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Předmluva
Smyslem doktorského studia je vychovat nastupující vědeckou generaci. Vědeckou pří-

pravu na samotný výzkum však musí nezbytně doprovázet i příprava na prezentování vý-
sledků srozumitelným způsobem před nejširším odborným publikem. Doktorandské dny,
které se na katedře matematiky FJFI stávají již tradicí, jsou k tomu nejlepší příležitostí.
Letos se konaly již po třetí, a to ve dnech 7. a 21. listopadu 2008.
Témata pokrytá přednáškami na workshopu Doktorandské dny sahaly od ryze teore-

tických problémů matematické fyziky, přes matematické modely přírodních procesů, až po
zpracování obrazu, či databázové systémy. Hlavními přednášejícími byli studenti v preze-
nční formě doktorského studijního programu Aplikace přírodních věd oboru Matematické
inženýrství. Jejich příspěvky předkládáme v tomto sborníku.
O pozitivním ohlasu Doktorandských dnů z minulých let svědčí i to, že k prezentaci

na workshopu se hlásí i doktorandi z jiných kateder, a na přednášky přicházejí hosté z řad
odborné veřejnosti. Přejme si, aby tato každoroční akce pro doktorandy získávala stále
více příznivců.

Editoři





Paralelní algoritmy pro numerické řešení
hydrodynamiky laserového plazmatu

Ľuboš Bednárik

1. ročník PGS, email: Lbs@centrum.sk
Katedra matematiky, Fakulta jadrová a fyzikálne inžinierska, ČVUT
školiteľ: Richard Liska, Katedra fyzikální elektroniky, Fakulta jaderná
a fyzikálně inženýrská, ČVUT

Abstract. For solution of laser plasma hydrodynamic we introduce model of Lagrangian equ-
ations, which includes heat conductivity and laser absorption. We show us the discretization of
hydrodynamical equations as well as heat conductivity equation and describe one step of the
difference schema. Further we introduce the paralelization and by obtained results we determine
its efficiency.

Abstrakt. Pre riešenie hydrodynamiky laserovej plazmy sa v úvode zoznámime s modelom Lag-
rangeovských rovníc, ktorý v sebe zahŕňa aj tepelnú vodivosť a laserovú absorpciu. Ukážeme si
diskretizáciu jak hydrodynamických rovníc tak aj rovnice vedenia tepla a popíšeme jeden cyklus
diferenčnej schémy. Ďalej si predstavíme prostriedky pre paralelizáciu a získanými výsledkami
určíme jej efektivitu.

1 Formulácia úlohy

Laserová plazma, ktorá vzniká pri interakcii laserového žiarenia s hmotou, je typicky mo-
delovaná ako stlačitelná kvapalina prostredníctvom Eulerových rovníc s tepelnou vodi-
vosťou a laserovou absorpciou. Simuláciou vznikajú oblasti, ktoré sa vyznačujú vysokou
expanziou resp. kompresiou. Popis systému v Lagrangeovských súradniciach je preto
vhodnejší než klasický Eulerovský popis, ktorý nie je vhodný pre problémy, kde nastá-
vajú veľké zmeny vo výpočtovej doméne (podrobný popis transformácie môžeme nájsť v
[6, 7]). Budeme sa teda venovať problému, ktorý v Lagrangeovských súradniciach (S, t)
má tvar

dη

dt
= vS (1)

dv

dt
= −pS (2)

dε

dt
= −pvS −WS − LS (3)

kde η = 1/ρ, ρ je hustota, v rýchlosť, p tlak, ε vnútorná energia, W je tepelný tok
a L je hustota toku energie (intenzita) laserového žiarenia. Jednotlivé rovnice vyjadrujú
postupne zákon zachovania hmotnosti (1), zákon zachovania hybnosti (2) a zákon zacho-
vania energie (3). Systém doplňujeme ďalej ešte o stavové rovnice p = p(ε, ρ), T = T (ε, ρ),

1
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ktoré pre ideálny plyn uvažujeme v tvare:

p = ερ(γ − 1) (4)

T =
A

Z + 1

p

cpρ
, cp =

kB
mu

(5)

kde γ = 5/3 je plynová konštanta, Z stupeň ionizácie, A atómové číslo, kB Boltzmanova
konštanta a mu = 1, 6605.10−24g atómová hmotnostná jednotka.
Systém rovníc (1), (2), (3) riešime v dvoch krokoch. V prvom kroku riešime samos-

tatne systém hydrodynamických rovníc

dη

dt
= vS (6)

dv

dt
= −pS (7)

dε

dt
= −pvS (8)

V druhom kroku riešime samostatne rovnicu vedenia tepla so zahrnutým členom pre
laserove žiarenie

dε

dt
= −WS − LS (9)

2 Diskretizácia

Systém riešime numericky diskretizáciou v čase aj v priestore, pričom parciálne derivácie
nahrádzame diferenciami. Nech teda daná oblasť, v našom prípade interval 〈a, b〉, je
lubovoľne rozdelena bodmi x1 až xm+1 na m subintervalov, kde x1 = a a xm+1 = b. Tieto
subintervaly budeme nazývať primárna sieťka. Primárne body definujeme ako stredy
týchto subintervalov a značíme postupne x3/2, x5/2 až xm−1/2, xm+1/2. Vrcholy primárnej
sieťky tvoria tzv. duálne body, ktoré označujeme indexom s celočíselným argumentom.
Duálna sieťka bude obsahovať duálne body vnútri svojich buniek, a teda jej vrcholmi sú
primárne body. Označme ďalej ∆t časový krok a tn = n∆t, n = 0, 1, 2, ....

2.1 Diskretizácia hydrodynamických rovníc

Najskôr zdiskretizujeme systém hydrodynamických rovníc (6),(7),(8). Časové derivácie
nahradíme jednoduchými diferenciami:

df

dt
→ fn+1

i − fni
∆t

(10)

kde fni = f(xi, t
n). V rovniciach pre zákony zachovania hybnosti a energie navyše použi-

jeme člen pre umelú viskozitu q, definovanú vzťahom

qni+1/2 =

{
0 pre vni+1 − vni ≥ 0

−3
2
ρni+1/2(v

n
i+1 − vni )

√

(γ − 1)γεni+1/2 pre vni+1 − vni < 0
(11)
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Zákon zachovania hybnosti diskretizujeme podľa schémy

vn+1
i − vni

∆t
= −

pni+1/2 + qni+1/2 − pni−1/2 − qni−1/2

mi
, pre i = 2, .., m− 1 (12)

Rýchlosti v1 a vJ sú dané okrajovými podmienkami. Ak poznáme rýchlosti vo všetkých
bodoch sieťky, potom podľa nasledujúceho vzťahu stanovíme pohyb sieťky:

xn+1
i − xni

∆t
=
vn+1
i + vni

2
(13)

Zákon zachovania energie diskretizujeme podľa schémy

εn+1
i+1/2 − εni+1/2

∆t
= −(pni+1/2 + qni+1/2)

1
2
(vn+1
i+1 + vni+1)− 1

2
(vn+1
i + vni )

mi+1/2

, pre i = 1, .., m (14)

Hustota je daná pohybom sieťky, pretože hmotnosť zostáva v každom čase pre každú
bunku konštantná:

ρn+1
i+1/2 =

mi+1/2

xn+1
i+1 − xn+1

i

(15)

2.2 Diskretizácia rovnice vedenia tepla

Rovnicu vedenia tepla (9) zdiskretizujeme po prechode od systému (S, t) k (x, t), a tak
podľa [5] má táto rovnica po tejto transformácii tvar:

ρ
dε

dt
= −Wx − Lx (16)

kde W = −κTx a κ je koeficient tepelnej vodivosti. Z rovníc (4) a (5) dostávame

ε(T, ρ) =
T (Z + 1)cp
A(γ − 1)

(17)

kde vidíme, že vnútorna energia je pre ideálny plyn funkciou iba teploty ε = ε(T ). Keďže
pre totálnu časovú deriváciu vnútornej energie platí

dε

dt
(T, ρ) =

∂ε

∂T

∂T

∂t
+
∂ε

∂ρ

∂ρ

∂t
(18)

a z (17) vyplýva ∂ε/∂ρ = 0, potom môžeme vzťah (16) prepísať do tvaru

Tt =
1

ρεT
(κTx)x −

1

ρεT
Lx (19)

Parciálna derivácia εT je pre ideálny plyn nezávislá na teplote a zo vzťahu (17) ju doká-
žeme vyjadriť:

εT =
(Z + 1)cp
A(γ − 1)

(20)

Označme symbolom Vi objem bunky, ktorá obsahuje vnútri duálny bod xi, tj.

Vi = xi+1/2 − xi−1/2 (21)
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a symbolom Vi+1/2 objem bunky obsahujúcej primárny bod xi+1/2, tj.

Vi+1/2 = xi+1 − xi (22)

Stavové veličiny T , p,ρ, ε, κ sú dané na primárnej sieťke, tj. v bodoch xi+1/2, veličiny v,
L na duálnej sieťke v bodoch xi. Potom časovú deriváciu teploty nahradíme

[Tt]i+1/2 =
T n+1
i+1/2 − T ni+1/2

∆nt
(23)

kde symbol ∆nt = tn+1 − tn. Indexy pri hranatých zátvorkách označujú body sieťky.
Deriváciu podľa x nahradíme podobným spôsobom

[Tx]i+1/2 =
T n+1
i+1 − T n+1

i

Vi+1/2

(24)

Analogicky nahradíme aj druhú deriváciu, a tak následným dosadením do (19) dostávame
výslednú schému:

ρni+1/2εT
T n+1
i+1/2 − T ni+1/2

∆nt
=

1

Vi+1/2

[
κni+1

Vi+1

(T n+1
i+3/2 − T n+1

i+1/2)−
κni
Vi

(T n+1
i+1/2 − T n+1

i−1/2)− (Lni+1 − Lni )
]

(25)
Táto implicitná schéma predstavuje systém m − 2 rovníc pre m neznámychT n+1

i+1/2 pre
i = 1, .., m a má tvar

aiT
n+1
i−1/2 + biT

n+1
i+1/2 + ciT

n+1
i+3/2 = Ri, i = 2, .., m− 1

kde koeficienty ai,bi, ci a Ri vyplývajú z (25)

ai = −κi
Vi

∆nt

Vi+1/2ρi+1/2εT

bi = 1 +

(
κi+1

Vi+1

+
κi
Vi

)
∆nt

Vi+1/2ρi+1/2εT

ci = −κi+1

Vi+1

∆nt

Vi+1/2ρi+1/2εT

Ri = T ni+1/2 − (Lni+1 − Lni )
∆nt

Vi+1/2ρi+1/2εT
(26)

Zostávajúce dve rovnice

b1T
n+1
3/2 + c1T

n+1
5/2 = R1 (27)

aNT
n+1
m−1/2 + bNT

n+1
m+1/2 = Rm (28)

vyjadrujú okravojé podmienky. Systém sa dá zapísať maticovo ako









b1 c1 0 ... 0 0 0
a2 b2 c2 ... 0 0 0
...
...
...
. . .

...
...

...
0 0 0 ... am−1 bm−1 cm−1

0 0 0 ... 0 am bm



















T n+1
3/2

T n+1
5/2
...

T n+1
m−1/2

T n+1
m+1/2










=










R1

R2
...

Rm−1

Rm










(29)

kde ako vidno má matica systému tridiagonálny tvar, kde nenulové prvky sa nachádzajú
na diagonále a nad a pod diagonálou.
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2.3 Diferenčná schéma - cyklus

Predpokladajme ďalej, že na začiatku prvého kroku diferenčnej schémy máme dané sta-
vové veličiny ρ0, v0, ε0 a p0 = p(ρ0, ε0),T0 = T (ρ0, ε0). Vyriešením systému hydrody-
namických rovníc, kde uvažujeme okrajovú podmienku pre rýchlosť alebo tlak, získame
nové hodnoty veličín, ktoré označíme ρ1, v1, ε1. Zo stavovej rovnice dopočítame

T1 = T (ρ1, ε1)

ako počiatočné riešenie pre rovnicu vedenia tepla. Pre ideálny plyn je dokonca teplota
funkciou iba vnútornej energie. Nasleduje vyriešenie rovnice vedenia tepla, čím získame
novú teplotu T2. Časový krok musí byť pre obidva subkroky rovnaký. Ak sa líšia, zvolíme
obidva podľa menšieho z nich. Finálne už iba stačí, keď zaktualizujeme vnútornú energiu

ε2 = ε(T2, ρ1)

a ako nové počíatočné podmienky do ďalšieho kroku vezmeme hodnoty ρ1, v1, ε2.

2.4 Absorpcia laseru

V našej rovnici vedenia tepla (9) sa vyskytuje člen L, ktorý v sebe zahrňuje energiu predá-
vanú systému v dôsledku absorpcie laserového žiarenia. Hodnotu tohto členu spočítame
zo vzťahu

L =

{

0 pre ρ ≥ ρc

IL pre ρ < ρc

kde IL = IL(t) je intenzita laserového žiarenia popísaná ďalej a ρc je tzv. kritická hustota,
pre ktorú platí

ρc = 1, 86× 10−3A

Z

1

λ2
µ

kde λµ je vlnová dĺžka laseru v µm. Uvažujeme pritom dopad laserového žiarenia s
profilom Gaussovského pulsu, tzn. pre intenzitu použijeme vzťah

IL(t) = ILmaxe
−(t−t0)24ln2

τ2

kde ILmax je maximálna intenzita žiarenia, t0 je posunutie maxima vzhľadom k času t = 0
a τ je šírka pulsu v polovici maximálnej výšky (FWHM).

3 Paralelizácia

Pre urýchlenie výpočtu sme sa rozhodli náš program sparalelizovať, a to prostredníctvom
OpenMP. V tomto prípade sa bežiaci proces rozdelí na niekoľko vlákien a na nich prebie-
ha paralelne výpočet. V jazyku C je OpenMP implementované prostredníctvom direktív
prekladača riadiacich samotnú paralelizáciu a menšou skupinkou pomocných funkcií, kto-
ré umožnujú kontrolovať a riadiť jednotlivé vlákna. Direktívy majú tvar #pragma omp



6 Ľ. Bednárik

a k tým dôležitejším patria #pragma omp parallel for a #pragma omp sections. Vo
fortrane je to takmer take isté, rozdiel je v tom, že direktívy a pomocné funkcie majú
odlišnú syntax. Napríklad spomenuté dve direktívy majú vo fortrane tvar !$omp do a
!$omp sections.
Prvá z uvedených direktív sa používa pre paralelizáciu cyklov for. Direktíva s príslu-

šnými parametrami vraví prekladaču, že proces sa má rozdeliť na viac vlákien, nasledujúci
cyklus rozdelíť na zodpovedajúci počet častí a potom sa opäť spojíť. Dôležité je, ako sa
prideľuje práca jednotlivým vláknam. Máme niekoľko možnosti:

• Staticky, kde sa cyklus rozdelí na niekoľko blokov konštantnej veľkosti a tieto bloky
sa hneď na začiatku pridelia jednotlivým vláknam.

• Dynamicky, kde sa cyklus rozdelí opäť na niekoľko blokov konštantnej veľkosti, ale
tieto sa prideľujú vláknam podľa potreby. Ktoré vlákno dokončí svoj blok, dostane
ďalší.

• Riadene, kde sa mení aj veľkosť prideľovaných blokov.
Je dôležite tiež určiť, ktoré premenné majú byť zdielané (napríklad dáta, na ktorých
pracujeme), a ktoré súkromné (napríklad iteračná premenná, ktorá má pre každé vlakno
inú hodnotu).
Niekedy je nutné vykonať danú operáciu napríklad len jedným vláknom, alebo viacerý-

mi ale odlišne. K tomuto účelu slúži druhá spomínaná direktíva #pragma omp sections,
kde pre každú sekciu kódu sa dá nastaviť, ako sa má spracovávať. Zo základných spôsobov
môžme uviesť:

• Jednotlivá sekcia určuje časť kódu, ktorý sa vykoná len jedným vláknom (napr.
vstupné a výstupné operácie).

• Kritická sekcia určuje časť kódu, ktorá sa smie vykonať maximálne jedným vlák-
nom v tom istom čase (prístup k hardwaru).

• Zarážka nastavuje miesto, kam musia všetky vlákna dospieť a počkať na seba.

• Zoradený kód, ktorý je vykonávaný v rovnakom poradí ako pri sekvenčnom algo-
ritme.

V niektorých prípadoch potrebujeme poznať aktuálny počet vlákien pripadne číslo vlákna
a k tomu nám OpenMP poskytuje vstavané funkcie omp get num threads (vráti počet
vlákien) a omp get thread num (vráti číslo vlákna).
Napísaný program kompilujeme vybranými prekladačmi podporujúci štandard OpenMP

s použitím príslušných prepínačov. Pre intelovské prekladače je to prepínač -openmp,
pre štandardné GNU prekladače, voľne dostupné v každej distribúcii linuxu, prepínač
-fopenmp.

4 Výsledky

Väčšina simulácii prebiehala na počítači pozostávajúceho zo 4 dvojjadrových procesorov
Intel Xeon s frekvenciou 2667 MHz a 24 GB RAM. Mohli sme tak spustiť výpočet až na
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8 procesoch. Účinnosť paralelizácie vypočítame podľa nasledujúceho vzťahu

η =
t1
tn.n

, (30)

kde t1 je doba výpočtu jedným procesom a tn doba výpočtu n procesmi. Pomer t1tn pritom
určuje dosiahnuté zrýchlenie.
V simulácii uvažujeme penový terčík, modelovaný sériou stien a medzier s danými

vlastnosťami, na ktorý sprava dopadá laserový zväzok. Na obrázkoch y-ová os zodpo-
vedá určitej časovej hladine a na x-ovej osi sú vynášané hodnoty konkretnej fyzikálnej
veličiny. Uvažeme pokročilejší model absorpcie laseru, kde laser je absorbovaný nielen
v tzv. kritickom mieste, tj. mieste s kritickou hustotou, ale aj v jeho okolí. V každej
dvojíci obrázkov vrchný zobrazuje simuláciu bez vedenia tepla, dolný zobrazuje simulá-
ciu s tepelnou vodivosťou, pričom môžeme vidieť postupne zobrazenie laseru (obrázok 1),
zobrazenie hustoty (obrázok 2) a zobrazenie teploty (obrázok 3).
Porovnaním prvých dvoch dvojíc obrázkov vidíme, že laser nie je absorbovaný len v

mieste dopadu, ale aj hlbšie v materiáli. Na tretej dvojíci obrázkov (obrázok 3) potom
vidíme vplyv rovnice vedenia tepla.

Obrázok 1: Simulácia absorpcie laseru, zobrazenie laseru, horný obrazok bez vedenia tep-
la, dolný s vedením tepla.

Obrázok 2: Simulácia absorpcie laseru, zobrazenie hustoty, horný obrazok bez vedenia
tepla, dolný s vedením tepla.

Obrázok 3: Simulácia absorpcie laseru, zobrazenie teploty, horný obrazok bez vedenia
tepla, dolný s vedením tepla.
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Dobu výpočtu ako aj zrýchlenie a efektivitu pri použití sieťky zloženej z 250 buniek 1

vidíme v tabuľke 2. V prvom stĺpci máme počet procesov (resp. vlákien), na ktorých bol
výpočet spustený. V druhom a treťom stĺpci sú zaznamenané namerané doby výpočtu.
Druhý stĺpec zobrazuje skutočnú dobu výpočtu, tj. odkedy sa výpočet spustil až po jeho
skončenie, zaťial čo v treťom stĺpci sa nachádza čas procesu, ktorý je súčtom časov na
jednotlivých vláknach. V posledných dvoch stĺpcoch sa nachádza zrýchlenie a dosiahnutá
efektivita, ktorá je počítaná pomocou vzťahu (30). Nízka hodnota tejto efektivity je
spôsobená okrem nízkeho počtu buniek aj tým, že v celkovej dobe výpočtu je zahrnutá
aj doba neparalelizovaných výpočtov.

Procesy Čas Čas procesu Zrýchlenie Efektivita

1 320 319 1 1
2 235 333 1,36 68.1 %
4 209 382 1,53 38.2 %
8 193 416 1,65 20.7 %

Tabuľka 1: Výsledok paralelizácie na sieťke s 250 bunkami - celková doba výpočtu.

