2

In general, for ¢ > 1 it is true that J# (¢, J) = 0. Also for any ¢ > 1 it is possible to
compute? the function S;:

1 , .
Sy (. J) = 10| — 2 arctan 225 UL g,y (1,1 = 22 9 - 2 gt
2 1+ ﬂSll’l ©®1 W1 — Wo w1 W1
1 iBe 1, F (1, 1+ ﬂ, 2+ ﬂ, —zﬂe_m) ] exp(—iys)
w1 + wo w1 w1

The second term of the approximate Hamiltonian is nontrivial

wop 2 D D
Ho(p,J) = —mﬁp<1 — 52) 2 F <1, 1+ 572 + 5,52> cos(py — 21py + pr/2)

e (1-8) (T (1= 5250 et (114 524 B )
———(1-— Fi(1,1—=,2—= Fi(l,1+=,2+=
25p0 ﬁ (1_p/22 1 ) 2a 27ﬁ +1+p/22 1 ) +2a +27ﬁ
W .
+—8p29 (1 — B%)B" sin(pyy — 2y + pm/2)

Again, we have one integral of motion. Following the same steps as in the end of the last
subsection, but with the matrix
_(p 2
n= (L)),

4The symbol 2 F(a, b, c, z) stands for the Gauss hypergeometric function.
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it follows that P, = 2.J; + pJy is conserved. For the level curves in the yi, P;-plane see
Figure 2. It appears that in this case it is not possible to have P, — oo. Let me just note

10-

P1

Figure 2: Typical level curves of the transformed Hamiltonian J(x, P) = %P, +
e2#5(x, P) in the case of ¢ = 2.

that it is possible to compare these level curves with numerical solution of the original
system of equations.

3.3 The case of ¢ > 3

As was said earlier, the first order term is trivial, (¢, J) = 0. The second order term
is independent® of 1) and reads

Hy(ih, J) = w3 <1 52)2
o 2%y
1
x[ JFy (1,1—@2—9,52% 2F1(1,1+ﬂ,2+9,52)].
W1 — Wo w1 w1 w1 + wo w1 w1

Therefore, the second order von Zeipel’s Hamiltonian is given by
H (W, J)=w-J+2H(J).

The equations of motion for this Hamiltonian are trivial and can be easily integrated.
Note that this was not possible in the preceding cases. The solution is simply

P(t) = 9, (1(0), J(0))t +4(0),  J(t) = J(0).

It follows that in this case the original action I is bounded and no resonance appear.

It can be shown, that if ws/w; = p/q, then the first term which depends on 1 is the g-th one.
Therefore the slow evolution of action coordinates is negligible with increasing q.
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4 Summary

Let us conclude that with the aid of von Zeipel’s method it was shown that in case of
simple sinusoidal flux the resonant behaviour can be observed only if the ratio of the flux
frequency and the strength of the field is a natural number, i.e. £2/b € N. By resonance
we mean here that the motion of the particle will be exactly as described in the end of
the Section 1, in particular that for any initial conditions the set {r(¢)}+>o C R has 0 and
400 as accumulation points.
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Abstract. Bone remodelling model that we formulated in previous years ago went through
small modifications recently to better describe the bone renewal phenomenon. A rather large
recherche was carried out to determine the model parameters to reach not only qualitative but
also quantitative results. A great advantage of presented model is that all the parameters are
real and measurable and thus by thorough search in literature we were able to set almost all
of them. The remaining were obtained as a solution of nonlinear programming problem. As a
consequence the model could be used for predictions on the tissue level.

Abstrakt. Model pro remodelaci kosti, ktery jsme formulovali v pfedchozich letech, prosel
mensimi tpravami, aby presnéji popisoval jev znovuobnovy kosti. Provedli jsme pomérné znac-
nou resersi, abychom urcily parametry modelu, coz umozni dosahovat nejen kvalitativnich ale
i kvantitativnich vysledkt. Velikou vyhodou prezentovaného modelu je redlnost a métitelnost
jeho parametri, a tedy pomoci dikladného prozkouméni dostupné literatury jsme jich byli
schopni nastavit vétsinu. Zbylé byly ziskdny jakozto feseni ulohy nelinedrniho programovani.
Nyni mize byt model pouzivan pro predikci na tkanové trovni.

1 Introduction

Bone is a living tissue that is constantly being renewed. The cells that participate in
the process are the osteoblasts(bone forming), osteoclasts(bone dissolving), and osteo-
clasts(bone cells). They form a temporary anatomical structure, called basic multicellular
units, that carry out the remodelling process. A number of factors affect bone turnover,
including hormones, cytokines, and mechanical stimuli. Mechanical loading is believed
to be of very high significance as a stimulus for bone cells, which ensures proper bone
strength and prevents high bone loss with age.

Bone remodelling also repairs an accumulated damage from everyday loading by re-
newing the tissue, plays an important role in metabolism since bone is used as a reservoir
of many minerals (e.g calcium, potassium) and hormones (e.g. parathyroid hormone
PTH) and remodelling process is a way to access these storages.

In our approach, we describe the mentioned phenomenon using the following stoichio-

metric equations:
k+t1

RR+ MCELL = MNOC + Ny, (1)

*This research has been supported by the Czech Science Foundation project no. 106/08/0557, by
Research Plan No. AV0Z20760514 of the Institute of Thermomechanics AS CR, and by Research Plan
MSM 6840770010 ’Applied Mathematics in Technical and Physical Sciences’ of the Ministry of Education,
Youth and Sports of the Czech Republic.
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where RR are ligand-receptor (RANKL-RANK) bounds between OB and MCELL (pre-
cursor of osteoclast) that are needed to enable formation of multinucleated osteoclasts
MNOC from mononuclear cells (MCELL) [16]. Ny is a remaining product from reaction
(1). Bone decomposition can be characterised by following chemical reaction:

ki
MNOC +Old_B = Ng + LF, 2)

where Old_B denotes old bone. During resorption, the osteoclasts release local factors

LF (mainly growth factors) from bone, which play role in activation of osteoblasts OB
[4].

k+3
LF + osteoprogenitor = OB + Nig (3)
kta
OB + Ny & Osteoid + Nys, (4)

where Ny, Ni3 are remaining substratum. The longest period in bone remodelling pro-
cess pertains to mineralisation (depositing calcium, etc. — Ny4 — into matrix) of osteoid.
Ossification of osteoid (the primary ossification) into new bone tissue may be charac-
terised by:

k45
N14 + Osteoid é New_B + Nlﬁ, (5)
where New_B denotes new bone formed by remodelling process and Nig is the residuum
of bone formation reaction.
Kinetics of the above mentioned processes is governed by the following system of
ordinary differential equations (obtained from law of active mass; for more details see
some of our previous work - e.g. [8, 9, 10]):

onyc
% = =011 + nmeerr)nyvcenn + J3 + Inews — Di (6)
on
731:'3 = —(083 —nuceLL + now.s)nod.s — D2 + INew_B (7)
on
8(;B = 03(8s — nowd.B — (NOB + NOsteoid + NNew_B)) -
(B3 — (noB + Nosteoid + MNew_B)) — (8)

54(&11 (nOsteoid nNew_B))nOB D3 — Dy
5”()steoid S
L — 5,

o (B11 — (nOsteoid + NNew_B))NOB —
- 55 (ﬂ14 - nNew_B)nOsteoid + Dy —Ds (9)
on
% = 05(B14 — NNew_B)NOsteoid — INew_B + Ds, (10)

where index i relates to substances and index « to reactions, (3; is a sum of normalised
initial molar concentrations of relevant substances, . relate to chemical reaction rate,
parameter D, describes the influence of dynamic loading on chemical reactions, and n;
is a normalised concentration of i-th substance.

2 Parameters setting

It is very important to know stationary solution of dynamic system (6)-(10) because
(if stable) it gives us some idea about solution of ODEs and necessary conditions for
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parameters may be derived. Because (6)-(10) describe evolution of normalised molar
concentrations, it is needed to ensure that the solution is positive for all £ > 0. Moreover,
appropriate linear combinations of solution which represent all the other involved sub-
stances need to be positive too. There is just one positive stationary solution satisfying
these necessary conditions.

All used parameters in this model are realistic and measurable. Unfortunately, we do
not have nowadays enough knowledge for precise identification of all of them. However,
we can perform reasonable estimation based on experiments and nowadays knowledge
of the process found in literature. Firstly, the parameters J, will be determined. Since
ODEs (6)-(10) are in dimensionless form, these parameters representing chemical reaction
rate can be assigned just from ratio of reaction rates:

0o = % [1], ki2...chemical reaction rate of 2"® reaction (11)
+2

In literature, we may find that resorption carried out by M NOC (second reaction (2))
lasts 20 days [16]. Further, the reversal phase (third reaction (3)) lasts approximately
9-10 days [4, 16]. The osteoid production by OB is the longest part of BR process and
it lasts 90-140 days [16, 4]. Consecutive mineralisation is almost never ending but the
primary ossification, which completes the formation of new bone from osteoid, has time
span similar to osteoid formation [18]. Time needed for the creation of active resorbing
osteoclasts (M NOCSs) by merging osteoclast precursors (MCELL) was not found in
literature but it can be assumed that it is much faster than the previous mentioned

reactions. We postulate it to be one hour. In total, we have:

T 2 T 9
61:E:—2: OdaYSi480’ 53:@:_2: Odaysi
k+2 T 1h k+2 T3 9days (12)
ke Tp  20days 1 .
54 . T = -5 = 657

" ko Ty 140days 7

For further parameter setting we need to estimate resorption rate of bone (Old_B).
Kanehisa [7] states that a single M NOC resorbs 43um? to 1225um? of bone per hour
with mean value 390um?/hr, which will be used in following considerations. To obtain
total resorption rate in bone, an estimation of total active M NOC' in body is needed.
In typical BMU (basic multicellular unit - [2, 12]) there are 9 M NOC' ’at the front’ of
cutting cone and approximately 2000 OBs at the end [17]. We may verify this quantity
of MNOC present in BMU: Eriksen states that typical osteoclast (M NOC) diameter
is 50 wm [1]. Thus really 9 or 10 M NOCsS fill the front line of ’cutting cone’ [12] with
diameter of 200 — 250 um. Further, Manolagas states that 1 milion BMU operates at any
moment in body [11]. If we use these data, the resorption in human body per hour is

390 -9 - 10°um?®/h = 3.5mm?/h. (13)

In other words, the whole skeleton which has a volume of 1.75 10%mm? [6] would be
resorbed in 1.75 109/3.5 = 5 10°h = 5T7years. On the other hand, it is often stated
that bone remodels once every 5-7 years. From here it is apparent that it is needed to
modify the assertion of Manolagas and state that approximately 10° BMU operates at
any moment in body instead of 10°.
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Now it is possible to determine concentration of MNOC, OB, and Old_B (=osteo-
cytes - OCy) in human bone

910" 1 mol 107" mol

MNOC| = - =514 —— 14
[ ) Ny 1.75 1 Na 17 (14)
2000 10" 1 mol N 10'° mol
Na 175 1  Njy U’

where N represents Avogadro’s number. As was mentioned, ODEs (6)-(10) describing
BR process are in dimensionless form which is very usefull for mathematical analysis.
One consequence, of course, is that all concentration are normalised with respect to
concentration of bone tissue - osteocytes. It is often stated that amount of M NOC
together with OB are around 5% in human bone. Robling mentions that the ratio of
[OCy] to ([OB] 4+ [MNOC]) is around 20 [16], which also supports our belief that [OCy]
is determining for bone tissue concentration.

Correct estimation of chemical reaction rate k. is crucial for finding relation between
real time ¢ and computational time 7 = t k,5[Bo]|, where [Bo| is initial concentration of
bone tissue which is used for normalisation, i.e. [Bo|] = [Old_By,] + [New By, From
second reaction (2)

0B] = (15)

[O1d_B]
[Old_Bini]
where [Old_Bj,;] is the initial concentration of old bone at time ¢t = 0 and [Old_B] at time
t =A t. To set the ko parameter, it is needed to calculate the concentration change of
old bone in time caused by M NOC'. It was already mentioned that 1 M NOC' dissolves
390um?/h of bone tissue in average. Since

= exp(—k12[MNOC] A t), (16)

[O1d_B] = [OCy] = 20[OB], (17)
we have 1010 l ) l
mo 4 mo

[Old_B] = QON—AT =210" NA i (18)

which means that there is approximately 1 OCy in every 5000um?. To verify this num-
ber as well as previous estimates, we will calculate an average distance between OCY:
dist = /5000 — v/3,/5000 = 17 — 29m, which is in very good correlation with Sugawara
observation: 24.1+2.8um [19]. In total, 1 M NOC dissolves 3.9 10?-2 1074 = 7.8 1072 of
OCy per hour, i.e. % = 2.17107° OCy per 1s. We may (without loss of generality)
further assume that this rate is independent on M NOC' concentration, i.e. noncompet-
ing. Finally, the time change of [Old_B] decreases every second in following manner (using

q (14)):
A [Old.B] A [OCy] 5.14107-2.17 107° . 1.12 103 mol

At=1s 1s Na Na ls’ (19)
and thus the value k., satisfies (relation (16) used)
Od.B] _ [Old.By,]- 4 [OldB] 20 10" ~1.1210°Ny _ 56 _
[0O1d_By,,;] [01d_B;,;] B 20 1010 Ny 109
5.14 107 e 107) st
= exp(—kya - Z ~ 1=k — Ny

n=0
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By solving the last equation we obtain

5.6 Np . - mol
= ————=06.510"—. 21

514101 l (1)
Interestingly, we may infer this value from a very different point of view: let us assume
that OC'y are located so that they are tuned’ together to communicate. Speed of wave
propagation in bone (fluid) is around 2900 m/s [14] and when realizing that typical
distance between OC'y is 20um (which corresponds to A/2) we have

2 2
po 200m/s o 2m_ 8myge
2.20 10~6m f 29

Since concentration changes with time proportionally to concentration (with coefficient

kia) we have

de c(t)
a —kiac = o exp(—kiat) (22)

. From here it can be seen that ﬁ equals to characteristic time, and it may be summarised

from (22) that ko ~ 7 = 22107 = 1.15 10". If we compare these two estimates, we see
that they are closely related. It would be interesting to test the second hypothesis - to
see whether the distance among OC' is so crucial for proper mechanosensing/function
of bone adaptation.

Knowledge of the k5 value enables us to find the relation between computational

time 7 and real time ¢

20 10%

A

7 = kyo[Bo]t = 6.5 10" - t=210""¢ (23)
Useful information for further parameter setting is to know the time 7 equivalent to 1
day and duration of BR cycle(1h + 20d 4 9d + 140d + 140d ~ 310d):

Taay =2 107°-24-(60)> = 1.7 Tpr = Taay - 310 = 527. (24)

BR creates a new bone after 310 day by replacing old bone tissue. This new bone
tissue, as it is called, is a regular bone tissue that has just been recently formed and has
smaller mineral content since the secondary ossification has not started yet. Nevertheless
it can be remodelled if needed. The model has the same features - it creates a new
bone tissue which is transformed into Old_B. This transformation is realized by fluxes of
particular substances - outflow of New_B (Jyew.p) and inflow of Old_B (Joag)- In the
model it holds:

Joid.B = INew.B (25)

which guarantees us that 1 mol of New_B is changed into 1 mol of Old_B (actually, we
may now rename Old_B simply into Bone and New_B into formationindexr because
new bone New_B after being formed is changed into Old_B which then represents total
amount of bone). Now, we will calculate the value of Jpi4. 5. We know that 1 MNOC
resorbs 390um3/h and in whole skeleton there are 9 10" M NOCSs which means that
3.5 10"%um3/h = 35mm?3/h of bone tissue is removed. Because bone tissue is mostly
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in equilibrium (resorption is balanced with formation), we may assume that the same
amount of bone is produced and resorbed:

d equili
T [O1d_B] = resorbtion + Joi4_p Wi o - (26)
= Jows = resorbtion = 35mm?/h = 10" um?/s,
and thus amount of bone resorbed per second in mols is
A #Old_B
#Ait =10"-2107*/Ny =2 10°/Npymol - s, (27)

where equation (18) was used and when realizing that skeleton has volume of 2/ we may
conclude

A [OldB]  210°  10°mol

- 28
At ONA Np | Old-B (28)
1
= —J e =3107% 29
Jous = Jods PE (29)

Bone remodelling is a very long process. Cells taking part in it must be several times
replaced. This fact is actually exploited by body itself as a control mechanism - e.g. estro-
gen promotes osteoclast apoptosis [17]. Apoptosis of M NOC plays substantial role since
its mean life in vivo is 3 days [20]. Using this knowledge we may determine J3(=negative
flux of MNOC=MNOC apoptosis) analogically to (28):

#MNOC 9 107 LT 102 mol
volume - time ~ 21-3-24h  Nj [-s
T3 :1.7102.&:1 (31)
INew_B Na 103 6

Another family of parameters - (3; - are determined by sum of normalised initial
concentrations of appropriate substances

decrease of [MNOC]/s = (30)

=

Bs = [Bo] = [O1d_By,;] + [New By (32)
B [01d_B;,;] N [01d_B;,.;] o

where relation between OB and OC'y was used and a consideration that remaining prod-
uct (Ng) and osteoid are not present in given volume when BR is initiated. Similarly

[osteoprogenitor;,;| + [New_B;,;] + [Osteoid;n;] + [OBns] 1

Ps = [Bo 0 .
~ [New Bin] + [Nigini] 1

P = [Bo] 20’ o

Gy, = [New _Bini] + [O[thi]oﬂmi] + Nurgni] _ 0.7, (35)
_ [RRin) — [MCELL;,,] 1

b= [Bo] s o

[MNOC,,;] — [01d_B,,,;] + [MCELL;,]
[Bo]

Bs = =0. (37)
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Last group of parameters, D,, describes the effect of dynamic loading on rate of
chemical reactions:

lowd)

D,=——=|1], 38
k+2 [BO]2[ ] ( )
Ta = lavd(l) + laa-Aa (39)

where d) = divv = g—x + g—;z + g—;‘;’ = —%% is the trace of the deformation rate tensor,

p is concentration of material, r, and A, is a chemical reaction rate and affinity of the
«a—th reaction, respectively. In case of thermodynamic equilibrium, all quantities depend
on equilibrial values (7, e.q, [Vi]eq). When the system is deflected from equilibrium, they
may be described using the following linear relations (Curie-Prigogine principle - linear
nonequilibrium thermodynamics [13]):

Toa = la vd(l) +la a-Aon (40)
Pa = lv ad(l) + lv UAOU (41)

where [, ,,ly » = 1y o, lo o are functions of temperature 7', and the invariants of a strain
rate tensor d;;, i.e. d(1) - volume rate, d(3) - shear rate. We assume that the process
is isothermic (body temperature), further that the linear dependence in equation 40 is
sufficient to describe the dependence on d(;), and that the influence of shear rate is
constant, i.e. we assume that shape and size of canaliculi, lacunas, and osteocytes in
bone does not change noticeably. Elastic deformations of canaliculi and lacunas induce
both their volume deformation and shear bone fluid flow past osteocytes. The measure of
these stimulations is summarised in the phenomenological coefficients [, , ly v, la o« Which
can be patient (genetically) dependent.

As can be seen from (38), we need to determine the influence of mechanical loading
on each chemical reaction. The unknown parameters [,, were calculated as a solution
of constraint extremum problem (or minimisation problem of appropriate functional) for
unknowns [,,:

[OB]% = 4.5% (42)
with constraints:
’; max — 90 (43)
OB 2000
[IMNOC]% = 0.023% <— [NENO]C] = 5 = 200 (44)

and conditions describing that concentrations of all substances in stationary solution
are positive. We know that spongy bone is located in part of bone which experiences
smaller deformations/strains, and conversely cortical bone creates weightbearing support
on outer cortex. We used this fact for setting l,, so that the maximal (found in cortical
bone - the properly loaded case) and the minimal apparent density (found in spongy
bone - unloaded case leads to minimal density) in stationary state are in the following

relations: 2.0 g/em?
pmax pcort max Ug/em

p=pldy) = = ’ =
W Pmin pspongy7 min 0.1 g/cm3

— 20 (45)
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which guarantees us correct range of apparent bone density [5, 15, 3]. The equation (42)
ensures that the percentage of osteoblasts OB in a stationary state will be 4.5% and
similarly the relation (44) ensures the correct M NOC' percentage.

Even if all stationary solutions are positive, it is still needed to check whether all
the concentrations of substances are positive for all time ¢ > 0. D, parameters that
solve above mentioned constraint extremum problem and also satisfies conditions from
previous sentence are listed in table 46.

51 =480, d3=2, O6y=1 =205
fr=—-05 [3=04, Bs=102, fs=15 Pu=3 Ou=7
Jowd.B = INew.s =3 1074, T3 =175, (46)
liy = —8.96 1071322 [y, = 4.1 1071922 3, = —2.82 10717
lyy = —7.91 10718mL 5 = 5.91 107 10mel,

3 Discussion and Conclusion

The bone remodelling process together with its control is still not fully understood even
if there has been a great step forward in last decade, especially on the cellular level.
It is very important to be able to predict response of bone to varying condition - both
mechanical (e.g. joint implants) and biological (e.g. hormonal) changes. Models that are
nowadays used for simulation of BR are still not sufficient.

The model here presented combines both the mechanical stimuli and biochemical
control. With current settings of parameter the model has all the following features that
already describe the bone remodelling process to reasonable extent:

realistic and measurable model paramteres

positiveness of all molar concentration of involved substances

e unique positive stationary solution

e rate of chemical reactions

e resorption rate of bone

e number of active BMU (active remodelling foci)

e molar concentrations: [MNOC], [OB], [OCy]

e relation between time scales(computational and real time)

e 1 mol of New_B transforms into 1 mol of Old_B (mass may differ)
e MNOC apoptosis (mean life in vivo is 3 days; compare to BR)

e initial concentration of involved substances

e the influence of mechanic stimuli on reaction rates-determined by solving the min-
imalisation of appropriate functional with constraints such as ’;‘“ﬂ = 20.

min
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We are about to start using the presented model for predicting bone adaptation in humans
and use the results for further verification.
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Abstract. The aim of our work is to compute the (factor) complezity function C(n) of the infinite
word ug associated with §-expansions, where 3 is a non-simple Parry number. In general it is
hard to find an explicit formula for the complexity function of an infinite word u and it seems
it holds also for the case of ug. However, we are able to find all left special factors that, in
a certain sense, completely determine the complexity. The notion of (right) special factor was
introduced by Berstel in 1980 and considerably enhanced by Cassaigne in his paper from 1997.
We introduce another slight enhancement, a tool that will help us to identify all infinite left
special branches of a fixed point of substitutions satisfying some natural assumption. Further,
the knowledge of the structure of left special factors will allow us to formulate a simple sufficient
and necessary condition for the complexity of ug to be affine.

Abstrakt. Cilem nasi prace je najit (faktorovou) komplezitu C(n) nekonecného slova ug piis-
lusného B-rozvojum, kde (3 je nejednoduché Parryho ¢islo. Obecné je ¢asto nemozné najit explic-
itni formuli popisujici komplexitu nekoneéného slova a zda se, ze to plati i pro ptipad, kdy jako
nekon¢né slovo bereme ug. Pfesto se d4 docilit alespon nepiimého popisu faktorové komplexity a
to za pomoci levych specidlnich faktori, které v jistém smyslu komplexitu zcela urcuji. Metoda
vypoétu komplexity pomoci (pravych) specidlnich faktoria byla poprvé uvedena v Berstelové
¢lanku v roce 1980 a vyznamné rozvinuta v Cassaigneho ¢lanku z roku 1997. Vysledkem nasi
prace je pak dalsi rozsifeni, které umoznuje nalézt vsechny levé nekonecné specidlni vétve pro
pevné body substituci splnujicich pomérné obecné predpoklady. Dalsim dilezitym vysledkem
je, mimo nalezeni vSech levych specidlnich faktori slova ug, také jednoduchd formulace nutné
a postacujici podminky pro to, aby komplexita ug byla afinni funkci.

1 Introduction

Generally speaking, our aim is to understand the combinatorial structure of aperiodic
infinite words over a finite alphabet. In particular, we are interested in the word ug
associated with [g-numeration, where 3 is a non-simple Parry number. In order to be
able to better explain the problem, we need some basic notation.

Definition 1. Let A = {0,1,...,¢ — 1},q > 1 be a finite alphabet. An infinite word
over the alphabet A is a sequence u = (u;);>1 where u; € A forall ¢ > 1. If v =
UjUjt1 -+ Wjgn—1, J, 1 > 1, then v is said to be a factor of u of length n and the index j
is an occurrence of v, € is the factor of length 0.

93
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By L, (u) we denote the set of all factors of u of length n € N, the language of u is
then the set L(u) = J, oy £n(0).

Definition 2. An infinite word u is said to be eventually periodic if u = v1vov9v9 - -+ =
v1(v9)¥, where v; and v, are finite words and vy is non-empty. If u is not eventually
periodic, then it is aperiodic.

From our point of view, eventually periodic words are not interesting as their structure
is completely described by the simple finite rule. No such a rule exists in the case of
aperiodic words, therefor some tools how to measure their irregularity have been proposed.
One of such basic tools is the (factor) complexity function C : N — N, which counts the
number of factors of a given length, i.e.

C(n) = #Ln(u),

where # A is the number of elements of a set A. It is easy to realize, that the complexity
of u is bounded if and only if u is eventually periodic. Other known results on the
complexity functions are listed in the following proposition.

Definition 3. A mapping ¢ which maps each letter of a finite alphabet A to a finite word
over the alphabet is a substitution.

A substitution ¢ is primitive if there exists k € N such that for all a,b € A the word
©*(a) contains b.

Proposition 4. Let u be an infinite word over a finite alphabet A.
(1) 0 <C(n) < (#A)",

(11) u is aperiodic if and only if the first difference of the complexity function is positive,
i.e. AC(n):=C(n+1)—C(n)>1, foralln e N,

(111) if u is a fized point of a primitive substitution then C(n) is a sublinear function,
i.e., C(n) < an+b, for some a,b € N,

() if u is a fized point of primitive substitution then AC(n) is bounded.

Items (7) and (i) are obvious, (7i7) is due to [15], (iv) was proved in [13] and in a
more general context in [5]. For more properties see e.g. [1].

Infinite words appears in various fields of mathematics [4]. The word ug we are
interested in has origin in the theory of non-standard numeration, namely S-numeration.
For more on this topic see [12].

[-numeration is a generalization of the classical numeration, when each number is
represented as a sum of powers of an integer base b > 1. Humans use the representation
in base b = 10, computers use binary representation b = 2. For each positive real number
x one can found its representation in base b using a greedy algorithm:

1. Find k € N such that b* < z < vF+1,

2. Set xy, := |x/bF| and ry, := {x/b"}.
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3. For 0 <i <k, let x; = |br;] and r; := {bri1}.

| z] is the integer part and {x} is the fractional part of a real number z. Obviously, digits
z; takes value in the set {0,1,...,|b] —1}. If b > 1 is an integer, we obtain classical
representation in an integer base. If we replace b by some non-integer number 5 > 1, we
obtain the [-expansion of x.

For z € [0,1), the [-expansion can be computed also by using the piecewise linear
map T : [0,1) — [0,1) defined as Ts(x) = {Fz}. The sequence ds(z) = x1z275- - is
obtained by iterating T with z; = WTé_l(x)j. The difference between (-expansion and
dg(z) arises for x = 1 since the Rényi expansion of unity dg(1) is not a [-expansion.
Parry [14] showed that dg(1) plays a very important role in the theory of S-numeration.
Among other things, it allows us to define Parry numbers.

Definition 5. A real number 3 > 1 is said to be a Parry number if dz(1) is eventually
periodic. In particular,

a) if dg(1) = t; - - -t,, is finite, i.e. it ends in infinitely many zeros, then [ is a simple
Parry number,

b) if it is not finite, i.e. dg(1) =t; -ty (tmt1 - - tmip)®, then § is called a non-simple
Parry number.

Note, that the parameters m,p > 0 are taken the least possible. It implies that
tm 7 tm+p wWhich will be a very important fact.

As the infinite word ug is tightly connected with a geometrical interpretation of /-
integers, we first introduce (3-integers along with some of their properties.

Definition 6. The real number z is a (3-integer if the (-expansion of |z| is of the form
Zf:o a;3". The set of all S-integers is denoted by Zg.

The definition of S-integers coincides with the definition of classical integers in the case
of 3 in Z. But there are several new phenomena linked with the notion of S-integers when
[ is not an integer. For our purposes, the most interesting difference between classical
integers and [-integers is the difference in their distribution on the real line. While the
classical integers are distributed equidistantly, i.e. gaps between two consequent integers
are always of the same length 1, the lengths of gaps between (3-integers can take their
values even in an infinite set. More precisely, Thurston [16] proved the following theorem.

Theorem 7. Let 3 > 1 be a real number and dz(1) = (t;);>1. Then the length of gaps
between neighbors in Zg takes values in the set {Ng, Ay, ...}, where

Aizztkﬂ fori e N.

k0
k>1 ﬁ

Corollary 8. The set of lengths of gaps between neighbors in Zg is finite if and only if 3
is a Parry number. Moreover, if 3 is a simple Parry number, i.e. dg(l) = t1---tp,
the set reads {Do, DNy, ... p_1}, if B is a non-simple Parry number, i.e. dg(l) =
tre b (tg1 - - tingp)” s we obtain {Do, Ay, .. Dpgp1}-
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Now, let us suppose that we have drawn [(-integers on the real line and assume that
[ is a Parry number. If we read the length of gaps from zero to the right, we obtain an
infinite sequence, say {A;, }x>0. Further, if we read only indices, we obtain an infinite
word over the alphabet {0,...,m — 1} in the case of simple Parry numbers, and over the
alphabet {0,...,m+p—1} in the non-simple case. The obtained infinite word is just the
word ug we are interested in. However, there exists another way to define it. Fabre [9]
proved that ug can be defined as the unique fixed point of a substitution ¢z canonically
associated with a Parry number 3 and defined as follows.

Definition 9. For a simple Parry number [ the canonical substitution ¢z over the alphabet
A=1{0,1,...,m — 1} is defined by

_jor(k+1) if ke A\ {m—1},
S[)"(k)_{otm i & = m.

Definition 10. For a non-simple Parry number 3 the canonical substitution g over the
alphabet A ={0,1,...,m +p— 1} is defined by

0%+1(k+1) ifke A\ {m+p—1},
wp(k) =4 o
0'm+rm iftk=m+p—1.