Ak sa zameriame iba na dobu paralelizovanej časti výpočtu, konkrétne o hydrodyna-
mickú časť, môžeme pozorovať lepšie výsledky (viď. tabuľka 2). Výpočet opeť prebiehal
na oblasti s 250 bunkami. Výsledky obidvoch tabuliek spolu s ďalšími simuláciami pre
125, 500 a 1000 buniek vidíme na obrázku 4. Môžeme pozorovať, že zvyšujúcim sa počtom
buniek sa zvyšuje aj efektivita paralelizácie.

Procesy Čas Čas procesu Zrýchlenie Efektivita

1 199 199 1 100 %
2 113 211 1.76 88,3 %
4 69,8 241 2.85 71.3 %
8 38,8 258 5.12 64.0 %

Tabuľka 2: Výsledok paralelizácie na sietke s 250 bunkami - doba výpočtu paralelizovanej
hydrodynamickej časti výpočtu.

5 Záver

Zoznámili sme sa s modelom Lagrangeovských rovnic pre riešenie hydrodynamiky lasero-
vej plazmy, ktorý v sebe zahrňuje aj tepelnú vodivosť a laserovú absorpciu. Ďalej sme si
ukázali diskretizáciu a predstavili prostriedky pre paralelizáciu tohto problému. Získaný-
mi výsledkami sme skúmali efektivitu paralelizácie a overili, že pre daný počet procesov
(resp. vlákien) sa efektivita zvyšuje so zvyšujúcim sa počtom buniek na sieti.

1Nízky počet buniek je zvolený zámerne. Pre vysoké počty buniek a malý počet procesov (vlákien)
vychádza efektivita veľmi vysoka. My sme však chceli ukázať, kde sa nachádza spodná hranica počtu
buniek, tak aby mala paralelizácia ešte zmysel.
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Obrázok 4: Graf efektivity paralelizácie postupne na sieťkach s 125, 250, 500 a 1000
bunkami. Vľavo celá simulácia, vpravo iba hydrodynamická časť.
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Abstract. The goal of this contribution is to describe the transport of colloids in the porous
media. This work includes equation describing the flow field, transport of colloids and deposition
of colloids in the porous media. Then there is a numerical discretisation of the system of
equations describing the colloid transport with known flow field by means of the upwind scheme.

Abstrakt. Hlavním cílem tohto příspěvku je popis transportu koloidů v porézním prostředí.
Tato práce obsahuje rovnici popisující proudové pole, transport koloidů a jejich ukládání v
porézním prostředí. Dále je v práci obsažena numerická diskretizace tohoto systému rovnic
popisujícího transport koloidů při známém proudovém poli za použití upwindového schématu.

1 Introduction

This contribution is a review of colloidal transport in porous media. The Contribution
contains equations describing this complicated but important system. Colloids are small
particles with at least one dimension less than 100 nm. Examples of colloids are bacteria
or viruses. Colloids have many usages. One of reasons for studying colloidal the transport
in the porous media is that colloids are able under certain conditions to make contaminant
transport in porous media faster. One case was measured for example in Los Alamos,
where Pu transport was measured and Pu particles reached 1200 times farther than was
predicted by classical transport model. Colloids stimulated this phenomenon [5].

2 The physical model

This section presents equations describing the colloidal transport in porous media [1].

2.1 Flow field

To describe the transport of colloidal particles in the porous media three equations are
necessary. The first is describing the flow field and we will call it the flow equation. We
can write it in this form:

Ss
∂h

∂t
= ∇ · (K∇h)−Q, (1)

where SS is the specific storage, t is time, h is the hydraulic head, K is the hydraulic
conductivity and Q is the pumping or recharge rate. After time the water flow in the

11
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porous media comes to the steady state. Then is possible to measure the hydraulic head
and use the Darcy law to obtain the Darcy velocity q:

q = −K∇h. (2)

2.2 Colloid transport equation

This equation can be derived from the mass balance of colloids over the REV (repre-
sentative element volume). There are three main mechanisms controlling the colloidal
transport: hydrodynamic dispersion, advection and colloid deposition and release. This
can be described by the generalized advection dispersion equation:

∂C

∂t
= ∇ · (D∇c)−∇ · (VC)− ̺b

ε

∂S

∂t
, (3)

where C is the mass concentration of colloids in aqueous phase,

S =
colloid mass captured by solid matrix

total mass of solid matrix
,

D is particle hydrodynamic dispersion tensor, V is particle velocity tensor, ε is the
porosity and ̺b is the bulk density of porous media. Because the colloid particle size is
much smaller than the pore size, it is possible to take V like interstitial fluid velocity. In
two dimensions it is possible to take

Dij = αT V̄ δij + (αL − αT )
V̄iV̄j
V̄

+DdTδij ,

where Dd is the Stokes-Einstein diffusivity, V̄iV̄j are components of the interstitial velocity,
αL is the longitudinal dispersivity, αT is the transverse dispersivity and T is the tortuosity
of porous medium. Further we will use the equivalent of (1), where the unknown is the
particle number concentration n:

∂n

∂t
= ∇ · (D∇n)−∇ · (V · n)− f

πa2
p

∂θ

∂t
, (4)

where θ is the specific surface coverage, defined as

θ =
total cross-section area of deposited colloids

interstitial surface area of the porous media solid matrix
,

f is specific surface area

f =
interstitial surface area

porous medium pore volume
,

and ap is radius of colloidal particles.
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2.3 Colloid deposition and release

Let λ be the percentage part of the solid matrix with favorable conditions for colloid
deposition. This can be for example areas with iron oxides on its surface. These surfaces
are typically positive charged and colloids are typically negatively charged. Deposition
on the surfaces is usually irreversible. On the rest (1− λ) of the solid matrix surface are
unfavorable conditions for the colloidal deposition. Deposition takes place on both parts,
but difference in rates can be huge. For particle surface coverage rate we can adopt this
patch wise model:

∂θ

∂t
= λ

∂θf
∂t

+ (1− λ)
∂θu
∂t

, (5)

where θf is favorable surface fraction and θu is unfavorable surface fraction. For there
rates exists partial differential equations:

∂θf
∂t

= πa2
pkdep,fnB(θf )− kdet,fθfR(θf ), (6)

∂θu
∂t

= πa2
pkdep,unB(θu)− kdet,uθuR(θu), (7)

where kdep is the colloid deposition rate constant, kdet is the colloid release rate constant,
B(θ) is the dynamic blocking function and R(θ) is dynamic release function. Colloid
deposition rate coefficient kdep can be expressed by means of single collector efficiency η:

kdep =
ηεV

4
=
αη0εV

4
, (8)

where V is the fluid advection velocity, ε is porosity and η0 is the favorable single collector
removal efficiency.

2.4 Dynamic blocking and release functions B(θ), R(θ)

Dynamic blocking functions characterize particle deposition [4]. When is the collector at
the beginning particle free has blocking function value B(θ) = 1. As deposited particles
blocking the surface more and more B(θ) decreases and when at maximum attainable
surface coverage θ = θmax (jamming limit) it is B(θ) = 0. We will present two models of
this function here.

2.4.1 Langmuirian dynamic blocking function

This blocking function is a linear approximation:

B(θ) = 1− 1

θmax
θ.

This model was made for point size particles. For larger (finite size) particles linear
description is not sufficient. For this reason we will show non-linear blocking function
here: the RSA model.
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2.4.2 RSA dynamic blocking function

For colloidal particles depositing on the oppositely charged collector surface these condi-
tions for use of RSA model are given:

• attachment is irreversible as long as conditions do not change

• surface diffusion is negligible
• particle-particle contact is prohibited

For low and moderate surface coverage the function has this form:

B(θ) = 1− 4θ∞
θ

θmax
+

6
√

3

π

(

θ∞
θ

θmax

)2

+

(
40√
3π
− 176

3π2

)(

θ∞
θ

θmax

)3

,

where θ∞ is the hard sphere jamming limit. For coverage approaching θmax (θ > 0, 8θmax)

B(θ) =
(1− θ

θmax
)3

2m2
(

1
θmax

)3 ,

where m is the jamming limit slope.

2.4.3 Dynamic release function

Dynamic release function describes the probability of colloid release from the porous
media surface covered by retained colloids [1]. This function should in general depend
on colloid the residence time and the retained colloid concentration. Because the colloid
release is not well understood we will use R(θ) = 1. Then equations (6) and (7) represent
first order kinetics release function.

3 Solved equation

This section shows solved equation, initial and boundary conditions. By substituting
equations describing the colloid deposition and release (5), (6) and (7) to (4), we obtain
the following expression:

∂n

∂t
= ∇ · (D∇n)−∇ · (V · n)− f

πa2
p

((λπa2
pkdep,fB(θf ) + (1− λ)πa2

pkdep,uB(θu))n−

((λπkdet,fθfR(θf) + (1− λ)kdep,uθuR(θu)). (9)

Now we assume that K(θ) = 1 (first order kinetics release mechanism) and use the
following notations:

γ =
f

πa2
p

, (10)

Ka(θf , θu) = πa2
p[λkdep,fB(θf ) + (1− λ)kdep,uB(θu)], (11)

Kr(θf , θu) = λπkdet,fθf + (1− λ)kdep,uθu. (12)
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After application of these assumptions the following equation is obtained:

∂n

∂t
= ∇ · (D∇n)−∇ · (V · n)− Ka(θf , θu)

γ
n +

Kr(θf , θu)

γ
. (13)

Now we will complete this system of equations by means of equations:(1), (2), (6) and
(7):

Ss
∂h

∂t
= ∇ · (K∇h)−Q, (14)

q = −K∇h,

V =
q

n
,

∂θf
∂t

= πa2
pkdep,fnB(θf )− kdet,fθf , (15)

∂θu
∂t

= πa2
pkdep,unB(θu)− kdet,uθf . (16)

To solve this system, we will need boundary and initial conditions for each equation
(13),(14),(15) and (16).
Let us have rectangular domain oriented in directions of axis x, where lower boundary is
denoted Γ1, right Γ2, upper Γ3 and left Γ4 (fig. (1)).
For concentration equation (13) will have initial condition given by some function n0(x)
and boundary conditions will describe sources of colloids, so there are some functions
ni(x, t), where i ∈ 1, . . . , 4.
For equation describing the flow field (14), we will have some initial hydrodynamic head
e.,g. h(x) = h0 for t = 0, Dirichlet boundary condition on Γ2 and Γ4 e.,g. h(x, t) = hi(x)
on x ∈ Γi, t > 0 for i = 2, 4 and zero Neumann boundary conditions on Γ2 and Γ4 e.,g.
∂h(x
∂z

= 0 on x ∈ Γ1,3, t > 0.
For equations (15) and (16) there are initially no deposited colloids so (θf = θu = 0)
and then there are zero dispersive flux boundary conditions for t > 0 e.,g. ∂θj(x

∂z
= 0 on

x ∈ Γ1,3 and
∂θj(x

∂x
= 0 on x ∈ Γ2,4 for t > 0 and j = f, u .

4 Numerical solution

Now we discuss how numerically solve the system above [1], [2], [3]. Let us suppose that
the flow field is time independent and that the flow field is given. In this case it will not
have to solve equation (14) and we will know velocity V. If the flow field is not known it
is necessary to solve equation (14) in each time step, like first one. For known flow field
we have to solve three coupled equations (13),(15) and (16) with initial and boundary
conditions given in the previous chapter. First thing to do in numerical solution is the
numerical grid. We will use triangulation on our domain Ω. It is called the primary
grid. On the primary grid we will construct the dual grid. We will connect midpoints of
triangle with all its sites in each triangle from primary grid. In this way we will obtain a
polygon around each node from the primary grid (on the boundary of the domain (∂Ω),
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Γ2

Γ1

Γ3

∂Ω

ΩΓ4

Figure 1: The domain Ω.

polygons are incomplete). For primary mesh node i, we will call this polygon Bi exclusive
subdomain of node i. Bi consists of several abscissae and each of abscissa belongs to one
abscissa connecting node i with his neighbor m. For each couple i, m there two abscissae,
we will denote them ∂Bl

i,m. The middle point of the abscissa ∂B
l
i,m is denoted γ∂B

l
i,m

(fig. 2). Time step will be denoted by upperscript k. By |”something”| is denoted the
area or the length of ”something” (for example |∂Bl

i,m| is the length of abscissa ∂Bl
i,m).

The coupled system of equations is solved as follows. First the number concentration
n based on the coverage at old time level is computed. Then new surface coverage is
computed.

We will show how to solve equation (13). First we will integrate this equation over
domain Ω:

∫

Ω

[
∂n

∂t
+
Ka(θf , θu)

γ
n− Kr(θf , θu)

γ

]

dS =

∫

Ω

[∇ · (D∇n)−∇ · (V · n)] dS. (17)

Now we will use Gauss formula on the right hand side of the equation (17):

∫

Ω

[∇ · (D∇n)−∇ · (V · n)] dS =

∫

∂Ω

(D∇n) · n∂Ωdl −
∫

∂Ω

(V · n) · n∂Ωdl (18)
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i

m

Bi

γ∂B1
i,m

∂B1
i,m

∂B2
i,m

Figure 2: The exclusive subdomain for node i.
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where ∂Ω is boundary of Ω and n∂Ω is the normal vector to ∂Ω But the mass balance has
to be satisfied not only on the whole domain Ω but also on each exclusive subdomain Bi

which belongs to the primary mesh node i:

∫

Bi

[
∂n

∂t
+
Ka(θf , θu)

γ
n− Kr(θf , θu)

γ

]

dS =

∫

∂Bi

(D∇n)·n∂Bi
dl−

∫

∂Bi

(V ·n)·n∂Bi
dl (19)

Now we will approximate the left hand side of (19).

∫

Bi

[
∂n

∂t
+
Ka(θf , θu)

γ
n− Kr(θf , θu)

γ

]

dS ≈

≈
[

nk+1
i − nki

∆t
+
Ka(θ

k
f,i, θ

k
u,i)

γ
nki −

Kr(θ
k
f,i, θ

k
u,i)

γ

]

|Bi| (20)

Approximation of the first therm on the right hand side of (19):
∫

∂Bi

(D∇n) · n∂Bi
dl =

∑

m,l

∫

∂Bl
i,m

(D∇n) · n∂Bl
i,m
dl

≈
∑

m,l

[

(D(γ∂Bl
i,m

)(∇n)k(γ∂Bl
i,m

)) · n∂Bl
i,m
|∂Bl

i,m|
]

,
(21)

where (∇n)ki ) is the approximation of ∇n from concentration values from time step k.
Approximation of the second therm on the right hand side of (19)

∫

∂Bi

(V · n) · n∂Bi
dl =

∑

m,l

∫

∂Bl
i,m

(V(γ∂Bl
i,m

) · n⋆i,m,l) · n∂Bl
i,m
|∂Bl

i,m|, (22)

where upwind value is given as:

n⋆i,m,l =

{

nki for n∂Bl
i,m
·V(γ∂Bl

i,m
) > 0

nkm for n∂Bl
i,m
·V(γ∂Bl

i,m
) ≤ 0

(23)

The approximation (22) is called the first order upwind scheme and helps us to avoid
oscillations in the solution, but suffers of the numerical diffusion. To obtain smaller
numerical diffusion without oscillations higher order upwind scheme with limiter (without
limiters, there are small oscillations in the solution) can be used.
Values of Bk

i on the boundary ∂Ω are taken from the boundary conditions. θf and θu
for the first time step can be θf and θu taken from the initial condition for them. Than we
will give approximations (20), (21) and (22) together, find nk+1

i and obtain the explicit
scheme.
We can use explicit scheme for equations (15) and (16) to obtain from known surface

coverage from old time step θkl and calculated number concentration n
k+1
i to obtain new

particle coverage θk+1
l for favorable case l = f and unfavorable case l = u:

θk+1
l,i = θkl,i + πapkdep,l,in

k+1
i B(θkl,i)− kdet,l,iθkl,i l ∈ f,u. (24)

where θkl,i, kdep,l,i, kdet,l,i are values of θ
k
l , kdep,l, kdet,l in the node i.
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5 Conclusion

In this contribution a summary of equations describing the colloid transport was presented
and discretization of equations by means of first order upwind scheme was derived.
Future work will be focused on behavior of colloids in the porous media and especially

of nanocolloids.
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Abstract. Whenever you have to deal with a device that is generating data either based on
external triggering events or that is constantly delivering realtively huge amounts of somehow
acquired data and has no means to store them locally in itself for longer periods of time or
just the possibility to deliver them on request, there are just two things you can do about it
to handle the device in a proper way. Either you have to run on a hard-real-time operating
system, or you stick with the classical time-sharing OS, but have to have a mechanism that
would do the best possible effort to service the data under given circumstances to prevent any
losses. And this is the point where the Q-Buf engine takes place.

Abstrakt. Kdykoliv máte co do činění se zařízením, které buď generuje data na základě externě
triggerovaných událostí nebo které konstantně produkuje relativně velké množství nějakým
způsobem získaných dat a nemá žádnou možnost tato data v sobě po delší dobu skladovat či je
zkrátka zaslat vždy jen na požádání, pak jsou jen dvě možnosti, jak zařízení správným způsobem
obsloužit. Buď běžet pod hard-real-time operačním systémem nebo zůstat na klasickém time-
sharing OS, ale pak je třeba mít k dispozici mechanismus, který se bude snažit obsloužit toto
zařízení nejlepším možným způsobem za daných podmínek tak, aby pokud možno předešel
jakýmkoliv ztrátám dat. A to je právě to místo, pro které byl konstruován Q-Buf engine.

1 Introduction

In project INDECS [1] we collect raw data signals from the position sensitive detectors
(PSD) using an ADLink PCI-9812 data acquisition card [2]. Up until now, the data
had to be collected under RTLinux hard-real-time operating system, so that we miss as
little of the incoming neutron events as possible. Partially also because of the nowadays
relatively slow and old PC hardware where the data acquisition card was installed (PII
400 MHz).
Using the free (or also called Open) variant of the RTLinux [3] does have its advantages

in data acquisition, since it provides a true hard-real-time OS below the classical time-
sharing variant of Linux kernel. However, it also has its drawbacks.
For a long time there have only been free RTLinux patches for the old 2.4 variant of

the Linux kernel, but no recent Linux distribution uses these types of kernel. And even
when you do manage to compile such a kernel on any recent distribution, it lacks a lot
of features (drivers for recent hardware, security patches, and so on). Recently a free

∗This work has been supported by grants MSM6840770040 and MPO contract IMPULS No. FI-
IM3/136.
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RTLinux patch for the 2.6.9 Linux kernel appeared. But 2.6.9 is also a history today. So,
keeping up-to-date with current linux kernels is always a bit of a problem when you want
to use RTLinux.
Another task, that was there to face (this time not related to project INDECS), was to

write a reliable driver for the DAKEL’s DTR devices used for data acquisition from and
transmission to multiple ultrasound probes. Unlike the PCI-9812 DAQ card, which uses
about 10 times higher sampling rates, but just one short discrete burst on each detected
neutron event, this is a true continuously streaming device and loosing samples would be
perhaps even more unacceptable than in case of the PSD in project INDECS.
Nonetheless, there was another obstacle related to this particular driver. The DTR

device requires very fast and huge hard disks at its disposal to store all the streaming
data and that means recent computer hardware and for that also recent drivers. So, going
for the free RTLinux solution was not the best option to choose, not withstanding the
additional licensing difficulties that might (or migt not) matter in this case.
Q-Buf kernel streaming engine was created to solve these two problems. It is just a

module of the standard 2.6 Linux kernel [4] maintained compatible with all of the up-to-
date 2.6 kernels (at the time of writing this article, the most recent is the 2.6.26 kernel)
and perhaps one day we manage to include it directly into the linux kernel source tree,
so that it would be kept compatible with all the kernel changes automatically.

2 Concept

There are several simple ideas behind the concept of the Q-Buf engine:

◦ First of all, whenever there are some incoming data available, receive them as soon
as possible, without any unnecessary delays.

◦ Try all available options before giving up on the data.

◦ Try keeping some extra memory reserves if possible, so that you don’t get caught
in a situation, where there is no memory available immediatelly, when it is needed
the most.