We see that the definition of ¢4 is given by dz(1) and that the only difference between
simple and non-simple cases appears in the image of the last letters m —1 and m+p— 1.
While in the simple case the last letters of images pg(k), k = 0,1,...,m—1, are all distinct
and so the images form a suffix-free code, in the non-simple case either @g(m) = 0mm is
a prefix of pg(m + p — 1) = 0'*t»m or vice versa. As we will see later on, this property
is crucial from the point of view of computing the complexity of the infinite word ug.

Definition 11. Let 3 > 1 be a Parry number. The unique fixed point of the canonical
substitution ¢z is denoted by

u = lim ©5(0) = ¢3(0).

The uniqueness of ug follows from the definitions of (g, the letter 0 is the only
admissible starting letter of a fixed point.

2 Special factors and factor complexity

In this section, we will recall the notion of special factors of an arbitrary infinite word
and we will explain how the structure of special factors of an infinite word determines its
factor complexity.

In what follows, we shall restrict ourself to those infinite words which are fixed point
of some substitution ¢ defined over a finite alphabet A. We shall further assume that ¢
is injective and primitive.

It is well known that any fixed point of a primitive substitution is uniformly recurrent,
i.e. if each factor occurs infinitely many times and the gaps between its two consecutive
occurrences are bounded in length. It implies that each factor is extendable both to the
right and to the left.
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Definition 12. Let v be a factor of u, the set of left extensions of v is defined as
Lext(v) ={a € A| av € L(u)}.

If #Lext(v) > 2, then v is said to be a left special (LS) factor of u.
In the analogous way we define the set of right extensions Rext(u) and a right special
(RS) factor. If v is both left and right special, then it is called bispecial.

The connection between (left) special factors and the complexity follows from the
following reasoning. Let us suppose that L£,(u) = {vi,...,v} and let Lext(v;) =
{agl), o al(:)}, l; >1,i=1,..., k. Now, it is not difficult to realize that

k- k k
Ly1(u) = {agl)vl, . ,al(ll)vl, CL§2)U2, e al(k_ll)vk_l, ag )vk., - ,al(k)vk},

i.e. by concatenating all factors of length n and all their left extensions we obtain all
factors of length n + 1. It implies that

#Lni1(0) = #L,(u) =AC(n) = Y (#Lext(v) —1). (1)
vEL, (u)
vis LS

Hence, if we know all LS factors along with the number of their left extensions, we are
able to evaluate the complexity C(n) using this formula.

2.1 Classification of LS factors

Let a,b € Lext(v) be left extensions of a factor v of u, it means that both av and bv are
factors of u. If there exists a letter ¢ € Rext(av)NRext(bv), we say that v can be extended
to the right such that it remains LS with left extensions a, b, indeed a,b € Lext(vc).

Definition 13. Let a,b € Lext(v) be distinct left extensions of a LS factor v of u. v is an
(a,b)-mazimal LS factor if Rext(av) N Rext(bv) = @, in words, v can not be extended to
the right such that it remains LS with left extensions a, b.

It can also happen that a LS factor v with left extensions a and b is extendable to

the right infinitely many times remaining LS. In this way we obtain a so-called infinite
LS branch.

Definition 14. An infinite word w called an infinite LS branch of u if each prefix of w
is a LS factor of u. We put

Lext(w) = m Lext(v).

v prefix of w
Proposition 15.
(i) If u is eventually periodic, then there is no infinite LS branch of u,

(i) if u is aperiodic, then there exists at least one infinite LS branch of u,
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fr,(1,2) =11

p-image 1211 (w) f-image 2 11 (w)
W > w
311 > 3 Dl

g (1,2) = {2,3}

%)
A4
g

'

fr(2,3) =€
2 p-image 311 f-image 1
w > p(w) > w
3 > 2412 > 2 > e lw)

9r(2,3) = {1,2}

Figure 1: Images of LS factors.

(111) if u is a fized point of a primitive substitution then the number of infinite LS
branches is bounded.

(1) is obvious, (iii) is a direct consequence of (1) and Proposition 4 (v). Item (i7) is
a direct consequence of the famous Konig’s infinity lemma [11].

Taking all together, our aim is to find all (a, b)-maximal LS factors and also all infinite
LS branches of u.

Remark 16. The term “special factor” (for us it was RS factor) was introduced in 1980 [2]
and it has been used for computing the factor complexity since then (eg. [3], [8]). The
notations introduced above are based on Cassaigne’s article [6]. An (a, b)-maximal factor
is a new term, actually it is a special case of a weak bispecial factor proposed there. It
is also shown in the article that bispecial factors determine the second difference of the
complexity in a similar way as LS factors determine the first difference of the complexity.

Remark 17. Everything what has been (and will be) defined or showed for LS factors can
be defined or showed similarly for RS factors.

2.2 How to find infinite LS branches

Before introducing a new notion, let us consider for example the substitution
w:1+—1211,2+— 311,3 +— 2412,4 + 435,5 +— 534 (2)

with u = ¢*>(1). Further, let w be a LS factor (or infinite LS branch) of u with left
extensions 1 and 2. Is p(w) again LS factor? From Figure 1 (the first line) we see that
it is not since the letter 1 is its only left extension. In order to obtain a LS factor, we
have to prepend the factor 11 which is the longest common suffix of ¢(1) = 1211 and
©(2) = 311, then 11p(w) is a LS factor with left extensions 2 and 3. In the case when
Lext(w) = {2,3} (the second line in Figure 1), ¢(w) is a LS factor since the longest
common suffix of p(2) = 311 and (3) = 2412 is the empty word e.

Definition 18. Let ¢ be a substitution defined over an alphabet A. For each couple of
distinct letters a,b € A we define fr(a,b) as the longest common suffix of words ¢(a)
and (b).
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Definition 19. Let ¢ be an injective substitution defined over an alphabet A having a
fixed point u. For each unordered couple of distinct letters a,b € A such that Rext(a) N
Rext(b) # () we define the set g (a,b) as follows.

(i) If fr(a,b) is a proper suffix of both ¢(a) and ¢(b), then gr(a,b) contains just the
last letters of factors ¢(a)(fr(a,b))™" and ¢(b)(fr(a,b))™ .

(ii) If fr(a,b) = p(a) (ie. W.L.O.G. |p(a)| < |¢(b)]), then gr(a,b) contains the last
letter of the factor ¢(b)(fr(a,b))™! and all the last letters of factors ¢(c), where
¢ € Lext(a) such that Rext(ca) N Rext(b) # 0.

Assumption 20. A substitution ¢ defined over A is injective and it has a fixed point u
such that for all a,b € A, for which gy (a,b) is defined, it holds that #gr(a,b) = 2.

Moreover, if fr(a,b) = p(a) (i.e. W.L.O.G. |p(a)| < |¢(b)]) and d is the last letter of
the factor ¢(b)(fr(a,b))™!, then for all ¢ € Lext(a) such that Rext(ca) N Rext(b) # 0 it
holds that d is not the last letter of ¢(c).

Assumption 20 is valid for all suffix-free substitutions since g (a,b) from point (7)
of Definition 19 contains always just two elements and the case when fr(a,b) = ¢(a)
never happens. If fi(a,b) = ¢(a), then Assumption 20 says that if v is a LS factor
with Lext(v) = {a,b}, then the last letter of ¢(c) is the same for all ¢ € Lext(av) and,
moreover, dy(a) is not a suffix of ¢(b) — in other words, for each LS factor v the factor
fr(a,b)p(v) is again LS. We will see that this complicated assumption is satisfied for the
(not suffix-free) substitution g, where § is a non-simple Parry number.

Definition 21. Let ¢ be a substitution satisfying Assumption 20. Then for each LS factor
(or infinite LS branch) w having distinct left extensions a and b we define f-image of w
as the factor f(a,b)p(w).

With respect to the preceding discussion, Assumption 20 says that f-image is al-
ways a LS factor and it has just two left extensions, namely two elements of g (a,b),
corresponding to two original left extensions a and b.

Assumption 20 along with the notation introduced above allow us to define the fol-
lowing graph.

Definition 22. Let ¢ be a substitution defined over an alphabet A satisfying Assump-
tion 20. We define a directed labelled graph G'L,, as follows:

(i) vertices of GL,, are all unordered couples of distinct letters a, b such that Rext(a) N

Rext(b) # 0,
(ii) there is an edge from a vertex (a, b) to a vertex (c, d) labelled by fr(a,b) if g1 (a,b) =

{c, d}.

In fact, Assumption 20 states that out-degree of each vertex is exactly one. The
graph G'L, for our example substitution is drawn in Figure 2, this substitution satisfies
Assumption 20 for it is suffix-free.

Now, let us consider the case when w is an infinite LS branch with a,b € Lext(w), a #
b. Obviously, f-image of w is uniquely given. For most substitutions even a “f-preimage”
of each infinite LS branch exists.
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Figure 2: The graph GL,, for the Substitution (2).

Assumption 23. An infinite word u is a fixed point of a substitution ¢ satisfying As-
sumption 20. For each infinite LS branch w of u with a,b € Lext(w), a # b there exists
at least one infinite LS branch w with left extensions ¢ and d such that f-image of W
equals w and gy (c,d) = {a, b}.

This assumption is very weak. Actually, we have not found any substitution not
satisfying it.

Theorem 24. Let u be a fized point of a primitive injective substitution o satisfying
Assumption 23 and let w be an infinite LS branch with a,b € Lext(w),a # b. Then
either w is a periodic point of ¢, i.e

w = ¢'(w) for somel > 1, (3)

and (a,b) is a vertex of a cycle in GL, labelled by € only or w = sp'(s)p?(s) -+ is the
unique solution of the equation
w = s¢'(w), (4)

where (a,b) is a vertex of a cycle in GL, containing at least one edge with non-empty
label, | is the length of this cycle and

s = fulgy '(a,b)) - @' 2(frlgnla, b)¢' " (f(a,b)). (5)

3 Results for ug

Definition 25. Let 3 > 1 be a non-simple Parry number. The set S is defined as follows:
[ belongs to S if and only if one of the following conditions is satisfied

a) da(1) =t tp(0- - Otpyp)”  and ty > tmip,
b) dg(1) =t1 -t gp OOt (b + 1t ip)®, @21, t < tonsp-

£0 qp—1

As an outstanding subset of S, we define a set S = {3 > 1| dg(1) =¢,(0---0(t; —1))“}.
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Due to the previous lemma, § € § if and only if 2 = sp,s € N.

Proposition 26. Let 3 > 1 be a non-simple Parry number and let ug be the fized point of
the canonical substitution pz. Then

(1) if p > 1, then ug is an infinite LS branch with left extensions {m,m+1,....m +
b= 1};

(i1) if B¢ S, then ug is the only one infinite LS branch,
(i1i) if B € S, then there are m infinite LS branches

0"me™ (0'm)¢*™ (0'm) - - -

gpm_l(()tm)g)?m_l(Otm)gp?’m_l(otm) .
There are no other infinite LS branches of ug.
We have found all infinite LS branches. To obtain complete knowledge of the structure
of LS factors we need to find all (a,b)-maximal LS factors as well. It is possible to do
so but it requires introducing a lot of notations. Therefore, we present only the most

important result formulated as the following lemma.

Lemma 27. 3 € S if and only if ug contains a finite number of (a,b)-mazimal LS factors
for any a,b € A.

It is important since one can prove the following.

Lemma 28. The complezity of ug is affine if and only if ug contains a finite number of
(a,b)-maximal LS factors for any a,b € A.

This equivalence is not valid in general, for a counter example see [7]. These two
lemmas give us our main result.

Theorem 29. Let 3 > 1 be a non-simple Parry number and let ug be the fized point of
the canonical substitution @g. The factor complezity of ug is affine if and only if B € Sp.
Then, C(n) = (m+p—1)n+ 1. Moreover,

(i) if p>1 and B € Sy, then ug and 0~'ug are the only infinite LS branches,

(11) ug is Sturmian if and only if p=1 and B € Sy, i.e. dg(l) =t;(t; — 1)“.

The characterization of the Sturmian case is given in [10]. Remark that numbers from
Sy are all Pisot numbers (Frougny).
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Abstract.We consider an invariant quantum Hamiltonian H = —A7 g+ V in the L? space based
on a Riemannian manifold M with a discrete symmetry group I'. Typically, M is the universal
covering space of a multiply connected manifold M and I' is the fundamental group of M. To
any unitary representation A of I one can relate another operator on M = M /T, called Hy,
which formally corresponds to the same differential operator as H but which is determined by
quasi-periodic boundary conditions. We give a brief review of the Bloch decomposition of H
and of a formula relating the propagators associated to the Hamiltonians Hy and H. Then we
concentrate on the example of the Aharonov-Bohm effect with two vortices.

Abstrakt. Mé&jme invariantni Hamiltonidan H = —App + V na L?*(M ) kde M je Riemanovské
varieta se spocetné konec¢nou grupou symetrii I'. M je nejcastéji univerzalni nakryvaci prostor
variety M a I' je jeji fundamentalni grupa. Ke kazdé unitarni reprezentaci A grupy I' lze
piifadit operator Hy na M = M JT. Ten je formalné stejny jako operator H, navic je uréen
kvazi-periodickymi okrajovymi podminkami. V nasledujicim textu stru¢né nastinime konstrukci
Blochova rozkladu operatoru H a rozklad propagatoru nalezejici operatorim Hj a H. Tento
postup je nésledné aplikovan na Aharono-Bohmuv jev se dvéma civkami.

1 Introduction

Suppose that there is given a connected Riemannian manifold M with a discrete sym-
metry group I'. Let us consider a I'-periodic Hamilton operator in LQ(M ) of the form
H = —Arp +V where A;p is the Laplace-Beltrami operator and V' is a I'-invariant
bounded real function on M. To any unitary representation A of I' one can relate another
operator on M = M /T, called Hy, which formally corresponds to the same differential
operator as H but which is determined by quasi-periodic boundary conditions. In the
framework of the Feynman path integral there was derived a remarkable formula relating
the propagators K2 (z, z0) and K;(z, 7o) associated respectively to the Hamiltonians Hy
and H [11, 12].There exists also an opposite point of view when one decomposes the
operator H into a direct integral with components H, where A runs over all irreducible
unitary representations of I' [14, 1, 4]. The evolution operator then decomposes corre-
spondingly. This type of decomposition is an essential step in the Bloch analysis. Let us
also note that an alternative approach to the Bloch analysis, based on a more algebraic
point of view, has been proposed recently in [5].

The both relations, the propagator formula on the one hand and the generalized Bloch
decomposition on the other hand, are in a sense mutually inverse [8]. In the current paper
we give a brief review of basic results concerning this relationship and further consider
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the example of the Aharonov-Bohm effect with two vortices. In this case M is identified
with the universal covering space of the plane with two excluded points and I' is the
fundamental group of the same manifold.

The paper is organized as follows. In Section 2 we give a brief review of basic results
concerning the relationship between the generalized Bloch analysis and the formula for
propagators associated to periodic Hamiltonians. In Section 3 we explain the construction
of the propagator on the universal covering space in the case of the Aharonov-Bohm effect
with two vortices and discuss the application of the propagator formula in this particular
case.

2 Propagators associated to periodic Hamiltonians

2.1 Periodic Hamiltonians

Let M be a connected Riemannian manifold with a discrete and at most countable sym-
metry group I'. The action of I' on M is assumed to be smooth, free and proper (also
called properly discontinuous). Denote by ji the measure on M induced by the Rie-
mannian metric. The quotient M = M/T is a connected Riemannian manifold with an
induced measure p. This way one gets a principal fiber bundle = : M — M with the
structure group I'. The L? spaces on the manifolds M and M are everywhere tacitly
understood with the measures p and ji, respectively.

Typically, M is the universal covering space of M and I' = 71 (M) is the fundamental
group of M. For example, this is the case when one is considering the Aharonov-Bohm
effect.

To a unitary representation A of I' in a separable Hilbert space £ one relates the
Hilbert space .74 formed by A-equivariant vector-valued functions on M. This means
that any function ¢ € 7, is measurable with values in %) and satisfies

Vs €T, (s -y) = A(s)¢(y) almost everywhere on M.

Moreover, the norm of ¢ induced by the scalar product is finite. If 11,1 € J#} then the
function y — (11(y), ¥2(y)) defined on M is T-invariant and so it projects to a function
Sy, 4, defined on M, and the scalar product is defined by

(1, ) = /M 2 (@) ds(2).

As already announced, our discussion concerns I'-periodic Hamiltonians on M of
the form H = —App + V where Ayp is the Laplace-Beltrami operator and V' (y) is
a D-invariant measurable bounded real function on M. Here we accept the Friedrichs
extension as the preferred self-adjoint extension of semibounded symmetric operators
defined on test functions.

To the same differential operator, —Arg+ V', one can relate a selfadjoint operator Hy
in the space ¢ for any unitary representation A of I'. Let us define ®, : CSO(M )R L) —
J\ by

Vi € C*(M),Yv € £y, (Pap@0)(y) =D (s y) A(s™o.

sel’
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Since the action of I' is proper, the vector-valued function ®, ¢ ® v is smooth. Moreover,
®) p ® v is A-equivariant and the norm of &, p ® v in 7, is finite. Furthermore, the
range of @, is dense in J#,. The Laplace-Beltrami operator is well defined on Ran(®,)
and it holds

ALBCDA[QD (059 ’U] = CI)A[ALBQO (%9 U].

One can also verify that the differential operator —Aj g is positive on the domain Ran(®,) C
). Since the function V(y) is ['-invariant, the multiplication operator by V' is well de-
fined in the Hilbert space #¢,. The Hamiltonian H, is defined as the Friedrichs extension
of the differential operator —A;p + V' considered on the domain Ran ®,.

2.2 A generalization of the Bloch analysis

Let I be the dual space to I' (the quotient space of the space of irreducible unitary
representations of I'). In the first step of the generalized Bloch analysis one decomposes
H into a direct integral over " with the components being equal to Hy. As a corollary
one obtains a similar relationship for the evolution operators U(t) = exp(—itH) and
Up(t) = exp(—itHy), t € R. To achieve this goal a well defined harmonic analysis on the
group I' is necessary.

It is known that the harmonic analysis is well established for locally compact groups
of type I [13]. So all formulas presented bellow are perfectly well defined provided I' is
a type I group. A countable discrete group is type I, however, if and only if it has an
Abelian normal subgroup of finite index [17, Satz 6]. This means that there exist multiply
connected configuration spaces of interest whose fundamental groups are not of type I.
For example, the fundamental group in the case of the Aharonov-Bohm effect with two
vortices is the free group with two generators and it is not of type I. Fortunately, in this
case, too, there exists a well defined harmonic analysis [16].

Let us recall the basic properties of the harmonic analysis on discrete type I groups
[13]. In that case the Haar measure on I' is chosen as the counting measure. Let drm
be the Plancherel measure on I'. Denote by % (%) = £ @ %) the Hilbert space
formed by Hilbert-Schmidt operators on £ (.Zy is the dual space to % ). The Fourier
transformation is defined as a unitary mapping

®
F  L*(T) —>/ Io( L) din(A).
P
For f € L(T') C L*(T') one has

FN) =) f(s)A(s).

sel’

Conversely, if f is of the form f = g * h (the convolution) where g,h € LY(T), and
f=Z|f] then
£(s) = [ THIAGs)"F(A)) din().
I

It is known that if I' is a countable discrete group of type I then dim %) is a bounded
function of A on the dual space I' [17, Korollar I]. Using the unitarity of the Fourier
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transform one finds that

m(T) < /dimzA drin(A) = 1.

r

The following rule satisfied by the Fourier transformation is also of crucial importance:
Vs e I,Vf € LX), Z[f(s- g)l(A) = A(s™)Z[f(9)](A).

Now we are going to construct a unitary mapping
_ o
B : L2(37) ﬁ/ L @ Ao din(A)
r

which makes it possible to decompose the Hamiltonian H. Observe that the tensor
product Z¢ ® 7} can be naturally identified with the Hilbert space of 1 ® A-equivariant

operator-valued functions on M with values in £ ® 2\ = #(Z)). For f € L*(M) and
y € M set

Vs e, f,(s)=f(s'y).

The norm || f,|| in L*(T) is a T-invariant function of y € M, and the projection of this
function onto M can be checked to be square integrable. Hence for almost all x € M and
all y € 7~ '({x}) it holds f, € L*(T"). We define the component ®[f](A), A € I, by the
prescription

O[fI(A) (y) = FL](A) € A2(Lh).

In particular, if f € L'(M) N L*(M) then

Equivalently one can define ® in the following way. For ¢ € Cgo(]\7[ ), v € %) and
y € M set

O] (M) (y)v = (Pap @ v)(y)- (1)

Then ® introduced in (1) is an isometry and extends unambiguously to a unitary mapping.
Finally one can verify the formula

&
PHO ! = / 1® Hpydm(A)
r
which represents the sought Bloch decomposition. As a corollary we have

U = /F T Ua(t) din(A). 2)
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2.3 A construction for propagators associated to periodic
Hamiltonians

In equality (2), the evolution operator U(t) is expressed in terms of Uy(t), A € T'. It is
possible to invert this relationship and to derive a formula for the propagator associated
to Hy which is expressed in terms of the propagator associated to H.

The propagators are regarded as distributions which are introduced as kernels of the
corresponding evolution operators. Recall that by the Schwartz kernel theorem (see, for
example, [7, Theorem 5.2.1]), to every B € %(LQ(]\;[ )) there exists one and only one
B € 2'(M x M) such that

V1,02 € CSO(M), B(P1 ® p2) = (1, Bya).

Moreover, the map B — [ is injective. One calls  the kernel of B.

The kernel theorem can be extended to Hilbert spaces formed by A-equivariant vector-
valued functions. In this case the kernels are operator-valued distributions. To every
B € PB(,) there exists one and only one 3 € 2'(M x M) ® %(%)) such that

vgpl?@? c OSO(M)7VU17U2 c ZA:
(v1, B(P1 ® p2)va) = (Pp 1 @ V1, BPp 3 @ v3).

The distribution 3 is A-equivariant:

Vs e, B(s- y1,y2) = As)B(y1,42), B(y1, s y2) = 5(91792)/\(371)

In this case, too, the map B — ([ is injective.

Denote by K; € 2'(M x M) the kernel of U(t) € B(L*(M)), and by K» € 2'(M x
M) @ B(Z)) the kernel of Ux(t) € B(#,). Here and everywhere in this section, t is a
real parameter. The kernel K2 is A-equivariant:

vs S F’ IC?(S : 91792) - A(S)Kl[f\(yla y2)7 K?(ylu S yQ) - K?(yhyQ)A(s_l)'

First we rewrite the Bloch decomposition of the propagator (2) in terms of kernels.
It is possible to prove that, for all ¢y, p, € CG°(M), the function A — Tr[K{ (@1 ® p,)] is
integrable on I' and

Kilior ® p2) = / TN (01 ® )] drin(A).

An inverse relation was derived by Schulman in the framework of path integration [11, 12]
and reads

KMa,y) = STA() Ki(s™ -2, y). (3)

sel’

It is possible to give (3) the following rigorous interpretation. Suppose that o1, s €
C3° (M) are fixed but otherwise arbitrary. Set

Fi(s) = Ki(p1(s™ - 1y1) ® pa(ys)) for s € T,
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and
Gi(A) = KMp1 @ o) € Io(L) for A €T

One can show that F} € L*(T) and Gy is bounded on f in the Hilbert-Schmidt norm.
Recalling that m(I") < 1 we have ||G;(-)|| € L'(T") N L*(T"). In [8] it is verified that

Ft - gil[Gt].

and, consequently,
Gy = F[F. (4)

Rewriting (4) formally gives equality (3).

3 The Aharonov-Bohm effect with two vortices

3.1 The propagator on the universal covering space

The configuration space for the Aharonov-Bohm effect with two vortices is the plane with
two excluded points, M = R?\ {a,b}. This is a flat Riemannian manifold and the same
is true for the universal covering space M. Let m : M — M be the projection. It is
convenient to complete the manifold M by a countable set of points .4 U B which lie on
the border of M and project onto the excluded points, 7(A) = {a} and 7(B) = {b}.

M looks locally like R? but differs from the Euclidean space by some global features.
First of all, not every two points from M can be connected by a geodesic segment. Fix
a point

Yy e M which can be connected with z by a geodesic segment. The domain D(x) is one
sheet of the covering M — M. It can be identified with R? cut along two halflines with
the limit points a and b, respectively. Thus the border D(z) is formed by four halflines.
The universal covering space M can be imagined as a result of an infinite process of
glueing together countably many copies of D(z) with each copy having four neighbors.

The fundamental group of M, called I', is known to be the free group with two
generators g, and g,. For the generator g, one can choose the homotopy class of a simple
positively oriented loop winding once around the point a and leaving the point b in the
exterior. Analogously one can choose the generator g, by interchanging the role of a and
b. One-dimensional unitary representations A of I' are determined by two numbers «, 3,
0 <a,fB <1, such that

A(ga) = €™, A(gy) = >

The standard way to dgﬁne the Aharorgv—Bohm Hamiltonian with two vortices is to
choose a vector potential A for which rot A = 0 on M and such that the nonintegrable
phase factor [18] for a closed path from the homotopy class g, or g, equals e*™* or
e?™8  respectively (assuming that 0 < a,3 < 1). The Hamiltonian then acts as the

H
differential operator (—iV — A)? in L*(M). A unitarily equivalent and for our purposes
more convenient possibility is to work with the Hamiltonian Hy = —A in the Hilbert
space ) of A-equivariant functions on M, as introduced in Section 2.1. Parallelly one

considers the free Hamiltonian H = —A in L*(M). H is I-periodic. In order to compute,
according to prescription (3), the propagator K (¢, z,y) associated to Hj, one needs to
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derive a formula for the free propagator K(t, z,y) on M. Such a formula is recalled below
following [15].

Let ¥ be the Heaviside step function. For 2,y € M U AU B set x(x,y) = 1 if the
points x, y can be connected by a geodesic segment, and y(z,y) = 0 otherwise. Given in
addition ¢ € R we define

1 .
Z(t.0.0) = VOx(z9) oy v 3 i),

Furthermore, for zy,zs, 23 € M U AU B such that y(z1,22) = x(x2,23) = 1, and for

t1,to > 0 we set

-1 -1
1% T3, 02,11 ) _ g 0 —m+ilog tary 0 + m+ ilog tar
t27t1 tﬂ"g t17“2

where 0 = Z 1, 19,23 € R is the oriented angle and r; = dist(zq,x2), r2 = dist(xs, z3).
Note that if the inner vertex x5 belongs to the set of extreme points AU B then the angle
0 can take any real value.

We claim that the free propagator on M equals

K(t, x,x0) ZIC (t,x,z0) (5)
where the sum runs over all piecewise geodesic curves v : zp — C; — ... = C, — 2
with the inner vertices C}, 1 < j < n, belonging to the set of extreme points AU B. This
means that it should hold x(zo,Cy) = x(C1,Cs) = ... = x(Cp,x) = 1. Let us denote

by |v| = n the length of the sequence (Cy,Cs,...,C,). In particular, if |y| = 0 then ~
designates the geodesic segment xqo — x. To simplify notation we set everywhere where
convenient Cy = g and C,, .1 = x. With this convention, the summands in (5) equal

IC"/(ta z, [L'())

i, Ci, O 1o
- dt, ... dtgd(tn + ... +tg—t ||V g2 it j)”Zt-,C- LC).
/Rn+1 0( 0 ) ( tj-l—l;tj J=0 (] o ])
(6)

In particular, if |y| = 0 then IC, (¢, z,z0) = Z(t, x, x9), and if |y| = 1 then ~ designates a
path composed of two geodesic segments xg — C' — z, with C' € AU B, and

t
Kyt z, z0) = 19(15)/ V( f’?;xg ) Z(t —s,2,C)Z(s,C,x0)ds .
0

Y

For detailed derivation of this formula see [9].

3.2 The propagator associated to H

Without loss of generality we can suppose that the vortices are located in the points
a = (0,0) and b = (0,0). Let (r4,6,) be the polar coordinates centered at the point a
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and (74, 0,) be the polar coordinates centered at the point b. To express the propagator
for H, it is convenient to pass to a unitarily equivalent formulation. Let us cut the plane
along two half-lines,

L, =]—00,0[ x{0} and L, =]o,+o00[ x{0}.

The values 6, = 47 correspond to the two sides of the cut L,, and similarly for ¢, and
Ly. The unitarily equivalent Hamiltonian H) is formally equal to —A in L*(R?, d%z) and
is determined by the boundary conditions along the cut,

77Z)(Ta7‘9a - 7T) - €2Wia¢(raa‘9a - _77)7 ara¢(ra7‘9a - 7T) - 27”08 77Z)(Ta7‘9 - _77)7
(1, O = 7) = 2B (ry, 0y = —7), Op1b(ry, 0 = ) = ¥ PO, D(ry, 0y = —71).

In addition, one should impose a boundary condition at the vortices, namely ¥ (a) =
(b)) = 0. )

Let us denote D = R? \ (L, U L;). Then one can embed D C M as a fundamen-
tal domain. We wish to find a formula for the propagator K’A(t,x,xo) associated to
the Hamiltonian H’,. It can be simply obtained as the restriction to D of the propa-
gator K™ (¢, x, z0) associated to the Hamiltonian Hy. On the other hand, to construct
KCA(t, 2, 2o) one can apply formula (3) and the knowledge of the free propagator on M,
see (5), (6). Thus we get

Mt z,mo) = ZZA Y, (t, g T, 20). (7)

gel’ v
Fix t > 0 and zg, 2 € D. One can classify piecewise geodesic paths in M,
vyixg—C—...—>C, —g-x, (8)

with C; € AU B and g € I, according to their projections to M. Let 7 be a finite
alternating sequence of points a and b, i.e., 7 = (¢1,...,¢), ¢; € {a,b} and ¢; # ¢j41.
The empty sequence 7 = () is admissible. Relate to 7 a piecewise geodesic path in M,
namely g — ¢; — ... — ¢, — x. Suppose that this path is covered by a path v in
M, as given in (8). Then C; € A iff ¢; = a and C; € B iff ¢; = b. Denote the angles
Lxg,c1,c0 =0y and ZL¢, 1, ¢,z = 0. Then the angles in the path v in (8) take the values
ZZE(), 01, 02 = 00 + 27T]€1, 4071—17 Cn,g cx =0+ 27T]€n and / Oj, Oj+1, Oj+2 = 27Tk?j+1 for
1 <j<n-—2(ifn > 3), where ki, ..., k, are integers. Any values ki,...,k, € Z are
possible. In that case the representation A applied to the group element g occurring in
(8) takes the value
A(g) = exp(2mi(kyoy + ... + knon))

where 0; € {a,f} and 0; = a if ¢; = a, and 0; = [ if ¢; = b.
Using the equalities

Zex (2miak) ! - !
P 04+2kr —m+is O+ 2wk + 7 +is

- —sin(wa)/ h —exp((9 +is)7) dr

oo Sin(m(a+i7))
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and

/OO exp((0 +is)T) dr — 9 exp(—a(s — if))

———~dr = ,
—oo Sin(m (v + i7)) 1+ exp(—s +i6)
that are valid for 0 < o < 1, || < 7, one can carry out a partial summation in (7)
over the integers ki, ..., k,. This way the double sum in (7) reduces to a sum over finite
alternating sequences 7.