◦ Try to keep the obtained data as long as necessary before the user-space application
processes them.

◦ If it is about memory consumption, this device has the absolute priority. Meaning
that it is allowed to consume all memory available, no matter how much the other
processes on the system may suffer because of that. However, to prevent the total
consumption of all memory which would probably result in a collaps of the system,
this consumption is limited by an arbitrary preset value.

This idea together with the previous one is generally considered a bad and at least
impolite behaviour among kernel-space code. However, as stated above, the data
generated by the device that is using the Q-Buf engine are considered so valuable,
that they outweight almost every other data with which they may possibly compete
for memory space, and thus, such a behaviour is well justified.
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Figure 1: Block schematics of the Q-Buf engine data flow.

◦ Keep the interface to the driver using the Q-Buf engine simple and let the driver
implement only the necessary parts of the whole mechanism, that are different for
each device.

◦ Clean up the claimed resources when the device is not going to need them anymore,
so that even if the device consumed a lot of resources, the system may operate
smoothly again when the device no longer needs them.

◦ On the other hand, while the device is still transfering, it may be wise to keep the
resources it consumed so far, because there is a high probability that it would need
them again soon, and freeing and acquiring them again later would consume the
valuable time, and thus, increase the odds of loosing data.

With all these ideas in mind, the concept of static and dynamic streaming buffers was
introduced.

2.1 Buffers

The basic structures for data transfer within the Q-Buf engine are referred to as Buffers.
Buffers carry reference to the actual data buffer, reference to a custom structure of the
driver, should the driver have some information bound to the buffer (usually some struc-
ture related to the actual data transfer over the appropriate bus), position of the carried
data in the stream, and several other information related to the buffer and the data
within.
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Careful thought must be taken when allocating the data buffers. We want it to be
able to both do the DMA transfers to and/or from the device and be able to do memory
mapping into user-space. The first condition requires a consistent continuous block of
memory for each buffer, since lots of the devices (such as most USB host controllers,
for example) cannot do scatter–gather (or so called vectored I/O) DMA. The second
condition requires us to have the data buffers alligned to pages in both size and memory
position, because memory mapping can be done only by entire pages and exposing any
area not dedicated to the actual data buffer would be a potential security risk.
Since most systems use pages of 4 KB1 in size, the above means that we would have

to have transfers quantized by the multiples of that size. However, that is not always the
best option. The transfer packets for the appropriate bus usually have different size, not
necessarily even size of power of 2. This problem is solved by allocating space for the
buffer that would comply to the two constraints mentioned in the previous paragraph,
but the actual buffer would use only a subregion of the allocated area.
Considering that that would be a fair waste of memory, had the packet size been

significantly smaller than the page size, we allow multiple consequent transfer packets
per buffer. The choice of the number of packets per buffer can be chosen by the driver
that uses the Q-Buf for the particular device. In fact the usage of the whole buffer area
is left up to the driver, the Q-Buf engine just supports slicing the buffers into smaller
areas for data exchange and the driver decides what slicing is best suitable for the device.
There may even be an unused area at the end of the buffer, if the buffer size is not
divisible by the packet size or if there is artificially less packages assigned for one buffer
than the maximum possible. And while the bus transfers need not be reliable in some
cases, some packets may even deliver no data, so, there may be gaps between some data
within a buffer. To make it short, Q-Buf also supports subdividing the occupied buffer
space by discrete sparse data blocks.
Another problem of the conditions mentioned three paragraphs before is that allocat-

ing memory areas consisting of more than one consequent memory page may stress the
memory allocator quite a lot due to the memory fragmentation effect. That means, that
allocating a buffer may take relatively a lot of time, if the memory is too fragmented,
and it may even not succeed at all because of it. Let alone if we consider that the data
buffer should be in the DMA region of that particular device, which for some devices
may not even be the entire area of physical memory, but just its subsection. For example
devices with a 32-bit (or less) DMA controller on a 64-bit system with more than 4 GB
of physical system memory.

2.2 Dynamic Buffers

The one thing, in which the Q-Buf engine even has a slight advantage over the true
hard-real-time approach is the fact, that it is allowed to allocate new buffers even after
initialization and while the transfer is running.
The defining quality of a hard-real-time operating system is that it guarantees the

maximal response time to external events (that means even in the worst case scenario).
Simply put, if you have a code that is servicing some external event, let’s say an interrupt,

1Or more. The page can be as much as 4 MB in size depending on hardware and system configuration.



The Q-Buf Kernel Stream Buffering Engine 25

and you run that code as a real-time thread, then the real-time OS guarantees (and this
word is essential) you that it would be scheduled to run within certain very short and
well defined period of time from the point where the interrupt occured in time, no matter
what the rest of the system does at the moment or is just about to do.
However, that comes at a price. The real-time threads are very limited in what are

they allowed to do (at least in the RTLinux, but other real-time OSes have it similarly).
One of the major restrictions is, that a real-time thread can not allocate new memory
while it is running. Only during the initialization of that thread.
The reason for that is that it is a non-deterministic operation. System needs to run

through the page tables and find an appropriate number of free physical pages which it
then maps into the virtual space of that thread. That by itself may take some time, if
there is a lot of pages and high memory fragmentation. But when there is not enough
physical memory available, system has to move some pages into a swap space, suspend
the thread, wait until the transfer is done, and then acquire those pages that have been
freed that way. This is totally unacceptable to be done in a real-time thread, since it is
not possible to predict in advacnce how long shall that take, and it may take a lot.
This results in the necessity to preallocate all the buffers that the real-time thread is

going to use for data transfer before the thread is launched and there can be no more
added later. If it then turns out that the preallocated buffers are insufficient because the
application that does the processing fails to catch up (perhaps because of the hard drive
where the data are stored or for whatever other reason), you may possibly loose data.2

Problem is to determine how many buffers are going to be necessary. If we preallocate
too little, we loose data. If we preallocate too much, we may have blocked too much of
the physical memory and that may slow down the whole system significantly.
In standard time-sharing OS, we don’t have this problem. We can allocate as much

as we want to and almost any time we want to. So we use it. But to prevent loosing data
for the same reason why real-time thread cannot allocate buffers, we try to preallocate.
The Q-Buf engine launches another parallel thread, which allocates several buffers when
there is less than some threshold empty buffers available. Both the threshold and the
amount of preallocated buffers at a time can be preset. As this runs in parallel, it can do
the dirty job for the main thread without delaying it and though increasing the chance
of loosing data. Also the higher the threshold is set, the more time the thread has to
preallocate the buffers before they run out.
Buffers that the Q-Buf engine allocates this way we refer to as dynamic buffers and

they receive special treatment. These buffers can compensate for a lot of throubles that
the driver of the device we are talking about might otherwise have. We restrict the
amount of physical memory that the buffers can occupy all together to prevent system
crashdown by running completely out of physical memory.

2.3 Buffer Queues

Buffers are organized in buffer queues. Each buffer queue is implemented by a standard
doubly-linked list with a sentinel node. Every buffer that is put to active duty has to be

2Though this situation should also be handled by a real-time thread to be guaranteed to make it in
time. But that also brings in other restrictions.
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linked in exactly one buffer queue at a time depending on its current status.

2.3.1 Empty Static Buffer Queue

Empty Static buffer queue holds the so called static buffers when they are not used.
Static buffers are the buffers that are allocated at the time when the Q-Buf engine is
initialized for the specific device. These buffers live in the system for as long as the
device exists. They do the most of the work. If an empty buffer is needed, static buffer
is always preferred to the dynamic one.

2.3.2 Empty Dynamic Buffer Queue

Empty Dynamic buffer queue contains all the dynamic buffers when they are not used.
Unlike Empty Static buffer queue, this buffer queue is initialized empty and is populated
with buffers only when there is not enough buffers in the system to do the job. All the
dynamic buffers in this queue live only as long as the device is opened by at least one
application. As soon as the device is closed, all the dynamic buffers are released.
Reason for this behaviour is in that we do not want to block the memory occupied

by the dynamic buffers for longer than necessary, but on the other hand when at some
point more buffers were necessary, there is a good chance, that while the transfer is
still running, those buffers shall be needed again. Releasing the dynamic buffers after
the device is closed seems to be a reasonable compromise between memory usage and
complexity of the mechanism that handles the living period of the dynamic buffers.
If this prooves to be insufficient, other methods may be introduced. Such as for in-

stance checking the time from the last usage of a dynamic buffer. If one would not be
used longer than some threshold period, it shall be freed. This would be even better
with respect to the memory consumption, but it has an unnecessary and not completely
insignificant processing overhead, which is the reason why it is currently not used. How-
ever, at least for the moment, the currently used method seems to be sufficient for the
task.

2.3.3 Link Buffer Queue

Link buffer queue contains the buffers that are currently transferring data to or from
the device or those that are scheduled for the transfer by the system already. While the
transfer is running, this buffer queue must never get empty. If it does then it means that
either there is not enough empty buffers available to handle the incoming data (in case
of data reception) or the application is unable to deliver data as quickly as needed (in
case of data transmission). Either way this means trouble, either we loose data or the
transmitted stream will have discontinuities.

2.3.4 Full Buffer Queue

Buffers in the Full buffer queue are filled with data and are waiting for further processing.
Either they can go for transfer in case of transmitting direction, or to user application in
case of receiving direction.
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2.3.5 Processed Buffer Queue

Processed buffer queue holds buffers that are currently directly or indirectly mapped to
the user.

2.4 Offsets

Initially buffers were meant to be mapped into user-space directly one by one. Nontheless,
Preliminary tests indicated that this would cause very frequent switching between user-
space and kernel-space, and thus, bring a significant overhead delaying the user-space
processing. The smaller the buffers the higher the overhead. But we should not have
very big buffers if we are to pursue the data in something close to real time.3 This effect
was observed when dealing with the streaming DAKEL DTR device.
To make things more flexible, a structure called offset was introduced to the process.

This structure is used to memory map the data buffers into the user-space and it can
contain and thus map more buffers at once. The number of buffers is limited by some
upper threshold, which can again be preset, and the consideration on the correct value of
this threshold should account for the size of each buffer and the data rate of the device.
The main idea behind this was to let the amount of data be determined by the time

when the user-space application asks for it. If the processing of the data does not take too
much time relative to the acquired data flow, then the application can allow to ask for the
data more often and it gets just few buffers each time, because there would be no more
available at the time. However when the processing takes more time either regularly or
occasionally due to some external unexpected delays, the time between subsequent data
requests from the user-space application would be relatively long and the driver may
accumulate more buffers in that period, so the application would get more of them4 at
one request, so that the data are processed quicker.
Buffers within one offset are mapped at the same time, which also means that they are

released at the same time as well. Until all of the data are processed, all buffers within
the offset remain mapped, and though, occupied. That is also necessary to account for.
Before the buffers within an offset are mapped into the user-space, the data areas of

all the contained buffers are concatenated together and can be sliced by the driver into
sparse subblocks. The application is then provided with a map of the areas where the
data are. The advantage of this approach is that when the data areas are filled completely
with acquired data for each buffer, the application sees it as one continuous block of data.
But when that is not true for some reason, the application knows where the data can be
found, but it has to be aware of that fact and not just blindly read everything.

2.4.1 Offset Queues

All offsets are also dynamically allocated resources, that are stored in special offset queues.
There are just two of them. One for the offsets that are currently in use5 and one for

3In this case not refering to the real-time OS, but rather to actual human sensed perspective of
watching the data as they are received, which is usually desired.
4Up to the upper threshold, of course.
5Meaning that they contain buffers and provide a user-space mapping.
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the offsets that are currently unused. Each offset structure has its defined offset in the
device-space6 from which it can then be mapped into the user-space memory.

2.5 Application Interface

To make the usage of a device that is using the Q-Buf engine simpler, there are two
userspace interfaces that can be used to handle the data.
First there is the mmap(2) interface to fully use the potencial of the Q-Buf engine.

This interface allows to directly access the DMA buffers of the device. However to
know where to map them from and how the data are organized within these areas, the
appliaction has to use the special ioctl(2) call with the IOCTL MMAP command for the
device prior to the mmap(2) to get the specific information. It is a bit more complicated
to deal with it, but on the other hand, it is the most effective way, since there is no
unnecessary overhead of copying the data in the kernel-space and that may be significant,
since there can be great amounts of data transferred.
To let the device be operated easily perhaps by common applications and system

commands (like cp(1), dd(1), etc.) a standard read(2)/write(2) interface was also added to
the Q-Buf interface. But the luxury of usage by the common applications and continuous
data stream is paid by the possibly significant overhead of another copy from the buffers
of the Q-Buf engine to the user-space buffers of the application.

3 Conclusion

The described Q-Buf engine seems to fulfill the expectations and it makes the servicing
of the DAKEL’s DTR devices and the PCI-9812 DAQ card for project INDECS possible
even without the hard-real-time OS. The first case is already being successfully used in
the real applications of physics for quite some time. The latter case is still in early testing,
but the preliminary results look very promissing.
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Abstract. In order to investigate effects of the dynamic capillary pressure-saturation relationship
used in the modelling of flow in porous medium with material discontinuities, a one-dimensional
fully implicit numerical scheme is proposed and its validity is discussed by means of semi-
analytical solutions developed by McWhorter and Sunada and by the authors. The numerical
scheme is used to simulate experimental procedure using the measured dataset for the sand
and fluid properties. Results of the simulation using different models for dynamic effect term
in capillary pressure - saturation relationship are presented and discussed.

Abstrakt. V článku je prezentován jednorozměrný model dvoufázového nemísivého a nestlačitel-
ného proudění který je použit na zkoumání vlivu dynamického efektu pro model kapilárního
tlaku v závislosti na saturaci v porézním prostředí. Navržené numerické schéma je plně implic-
itní v čase a je porovnáno se semi-analytickým řešením McWhortera a Sunady. Takto ověřený
numerický model je použit k simulaci laboratorních experimentů s cílem posoudit vliv různých
modelů pro koeficient dynamického efektu na řešení jednorozměrné úlohy.

1 Background

This manuscript focuses on the dynamic phenomena in the capillary pressure - saturation
relationship that has been examined in various papers in the past decades. The main ob-
jective is to propose a numerical scheme that implements the dynamic capillary pressure
- saturation relationship for heterogeneous porous media.
Fundamental constitutive quantities used in modelling of flow in porous media are

described in the following subsections. Thorough definitions, descriptions, and examples
can be found in [7], [17], [1], [16], or [2].

1.1 Wettability

As two immiscible phases are present in the porous media, a meniscus of fluid-fluid
interface is formed as a result of the presence of the solid phase (sand grains). The
interaction between adhesive and cohesive forces within the fluids leads to the specific
angle ϑ between the solid surface and the fluid-fluid interface. The wettability of fluid is
then determined as:

ϑ = 0 ϑ ∈ (0, π
2
) ϑ > π

2

completely wetting, partially wetting, non-wetting.
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1.2 Saturation

The fluid distribution in immiscible multiphase flow in porous media is described by
the saturation Sα [−]. It indicates the volumetric portion of void space within the pores
occupied by the fluid phase α, hence, Sα is always between 0 and 1. The sum of saturations
Sα of all fluids present in the porous media is 1, i.e.,

∑

α

Sα = 1.

Since not all volume of the fluid phase can be displaced in the multiphase flow from a
porous medium due to hysteretic effects, the α-phase residual saturation quantity Srα [−]
is introduced. It expresses the minimal saturation of the phase α that will retain in the
porous medium due to adhesion effects with respect to the solid matrix. Therefore, the
effective saturation Seα [−] that describes only volumetric portions of displaceable fluid
phases is introduced as

Seα =
Sα − Srα
1−∑

β

Srβ
. (1)

1.3 Capillary pressure

Following the standard definitions in literature, the capillary pressure pc [ML−1] on the
pore scale is defined as the difference between the non-wetting phase pressure pn [ML−1]
and the wetting phase pressure pw [ML−1], i.e.,

pc = pn − pw. (2)

The capillary pressure function has been commonly considered as a function of wetting
phase saturation only and it has been widely used in model equations in literature, see
for instance [20], [11], [8], or [9].

1.4 Dynamic capillary pressure

The classical capillary pressure - saturation relationships such as [4] or [23] has been used
in almost all mathematical studies on modelling of porous media flow in the past decades.
Recently, theoretical studies [15], [14], [6], [12], [13], [3], as well as the empirical approach
in [22] have produced new aspects in the two-phase flow theories. The most important
result is that the classical capillary pressure - saturation relationship holds only in the
state of thermodynamic equilibrium. Therefore, the classical approach cannot be used
in the modelling of capillarity when the fluid content is in motion. Consequently, a new
capillary pressure - saturation relationship is proposed in the following form:

pc := pn − pw = peqc − τ
∂Sw
∂t

, (3)

where peqc is the capillary pressure - saturation relationship in equilibrium and τ [ML−1T−1],
the dynamic effect coefficient, is a material property of the system.
Early in 1978, Stauffer [22] proposed a linear dependence in (3) and proposed the

following definition of τ :

τS =
αSµwΦ

Kλ

(
pd
ρwg

)2

, (4)
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where αS = 0.1 [−] denotes a scaling parameter, µw [ML−1T−1] is the wetting phase dy-
namic viscosity, Φ [−] is the porosity of the material, K [L2] is the intrinsic permeability,
ρw [ML−3] is the wetting phase density and g [LT−2] is the gravitational acceleration
constant. Both λ and pd are the Brooks and Corey parameters ([4]) that can be experi-
mentally estimated. Thus, the coefficient τS can be calculated for a given porous medium
and wetting fluid.
The Stauffer model for the dynamic effect coefficient τ was obtained by correlating

experimental data. The values of τS vary between τS = 2.7·104 Pas and τS = 7.7·104 Pas,
see [17, page 27]. However, other researchers suggest that the magnitude of τ should be
in the order of 102 − 103 Pa s, [5], or, on the other hand, it should be also in the order
of 104 − 108 Pa s as estimated in [14].
Recently, a more general nonlinear dependence τ = τ(Sw) is assumed to be more

relevant in modelling of realistic two-phase flow displacement [21]. In this manuscript,
both constant and linear model will be used in numerical simulations.

2 Mathematical model

A mathematical model describing the two-phase flow in a onedimensional domain is
presented in this section. The aim is to investigate how the inclusion of the dynamic
capillary pressure relationship (3) instead of the classical relationships in thermodynamic
equilibrium influences solution of the two-phase flow system of equations (5).

2.1 Governing equations

The governing two-phase flow equations in one-dimensional domain [0, L] are given by
the pw − Sn formulation [1]:

Φ
∂Sα
∂t

=
∂

∂x

[
K

µα
krα

(
∂

∂x
(pw + δαnpc)− ρα g

)]

, (5)

Sα Saturation [−], pα Pressure [ML−1T−2],
ρα Density [ML−3], µα Dynamic viscosity [ML−1T−1],
g Gravitational acceleration [LT−2], Φ Porosity [−],
K Intrinsic conductivity [L2], krα Relative permeability [−],

where Sw +Sn = 1, δαn is the Kronecker symbol, and α ∈ {w, n}. The wetting fluid (wa-
ter) and non-wetting (air, NAPL1) fluid are indexed by w and n, respectively. The initial
and boundary conditions for (5) are given separatedly for each experimental problem.

2.2 Discrete problem

A standard finite difference discretization technique is used in order to determine approxi-
mate discrete solution Skn,i, p

k
w,i of the problem (5), generally defined as f

k
i = f(k∆t, i∆x),

where i = 0, 1, . . . , m, m∆x = L, and k = 0, 1, . . ..

1Non-Aqueous Phase Liquid
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Since the nonlinear problem (5) involves the dynamic capillary pressure function de-
fined in (3) that includes time derivative of Sn, an implicit numerical scheme is proposed
in the following form:

Φ
Sk+1
α,i − Skα,i

∆t
= −

uk+1
α,i − uk+1

α,i−1

∆x
, (6)

where α ∈ {w, n} and the discrete Darcy velocities uα are given as follows

uk+1
α,i = −K

µα
krα(S

k+1
α,upw)

( pk+1
w,i+1 − pk+1

w,i

∆x
+ δαn

pk+1
c,i+1 − pk+1

c,i

∆x
− ρα g

︸ ︷︷ ︸

∆Φα

)

, (7)

pk+1
c,i = pc

(

1− Sk+1
n,i ,−

Sk+1
n,i − Skn,i

∆t

)

.

and Sk+1
α,upw is the saturation taken from the upwind direction with respect to gradient of

the phase potential Φα, i.e.