Let us conclude our contribution by giving the resulting formula for K'* (¢, z, o). We
set

Ca =1or Ca — 627ria or Ca — 6—27ria

depending on whether the segment Zox does not intersect L,, or Tox intersects L, and
xo lies in the lower half-plane, or T intersects L, and xq lies in the upper half-plane.
Analogously,

G=1orG=e"""Por(=e?mF

depending on whether the segment Toxr does not intersect L, or Tox intersects L, and
Zo lies in the upper half-plane, or ZoZ intersects L, and xq lies in the lower half-plane.
Furthermore, let us set

Cu=1¢€"%" (= e’ﬂ””, where n,,m, € {0,271, —27}.
Then one has

IC’A(t, T, To)

1 x — xol?
= CaCbﬂ exp( q)

sin(m / dtl/ %5t1+to—t)

<o (r_ ) ) splat, Z 0, )

4t1 4t0 1+ eXp(—Sa + Zea — 290a)

sin (7 dt1 dty
b 47T2 / / —(Stl—i‘to—t)
o exp< (Tb n 7"021))) exp[=0B(sp — (0 — Oop — mp)]

4t1 4t0 1+ eXp(—Sb + z@b — iHOb)
1 < dt, dio
— 1" —_— ... o(t, to—t
+4m'z( )/ tn /0 to (bt oot to 1)

7,n>2 0
2 2 2 2
r T
X exp —+ ¢ —|—...+Q—+—O S5(s,6,6),
t, th_1 t1 to

sin(woy,) exp[—oy, (s, — i0)] sinwo,_1 exp(—o,_15,-1)
7T l4exp(—s,+i0) 7 1 + exp(—sn)
sin(mwoy) exp|—oy(s1 — ib)]
7 l4+exp(—s; +ibp)’

IS

where

57(87 67 60) =
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t170a t tiri_ )
5, = log 170 , sy = log 170b , s5; = log YUY for 1 <j<n.
J
t(ﬂ“a to?"b tj,ﬂ“j

In addition, (r,#) are the polar coordinates of the point x with respect to the center c,,
(ro,6p) are the polar coordinates of the point xy with respect to the center ¢;. The sum
Zi,n22 runs over all finite alternating sequences of length at least two, 7 = (¢y,. .., ¢p),
such that for all j, ¢; € {a,b}, ¢; # ¢j41, and 0; = a (resp. () depending on whether
¢; = a (resp. b).

and
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Abstract. This paper presents an overview of the techniques used to solve constrained optimiza-
tion problems using evolutionary algorithms. The construction of the fitness function together
with the handling of feasible and infeasible individuals is discussed. Approaches using penalty
functions, special representations, repair algorithms, methods based on separation of objective
and constraints and multiobjective techniques are mentioned.

Abstrakt. Tento prispévek podava prehled metod pro Feseni optimalizacnich iloh s omezenimi
pomoci evolu¢nich algoritmi. Zminény jsou nékteré zptsoby vytvareni fitness funkce spolu se
zpracovanim piipustnych a nepiipustnych jedincd. Zahrnuty jsou pristupy vyuzivajici penal-
iza¢ni funkce, specialni reprezentace, opravné algoritmy, metody zalozené na oddéleni tcelové
funkce a omezeni a vicekriteridlni metody.

1 Introduction

Evolutionary algorithms have been successfully used in a range of applications. [1] Ma-
jority of the papers presented pertain to unconstrained optimization problems. As [2] ar-
gues, virtually all real problems are constrained. Thus, the study of constraint-handling
methods that can be used with evolutionary algorithms is an important subject.

Evolutionary algorithms are based on a analogy with the evolution process occurring
in nature: The individuals have genes that encode the solution. The individuals are
compared with others and those that perform better (have higher fitness) get higher
probability of propagating their genes into the next generation. The genes of the offspring
population are the product of applying genetic operators to the genes of their parent
individuals.

For an evolutionary algorithm, the following is needed:

e A representation of the potential solution (an individual).
e A way of initializing the population of the individuals.

e Genetic operators that act on the (parent) population — typically recombination
and mutation.

e Selection operator that chooses which individuals propagate to the next generation.

Evolutionary algorithm can be formally defined as follows (based on [1]):

115



116 D. Kozub

Definition 1. (Evolutionary algorithm) The following algorithm is called an Evolutionary
Algorithm:

1. t<0

2. initialize:
P() = {ao,...,au(o)} QI

3. while (¢ ((Fp,...,P))#1)do
(a) recombine:

P — r((;()t) (P,)

(o

(b) mutate:
Fy —m{, (F))

(c) select: if x = 1:
Peon 5 g0, (PY)

else:
Py SE;)(t))(PtH UPR)

(d) t—t+1
where:
e 7 #+ & is the individual space
® ag,...,a,o is the initial population

° ('u(i)>ieNo is a sequence of the parent population sizes

(u’ (i)) is a sequence of the offspring population sizes
1€Ng

N
L {(I"m> ‘t € No} — {0,1} is the terminating criterion
i=0

X € {0, 1} chooses between (i, A) and (x + A) selection method

(r(i))ieNo is a sequence of recombination operators:
,’,,(’L) . ES‘Z) N |:.,Z:'u‘(l) N _’Z:'u‘/(i):|
where E,(ni) is the set of recombination parameters and 91@ E7(}')

()

ieNo is a sequence of mutation operators:

m@ - 57(7%’1) N [I#’(i) N Iu’(i)]

where = is the set of mutation parameters and ol e =)
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o (S(i))ieNO is a sequence of selection operators:

: —(; 1(%) 1(4) (i+1)
s@ . :g) BN 7 T o T N

where = is the set of mutation parameters and o) e =)

In this paper we focus on applying evolutionary algorithms to constrained optimization
problems. By this we mean the following;:

min f () (1)

subject to:
gi(z) < 0 Vie{l,...,ng} (2)
hij(x) = 0 Vje{l,...,ny} (3)

where the set () is the search space. Let n denote the total number of constraints:
n=mng+ny
The constraints (3) and (2) implicitly define the feasible set ®:

® = {z € Q|gi(z) <OAhj(z)=0
Vie{l,....,ng},Vie{l,....,m} }

We make no additional assumptions about the feasible set. In general it can be a
non-convex, even a disconnected set.

Defining T = ) — @, it can be stated that the search space € is partitioned into two
disjoint sets: the feasible set ® and the infeasible set Y.

The level of violation of the constraints (2) and (3) by a point x € € can be measured
as follows:

Gi(r) = max{0,g:(r)} (4)
Hj(x) = |h;(x)] (5)

Note that for all z € ®

foralli e {1,...,n,}, 7€ {1,...,np}.
An equality constraint hj(z) = 0 can be transformed into inequality constraints in

the following way:
hj(z)] < e

where ¢ is a small constant specifying the tolerance.
This approach allows the equality constraints to be treated as inequalities, which can
be useful for methods that do not treat equality constraints separately.
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2 Fitness function

The fitness function is a function F': Z — R that evaluates the individuals according to
how well they solve given problem.

The design of the fitness function can be a non-trivial task even for an unconstrained
problem. In case of constrained problems, the design of a good fitness function is even
more difficult. In [2] the following points guiding the design of the fitness function are
listed:

1. How should two feasible points be compared?
2. How should two infeasible points be compared?

3. How are the functions for feasible and infeasible points related? Should feasible
points be always ”"better” than infeasible ones?

4. Should infeasible points be considered harmful and removed from the population?
5. Should infeasible points be "repaired”?

6. If individuals are repaired, should this repaired individual be used only for evalu-
ating its fitness (Baldwin effect) or should the individual be replaced (Lamarckian
evolution)?

7. Should infeasible individuals be penalized?

8. Should the algorithm start with a feasible population and keep the feasibility
throughout the run of the algorithm?

During the run of the algorithm, the population can generally contain both feasible
and infeasible individuals. In the end though, the answer must be a feasible solution, as
the infeasible individual, no matter its fitness from the point of view of the evolutionary
algorithm, is not a solution to the original problem.

An obvious method of ensuring this works by removing all the infeasible solutions, so
that the population never contains an infeasible individual. While this method has been
used, in many problems it does not work. (See section 3 for more information on this
approach.)

This leads to the conclusion that the evolutionary algorithm should allow the infeasible
individuals in the population. Because of this, a decision has to be made on how to
compare the feasible and the infeasible individuals.

One way to tackle this task is to define the fitness function as follows:

P@={ ;) st ®

When evaluating Fg, the actual value of the constraints should not be important,
as the point is in the feasible set. When evaluating Fy, the question is if the value of
the objective function f should be taken into account. Fy should react to the fact that
the solution is not feasible and direct the search into the feasible set. Yet, should it be
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based on the amount of the violation, or should it only reflect the number of violated
constraints?

While the inclusion of the objective f in Fy might help guide the search, sometimes
(in case the objective is not defined outside of the feasible region ®) this is not possible.

It should be noted that in some evolutionary algorithms the fitness function is not
explicitly needed. For example, if the evolutionary algorithm uses the tournament se-
lection, all that is needed is an ordering relation defined over the individual space Z.
Still, this does not relieve us of the burden of satisfactorily answering the aforementioned
questions.

An overview of some of the methods that were used to solve constrained optimization
problems follows. The methods differ by how they answer the aforementioned questions.

3 Penalty functions

The oldest and most common approach to solving constrained optimization problems
using evolutionary algorithms is the use of a penalty function. The method is based in
the idea of adding to the objective function f a function that penalizes solutions laying
in the infeasible set, thus decreasing their fitness.

There are two basic options: interior penalty functions — this approach starts from
a feasible solution and the penalty function is defined so that its value approaches to
infinity as the solution moves towards the boundary of the feasible set, and exterior
penalty functions — this approach starts from any (generally infeasible) point in the search
space and the penalty is used to guide the search into the feasible set.

An advantage of the exterior approach is that it does not require an initial feasible
population.

The generic formula for the fitness function with an exterior penalty is:

F(z) = f(x) + PY(x) (7)

where P : 7 — (0,400) is the penalty function satisfying for all 2 € ® and for all
t e N()Z
PY(z) =0

A problem with this approach is the choice of the value of the penalty: Too small
penalty value does not discourage the algorithm from the infeasible set, possibly resulting
in an infeasible optimum. On the other hand, too high penalty value might prohibit the
algorithm from crossing the feasible set boundary (which might be useful or even necessary
in case the feasible set is non-convex or disconnected) and from exploring the boundary
of the feasible set.

In [3] author suggests the relation between an infeasible individual and the feasible set
plays an important role in the penalization. There are several ways how this relationship
could be reflected in the penalty function:

1. the penalty is constant — the individual is being penalized for being infeasible

2. the penalty reflects the amount of constraint violation
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3. the penalty reflects the effort needed to make the individual feasible
This method was advanced in several directions in order to tackle this issue:

static penalties In this approach, the value of the penalties is independent of the gener-
ation number. Typical choice for P® is:

ng nh
i=1 j=1

with 5,7 € {1,2}, a;, b; positive constants called penalty factors and G;, H; as
defined in (4) and (5).

dynamic penalties In this approach, the value of the penalties is dependent on the gener-
ation number. Typically, the penalties rise over time. This enables the population
to explore the search space (low penalties) and eventually move into the feasible
set. An example of this approach is:

P(t) (I’) = (ct)a<z aZGZ(I')ﬂ+Z bZHJ (‘I)’\>

annealing penalties This method was inspired by simulated annealing: The penalties
change when the algorithm gets stuck in a local optimum. The penalty rises over
time to penalize infeasible solutions in the end of the run of the algorithm.

adaptive penalties Within this approach, the penalty uses the previous states of the
algorithm: The penalty with respect to a constraint is increased if all the individ-
uals in the previous generation were infeasible. The penalty is decreased if all the
individuals in the previous generation were feasible.

co-evolutionary penalties In this approach, there are more populations, for example a
population for the evolution of solutions and a population for the evolution of the
penalty factors. A co-evolution scheme is then used.

death penalty This is a simple method that works by eliminating all the non-feasible
individuals form the population. While it can be easily implemented, it tends to
work only if the feasible set is a reasonably large subset of the search space and
when the feasible set is convex. [2]

Another approach in this category works by focusing the search on the boundary of
the feasible set ®. According to [1], many real-world tasks have optimum for which at
least some constraints are active, so the focus on the boundary of the feasible set seems
reasonable. The way the border is explored is by varying a penalty and thus forcing the
individuals to cross between the feasible and the infeasible set.

The main disadvantage of the penalty methods is their dependency on multiple pa-
rameters. While some guidance has been provided, often the parameters have to be
empirically determined. [1] Also, penalty methods often do not perform well when the
problem is highly-constrained or when the feasible set is disconnected. [2]
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4 Special representations

This approach tackles the optimization problem by designing a special, problem-dependent,
representation of the individuals. This in turn calls for special operators to be used on
those individuals. The operators used typically preserve the feasibility of the population.
The motivation behind this approach is to simplify the feasible set 2.

The representation is problem-specific. While the approach was successfully used on
specific problems, it is difficult to generalize this approach.

5 Repair algorithms

This approach works by repairing infeasible individuals. Two ways are possible: The
repaired individual is used only to evaluate the fitness of the original, or the infeasible
individual is replaced with the repaired one.

The resulting individual is not necessarily feasible, but the amount of constraint vio-
lation is reduced.

This method was generalized into the area of constrained multiobjective evolutionary
optimization in [4] and [5].

The repair approach often has problems with keeping the diversity of the population.
Also, the repair operator can sometimes introduce a strong bias into the search process. [3]

6 Separation of constraints and objectives

The following approaches do not mix the objective and the constraints together. There
are several different methods reported in [2] and [3].

6.1 Superiority of feasible points

In this approach feasible individuals are always considered superior to infeasible ones.
One way to ensure this is to map the objective function onto a bounded-above interval,
e. g. (—oo, 1) and specify the fitness function like:

ra={ 1) S ®

where L : T — (1,+00) is a function measuring the level of constraint violation.
An interesting adaptation that does not require the objective to be bounded-above is:

Fla) = { 525(5) + L() i i ? ©)

where f,SiZm = maxzep,ne f(z) and L : T — R* is a function measuring the level of
constraint violation.

A different way to ensure the feasible points are always superior is to use tournament
selection with the rules (x and y denotes the individuals being compared) from table 1.



122 D. Kozub

Table 1: Tournament selection for the superiority of feasible points method
r€e€P | ye T | xis preferred over y

rxeY | ye P |yis preferred over x

r€d | ye d | decide based on f(x) and f(y)
x €Y | ye T | decide based on constraint
violation

6.2 Behavioral memory

This method requires a linear ordering of the constraints. Then it proceeds as follows:
1. initialize the population randomly

2. evolve the individuals to minimize the violation of the first constraint; stop when
the percentage of individuals feasible with respect to the first constraint surpasses
given percentage

3. —2
4. while 7 < n do:

(a) evolve the individuals to minimize the violation of the j-th constraint while
removing individuals which do not satisfy any of the constraints 1...j; stop
when the percentage of individuals feasible with respect to the j-th constraint
surpasses given percentage

(b) j—j+1

5. evolve the individuals to minimize the objective f while removing infeasible indi-
viduals from the population (death penalty — see section 3)

This approach is similar to the lexicographic ordering approach mentioned in subsec-
tion 7. A drawback is that the initial ordering of the constraints influences the results
obtained.

Those methods do not work well when the size of the feasible set is relatively small
(when the constraints are difficult to satisfy). Another problem mentioned in [3] is the
difficulty of maintaining the diversity of the population.

An interesting point to make is that those approaches never evaluate the objective on
infeasible points, making it interesting for problems with hard constraints.

7 Multiobjective techniques

The technique works by transforming the original constrained optimization problem into
an unconstrained multiobjective problem, turning the original constraints into additional
objectives. The problem (1) — (3) turns into:

min(f, G1(z), ..., Gy, (v), Hi(z), ..., Hy, (7)) (10)

e
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Table 2: Tournament selection for the min-max approach in [6]

r€e€P | ye T | xis preferred over y

xeT | ye P |yis preferred over x

r€® | ye d | decide based on f(x) and f(y)
x €T | yeT | select the individual having

the smallest maximal constraint
violation.

The ideal solution of (10) is an 2% € & such that:

f(xideal) — mzng;eq)f(x)
Gi(z'y = 0 Vie{l,...,n,}
Hy(x'hy = 0 Vje{l,...,ny}

Unlike in actual multiobjective optimization, here we are not interested in finding
good trade-offs between the objectives (the original objective (1) and the constraints):
Any feasible point might be acceptable, no matter the actual value of the constraint
violation values. On the other hand, a global minimum that lies in the infeasible set is no
solution to the original problem, even if it means a good trade-off in the multiobjective
problem.

In [6] a min-max-like approach was described: The evolutionary algorithm uses the
tournament selection with the rules (x and y denotes the individuals that are compared)
according to table 2.

8 Conclusion

This paper presents several ways of handling constrains together with evolutionary op-
timization. Majority of the approaches does need to evaluate the objective outside the
feasible set, which renders the methods unusable for constraints that cannot be relaxed.
Handling such problems with evolutionary algorithms seems therefore like an interesting
option for further research.
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Abstract. Compositional models theory (originally developed by Radim Jirousek) represents
an alternative approach to Bayesian networks. This text should familiarize the reader with
new results in this theory, namely with partial solution of the equivalence problem (in the sense
independence equivalence). Four different operations on persegram which preserve independence
model are introduced. By help of these operations we may generate the class of persegrams
equivalent to a given one.

Abstrakt. Teorie kompoziciondlnich modelt (zformulovand Radimem Jirouskem) pfedstavuje
urcitou alternativu k Bayesovskym sitim. V tomto ¢lanku jsou uvedeny nejnovéjsi poznatky
v této oblasti, konkratné ¢asteéné feseni problému ekvivalence (ve smyslu nezavislostni ek-
vivalence). Zavadime ¢tyfi rtuzné operace na persegramu (dvé jsou zvefejnény poprvé) které
zachovavaji nezavislostni model a umoznuji generovat rizné ekvivalentni persegramy.

1 Introduction

The ability to represent and process multidimensional probability distributions is a nec-
essary condition for application of probabilistic methods in Artificial Intelligence. Among
the most popular approaches are the methods based on Graphical Markov Models, e.g.,
Bayesian Networks. An alternative approach to Graphical Markov Models are the so-
called Compositional models, which try to be more efficient than Bayesian networks
(more efficient in computations, etc.). Nevertheless, the theory has not been finished yet
and many substantial problems remain to be solved.

2 Compositional Models

Bayesian networks may be defined as a multidimensional distribution factorizing with re-
spect to an acyclic directed graph. Alternatively, the Bayesian network may be uniquely
defined by its graph and an appropriate system of low-dimensional (oligodimensional)
conditional distributions. Similarly, Compositional models are defined as a multidimen-
sional distribution assembled from a sequence of oligodimensional unconditional distribu-
tions, with the help of operators of composition. The main advantage of both approaches
lies in the fact that oligodimensional distributions could be easily stored in computer

*The research was partially supported by Ministry of Education of the Czech Republic under grants
no 1M0572 and 2C06019.
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memory. However, computing with a multidimensional distribution that is split into
many pieces is exceptionally complicated. The advantage in comparison with Bayesian
networks consists in the fact that compositional models explicitly express some marginals,
whose computation in the Bayesian network may be demanding.

2.1 Notation and Basic Properties

In this paper we consider a system of finite-valued random variables with indices from
a non-empty finite set N. All probability distributions discussed in the paper will be
denoted by Greek letters. For K C N, m(xx) denotes a distribution of variables { X }cx.

Consider a distribution 7(xx) and three disjoint subsets A, B,C C K such that
A # 0 # B. A1 B|C[r] denotes that two groups of variables {X,};ca and {X,};en
are conditionally independent given {X,};cz. Suppose, that L C K, we denote its
corresponding marginal distribution either 7w(x), or 7'¥. These symbols are used to
highlight the variables for which the marginal distribution is defined.

To describe how to compose low-dimensional distributions to get a distribution of a
higher dimension we use the following operator of composition.

Definition 1. For arbitrary two distributions 7(zx) and k(zy) their composition is given
by the formula

m(rx)k(zr) when 7lKNL < F&umL’

o) > k() = k(TrNL)
(zx) (1) { undefined otherwise,

where the symbol 7(x)) < k() denotes that w(xy) is dominated by r(xy), which
means (in the considered finite setting)

V.TM c XieMXi; (/‘i(l‘]\/[) =0= ’/T(l‘M) = 0)

The result of the composition (if defined) is a new distribution. We can iteratively
repeat the process of composition to obtain a multidimensional model. This is why these
multidimensional distributions are called compositional models. To describe such a model
it is enough to introduce an ordered system of low-dimensional distributions 7, 7o, . .., m,.
If all compositions are defined, we view this ordered system as a generating sequence, in
which the composition operator is applied from left to right:

MM . DMy 1 Dy = (.. (M D) >m3) > ... D Tp) > Ty

In that case we say that a generating sequence defines (or represents) a multidimensional

compositional model. From now on, we consider generating sequences (g, ), T2 (T, ), - - -

7n(2g, ) which define a distribution

T (Tx,) > me(Tr,) > > T (T, ).

Therefore, whenever distribution ; is used, we assume it is defined for variables { X },ck,.
In addition, each set K; can be divided into two disjoint parts. We denote them R; and S5;
with the following sense. R; denotes variables from K; emerging in the sequence (meaning
from left to right) the first time. R; denotes the already used.
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In the proofs of the upcoming lemmata will be used the following assertion, which is
proved e.g. in [1].

Lemma 2. Let M C Ky U Ks. If M O K; N Ky then for any probability distributions
m(rK,) and Ty (TK,)

IM _ _KiNM
1

(mpm)™ =7 HenM

2.2 Perfect Sequence Models

Not all generating sequences are equally efficient in their representations of multidimen-
sional distribution. Among them, so-called perfect sequences hold an important position.
From the original definition (e.g. in [1]) one can hardly see the importance of this gen-
erating sequences class. Instead, for the purpose of this text let us define it by another
equivalence property, which is more suitable for our needs.

Definition 3. A generating sequence 7y, m, ..., m, is perfect iff all the distributions m;
are marginal to the represented distribution, i.e., forall:=1,2,....n
(mi> ..oy =7y

Perfect sequences have many pleasant properties which are advantageous for multi-
dimensional distributions representation. One of them says that, for a perfect sequence
model, all distributions in model are pair-wise consistent. This feature is in other parts
of this paper highly used.

2.3 Conditional Independencies

It is well-known that one can read conditional independence relations of a Bayesian net-
work from its graph. A similar technique is used in compositional models. An appropriate
tool for this is a persegram. Persegram is used to visualize the structure of a composi-
tional model and is defined bellow.

Definition 4. Persegram of a generating sequence is a table in which rows correspond to
variables (in an arbitrary order) and columns to low-dimensional distributions; ordering
of the columns corresponds to the generating sequence ordering. A position in the table
is marked if the respective distribution is defined for the corresponding variable. Markers
for the first occurrence of each variable (i.e., the leftmost markers in rows) are squares
(we call them box-markers) and for other occurrences there are bullets.

All persegrams discussed in the paper are denoted by P, modified by P’. Since i-th
column corresponds to 7;, we denote the markers in i-th column ;. In accordance with
the other marking of variables in the i-th distribution 7;(z,), box-markers in i-th column
are denoted like R; and bullets like S;. K; = R; U S;.

Example 5. Let m(xg,),...,m6(Tx,) be a generating sequence. K; = {1,4}, Ky =
{4,2}, K3 = {2,5}, Ky = {5,3}, K5 = {5,7}, K¢ = {4,5,6}. Then the corresponding
persegram P is in Figure 1.
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Figure 1: Persegram corresponding to the model in Example 5

Like the Bayesian networks, conditional independence of groups of variables is indi-
cated by the absence of a trail connecting relevant markers and avoiding the respective
subset which is defined below.

Definition 6. Consider a generating sequence m(zk,),...,T,(zk,), its corresponding
persegram and a subset Z C K; U...U K,,. A sequence of markers my, ..., m; is called
a Z-avoiding trail that connects mg and m, if it meets the following 4 conditions:

1. for each s =1,...,t a couple (ms_1,m;) is in the same row (i.e., horizontal connec-
tion) or in the same column (vertical connection);

2. each vertical connection must be adjacent to a box-marker (one of the markers is a
box-marker);

3. no horizontal connection corresponds to a variable from Xy;

4. vertical and horizontal connections regularly alternate with the following possible
exception: two vertical connections may be in direct succession if their common
adjacent marker is a box-marker of a variable from X ;

If a Z-avoiding trail connects two-box markers corresponding to variables X; and X}, we
also say that these variables are connected by a Z-avoiding trail. Such situations will
be denoted X; ~~, Xj.

Theorem 7. Consider a generating sequence m (g, ), - .., Tn(Tk, ), and three disjoint sub-
set Ji, Jo, Z C K U.. UK, such that J, # O # J,. If there does not exist a trail X~z Xi
in the corresponding persegram with j € J, and k € Jy then:

XJIJ.LXJ2|X2[7T1D...|>’/TTL].

Definition 8. Let P be a persegram over N. The formal independence model Mp =
{(A,B|C) € T(N); A 1L B|C|P]} is a model induced by persegram P, where 7 (N) is a
system of all triples of disjoint subsets of N where A # () # B.

3 Equivalence problem

By the equivalence problem we understand the problem how to recognize whether two
given persegrams P, () over N induce the same independence model. It is of special
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importance to have an easy rule to recognize that two persegrams are equivalent in this
sense and an easy way to convert P into () in terms of some elementary operations
on persegrams. Another very important aspect is the ability to generate all persegrams
which are equivalent to a given persegram. For all these problems, the last one is partially
solved in this paper.

Definition 9. Persegrams P, () (over the same variable set N) are called independently
equivalent, if they induce the same independence model Mp = M.

Like in Bayesian networks, it may happen that different persegrams induce the same
independence model.

Example 10. 1. The following example is simple: N = {a,b} and the following two
persegrams P, ():

P Q:

Mp = Mg =0 in this case.

2. On the other hand, the persegrams which have the same variable sets in columns
in different order do not have to be equivalent. Let N = {a, b, c} and consider the
following persegrams:

P Q:

a 1L b|([P] but a AL b|@[Q]. On the contrary, a L b|c[P] but a L b|c[Q]. The order

of the columns in persegram is important.

Four different simple operations on persegram preserving independence model were
discovered. We call them IE operations (Independence Equivalent). These operations can
be divided into two groups according to the behavior of columns in a persegram: Either
changing their order (this group is called permutations) or adding/removing them (exten-
sions/reductions). Let us note, that when these operations are applied on compositional
model (its persegram), its generating sequence is accordingly modified.

To facilitate the reader survey, basic overview of the mentioned operations is presented
in the form of definition.

Definition 11. Let P be a persegram over N and two adjacent columns 7,7 + 1 with
K;, K;;1 markers. The so called IE operations are the following set of operations with
columns.
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e Independent permutation is swapping of columns 7, 2+ 1 when no box-marker turns
into bullet and vice-versa. (U;;llK J2K,NK;.)

e Intersection permutation is swapping of columns ¢, ¢ + 1 if all their bullets belong
to their intersection (S; U S;y1 € K; N Kiyq).

e Removing of a column containing bullets only is called Bullets extension/reduction

e Removing of a column ¢, which is a subset of the column 7+ 1 that has box-markers
elsewhere only, is called Subset extension/reduction. (K; = S;y;.)

Graphic representation of a compositional model - persegram is inherently connected
to real data - distributions. If one applies the above defined IE operations to persegram
(assume that we have already proved, these operations preserve independence model), we
know that modified persegram has the same "power” as the original one - It expresses
the same (un)conditional independencies (or dependencies). However, imagine that we
change the order of distributions (or add/remove some) in the generating sequence as
well as in the corresponding persegram. Will the resulting multidimensional distribution
be the same?

In other words, first, identity of independence models has to be proven. Then, we
have to show that multidimensional distributions represented by the original and the
modified generating sequence are equal. Denote by 7y, ms, ... m, the original generating
sequence. We can iteratively repeat IE operations to obtain a new multidimensional

model represented by sequence 7wy, 7, ...m,. We need to prove m > my > ... DT, =

m
Ty >y .. >m . Or, if that is not valid in general, under what conditions.
In order to simplify the following lemmata we will work with the model where gen-
erating sequence consists of three distributions my, mo, 3. This simplification is not in
any way at the expense of universality. (m can be internally composed from several

distributions and 7y, 7o, 73 can be a beginning of much longer sequence.)
Lemma 12. (Independent permutation) If K1 O (Ko N K3) then m >y >y = 1 > T3> .

Proof of this assertion can be found for example in [1]. The declaration of this lemma
can be translated into the language of persegrams as following: ”Two columns in perseg-
ram can be swapped, if no bullet turns into bor-marker and vice-versa.”

The proof of the assertion that this operation preserves the independence model is
obvious: If no box-marker turns into a bullet and vice-versa, then all Z-avoiding trails
from definition 6 are maintained. (The vertical connections are moved with swaped
columns and the horizontal ones shortened/extended.)