Sk+1
α,upw =







Sk+1
α,i+1 if ∆Φα ≥ 0.

Sk+1
α,i if ∆Φα < 0.

The numerical scheme is solved using the Newton-Raphson iteration method. The
Jacobi matrix used in the Newton iteration method is block tridiagonal.

3 Numerical experiments

3.1 Validation of numerical scheme

The numerical scheme (6) is validated using the McWhorter and Sunada semi-analytical
solution [18], [19], [24], [9], and [10]. A special configuration of the problem (5) is assumed
in order to obtain such a semi-analytical solution. Neither gravity nor dynamic effect is
considered and the inflow boundary condition at x = 0 consists of a time-dependent input
flux uw(t, 0) = A/

√
t, [7], [9], and [10]. .

In Figure 1, the numerical solution is compared to the semi-analytical solution ob-
tained for the same sand and fluid properties. As the numerical grid gets finer, the
agreement of the numerical solution with respect to the semi-analytical solution is ap-
parent. However, estimation of the error of convergence (EOC) cannot be used in this
case because the semi-analytical solution cannot be obtained with a sufficient precison
for finer grids Hence, only graphical representations are relevant.

3.2 Column experiment

The dynamic effect coefficient τ = τ(Sw) was estimated as a result of a laboratory
experiment held in CESEP, Colorado School of Mines for a given sand. In this section,
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Figure 1: Numerical solution and semi-analytical solution at time t = 1000 s.

the experimental setup is approximated by the one-dimensional problem (5) and the
experimental dataset is used in numerical simulations.
The laboratory experiment consists of a single, vertically placed, 10 cm long tube

filled with sand. Initially, the column is flushed with water such that no air phase is
present inside. Then, a series of drainage and imbibition experiments is proceeded and
values of the capillary pressure and the saturation of air are measured by probes in the
middle of the column. As a result, two models of τ = τ(Sw) were estimated : constant
τ(Sw) = C and linear τ(Sw) = C(1− Sw).
The numerical scheme is used to simulate drainage of the column with exponentially

decreasing outflow of water at x = 10 cm for three different models for capillary pressure:
static capillary pressure (τ = 0), constant, and then linear model for dynamic capillary
pressure. The numerical solutions plotted versus time in the middle of the column are
shown in Figure (2).
As expected, the saturation profiles does not exhibit large differences between the

models of dynamic effect term. On the contrary, the capillary pressure temporal profile
for the constant model for dynamic effect term has completly different history than that
of static capillary pressure or linear model for dynamic effect term. As a result of this
observation, the constant model for dynamic effect gives significantly different results with
respect to temporal monotonicity than the linear model or the static capillary pressure.
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Figure 2: Numerical solutions of the column drainage simulation. Values of saturation
and capillary pressure in the middle of the column are plotted versus time.
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4 Conclusion and future work

This manuscript presents recently obtained numerical simulations using the non-classical
dynamic capillary pressure in simulating two-phase incompressible flow in porous medium.
Two main models for dynamic effect term τ = τ(Sw) were used in order to determine
their influence on a two-phase flow drainage problem.
As a result of the numerical simulation, the temporal profile of capillary pressure in

the middle of the column is significantly different for the constant model of τ than for the
linear model of τ or the static capillary pressure, but the differences between temporal
profiles of air saturation were small.
These results indicate, that the dynamic effect may not be so important in drainage

problems in homogeneous porous media. On the other hand, it may be of great im-
portance in the highly heterogeneous media where the capillarity governs flow through
material interfaces.

Acknowledgement

This work has been partly supported by:

• Project ”Applied Mathematics in Technical and Physical Sciences” MSM 6840770010,
Ministry of Education of the Czech Republic.

• Project ”Mathematical Modelling of Multiphase Porous Media Flow” 201/08/P507
of the Czech Science Foundation (GA CR).

References

[1] P. Bastian. Numerical Computation of Multiphase Flows in Porous Media. Habili-
tation Dissertation, Kiel university (1999).

[2] J. Bear and A. Verruijt. Modeling Groundwater Flow and Pollution. D. Reidel,
Holland, Dordrecht, (1990).

[3] A. Beliaev and S. Hassanizadeh. A Theoretical Model of Hysteresis and Dynamic
Effects in the Capillary Relation for Two-phase Flow in Porous Media. Transport
in Porous Media 43 (2001), 487–510.

[4] R. H. Brooks and A. T. Corey. Hydraulic properties of porous media. Hydrology
Paper 3 (1964), 27.

[5] H. Dahle, M. Celia, and S. Majid Hassanizadeh. Bundle-of-Tubes Model for Calcu-
lating Dynamic Effects in the Capillary-Pressure-Saturation Relationship. Transport
in Porous Media 58 (2005), 5–22.

[6] D. Das, S. Hassanizadeh, B. Rotter, and B. Ataie-Ashtiani. A Numerical Study of
Micro-Heterogeneity Effects on Upscaled Properties of Two-Phase Flow in Porous
Media. Transport in Porous Media 56 (2004), 329–350.



36 R. Fučík

[7] R. Fučík. Numerical Analysis of Multiphase Porous Media Flow in Groundwater
Contamination Problems , Graduate Thesis. FNSPE of Czech Technical University
Prague, Prague, (2006).

[8] R. Fučík, M. Beneš, J. Mikyška, and T. H. Illangasekare. Generalization of the
benchmark solution for the two-phase porous-media flow. In ’Finite Elements Mod-
els, MODFLOW, and More : Solving Groundwater problems’, 181–184, (2004).

[9] R. Fučík, J. Mikyška, M. Beneš, and T. Illangasekare. An Improved Semi-Analytical
Solution for Verification of Numerical Models of Two-Phase Flow in Porous Media.
Vadose Zone Journal 6 (2007), 93–104.

[10] R. Fučík, J. Mikyška, M. Beneš, and T. Illangasekare. Semianalytical Solution for
Two-Phase Flow in Porous Media with a Discontinuity. Vadose Zone Journal 7
(2008), 1001.

[11] R. Fučík, J. Mikyška, and T. H. Illangasekare. Evaluation of saturation-dependent
flux on two-phase flow using generalized semi-analytic solution. Proceedings on the
Czech Japanese Seminar in Applied Mathematics FNSPE CVUT Prague (2004),
25–37.

[12] W. Gray and S. Hassanizadeh. Paradoxes and Realities in Unsaturated Flow Theory.
Water Resources Research 27 (1991), 1847–1854.

[13] W. Gray and S. Hassanizadeh. Unsaturated Flow Theory Including Interfacial Phe-
nomena. Water Resources Research 27 (1991), 1855–1863.

[14] S. Hassanizadeh, M. Celia, and H. Dahle. Dynamic Effect in the Capillary Pressure-
Saturation Relationship and its Impacts on Unsaturated Flow. Vadose Zone Journal
1 (2002), 38–57.

[15] S. Hassanizadeh and W. Gray. Thermodynamic basis of capillary pressure in porous
media. Water Resources Research 29 (1993), 3389–3406.

[16] R. Helmig. Multiphase Flow and Transport Processes in the Subsurface : A Contri-
bution to the Modeling of Hydrosystems. Springer Verlag, Berlin, (1997).

[17] S. Manthey. Two-phase flow processes with dynamic effects in porous media - param-
eter estimation and simulation. Institut fur Wasserbau der Universitat Stuttgart,
Stutgart, (2006).

[18] D. McWhorter and D. Sunada. Exact Integral Solutions for Two-Phase Flow. Water
Resources Research 26 (1990), 399–413.

[19] D. McWhorter and D. Sunada. Reply to” Comment on’Exact integral solutions for
two-phase flow’” by Z.-X. Chen, GS Bodvarsson, and PA Witherspoon. Water Re-
sources Research 28 (1992), 1479–1479.



Implicit Numerical Scheme for Modelling Dynamic Effect in Capillary Pressure 37

[20] J. Mikyška. Numerical Model for Simulation of Behaviour of Non-Aqueous Phase
Liquids in Heterogeneous Porous Media Containing Sharp Texture Transitions,
Ph.D. Thesis. FNSPE of Czech Technical University, Prague, (2005).

[21] T. Sakaki, D. O’Carroll, and T. Illangasekare. Direct laboratory quantification of
dynamic coefficient of a field soil for drainage and wetting cycles. American Geo-
physical Union, Fall Meeting 2007, abstract# H53F-1486 (2007).

[22] F. Stauffer. Time dependence of the relations between capillary pressure, water
content and conductivity during drainage of porous media. In ’On scale effects in
porous media, IAHR, Thessaloniki, Greece’, (1978).

[23] M. T. van Genuchten. A closed-form equation for predicting the hydraulic conductiv-
ity of unsaturated soils. Soil Science Society of America Journal 44 (1980), 892–898.

[24] G. S. B. Z.-X. Chen and P. A. Witherspoon. Comment on ’exact integral solutions
for two-phase flow’. Water Resources Research 28 (1992), 1477–1478.



38



Semi-Regular Texture Modeling

Martin Hatka

3rd year of PGS, email: hadis@email.cz
Department of Mathematics, Faculty of Nuclear Sciences and Physical
Engineering, CTU
advisor: Michal Haindl, Institute of Information Theory and Automation,
AS CR

Abstract. This paper describes a method for seamless enlargement or editing of difficult colour
textures containing both regular periodic and stochastic components. Such textures cannot be
modeled using neither simple tiling nor using purely stochastic models. However these tex-
tures are often required for realistic appearance visualization. The principle of our near-regular
texture synthesis and editing method is to automatically recognize and separate periodic and
random components of the corresponding texture. The regular texture part is modeled us-
ing the roller method, while the random part is synthesized from its estimated exceptionally
efficient Markov random field based representation. Both independently enlarged texture com-
ponents from the original measured texture are combined in the resulting synthetic near-regular
texture. In the editing application both enlarged texture components can be from different mea-
surements. The presented texture synthesis method allows large texture compression and it is
simultaneously extremely fast due to complete separation of the analytical step of the algo-
rithm from the texture synthesis part. The method is universal and easily viable in a graphical
hardware for purpose of real-time rendering of any type of near-regular static textures.

Abstrakt. Článek popisuje metodu pro zvětšování nebo editaci složitých barevných textur,
které obsahují pravidelnou periodickou i stochastickou složku. Tyto textury nelze modelovat
ani jednoduchým dlaždicováním, ani čistě stochastickými modely. Ovšem jsou často potřeba
pro realistickou visualizaci. Princip popisované metody pro syntézu a editaci textur je založen
na automatickém rozpoznání a oddělení periodické a náhodné složky textury. Pravidelná část je
pak modelována metodou Roller, zatímco náhodná složka modelem využívajícím reprezentaci
pomocí Markovských náhodných polí. Obě nezávisle zvětšené složky textury jsou pak zkom-
binovány ve výslednou syntetickou texturu. Při aplikacích editace textury lze zvětšené složky
kombinovat z různých texturních měření. Prezentovaná metoda pro syntézu textur umožňuje
vysokou kompresi a součesně je extrémně rychlá, a to díky kompletní separaci analytické části
algoritmu od části syntézy. Metoda je univerzální a je možné ji implementovat v grafickém hard-
ware za účelem renderingu libovolných statických periodicko-stochastických textur v reálném
čase.

1 Introduction

Physically correct virtual models require object surfaces covered with realistic nature-
like colour textures to enhance realism in virtual scenes. To make virtual worlds realistic
detailed scene models must be built. Satisfactory models require not only complex 3D
shapes accorded with the captured scene, but also lifelike colour and texture. This will
increase significantly the realism of the synthetic scene generated. Textures provide useful
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cues to a subject navigating in such a VR environment, and they also aid in the accurate
detailed reconstruction of the environment.
We define near-regular textures as textures containing global, possibly imperfect, reg-

ular structures as well as irregular stochastic structures simultaneously. This is more
ambitious definition than to view [8] a near-regular textures as a statistical distortion of
a regular texture. Our definition comprises types I and II from the near-regular texture
categorization [8] while their type III is stochastic texture. Near regular textures are
difficult to synthesize, however, these textures are ubiquitous in man-made environments
such as buildings, wallpapers, floors, tiles, fabric but even some fully natural textures such
as honeycomb, sand dunes or waves belong to this texture category. These textures can
be either smooth or rough (also referred as the bidirectional texture function - BTF [3]).
The rough textures which have rugged surfaces do not obey the Lambert law and their
reflectance is illumination and view angle dependent. Both types of such near-regular
textures occur in virtual scenes models.
The purpose of any synthetic texture is to reproduce a given digitized texture image

so that ideally both natural and synthetic texture will be visually indiscernible. However
modeling of an existing measured real texture is a very challenging and difficult task,
due to unlimited variety of possible surfaces, illumination and viewing conditions simul-
taneously with the strong discriminative functionality of the human visual system. The
related texture modeling approaches may be divided primarily into intelligent sampling
and model-based-analysis and synthesis, but no ideal method for texture synthesis exists.
Each of the existing approaches or texture models has its advantages and limitations.
Neither model-based or simple sampling algorithm alone can satisfactorily solve the

difficult problem of near-regular texture modeling. Existing work [10, 7, 8, 12, 2, 9,
1, 11] usually tries to overcome this problem by user assisted modeling of the regular
structures and then relies on regular tiling. However Lin et al. [2] experimentally observed
that several of these general purpose sampling algorithms fail to preserve the structural
regularity on more than 40% of their tested regular textures.
The presented fully automatic method proposes to combine advantages of both basic

texture modeling approaches by factorizing a texture into factors that benefit best from
each of these two basic different modeling concepts. The principle of the method is to
separate regular and stochastic parts of the texture, to enlarge both parts separately and
to combine these results (texture enlargement) or results from several different textures
(texture editing) into the required resulting texture. The proposed solution is not only
fully automatic, very fast due to strict separation of the analytical and very efficient
synthesis steps, but it also allows significant data compression. Due to its stochastic
modeling it completely eliminates visible repetitions (contrary to all mentioned tiling
approaches) because there are never two identical tiles. Finally the method can be easily
used to near-regular texture editing by either combining texture parts from different
measurement or by changing stochastic model parameters.
The following section describes an automatic separation of the regular and stochastic

texture parts. Section 3 is devoted to the regular part modeling using our simple sampling
approach based on the repetition of a double toroidal tile carved from the original regular
part texture measurement, while the subsequent section 4 defines our fast Markov random
field model of the stochastic texture part. The overall algorithm results are reported in
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Figure 1: Presented method schema.

Figure 2: Original measured texture and
its amplitude spectrum (upper
row), detected spatial correla-
tion sectors (bottom row) and
the resulting toroidal tile.

the section 5, followed by conclusions in the last section.

2 Periodic and Non-Periodic Texture Separation

We can legitimately assume that the near-regular input textures have distinct amplitude
spectrum parts for both periodic and random components. Otherwise the method would
not be able to separate both texture parts. The overall schema of the method is illustrated
in Fig.1 and detailed in the corresponding following sections. Periodic and non-periodic
texture part are detected in the simplified monospectral texture space. The input colour
texture is spectrally transformed using the principal component analysis (PCA). Let the
digitized colour texture Y is indexed on a finite rectangular three-dimensional M×N×d
underlying lattice I, where M×N is the image size and d is the number of spectral bands
(i.e., d = 3 for usual colour textures). PCA is performed on data vectors Yr,•, where the
multiindex r has two components r = [r1, r2], the first component is row and the second
one column index, respectively, the notation • has the meaning of all possible values of the
corresponding index. Then the periodic texture part is detected on the most informative
transformed monospectral factor (first principal component), which corresponds to the
largest eigenvalue.

2.1 Textural Periodicity Direction

Near-regular measured textures can have arbitrary periodicity directions (Fig.2), not
necessarily simple axis aligned periodicity. The periodicity in two directions is detected
from the spatial correlation field restricted with the help of Fourier amplitude spectrum
(Fig.2-upper right). The method finds two largest Fourier amplitude spectrum coefficients
provided that they do not represent parallel directions.
Tolerance sectors (Fig.2- bottom left, right), which accommodate for possible local-

ization imprecision of local amplitude spectra maxima, are specified and for all their
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Figure 3: Near-regular measured textures
and their detected periodic parts.

Figure 4: Near regular texture Fourier ampli-
tude spectrum and its filtered ver-
sion for the upper (two leftmost im-
ages) and the middle row textures
in Fig.3.

indices the corresponding spatial correlations are evaluated. Local spatial correlation
field maxima, larger than a threshold, are detected and the minimal periodicity max-
imum is selected. Detected periodicity (δh

∗

, δv
∗

) and its direction specify a rhomboid
which contains the largest periodic part from the input texture. The rhomboid is fur-
ther transformed to the rectangle to make periodic texture part detection as precisely as
possible.

2.2 Amplitude Spectrum Filter

The texture cutout is re-sampled to the lattice size of power two required by the fast
Fourier transformation based filter. Let Amax is the Fourier amplitude spectrum max-
imum coefficient detected from the Fourier amplitude spectrum (Fig.4-1.,3. leftmost
images). The filter removes such coefficients, for which any of the following conditions
(1), (2) holds (Fig.4-2.,4.).

Ar < kAmax , (1)

Ar /∈ M ∧ r /∈ Im , (2)

where M is a set of amplitude spectrum local maxima, k ∈ 〈0; 1〉 is a parameter and
Im is a contextual neighbourhood (we use the hierarchical neighbourhood of the first or
the second order) of such a local maximum. Applying the inverse Fourier transformation
and re-sampling the filtered tile back to the original size we get the filtered cutout.

2.3 Periodic Structure Separation

The filtered tile is binarized using a threshold tbin ∈ 〈0; 1〉. One label determines the
periodic texture part and the remaining one the stochastic part. To find the labels corre-
spondence to both periodical and non-periodical parts of the original texture Fig.3, the
binary image is tested for periodicity δh

∗
, δv

∗
. The majority label complying to the

periodicity test denotes the original texture periodic sites (Fig.3-right). When both peri-
odic and stochastic parts are separated they can be independently modeled and enlarged
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Figure 5: The double toroidal tile modeling principle - upper
row input texture and toroidal tile, bottom row tex-
ture generation and the result, respectively.

Figure 6: The optimal tile
cuts in horizontal
and vertical di-
rection.

to any required size as it is detailed in two following sections. The required near-regular
texture is simple composite of both synthetic parts.

3 Periodic Texture Modeling

The regular part of the texture is enlarged using a simplification of our previously pub-
lished [5] method. The method selects double toroidal tiles as small as possible to com-
press the original measurements. The method starts with the minimal tile size detection
which is limited by the size of texture measurements, the number of toroidal tiles we are
looking for (n) and the sample spatial frequency content.
The optimal cuts for both the horizontal and vertical edge is searched using the

dynamic programming method. Alternatively we can use some other suboptimal search
such as the A∗ algorithm if necessary to speed up also the analytical part of the method.
The combination of both optimal vertical and horizontal cuts creates the toroidal tile as
is demonstrated on the Fig.6.
Some textures with dominant irregular structures cannot be modeled by simple one

tile repetition without clearly visible and visually disturbing regularly repeated effects.
These textures are modeled by using multiple toroidal tiles which have the same border
but differ in their interior.
Finally, the enhancement of any required periodic texture is simple repetition of either

single double toroidal tile or randomly alternating repetition of several double toroidal
tiles in both directions until the required texture is generated Fig.7.