Lemma 13. (Intersection permutation) If mo and w3 are consistent then
SQUS?,gKQﬂK3:>7T1[>7T2[>7T3:7T1[>7T3[>7TQ. (1)

Remark 14. The condition of lemma 13 is given in the form Sy U S3 C K, N K3 since
it seems to be closer to the verbal designation of condition: ” All swapped distributions
bullets must be included in their intersection.” However, for the purposes of the proof, we
will rewrite it into its equivalent form. The idea is outlined in the following form.
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SQQKQQK:;

C
SQUSS)_KQHKB@{ SggKgﬂK3<:>S3:K2mK3

} & 5 C 55 C K.
Proof. (lemma 13) First, let us show, that under given assumptions, m;>m>7y is undefined
iff m1> 3>y is undefined. From the definition of the operator we know that m; > mo > 73

is not defined iff
ﬂ_il,KlﬂKQ K ﬂ_él,KlﬂKQ (2)

or

(7T1 > 7T2)l(K1UK2)ﬂK3 K 71_:,SL(K1UK’Q)(‘]K}; (3)

Analogously, 7 > 73 > w5 is not defined iff

W%KlﬂKg % WéKlﬂKg (4)
or
(4 > g IS g (1IN (5)
Because of the remark 14:
K1 N K3 - Kl N S3
- (Kl ﬂ SQ) U (Kl ﬂ (R2 ﬂ Sg))
= (K1 NSy) U (KN RY) (6)
:KlmSQZKlm(KlﬂKg) :KlﬁKQ
and

(K1 UK3)NKy=(K1NKy)U(K3NKy)
= (K1 NK3)U (KyN K3) (7)
= (K UKy) N Ky = Ss.

Regarding the fact that in our case 7y and 73 are consistent and the fact that K1 N Ky =
K1 N Kg, (2) is equivalent to (4) Since K1 U K2 2 53 2 K1 N KQ and K1 U Kg 2 53 2
K; N K3 we can apply lemma 2 getting

1S3 1S3 1S3 153

(m > mp)' ™ = o™ = 7 ey = (my b )t

where the second equality follows from the consistency of 7 and m3. Thus we got that
(3) is equivalent to (5) and both conditions coincide.
Now, assume that both expressions in formula (1) are defined. Because of (6), (7)
and the fact that 7 and 73 are consistent, the expressions
T 273
IK1NKy | K3N(K1UK3)’
2 3

T Do >y =

USWPUES
KinKs | KoN(K1UK
’/Té 1 37(% 2N(K1UK3)

T D> T3>y =

are mutually equivalent, which finishes the proof. O
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Lemma 15. Let P be a persegram. If P’ arises from P by applying of Intersection per-
mutation then Mp = Mpr.

Proof. Let P is a persegram over variable set N. Suppose, that two adjacent columns i,
? + 1 meet the condition K; N K;11 = S; U S;4;1.
We have to consider the following two situations:

(CL) S’L - Si+17
(b) S; C Sy

It is needless to consider
(C) S; D Si+1

because it is in dispute with assumptions.

Consider the situation (a) where S; = S;;; (i.e the intersection contains bullets only).
By swapping the corresponding columns, no bullet will change into a box-marker and
vice-versa. It passes into proof of Independent permutation, which is evident.

Now consider the situation (b). Regarding the fact, that (un)conditional indepen-
dencies in persegram are indicated by absence of corresponding Z-avoiding trails, we
have to prove, that the sequence of markers remain Z-avoiding trail after Intersection
permutation.

Suppose, that there is a Z-avoiding trail which passes through swapped columns.
Horizontal parts remain the same. Vertical parts have to be connected with a box-marker.
Assume, that the original trail fulfilled all the conditions imposed. After reordering, the
corresponding vertical connection may contain:

e two box-markers — In this case everything is all right.
e one box-marker — In this case everything is all right.

e no box-marker — In this case vertical connection contains two bullets. According
to the assumptions they belong into both columns. Hence, vertical connection can
be transferred into the other column. Then the vertical connection will contain, at
least, one box-marker there, which corresponds to the box-marker from the original
vertical connection.

O

In accordance with the definition 11, lemmata about Bullets extension/reduction
should follow now. The first of them can be found e.g. in [1].

Suppose that we remove/add column of bullets. It is easy to prove that this operation
preserves the Independence model. According to the definition 6 of Z-avoiding trail,
no vertical connection of that trail can pass through column without any box-marker.
Therefore, the removal/addition of such column will bring no change in its independence
model. Now proceed with the last of IE operations - Subset extension/reduction.

Lemma 16. (Subset extension/reduction) If o and w3 are consistent then

K2253:>7T11>7T2[>7T3:7T1[>7T3. (8)
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Proof. Let us start, again, by showing that, under given assumptions m > my > 73 is
undefined iff m >3 is undefined. From the definition of operator > follows that 7 >y >3
is undefined if

KiNK: KiNK:
7.(_il,l QK,Nél 2

or

(7(1 > WQ)l(KluKQ)ng & W?{(Klqu)m]Q (9)

Because of (K; U Ky) N K3 = S3 = K, and the consistence of m and 73 , the
expression (9) can be rewritten into the following form: m1"*>m, % m,. This condition is
invalid under any circumstances. Therefore the condition (9) is invalid and under given
assumptions, 7 > o > 3 is not defined ff

7T]J:K10K2 K ﬂ_él,KlﬂKQ (10)
Analogously, 7 > 73 is not defined iff
W%KlﬂKg K WéLKlmKS (11)

Under the given assumption Ky = Ss, these two conditions (10), (11) coincide because
SQZKlﬂKQZKlﬂS?,:KlﬂK:g

and 7y, 3 are consistent.
Now, supposing that both expressions in (8) are defined,

T ToT3 USWE] 173
T Do >y = S = =
2, 1S3 1S2 IK1NK3
Ty T3 b T3
which finishes the proof. O

Lemma 17. Let P be a persegram. If P’ arises from P by applying of Subset exten-
sion/reduction then Mp = Mp:.

Proof. This lemma can by proved the same way as lemma 15, or one can realize that
Subset extension/reduction can be spread out into Subset permutation and Bullets ex-
tension/reduction, where both of them preserve Independence model Mp. O

The previous proof narrows the set of IE operations in three of them (Subset exten-
sion/reduction can be omitted since it can be substituted by the sequence of the others).

Lemma 18. Let P be a persegram. If P’ become from P by iterative application of the
IE operations then Mp = Mp:.

Proof. Since all of IE operations preserve the M p, the proof is clear. O
Lemma 19. Let 7y, m, ..., m, be a perfect sequence. If '\, mh, ... 7 is obtained by iter-
ative application of IE operations, then

T D>T>. . . DT, =T DT> ... DT,
Proof. Because my,ms, ..., T, is a perfect sequence, then m, 7, ..., 7, are pairwise con-
sistent. 0

Example 20. An example of four different persegrams with the same independence model
is on Figure 2. They were produced by iterative application of IE operations from the
most left persegram.
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Figure 2: Process of application IE operations in persegram

4 Conclusion

The main achievements of this report are various operations in persegram, denoted as IE
operations, which preserve the (un)conditional independencies expressed by persegram.
By iterative application of the IE operations we can obtain big amount of various perseg-
rams. However, may we obtain all of them? All persegrams with the same independent
model? May two persegram with the same independent model be converted each other
by application of IE operations only 7

According to our preliminary studies, the answer is YES. Nevertheless, the corre-
sponding proof has not been finished yet. To do it, a number of different assertions has
to be bringed out, but it goes beyond the scope of this paper.
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Abstract. Real complex dynamic systems are subject of advanced modelling yet. Knowledge,
decision and action in such systems are often distributed into a set of individuals called agents.
Present paper introduces a simple model of an environment with renewable resources. In this
environment, agents are operating, namely they exploit from the resources. The system depends
on various parameters and global rules which are assessed and optimized in the second part of
the paper.

Abstrakt. Realné slozité dynamické systémy jsou predmétem pokrocilého modelovani. Znalosti,
rozhodovani i akce v takovych systémech jsou c¢asto rozlozeny mezi jedinci - agenti. Predlozeny
prispévek pfedstavuje jednoduchy model prostiedi s obnovitelnymi zdroji. V tomto prostifedi
plsobi agenti tak, ze Cerpaji z téchto zdroji. Systém zavisi na nékolika parametrech, které jsou
zkoumany a optimalizovany v druhé c¢asti ¢lanku.

1 Intoduction

Modeling of dynamic systems has a long tradition and stochastic dynamic programing
and control theory has introduced many useful concepts how to act on a system and so
influence its behavior [2].

In present, new works occurs dealing with operation of multiagent society on the
system. There are two main tendencies: first group of researchers are experts[3] in Al
and they intend to introduce lot of logic, communication and so on[4]. On the other hand
there are experts who the agents only admit into their sophisticated physical models.

This paper is different. The model is constructed step by step from both points of
view and the objective to assess the operation of agents in a particular task is achieved.
Section 2 introduces the model and section 3 shows results and conclusion on this model.
Section 4 summarizes most interesting results.

2 Model Desription

For a multi-agent system, it is important to specify the environment, its state, low of time
and particular components. The model applied for this work simulates agents’ behavior
in the environment with renewable resources. The state of the system can represented as

135
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x € R™™ where n is number of resources and m is number of agents; x; is the amount
of material in agent or resource j. The time is discrete and has a finite horizon t.
Basic system dynamic cosnsist in discrete steps. In each steps two affairs happen:

1. Natural changes - from states x(t) evolves temporary new states x™) (¢ + 1).

2. Agents’ actions - from temporary new states x(*)(¢ + 1) evolves final new states
x(t+1).

2.1 System Components and their Properties

The system is composed from two kinds of entities, viz. of resources and of agents.
Abstraction of both is the class natural object. An natural object contains an amount of
material. The capacity have upper and lower limits. The amount of material in natural
object j varies in time as a difference equation with limits according following formula:

23 (t + 1) = min (a:}”“““", max(xgnm, z;(t) - g; + aj)) (1)
where a; and g; are parameters specific for each natural object and corresponds to linear
(arithmetic) or exponential (geometric) trends.

The system contains a set of resources. A resource is - in fact - a natural objects. A
renewable resource have a; > 0 or g; > 1. Possitive a; stands for resources with regular
feed, e.g. for water source. Situation with g; > 1, is typical for living natural objects,
e.g. for growing wood in a forest. Resources considered in our simulation are considered
to have g; > 1, a; = 0, and x;m" = 0. Therefore, if a resource is exploited totaly, it is not
able to recover its state.

Second set contained in the system are agents. From the natural object’s point of
view, it holds a; < 0 and g; = 0. It means that the agents consumes regulary a portion
of the material thay contain. However, the agents differ from other natural objects in a
more important aspect: they act. In each time step, they choose an action. There are
following options what an agent may do

e load the material from the actual resource,
e move to another resource,
e or wait doing nothing.

Nevertheless, there is a condition to act, namely x;(¢) > 0 because if z;(t) < 0, the agent
is not able to consume usual amount a; and dies.

Waiting is very simple to be implemented and movement as well. All resources are
considered to be conected by equaly long way. Hence, the only parameter for movement
is which resources is to be visited next.

If agent ¢ loads from resource 7, is the situation more complicated. The agent strives
to load its maximum, but there are two limits: agent’s free capacity and the speed of
loading. Nevertheless, the resource may not contain enough material. Therefore the
loading is given by following formula:

Li(t) = min (z5(t) — 27", max(2"* — 2} (), []"*")) (2)
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Figure 1: Pugnancity depending on relative state

Hence after actions the states of loading agents will be z;(¢) = x}(t) + [;(¢) and the state

of resources as follows:
() = 5(t) — Y (D) (3)
iELj (t)
where L;(t) are agents loading from the resource at time t.

The problem occurs if more than one agents are at the same resource. In this case,
agents are in a queue and load one after other. The point is how to sort this queue, who
will load first. Let p;(t) is actual pugnancity of agent i. The ordering can have e.g. such
form:

e The strongest agents load first - selfish apporach.
e The order is random - random approach.
e The weakest agents load first - altruistic approach.

A sorting algorithm called groggy sort has been developed which can parametrize this.
The system parameter v € [—1, 1] passes from the altruistic approach through the random
to the selfish one smoothly.

The pugnancity depends on relative filling of the agent. If an agent is almost empty,
it means it is hungry and is weak. Nevertheless, the agent may lose the power if it is
nearly completely full. The relation is given by following formula:

2
I'>
p; 2—042( aw —a) +1 (4)

The pugnancity express how the agent’s vigour depends on the relative filling and is
always € [0, 1]. Parameter « € [0.5, 1] sets the relative filling by maximal pugnancity, as
shown in Figure 1.

The last remaining aspect of the system is the mechamism how the agents decide.
The selection of an action is random. Each action have a score that is updated. Agents
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have memory about all visited resources and amounts of material that they loaded there.
The score of movement to a resource is calculated as follows:

U§yccessful(t> It ) 1
o i,J (Ylast
sij(t) =c¢ vff}tal(t) e - tanh(7(t — tiast)) (5)

where ¢ is a constant > 0 and represents the traveling preference. The first fraction is
the ratio of visits when the load was not zero. The second fraction express the ratio of
successfulness of last visit. Third fraction is important to ensure the comparability of
the action travel and action load for all possible amount of resources n. The latter term
express the time influence: longer absence, bigger curisousity to visit the resource. The
parameter 7 can be denoted as nostalgia. The function tanh is applied in order to keep
also this term in [01].

2.2 Objectives

The system is running with given parameters finite period. During this time natural
changes happen and the agents act. There are some thinks that can be considered as
objectives:

Total production - the sum of loaded material during the simulation is maximal.

Humanism - the amount of not empty agents after the simulation is maximal. In other
words, this approach maximizes the amount of living agents in the system.

Ecology - the amount of not empty resources after the simulation is maximal. In other
words, this approach attempts to keep resources able to be renewed.

Egoism - the sum of loaded material during a period is maximal. If the system has m
agents, there are m egoist criteria. This model would suppose heterogenous agents. As a
simplification, this objective has been skipped.

It is obvious some criteria are conflicting. E.g. if the agents would not load the
material, they will die soon and no resource will be used. Nevertheless, in a long term
horizon, it can be supposed that these conflicting criteria are not conflicting in fact. If
there is no production, no agent can survive. If there are no resources able to be renewed,
the agents can not survive as well.

The conflict of several criteria is solvable by multicriterial methods. One of them is
presented bellow. For a proper formulation of a multicriterial problem it is necessary to
state also the input space, i.e. parameters and values from which can be the parameters
of the system selected.

2.3 Parameters

The system has following parameters The fourth column states which parameters are
fixed for performed simulation. In fact, the parameters that are considered not to be
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Parameter Stands for Range  Default
n  Number of resources N 20

m  Number of agents N 20

a a= —a; for all agents 7 R+ 1

Gmaer Maximal load limit for each agent R+ 1

g g = g; for all resources j 1+ R+ 1.3

« pugnancity parameter [0.5,1] -

v groggy sort parameter [—1,1] -

¢ traveling preference R+ -

T time parameter R+ -

To™”, T s maximal states for agents and for resources R+ 10, 20
wie a? initial states for agent and resources R+ 4,9

T,)", Ty minimal states for agent and resources R+ 0,0

Table 1: Considered system parameters

subject of decision making have been fixed. Parameters g, a influence the ordering of
agents if more than one come to the same resource. Parameters c,7 are part of the
decision making procedure of each agent.

3 Multicriterial Genetic Optimization

The system described was described completely. The question is which values shall the
system parameters have with respect to proposed objectives.

Multicriterial decision making has been a subject of research for a long time. Nev-
ertheless, usual methods consider convex decision space and special (linear, quadratic,
convex, etc.) objective functions.

However, if the objective function corresponds to a result of a simulation, the assump-
tions are not possible. Therefore, another approach is necessary. Following text presents
a modification of algorithm described [1].

First, let the multicriterial optimization problem be formulated properly. The in-
put space is an interval S C R* where particular attributes corresponds to parameters
a,g,c, 7. The objective function has 3 components: total production, number of non
empty agents, and number non empty resources. The objectives will be denoted f1, fo,
and f3. Because the system is stochastic, these values are obtained as average from s
simulation. The parameter s = 20 was used.

The basic principle of multicriterial analysis consist in elimination of dominated vari-
ants. A variant is dominated if there is another one that is at least same in all criteria and
in at least one better. The aim of presented method is to find nondominated variants.
The dominanace will be denoted

x® o« x) (6)

and a non dominated variant within a set

x® - S (7)
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finally a subset dominanting particular solution will be denoted S;. Of course, S; will be
empty for all non dominated variants. The method is a modification of an usual genetic
algorithm with selection, crossover, and mutation.

3.1 Selection

This operatdion respects the levels of nondominance. I.e. non dominated individuals
have the probability highest. They have rank 1. After omitting them, other individuals
are non dominated. They have rank 2 etc. Formaly

ri=1 if x9 =9 (8)
ri=1+ max 7 9)

The ranking is afterwards used for caclulation of two distribution functions:

pi = ki(expr;+1) (10)
6, = k2 (1)
Ty

where ki, ks are constants do > p; = > 60; = 1. In each time step given number of
crossovers and mutations are performed. p is used for sampling parents of these opera-
tions, while 6 is used for locating the place.

3.2 Crossover

The crossover is perfomed per components, i.e. the component of the first child are
selected with 0.5 probablility form the first parent and with 0.5 from the other one. The
not selected component is put into the second child.

3.3 Mutation

The mutation adds random noise form normal distribution with the mean p = 0 and
standard deviation that may differ for each attribute is defined as follws:

1
7 Togllog®) "
U R -
s; log(log(?))

where s; is standard deviation of the j—th component of the population.

4 Results

Practical part of the work consist of two parts. First, the model was implemented in
Java. Afterwards an multicriterial algorithm was coded in Matlab. This algorithm uses
the Java classes for the objective function calculation, of course.
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Number of iterations 10000
Size of population 100
Number of crossovers in an iteration 1000
Number of mutations in an iteration 1000
Simulations required for fitness calculation 20

Table 2: Optimization parameters

o 0 T c
Agents alive —0.12366 —0.036367  —0.19365 —0.36289
Non empty resources —0.014428 —0.00093429 —0.013190 —0.0072702
Total production —0.12346 —0.033927  —0.18654 —0.33625

Table 3: Correlation matrix for all generated results

Simulation and optimization parameters are to be distinguished. Some simulation
parameters have been fixed, some of them were variable. The objective was to find such
values of these variable parameters, leading to non dominated solutions with respect to
above mentioned objectives. Table 1 shows in column Default which parameters are fixed
and their values. Only such parameters were selected to be subject of optimization that
influece the behavior of agents. Table 2 shows the optimization parameters.

The optimization algorithm discovered 5 non dominated solutions. For basic orienta-
tion in dependencies between parameters of non dominated solutions and corresponding
values of objective functions, correlation analysis was performed. Table 3 provides part
of correlation matrix for the entire population, Table 4 for non dominated solutions. The
first one represents all solutions, but we are interested only in the non dominated ones.
GFurthermore, the values of Table 3 are not s

The correlations for non dominated solutions are more signifficant. At level 0.1 for
t-test, four correlations are signifficant:

e Agents alive - 7
e Total production -7
e Agents alive - ¢

e Total production -c¢

Both parameters 7 and ¢ influence the agent’s will to travel. Agents obtain better results
in exploiting if they load instead of travel.

Other correlations between variable parameters and objectives are not so significant.
Parameters a and v have the opposite effect. It seems that the exploaition is more effective
if more pugnant agents are prefered and the pugnancy grows with agent’s material.

5 Discusion

Present work have introduced simple multi-agent model of an environment with renewable
resources. Parameters influencing the problem were mentioned. Afterwards an multicri-
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o) v T c
Agents alive 0.10876 0.22804 —0.75014 —0.82158
Non empty resources —0.29206 —0.17625 0.47344 0.47121
Total production 0.10872 0.22842 —0.75076 —0.82220

Table 4: Correlation matrix for all non dominated solutions

terial optimization algorithm was introduced and applied. Results were presented and
discussed.

Main benefits are these: design and implementation of a multi-agent system, general
framework for conflict modelling and resolution via pugnancity and groggy sort, basic
modelling of agents’ memory and decision making, and finally modification and imple-
mentation of an multicriterial optimization evolution algorithm.

The work opens also some challenges for further research. The model could deal also
with placement of the resources in a plane or in a graph so the movement of agents
is not so easy, but more realistic. The behavior of resources could depend on other
resources (phreatic water) or external conditions (wheather). The model of agent could
be improoved as well, especially with respect to communuication, knowledge sharing,
reasoning, coolation formation etc.

Regarding the optimization of the system, other criteria and parameters can be in-
volved, more testing can be performed. The optimization method can employ other
selection, mutation or crossover. The relationships between variable simulation parame-
ters and optimization objectives could be examined by advanced methods than applied
correlation analysis.

There is lot of open work and I intent to deal with it within next phases of my PhD
course.
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Abstract. This contribution deals with numerical solution of the Gray-Scott model. We intro-
duce two numerical schemes for the 2D GS model based on the method of lines. To perform
spatial discretization we use FDM in first case and FEM in the second case. Resulting sys-
tems of ODEs are solved using the Runge-Kutta-Merson method. We present our numerical
simulations.

Abstrakt. V tomto ptispévku se vénujeme numerickému feseni Grayova-Scottova modelu. Ptred-
stavujeme dvé numerickd schémata pro 2D GS model zalozena na metodé primek. K prostorové
diskretizaci pouzivame v prvnim ptipadé FDM, ve druhém FEM. Vzniklé systémy ODEs fesime
metodou Runge-Kutta-Merson. Uvadime vysledky numerickych simulaci.

1 Introduction

Reaction-diffusion systems are a class of systems of partial differential equations of
parabolic type. It includes mathematical models describing various phenomena in the
field of physics, biology and chemistry. They describe how the concentration of one or
more substances distributed in space changes under the influence of two processes: local
chemical reactions in which the substances are converted into each other, and diffusion
which causes the substances to spread out in space. Reaction and diffusion of chemical
species can produce a variety of patterns.

Gray-Scott model is one of these models. It was first introduced in 1984 in an article
by P. Gray and S. K. Scott [1] as a mathematical model of autocatalytic chemical reaction

Uu+2Vv —— 3V
V. —— P, (1)

where U, V are input reactants and P is inert product. Gray-Scott model can be written
as the following system two PDEs of parabolic type (see [3, 4])

ou 9 9
% = aVou —uv® + F(1 — u),
% = bV +uv? — (F + k). (2)

Here u, v are unknown functions representing concentrations of chemical substances U,
V. Parameter F' denotes the rate at which the chemical substance U is being added
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during the chemical reaction, F' + k is the rate of V — P transformation and a, b are
constants characterizing the environment where the chemical reaction takes place.

We solve (2) on a finite domain 2, which is a square or line depending on whether
we are solving the system in 2D or 1D. We use zero Neumann boundary conditions.
Our choice of initial data is such that v(x,0)) = v, u(z,0)) = 1 — v;,;. We usually
take F' > 0, k > 0. For a = 0, b = 0 the system (2) is a model of the reaction (1) in
continuously fed well stirred tank reactor (CSTR), the CSTR model. If a > 0, b > 0
then the system (2) models the reaction in continuously fed unstirred reactor (CFUR),
the CFUR model (see [7]). Dynamics of the CSTR model is rich and covers standing
pulses, traveling pulses, traveling fronts, self-replicating patterns, spatio-temporal chaos
and others (see [3]). Most of these pattern have been observed also in the CFUR model
(see i.e. [9]).

For other dimensionless forms of the Gray-Scott model and their application see i.e.
[4, 5, 6].

2 Numerical schemes

We use two numerical schemes to solve initial-boundary-value problem for the Gray-Scott
model (2). Both of them are based on the method of lines. For spatial discretization we
used finite difference method (FDM) in the first case and finite elements method (FEM)
in the second case. We use structured numerical grids (see Fig. 1). To solve resulting
systems of ordinary differential equations Runge-Kutta-Merson method is used.

FDM grid FEM grid

Figure 1: Numerical grids we used for our numerical simulations.

2.1 FDM based numerical scheme

Let h be mesh size such that h = ﬁ for some N € NT. We define numerical grid as a
set

wp = {(ih,jh)|izl,...,N—Z,j:1,...,N—2},
wn = {(ih,jh)]i=0,...,N—1,7=0,...,N—1}.
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For function u : R? — R we define a projection on wy, as w;; = wu (ih, jh). We introduce
finite differences

Wit1,j — Ui Uij — Wi—1

ux1 ] = #7/“51 1% = —d =]
’ h ’ h

Uij+1 — Uiy Uij — Uij—1

Ua:gij=7j ]7u52ij:7] —,
’ h ’ h

and define approximation A of the Laplace operator A as follows
Aptli; = Ugyey,ij + Uzas,ij-

Then semi-discrete scheme has the following form

d

dtu” (t) = 72 Ahu” + F(l — uij) — uijvfj,

d b

dtvw(t) = ﬁAhvij (F + k)vij + ujv ”, (3)

plus corresponding initial and boundary conditions.

2.2 FEM based numerical scheme

To induce the semi-discrete scheme we begin with variation formulation of the initial-
boundary-value problem for the Gray-Scott model (2). Let

@1(I),@2($) S 080(9)7
Ui(t),a(t) € C°(0,T)
are test functions and
filu,v) = F(1—u) —u?
fo(u,v) = —(F + k)v+ uv?

denote right-hand sides of differential equations (2). Using standard approach (see [8])
we induce weak formulation of the problem

o) +a(Va, V) = (fre),

dt
j(v ©2) +0(Vu, Vo) = (f2,02),
( ) = Uini,
v(-,0) = Vini, (4)

with solution u, v from the Sobolev space VV21 (©). We are looking for Galerkin approx-
imation
N

u(t) = > ai(t)®;,

Uh(t) = Zﬂz(t)q)z
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of this weak solution in the finite dimensional space S; C WQ(I)(Q), where ®¢,..., Dy
are its basis functions. Functions «;, [§; are real functions which we get using common
technique as solutions of initial value problems. Choosing basis functions ®; in the form
of pyramidal functions

®;(P;) = 6;; for all grid nodes P;,

and using mass-lumping we can rewrite the problem for finding functions «;, 3; in the
following form

d 2a
Euij(t) = W[Uiﬂ,j F Uit1,j41 F Uij—1 + Uijp1 + U1, +
+uiq i1 — 6wy + F(1 — ug5) — Uz’j“?j
d 2b
a Vi (t) = W[Ui—l—l,j F Vig1j41 T Vi1 T Vi1 H U1+
FVi—1,41 — 6’Ul'j] — (F + k)vij + uijUiZj (5)

plus corresponding initial and boundary conditions. For details on induction of presented
semi-discrete schemes we refer reader to [9].

3 Numerical experiments

3.1 EOC measurements

To determine the order of convergence of our numerical algorithm based on the FDM
based semi-discrete scheme (3) we use experimental order of convergence (EOC). For our
measurements we used formula

lv=vwll _ (Q) (©)

| v —wvpt || hi) ~’
where v is numerical solution computed on the grid of size 2000 x 2000 and substitutes
the analytical solution, vy2, vy are numerical solutions computed on courser grids with
mesh sizes h2, hl and « is the EOC coefficient. We present some of our measurements for
different Gray-Scott model parameter values and initial conditions (see Table 1, Table 2,
Table 3). According to the presented results the EOC coefficient depends notably on
initial concentration data and model parameter values. Our results vary between the

values of 1 and 2. More research into this problem is needed including EOC measurement
for the FEM based numerical algorithm.

3.2 Diversity of solutions

In this section we present some of our numerical results. In the figures Figure 3 and Figure
2 we can see spatial distribution over the domain 2 of chemical substance V' concentration
for given Gray-Scott model parameter values and time. These results demonstrate the
diversity of GS model solutions. We can see that patterns vary between geometrically
simple ones and those which are more complex. In the Figure 2 we can see growing-line
like patterns which we were able to observe for parameter values a = 2-1075, b = 1-107,
F =0.0737, k = 0.061882, L = 0.5 and different initial conditions.
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Ny x Ny

h

EOC L,

EOC Ly

100x100
150x150
200x200
250x250
300x300
350x350
400x400

0.0050505
0.0033557
0.0025125
0.0020080
0.0016722
0.0014326
0.0012531

1.6479179
1.8042298
1.9112146
1.9725610
2.0089377
2.0336490

1.6364127
1.5663398
1.7531840
1.8660718
1.8995297
1.9882238

Table 1: Table of EOC coefficients.

N, x N,

h

EOC Ly

EOC Ly

100x100
150x150
200x200
250x250
300x300
350x350
400x400

0.0101010
0.0067114
0.0050251
0.0040160
0.0033444
0.0028653
0.0025062

0.8225371
0.9222231
0.9995422
1.0667171
1.1237827
1.1754085

0.5550153
0.7584173
0.9052681
1.0124643
1.0727512
1.1689477

Table 2: Table of EOC coeflicients.

N, x N,

h

EOC Ly

EOC Ly

100x100
150x150
200x200
250x250
300x300
350x350
400x400

0.0050505
0.0033557
0.0025125
0.0020080
0.0016722
0.0014326
0.0012531

2.0466270
2.0460521
2.0512043
1.9143909
1.5423185
1.5552072

1.0203486
0.9659226
1.1006299
0.9491632
1.0946135
0.9893100

Table 3: Table of EOC coeflicients.
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Initial data for Solution at time Solution at time
concentration v t = 10000 t = 20000

Initial data for Solution at time Solution at time
concentration v t = 8000 t = 20000
Initial data for Solution at time Solution at time
concentration v t = 2000 t = 20000

Figure 2: Growing line-like patterns. Parameter values: a = 2-107°, b = 1-107°, ' =
0.0737, k = 0.061882, L = 0.5. Grid size: 1000 x 1000. Numerical method:
FDM. Time evolution of concentration v is shown for different initial data.
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a= a=1105b=1-10"7 a=110%b=1.10"7
F =0.2,k = 0.007, F =0.15,k = 0.009, F=810"%k=0.2,
L =0.5, t = 2000 L =0.5,t="700 L =0.5,t=1900

......................
.......................
.......................
.......................

--------------------

a=1106b=1-10"7
F =810"%k = 0.02,
L =0.5,t=980

a=1106b=1-10"7 a=110%b=1.10"7
F =0.002,k = 0.02, F =0.004,k = 0.02,
L =0.5,t=2080 L =0.5,t = 5000

a=110"%b=1-10"7
F =0.007,k = 0.03, F = 0.03,k = 0.04,

a=1106b=1-10"7 a=1105b=1-10"7

F =0.001,k = 0.008,

L =0.5,1t=940 L = 0.5, t = 2000

L =05, t=4940

Figure 3: Results demonstrating diversity of solutions of the GS model computed using

FDM based numerical scheme (3) and grid size 400 x 400 for different parameter
value combinations. Spatial distribution of concentration v is presented.
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Abstract. This paper deals with the numerical simulation of dislocation dynamics. Dislocations
are described by means of the evolution of a family of closed and open smooth curves I'(¢) : S —
R?, ¢t > 0. The curves are driven by the normal velocity v which is the function of curvature x
and the position vector = € I'(t). In this case the equation is defined this way: v = —k + F.
The equation is solved using direct approach by two numerical schemes, ie. semi-implicit and
semi-discrete. Results of the dislocation dynamics simulation are presented.