4 Random Texture modeling

The random part of a texture is synthesized from the original input texture from where
the detected periodic component was removed as described in section 2. If the stochastic
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texture patches are too small (few hundred pixels area) to reliably learn the random field
model statistics, we replace occluded stochastic texture areas by using a modification of
the image quilting algorithm [4] (see Fig.8-left).
The random part of the texture is synthesized using an adaptive probabilistic spatial

model, a multiresolution 3D causal autoregressive model (CAR) [6], which is an excep-
tionally efficient type from the Markov random field (MRF) family of models. The CAR
model allows extreme compression (few tens of parameters to be stored only) and can
be evaluated directly in procedural form to seamlessly fill an infinite texture space. An
analyzed texture is decomposed into multiple resolutions factors using Laplacian pyramid
and the intermediary Gaussian pyramid [6] which is a sequence of images in which each
one is a low-pass down-sampled version of its predecessor. The Laplacian pyramid con-
tains band-pass components and provides a good approximation to the Laplacian of the
Gaussian kernel. It can be constructed by differentiate single Gaussian pyramid layers.
The CAR model synthesis is very simple and the CAR random field can be directly

generated from the model equation using a multivariate Gaussian generator. The fine-
resolution synthetic texture is obtained from the pyramid collapse procedure (Fig.8).
The CAR model offers huge compression ration because only few parameters for each
texture have to be stored or transmitted. The resulting near-regular texture is simple
combination of both regular and stochastic synthesized factors.

Figure 7: Periodic texture part synthesis
(right).

Figure 8: Stochastic texture part synthesis
(right).
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5 Results

Figure 9: Near-regular textures and their
synthesis (right).

Figure 10: Near-regular textures and their
synthesis (right).

Figure 11: Near-regular texture with two
types of regular structures
(bricks and lattice - edited
from two separate measure-
ments) and its synthesis.

Figure 12: Near-regular texture editing. Input
textures (upper row) and resulting
lattice and edited textures.

We have tested the presented method on near-regular textures from our extensive
texture database, which currently contains over 1000 colour textures. Tested near-regular
textures were either man-made such as three textures on Fig.10 or combinations of man-
made structures with natural background (Fig.9) such as grass, wood, plants, snow, sand,
etc. Several of these results are demonstrated in the following images Figs.9,10. Both part
of modeling were separately successfully tested on hundreds of colour or BTF textures
with results reported elsewhere ([5]). Such unusually extensive testing was possible due
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to simplicity and efficiency of both crucial parts of the algorithm and it allowed us to
get insight into the algorithm properties. The method is even capable to synthesize some
near-regular textures combined from two distinctive types of regular structures Figs.11,12
provided they can be adequately separated in the Fourier domain.
Resulting textures are mostly surprisingly good for such an automatic and fast algo-

rithm. For example our results on the text texture ([5]) are indistinguishable (see [4])
from results on the same texture using much more complicated and slower image quilt-
ing algorithm [4]. Obviously there is no optimal texture modeling method and also the
presented method fails on some textures. These are near-regular textures with similar
amplitude spectrum parts for both periodic and random components, where our spectrum
filter cannot separate both texture types without visible errors.

6 Conclusions

The test results of our method on available near-regular texture data are visually in-
discernible from the measured textures for most of the tested colour textures. The test
results of the method on our natural near-regular texture collection are encouraging.
The presented method is extremely fast due to strict separation of the analytical and
very efficient synthesis steps and fully automatic. The regular part modeling is easily
implementable even in the graphical processing unit. The method offers larger compres-
sion ratio than alternative tiling methods for transmission or storing texture information
due to the periodic part modeling approach. The MRF based random part model can
reach itself a huge compression ratio, hence its storage requirements are negligible, and
simultaneously eliminates visible repetitions typical for tiling approaches. The overall
method is very fast - it has negligible computation complexity for the periodic model and
exceptionally efficient computational model for the random part as well. The method’s
extension for alternative texture types, such as BTF textures or some other spatial data
such as the reflectance models parametric spaces is straightforward. Finally the method
can be easily used to near-regular texture editing by either combining texture parts from
different measurement or by changing stochastic model parameters.
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Abstract. The paper presents a scheme for estimation of spatio–temporal evolution of a quan-
tity with unknown model error. Model error is estimated on basis of measured–minus–observed
residuals evaluated upon measured and modeled values. Methods of Bayesian filtering are ap-
plied to the problem. The main contribution of this paper is application of general marginalized
particle filter algorithm to the linear–Gaussian problem with unknown model error covariance
structure. Methodology is demonstrated on the problem of modeling of spatio–temporal evolu-
tion of groundshine–dose from radionuclides deposited on terrain in long–time horizon.

Abstrakt. Příspěvek se zabývá asimilací časového vývoje prostorově rozložené veličiny s měření-
mi. Pokud je řešený problém chápán jako lineární s gaussovským rozdělením šumu, může být za
předpokladu znalosti kovarianční struktury chyb modelu a měření řešen Kalmanovým filtrem.
Pokud kovarianční strukturu chyb modelu neznáme, musí být nejprve odhadnuta. V příspěvku
je popsána metodika aplikace marginalizovaného particle filtru na lineárně–Gaussovské prob-
lémy s neznámou kovarianční strukturou, která je odhadována pomocí sekvenčních M–C metod.
Metodika je prezentována na odhadu vývoje dávky z depozice radionuklidů na terénu.

1 Introduction

The task of estimation of time evolution of a spatially distributed quantity is widely
applied in different branches of “Earth sciences” such as meteorology and oceanography
[12]. During the last years, there have arisen tendencies for application of an advanced
data assimilation algorithms also in the field of radiation protection [16], [19], [20]. It is
related to the renaissance of nuclear energy which can be observed. The application of
advanced statistical methods can increase reliability of consequence predictions of possible
releases from nuclear power–plants. Their reliability is in the field of radiation protection
mission–critical as the problem deals with the population health.
There were developeded several models for modeling of evolution of living environment

contamination for different release scenarios. The only connection with physical reality
are measurements with errors (sparse both in time and in space). In our work, we attempt
to make groundshine–dose model predictions more reliable in a way of adjusting them
towards measurements incoming from terrain. This process is called data assimilation

∗This work has been supported by the grant project GAČR No. 102/07/1596, which is funded by the
Grant Agency of the Czech Republic.
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[12]. Its principle consists in combining of the information provided by the model with the
measured data. Exploiting information on sources of uncertainty, we are able to produce
improved estimate of the true situation on terrain.
If the problem is treated as linear–Gaussian, it can be successfully solved via Kalman

filter (KF) [11]. The unavoidable condition for utilization of Kalman filter is knowledge
of model error covariance structure but in many cases it is unknown due to the problem
background. In this paper is presented methodology for application of the Kalman filter
to the problems where the model error covariance structure is unknown and has to be
estimated upon actual data before application of the filter. This results in marginalized
particle filter described in [22].
Model error covariance is represented by a covariance matrix. As the total number

of its elements is much higher the number of measurements, we can’t estimate all of
them. Simplified model error covariance structure parametrization based on idealized
assumptions is introduced. For finding the most plausible values of these parameters, the
similar approach as proposed in [3] or [15] based on modeled–minus–observed residuals
is used. Instead of maximum likelihood estimates, we use marginalized particle filter for
estimation of both the model error covariance parameters and groundshine–dose distri-
bution. The marginalized particle filter is a powerful combination of the particle filter
and the Kalman filter, which can be used when the underlying model contains a linear
substructure which is being subject to Gaussian noise.
The performance of this methodology is demonstrated on modeling of groundshine–

dose evolution in long–time horizon of several months [6]. As the problem is complex,
the groudshine–dose evolution model is an idealized approximation of the true physical
process. Calculations are performed on a subset of polar network around the source of
pollution. The model error covariance parametrization proposed here follows the physical
background of the problem.
The outline of this paper is as follows. Section 2 briefly discusses Bayesian filtering.

Kalman filter, particle filter and marginalized particle filter are successively presented
there. In Section 3, the assimilation algorithm is proposed and the problem of model error
covariance estimation is described. Application of the algorithm on modeling of long–
term evolution of groundshine–dose from radionuclide deposition on terrain is presented
in Section 4. Specific model error covariance parametrization suitable for the problem
is developed there. In Section 5, experimental results with simulated measurements are
demonstrated and the conclusion is given.

2 Bayesian filtering

Bayesian approach to filtering is applicable to all linear or nonlinear stochastic systems
[7], [13]. Let the stochastic system be defined by discrete–time state–space transition
equation (1) and observation equation (2)

xt = f(xt−1) + bt (1)

yt = h(xt) + ǫt (2)

Here, t is time index, xt is unobservable system state vector, bt is the additive dynamic
noise vector. Vector yt is the measurement vector which provides us indirect information
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about the system state and ǫt its noise. Both the densities of noise terms are assumed
to be independent and known. Functions f(·) and h(·) are generally non–linear. State
transition function f(·) propagates the prior state to the current one. Forward observa-
tion operator h(·) transforms vectors from state–space to the measurement space, thus
constitutes relation of the actual measurements to the current state.
The goal is to acquire posterior density p(xt|Y t) where Y t = {y1, . . . ,yt} are available

measurements. In the following text, the state process {xt} is assumed to be Markovian
of the first order. It means that given the present state, future states are independent of
the past states:

p(xt|xt−1,xt−2, . . . ,x0) = p(xt|xt−1) (3)

Realization of the process at time t contains all information about the past, which is
necessary in order to calculate the future behavior of the process.
Bayesian estimation procedure consists of two recursively repeated step. The first

step transits the state estimate to the next time step according to the probability density
function (PDF) p(xt|xt−1). This step is called time update (4). In the second step called
data update (5), the information provided by actual measurements yt is included into
the current estimate given by the PDF p(xt|Y t−1).

p(xt|Y t−1) =

∫

p(xt|xt−1)p(xt−1|Y t−1)dxt−1 (4)

p(xt|Y t) =
p(yt|xt)p(xt|Y t−1)

∫
p(yt−1|xt−1)p(xt|Y t−1)dxt

(5)

The state evolution is initialized by a probability density function p(x0|Y −1) = p(x0)
which represents all the prior information on the problem and also our subjective judg-
ments. This density is often called background–field or just the prior.
If both the measurement density p(yt|xt) and the state transition density p(xt|xt−1)

are parametric, the problem can be solved analytically. Provided that the system is
linear–Gaussian, the integrals (4, 5) lead to KF recursion.

2.1 Kalman filter

In the following text N(µ,Q) is assumed to be a Gaussian PDF with mean value µ and a
covariance matrix Q. KF is simple implementation of the Bayesian filter and it provides
the optimal Bayesian solution. Its usage is limited to the case of linear estimation with
the Gaussian noise where

p(xt|xt−1) = N(Mxt−1,Qt) (6)

p(yt|xt) = N(Hxt,Rt) (7)

MatricesM andH are matrices of linear (linearized) operators f(·) and h(·), respectively.
Matrices Q and R are known error covariance matrices of model error and measurement
error, respectively. Under these assumptions (4, 5) lead to KF equations for time update
and data update steps [11]. The equations perform recursive update of the first two
moments of estimated Gaussian distribution p(x|Y ) = N(x̂,P ) – the mean value x̂ and
its covariance matrix P .
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2.2 Particle filter

In more general cases where analytical solution of integrals (4, 5) is not known, there are
their numerical approximations based on sequential Monte Carlo methods also known as
particle filters.
Particle filter (PF) is more general implementation of Bayesian filter which can be

used to approximate the posterior density function for the state in non–linear and non–
Gaussian filtering problems [7]. It is based on recursive estimation of the PDF p(xt|Y t)

which is represented as a set of M so called particles x
(i)
t and its associated normalized

weights q̃(i)
t as {q̃(i)

t ,x
(i)
t }|i=1...M . The posterior PDF p(xt|Y t) can be approximated with

their help as p̂(xt|Y t).

p(xt|Y t) ≈ p̂(xt|Y t) =

M∑

i=1

1

M
δ(xt − x

(i)
t ), (8)

where δ(·) is the Dirac δ-function and x
(i)
t are samples from approximated PDF. In (8),

all the weights q̃(i)
t are equal to

1
M
. Our goal is usually to estimate the mean value of a

function defined on our approximated distribution Ep̂(xt|Y t)[g(xt)]. The approximation
p̂(xt|Y t) satisfies condition

lim
M→+∞

Ep̂(xt|Y t)[g(xt)]
a.s.→ Ep(xt|Y t)[g(xt)], (9)

where
a.s.→ means almost sure convergence and g(xt) is arbitrary function bounded for

support Ω = {xt|p(xt|Y t) > 0}.
In real cases we are not able to sample directly from p(xt|Y t) but we are able to

evaluate it in discrete points (at least up to proportionality). We can draw independent
samples x

(i)
t from a chosen known proposal distribution (importance function) q(xt|Y t)

and use them for approximating of p(xt|Y t). The estimated density p(xt|Y t), its ap-
proximation p̂(xt|Y t) and importance function q(xt|Y t) are related as follows

p(xt|Y t) =
p(xt|Y t)

q(xt|Y t)
q(xt|Y t) ≈

≈ p̂(xt|Y t) =
M∑

i=1

p(x
(i)
t |Y t)

q(x
(i)
t |Y t)

1

M
δ(xt − x

(i)
t ), (10)

where 1
M

∑M
i=1 δ(xt − x

(i)
t ) is an approximation of q(xt|Y t) since x

(i)
t are sampled from

this PDF. If we denote q(i)
t =

p(x
(i)
t |Y t)

q(x
(i)
t |Y t)

1
M
, the estimated PDF can be approximated as

p̂(xt|Y t) =

M∑

i=1

q̃
(i)
t δ(xt − x

(i)
t ), (11)

where q̃(i)
t = q

(i)
t /
∑M

j=1 q
(j)
t ,

∑M
i q̃

(i)
t = 1, q̃

(i)
t ≥ 0 are normalized weights. This nor-

malization will for finite M introduce a bias in the estimate. However, from the strong
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law of large numbers the estimate is asymptotically unbiased. This algorithm is called
sampling–importance–sampling (SIS).
If we choose the posterior PDF from the previous step as proposal distribution in the

current, we can via recursive evaluation of normalized weights perform Bayesian filtering.
In this case will weight update result in

q
(i)
t ∝ q̃

(i)
t−1p(yt|x(i)

t ) (12)

This algorithm also suffers from degeneracy problem, so we have to implement a resam-
pling algorithm, more in [4]. Resampling should eliminate particles with small weights and
multiply particles with large weights. After resampling all the weights are set to 1

M
. If we

perform resampling in each step, the weights can be computed as q(i)
t = p(yt|x(i)

t ). This
modification of SIS algorithm with resampling in each step is also known as sampling–
importance–resampling (SIR).
Disadvantage of this method is that we have to be able to generate random samples

from complicated distributions and this is for high dimensional problems computationally
prohibitive. The computational complexity rapidly increases along with the state–space
dimension.

2.3 Marginalized particle filter

When structure of the model (1, 2) allows analytical marginalization over a subset of
states, we can reduce the computational burden. Let’s consider factorization of the state
vector xt =

[
xl
t xnt

]T
where xl

t is a subset of analytically tractable states and xn
t is

the rest. Provided that the xl
t and xnt are conditionally independent, substitution of the

factorization into (8) and application of the chain rule gives

p(xl
t,x

n
t |Y t) = p(xl

t|xn
t ,Y t)p(x

n
t |Y t), (13)

where p(xl
t|xn

t ,Y t) is analytically tractable and xn
t is given by the particle filter. Assum-

ing that xl
0 ∼ N(x̂0,P 0) and to be governed by a linear model implies that p(xlt|xnt , Yt) is

conditionally linear–Gaussian and can be computed via Kalman filter [23]. Substitution
of (8) into (13) for xn

t leads to

p(xt|Y t) ≈
M∑

i=1

q̃
(i)
t δ(x

n
t − x

n,(i)
t )N(x̂

l,(i)
t ,P

(i)
t ) (14)

The joint PDF is estimated as a mixture of a parametric distribution of Gaussian type
and of a nonparametric one. The estimated PDF is represented by a weighted sum of
Gaussians, where each particle has a Gaussian distribution attached to it. This modifica-
tion of PF is called marginalized particle filter (MPF) and details on its implementation
can be found in [22], [23].

3 Assimilation procedure based on MPF

The unavoidable condition for application of Kalman filter is knowledge of model error
represented in (1) by the noise vetor bt. We assume {bt} to be the white noise process
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where bt ∼ N(0,Qt). Matrix Qt is corresponding covariance matrix. The value of Q

should reflect total (unknown) model error, which is in each step contribution to the
forecast error due to differences between the model and the true process. In KF [11],
forecast error covariance matrix P evolves as

P t|t−1 = M t|t−1P t−1|t−1M
T
t|t−1 + Qt, (15)

whereM is matrix of linear (linearized) operator for the state transition from time t−1 to
t. It is obvious that if Q is neglected, the predicted forecast error will be underestimated.
This could cause divergence from the true state (its good estimate) because smaller model
error will handicap the information provided by measurements.
We assume that the Q is unknown and attempt to estimate it in each assimilation

step. As the total number of elements of Q to be estimated is much higher than the
number of measurements, we can’t estimate all of them. Simplified covariance model
based on idealized assumptions has to be introduced.
Schematically, let the model error covariance matrix be approximated as a function

Q(θ) : ℜdim(θ) → ℜ[dim(x),dim(x)] of a parameter vector θ, where ℜ[m,n] is a space of real
matrices of dimension m× n.

Qt = Qt(θt) (16)

FunctionQ has to be chosen properly in order to produce positive semi–definite symmetric
matrices which can be covariance matrices.
For finding the most plausible values of θ a similar approach as proposed in [3],

[15] based on modeled–minus–observed residuals is used. Instead of maximum likelihood
estimates proposed there we use MPF introduced in Section 2. When the measurements
are available, we can evaluate residual vector vt = yt −Hx̂t having the same dimension
as the measurement vector. Covariance of v derived in [3] has the form

E[vtv
T
t ] = H tP t|t−1H

T
t + Rt = St (17)

We assume vt ∼ N(0,St). If we substitute (15) into (17) for P t|t−1 and use covariance
parametrization (16) of Qt we obtain

St(θ) = H t[M tP t−1|t−1M
T
t +Qt(θ)]H t + Rt (18)

From (15) can be seen that the parametrization of model error covariance leads to
parametrization of forecast error covariance P . The most plausible value of parame-
ters are found in each time step via PF from likelihood p(v(i)

t |θ(i)
t ) = N(0,S(θ

(i)
t )) for

random parameter vectors θ
(1)
t , . . . , θ

(M)
t and corresponding residual vectors v

(i)
t . The

likelihood is the higher, the higher is the probability that difference between modeled
and measured values is zero given covariance (18). These parameters are then used in
(15, 16) for forecast error propagation. Incorporation of this algorithm into KF assimila-
tion scheme results in MPF for estimation of joint PDF p(xt, θt|Y t) which is the mixture
of Gaussian and nonparametric distributions

p(xt, θt|Y t)
︸ ︷︷ ︸

MPF

= p(xt|θt,Y t)
︸ ︷︷ ︸

KF

p(θt|Y t)
︸ ︷︷ ︸

PF

, (19)

where xt is the state vector and θt is the vector of parameters used for estimation of
current model error covariance structure.
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4 Assimilation scenario

The algorithm described in Section 3 is demonstrated on assimilation scenario introduced
in this section.
In case of an accidental aerial release of radioactive pollutants into the living environ-

ment, the radioactive plume is depleted during passing over the terrain. This phase is
called the plume phase. Due to the deposition processes the plume leaves a radioactive
trace on the ground.
After the plume phase (when the radioactive cloud exits the area of interest) post–

emergency phase follows. It covers latter stages of accident consequence evolution. Post–
emergency phase may extend over a prolonged period of several weeks or many years
depending on the source of radiation and local conditions. It ends when environmen-
tal radiation levels resume to normal. The main exposure pathways in this phase are
groundshine and ingestion. The deposited material cause irradiation and through the
root system migrates to the edible parts of crops consumed by people and livestock.
Among many radionuclides released during emergency situations we focus only on 137Cs
since it is one of the most important nuclides in long–time perspective. Its half–time of
decay is long (30 years) and also analysis after the Chernobyl accident had shown that
it is one of the most significant nuclides in these types of accidents having detrimental
long–term effect on population health.
Our assimilation scenario covers the post–emergency phase. The source of pollution

is placed into the centre of polar network. We perform our calculations on subset of
this network in successive time steps t ∈ {0, 1, . . . , tMAX}. Groundshine–dose in ordered
set of analyzed spatial points forms our state vector x. We assume x ∼ N(x̂,P ). Let
x̂0 be an initial estimate of groundshine–dose and P 0 its corresponding error covariance
matrix. This background–field is given by probabilistic version of Atmospheric Dispersion
Model (ADM) and constitutes the prior characterization of the problem. It is based on
segmented Gaussian plume model and it is part of the HARP system, more in [16]. We
assume sparse measurements yt of actual gamma dose–rate to be available in each time
step. These measurements are assumed to be conditionally independent with known
error. Assimilation procedure consists of two iteratively repeated steps: In time update
step (4) current state estimate together with its error covariance matrix are propagated
forward in time. The model error is estimated and accounted for. Following data update
step (5) produces so called analysis – adjusts the model prediction to be in accordance
with actual measurements. Along with this two Kalman filter steps is in each time step
estimated model error covariance structure.