Abstrakt. Tento c¢lanek se zabyva numerickou simulaci dislokacni dynamiky. Dislokace jsou
popsany pomoci ¢asového vyvoje mnoziny uzavienych a otevienych hladkych kiivek I'(¢) :
St — R2 ¢t > 0. Vyvoj kiivek je ovliviiovin normélovou rychlosti v, jenz je funkci kfivosti
k a polohového vektoru = € T'(t). V tomto pfipadé mé rovnice tvar v = —x + F. Rovnice je
feSena prfimou metodou pomoci dvou riznych numerickych schémat, semi-implicitnim a semi-
diskrétnim. Vysledky simulace dislokac¢ni dynamiky jsou také uvedeny.

1 Introduction

In the field of material science, the dislocations are defined as an irregularity or error in
crystal structure of the material. The presence of dislocations strongly influences many
of the material properties, that is why it is important to develop suitable physical and
mathematical model. The physical model already exists but there still is a lot of to do
concerning mathematical model. From the mathematical point of view, the dislocations
are defined as smooth closed or open plain curves which evolve in time. The example of
dislocation in the material is shown in Figure 1.

2 Mathematical model

The evolving curves can be mathematically described in several ways. One possibility is
to use the level-set method [1, 2, 3], where the curve is defined by the zero level of some
surface function. One can also use the phase-field method [4]. Finally, it is possible to
use the direct (parametric) method [5, 6] where the curve is parametrized in usual way.
This article discusses this direct approach.

*This work is supported by grant no. MSM 6840770010, project no. LC06052 of Necas center for
mathematical modeling.
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Figure 1: Dislocation in steel. http://en.wikipedia.org/wiki/Dislocations

3 Parametric description

When using the parametric approach, the dislocation curve I'(¢) is described by a smooth
time-dependent vector function

X:SxI—R?

where S = (0,1) is a fixed interval for curve parametrization and I = (0,7 is the time
interval. Dislocation curve I'() is then given as

D(t) = {X(u,t) = (X" (u,t), X*(u,t)),u € S}.
The family of curves satisfies the equation for time evolution
v=—-k+F (1)

where v is the normal velocity of the curve evolution. The normal velocity v is the
function of the curvature x and the position vector x. k is the mean curvature and F' is
the forcing term.

The evolution law (1) is transformed into the parametric form. The unit tangential
vector T is defined as T' = 8,X/|8,X|. The unit normal vector N is perpendicular to the
tangential vector and N -T = 0 holds. The curvature  is defined as

o Xt 2.X . 02X

T 0.X] 0 X o

—K

where X+ is a vector perpendicular to X. The normal velocity v is defined as a time
derivative of X projected into the normal direction,
0, X+

’U:atX'm.

The equation (1) can now be written as

o Xt 92X 0,X"
10, X|  0.X]2 |0.X]|

0 X + F
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which holds provided

0?2 X 0, X+
X =2 1 F(u,t)———. 2

The term 92, X/|0, X |* in (2) contains some tangential force which makes curve points
to move along curve. To neglect this tangential force, some term « in the tangential
direction must be subtracted, so the equation changes to

OuX _ 0X
0. X2 0. X]

D, X+

X = v

+ F(u,t)

One can derive that the tangential force contained in the equation has the form

OuuX - 0, X
SRS .

We obtain the equation where there is no tangential force at all. The equation has the
following form:

i
x = JmX _OuX 0Xpy F(u,t)a"X : (5)
0.XF  [0.XP 9,X]
This equation is not suitable for numerical simulations because points cannot move along
curve and often create areas with high density of points and areas where points are
very sparse causing very slow computation. The equation (2) is better for numerical
simulations but still for long time simulations similar grouping of points usually happens.
One of the solutions is to use some algorithm for tangetial redistribution of points.

For long time computations with time and space variable external force F'(u,t), the
algorithm for curvature adjusted tangential velocity is used. This algorithm moves points
along the curve according to the curvature, i.e., areas with higher curvature contain
more points than areas with lower curvature. This improves numerical stability and also
precision of computation. Unlike the case with no tangential force (5), the term « is not

given by a simple formula but it is based on relative local length between points. Details
are described in [12].

4 Numerical scheme

For numerical approximation we consider a regularized form of (3) which reads as

2,X 0uX 0. X~
A s SRR .

where Q(z1,22) = /2?4 235 + 2. Two numerical schemes are used for the numerical
solution of the differential equation (3), semi-implicit and semi-discrete. With two nu-
merical schemes it is possible to compare the solution and error of computation.
In the semi-discrete scheme spatial derivatives are approximated by fourth-order cen-
tral differences. The first derivative is approximated as
X;_Q — 8Xj1_1 + 8Xj1Jrl - X1, X2 ,— 8Xj2_1 + 8XJ2Jrl - X?

X =~ Jj+2 J Jj+2
Ou 12h ’ 12h '
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and the second one as
12h2 ’
—X2 9+ 16X2 1 — 30X2 + 16XJ2Jrl Xfﬂ}
12h2 ’

where X7 denotes an approximation of X*(jh,-),i € {1,2}, h = 1/m. Here m is a number
of points on the curve. Differences are denoted as X, for the first derivative and X, for
the second derivative.

The equation (6) in semi-discrete scheme has the following form:

812wX A [

dX; X, X, X
= — + F(u,t) =21,
o oW AR T o
j=1,--- m—1,te€(0,7), (7)
where again Q(z1,z2) = /2% + 3 + €2, Xl is a vector perpendicular to X, ;, and ¢ is

redistribution coeficient. The term ¢ serves as a regularization to avoid singularities when
the curvature tends to infinity. This scheme is solved by the fourth order Runge-Kutta
method.

Second approach uses the semi-implicit scheme. In this case lower order differences
are used. The first derivative is discretized by backward difference as follows
{Xl X, X2 - X?l]

j—1 J

h ’ h

Oy X ~

and the second derivative as
X —2X;+ X}, X7\, -2X7 + X7
2 ’ B2 :
The approximation of the first derivative is denoted as X5 ; and the second derivative as
Xiuj-
The semi-implicit scheme for equation (3) has the form of

35uX ~ [

k41 g Xk“ & X1k
Xt —1—7'047—)( + 7F(u, t) ——2—,
QX T TG o)

j=1,-,m—-1Lk=0,--- ,Np—1, (8)

where Q(x1,22), Xl%j, m, and «; have the same meaning as for semi-discrete scheme.

X]’-C ~ X(jh,kt), T is a time step and Nr is the number of time steps. The matrix
structure of one component X**! looks like

I+ e — 16 wer O
h2QQ+tO& N

0

The scheme (8) is solved for each k& by means of a factorization method.
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5 Results of numerical simulation

In this section, the results of numerical simulation by previous schemes will be presented.
Schemes were tested on open and closed curves with and without tangential redistribution
of points. At first, we simulated evolution of a circle and compared with analytical
solution. Experimental order of convergence and absolute error were measured. See [13].

Figure 2(a) illustrates the evolution of a closed curve with external force variable in
space. Values are as follows: F' = 10 for | X| < 0.35, F' = —5 for |X| > 0.35. The initial
curve is a four-leaf clover curve. The positive force moves the curve to the center but the
negative force move the rest of the curve from the center. In a short time, high curvature
appears and neglects the positive external force F' = 10. It causes the whole curve to
expand.

Figure 2(b) shows the evolution of the curve which intersects itself. Intersections
cause singularities and it is not possible to continue evolution because curvature goes to
infinity. That is why we added regularization term Q(zy,z2) = /2?2 + 23 + &2 to the
scheme. This allows the curve to evolve beyond singularities. One can see that the curve
evolves to the circle.

0.5

05 }

1 1 1 1 15 1 1 1 1 1
-1 -0.5 0 0.5 1 -1.5 -1 -0.5 0 0.5 1 15

a) t € (0,0.184), h = 1/200, F = 10 for | X| < (b) F=0,t€(0,0.495), h = 1/400
0.35, F = —5 for | X| > 0.35

Figure 2: Time evolution of closed curves, scheme (7)

Figures 3(a) and 3(b) show the evolution of star shaped curve using the scheme (8)
for « = 0 and « computed by (4). It was already said that the equation (2) contains
some tangential force which helps to move points along curve and improve the stability
of the computation. In Figure 3(a), one can see that the points are equally distributed
at the end of simulation. On the other hand, when the tangential force is completely
removed, points stay in groups causing long computation times and worse precision (see
Figure 3(b)).

For the simulation of dislocation dynamics, long time computations with periodical
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05

-0.5

15 I I I I I 15 I I I I I
-15 -1 -0.5 0 0.5 1 15 -15 -1 -0.5 0 0.5 1 15

(a) With tangential force. Eq. (8), @« =0 (b) Without tangential force. Eq. (8), a
according to (4)

Figure 3: Comparison of evolution with and without tangential force.

change of the external force are needed. In this case, grouping of points happens

for both

equations (2) and (5) and one has to use for example the algorithm mentioned at the

end of section 3 (see also [12]). Figures 4(a) and 4(b) present the position of
curve at ¢ = 1.38. There is an external force F' = 3 which periodically changes

an open
the sign

(i.e., F = 3 or F' = —3). This force causes the curve to move up and down. Why we
need this periodic force is described in the next chapter. Figure 4(b) shows the evolution
by equation (2). One can see that the middle part of the curve contains many points
while ends are very sparse. If tangential redistribution is used (Figure 4(a)), all points

are equally redistributed along the curve.

T T
Parametric -« Parametric

0.6 0.6

0.4 i, 0.4

0.2 < 0.2

-0.2 -0.2

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

(a) With tangential redistribution (b) Without tangential redistribution

Figure 4: Comparison of evolution with and without tangential redistribution.
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6 Dislocation dynamics

The main purpose of this work is to simulate dislocation dynamics. Dislocation curves
in the material evolves in time. It means they change the shape, the topology, etc. The
following simulations should tell us whether this way can be used for this purpose.

2 T T T T T T T 2 T T T T T T T
15 F - 15 |
1r 1 1r
05 1 05 F
0F 4 0k
-0.5 1 -0.5
ERS - 1k
-15 4 -15

1 1 1 1 1 1 2 1 1 1 1 1 1 1

72-2 -15 -1 -0.5 0 0.5 ;L 15 2 -2 -15 -1 -0.5 0 0.5 1 15 2
(a) Dislocation curve expands (F' = —3) for ¢ € (b) Curve goes back and expands to the other
(0,0.54). side (F = 3) for ¢t > 0.54.

Figure 5: The evolution of the dislocation curves with variable external force F'.

Figure 5 illustrates the evolution of dislocation curves in time. The external force
F = —3 is applied to the curve which causes the expansion in the up direction. At time
t = 0.54, the direction of the force is changed. In the real material, one can observe
similar behavior.

During the curve evolution, a barrier which blocks the curve evolution can appear.
According to the value of external force in the barrier, the curve can be either locked or
can pass through it. Figure 6 shows the case with weak force. Dislocation curve expands
by means of F' = —3 until it reaches the barrier made by the spatially variable force
F' =9 at x5 = 1.7. This barrier is not strong enough to lock the curve because at the
ends of the barrier there is a very high curvature. High curvature causes strong force
against the external force. The curve can leave the barrier and continues to expand. The
simulation in Figure 7 was computed for ¢ € (0,2.1).

In the case of strong external force, the curve is locked in the barrier and cannot
continue in evolution. The curve can only expand to sides. The barrier is again at
o = 1.7 and the value of barrier force is |F'| = 35. Figure 7(a) illustrates the curve
expansion by F' = —3 and the case when it is locked at the barrier (¢ € (0,1.5)). Figure
7(b) shows the curve shrinking by F' = 3 for ¢t € (1.5,3). The curve is locked at the
barrier and cannot go back to a straight line. This example should simulate the real
dislocation curve expansion when the curve is locked at so called channel.

The evolution of the curve at the endless channel is shown in Figure 8. Again, the
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4+ -

6 -4 -2 0 2 4 6

Figure 6: The dislocation curve expands over a barrier created by spatially variable ex-
ternal force.

(a) Curve expansion (b) Curve moves back

Figure 7: Spatially variable external force F' with high value, ¢ € (0, 1.5).

endless channel is created by spatially variable external force. The curve cannot cross
these barriers (at x5 = 1.2 and xo = 0).

7 Conclusion

The dislocation dynamics simulation is important in practice because dislocations affect
many material properties. Dislocation dynamics can be mathematically simulated by
mean curvature flow. We presented a method based on a parametric approach and two
numerical schemes. We applied the model to situations similar to the real context. The
scheme had to be improved by an algorithm for tangential redistribution of points.
Acknowledgement. This work was partly supported by the project MSM No. 6840770100

“Applied Mathematics in Technical and Physical Sciences” and by the project No. LC06052
“Necas Center for Mathematical Modelling” of the Ministry of Education, Youth and
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Figure 8: Curve evolution at the channel.
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Abstract. We propose a vector/tensor field visualization technique based on solving an initial
boundary value problem for the Allen-Cahn equation with diffusion anisotropy controlled by a
tensor field. Focus is put on the details of the numerical solution of the given problem by means
of the method of lines, presenting the results of both theoretical and experimental convergence
analysis. Afterwards, the aspects of the parallel implementation of the numerical algorithm are
dealt with, concentrating on the efficiency benchmarks. Finally, vector field visualization results
are presented and the possibilities of applying the method in MR tractography are outlined.

Abstrakt. Vyvinuli jsme metodu pro zobrazovani vektorovych a tenzorovych poli zaloZzenou na
feSeni smiSené tlohy pro Allenovu-Cahnovu rovnici s anizotropni difuzi, ktera je fizena ten-
zorovym polem. Tento ¢lanek se soustiedi na detaily numerického feSeni daného problému
metodou pfimek a uvadi vysledky teoretické i experimentalni konvergencéni analyzy. Déle se
zabyva aspekty paralelni implementace numerického algoritmu s dirazem na testovani efektiv-
ity. Nakonec jsou prezentovany vysledky vizualizace a jsou nastinény moznosti uplatnéni této
metody v MR traktografii.

1 Introduction

Vector fields or tensor fields are a common output of simulations in computational fluid
dynamics and are also produced as an intermediate result of the Diffusion Tensor Imaging
(DTI) medical examination technique [3]. DTI represents one of the applications of
a magnetic resonance (MR) scanner and is capable of tracking the diffusion of HyO
molecules in human brain (as well as some other tissues of an animal). This motion
is directly related to the neural fiber structures in the brain. In order to interpret the
described kind of data, an appropriate visualization technique needs to be chosen. In this
paper, we propose an approach based on solving a problem for the Allen-Cahn partial
differential equation [7, 2], introduce a numerical method for its solution and investigate
properties of the method itself as well as the properties of its parallel implementation.

The main idea of the method is as follows. Suppose a static vector field v is defined in
a rectangular domain Q = (0, L') x (0, L?). Generating a noisy texture in {2 and making it
undergo an anisotropic diffusion process with the diffusion focused in the direction v (x)
at each point x, the streamlines of the vector field emerge as ”smudges”. In addition to
smearing, one may impose advection on the texture in order to interpret the flow of the
fluid along the vector field.

161
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2 Formulation

Let p: J x Q R, p = p(t, z) be the function of texture intensity at each point & €
and at the time ¢ € J, where J = (0,T) is the time interval. The initial boundary value
problem for the Allen-Cahn equation with advection (see [8]) reads

%Jrﬁv-Vp:SV-TO (Vp)+%fo(p)+CoF in J x4, (1)
Plogg =0 on J x 0f), (2)
p|t:0 -7 in €2, (3)

where
fo(p) =p(1 —p) ( - %) :

In (1), the term V - T°(Vp) is responsible for anisotropic diffusion of p focused into
the direction of the vector field. Consider a vector n = (n',7*)T € R? and denote the

coordinates of 17 in the orthonormal basis (%v, %’UJ‘) by 7', 7?. The anisotropic operator
TV is defined as

T°(n) = @°(n)®)(n),

where

0 =+ R o = (el ). @

The coefficients «, 3 depend on the vector field and should be chosen such that the
absolute value of T° is largest in the case when the directions of v and Vp coincide. Our
choice is

a=rk(l+olv]), =k, Kk,o>0.

The term v - Vp in (1) causes texture advection [7, 2]. The polynomial f; makes
nucleation occur during the time. In this context, nucleation is a formation of areas
where the value of p is near 0 or 1. As described for example in [7, 1], the parameter ¢ is
proportional to the diffuse interface layer between such areas. ¢ is chosen such that it is
small in comparison with the dimensions of €). The sense of the parameter F' is related
to the problem of mean curvature flow and is explained e.g. in [7, 2].

In the context of visualization, if I : {2 — R represents the intensity of a noisy texture
at each point, the solution p will reflect the gradual diffusion of the initial image I with
increasing time. Both the state of p at some final time 7" and the entire solution evolution
can be regarded as the result.

2.1 Tensor field visualization

The anisotropy introduced with the T° operator is a generalization of the diffusion tensor
model [9], based on replacing T°(Vp) in (1) by the term

DVp,

where D is a symmetric positive definite matrix. Indeed, it is easy to verify that defining

() = v/n"Dn,
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we obtain

T°(Vp) = DVp.

On the other hand, our special choice (4) can be expressed in terms of the diffusion tensor
model. The corresponding tensor is such that it has the form

p=(" )

expressed in the basis (Zv, 1v1).

3 Numerical solution

For numerical solution, we use the method of lines, which converts the problem (1-3) to
the solution of the system of ODEs in the form

dp

The spatial discretization is carried out by the finite difference method; for the temporal
discretization, we employ the 4th-order Runge-Kutta-Merson solver with adaptive time
stepping. First, let us introduce the notations

1 2 k Lk
ho=(h', 1), W= = ke {1,2),
iy = (v;,25) = (i-h',j - h?),

wp={@ili=1,..m" —1,j=1,...,m" -1},

Wy, = {a:” 1 =10, ...,ml, 7 =0, ...,m2} , Yh = Wp — Wh,
Hy, = {u‘u Dy, — R} ;= u(x ), (6)
Prw = w‘wh € Hj, defined for any w : Q2 — R.
In the sense of (6), we introduce the following difference quotients approximating the
derivatives, gradient and divergence:

Uij — Wi—1 Uit1,j — Ui
Uzlij = % v Uty = #’
Uig — Uij—1 Uij+1 — Uiy
Uz2,ij = ]]172] v Ug2ij = %,
th = (uil, qu) s th = (ux1,ux2) s

Vi V=VAi+V3 V- V=Vi+V2 V= v)"
Using the above definitions, we assemble the semi-discrete scheme of the problem (1-

3) for the unknown grid function p" : J — H; which represents the vector of functions
of time p in (5):

h
5% +EP(v) - Vip" = &V - TO(Vip") + %fo(ph) + el in J xwn,  (7)

Py, =0 on J Xy, (8
Ph(o) = Pnl in wy,. 9)
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Tt I‘ T “I
o——*o——l ?——o?——o ‘——o*——o o——To——T
— I o~ :

Vh . TO(@hph) ?h . TO(Vhph) Vh . T0(6hph) Vh . TO(Vhph)

Figure 1: Versions of V - T° (Vp) discretization used for assembling the weighted scheme.

4 Numerical scheme weighting

The original numerical scheme (7-9) suffers from artificial numerical isotropic diffusion,
which in accordance with the spectral error analysis theory [4] affects structures in p” con-
taining high frequencies. As a result, the formation of streamlines is degraded. However,
due to the asymmetry of the scheme, the amount of additional isotropic diffusion depends
on the direction of the vector field v. This property of the scheme has been exploited to
design mixed forward/backward difference quotients approximating the gradient by

th = (ujl,ug:z)T,

th = (ug:l, uia)T
and the divergence by

V.-V o= VA+V2,

x

ViV o= VL 4V2

These expressions allow four versions of discretization of the term V - T° (Vp) in (1), as
listed in Figure 1. Two complementary scheme asymmetries are obtained, corresponding
to two perpendicular directions of the strongest numerical diffusion. Finally, all dis-
cretization versions are combined into a single scheme, weighting them with respect to
the direction of the vector field. As a result, the weighted scheme always prefers the dis-
cretization version with a weaker numerical diffusion. The improvement can be observed
in Figure 2.

5 Convergence analysis
The work [8] contains a detailed convergence analysis, proving the following theorem:

Theorem 1. Let I € H}(Q) N C(Q), v € C(Q)2. Then the solution p" of the semidiscrete
scheme (7-9) converges in Lo(J; La(2)) to the unique weak solution p of the anisotropic
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Figure 2: Visualization of the straight vector field in the direction corresponding to the
strongest artificial diffusion in the original scheme. Result obtained by the origi-
nal scheme (left) and the weighted scheme (right). All parameters were identical for
both computations.

diffusion problem (1-3), where p satisfies

p € Luo(J;Hy()),

The proof is based on interpolation theory, suitable a priori estimates and the method
of compactness.

5.1 Experimental proof of convergence

In addition to the theoretical results, the measurement of the experimental order of
convergence (EOC) has been performed for both the original and the weighted schemes.
EOC is obtained by computing the solution on a sequence of gradually refining grids and
is defined as

log (e )
EOC = — " TN
log <||h_£1||)

where ||h|| = maxh/ and Error; is the difference of the i-th solution from the precise
j

solution measured in an appropriate norm. The results indicating the convergence are
summarized in Table 1 and Table 2.
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Grid size | h Loo(J;La(2)) | Loo(JT; Lo (€2)) EOC in EOC in

error error Loo(J;5La(2)) | Loo(J; Loo ()
100 x 100 | 0.01 0.0257814 0.2909448 - -
200 x 200 | 0.005 0.0082178 0.1145193 1.6495124 1.3451547
400 x 400 | 0.0025 0.0027553 0.0465855 1.5765111 1.2976364
800 x 800 | 0.00125 | 0.0007728 0.0133288 1.8339980 1.8053344

Table 1: Experimental order of convergence of the original scheme (7-9).

Grid size | h Loo(T;L2(2)) | Leo(J; Lo (€2)) EOC in EOC in

error error Loo(J;5La(2)) | Loo(J; Loo ()
100 x 100 | 0.01 0.0249912 0.2056547 - -
200 x 200 | 0.005 0.0073023 0.0633514 1.7750009 1.6987763
400 x 400 | 0.0025 0.0022840 0.0196849 1.6768129 1.6862861
800 x 800 | 0.00125 | 0.0006455 0.0060901 1.8230700 1.6925603

Table 2: Experimental order of convergence of the weighted scheme.

6 Parallelization

In order to allow reasonably fast calculations on large grids, a parallel implementation of
the numerical algorithm has been developed by means of the MPI library (see [6]). Very
fine grids are necessary e.g. for the convergence verification of several numerical scheme
modifications.

The idea of parallelization of the finite difference algorithm is to decompose the grid wy,
into blocks, each of those being handled by a different process. Our choice was to compose
a block of several rows of the grid. The processes belonging to the adjacent blocks need
to interchange (synchronize) data in order to complete each step of the Runge-Kutta
method.

Since the method of lines is extremely demanding on the amount of synchronization,
much attention has been paid to benchmarking and scalability improvement of the code.
Using the nonblocking communication operations, we are able to optimize the flow of the
calculation by requesting the operations as soon as possible and completing them as late
as possible. Since the synchronized data is used for calculation of the border nodes of
the blocks only, we can calculate the value of the right hand side of (5) in the interior of
the block before the communication is complete.

6.1 Dynamic load balancing

In addition to message passing optimization, an interesting method of dynamic load
balancing during the calculation has been developed, making it possible to utilize non-
homogeneous clusters for efficient computation. The technique is based on the changes
of the block sizes, corresponding to the particular processes. For a given period, each
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Figure 3: Efficiency testing on CLX, different grid sizes (small=200 x 200, medium=400 x 400,
large=800 x 800) and MPI communication order (opt=nonblocking “request soon,
complete late”, noopt=nonblocking “all at once”).

process accumulates the wall time of its autonomous calculations (between synchroniza-
tions). The acquired time values are then converted to relative speeds of the processes.
Afterwards, the master process calculates the new block sizes, proportional to the process
speeds. We assume that with such block sizes, the idle times of the processes (waiting
for synchronization) should be eliminated. Rearrangement of the blocks requires data to
be redistributed among the blocks. The algorithm implementation tries to minimize the
amount of data being sent and provides mechanisms to avoid meaningless rearrangements
(when the changes to be made are negligible).

Of course, the proposed load balancing system is not suitable for advanced homoge-
neous cluster solutions controlled by load sharing managers such as LSF or PBS. On such
a system, all nodes utilized by the user application have the same performance and they
are fully at its disposal for the whole program run time. No load balancing is therefore
necessary.

Extensive efficiency benchmarks have been performed on the CLX Linux cluster at
CINECA, Italy. Some efficiency results are shown in Figure 3.

7 Visualization results

The results of the numerical algorithm based on the weighted scheme and applied to some
sample vector fields are displayed in Figure 4. Color visualization has been achieved by
separately solving the above problem for the R, G, B components of the image. The
advection term in (1) together with a suitable choice of the boundary condition may be
useful for flow visualization, as depicted in Figure 5.

8 Application in MR Tractography

As already suggested in the introduction, each DTI examination generates a tensor field
describing the directional distribution of water diffusion in human brain [10, 3, 5|. As



168 P. Strachota

Figure 4: Sample vector field visualizations.

Figure 5: Flow visualization by means of advection together with a stripe-like Dirichlet bound-
ary condition.
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Figure 6: MR tractography using anisotropic diffusion. Colorized by fractional anisotropy [9].

neural fibers act as tubes for the HyO molecules, tracking the direction of the strongest
diffusion may help discover the pathways of the neural tracts. This process is called
tractography. Using the choice

T%n) = Dn

in (1), we are able to employ our visualization approach to reveal the streamlines of
the tensor field, interpretable as neural fiber bundles. A sample result of neural tract
visualization in a transverse plane is displayed in Figure 6.

9 Conclusions

We have developed an optimized parallel algorithm for the numerical solution of the
anisotropic diffusion problem (1-3). The solution is suitable for use as a vector or ten-
sor field visualization technique, as demonstrated on several examples. The convergence
analysis justifies the suitability of both the original and the weighted schemes. Thorough
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tests of algorithm efficiency prove the possibility to create a well scalable parallel imple-
mentation of the method of lines despite the huge amount of necessary communication.
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Abstract. Classifier aggregation is a method for improving quality of classification — instead
of using just one classifier, a team of classifiers is created, and the outputs of the individual
classifiers are aggregated into the final prediction. Common methods for classifier aggregation
are static, i.e., they do not adapt to the currently classified pattern. In this paper, we introduce
a formalism of dynamic classifier systems, which use the concept of dynamic classification
confidence to dynamically adapt to the currently classified pattern. Results of experiments
with quadratic discriminant classifiers on four artificial and four real-world benchmark datasets
show that dynamic classifier systems can significantly outperform static classifier systems.

Abstrakt. Spojovani klasifikatori je metoda pro zlepseni kvality klasifikace — misto pouzivani
jednoho klasifikatoru je vytvoren tym klasifikatort a vystupy jednotlivych klasifikatort jsou poté
agregovany pro ziskani finalni predikce. Vétsina metod pro agregaci klasifikatort je statickd,
tj. agregace se nepfizptsobuje konkrétnim klasifikovanym vzorim. V tomto ¢lanku popiseme
dynamické systémy klasifikatort, které pouzivaji koncept dynamické konfidence klasifikace, aby
se prizpusobily konkrétnimu vzoru. Vysledky experimentti na 4 uméljch a 4 readlnych datovych
mnozinach ukazuji, ze dynamické systémy mohou dosahovat signifikantné lepsich vysledkt nez
statické systémy.

1 Introduction

Classification is a process of dividing objects (called patterns) into disjoint sets called
classes [7]. Many machine learning algorithms for classification have been developed —
for example naive Bayes classifiers, linear and quadratic discriminant classifiers, k-nearest
neighbor classifiers, support vector machines, neural networks, or decision trees. If the
quality of classification (i.e., the classifier’s predictive power) is low, there are several
methods we can use to improve it.

One comonly used technique for improving classification quality is called classifier
combining [11] — instead of using just one classifier, we create and train a team of classi-
fiers, let each of them predict independently, and then combine (aggregate) their results.
It can be shown that a team of classifiers can perform better in the classification task
than any of the individual classifiers.

*The research presented in this paper was partially supported by the Program “Information Society”
under project 1IET100300517 and by the grant ME949 of the Ministry of Education, Youth and Sports
of the Czech Republic.
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There are two main approaches to classifier combining: classifier selection [1, 17] and
classifier aggregation [12; 10]. If a pattern is submitted for classification, the former
technique uses some rule to select one particular classifier, and only this classifier is
used to obtain the final prediction. The latter technique uses some aggregation rule to
aggregate the results of all the classifiers in a team to get the final prediction.

A common drawback of classifier aggregation methods is that they are static, i.e., they
are not adapted to the particular patterns that are currently classified. In other words,
the aggregation is specified during a training phase, prior to classifying a test pattern.
However, if we use the concept of dynamic classification confidence (i.e., the extent to
which we can “trust” the output of the particular classifier for the currently classified
pattern), the aggregation algorithms can take into account the fact that “this classifier
is not good for this particular pattern”.

Surprisingly, such dynamic classifier systems are not used very often in classifier com-
bining. However, there has already been some work done in the field of dynamic classifier
systems — Robnik-Sikonja and Tsymbal et al. [13, 14] study dynamic aggregation of
random forests [4], i.e., dynamic classifier systems of decision trees. The authors report
significant improvements in classification quality when using dynamic voting compared
to simple voting. However, they study dynamic classifier systems only in the context of
random forests, and they use only confidence measures based on the so-called margin.

In this paper, we provide a general formalism of dynamic classification confidence
measures and dynamic classifier systems, and we experimentally study the performance
of confidence-free classifier systems (i.e., systems that do not utilize classification confi-
dence at all), static classifier systems (i.e., systems that use only “global” confidence of
a classifier), and dynamic classifier systems (i.e., systems that adapt to the particular
pattern submitted for classification).

The paper is structured as follows. In Section 2, we introduce the formalism of
classifier combining, namely in Section 2.1, we define basic concepts of classification, in
Section 2.2 we introduce the concept of classification confidence, and we introduce three
dynamic confidence measures, in Section 2.3 we deal with classifier teams and ensembles,
and in Section 2.4, we finally define classifier systems and show several examples of
dynamic classifier systems. In Section 3, we experimentally compare performance of the
proposed dynamic classifier systems. Section 4 then concludes the paper.

2 Formalism of Classifier Combining with Classification Con-
fidence

2.1 Classification

Throughout the rest of the paper, we use the following notation. Let X C R”" be a
n-dimensional feature space, an element ¥ € X of this space is called a pattern, and let
Ci,...,Cn C X, N > 2, be disjoint sets called classes. The index of the class a pattern
7 belongs to will be denoted as ¢(Z) (i.e., ¢(Z) = ¢ iff Z € C;). The goal of classification
is to determine to which class a given pattern belongs, i.e., to predict ¢(Z) for unknown
patterns.
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Definition 1. We call a classifier every mapping ¢ : X — [0, 1]", where [0, 1] is the unit
interval, and ¢(7) = (u1(%), ..., un(Z)) are degrees of classification (d.o.c.) to each class.

The d.o.c. to class C; expresses the extent to which the pattern belongs to class C}
(if p1;(Z) > p(Z), it means that the pattern (Z) belongs to class C; rather than to C;).
Depending on the classifier type, it can be modelled by probability, fuzzy membership,
etc.

Remark 2. This definition is of course not the only way how a classifier can be defined,
but in the theory of classifier combining, this one is used most often [11].

Definition 3. Classifier ¢ is called crisp, iff V&’ € X 3i, such that:
wi(Z) =1, and Vj # i p;(Z) = 0.

Definition 4. Let ¢ be a classifier, 7 € X, ¢(Z) = (1 (%), ..., un(Z)). Crisp output of ¢
on 7 is defined as ¢, (7) = argmax;—y .y pi(Z).

2.2 Classification Confidence

Classification confidence expresses the degree of trust we can give to a classifier ¢ when
classifying a pattern Z. It is modelled by a mapping .

Definition 5. Let ¢ be a classifier. We call a confidence measure of classifier ¢ every
mapping k4 : X — [0, 1].

The higher the confidence, the higher the probability of correct classification. k4(Z) =
0 means that the classification may not be correct, while k4(Z) = 1 means the classifi-
cation is probably correct. However, k, does not need to be modelled by a probability
measure.

A confidence measure can be either static, i.e., it is a constant of the classifier, or
dynamic, i.e., it adjusts itself to the currently classified pattern.

Definition 6. Let ¢ be a classifier and s, its confidence measure. We call x, static, iff it
is constant in @, we call k4 dynamic otherwise.

Remark 7. Since static confidence measures are constant, independent on the currently
classified pattern, we will omit the pattern (Z) in the notation, i.e., we will denote them
just kKg.

Remark 8. In the rest of the paper, we will use the indicator operator I, defined as
I(true) = 1, I(false) = 0.

2.2.1 Static confidence measures

After the classifier has been trained, we can use a validation set to assess its predictive
power as a whole (from a global point of view). These methods include accuracy, precision,
sensitivity, resemblance, etc. [7, 9], and we can use these measures as static confidence
measures. In this paper, we will use the Global Accuracy measure.
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Global Accuracy (GA) of a classifier ¢ is defined as the proportion of correctly classified
patterns from the validation set:

(GA) dem I(¢er(¥) = o(¥)) (1)
A M |

where M is the validation set of ¢ (i.e., a set of patterns ¢ was not trained on,
intended for parameter fine-tuning), and ¢.,.(%) is the crisp output of ¢ on ¥.

2.2.2 Dynamic confidence measures

An easy way how a dynamic confidence measure can be defined is to compute some
property on patterns neighboring with #. Let N(Z) denote a set of neighboring validation
patterns. In this paper, we define N(Z) as the set of k patterns nearest to Z under

Euclidean metric. Now we will define three dynamic confidence measures which use
N(Z):

Euclidean Local Accuracy (ELA) measures the local accuracy of ¢ in N(Z):

S v L e () = (i)
¢ @ DG ®)

where ¢,,.(i) is the crisp output of ¢ on 7.

Euclidean Local Match (ELM) is based on the ideas from [5], and measures the propor-
tion of patterns in N (%) from the same class as ¢ is predicting for 7

> i L (Ger(E) = ()
((BLM) (= JEN(Z)
¢ @ RGN )

where ¢.,.(Z) is the crisp output of ¢ on Z.

Euclidean Average Margin (EAM) is defined as mean value of the margin [4, 13, 14] in
N(Z):
(EAM) ;- Zg’eN(f) mg(é(y))
Ko () = N (D] ; (4)
where the margin is defined as mg(¢(¥)) =

e (@) = max (@) i () = (),
0 otherwise.

where ¢(y) = (u1(9), - .., un(¥)), and ¢..(7) is the crisp output of ¢ on .

The dynamic confidence measures defined in this section have one drawback — they
need to compute N(Z), which can be time-consuming, and sensitive to the similarity
measure used. There are also dynamic confidence measures, which compute the classifi-
cation confidence directly from ¢(Z), e.g., the ratio of the highest degree of classification
to the sum of all degrees of classification. However, our preliminary experiments with
such measures with quadratic discriminant classifiers and random forests show that such
confidence measures give very poor results.
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2.3 Classifier Teams

In classifier combining, instead of using just one classifier, a team of classifiers is created,
and the team is then aggregated into one final classifier. If we want to utilize classification
confidence in the aggregation process, each classifier must have its confidence measure
defined.

Definition 9. Classifier team is a tuple (7,K), where 7 = (¢1,...,¢,), r € N, r > 2 is
a set of classifiers, and IC = (kg,, . .., K¢, ) is a set of corresponding confidence measures.

If a classifier team consists only of classifiers of the same type, which differ only in
their parameters, dimensionality, or training sets, the team is usually called an ensemble
of classifiers. For this reason the methods which create a team of classifiers are sometimes
called ensemble methods. The restriction to classifiers of the same type is not essential,
but it ensures that the outputs of the classifiers are consistent. Well-known methods for
ensemble creation are bagging [3], boosting [8], error correction codes [11], or multiple
feature subset methods [2].

If a pattern is submitted for classification, the team of classifiers gives us two different
informations — outputs of the individual classifiers (a decision profile), and values of
classification confidences of the classifiers (a confidence vector).

Definition 10. Let (7 = (¢1,...,¢,), K = (K¢, - - -, Kg,)) be a classifier team, and let ¥ €
X. Then we define decision profile T(Z) € [0,1]"" and confidence vector K(Z) € [0,1]"

o (@ Ml,l(@ M1,2(9§) e MLN(@ Ko, (@
T(7) = ¢25($) _ p21(Z)  p22(T) pho,n (Z) K@) = ’%25(55) (6)
¢r(2) e (%) pr2(@) oo e (2) Ko, (T)

Remark 11. Here we use the notation 7 for both the set of classifiers, and for the decision
profile, and similarly for IC. To avoid any confusion, the decision profile and confidence
vector will be always followed by (7).

2.4 Classifier Systems

After the pattern & has been classified by all the classifiers in the team, and the confidences
were computed, these outputs have to be aggregated using a team aggregator, which takes
the decision profile as its first argument, the confidence vector as its second argument,
and returns the aggregated degrees of classification to all the classes.

Definition 12. Let r, N € N, N > 2. A team aggregator of dimension (r, N) is any
mapping A : [0,1]"" x [0,1]" — [0, 1]".

A classifier team with an aggregator will be called a classifier system. Such system
can be also viewed as a single classifier.

Definition 13. Let (7, K) be a classifier team, and let A be a team aggregator of dimension
(r, N), where r is the number of classifiers in the team, and N is the number of classes.
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Figure 1: Schematic comparison of confidence-free, static, and dynamic classifier systems.

The triple S = (7,K, A) is called a classifier system. We define an induced classifier of
S as a classifier ®, defined as

O(7) = A(T(2), K(7))-

Depending on the way how a classifier system utilizes the classification confidence, we
can distinguish several kinds of classifier systems.

Definition 14. Let (7,K) be a classifier team. (7,K) is called static, iff Vk € K : &
is a static confidence measure. (7,K) is called dynamic, iff Vk € K : k is a dynamic
confidence measure.

Definition 15. Let A be a team aggregator of dimension (r, N). We call A confidence-free,
iff it is constant in the second argument.

Definition 16. Let S = (7, K, .A) be a classifier system. We call S confidence-free, iff A
is confidence-free. We call S static, iff (7, K) is static, and A is not confidence-free. We
call § dynamic, iff (7,K) is dynamic, and A is not confidence-free.

Confidence-free systems do not utilize the classification confidence at all (for example
a team of classifiers aggregated by simple voting). Static systems utilize classification
confidence, but only as a global property (for example a team of classifiers aggregated by
weighted voting with constant classifier weights). Dynamic systems utilize classification
confidence in a dynamic way, i.e. the aggregation is adapted to the particular pattern
submitted for classification (for example a team of classifiers aggregated by weighted
voting with classifier weights computed for every pattern). The different approaches are
schematically shown in Fig. 1.

Many methods for aggregating the team of classifiers into one final classifier have
been proposed in the literature [11, 12]. These methods comprise simple arithmetic
rules (voting, sum, product, maximum, minimum, average, weighted average, etc.), fuzzy
integral, Dempster-Shafer fusion, second-level classifiers, decision templates, and many
others.
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In the following text, we define several team aggregators. We will use the notation
from Def. 10 and Def. 13. Let ®(Z) = A(7 (%), K(Z)) = (u1(2), . .., pn(Z)).

Mean value aggregation (MV) is the most common aggregation technique. Its aggrega-
tor is defined as .
2211,,7’ MZ’] (x>

r

1 (%) =

If the classifiers in the team are crisp, MV coincides with voting.

(7)

Static weighted mean aggregation (SWM) computes aggregated d.o.c. as weighted mean
of d.o.c. given by the individual classifiers, where the weights are static classification

confidences: .
D imy Koukti(T)

:u](f) - Z Ko
i=1,...,7r i

Dynamic weighted mean aggregation (DWM) has the same aggregator as SWM, but
the weights are dynamic classification confidences:

Zi:l,...,r K, (T) 1.5 (T)
Zi:l,...,r K, (T)

(8)

i (T) =

(9)

Filtered mean aggregation (FM) has the same aggregator as MV, but prior to com-
puting the aggregated values, the classifiers which have (dynamic) classification
confidence lower than 7" € [0, 1] are discarded:

> (@)

i=1,...,r
Ko, (&)>T

() = T T @) > T

(10)

3 Experiments

To compare confidence-free, static, and dynamic classifier systems, we implemented the al-
gorithms described in Sec. 2.4, and we tested their performance on four artificial (Clouds,
Concentric, Gauss_3D, Waveform) and four real-world (Breast, Phoneme, Pima, Satim-
age) datasets from the Elena database [15] and from the UCI repository [6].

For all the classifier systems we used, the classifier team (7, K) was an ensemble of
quadratic discriminant classifiers [7], created either by the bagging algorithm [3] (which
creates classifiers trained on random samples drawn from the original training set with
replacement), or by the multiple feature subset method [2] (which creates classifiers using
different combinations of features), depending on which method was more suitable for
the particular dataset.

For the comparison, we designed the following classifier systems (refer to Section 2.2
and Section 2.4 for the description of the algorithms):

MYV confidence-free system aggregated by mean value aggregation
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SWM cl. system aggregated by static weighted mean aggregation; as a confidence mea-
sure, we used GA

DWM cl. system aggregated by dynamic weighted mean; as a confidence measure, we
used ELA, ELM, and EAM

FM cl. system aggregated by filtered mean; as a confidence measure, we used ELA,
ELM, and EAM

We also compared the systems’ performance with the so-called non-combined classifier
(NC), i.e., a common quadratic discriminant classifier (the NC classifier represents an
approach which we had to use if we could use only one classifier).

All the methods were implemented in Java programming language, and a 10-fold
crossvalidation was performed to obtain the results. For the dynamic confidence mea-
sures, we used k = 20. The threshold T for FM aggregators was set to T = 0.8 or
T = 0.9, depending on the particular dataset. The parameters were set based on some
preliminary testing; no fine-tuning or optimization was done.

The results of the testing are shown in Table 1. Mean error rate and standard deviation
of the error rate of the induced classifiers from a 10-fold crossvalidation was measured.
We also measured statistical significance of the results — at 5% confidence level by the
analysis of variance using the Tukey-Kramer method (by the 'multcomp’ function from
the Matlab statistics toolbox).

The results show that for most datasets, the dynamic classifier systems outperform
both confidence-free and static classifier systems. For three datasets, these results were
statistically significant. FM usually gives better results than DWM, and if we compare
the three dynamic confidence measures, we can say that ELM gives usually the best
results, ELA and ELM being slightly worse. However, the performance of the individual
confidence measures depends on the particular dataset [16]. Generally speaking, the
FM-ELM was the most successfull algorithm in this experiment.

It should be noted that the experimental results from this paper are relevant only
to quadratic discriminant classifiers, because for any other classifier types (k-NN, SVM,
decision trees, etc.), the dynamic confidence measures could give quite different results.

4 Summary

In this paper, we have studied dynamic classifier aggregation. We have introduced the
formalism of classifier systems which can be used with (dynamic) classification confidence,
and we have defined confidence-free, static, and dynamic classifier systems. We have
introduced three dynamic classification confidence measures (ELA, ELM, EAM), and we
have shown a way how these measures can be used in dynamic classifier systems — we
have introduced two algorithms for dynamic classifier aggregation.

In our experiments, we have compared the performance of confidence-free, static, and
dynamic classifier systems of quadratic discriminant classifiers. The results show that
dynamic classifier systems can significantly outperform both confidence-free and static
classifier systems.
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Table 1: Comparison of the aggregation methods — non-combined classifier (NC), mean
value (MV), static weighted mean (SWM) using GA confidence measure, dy-
namic weighted mean (DWM) using confidence measures ELA, ELM, EAM, and
filtered mean (FM) using confidence measures ELA, ELM, EAM. Mean error
rate (in %) + standard deviation of error rate from a 10-fold crossvalidation was
measured. The best result is displayed in boldface, statistically significant (at
5% level) improvements to NC, MV, and SWM are marked by footnote signs.
The (B/M) after dataset name means whether the ensemble was created by
Bagging or Multiple feature subset algorithm.

Non-combined | Conf.-free | Static Dynamic

Dataset NC MV K SWM K DWM FM

Clouds (M) 25.0 + 1.7 25.0+21 | GA 247+16 | ELA 234+15 22.3+ 1.5 *T1
ELM 23.2+1.2 22.04+ 2.1 *t?
EAM 23.5+1.5 23.3+1.4

Concentric (B) | 3.5+ 1.0 3.8+06 | GA 40+08 | ELA 32%+1.1 2.1+1.37F
ELM 29416 1.84+0.8 *Tf
EAM 38413 43415

Gauss_3D (B) | 21.4+1.7 216 +£1.1 | GA 21.5+21 | ELA 215+1.4 21.7+1.3
ELM 21.3+2.0 22.0£1.3
EAM 21.5£20 21.7+1.3

Waveform (B) | 14.9 £2.5 150+ 14 | GA 148+09 | ELA 147+19 15.0 £ 1.2
ELM 14.8+25 14.5+1.2
EAM  14.6 £2.0 15.5+£1.0

Breast (M) 4.8+£29 47+25 [ GA 42+24 [ ELA 3.0+£21 29+1.8
ELM 3.0+1.9 31421
EAM 32420 29+1.7

Phoneme (M) 24.7+1.1 235+1.6 | GA 240414 | ELA 215+1.9*F 1724+1.4*f%
ELM 21.2+18*% 16.9+2.0 *tf
EAM 21.9+£09*  20.7+1.7 *#

Pima (M) 27.1£4.4 254+36 | GA 25.0%+5.6 | ELA 25.8+6.5 240£2.7
ELM  24.0+4.1 25.0 £ 7.4
EAM 24.8+6.3 23.5+5.4

Satimage (B) 15.6 £ 1.7 155+1.2 | GA 155+1.7 | ELA 153%1.6 15.2+2.4
ELM 15.3+1.3 14.4+1.0
EAM 15.5+£1.2 15.04+ 1.5

*Significant improvement to NC
fSignificant improvement to MV
tSignificant improvement to SWM

The main contribution of this paper is the verification that the concept of dynamic
classification confidence can significantly improve the classification quality, and that it is
a general concept, which can be incorporated into the theory of classifier aggregation in
a systematic way.

In our future work, we plan to study dynamic classification confidence measures for
other classifiers than quadratic discriminant classifier, mainly decision trees and support
vector machines, and to study model-specific confidence measures for these classifier
types. We will also incorporate local classification confidence into more sophisticated
classifier aggregation methods.
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Abstract. The aim of this paper is to study asymptotical behaviour of an infinite two-dimensional
periodic rectangular network. A general singular coupling in the vertices is supposed. We will
show that for certain vertex couplings the system behaves significantly differently from the
spectrum of the corresponding one-dimensional system, i.e. that the classification of spectral
asymptotics of one-dimensional periodic networks is not applicable here.

Abstrakt. Predmétem prace je studium asymptotického chovani spektra nekone¢né dvoudimen-
zionalni periodické obdélnikové mtizky. Ve vrcholech predpokladame obecnou singularni vazbu.
Ukazeme, ze pro urcité vazby mize tento systém vykazovat chovani, které se silné odlisuje od
chovani spektra pfislusnych jednodimenziondlnich systémt, jinak feceno, Ze zde nelze vyuzit
klasifikaci spektra znamou pro jednodimenzionalni sité.

1 Introduction

The term quantum graph denotes an ordered pair (I', H), where I' is a metric graph (an
undirected graph with a metric) and H is a Hamiltonian on T, i.e. self-adjoint differential
operator of the second order acting on the graph edges as a minus second derivative
(see [4]). These mathematical objects serve as natural models of graph-like structures
of nanometer sizes, which may be made of various materials, usually of semiconductors.
The technological progress in last decades of the twentieth century has enabled a mass
production of such microscopic structures and, consequently, their practical utilization.
As a result, the theory of quantum graphs gained a wide application potential, which is
hitherto growing. This fact attracted the attention of mathematical physicist, and at the
end of the eighties an intensive study in this field has begun, which continues till this
time. However, it is a relatively new theory with many open problems remaining.

One of the open problems concerns spectra of infinite periodic systems. It is well
known from a more general theory that a periodic system has a band spectrum. The
interesting and important question is, how the asymptotics of the spectral bands looks
like.

The easiest situation is a line with periodically located point interactions of the
same type. Omne can consider either d-interaction, which is a classical, very well ex-
amined Kronnig-Penney model, or a general point interaction. The case of infinite one-
dimensional periodic network with a general point interaction in each vertex has been
already described in the work [1]. The authors studied high-energy asymptotics of the

183



184 O. Turek

spectrum and have derived the following result: The system has a purely absolutely con-
tinuous spectrum and the structure of its spectral bands can conform only to one of the
following three situations:

e band widths are asymptotically constant, gap widths grow asymptotically linearly,
e widths of both bands and gaps are growing,
e band widths grow asymptotically linearly, gap widths are asymptotically constant.

In this paper we will deal with a natural generalization of a one-dimensional network,
namely with a planar rectangular network (see Fig. 1). We will ask if it is true that the
assymptotics of the spectral bands is described by the three situations enumerated above,
or if there is an interaction for which a new type of assympotics arises.

2 Vertex coupling

Let v € V be a vertex with n outgoing edges. Let us denote the wavefunctions on
these edges by 17 ...,1,. The limits of these functions and their first derivatives (in the
outgoing sense) in the vertex v form two vectors:

41(0) 44(0)
voy=| | vo=|
$u(0) 44,(0)

All physically admissible boundary conditions can be described by the group of unitary
matrices in the following sense: Boundary conditions in a vertex are admissible if and
only if there is a unitary matrix U such that

(U = DW(0) +i(U + NV (0) =0. (1)

As a result, a family of admissible boundary conditions can be parametrized by n? real
parameters.

The most common type is the d-coupling, already mentioned in the introduction. It
corresponds to a unitary matrix U given as a sum a -1 +b-.J, where a = —1, b = nfia
(v € R), I is an identity matrix and J is a matrix, whose all elements are equal to 1.

3 Spectral condition

Consider an infinite rectangular network with the cell parameters a and b (see Fig. 1).
Let a coupling corresponding to a given unitary matrix U be imposed on all vertices - on
every vertex the same coupling. Our aim is to describe the high-energy assymptotics of
the spectrum and to find if there is a matrix U for which the spectral properties show a
significantly different behaviour with respect to infinite one-dimensional networks.

The considered graph is obviously a periodic system, thus it is natural to analyse it
using the Floquet decomposition. Let us consider an elementary cell according to the
Fig. 1, for the wavefunction we use the notation marked in the figure.
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Figure 1: A periodic two-dimensional network

Let there be a particle with the energy E confined to this graph. First of all, we
realize that for any matrix U the corresponding Hamiltonian is bounded below, thus its
spectrum is bounded below as well. Therefore, to study its high-energy asymptotics it
suffices to consider £ > 0. For notation purposes, let us denote £ = k?, k > 0. Since the
Hamiltonian acts as a minus second derivative, the wavefunction on each edge has to be
a linear combination of the functions e** and e~ '** i.e.

Y1 (z) = Cfe™ + Cre ™ 2 € [~a/2,0]
Yo(z) = CF ™™ 4 Cye ™ 1 €[0,a/2]
¢1(x) = Dfe* + Dre ™z € [-b/2,0]
@o(x) = D™ + Dye % 1 € [0,0/2]

Moreover, the wavefunctions have to satisfy the boundary conditions in the vertex, i.e.

(2)

1(0) —1(0)
(U -1 zﬁjggg iU+ T) —%f%) —0. (3)
2(0) 5(0)

For the Floquet decomposition we suppose that the wavefunctions satisfy the conditions
Ua(a/2) = " i(—a/2)  Py(a/2) = " yi(—a/2) )
pa(b/2) = €®p1(=b/2)  Ph(b/2) = ¢ (=b/2)

for some 6,,0, € [—7, 7).
Substituting (2) into (4) enables one to rewrite (3) in the form

o
o
(UM —kN) = (kN | Pl | =0, (5)
Dy
where the matrices M and N are given by
1 1 0 0 —1 1 0 O
i(01—ak) i(01+ak) 00 i(01—ak) __ ,i(01+4ak) 0 0
€ € € [§

M= 0 0 11 ’ N = 0 0 -1 1
ei(ﬁg—bk) ei(Gg-{—bk) 0 0 ei(ﬁg—bk) _ei(62+bk) 0 0



186 O. Turek

The functions (2) correspond to a nonzero solution iff the vector (Cy",Cy, Df, DY)
is nonzero. Therefore, a number k? belongs to the spectrum of the Hamiltonian if and
only if (5) has a non-trivial solution for certain pair (y,6s), in other words, if there is a
pair (6, 6s) such that

det (UM —kN) — (M +kN))=0. (6)
It can be easily shown that the determinant on the LHS is equal to the term
[022 (6102>2 + 0216102 + 020} (6191)2 +
+ [012 (6192)2 + Cpie?”” + 010] e + Coy (€i92)2 + Co1e® + Cyo

where C}; are expression not containing the Floquet parameters ¢, and 6,.
It is convenient to divide equation (6) by e®e®2 and then rearrange the terms:

Cu + (0216191 + 0016—101) + <012€i62 + 0106_162—}-) +
+ (C’ggewlew? + C’()()e_io1 e_w?) + (0206i01 e_i62 + Coge_i61€i62> = 0, (7)

where

2
Cye = 16k U12U34 — U32U14

020 - 16]€2

2
002 = 16k U21U34 — U31U24

U12U43 — Ug2UI3

( )
Coo = 16]€2(U21U43 - U41U23)
( )
( )

Cyy =k* - 8isin bk - (uyy + det U(2, 1) — uspli1z — Ugoting + Urolss + Ugoligg)+
+ k? - 16 cos bk - (—upg + det U(2, 1))+
+ k- 8isin bk - (u12 + det U(2, 1) + ugoty3 + Ugotiyy — UjoUss — Uioliay)
Cor =k* - 8isin bk - (ugy + det U(1,2) — usitas — Ugqtog + Uz Uss + Usiligg)+
+ k? - 16 cos bk - (—ug + det U(1,2))+

+ k - 8isin bk - (u21 + det U(l, 2) -+ U371 U923 + Ug1U24 — U21U33 — u21u44)

Clo =k* - Sisinak - (usy + det U(4, 3) — uiqs1 — UngUsy + U11Uss + Uoplizg)+
+ k* - 16 cos ak - (—usy + det U(4, 3))+
+ k- 8isinak - (uzq + det U(4,3) + uiqust + usqzs — U1Uzg — UoUsy)
Clo =k* - Sisinak - (ugs + det U(3,4) — u1sts1 — Usstigy + U11Uys + Uopliyz )+
+ k* - 16 cos ak - (—uaz + det U(3,4))+

+ k- 8isinak - (ug3 + det U(3,4) + uistigr + usgligs — U1lg3 — Uolyg)
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Cyy = —k* - 4dsinaksinbk - (1 +det U + uyy + det U(1, 1) + ugy + det U(2,2)+
+ ugs + det U(3,3) + ugs + det U (4, 4)+
U1 U22 + U1 U33 + U1 Ugq + UoU33 + U22Usg + U33Ugg—
— Uiglla] — U3Uz1 — Ui4lg) — UzUsy — Ugllgn — Usqllyz)+
+ k? - 8icos aksin bk - (—1 + det U — usz + det U(3,3) — ugy + det U(4,4)+
+ Ui Ugg — UioUo1 — Usglag + UgaUyz)+
+ k- Sicosbksinak - (—1+det U — uy; +det U(1,1) — ugy + det U(2,2)+

+ U33Ugg — Usglgz — Up Uoe + Uioloy )+

+ k* - 16 cos ak cos bk - (1 4 det U + upotin) — Uiitog + Ussliyz — Uszliag)+
+ k* - 8sinaksin bk - (—1 — det U + w1ty + UopUss + U11Uss + Usptigy—
— Ui4Ug1 — U23Uzz — U13U3] — U4Ug2+
+ U19Uo1 — U1Uny + Uzglgz — Uszlyy)+
+ k- 8icosaksinbk - (—1 4+ det U + us3 — det U(3,3) + ugg — det U(4,4)+
T Up1U22 — UpaUgl — UzzUag + U34U43)+
+ k- 8icosbksinak - (—1+det U + uy; —det U(1,1) + uge — det U(2,2)+
+ Ug3las — Usallag — Upq Uz + U2l )+
— 4sinaksinbk - (1 +detU —uy; — det U(1, 1) — ugo—
—det U(2,2) — uzz — det U(3,3) — ugqy — det U(4,4)+
T Up1U2 + U U3 + U1 Ugg + U2aU33 + Ualgg + U3zUgg—

— Up2U21 — UI3U31 — U14U41 — U23U32 — U24U42 — U34U43)

Lemma 1. Let U € C™" be a unitary matriz, let us denote det U = €. Then:

£

(1+detU)-e'2 € R
i(1—detlU)-e7'5 eR

(uj; +detU(4,7)) - e 7 eR forall j€n (9)
i(—uj; +detU(j,5)) - e €R  forall jen

N

(—ujp +det Uk, 5)) - €75 = (—up; + det U(j, k)) e7'% forall jken,j#k
(ujp 4 det U(k, 7)) - €75 = —(up; + det U(j, k)) e7'% forall jken,j#k
If moreover n =4 and {j,k,{,m} = {1,2,3,4}, then

(10)

(W — Wjktks) + (WeeUmm — WomUme)] - e 1T e R )
i[(ujjukk - ujkukj) - (uaumm - u[m“mé)] . eii% ceR
(Wjktiee + Ujtmm — Ujelok = UjmUmk) e 't = — (U jUer + Uk U — Unplhej — U Upnj) €2
(12)
(UjkUpm — Ujmligg) - €2 = (UpjUme — Ujelpy,) - € (13)
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We would like to stress that double indices wherever in this lemma do not mean the
Einstein summation.

Proof. The validity of (8) is obvious, to prove other equalities, the following well known
formula is useful:

(=17 - det U(k, j)
det U '
Since U is unitary, it holds U~ = U*, i.e. [U™'];x = ug;. Together we have

U =

(—1)7* . det U(k, 7)
det U

(14)

Upj =

This lemma implies the following proposition.
Proposition 2. There are real numbers

o Vi, V3, V5, Va, V3, Vi, VI W,

o Wiy, Wi, Wa, Wy, Wy, Wi, Wy, W,

o a3, 33, g, B2, Cia, B2, a1, B1

that depend only on U, such that equation (7) can be written as

— k* - sin ak sin bk - Vi+
+ k% - [cos ak sin bk - V3 + cos bk sin ak - V3+
+ sin bk - Wy sin(0; + a3) + sinak - Wysin(fs + 35)] +
+ k* - [cos ak cos bk - V, + sin ak sin bk - Vi + cos bk - Wy cos(0 + )+

+ cos ak - Wy cos(By + o) + Wy - cos(By + 0y + o) + Wy - cos(6y — 6y + Bg)] +
+ k - [cosak sin bk - V; + cos bk sin ak - V/+
+sin bk - Wy sin(6y + ;) + sinak - Wi sin(0y + 31)] +
+ sinaksinbk - Vo = 0.
(15)
Proof. Tt suffices to multiply equation (7) by e™'%, then the statement follows almost

%)

immediately from Lemma 1. Equalities (8), (8) and (8) imply that the term Cj; - e7'%
can be written as

— k* - sinaksin bk - Vy + k* - (cos ak sin bk - V3 + cos bk sin ak - V3) +
+ k? - (cos ak cos bk - Vy + sin ak sin bk - Vi) + k - (cos ak sin bk - Vi + cos bk sinak - V) +
2 1
+ sin ak sin bk - Vj

for certain Vy, V3, Vi, Vo, Vi, Vi, V[ Vi € R. Using Lemma 1, all pairs of terms of (7), that
are coupled in parentheses, can be decomposed into several expressions according to the
power of k as well. O
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4 Spectral behaviour

The positive spectrum of the considered periodic network contains such numbers k2, for
which there exist parameters 0,6, € [—m,7) such that equation (15) is satisfied. Such
numbers k2 form bands, which can have various structure. In the introduction we have
reffered to a result concerning one-dimensional network saying that the band structure
can be classified into three groups. The common property of all of them is the following:
the bands are either assymptotically growing, or assymptotically constant. The aim of
this section is to show that for the two-dimensional case such classification is not sufficient.
We will study the structure of (15) in order to find a concrete example of a coupling, for
which the spectral behaviour is different.