4.1 Model error covariance parametrization

The idealized model ofQ chosen for this example has three parameters θ = (α, β, L)| α,β,L≥0

Qt = αt

[

Q
(1)
t + βtQ

(2)
t (Lt)

]

(20)

The model error is formally partitioned into two components representing different sources
of uncertainty. The partitioning has physical background. Matrix Q(1) concerns the
uncertainty of forecast model parameters introduced in [10]. This component is found as
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a covariance of sample obtained via Monte–Carlo simulation with many different settings
of model parameters. Component Q(2), scaled with β, is structured, homogeneous and
isotropic error. All other sources of uncertainty are accommodated by introduction of
Q(2). This component is generated by means of second order autoregressive function
ρL(r) of length–scale parameter L and Euclidean distance between two spatial locations
r [5].

ρL(r) =
(

1 +
r

L

)

exp
(

− r
L

)

(21)

The value of length–scale parameter L controls how fast the correlation between two
points decreases with their growing distance. The overall covariance is scaled with α.
This parametrization allows for mutual scaling of unstructured noise component Q(1)

given upon numerical simulation and “additional” structured noise given by Q(2). MPF
algorithm according to [21] modified for this case is listed in the box ALGORITHM.
In Step 1), the particles are initialized with a prior distribution. In Step 2) are

evaluated residuals upon measured and modeled values for purpose of normalized weights
evaluation for different covariance parameter vectors θ

(i)
t . For each particle, the overall

covariance given by (20) has to be evaluated. During Step 3) are particles resampled
– those with small weights are replaced with particles “better” in terms of likelihood.
Sometimes is also in this step introduced an artificial noise to prevent particle degeneracy
problem – to maintain high diversity of particles. In Step 4) is performed data and time
update of KF and time update of PF. If we omit Steps 4a) and 4c) we get the standard
PF. In Step 4b) is set new importance function for the next time step.

5 Experimental Results and Conclusion

For experimental demonstration of the algorithm, an artificial scenario with local rain
during the fifth hour of the plume phase was chosen. The rain increases depletion of the
plume due the wet deposition. The area of interest is subset of polar network comprising
of N = 91 analyzed points.
The measurements were simulated from the measurement equation (2) via linear for-

ward observation operator H where the true initial deposition x0 was assumed to be
two times higher than the prior estimate x̂0 obtained from ADM. The background–field
(initial distribution in time t = 0) was N(x̂0,P 0) where forecast error covariance P 0 was
calculated according to

P 0 = 2P̄ 0 ◦Ω, (22)

where Ω is covariance matrix generated from (21) and the ◦ stands for element–wise
matrix product (Schur product) [15]. This was done because the background–field error
covariance matrix P̄ 0 was modeled as sample covariance from multiple calls of ADM
where the rain intensity was treated as a random variable. This accommodated the
uncertainty in rain intensity into P̄ 0 and provided us a valuable physical knowledge but
this process also introduced strong covariances between states. In (22), these covariances
were reduced, so the background–field became more conservative.
Initialization of particles in the very first step was following: α1 ∼ Gamma(1, 1),

α2 ∼ N(102, 104) and L ∼ N(103, 106). The prediction was evaluated for the first eighth
months of the post–emergency phase. Measurements were assumed to be available each
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month. At each time step were simulated 10 irregularly spaced measurements. For
clarity, all the measurements in this example are during computation located in the same
positions, so the observation operator H t = H is constant.

ALGORITHM

1. Initialization:

(a) For i = 1, . . . ,M initialize θ
(i)
0 ∼ p(θ0)

(b) Set {x(i)
0|−1,P

(i)
0|−1} = {x̂0,P 0}

2. Normalized weights evaluation:
For i = 1, . . . ,M evaluate:

(a) Residuals v
(i)
t = yt −H tx̂

(i)
t

(b) Model error covariance matrix parametrization:

Q
(i)
t = Q

(

θ
(i)
t = {α(i)

t , β
(i)
t , L

(i)
t }
)

i. Evaluation ofQ(i),(1)
t via M-C simulation with multiple groudnshine model

parameters setting

ii. Evaluation of Q(i),(2)
t (L

(i)
t ) via (21)

iii. Evaluation of overall covariance via (20)

Q
(i)
t = α

(i)
t

[

Q
(i),(1)
t + β

(i)
t Q

(i),(2)
t (L

(i)
t )
]

(c) Residual covariance matrix S(θ
(i)
t ) via (18)

(d) Importance weights q(i)
t = N(0,S(θ

(i)
t ))

(e) Normalize weights q̃(i)
t =

q
(i)
t

PM
j=1 q

(j)
t

3. PF measurement update – resampling:
Resample M particles with replacement

Pr(θ
(i)
t|t = θ

(j)
t|t−1) = q̃

(j)
t

4. KF data/time update and PF time update

(a) KF data update:
x̂

(i)
t|t = x̂

(i)
t|t−1 + K

(i)
t [yt −H tx̂

(i)
t|t−1]

K
(i)
t = P

(i)
t|t−1H

T (H tP
(i)
t|t−1H

T
t + Rt)

−1

P
(i)
t|t = (I −K

(i)
t H t)P

(i)
t|t−1

(b) PF time update – prediction of new particles:

θ
(i)
t+1 ∼ p(θ

(i)
t+1|θ(i)

t )

(c) KF time update:
x̂

(i)
t+1|t = Mx̂

(i)
t|t

P
(i)
t+1|t = MP

(i)
t|tM

T + Qt+1(θ
(i)
t+1)

5. Iterate from step 2) with t := t+ 1
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Multinomial resampling described in [4] was used as a resampling algorithm in MPF.
Measurement error was set according to expert judgment based on the fact that the
small measured values have higher relative error than high values due to the measure-
ment methodology. In each step, first two moments of groundshine–dose distribution
approximating the truth were predicted and updated.
The results are in compliance with our expectations for this special scenario. Model

predictions were successfully adjusted in accordance with the measurements correcting
the speed of dose mitigation. Even thought it seems that the methodology has a potential
for improving of reliability of predictions in the late phase, the algorithm still has to be
improved in terms of robustness and carefully tested.
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Abstract. In last years we presented a method for interactive presentation of census results by
means of the probabilistic expert system. The method is based on estimating a propabilistic
model of the original microdata in form of a discrete distribution mixture of product components.
The statistical information is derived from the estimated model without any risk of disclosure
of individual respondents.
Now we managed to get the real microdata from census 2001 from the Czech Statistical

Office and we present results of our first experiments made with these data.

Abstrakt. Využití statistického modelu pro prezentaci výsledků ze sčítání lidu je metoda, která
novým způsobem umožňuje reprodukovat statistické vlastnosti populace při automatickém za-
chování bezpečnosti osobních údajů. Problematikou se zabýváme již velmi dlouho, teprve ne-
dávno se však podařilo získat Český statistický úřad pro aktivní spolupráci, čímž bylo konečně
umožněno aplikovat zkoumanou metodu na reálných datech.
V návaznosti na několikaletou snahu prezentujeme výsledky tříměsíční práce s reálnými daty

ze sčítání lidu v České republice v roce 2001. Na práci je pohlíženo jako na pilotní studii ověřující
možnosti aplikace této metody na reálné využití pro sčítání lidu v roce 2011 a zároveň jako na
vytvoření datového zázemí pro následné zkoumání shlukovacích metod pro kategoriální data.

1 Úvod

Sčítání lidu je nákladné šetření, které produkuje obrovské množství dat. V důsledku nut-
nosti ochrany osobních údajů respondentů je však množství veřejně dostupných informací,
které v pracně a nákladně získaných datech jsou, značně omezené.
Z jednotlivých dotazníků jsou sice odstraněny osobní údaje, je však obecně známo,

že i takto anonymizovaný dotazník může být s využitím obecně dostupných informací
jednoznačně identifikován. Proto nemohou být ani dotazníky zbavené osobních údajů
volně přístupné veřejnosti.
Výsledky sčítání lidu se tedy obvykle zveřejňují souhrnně pro jednotlivé administra-

tivní území části, např dle sčítacích okrsků. Takto agregované údaje pak představují velmi
podrobnou a užitečnou informaci z hlediska geografického, avšak velká část obsažené in-
formace se tím ztratí.
Jinou možností publikace výsledků jsou tištěné tabulky, tímto způsobem však lze

zveřejnit jen velmi malou část zajímavých údajů, neboť počet tabulek velmi rychle narůstá,
začneme-li uvažovat o subpopulacích podmíněných kombinací několika proměnných.

∗This research was supported by the grant GACR 102/07/1594 of the Czech Grant Agency and by
the projects of the Grant Agency of MŠMT 2C06019 ZIMOLEZ and 1M0572 DAR.
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Metoda interaktivní reprodukce výsledků sčítání lidu pomocí statistického modelu
(viz [2]) nabízí v této souvislosti nový, uživatelsky pohodlný přístup k výsledkům sčítání
lidu při dokonalém zabezpečení ochrany dat. Jakákoli identifikace respondentů pomocí
statistického modelu je znemožněna klesající spolehlivostí histogramů odvozených pro
malé části populace (viz [2]).
Práce úzce navazuje na výzkumy prováděné na vzorku dat pražských domácností ze

sčítání lidu v ČR v roce 1991 (viz např. [2], [10] a [11]) a rozvádí ji aplikací teoretických
výsledků na reálná data ze sčítání lidu v roce 2001, která se podařilo získat až teprve v
červnu tohoto roku. Oproti původním datům je zde třeba řešit ještě skutečnost, že ne
vždy jsou všechny otázky vyplněné.
Cílem stávajícího výzkumu je ověřit možnosti metody na reálných datech a připravit

tuto možnost pro plánované sčítání lidu v roce 2011. Druhým cílem je připravit podmínky
pro zpracování dat pomocí metod informační a shlukové analýzy pro kategoriální data,
které byly zkoumány v předchozích letech (viz např. [9]).

1.1 Stávající způsoby prezentace výsledků

Současné možnosti publikace statistických informací ze sčítání lidu lze zařadit do několika
kategorií

• Publikace výsledků v tištěné podobě představuje nejtradičnější cestu zpřístupně-
ní zjištěných statistických vlastností populace. Tištěné publikace se ovšem nutně
omezují na nejzákladnější údaje a nejčastěji diskutované aspekty dat. Jak již bylo
zmíněno v předchozím odstavci, tištěné materiály mohou pokrýt jen malou část
reálně možných otázek, které mohou být ve specifických situacích formulovány růz-
nými uživateli.

• Komerční služby statistických úřadů. Jakýkoli dotaz týkající se sčítání lidu lze zod-
povědět na základě specifického výpočtu s využitím původní databáze statistického
úřadu. Bohužel, písemné zadání odpovídající zakázky příslušnému statistickému
úřadu představuje těžkopádný a zdlouhavý způsob získávání informací, který není
vhodný pro interaktivní výzkum, kdy formulaci otázky je třeba upřesňovat podle
zjištěných výsledků.

• Agregace dotazníků dle vybraných kritérií Jednotlivé dotazníky jsou agregovány
např. dle sčítacích okrsků. Tato metoda umožňuje přesné zobrazení rozložení růz-
ných vlastností populace dle geografického hlediska, ale již neumožňuje sledovat
vlastnosti populací, které jdou napříč členěnním použitým k agregaci.

• Generování a publikace tabulek. Obvykle mohou být uloženy a na různých pa-
měťových médiích distribuovány pouze tabulky nízkého řádu (6 - 10 proměnných).
Je zřejmé, že každá tabulka popisuje pouze statistické vztahy mezi tabelovanými
proměnnými. Výběr subpopulace je tak omezen vždy jen na kombinace hodnot ta-
belovaných proměnných. Nabízené tabulky je navíc nutné ověřovat z hlediska spo-
lehlivosti ochrany dat a vhodným způsobem anonymizovat identifikovatelné údaje
[6]. Omezení identifikovatelnosti dat je ovšem nutně spojeno se ztrátou informace
a vnášením nepřesností.
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• Poskytování podsouborů anonymizovaných mikrodat. Z původního souboru indi-
viduálních dat jsou vybírány podsoubory a upravovány pomocí různých technik,
jako je záměna údajů, pozměňování dat a pod., s cílem znemožnit jakoukoli identi-
fikaci osobních údajů respondentů [6]. Soubor mikrodat představuje nejdokonalejší
formu poskytování informací, která umožňuje analýzu dat v plné obecnosti bez ja-
kýchkoli formálních omezení. Přesnost údajů, které lze odvodit z daného souboru
mikrodat, bohužel klesá s jeho velikostí, závisí na kvalitě provedeného výběru a
také na míře znehodnocení způsobené ochrannými anonymizačními postupy. Ome-
zují se také možnosti analýzy malých subpopulací. Přístup k souborům mikrodat je
umožněn ve většině zemí EU a je považován za doklad vysoké úrovně statistického
servisu. Na druhé straně je tento postup značně citlivý z hlediska ochrany osobních
údajů. Možnost pracovat s mikrodaty zpravidla podléhá schvalovací proceduře a
není zaručena automaticky každému žadateli.

Ukazuje se, že ochrana osobních údajů, jakkoli nezbytná, je značně omezující z hle-
diska obvyklých požadavků ekonomických a sociálních výzkumů. V popředí zájmu je
proto vytváření nových přístupů a metod, které mohou zkvalitnit a rozšířit informační
nabídku statistických úřadů. Cílem je dosažení optimální rovnováhy mezi nutnou ochra-
nou osobních údajů a dostupností užitečných informací.

2 Vstupní datový soubor

Datový soubor obsahuje vybrané odpovědi z dotazníků ze sčítání osob, bytů a domů
České republiky z roku 2001. Jednotlivé vektory v souboru se skládají z vybraných údajů
z dotazníku osob doplněné o údaje z odpovídajícího bytového dotazníku. Výsledný soubor
obsahuje 10230060 záznamů s odpovědmi na 24 otázek, přičemž ne všechny odpovědi jsou
vyplněné.
Formálně tedy uvažujeme konečný diskrétní N rozměrný prostor X (N = 24)

X = X1 × X2 × ...×XN , Xn = {ξn,1, ..., ξn,Kn
}, (1)

kde Xn reprezentuje množinu možných odpovědí na otázku číslo n. Dále uvažujme datový
soubor S

S =
{
x(1),x(2), ...,x(K)

}
, x(i) ∈ X̂ = X̂1 × X̂2 × ...× X̂N , X̂n = Xn ∪ {ξn,0}

(2)

kde hodnota ξn,0 reprezentuje skutečnost, že odpovídající otázka v dotazníku nebyla zod-
povězena. Jedná se tedy o tzv. chybějící údaj.
Graf 1 ukazuje nepravidelnost rozložení chybějících údajů dle jednotlivých otázek.

Graf 2 zobrazuje počty vektorů dle počtu chybějících údajů ve vektoru. Z obrázku lze
např. vyčíst, že u 32875 vektorů chybí více jak polovina odpovědí.
V celé problematice se zabýváme prakticky výlučně o takové podmožiny prostoru X

resp. souboru S, které lze určit kombinací několika odpovědí. Mějme tedy vektor xC s
kombinací c odpovědí na c různých otázek

xC = (ξn1,k1, ξn2,k2, ..., ξnc,kc
), xC ∈ XC = Xn1 × ...×Xnc

, (3)
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Obrázek 1: Počty chybějících údajů u jednotlivých otázek

Obrázek 2: množství vektorů dle počtu chybějících údajů ve vektoru

kde 1 ≤ c ≤ N a C představuje indexovou množinu odpovídající výběru otázek C =
{n1, n2, ..., nc}.
Potom subpopulací A(xC) definovanou podmínkou xC rozumíme takovou podmožinu

prostoru X , pro kterou platí

A(xC) =
{
y ∈ X |

(
yn1

,yn2
, ...,ync

)
= xC

}
(4)

Typickým příkladem takové subpopulace je množina všech nezaměstnaných v praze
apod. Skutečnou velikostí suboppulace A(xC) pak rozumíme četnost výskytu kombinace
xC v souboru S. Tj.

sizeof(A(xC)) =
∑

y∈S
δ(yC ,xC), yC =

(
yn1

,yn2
, ...,ync

)
(5)

kde δ(a, b) značí standardní delta funkci, tj. δ(a, b) = 1 pokud a = b, jinak δ(a, b) = 0.

3 Reprodukce statistických vlastností souboru
pomocí směsi

Je obecně známým faktem, že sčítání lidu představuje jednorázové šetření, které nelze
opakovat jako náhodný experiment. Formálně však můžeme na vyplněný dotazník po-
psaný vektorem x pohlížet jako na realizaci nějakého neznámého náhodného vektoru v
nabývající hodnot z X a na soubor S jako na posloupnost nezávislých realizací tohoto
vektoru.
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Veškeré statistické vlastnosti náhodného vektoru v jsou potom popsány jeho sdruže-
ným rozložením pravděpodobnosti P (x), které, zjednodušeně řečeno, popisuje chování
náhodného respondenta. Pravděpodobnost výskytu vektoru x v souboru S pak aproxi-
mujeme pomocí diskrétní distribuční směsi součinových komponent

P (x) =

M∑

m=1

wm

N∏

n=1

pn(xn|m), x ∈ X , (6)

kde M je počet komponent směsi, wm jsou jednotlivé váhy komponent a pn(.|m) jsou
jednorozměrné podmíněné distribuce v komponentě.
Protože prostor X je konečný, víme, že existuje směs s konečným počtem komponent

M ≤ |X |, která popisuje rozložení pravděpodobnosti na prostoru X zcela přesně. Stejné
tvrzení platí i za předpokladu, že je konečný soubor S (potom stačíM ≤ |S| komponent).
Můžeme tedy tvrdit, že daný soubor S jsme schopni popsat konečnou směsí libovolně
přesně. Abychom však zajistili bezpečnost osobních údajů, nemůže být model přesný
příliš.
Velkou výhodou uvedeného modelu je velmi jednoduché vyjádření odhadu relativní

velikosti subpopulace A(xC) definované podmínkou xC (viz (4)). Ten je roven pravdě-
podobnosti P (xC), která lze vyjádřit prostým vynecháním členů v součinu ve výrazu
(6)

P (xC) =
∑

y∈A(xy)

P (y) =

M∑

m=1

wm

c∏

i=1

pni
(xni
|m) (7)

Tato vlastnost umožňuje velmi rychlé odvozování pravděpodobností, které nás pře-
vážně zajímají a které jsou potřeba jako vstupní informace pro interaktivní pravděpo-
dobnostní expertní systém, který je součástí projektu.

4 Odhad parametrů modelu

Standardně se pro odhad parametrů směsi v podobných případech využívá iteračního
EM algoritmu, který hledá maximálně věrohodný odhad tím, že monotónně zvyšuje hod-
notu věrohodnostní funkce. Jako počáteční řešení volíme náhodně zašuměné uniformní
rozložení. Použití tohoto algoritmu bylo popsáno např. v [3].
Pro odhad parametrů modelu na datech s chybějícími údaji je možné modifikovat

schéma algoritmu prostým vynecháním odpovídajícch součinitelů v kroku E (viz [1]).

E-krok : (m ∈M, x ∈ S)

q(t)(m|x) =
w

(t)
m

∏N
n=1,xn 6=ξ(n,0)

p
(t)
n (xn|m)

∑

j∈M w
(t)
j

∏N
n=1,xn 6=ξn,0

p
(t)
n (xn|j)

(8)
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M-krok : (m ∈M)

w(t+1)
m =

1

|S|
∑

x∈S
q(t)(m|x) (9)

p
(t+1)
i (ξ|m) =

1
∑

x∈S q
(t)(m|x)

∑

x∈S
δ(xi, ξ)q

(t)(m|x) (10)

Dalšího zpřesnění modelu lze dosáhnout doplněním chybějících údajů pomocí modelu
optimalizovaného pomocní uvedenémo schématu (8) a následným upřesněním modelu na
souboru s doplněnými údaji. Vlastní výpočet se potom skládá ze tří fází - učení se na
neúplných datech, doplnění dat a učení se na doplněných datech.