The examination of (15) can be divided into two essentially different situations ac-
cording to the value of V. If V, # 0, then the higer order of k contained in (15) is equal
to 4, otherwise it it less or equal to 3. For our purposes it suffices to consider the first
case, i.e. Vj # 0. In such situation one may divide the whole equation by k* and separate
the term sin ak sin bk - V,; as follows:

1
sin ak sin bk -V = T [cos ak sin bk - V3 4 cos bk sin ak - Vi+

+sin bk - Wy sin(6; + a3) + sinak - Wy sin(fy + 33)] +

1
+ i [cos ak cos bk - V + sin ak sin bk - Vi) + cos bk - Wy cos(0y + an)+
+cos ak - Wy cos(0y + [32) + W, cos(by + 05 + as) + Wé cos(0y — Oy + 32) +
1
+ = [cos ak sin bk - Vi + cos bk sin ak - V{+

+sinbk - Wysin(6y + o) + sinak - Wi sin(02 + 51)] +

1
+ Fsinaksinbk SV
(16)

Since all the terms V;, W; etc. are constant with respect to k, the RHS is of the order
O(%), and the same has to hold for the product sin ak sin bk at the LHS. Therefore, the
bands correspond to either sinak small or to sin bk small. Let us suppose a > b. To
find a coupling that do not fall within the 1-D classification, we will focus on bands

corresponding only to sinak small. Let us denote J, := {n eN “ sin b™T| > %} and
A=y, (B — 5,25 4 2. Since a > b and 3 < @, it holds |J,| = oo, therefore A
is a countable set of equally long intervals. The following inequality will be usefull:

Let k€ A ke (% — L 2T 4 L) let us put k=2 + 2 [§| < Z. Then

1 2—43
sin b - cos & + cos bl -sin(S) > 3 . COS = — sin — = V3 >0, (17)
a a

| sin bk| = D D 373

i.e. the set {|sinbk|| k € A} is bounded below by some positive constant.
We will study asymptotical behaviour of solutions of (16) that are contained in the
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set A. Let us assemble all the terms of (16) containing sin ak on the LHS:

1 1 1
sin ak (sinbk-w — Ecosbk-vg— E-Wésin(eg—l—ﬁg) — ﬁ-sinbk-l/g—

1

1
—E-cosbk:-vl’— E;

1
W1 sin(0y + 1) — i sin bk - VO) =

- [cos ak sin bk - V3 + sin bk - Wy sin(0; + as)] +

1
k (18)
1

+ - * [cosak cos bk - V3 + cos bk - W cos(6) + o) + cos ak - Wy cos(0y + (2)+
+W2 . cos(91 -+ 92 -+ 0~62) + WQ/ . COS(el - 62 + 32)] +
1
+ 5 [cos ak sin bk - Vi + sin bk - Wi sin(6; + aq)] .

We distinguish two situations:
(a) W3 #0,
(b) W5 =0.
In the case (a) one can write (18) in the following way:
@)
(19)

If k is sufficiently big, inequality (17) enables us to divide the whole equation by the
expression in the parentheses:

1 1
sinak [ sinbk - V4 + O(=) | = — - [cosak sin bk - V5 + sin bk - W3 sin(0; + ag)| + O
k k

1
sinak = T [cosak: : % + % sin(6; + as) | + O(

1

). (20)

The expression in the brackets is uniformly bounded with respect to k, therefore the RHS
is of the order %, ie. |sinak| =0 (%) Let k be a solution; for the notation purposes we
put

ak =nm+9 |6 <m; (21)
obviously O(k) = O(n) and ; = s = e 0 O(-5). Since sinak = (—1)"siné and
|sind| > 216, we have § < Z|sinak| = O (1) = O (%). This allows us to write

sinak = (—=1)" -6 (1+O(6%)) = (-=1)"- 6 (1 + O(%)) :
cosak = (—=1)"- (1+ 0O(6%)) = (-1)"- (1+0(%)) : (22)

O

. =)
k  nrm n3’’

Putting all together, we may transform (20) into

a Vg W3 . n 1
6= % . (74 + 748111(01 +Oé3) . (—1) ) +O(m)
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(we have divided both sides by (—1)"). Finally, when the parameter #; runs through
[—7, ), the term sin(6; + a3) takes all values from (—1,1). Therefore, § runs through

a Vs Wy 1 a Va Wa 1
G (- [l o (5 [3]) o)

With respect to (21), the value of k£ belongs to the set
1
+ O(ﬁ)) :

nmw 1V 1 |W nmw 1V 1 |W
R R LY T ) —t— o — |2
n?"’ a nrt Vi nmw V4
We immediately see that for sufficiently big n, this interval lies whole in the set A. The
easy computation of the the length of the corresponding interval for k? gives the result
4 W3

a | Vi

an7TV4n7TV4

+O(-),

i.e. the we have found an infinite set of assymptotically constant bands.
Consider now the situation (b), i.e. W3 = 0. We will proceed in a similar way, but
this time we take into account more terms of (18):

sin ak (sinbk V= %cosbk Vy = ]1 Wy sin(fy + 3) + O(kQ)) =
= % - cos ak sin bk - Va+

]:2 [cos ak cos bk - Vo + cos bk - Wo cos(0; + i) + cos ak - W cos(fy + B2)+
+Wy - cos(By + 0y + ay) + Wi - cos(6; — 0y + 32)} + O(ﬁ) .

For all £ € A, sinbk is uniformly bounded below by a positive constant, thus for suf-
ficiently big k one can divide both sides of the equation by the term standing in the
parentheses on the LHS and obtain

1 \% 1 Vicosak .
sin ak = Pl ak - Vi + 7z m - [cos bEVE + Wysin(f2 + B3)] +
1 1
+ 2 Vismoh [cos ak cos bk - Va + cos bk - Wo cos(6y + ) + cos ak - Wy cos(fy + [52)+

- ~ ~ 1
+Wa - cos(6y + Oz + Gg) + Wy - cos(6y — 0 + 62)} + O(ﬁ) '

Now we use (22) similarly as in the case (a), subsequently we again divide the whole
equation by the expression (—1)", arriving at

a Vi a? 1 VaVy
5= - | cos b - V;
nr Vi T Visin bk {COS ( v,
‘/3W3 : n /
+ v sin(fy + 33) + cosbk - (—1)" - Wy cos(by + ag) + Wy cos(by + [2)+
4

- ~ 1
+W2 . (-1)” cos(91 + 92 + 6(2) + W2/ . (-1)” 005(91 — 92 + ﬁg) + O(E) .
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If the parameters 6;, 605 run through the interval [—7, ), the values of the expression in
the bracket form an interval. Since the values are uniformly bounded, as well as m
by virtue of k € A and (17), there is a 7 > 0 independent of k£ (and n) such that

56(1 Vs at o V5o af )

. —"y .
nt Vy n2n2nm V, n2n?

and therefore the solutions of (16) form an interval that is contained in
(mr 1 Vs a nm 1 Vs a )

a nr Vi P Vi n?m?
We observe that if & is sufficiently big, the whole interval lies in the set A. The length of

the band, i.e. of the corresponding interval for k2, is bounded above by the term

(E+L.E+LV)2_(E+L&_ a 7)2:4_7, (23)
a nm Vi  n2m? a nm Vi n2m? nm
thus the bands are neither assymptotically growing, nor assymptotically constant. It is
a situation that does not occur in the case of one-dimensional network.

However, to prove that such situation really exists, it is necessary to find an example
of a unitary matrix U € C™" such that V, # 0, W3 = 0, and moreover to show that

infinitely many of the intervals (23) do not collapse to single points.
Let us consider the following matrix:

1 1
-1 -1
1 -1
-1 1

1

1 I 1
Uzé. 1 (24)
1

-1

The unitarity is obvious. A simple calculation gives V; = 32 # 0, W3 = 0. To exclude
the collapsing case, we will show that the expression

VaWe
?}/ 2 sin(fy + B3) 4+ cosbk - (—1)" - Wy cos(6; + ay) + W cos(fy + B2)+
f

+ Wy - (—=1)"cos(01 + O3 + az) + WQ’ (=1)"cos(6; — Oy + Bg)

is not constant with respect to (6;,6:). It can be shown that for U given by (24) this
expression is equal to

—cosbk - (—1)" - 32cosf; + 32cosby — 16 - (—1)" cos(0y + 05) — 16 - (—1)" cos(0; — 02) ,

i.e. obviously not constant.

5 Conclusions

We have studied the spectral properties of an infinite periodic network with a rectangular
cell. Our results demonstrate that the structure of its spectrum may strongly differ from
the case of one-dimensional network, namely that the spectral bands may asymptotically
shorten. It would be interesting and useful to find a complete classification of high-energy
asymptotics. We aim to study the problem in more detail, believing that the results will
be much more complex that in the one-dimensional case.
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Abstract. A model of a quantum dot with impurity in the Lobachevsky plane is considered.
Relying on explicit formulae for the Green function and the Krein (Q—function which have
been derived in a previous work we focus on the numerical analysis of the spectrum. The
analysis is complicated by the fact that the basic formulae are expressed in terms of spheroidal
functions with general characteristic exponents. The effect of the curvature on eigenvalues and
eigenfunctions is investigated. Moreover, there is given an asymptotic expansion of eigenvalues
as the curvature radius tends to infinity (the flat case limit).

Abstrakt. Prispévek pojednava o modelu kvantové tecky v Lobacevského roviné. Numeric-
ka analyza energetického spektra se opird o znalost explicitnich predpist pro Greenovu funkci
a Kreinovu @Q—funkci, které byly odvozeny v predchozi praci. Analyza je ztiZzena vyskytem
sferoidalnich funkci s obecnym charakteristickjm exponentem praveé v téchto predpisech. Vliv
krivosti na vlastni hodnoty a vlastni funkce je podroben zkoumani. Navic predkladame asym-
ptotické rozvoje vlastnich hodnot pro polomér kiivosti jdouci k nekoneénu (ploché limita).

1 Introduction

The influence of the hyperbolic geometry on the properties of quantum mechanical sys-
tems is a subject of continual theoretical interest for at least two decades. Numerous
models have been studied so far, let us mention just few of them [7, 1, 10, 11]. Naturally,
the quantum harmonic oscillator is one of the analyzed examples [5, 6]. It should be
stressed, however, that the choice of an appropriate potential on the hyperbolic plane is
ambiguous in this case, and several possibilities have been proposed in the literature. In
[9], we have modeled a quantum dot in the Lobachevsky plane by an unbounded poten-
tial which can be interpreted, too, as a harmonic oscillator potential for this nontrivial
geometry. The studied examples also comprise point interactions [3] which are frequently
used to model impurities.

A Hamiltonian describing a quantum dot with impurity has been introduced in [9].
The main result of this paper is derivation of explicit formulae for the Green function
and the Krein ()—function. The formulae are expressed in terms of spheroidal functions
which are used rather rarely in the framework of mathematical physics. Further analysis is
complicated by the complexity of spheroidal functions. In particular, the Green function
depends on the characteristic exponent of the spheroidal functions in question rather
than directly on the spectral parameter. In fact, it seems to be possible to obtain a
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more detailed information on eigenvalues and eigenfunctions only by means of numerical
methods. The particular case, when the Hamiltonian is restricted to the eigenspace of the
angular momentum with eigenvalue 0, is worked out in [13]. In the current contribution
we aim to extend the numerical analysis to the general case and to complete it with
additional details.

The Hamiltonian describing a quantum dot with impurity in the Lobachevsky plane,
as introduced in [9], is a selfadjoint extension of the following symmetric operator:

H=— (aa—; + é coth(%) (‘9% + % sinh_2<§> a% + ﬁ) + i a’w? sinh2<§> ;

Dom(H) = C§°((0,00) x S*) C L*((0,00) x S*, a sinh(o/a)dode),

where (g, ¢) are the geodesic polar coordinates on the Lobachevsky plane and a stands for
the so called curvature radius which is related to the scalar curvature by the formula R =
—2/a?*. The deficiency indices of H are known to be (1,1) and we denote each selfadjoint
extension by H(x) where the real parameter y appears in the boundary conditions for
the domain of definition: f(o, ¢) belongs to Dom(H (x)) if there exist fy, fi € C so that

fi:fo=x:1and
Fl0.6) = —5 folog(e) + i +0(1) as 0 — 0+

(the case x = oo means that fo = 0 and f; is arbitrary), see [9] for details. H(co) is
nothing but the Friedrichs extension of H. The Hamiltonian H(co) is interpreted as
corresponding to the unperturbed case and describing a quantum dot with no impurity.

After the substitution ¢ = cosh(p/a) and the scaling H = a~2H, we make use of
the rotational symmetry (which amounts to a Fourier transform in the variable ¢) to
decompose H into a direct sum as follows

H= P Hn,
- __78 5 0 m? atw? 1
Hp, _6_5(5_ )3_§+ﬁ+ & -D-7

Dom(H,,) = C(1,00) C L*((1,00), d€).

Let us denote by H,,, m € Z, the restriction of H(co) to the eigenspace of the
angular momentum with eigenvalue m. This means that H,, is a self-adjoint extension of
a2H,,. Tt is known (Proposition 2.1 in [9]) that H,, is essentially selfadjoint for m # 0.
Thus, in this case, H,, is the closure of a 2H,,. Concerning the case m = 0, Hj is the
Friedrichs extension of a~2H,. For quite general reasons, the spectrum of H,,, for any
m, is semibounded below, discrete and simple [14]. We denote the eigenvalues of H,, in
ascending order by F,, ,,(a?), n € N.

The spectrum of the total Hamiltonian H(x), x # oo, consists of two parts (in a full
analogy with the Euclidean case [4]):

1. The first part is formed by those eigenvalues of H(x) which belong, at the same
time, to the spectrum of H(oco). More precisely, this part is exactly the union of
eigenvalues of H,, for m running over Z \ {0}. Their multiplicities are discussed
below in Section 5.
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2. The second part is formed by solutions to the equation

Q"(2) = x (1)

with respect to the variable z where Q¥ stands for the Krein Q-function of H(oo).
Let us denote the solutions in ascending order by €,(a?, x), n € Ny. These eigen-
values are sometimes called the point levels and their multiplicities are at least one.
In more detail, €,(a? x) is a simple eigenvalue of H(x) if it does not lie in the
spectrum of H(oo), and this happens if and only if €, (a?, x) does not coincide with
any eigenvalue Fj,,(a?) for £ € Ny and m € Z, m # 0.

Remark. The lowest point level, €y(a?, x), lies below the lowest eigenvalue of H(co) which
is Fyo(a?), and the point levels with higher indices satisfy the inequalities F, 1 ¢(a?) <
en(a® X) < Eno(a®),n=1,2,3,....

2 Spectrum of the unperturbed Hamiltonian H (c0)

Our goal is to find the eigenvalues of the mth partial Hamiltonian H,,, i.e., to find square
integrable solutions of the equation

Hh(§) = 29(8),

or, equivalently, N
Hyh(€) = a”2(€).

This equation coincides with the equation of the spheroidal functions (A.1) provided we
set ;= |m|, # = —a'w?/16, and the characteristic exponent v is chosen so that

atw? 1
A — =—a’z—-.
v ( 16 ) “FT Y
The only solution (up to a multiplicative constant) that is square integrable near infinity
is S (¢, —atw?/16).

Proposition 3 describes the asymptotic expansion of this function at & = 1 for m € N.
It follows that the condition on the square integrability is equivalent to the equality

4 2 4 2
i(Bu+1/2)m grm _aw ) i 0. 2
e 1/1( 16 ) + 1<, 16 (2)

Furthermore, in [9] we have derived that

SI(E,0) = alog(§ — 1)+ B+ O((€ —1)log(é — 1)) as & — 1+,

where

_itan(ym) e /AT

27s9(0)
Taking into account that the Friedrichs extension has continuous eigenfunctions we con-
clude that equation (2) guarantees square integrability in the case m = 0, too.

(O HVITKD, L (0) + K(0))

—v—1
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E1(a%),i=01.23
30"
25"
200
15"

10}

Figure 1: Eigenvalues of the partial Hamiltonian H;

As far as we see it, equation (2) can be solved only by means of numerical methods.
For this purpose we made use of the computer algebra system Mathematica 6.0. For the
numerical computations we set w = 1. The particular case m = 0 has been examined in
[13]. It turns out that an analogous procedure can be also applied for nonzero values of
the angular momentum. As an illustration, Figure 1 depicts several first eigenvalues of
the Hamiltonian H; as functions of the curvature radius a. The dashed asymptotic lines
correspond to the flat limit (a — 00).

Denote the nth normalized eigenfunction of the mth partial Hamiltonian H,, by
Unm(€). Obviously, the eigenfunctions for the values of the angular momentum m and
—m are the same and are proportional to S\ (¢, —a'w?/16), with v satisfying equa-
tion (2). Let us return to the original radial variable p and, moreover, regard H,, as an
operator acting on L?(R*,dp). This amounts to an obvious isometry

L*(R*,a 'sinh(g/a)do) — LA(R",dp) : f(o) — a~/*sinh'/*(o/a)f (o).

The corresponding normalized eigenfunction of H,,, with an eigenvalue a2z, equals

) = (it (2)) (ot (). )

At the same time, relation (3) gives the normalized eigenfunction of H,, (considered on

L*(R*,dp)) with the eigenvalue z. The same Hilbert space may be used also in the limit

Euclidean case (a = o0). The eigenfunctions ®,,,, in the flat case are well known and
satisfy

2

q)n,m (8 Q‘m‘+1/26_wg2/4 lFl (_n7 |m‘ + 17 %) : (4)

The fact that we stick to the same Hilbert space in all cases facilitates the comparison

of eigenfunctions for various values of the curvature radius a. We present plots of several

first eigenfunctions of H; (Figures 2, 3, 4) for the values of the curvature radius a = 1 (the
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solid line), 10 (the dashed line), and oo (the dotted line). Again, see [13] for analogous
plots in the case of the Hamiltonian H,. Note that, in general, the smaller is the curvature
radius a the more localized is the particle in the region near the origin.

3 The point levels
As has been stated, the point levels are solutions to equation (1) with respect to the
spectral parameter z. Since, in general, Q(Z) = Q(2) the function Q(z) takes real values

on the real axis. Let H(oo) = a”H(0o) be the Friedrichs extension of H. An explicit
formula for the Krein Q-function Q(z) of H(co) has been derived in [9]:

e oo )4 40)

atw? -1
U ey B (C5E) ) los (27)
(vr)

2a2 tan KO(—%)

4,2
of aw _ _1
)\l,( 16)_ e

The symbol K?(6) stands for the so called spheroidal joining factor,

v

where v is chosen so that

Us,(0) == Y (=1)"al,.(0) U(v+1+2r),

r=—00

where the coefficients a&r (0), r € Z, come from the expansion of spheroidal functions in
terms of Bessel functions (for details see [9, the Appendix])), and s(6) is defined by the
formula

m -1 ._ E r.m
(81/ (9)) - ( ]') aur
T=—00
Wo.1(p) for a*=1,10,00
0.8+ o\vs
/.’ N

r / .

b / \.
0.6 - / N

L / \\\

/ AN
L /) A
. \

04r [ /) e

L . \\‘\

L r N

h N

02r /, AN

.y N

N N
\\‘._
S p
1 2 3 4 5 6

Figure 2: The first eigenfunction of the partial Hamiltonian H;
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¥1,1(p) for a*=1,10,00

—05F \

Figure 3: The second eigenfunction of the partial Hamiltonian H;

Y1 (p) for a*=1,10,00

05 7.\

-05r-

Figure 4: The third eigenfunction of the partial Hamiltonian H;

One can obtain the Krein Q-function of H(co) simply by scaling Qf(2) = a® Q¥ (a*z).

Since we know the explicit expression for the Krein ()-function as a function of the
characteristic exponent v rather than of the spectral parameter z itself it is of importance
to know for which values of v the spectral parameter z is real. Propositions 1 and 2 give
the answer. For v € R and for v of the form v = —1/2 + it where ¢ is real, the spheroidal
eigenvalue \™(—a%w?/16) is real, and so the same is true for z. Moreover, these values
of v reproduce the whole real z axis. With this knowledge, one can plot the Krein Q-
function Q¥ = Q*(z) for an arbitrary value of the curvature radius a. Note that for
a = oo, the Krein @-function is well known as a function of the spectral parameter z [8]
and equals (setting w = 1, U is the logarithmic derivative of the gamma function)

Qz) = - (—qf(ﬂ)ﬂog(z)mxm)).

T dn 2
Again, equation (1) can be solved only numerically. Fixing the parameter y one may
be interested in the behavior of the point levels as functions of the curvature radius a.

See Figure 5 for the corresponding plots, with y = 0, where the dashed asymptotic lines
again correspond to the flat case limit (a = c0). Note that for the curvature radius a large
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(@2, 0),i=0,1,2,3

20F

Figure 5: Point levels for H(0)

enough, the lowest eigenvalue is negative provided y is chosen smaller than Q(0) ~ 0.1195.

4 Asymptotic behavior for large values of a

The mth partial Hamiltonian H,,, if considered on L*(R™, dp), acts like

82 m2 1 1 0 82
Hom D T L ege(D) 2 )
05 + e sinhQ(f) + 7 @ wsin . o7 + Vin(a, 0)
For a fixed o # 0, one can easily derive that
m? -1 1 iom? W2t 1
_ 4 22 1
Vin(a, 0) = 5 + il + a7 + 192 +O(¥) as a — 00.

Recall that the mth partial Hamiltonian of the isotropic harmonic oscillator on the Eu-
clidean plane, HE  if considered on L?(R", dp), has the form

2 mr-L1 1
e .— _ 2 44 2,22
m 902 + 2 + 4w 0

This suggests that it may be useful to view the Hamiltonian H,,, for large values of the
curvature radius a, as a perturbation of HE

H,, ~ HF +

1
12&2(1 - 4m2 + w294) = Hn]%; + 1242 Um(@)

The eigenvalues of the compared Hamiltonians have the same asymptotic expansions up
to the order 1/a* as a — oc.

Let us denote the nth eigenvalue of the Hamiltonian HE by E,fm, n € Ny. It is well
known that

EF,=02n+m|+1)w
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Table 1: Comparison of numerical and asymptotic results for the eigenvalues, a® = 24

FEo Fio FEyy FEon Eii Eay
numerical 1.0265 3.162 5.42 2.060 4.259 6.58
asymptotic 1.0268 3.169 5.46 2.058 4.258 6.59
error (%) -0.03 -0.22 -0.74 0.10 0.02 -0.15

and that the multiplicity of E  in the spectrum of H” equals 2n + |m| + 1. The

asymptotic behavior of E,, ,,(a*) may be deduced from the standard perturbation theory
and is given by the formula

1 (Dyyms U @) 1
2\ _ E n,my Ym*nm
Enm(a®) = E,;,, + 1202 (s B + O(_a4) as a — 00, (5)

where ®,, ,,, denotes a (not necessarily normalized) eigenfunction of H” associated with
the eigenvalue E7, (see (4)). The scalar products occurring in formula (5) can be readily
evaluated in L*(R",dp) with the help of Proposition 4. The resulting formula takes the
form

Euym(a®) = (2n+|m| +1)w+ (2n(n +|m| + 1) + |m| + Z)% + O(%) (6)

as a — oo. This asymptotic approximation of eigenvalues has been tested numerically
for large values of the curvature radius a. The asymptotic eigenvalues for a? = 24 are
compared with the precise numerical results in Table 1. It is of interest to note that the
asymptotic coefficient in front of the a=2 term does not depend on the frequency w.

5 The multiplicities

Since H_,, = H,, the eigenvalues E, ,(a?) of the total Hamiltonian H(co) are at least
twice degenerated if m # 0. From the asymptotic expansion (6) it follows, after some
straightforward algebra, that no additional degeneracy occurs and thus theses eigenvalues
are exactly twice degenerated at least for sufficiently large values of a.

Applying the methods developed in [4] one may complete the analysis of the spectrum
of the total Hamiltonian H () for x # oco. Namely, the spectrum of H(x) contains eigen-
values E, ,,(a?), m > 0, with multiplicity 2 if Q¥ (E, .(a?)) # x, and with multiplicity 3
if Q¥ (E, m(a®)) = x. The rest of the spectrum of H () is formed by those solutions to
equation (1) which do not belong to the spectrum of H(oc0). The multiplicity of all these
eigenvalues in the spectrum of H(y) equals 1.

Appendix: Auxiliary results

In this appendix we summarize several auxiliary results. For the page limit we omit the
proofs. Firstly, for our purposes we need the following observations concerning spheroidal
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functions. The spheroidal functions are solutions to the equation

9, 0% oY " 2 2 217, _

(1= )55 = 25 + MO +400 - ) = p?(1 =)y =0 (A1)
€ 23

For the notation and properties of spheroidal functions see [2]. A detailed information on
this subject can be found in [12], but be aware of somewhat different notation. A very

brief overview of spheroidal functions is also given in the Appendix of [9)].
In the last named source, the following proposition has been proved in the particular
case m = (. But, as one can verify by a direct inspection, the proof applies to the general

case m € 7Z as well.

Proposition 1. Let v,0 € R, m € Z. Then \J'(0) € R.
The following claim is also of interest.
Proposition 2. Let v = —1/2 + it wheret € R, and § € R, m € Z. Then \'(0) € R.

Another auxiliary result concerns the asymptotic expansion of the radial spheroidal
function of the third kind.

Proposition 3. Let v ¢ {—1/2+ k| k € Z}, m € N. Then

S (E,0) ~

(—1)m2m/2—1f(m) tan(vm) (Kmy1(0> n K'(0)

v\ _1)"™/2
s (0) e~iv+3/2)m ei(3l/+1/2)7r) (€-1)
as &€ —1+. (A.2)

Further some auxiliary computations follow that we need for evaluation of scalar
products of eigenfunctions (see (5)).

Proposition 4. Let 1Fi(a,b,t) stand for the Kummer confluent hypergeometric function,
and n,m,l € Ny. Then

00
/ the*tlFl(—n, 1 —i—m,t)2 dt
0

S () (e

k=max{0,n—1}

(A.3)

Corollary 5. In the case l =0, (A.3) takes a particularly simple form:

> 9 n!
/ t"e " Fi(—n, 1+ m,t)?dt = ——— .
0 (m+n)!
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Abstract. The paper addresses the design of trading strategy for futures markets. The problem
is formulated as dynamic decision making task and as such is solved. Iterations-spread-in-
time and Monte Carlo methods are employed to the solution. The results of off-line real-data
experiments are presented.

Abstrakt. Text popisuje navrh obchodni strategie urcené pro trhy s futures kontrakty. Navrh
se sestava z definice ulohy jako problému dynamického rozhodovani. Nésledné je tloha Yesena
pomoci iteraci rozloZzenych v ¢ase a metody Monte Carlo. Text obsahuje vysledky experimenti
provadénych na realnych datech.

1 Introduction

The paper describes a part of research aiming to design automatic trading system for
futures markets. The trading on exchanges is based on knowledge and prediction of the
price of given commodity, which represents a very complex task.

The futures trading problem is formulated as a particular decision making (DM) task.
DM reformulates the task as mathematical problem, which leads to integral equations.
We need to solve the equations, but to find the analytical solution is almost impossible
and the numerical calculation leads to bad conditioned or long calculated solutions. DM
task is necessary to solve in given time, e.g. when the trader on exchange needs the solu-
tion each day, the calculation cannot take 3 days and is restricted by 24 hours. Although
the reformulation like a DM task is good, we need feasible solution, which calls for an
approximation. This paper considers by task redefinition and introduces the approxima-
tions.

The paper’s outline is as follows. Section 2 introduces terminology of futures exchange,
recalls main terms of DM theory and reformulates futures trading problem as dynamic
DM task. Section 3 contains approximation of DM. Section 4 presents the experimental
results obtained on real data. Section 5 addresses open questions as well as possible
directions to approach’s improvement.

*This work has been supported by the grants MSMT 2C06001 and GA CR 102/08/0567.
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2 Preliminaries

2.1 Trading futures

The following definition by of the futures exchange is proposed by [2]. A futures exchange
is a central financial exchange where people can trade standardized futures contracts; that
is, a contract to buy specific quantities of a commodity (basic resources and agricultural
products such as iron ore, coal, sugar, coffee beans, wheat, gold, etc) or financial in-
strument (cash, evidence of an ownership interest in an entity) at a specified price with
delivery set at a specified time in the future. A futures contract gives the holder the
obligation to buy or sell.

The term position means a commitment to buy or sell a given amount of commodities.
The basic types of position are distinguished: short, long and flat.

A long position yields a trader’s benefit when the price increases, and trader’s loss
otherwise. This position refers to the situation when

e a trader buys an option contract that he has not already written (i.e. sold), he is
said to be opening a long position.

e a trader sells an option contract that he already owns, he is said to be closing a
long position.

A short position yields a trader’s profit when the price decreases, and trader’s loss oth-
erwise. This position refers to the situation when

e a trader sells an option contract that he does not already own, he is said to be
opening a short position.

e a trader buys an option contract that he has written (i.e. sold), he is said to be
closing a short position.

A flat position denotes the state when no other type of position is active. Flat position
means neither trader’s profit nor trader’s lose with any price change.

The aim of trader is design such a strategy of positions selecting, which ensures trader’s
profit with minimal risk. The strategy design is based on prediction of price behavior
and is very sensitive i.e. the small impreciseness in strategy make big change of profit.

2.2 Decision making under uncertainty

Decision maker is either human being or device aiming to influence a part of the World
he is interested in (so called System) The influence desired is expressed by DM aim. To
reach this DM aim a decision maker designs and applies a DM strategy, R;. This strategy

maps observations of the system’s behavior ¥, . . ., y; available to decision maker and past
decisions x1,...x;_1 to decisions x;:
Rt . [yla ey Yy Ty - 'xtfl] — Ty¢.

The available knowledge grows with time, because it is extended each time step by new
system output 7; and also by new decision ;. The decision typically influences the system,
therefore decision maker works with respect to closed loop ’decision maker - system’.
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All knowledge about system available to decision maker to design decision z; is called
experience Py = (y1,x1, ..., Yi—1, Ti—1,Yz). Ignorance F; is knowledge about system un-
available to decision maker. System behavior consists of experience, decision and igno-
rance Q = (Py, x4, Fy).