5 Ověřování přesnosti

Přirozeným kritériem pro měření přesnosti je průměrná absolutní chyba odhadu pravdě-
podobnosti všech možných podmnožin prostoru X .

ǫ =
1

|A|
∑

A∈A
|P (A)− P̂ (A)|, (11)

kde A je třída všech podmnožin prostoru X , P (A) je pravděpodobnost množiny A odvo-
zená ze statistického modelu

P (A) =
∑

x∈A
P (x), (12)

a P̂ (A) je (skutečná) relativní četnost výskytu dotazníků z množiny A v původním sou-
boru S

P̂ (A) =
∑

x∈S
ϕA(x), (13)

(ϕA(x) je charakteristická funkce množiny A rovná 1 pro x ∈ A a rovná 0 pro x /∈ A).
Je zřejmé, že toto kritérium je vhledem k rozsahu množiny A prakticky nepoužitelné.

Vzhledem k tomu, že se v našem případě zabývame zejména odvozováním pravděpodobnos-
tí podmnožin, které lze učit kombinací hodnot, zjednodušíme výpočet kritéria tím, že se
omezíme pouze na podmnožiny A, které lze určit pomocí kombinace několika hodnot (viz
pojem subpopulace popisovaný v (4)).
Dále, uvážíme-li, že náším cílem je reprodukovat pouze dostatečně velké subpopulace,

omezíme se pouze na tzv. relevantní podmnožiny, což jsou ty, jejichž skutečná velikost
je větší než 1570. Hodnota tohoto prahu vychází ze statistické přesnosti odhadu, kdy
požadujeme přesnost alespoň 5% na úrovni spolehlivosti 95%. Odvození tohoto prahu je
možné nalézt např. v [11] či [8].
Označme tedy Arn třídu všech relevantních podmožin, které lze určit pomocí kombi-

nace maximálně n odpovědí.

Arn =
{
A(xC) ∈ A

∣
∣xC ∈ XC , |C| < n ∧ P̂ (A) > 1570

}
(14)
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Průměrnou relativní ǫR resp. absolutní ǫA chybu pak počítáme následovně

ǫA(Arn) =
1

|Arn|
∑

A∈Arn

|P (A)− P̂ (A)|, ǫR(Arn) =
1

|Arn|
∑

A∈Arn

|P (A)− P̂ (A)|
P̂ (A)

(15)

Poznámka 1. U základní verze EM algoritmu platí, že jednorozměrné marginální prav-
děpodobnosti jsou reprodukovány zcela přesně hned po první iteraci agoritmu (tzn.
ǫA(Ar1) = 0). V případě modifikace pro neúplná data tato skutečnost již obecně neplatí.

6 Experimentální část

6.1 Výpočty modelů a jejich přesnost

Na získaném datovém souboru ze sčítání lidu 2001 bylo provedeno několik různých vý-
počtů. Tabulka 1 obsahuje výpočty pro modely z různým počtem komponent m, hodnotu
dosaženého věrohodnostního kritéria a průměrnou relativní chybu. Počáteční řešení bylo
vždy voleno náhodně a výpočet byl zastaven v případě, že přírůstek věrohodnostního
kritéria klesl pod stanovený práh, resp. dříve, pokud výpočet trval příliš dlouho.

Počet komponent orientační čas výpočtu kritérium L relativní chyba ǫR(Ar3)
10 1 min -28.0078 0.2903
100 7,5 min -21.7319 0.1357
1000 1 h -21.1125 0.0677
10000 30 h -20.9682 0.0521

Tabulka 1: Přesnost a dosažená hodnota věrohodnostního kritéria pro různě složité mo-
dely. Relativní chyba byla počítána na množině relevantních subpopulací,
které lze určit až třemi podmínkami.

6.2 Přesnost souborů mikrodat

Reprodukce statistických vlastností datového souboru pomocí distribuční směsi je alter-
nativou k dosud používaným souborům mikrodat. Soubor mikrodat je náhodný výběr
vzorků z datového souboru, většinou 1 - 10% původního počtu. V praxi jsou soubory
dále upravovány tak, aby byla zajištěna požadovaná ochrana osobních údajů, tj. aby byla
vyloučena možnost identifikovat údaje o jednotlivcích.
Pro porovnání přesnosti statistického modelu a souboru mikrodat bylo vybráno ně-

kolik náhodných podsouborů, u kterých byla měřena chyba odhadu na stejném souboru
kontrolních subpopulací Ar3. Anonymizační procedura nebyla vzhledem k její náročnosti
aplikována, dá se však očekávat, že by vedla pouze k nepatrnému zhoršení přesnosti.
Při porovnání tabulek (1) a (2) vidíme, že směs sm = 1000 komponent je již z hlediska

relativní chyby přesnější než soubor mikrodat obsahujícím cca 1% vektorů z původního
souboru. Z hlediska přesnosti je tedy popisovaná metoda publikace výsledků sčítání lidu
srovnatelná s využitím souborů mikrodat, které v současnosti patří k nejdokonaleším
používaným způsobům publikace takových dat.
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velikost počet vektorů relativní chyba ǫr3
1 % 102405 0.0793
5 % 511213 0.0348
10 % 1023442 0.0240

Tabulka 2: Přesnost různě velkých náhodně vybraných souborů mikrodat. Skutečná ve-
likost a relativní chyba byla spočtena jako průměrná hodnota pro vždy tři
náhodně vybrané podsoubory pro každou požadovanou velikost

6.3 Interaktivní prezentace výsledků

Navrhovaná metoda podstatně využívá faktu, že konečná směs součinových komponent je
přímo použitelná jako báze znalostí pravděpodobnostního expertního systému PES (viz
např. [7]).
Tento systém nabízí uživateli srovnatelné možnosti jako přímý kontakt s původním

datovým souborem prostřednictvím databázového systému. Expertní systém odvozuje
statistické informace přímo z odhadnutého modelu, bez nutnosti jakéhokoliv přístupu k
původnímu datovému souboru. Ochrana osobních dat je tak dokonale zaručena, protože
směsový model neumožňuje identifikaci jednotlivých dotazníků.
Informace expertního systému jsou uživateli nabídnuty ve formě podmíněných histo-

gramů pro zadané subpopulace.

7 Závěr a další práce

Práce obsahuje první výsledky zpracování reálného datového souboru ze sčítání lidu v roce
2001, kdy se po dlouhé době podařilo získat Český statistiký úřad pro aktivní spolupráci.
Na toto zpracování je pohlíženo jako na pilotní projekt testující použitelnost navrhované
metody pro případné použití pro sčítání lidu v roce 2011.
Navrhovaná metoda umožňuje zpřístupnit statistické informace široké veřejnosti v

daleko větší míře, než je tomu u stávajících forem zveřejňování výsledků sčítání lidu.
Zároveň garantuje zachování bezpečnosti osobních údajů, neboť přesnost modelu klesá u
malých subpopulací.
Výsledky uvedené v této práci již umožnují tvrdit, že z hlediska přesnosti měřené

na množině relevantních subpopulací je navrhovaná metoda alespoň srovnatelná se sou-
bory mikrodat, které také umožňují velmi obecně zkoumat statistické vlastnosti datového
souboru.
Jako další navazující aktivitu plánujeme zkoumání možností informační a shlukové

analýzy kategoriálních dat na zpracovávaném datovém souboru, který je typickým příkla-
dem tohoto druhu dat.
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Abstract. The dynamics of a classical charged particle confined to a plane, under the influence
of a homogeneous magnetic field perpendicular to the plane and a time-periodic singular flux
tube (so called Aharonov-Bohm flux) is investigated. For the description of the system we
use the action-angle coordinates. The main tool of our analysis is von Zeipel’s method, which
is a classical perturbation method. We are interested especially in the resonant phenomena
between the strength of the field and the frequency of the singular flux.

Abstrakt. Tento příspěvek se zabývá klasickou dynamikou nabité bodové částice pohyhující
se v rovině pod vlivem homogenního magnetického pole, které je na tuto rovinu kolmé, a sin-
gulárního časově periodicky závislého magnetického toku (tzv. Aharonova-Bohmova toku).
Výchozím bodem pro studium stability tohoto systému jsou souřadnice akce-úhel. Hlavním
nástrojem pak klasická poruchová metoda pocházející od von Zeipela. Hlavní důraz je kladen
na odhalení rezonančních efektů mezi sílou magnetického pole a frekvencí singulárního toku.

1 Introduction

In the present contribution we are interested in the qualitative behaviour of a classical
charged particle which is under the influence of a homogeneous magnetic field and the
time-dependent singular flux tube1 piercing the origin of coordinate system. The basic
description of the system is given in the following paragraphs. In the subsequent sections
we will invoke standard perturbation technique due to von Zeipel. This method gives
much better results than the Bogolyubov’s averaging (see for example [5]) used in [4].
Let the Cartesian coordinates in the plane be denoted by q = (q1, q2) ∈ R2. The

vector potential A consists of two parts. The homogeneous magnetic field of strength
b > 0 (such choice can be made without loss of generality) perpendicular to the q-plane
is generated by the potential

Ah(q) =
−b
2
q⊥,

∗I would like to express thanks to Dr. Joachim Asch from C.N.R.S. Marseille for many valuable
discussions and help during my stay in Marseille.
1Sometimes also called Aharonov-Bohm flux tube.
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where q⊥ = (−q2, q1). The second part corresponds to a singular flux through the origin
of the coordinate system and is given by

Af(q, t) =
Φ(t)

2π|q|2q
⊥,

where |q| =
√

q2
1 + q2

2 and Φ : R → R is a periodic function. The total vector potential
is given as a sum Ah + Af . Passing to the polar coordinates and using the Legendre
transform it is straightforward to arrive at the Hamiltonian

H(r, θ, pr, pθ, t) =
1

2m

(

p2
r +

(pθ − eΦ(t)
2π

r
+
eb

2
r
)2
)

. (1)

considered on phase space (R+ × S1)×R2. The equations of motion are

ṗθ = −∂H
∂θ

= 0, θ̇ =
∂H

∂pθ
=
pθ − eΦ(t)

2π

mr2
+

eb

2m
. (2)

It is obvious that θ is a cyclic coordinate, therefore pθ is an integral of motion. This fact
enables us to treat pθ as constant. And the question of stability is essentially contained
in the single ordinary differential equation for radial distance r

r̈ +
e2b2

4m2
r =

(
pθ − eΦ

2π

)2

mr3
. (3)

From now on we set the charge and mass of the particle equal to one. In order to
use classical perturbation techniques it is necessary to transform the system to the so
called Action-Angle coordinates (for more details see [1]). In [4] it is shown that there is
a canonical transformation from r, pr ∈ R+ × R to (ϕ, I) ∈ S1 × R+ coordinates which
transforms the Hamiltonian (1) to new one

Hc(ϕ, I, t) = bI − sgn(a(t))ȧ(t) arctan

( √
I cosϕ

√

I + |a(t)|+
√
I sinϕ

)

(4)

And equations of motion are given by

ϕ̇ = b− aȧ

2

cosϕ
√

I(I + |a|)
1

2I + |a|+ 2
√

I(I + |a|) sinϕ
, (5)

İ = −sgn a

2

(

ȧ− |a|ȧ
2I + |a|+ 2

√

I(I + |a|) sinϕ

)

. (6)

Moreover, in [4] it is also shown, that the question of stability is answered by the behaviour
of the action coordinate I. More precisely, if (for certain initial conditions) the solution
I(t) of the above equation is bounded then also the radial distance of the particle is
bounded. Or, in other words, the particle will not leave some bounded region of the
plane. On the other hand, if it happens that I(t) → +∞ as t → ∞, then the particle
will get arbitrarily close to and far from2 the flux tube during the time evolution.

2This means that 0 and +∞ are accumulation points of the particular trajectory {r(t)}t≥0.
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2 Dynamics Generated by the Time-dependent Singular
Flux Tube

In order to become acquainted with the dynamics of the system, it is appropriate to
investigate the influence of magnetic field and time-dependent flux separately. If the flux
is turned off, i.e. the particle is influenced only by the homogeneous magnetic field, then
the classical trajectories are circles in the q-plane. This fact is a well known elementary
result.
Let us investigate what happens if we turn off the magnetic field. To answer the

stability question we look at the behaviour of solutions of equation (3) - of course we
again put e = m = 1 and in addition also b = 0. In this subsection the flux need not to
be periodic, but it must satisfy the conditions (7). The basic result is formulated in the
following

Lemma 1. Suppose that a ∈ C(R) is such that a(t) 6= 0 for all t ∈ R and
∫ ∞

T

a(t)2

t2
dt <∞,

∫ −T

−∞

a(t)2

t2
dt <∞,

∫ ∞

T

a(t)2dt =

∫ −T

−∞
a(t)2dt = +∞. (7)

for certain T > 0. Then for any (r0, v0) ∈ R+ × R there exists an unique solution r(t),
defined on R, to the initial value problem

r′′(t) =
a(t)2

r(t)3
, r(0) = r0, r

′(0) = v0. (8)

Moreover, the solution satisfies the condition r(t) ∼ c±t as t → ±∞ where c+ > 0 and
c− < 0.

Proof. The differential equation is equivalent to the dynamical system

x′ = f(t, x) =

(
x2

a(t)2/x3
1

)

, x ∈ U = R
+ ×R.

Since f ∈ C(R × U,R2) is locally Lipschitz continuous in the second argument one can
use Picard-Lindelöf theorem to establish existence and uniqueness of the local solutions.
Thus, the solutions are either defined for all t ∈ R, or they approach the boundary of R+

in finite time (more precisely they escape to infinity r → ∞ or fall on the zero r → 0).
We will analyse the case t > 0, the rest is analogous.
First of all observe, that generally r′(t) is increasing function. Therefore we will

consider three situations according to the initial velocity.
Suppose that v0 > 0 and that we have solution r(t) of the IVP (8) defined on the

interval (T−, T+). Hence r(t) is increasing for all t ∈ [0, T+), so there always exists3

limt↑T+ r(t) > r0 > 0, therefore the solution can be prolonged to the infinite interval. We
can assume that T+ = +∞. For any t ≥ 0 it is true that

r(t) = r0 +

∫ t

0

r′(s)ds > r0 + v0t, r(t) = r0 + v0t+

∫ t

0

(t− s)a(s)
2

r(s)3
ds.

3The symbol limt↑a denotes limit from the left.
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The claim of the Lemma is equivalent to the existence of positive finite limit

lim
t→∞

r(t)

t
= lim

t→∞

{

v0 +

∫ t

0

a(s)2

r(s)3
ds+

1

t

(

r0 −
∫ t

0

s
a(s)2

r(s)3
ds

)}

.

But this is true since 1/r(t) < 1/(r0 + v0t) for any t ≥ 0 and
∫∞
T
a(s)2/s2ds converges.

The positivity of the limit is obvious.
Suppose now that v0 = 0. Since a2 is positive it is true that

r′(t) =

∫ t

0

a(s)2

r(s)3
ds > 0

for t from domain of definition of r. Hence we can immediately pass to the preceding
point.
Finally assume that v0 < 0. Since r′(t) is increasing our objective is to show that there

exists t > 0 such that r′(t) = 0 and then again we can use the preceding considerations.
Let us first show, that the solution can not approach the boundary r = 0 in finite time.
Let r(t) be a solution of IVP (8) defined on (T−, T+), T+ ∈ R+, such that limt↑T+ r(t) = 0.
It must hold that for all t ∈ [0, T+) it is true that r′(t) < 0. But

lim
t↑T+

r′(t) = v0 + lim
t↑T+

∫ t

0

a(s)2

r(s)3
ds = v0 + lim

t↑T+

∫ 1/r(t)

1/r0

ρa(r−1(1/ρ))2

−r′(r−1(1/ρ))
dρ =

= v0 +

∫ +∞

1/r0

ρa(r−1(1/ρ))2

−r′(r−1(1/ρ))
dρ = +∞,

because the denominator in the integrand tends to zero or some constant and a is nonzero.
This contradicts our hypothesis. Also in this case (v0 < 0) the solution r(t) of the IVP
(8) can be prolonged to infinite interval. It remains to show that there is some t∗ > 0
such that r′(t∗) = 0. So assume that we have solution obeying limt→∞ r(t) = R ≥ 0 and
r′(t) < 0 for all t > 0. Therefore r(t) is decreasing. But now we have

r′(t) = v0 +

∫ t

0

a(s)2

r(s)3
ds > v0 +

1

r3
0

∫ t

0

a(s)2ds→ +∞, as t→ +∞.

This is impossible due to (7).

With a little more effort we can treat also zeros of a:

Lemma 2. Suppose that a ∈ C1(R) is such that if a(t∗) = 0 for some t∗ ∈ R then
a′(t∗) 6= 0, and let the conditions (7) of Lemma 1 hold. Then all claims of Lemma 1 are
true.

Proof. The only part of proof of Lemma 1 which has to be changed is the proof of
extensibility. In particular, suppose that r(t) is a solution with domain (T−, T+) of the
initial value problem (8) with v0 < 0, limt↑T+ r(t) = 0. If it happens so that a(T+) 6= 0
one can use the same argument as in the proof of Lemma 1. However what if a(T+) = 0?
Then we may write

r′(t) = v0 +

∫ t

0

a(s)2

r(s)3
ds = v0 +

∫ t

0

(a(T+) + a′(ξs)(s− T+))2

(r(T+) + r′(ηs)(s− T+))3
ds, t ∈ (0, T+),
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where ηs, ξs ∈ (s, T ). But the last integral diverges logarithmically as t ↑ T+ since
∫ t

0

(a(T+) + a′(ξs)(s− T+))2

(r(T+) + r′(ηs)(s− T+))3
ds ≥ 1

(−v0)3

∫ t

0

a′(ξs)
2

T+ − s
ds

and a′(ξs)→ a′(T+) as s ↑ T+.

To complete our picture it is necessary to look at the equation for polar coordinate
θ, (2). We immediately see that θ → const as t → ±∞. In other words the particle
is ”pushed from the origin”. More precisely if the particle approaches from the infinity
then it is deflected by the origin and asymptotically moves freely. All trajectories are
unbounded, the particle escapes to infinity.

3 Von Zeipel’s Method

Let us now look at the system with Hamilton’s function (4) more closely. Suppose that
a(t) is a smooth periodic function with frequency Ω and that a(t) = f(Ωt) > 0, where f
is a 2π-periodic function. Therefore we have

Hc(ϕ, I, t) = bI − Ωf ′(Ωt) arctan

√
I cosϕ

√

I + f(Ωt) +
√
I sinϕ

, ϕ ∈ S1, I ∈ R
+.

In order to get rid of the time dependence let us introduce new phase ϕ2 = Ωt and
its conjugate variable I2 (old variables ϕ, I are denoted by ϕ1, I1). We obtain so called
extended Hamiltonian K which reads

K(ϕ, I) = (b,Ω) · I − Ωf ′(ϕ2) arctan

√
I1 cosϕ1

√

I1 + f(ϕ2) +
√
I1 sinϕ1

, ϕ ∈ T
2, I ∈ R

+ ×R.

(9)
Hamiltonians Hc and K are equivalent (in the sense that the corresponding solutions
of Hamiltonian equations are the same up to parametrisation), provided that the initial
conditions are properly matched (e.g. if ϕ(0) = ϕ0 then ϕ2(0) = 0 and ϕ1(0) = ϕ0).
The extended Hamiltonian is in a form which is suitable for application of von Zeipel’s
method. This is a classical canonical perturbation method. The fundamental steps will
be mentioned in course of the following computation. More details can be found in [2] or
[3].
As a simple demonstrative example take Φ(t) = −2πε sin Ωt (the procedure described

below can be applied without any modification to more general fluxes, e.g. fluxes with
finite number of nonzero Fourier coefficients). So f(x) = pθ + ε sin x and suppose that
0 < ε < pθ. We will compute the approximate Hamiltonian up to order O(ε3). For the
sake of simplicity denote (ω1, ω2) = (b,Ω). Let us assume that (resonance condition)

ω2

ω1

=
p

q
,

where p, q are natural co-prime numbers. The extended Hamiltonian reads

K(ϕ, I, ε) = ω · I + εω2 cos(ϕ2) arctan

√
I1 cosϕ1√

I1 + pθ − ε sinϕ2 +
√
I1 sinϕ1

.
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Let us expand the Hamiltonian up to order O(ε3)

K(ϕ, I, ε) = ω · I + εK1(ϕ, I) + ε2K2(ϕ, I) +O(ε3).