Gain is mapping of system behavior to real non-negative number G : Q@ — [0, o0].
Gain express the success of reaching the decision maker aims with given decision making
strategy. The gain is not causal and it is necessary to measure the potential strategy
success. Therefore the expected value is defined. Conditioned ezpected value E(.|.) is
functional which returns the value of the gain independent on ignorance for the given
strategy and conditioned by experience.

The expected gain conditioned by experience is chosen as following integral:

& [G(Pt, Ty, -7'})}7% xt] = G(Pt, Ty, -E)f(ﬂ‘Pt, xt)dftu (1)
Fi
where f(F;|Py, x;) is probability density function of the ignorance conditioned by expe-
rience, this terms stands for the decision makers imagination of the ignorance based on
experience. See [3] for general derivation of this equation.
The decision maker chose the decision x; € X’ to maximize of expected value in each
time ¢:

z, = argmax & [G(Q)| Py, z], (2)

reX

which is the idea based on principle of optimality - see [1].

2.3 Futures trades as DM task

This subsection reformulates futures trading task as a decision making problem.

The system is exchange with one kind of futures contract. The system output y; is a
price of the contract. We design the strategy for discrete time starting from 1, finishing
by horizon T'. The strategy starts and finishes with the flat position.

The decision maker designs in each time ¢ an integer number x; € Z as decision. The
decision x; characterizes traders position, i.e. |zr| characterizes count of contracts and
sign(zr) characterizes the type of position 1 long, -1 short and 0 flat. The flat position
at the beginning and at the horizon is expresses as: x¢g = xp = 0.

The profit influenced only by the decision x; is expressed via:

(e, X1, Yia, yt) = (Yer1 — Y1) Tt — C‘It—l - xt\, (3)

where (y;+1 —y¢)x¢ is profit caused by the change of price and C' is normalized transaction
costs for position change and |x; ;1 — x| is change of position. The gain from the whole
trading can be expressed as a sum of partial gain (3) over time ¢t € {1,2,...,T}. The

gain function Gy(.) expresses the profit caused by decisions z, . .., x7:
T-1
Gulxiot, . xr, Yo yr) = —Claroy — 27|+ Y (k1 — )7 — Clagoy — zl, (4)
k=t

Easy to see, that the function G,(.) is additive and backward recursive

Gt(xtfla ey T Yy - - 7yT) = g(ajb Ti—1, Yt+1, ?/t) + Gt+1(.f17t, e Ty Yy, - - >?/T) (5)
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with initial condition
Gr(xr_1,2r,yr) = —Clor_1 — 27| (6)

2.4 Solution of dynamic DM problem

To maximize the profit, the gain over the decisions x1, ..., x7 should be maximized:
max  G1(Zo, ..., T7, Y15, YT)- (7)
{z1,....x7}

Using the optimality principle (see [1] for details) and additivity of the gain function the
optimal gain in time ¢ can be expressed:

Bt(ﬂﬁt—h ey Ty Yy e 7yT) = H;aX [Q(ﬂﬁt—l, Tty Y, yt+1)+{ max }Gt-l—l(xta s Ty Yty e ?JT)} .
t Ttt1,--,Tt

Function By(.) is called Bellman’s function and hold the following recursive shape:
Bt(xtfb ey T Yty e e 7yT) = HII%X |:g(xt717 Tty Yt Z/t+1) + BtJrl(-Tta ey Ty Yy e 7yT):| 5
where the maximal argument is the optimal decision at time ¢. But to find this argument,

the knowledge of future decisions and prices is needed, i.e. z;11,..., 27, Y, ..., yr. These
variables are the part of ignorance, therefore the expected value must be used:

Vt(xt—h yt) = I%?Xg g(ﬂﬁt—l, Tty Yt, yt+1) + Vt+1(ﬂ?t, yt+1) Loy Tty Y15+ -+, yt], (8)

where V;(.) is called admissible Bellman’s function.

3 Approximation of decision making

The substitution (3) into the equation (8) results in more suitable form:

Vt(xt—h yt) = Hﬁx [ — YTy — C“It—l - xt‘ + $t§(yt+1‘$0, e Ty Y, - 7yt)

(%)
xO?"'axtayl7"'ayt):|' (9)

-~

(%)

+& <Vt+1($t, Yit1)

This paragraph concerns expressing the term (), which characterizes expected value of
future price yx.1 conditioned by the experience.

The probability density function f(ygr1|zo, ..., %, Y1, .- ., y:) is required to express the
expected value (). The probability density function can be written in the parameterized
form:

f(yt-l—l‘xO?“‘7$t7y17”‘7yt):/f(yt+1|07x07"‘7xt7y17'"7yt>f(‘9‘$07‘“7xt7y17”‘7yt>d‘9
0
(10)
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The last expression consists of two density functions: f(0|zo, ..., xs, y1,...,y:) is the den-
sity of model parameters conditioned by experience, where 6 is vector of the parameters.
f(yes1l0, 0, - .. e, Y1, - - ., ye) is density of price y,1 conditioned by model parameters
and experience.

The assumed model is autoregressive and has following shape:

Y= QY1+ Y2+ ... +anyn + b+ ey, (11)

where 0 = (ay, ..., ay,b) are model parameters, N denotes model’s order and e; is white
noise with distribution N (0, 0?), therefore the model prediction is normally distributed:

Fe|0, 20, 2y, - ) = N(aye + asye1 + ... + anye—ns1 + b, 0°). (12)

The density function of model parameters f(0|zo, ...,z Y1, ..., y;) is estimated using
software MIXTOOLS [4], which works with the distribution f(0|xo,. .., ¢, v1,- .-, y:) and
generates samples of model parameters.

This scheme corresponds with principles of Monte Carlo method and the expected
value of the future price can be calculated using the following formula:

Uky1 = Z(&uyk +agYp—1+ ...+ anYe-nN11 + bi)Ds, (13)
i€s
where S is a set of samples, 7 is an index of sample, (ay,...,an;, b;) is a sample vector

and p; is probability of the sample 7.

Let approximate the term (xx) of the equation (9). The main problem of calculat-
ing the term is backward character of equation (8), where the future value of Bellman’s
function V41 (.) is needed to calculation the V;(.). This problem is solvable two ways: ex-
pressing the generalized shape of Bellman’s function or approximation by suitable shape.

We need to find formal solution of equation (9) to express the generalized shape
of Bellman’s function. The desired solution must be valid for all sequences 1, ..., yr.
However this task is very complex and it seems impossible to find the formal solution.

The approximation of Bellman’s function is more promising way. The approximation
must be suitable for further computing, but at the same time contains the parameters of
Bellman’s function, therefore the following shape has been chosen:

Vt(xtfla yt) ~ V:t(xtfb ?/t) = p(xtq)?/t + Q(-thl)a (14)

where p(.) and ¢(.) are real functions. The approximation does not depend on ignorance,
therefore the expected value in term (xx) is expressed as follows:

5<Vk+1(1’k, Ykt1)

xO?"'thaylw"ayt) ~ VkJrl(xlwykJrl)- (15)

The tasks is to design algorithm how to find functions p(.) and ¢(.) in definition (14).
The approximation generates a non-preciseness in equation (8):

Loy ey Tty Y1y - - 7thig]a
(16)

Vi(Tr—1,Yr) + € = II}C%Xg [g(fﬂk, k1 Yt15 Yi) + Vg1 (T, Yrg1)
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where ej is introduced non-preciseness, which is restricted by constant.

All terms in equation (16) are known or calculable. The design assumes, that Bell-
man’s function shape does not vary. Therefore if the tth approximation of Bellman’s
function is f/t(xt_l, y¢), the non-preciseness of approximation in time ¢ can be expressed
via:

€ = I%?Xg g(xta Tt—1, Yt+1, yt) + ‘7t+1($t_1, yt) Loy Tty Y1y - - -5 Yt | — ‘A/t(t—la yt) (17)

.. . . t ..
Then we minimize the sum of squares ming, >, _, ez and arguments of minimum are

the best approximation of the function Vt() . The minimization leads to least squares
method.

4 Experimental part

This section describes the experimental setup, data and results obtained. The designed
trading strategy is defined at discrete time ¢ € {1,2,...,T}. The time step corresponds
with interval of 24 hours. The trading period is given by available data.

The data used for design of the strategy are so-called close prices, which are collected
once a day. It is the last price, when the exchange closes trading. The economic specialists
grant that close price is the most stable price. The close price y; is assumed to be known
in time ¢, i.e. y, is available to design the decision ;.

The part of data sets is transaction costs ¢;. Moreover the price changes during
the day and the close price represent the best approximation, but the risk constant is
demanded. Therefore the slippage constant c,, which characterizes typically change of
the price in delay between decision and real trading is employed. This constant is used
as penalization for each action in design. And the whole transaction costs C' (firstly used
in the equation (3)) is defined as C' = ¢; + c.

The general equations used in this paper do not specify the restriction to decision
x¢. The restrictions depend on the trader’s account, because traders must own money to
buy or sell contract at an exchange and the range of contracts to position is limited by
owned money. We use following values of decision z; € {—1,0, 1}. This three values are
enough for experiments, because the wider range of actions leads only to use the extremal
values of decision. This phenomenon is caused by the shape of gain function (3), which
is partially linear function of decision x;. The strategy starts and ends with flat position,
therefore zog = z7 = 0.

The order of model (see equation (11)) is set to N = 2, because this value gives the
best profit of strategies in the previous research. Predictions are generated by Monte
Carlo method. The count of Monte Carlo samples is chosen dynamically: The decision
is final, when it is not influenced by new Monte Carlo samples.

4.1 Used data

There are 35 available price sequences for the experiments. The sequences contain prices
for more than 15 year, i.e. about 3900 trading days in each sequence. The experiment
set is too wide to present all results here, therefore the following five futures contracts
were chosen as reference markets.



Strategy Design for Futures Trading 211

Ticker ‘ Description

CC | Cocoa - CSCE

CL | Petroleum-Crude Oil Light

FV2 | 5-Year U.S. Treasury Note
JY Japanese Yen - FOREX
W Wheat - CBT

The reference markets were chosen by economic specialist to include all typical kind of
markets - i.e. cocoa and wheat are typical agriculture product, petroleum-crude oil is
mined material, Japanese Yen is typical foreign currency and treasury note stands for
bond markets.

4.2 Results

There are many ways, how evaluate the quality of designed strategy. The net profit
calculated by (4) is the main criterion, secondary criteria are gross loss (sum of loss
trades profit), gross profit (sum of win trades profit), count of winning and losing trades.
By using these criteria it is possible to calculate sum of the transaction cost and sum of
slippages.

The main non-quantitative pointer is the plot of cumulative gain depending on time.
It is difficult to analyze it but it gives important information about the strategy. In ideal
case, the plot increases.

H CC CL Fv2 JY W
Net profit -40530.00  29390.00 -26368.75  -76992.50 -13210.00
Gross profit 23020.00 120360.00 52692.50  180000.00  54707.50
Gross loss -63550.00 -90970.00 -79061.25 -256992.50 -67917.50
Transaction cost -1780.00  -1580.00  -1900.00 -3080.00  -2060.00
Slippages -8900.00  -6320.00 -17812.50  -38500.00 -15450.00
Trades 89 79 95 154 103
Wining trades 24 42 31 50 39
Losing trades 65 37 64 104 64

Table 1: Result overview

The results overview is in Table 1. The system designed good strategy for exchange
with oil futures (CL), where the net profit is positive and the profit grows almost all the
time (see Figure 1). Worst results were at cocoa future market, where the profit decreases
in time. Other markets finished with negative profit, but the curve of cumulative gain
shows only local decreasing, e.g. the FV2 curve decreases only at interval [1000,2500]
and the other parts stagnate (see Figure 2).

The practical approach of presented design is good, because the algorithm works at
one of reference markets. And three reference markets seems that the better settings or
small algorithm changes can improve them to positive results.
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Although the results do not suffice the requirements to usage at real trading, the
theoretical results brought improvements. The methods of Monte Carlo and iterations-
spread-in-time were applied and tested to new task, where the properties of both methods
can be explored.

5 Future work

The main directions of the further research are:

Bellman’s function - the used approximation is oversimplified. A more complex approxi-
mation is typically used to reach better results. The analytical properties of Bellman
function should be explored to find the better approximation, which should lead to
higher profit.

High dimensional model - present model uses only the close price to prediction, but
other data channels are available too. The usage of the high dimensional model
is traditional way, how obtain better results. Additional channels contain new
prices, information about traders positions etc., which brings the new important
information for decision maker.

Prediction quality influenced indirectly the trading system quality. Testing of prediction
quality is related with model and settings of Monte Carlo method, which can be
innovated by knowledge about prediction behavior.

The listed open problems should lead to improve the results and better knowledge about
the approximate dynamic programming. The further approach should support the usage
of this design to trading in markets as fully automatic system.
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Abstract. For the past decade, High Energy and Nuclear Physics experiments have been heading
towards a distributed computing model in an effort to concurrently process tasks over enormous
data sets, that have been increasing in size as a function of time. In order to optimize all available
resources, it is necessary to face also the question of efficient data transfers and placements.
In this work a model tackling this issue, based on Constraint Programming technique (CP) is
introduced, as well as the representation of most important aspects of a real life scenario such
as the sharing of infrastructure both when it comes to networking or storage. Methods for
reducing a search tree and their side by side comparison are shown. Performance of scheduler
based on Choco library is compared also with a Peer-2-Peer network simulator. Based on the
preliminary results, using the CP model seems to be promising and gives good expectations for
ongoing extensions.

Abstrakt. Fyzikalne experimenty vysokych energii v poslednych rokoch napreduji smerom dis-
tribuovaného vypoctového modelu v snahe paralelizovat vypoéty nad enormnym mnozstvom
dat, ktoré sa zvysuje z roka na rok. Za ucCelom optimalizacie vyuzitia vSetkych dostupnych
zdrojov je potrebné celit i otdzke efektivneho presunu a rozmiestnenia dat v distribuovanom
prostredi. V tejto praci predstavime model zalozeny na programovani s obmedzujicimi pod-
mienkami a reprezentaciu najdolezitejSich vlastnosti redlneho prostredia. Budeme sa zaoberaf i
metddami zizenia prehladdvaného priestoru a predvedieme ich vzdjomné porovnanie. Planovac
implementovany za vyuzitia kniznice Choco porovname tiez so simuldtorom Peer-2-Peer siete.
Na zaklade vysledkov sa pouzitie modelu zd4 byt slubné a déva predpoklady na dalSie rozsirenia.

1 Introduction

1.1 Problem area

Computationally challenging experiments such as the one from the High Energy and
Nuclear Physics community (HENP) have developed a distributed computing approach
(a.k.a. Grid computing model) to face the massive needs of their Peta-scale experiments.
The era of data intensive computing has surely opened a vast arena for computer scien-
tists to resolve practical and exciting problems. One of such HENP experiments is the

*The investigations have been partially supported by the IRP AVOZ10480505, by the Grant Agency of
the Czech Republic under Contract No. 202/07/0079, by the grant LC07048 of the Ministry of Education
of the Czech Republic and by the U.S. Department Of Energy
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STAR! (Solenoidal Tracker at Relativistic Heavy Ton Collider) experiment located at the
Brookhaven National Laboratory (USA).

In addition to a typical Peta-scale challenge and large computational needs, this ex-
periment, as a running experiment acquires a new set of valuable real data every year,
introducing other dimension of safe data transfer to the problem. From the yearly data
sets, the experiment may produce many physics ready derived data sets which differ in
accuracy as the problem is better understood as time passes. Thus, demands for a large-
scaled storage management and efficient scheme to distribute data grows as a function
of time, while on the other hand, end-users may need to access data sets from previous
years and consequently at any point in time. Coordination is needed to avoid random
access destroying efficiency.

The user’s task is typically embarrassingly parallel; that is, a single program can run
N times on fraction of the whole data set split into /N sub-parts without any impact on
science reliability, accuracy, or reproducibility. For a computer scientist, the issue then
becomes how to split the embarrassingly parallel task into N jobs in the most efficient
manner while knowing the data set is spread over the world and/or how to spread ’a’
dataset and best place the data for maximal efficiency and fastest processing of the task.

The purpose of this work is to design and develop an automated system that would
efficiently use all available computational and storage resources. It will relieve end users of
making decisions among possible ways of their task execution (which includes locating and
transferring data to desired sites that appear optimal to user) while preserving fairness.
Users’ knowledge of the whole system and data transfer tools will be reduced just to the
communication with the future planner that will guarantee its decision to spread the task
and data sets over chosen sites was, under current circumstances, the most efficient and
optimal.

1.2 Milestones

Rather than trying to solve the problem directly from a task scheduling perspective
within a grid environment, we split the problem into several stages. By isolating data
transfer /placement and computational challenges from each other we get an opportunity
to study the behavior of both sets of constraints separately.

Since individual tasks depend on a dataset with a non-trivial size, the time required
for its staging and transfers is also inconsiderable. Therefore, the first milestone is to
design and develop the data transfer planner/scheduler. For a given dataset needed at
some site, its aim is to create a plan with an objective to prepare files from the dataset at
a given site within the shortest time. The next requirement is to define and achieve fair
share transfers within a multiuser environment. This means that if one user asked for a
huge amount of data at some site, then another user who asked just for one file shouldn’t
wait until the first user’s plan is finished.

The next milestone generalizes data transfer planning between sites. The goal for
this stage is not to transfer files to one particular site, but do the transfer to several
destinations. More precisely, the planner’s goal is to achieve presence of each file (from
user’s input task) at one out of all possible destinations, while still having the objective

thttp: //www.star.bnl.gov
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in mind, to minimize the finish time of the last file transfer the user waits for.

The second milestone is highly corellated with the final milestone - scheduling the
data transfers together with particular tasks (jobs) on a grid. The subtask is not finished
after a file is transfered at some destination site, but when the user’s job executed at
the same site (and dependent on this file) is finished. Thus, the planner still has the
freedom of choosing a destination site for each file, but it has to consider that each site
has a specific characteristic of its computational performance. These attributes include,
for example, the number of available CPUs at current site or the actual load, so it can
be more effective to transfer some files over the slower link to the computationally high
performance site (or vice versa). The final objective is to minimize the finish time of the
last user’s job. In this article we focus on the first milestone.

2 Problem formalization

In the following part we will present a formal description of the problem and an approach
based on Constraint Programming technique, used in artificial intelligence and operations
research, where we search for assignment of given variables from their domains, in such
a way that all constraints are satisfied and value of an objective function is optimal [3].

We will introduce the transfer network consisting of sites holding information which
files are available at the site. For each file we will search for a path leading to the
destination and time slots for each link on transfer path, when a particular file transfer
should occur.

The network consists of a set of nodes N and a set of directed edges E. The set
OUT(n) consists of all edges leaving node n, the set IN(n) of all edges leading to node
n. Input received from a user is a set of file names needed at a destination site dest. We
will refer to this set of file names as to demands, represented by D. For every demand d
we have a set of sources (orig(d)), sites where the file (d) is already available. We will
use one decision variable for every demand and link of the network (edge in graph). The
{0, 1} variable X, denotes whether demand d is routed over edge e of the network. The
second variable start,. denotes start time of transfer corresponding to the demand d over
edge e. More approaches can be found in [5].

_ size(d)
Xyotarty, B (startde - speed(e)) e (1)
er:drde
VdeD: > Xge = 1, > Xge =0 (2)
e€UOUT (n|n€orig(d)) e€UIN (n|n€orig(d))
vieD: > Xge=0, >  Xgp=1 (3)
e€0OUT(dest(d)) e€IN(dest(d))

Vd € D,Vn ¢ {orig(d) U dest(d)} :

Z Xde < 1, Z Xde < 17 Z Xde = Z Xde (4)
) (n)

ecOUT(n e€IN(n) ecOUT(n e€IN(n)
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size(d)

Ve € BVl € D : Xy = 1:( startae, startae + — s

-

=0 (5)

~
endge

size(d)
VYneN,Vde D: Z (startde + spTd(e)) X < Z startge - Xge  (6)
e€IN(n) -~ ecOUT(n)
endge
X €40,1}

starty. € NT

The path constraints (2, 3, 4) state that there is a single path for each demand (path
starting right in one of origin sites, leading to the destination). Equation (5) ensures
there is only one active file transfer over every edge in time. The last equation states
that a transfer of the file at any site can start only if the file is already available at the
site (Eq. 6)(i.e., a transfer of the file to this site has finished). The objective (Eq. 1) is
to minimize the latest finish time of transfer over the whole files.

2.1 Constraint model

For implementation of the solver we use Choco 2, a Java based library for constraint sat-
isfaction problems (CSP), constraint programming (CP). Among 70 available constraints
Choco provides also a set for scheduling and resource allocation, we require most. Closer
illustration of several Choco uses can be found in [1], [2], and [6]. In addition, Java based
platform allows us an easier scheduler integration with currently used tools in the STAR
environment.

Constraints introduced in the previous section were used directly via appropriate
Choco structures, except the equation 5, that ensures at most single file transfer in any
time on any link. For this, we used the cumulative scheduling constraint and notation
of tasks and resources. Tasks are represented by their duration, by ranges for starting
and ending times, and by resource consumption respectively. They are allocated to the
resource(s) in such a way that in any time resource capacity can not be exceeded.

In our case, each link acts as a separate resource with capacity 1 (unary resource) and
each file demand creates a single task on every resource, which duration depends on the
current link speed (resource characteristic) and consumption of the resource corresponds
to the value of variable X, i.e. no consumption if the transfer path for demand does not
include current link (resource), or consumption 1 otherwise. In the Figure (1) is shown
one possible schedule for transferring one file (') with an origin at Site; and Sites to a
destination Dest. Values of the X variables define the path, while the resource profile
for each link is on the right side.

The search strategy, following Choco notation, is split into two goals. First one is
to find assignment for X variables, i.e. paths for each transfer, while the second is to
allocate time slot, assign start variables, for each transfer at chosen links. For both goals

Zhttp:/ /choco.sourceforge.net
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Figure 1: Example of a schedule solution with file ' and its origin at Site; and Site,.

the default ‘minimum domain‘ variable selection and ‘increasing value‘ value selection
heuristic were used.

3 Direct connections

In order to closely analyze the problem, its scale, and behavior of used techniques, we
started with several restrictions that simplify the case. We started to explore the network,
where only direct connections for data movement are allowed. In other words, file can
not be transferred from its origin to the destination by a path longer than one.

One can think that such a restriction shrinks the search space enormously, but closer
look reveals that the number of possible combinations is still large:

Let’s suppose that we have a network of 5 sites, all connected to the destination and
100 files available at each site (|orig(f)| = 5). The number of decision variables X is
therefore 500 (= |D|*|FE|). Even if an upper bound for all possible combinations (2°%) is
reduced by a propagation to 5'% (solver has a freedom of 5 choices of an origin for each
file), brute-force methods can run ’forever’.

With an intend to stay close to a reality, we fixed the number of sites to 5, which
approximately represents the number of sites currently available in the STAR experiment.
For each link we introduced a slowdown factor that influences the transfer time needed
to move the data over this link. Slowdown factor 1 means that file of size 1 unit can be
transferred in 1 unit of time, but with a slowdown factor 4 only in 4 units of time, etc.

Considering the second part of the input, the file demands, we studied the following
cases: a) every file is available only at one particular site [distinct|; b) file is available
at sites given by a probability function, that represents the reality [weighted]; c) file is
available at all sites [shared]. For all cases we fixed the file size to a 1 unit, i.e. all files
have the same size.

3.1 Shared links

So far we have assumed that all links incoming or outgoing from any site have their own
bandwidth (slowdown factor) that is not affected by other ones. Nevertheless, in reality
this is not always feasible, since several links leading to a site usually share the same
router and/or physical fiber which bandwidth (capacity) is less than the sum of their
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own values. Hence, simultaneously one can’t use all links at their maximum bandwidths.
We express this constraint by adding an additional resource per each group of shared
links. Capacity of the resource will be the bandwidth of a shared link or a router, while
tasks correspond to the scheduled transfers using any link belonging to this group with
consumptions equal to its slowdown factor.

3.2 Reducing a search time

We studied also several techniques for reducing the time spent during a search.

3.2.1 Symmetry breaking

One of the common techniques for reducing the search tree is detecting and breaking vari-
able symmetries. This is usually done by adding variable symmetry breaking constraints
that can be expressed easily and propagated efficiently using lexicographic ordering. One
idea that can be applied in the studied case (direct connections and fixed file size) is
following: if two files have the same origin sets, links selected for the first one and for
the second one respectively must be ordered. The reason behind is that both files must
be transferred to the destination and their size is equal, it is not necessary to check also
‘swapped’ case, since the transfer time can not be shorter.

3.2.2 Decomposition and search limits

Another approach is based on the idea, where instead of searching for a global optimal
solution that can be very computing time consuming, we try to find an optimal solution
for smaller parts of the input, where sum of the time spent will be just a portion of time
needed otherwise. This principle is even more suitable for our needs, since network link
speeds vary in time, some sites can be down after the schedule is produced, generally,
transferring all data files takes significant amount of time and during this time a lot of
factors can be different to the ones the scheduler considered at the beginning. Thus the
computed optimal schedule for the full input doesn’t have to be valid anymore.

One of the approximations is splitting the input files into chunks and producing an
optimal schedule for each chunk separately, while propagating the results from the previ-
ous ones. More precisely, result of the scheduler for a given chunk of files is information of
computed starting/ending times for each file at particular links. In other words, current
solver receives times for each link, by which the link will be busy, thus further schedul-
ing for current chunk cannot place file transfer in these time-slots. We achieve this by
allocating a fake task, with fixed starting and ending times, that were propagated from
previous schedules (Figure: 2).

Also limits can be imposed on the search algorithm to avoid spending too much time
in the exploration. One of them is fixing the time limit on a search tree. When the
execution time is equal to the time limit, the search stops whether an optimal solution
is found or not. One of the algorithms we studied was based on this, with a time-limit
linearly dependent on the number of files in a request.
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Figure 2: Allocating fake tasks according to the previous schedule.

4 Directed (simple) paths

Considering the model, no changes are necessary to perform in order to allow solver search
for transfer paths longer than one. However, since data set transit takes some storage
space, one must be sure that during file transfer from site A to C, using site B, there is
enough space at intermediate site B.

4.1 Storage capacity

In order to respect storage restrictions we introduce the next attribute for each site, the
available (free) space, or the storage capacity. All the time during the execution of a
schedule, the storage capacity constraint for each site must be respected.

For each site we consider all possible ways (pairs of inLink and outLink how a file
can be transferred trough it. Whether or not a pair is really used for the demand d is
expressed by channelingV ariable, using which we define also consumption of the task
(Figure: 3).

starty inLink endtd,outLink Free space

size(d) x channelingV ariable

Figure 3: Storage resource.

If the pair is not used, the consumption is set to zero and storage resource is invariable
to this task, otherwise the consumption is set to the file size.

5 Comparative studies

In this section we present the performance comparison of several methods of the CSP
solver introduced in previous sections as well as of the Peer-2-Peer simulator. We will also
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show an effect of one constraint (storage based) for a simple paths case and an example
of the optimal schedule produced by the solver.

5.1 Peer-2-Peer simulator

To provide a base comparison with the results of our CSP based solver we chose to im-
plement a Peer-2-Peer (P2P) model as well. This model is well known and successfully
used in similar fields like file sharing, telecommunication, or media streaming. We im-
plemented a P2P simulator by creating the following work-flow: a) put an observer for
each link leading to the destination; b) if an observer detects the link is free, it picks up
the file at his site (link starting node), initiate the transfer, and waits until the transfer
is done. We introduced a heuristic for picking up a file as typically done for P2P. Link
observer picks up a file with a smallest cardinality in the sense of its |origin|, i.e. the file
that is available at the smallest number of sites and if there are more files available with
the same cardinality, it randomly picks any of them. After each transfer, the file record is
removed from the list of possibilities over all sites. This process is typically resolved using
distributed hash table (DHT) [4], however in our simulator only simple structures were
used. Finally an algorithm finishes when all files reach the destination, thus no observer
has any more work to do.

5.2 Results

In Figure 4, we show a comparison of times needed to produce the schedules and diver-
gence of the results (makespan) to the optimal solution between several algorithms. We
present results only for weighted case with direct connections and will only describe the
qualitative features for the other cases. Weights (probabilities) that were used for sites
considering file’s origins were 1.0, 0.6,0.01, and 0.01.

The X axes denote the number of files in a request while Y is the time (in units)
needed to generate the schedule and percentage loss on optimal solution. We can see
that time to find an optimal schedule without any additions grows exponentially and is
usable only for a limited number of files, 50 in the weighted case and 20 in the shared
case. This difference is induced by a higher number of possible configurations as long
as any site can be selected as an origin. By introducing symmetry breaking, the solving
time is improved, but still not usable for more than 200 files. Using the time-limit on the
other hand we are moving apart from an optimal solution with increasing files in request,
which is even more visible in shared case. Thus setting the time-limit as a linear function
to the number of files, while using a default search strategy based on minimal domains,
is not sufficient.

In contrast, splitting the input into chunks is giving the best performance results both
in the running time and also in the quality of the makespan. Even scheduling by chunk
of size 1, i.e. file by file, doesn’t produce worse result than using larger chunks due to
previous conditions propagation. We note as well the efficacious performance of a simple
P2P algorithm, but it is worth to mention that this model is usable only in a direct
connection case, while our intent is to study more complex networks with much more
restrictions.
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Figure 4: Approximation of the runtime (left) and makespan loss on optimal schedule
(right) for weighted case.

To see the real effect of the storage constraint, in Gantt charts (Figure 5) are shown
two schedules (without and with enabled constraint) for the same dataset, considering
the funnel network displayed in the upper part of the figure with a limited available space
at Siteg only for one file size unit. This extreme example permits only a single transfer
via site Sites, that fills available space until a file is fully transfered to the destination
Sitey. After that, the space at Sites is again released and another file can go trough.

6 Conclusion

We presented an approach using a Constraint Programming model to tackle the efficient
data transfers/placements and job allocations problem within a distributed environment.
Usage of constraints and declarative type of programming offers straightforward and more
error prone way of representing many real life restrictions. On the other hand, since a
search space is usually extensive, methods like symmetry breaking or approximations
and understanding the scale of the problem are fundamental. We showed that using
the scheduling of data transfers by sequence of smaller chunks gives results close to
the optimal solution and provides very acceptable running time performance. We have
implemented also several constraints for dealing with shared network links or limited
storage capacities at sites and actual results indicate that it is worth to continue research
with this technique.
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