The first step of Von Zeipel’s method consists of a near identity canonical transforma-
tion to new canonical coordinates ψ and J . The generating function of the transformation
is sought in the form

S(ϕ, J, ε) = ϕ · J + εS1(ϕ, J) + ε2S2(ϕ, J) +O(ε3).

And one seeks new Hamiltonian in a similar form

K (ψ, J, ε) = ω · J + εK1(ψ, J) + ε2
K2(ψ, J) +O(ε3).

Coefficients S1, S2 and K1,K2 are to be determined. Of course one can try to compute
also higher order terms but the task is more and more difficult. The relation between the
old and new Hamiltonian is given by the equality

K(ϕ, ∂ϕS, ε) = K (∂JS, J, ε),

from which one finds that

K1(ϕ, J) = K1(ϕ, J) + ω · ∂ϕS1(ϕ, J),

K2(ϕ, J) = K2(ϕ, J) + ∂JK1(ϕ, J) · ∂ϕS1(ϕ, J)− ∂ϕK1(ϕ, J) · ∂JS1(ϕ, J)

+ ω · ∂ϕS2(ϕ, J).

In the present situation the lattice of resonant frequencies is given by K = Z(p,−q).
Terms in the expansion of the new Hamiltonian K are chosen in the following way

K1(ϕ, J) = 〈K1(ϕ, J)〉K,
K2(ϕ, J) = 〈K2(ϕ, J) + ∂JK1(ϕ, J) · ∂ϕS1(ϕ, J)− ∂ϕK1(ϕ, J) · ∂JS1(ϕ, J)〉K.

The notation 〈·〉K means that we keep only resonant frequencies in the Fourier expansion.
More precisely for a function η : Tn → C with Fourier expansion

η(ϕ) =
∑

k∈Zn

F [η(ϕ)]k exp(ik · ϕ), F [η(ϕ)]k =
1

(2π)n

∫

Tn

f(ϕ)eik·ϕdnϕ,

put
〈η(ϕ)〉K =

∑

k∈K

F [η(ϕ)]k exp(ik · ϕ).

The bracket 〈·〉K is sometimes called the averaging operator. Functions S1(ϕ, J), S2(ϕ, J)
are then obtained as solutions of the partial differential equations

ω · ∂ϕS1(ϕ, J) = −〈K1(ϕ, J)〉Kc ,

ω · ∂ϕS1(ϕ, J) = −〈K2(ϕ, J) + ∂JK1(ϕ, J) · ∂ϕS1(ϕ, J)− ∂ϕK1(ϕ, J) · ∂JS1(ϕ, J)〉Kc,

where Kc = Z2 r K. It is possible to give solutions of these equations in form of formal
series, but one has to be careful since it is here where the problem of small denominators
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appears. However, if our flux function has finite number of nonzero Fourier coefficients
then there is no problem.
For the computation below it is convenient to set

β ≡ β(J1) =

√

J1

J1 + pθ
.

Using crucial results from Appendix of [4] it is easy to derive that only the following
Fourier coefficients, which we will need, are nonzero

F [K1(ϕ, I)](l,±1) =
ω2

4il
β |l| exp

(

il
π

2

)

,

F [∂I1K1(ϕ, I)](l,±1) =
ω2pθ sgn(l)

8i

β |l|+2

I2
1

exp
(

il
π

2

)

,

F [K2(ϕ, I)](l,±2) =
ω2 sgn(l)

16ipθ
(1− β2)β |l| exp

(

il
π

2

)

, l 6= 0.

With these coefficients it is possible to compute terms K1,K2, S1, S2. There are three
situations which need a separate treatment, in particular q = 1, q = 2, and q ≥ 3. In the
following subsections only results are presented, the computation itself is straightforward
but tedious and space-consuming. The formulae were computed by hand and checked
using the computer algebra system Mathematica 6.0.

3.1 The case of q = 1

In other words we have here
ω2

ω1

=
Ω

b
= p ∈ N.

Under this assumption one can compute that

K1(ψ, J) =
ω2

2p
βp sin

(

p
π

2
+ pψ1 − ψ2

)

,

K2(ψ, J) =
pω2

16pθ

( 1

β
− β

)2
(

1

p
+ (β2p + β−2p) ln(1− β2) +

p−1∑

n=1

β2(p−n) + β−2(p−n)

n

)

+

+
(−1)ppω2

8pθ

( 1

β
− β

)2
(

ln(1− β2) +

p
∑

l=1

β2l

l

)

cos(2pψ1 − 2ψ2)+

+
(−1)pω2

8pθ
(1− β2)β2p cos(2pψ1 − 2ψ2).

Further, it is possible to give a closed form expression for S1 but we will not need it
here. It is important to observe that the new Hamiltonian system obtained by von
Zeipel’s method has additional integrals of motion, while in general the original system
has only one integral of motion (namely the Hamiltonian K itself). The number of
integrals produced depends on the number of independent resonance relations and the
dimension of the phase space. Moreover, these integrals does not depend on the order of
approximation, but only on the resonance relations.
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To see this, let us denote

R =

(
p −1

1− p 1

)

.

The matrix R is chosen such that it has the basic resonant vector (p,−1) in the first row
and has unit determinant and integer entries. Next step is canonical transformation from
ψ, J coordinates to χ, P coordinates generated by the function

W (ψ, P ) = P · Rψ.
Therefore

χ = ∂PW = Rψ, J = ∂ψW = RTP.

The point is that the Hamiltonian in these new coordinates K (χ, P ) does not depend on
χ2, therefore P2 = J1 +pJ2 is an integral of motion of the approximate system. Moreover,
in new coordinates one has

K (χ, P ) = ω1P2 + εK1(χ, P ) + ε2
K2(χ, P ) +O(ε3). (10)

Since P2 is integral of motion and the Hamiltonian does not depend on χ2 we can plot
the level curves in the χ1, P1-plane. This is done in Figure 1. Let us first look at the level
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Figure 1: Typical level curves of Hamiltonian (10) without (left column) and with (right
column) the O(ε2) term in the case of q = 1. Note that in the left picture the
curved lines does not approach asymptotes χ1 = π/2, 3π/2.

curves of the first order approximation. If we fix initial conditions χ(0) ∈ T2, P (0) ∈ R2

then the equality
K (χ, P ) = K (χ(0), P (0))

defines implicitly P1 as a function of χ1. Since P2 is conserved one gets
(

β

β0

)p

=
sin
(

pπ
2

+ χ1(0)
)

sin
(

pπ
2

+ χ1

)
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if sin
(

pπ/2 + χ1(0)
)

6= 0. Note that

0 < β =

√

pP1 + (1− p)P2

pP1 + (1− p)P2 + pθ
< 1,

therefore χ1 varies between two roots of equation

β−p
0 =

sin
(

pπ
2

+ χ1(0)
)

sin
(

pπ
2

+ x
)

which are nearest to χ1(0) and P1 approaches infinity as χ1 tends to these roots. On the

other hand, if sin
(

pπ/2 + χ1(0)
)

= 0 then χ1 = χ1(0) and P1 can be arbitrary (more

precisely bounded from below by p−1
p
P2(0)). This exactly corresponds to the left picture

of Figure 1.
Since the second order correction K2 is complicated, it is impossible to carry out the

procedure described above. However, since limJ1→∞ K2(ψ, J) = 0 for any ψ ∈ T2 one
can argue, that the picture described by the first order approximation will not be spoilt
by the second order term. Also note that because J1 = pP1 + (1− p)P2 and J1 plays role
of I1 which was originally the action I, we just showed, that in the case Ω/b ∈ N the
resonant behaviour described at the end of Section 1 will occur.

3.2 The case of q = 2

In general, for q > 1 it is true that K1(ψ, J) = 0. Also for any q > 1 it is possible to
compute4 the function S1:

S1(ϕ, J) =
1

2
ℜ
[

− 2i arctan
β cosϕ1

1 + β sinϕ1

+
ω1

ω1 − ω2

iβeiϕ1
2F1

(

1, 1− ω2

ω1

, 2− ω2

ω1

, iβeiϕ1

)

+
ω1

ω1 + ω2

iβe−iϕ1
2F1

(

1, 1 +
ω2

ω1

, 2 +
ω2

ω1

,−iβe−iϕ1

)]

exp(−iϕ2)

The second term of the approximate Hamiltonian is nontrivial

K2(ϕ, J) = − ω2p

24pθ(1 + p/2)
βp
(

1− β2
)2

2F1

(

1, 1 +
p

2
, 2 +

p

2
, β2
)

cos(pψ1 − 2ψ2 + pπ/2)

− pω2

25pθ

(

1− β2
)2
(

1

1− p/22F1

(

1, 1− p

2
, 2− p

2
, β2
)

+
1

1 + p/2
2F1

(

1, 1 +
p

2
, 2 +

p

2
, β2
)
)

+
ω2

8pθ
(1− β2)βp sin(pψ1 − 2ψ2 + pπ/2)

Again, we have one integral of motion. Following the same steps as in the end of the last
subsection, but with the matrix

R =

(
p −2

1−p
2

1

)

,

4The symbol 2F1(a, b, c, z) stands for the Gauss hypergeometric function.
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it follows that P2 = 2J1 + pJ2 is conserved. For the level curves in the χ1, P1-plane see
Figure 2. It appears that in this case it is not possible to have P1 →∞. Let me just note
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Figure 2: Typical level curves of the transformed Hamiltonian K (χ, P ) = ω1

2
P2 +

ε2K2(χ, P ) in the case of q = 2.

that it is possible to compare these level curves with numerical solution of the original
system of equations.

3.3 The case of q ≥ 3

As was said earlier, the first order term is trivial, K1(ψ, J) = 0. The second order term
is independent5 of ψ and reads

K2(ψ, J) = − ω2
2

24pθ

(

1− β2
)2

×
[

1

ω1 − ω2
2F1

(

1, 1− ω2

ω1
, 2− ω2

ω1
, β2

)

+
1

ω1 + ω2
2F1

(

1, 1 +
ω2

ω1
, 2 +

ω2

ω1
, β2

)]

.

Therefore, the second order von Zeipel’s Hamiltonian is given by

K (ψ, J) = ω · J + ε2
K2(J).

The equations of motion for this Hamiltonian are trivial and can be easily integrated.
Note that this was not possible in the preceding cases. The solution is simply

ψ(t) = ∂JK (ψ(0), J(0))t+ ψ(0), J(t) = J(0).

It follows that in this case the original action I is bounded and no resonance appear.

5It can be shown, that if ω2/ω1 = p/q, then the first term which depends on ψ is the q-th one.
Therefore the slow evolution of action coordinates is negligible with increasing q.
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4 Summary

Let us conclude that with the aid of von Zeipel’s method it was shown that in case of
simple sinusoidal flux the resonant behaviour can be observed only if the ratio of the flux
frequency and the strength of the field is a natural number, i.e. Ω/b ∈ N. By resonance
we mean here that the motion of the particle will be exactly as described in the end of
the Section 1, in particular that for any initial conditions the set {r(t)}t≥0 ⊂ R has 0 and
+∞ as accumulation points.
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Abstract. Bone remodelling model that we formulated in previous years ago went through
small modifications recently to better describe the bone renewal phenomenon. A rather large
recherche was carried out to determine the model parameters to reach not only qualitative but
also quantitative results. A great advantage of presented model is that all the parameters are
real and measurable and thus by thorough search in literature we were able to set almost all
of them. The remaining were obtained as a solution of nonlinear programming problem. As a
consequence the model could be used for predictions on the tissue level.

Abstrakt. Model pro remodelaci kostí, který jsme formulovali v předchozích letech, prošel
menšími úpravami, aby přesněji popisoval jev znovuobnovy kosti. Provedli jsme poměrně znač-
nou rešerši, abychom určily parametry modelu, což umožní dosahovat nejen kvalitativních ale
i kvantitativních výsledků. Velikou výhodou prezentovaného modelu je reálnost a měřitelnost
jeho parametrů, a tedy pomocí důkladného prozkoumání dostupné literatury jsme jich byli
schopni nastavit většinu. Zbylé byly získány jakožto řešení úlohy nelineárního programování.
Nyní může být model používán pro predikci na tkáňové úrovni.

1 Introduction

Bone is a living tissue that is constantly being renewed. The cells that participate in
the process are the osteoblasts(bone forming), osteoclasts(bone dissolving), and osteo-
clasts(bone cells). They form a temporary anatomical structure, called basic multicellular
units, that carry out the remodelling process. A number of factors affect bone turnover,
including hormones, cytokines, and mechanical stimuli. Mechanical loading is believed
to be of very high significance as a stimulus for bone cells, which ensures proper bone
strength and prevents high bone loss with age.
Bone remodelling also repairs an accumulated damage from everyday loading by re-

newing the tissue, plays an important role in metabolism since bone is used as a reservoir
of many minerals (e.g calcium, potassium) and hormones (e.g. parathyroid hormone
PTH) and remodelling process is a way to access these storages.
In our approach, we describe the mentioned phenomenon using the following stoichio-

metric equations:

RR +MCELL
k±1

⇄ MNOC +N4, (1)

∗This research has been supported by the Czech Science Foundation project no. 106/08/0557, by
Research Plan No. AV0Z20760514 of the Institute of Thermomechanics AS CR, and by Research Plan
MSM 6840770010 ’Applied Mathematics in Technical and Physical Sciences’ of the Ministry of Education,
Youth and Sports of the Czech Republic.
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where RR are ligand-receptor (RANKL-RANK) bounds between OB andMCELL (pre-
cursor of osteoclast) that are needed to enable formation of multinucleated osteoclasts
MNOC from mononuclear cells (MCELL) [16]. N4 is a remaining product from reaction
(1). Bone decomposition can be characterised by following chemical reaction:

MNOC +Old B
k±2

⇄ N6 + LF, (2)

where Old B denotes old bone. During resorption, the osteoclasts release local factors
LF (mainly growth factors) from bone, which play role in activation of osteoblasts OB
[4].

LF + osteoprogenitor
k±3

⇄ OB +N10 (3)

OB +N11

k±4

⇄ Osteoid+N13, (4)

where N10, N13 are remaining substratum. The longest period in bone remodelling pro-
cess pertains to mineralisation (depositing calcium, etc. – N14 – into matrix) of osteoid.
Ossification of osteoid (the primary ossification) into new bone tissue may be charac-
terised by:

N14 +Osteoid
k±5

⇄ New B +N16, (5)

where New B denotes new bone formed by remodelling process and N16 is the residuum
of bone formation reaction.
Kinetics of the above mentioned processes is governed by the following system of

ordinary differential equations (obtained from law of active mass ; for more details see
some of our previous work - e.g. [8, 9, 10]):

∂nMCELL

∂τ
= −δ1(β1 + nMCELL)nMCELL + J3 + JNew B −D1 (6)

∂nOld B
∂τ

= −(β3 − nMCELL + nOld B)nOld B −D2 + JNew B (7)

∂nOB
∂τ

= δ3(β6 − nOld B − (nOB + nOsteoid + nNew B)) ·
·(β8 − (nOB + nOsteoid + nNew B))− (8)

− δ4(β11 − (nOsteoid + nNew B))nOB +D3 −D4

∂nOsteoid
∂τ

= δ4(β11 − (nOsteoid + nNew B))nOB −
− δ5(β14 − nNew B)nOsteoid +D4 −D5 (9)

∂nNew B

∂τ
= δ5(β14 − nNew B)nOsteoid − JNew B +D5, (10)

where index i relates to substances and index α to reactions, βi is a sum of normalised
initial molar concentrations of relevant substances, δα relate to chemical reaction rate,
parameter Dα describes the influence of dynamic loading on chemical reactions, and ni
is a normalised concentration of i-th substance.

2 Parameters setting

It is very important to know stationary solution of dynamic system (6)-(10) because
(if stable) it gives us some idea about solution of ODEs and necessary conditions for
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parameters may be derived. Because (6)-(10) describe evolution of normalised molar
concentrations, it is needed to ensure that the solution is positive for all t > 0. Moreover,
appropriate linear combinations of solution which represent all the other involved sub-
stances need to be positive too. There is just one positive stationary solution satisfying
these necessary conditions.
All used parameters in this model are realistic and measurable. Unfortunately, we do

not have nowadays enough knowledge for precise identification of all of them. However,
we can perform reasonable estimation based on experiments and nowadays knowledge
of the process found in literature. Firstly, the parameters δα will be determined. Since
ODEs (6)-(10) are in dimensionless form, these parameters representing chemical reaction
rate can be assigned just from ratio of reaction rates:

δα =
k+α

k+2

[1], k+2 . . . chemical reaction rate of 2nd reaction (11)

In literature, we may find that resorption carried out byMNOC (second reaction (2))
lasts 20 days [16]. Further, the reversal phase (third reaction (3)) lasts approximately
9-10 days [4, 16]. The osteoid production by OB is the longest part of BR process and
it lasts 90-140 days [16, 4]. Consecutive mineralisation is almost never ending but the
primary ossification, which completes the formation of new bone from osteoid, has time
span similar to osteoid formation [18]. Time needed for the creation of active resorbing
osteoclasts (MNOCs) by merging osteoclast precursors (MCELL) was not found in
literature but it can be assumed that it is much faster than the previous mentioned
reactions. We postulate it to be one hour. In total, we have:

δ1 =
k+1

k+2
=
T2

T1
=

20days

1h
.
= 480, δ3 =

k+3

k+2
=
T2

T3
=

20days

9days
.
= 2,

δ4 =
k+4

k+2
=
T2

T4
=

20days

140days
=

1

7
.
= δ5,

(12)

For further parameter setting we need to estimate resorption rate of bone (Old B).
Kanehisa [7] states that a single MNOC resorbs 43µm3 to 1225µm3 of bone per hour
with mean value 390µm3/hr, which will be used in following considerations. To obtain
total resorption rate in bone, an estimation of total active MNOC in body is needed.
In typical BMU (basic multicellular unit - [2, 12]) there are 9 MNOC ’at the front’ of
cutting cone and approximately 2000 OBs at the end [17]. We may verify this quantity
of MNOC present in BMU: Eriksen states that typical osteoclast (MNOC) diameter
is 50 µm [1]. Thus really 9 or 10 MNOCs fill the front line of ’cutting cone’ [12] with
diameter of 200−250 µm. Further, Manolagas states that 1 milion BMU operates at any
moment in body [11]. If we use these data, the resorption in human body per hour is

390 · 9 · 106µm3/h
.
= 3.5mm3/h. (13)

In other words, the whole skeleton which has a volume of 1.75 106mm3 [6] would be
resorbed in 1.75 106/3.5 = 5 105h

.
= 57years. On the other hand, it is often stated

that bone remodels once every 5-7 years. From here it is apparent that it is needed to
modify the assertion of Manolagas and state that approximately 107 BMU operates at
any moment in body instead of 106.
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Now it is possible to determine concentration of MNOC, OB, and Old B (=osteo-
cytes - OCy) in human bone

[MNOC] =
9 107

NA

1

1.75

mol

l
.
= 5.14

107

NA

mol

l
, (14)

[OB] =
2000 107

NA

1

1.75

mol

l

.
=

1010

NA

mol

l
, (15)

where NA represents Avogadro’s number. As was mentioned, ODEs (6)-(10) describing
BR process are in dimensionless form which is very usefull for mathematical analysis.
One consequence, of course, is that all concentration are normalised with respect to
concentration of bone tissue - osteocytes. It is often stated that amount of MNOC
together with OB are around 5% in human bone. Robling mentions that the ratio of
[OCy] to ([OB] + [MNOC]) is around 20 [16], which also supports our belief that [OCy]
is determining for bone tissue concentration.
Correct estimation of chemical reaction rate k+2 is crucial for finding relation between

real time t and computational time τ = t k+2[Bo], where [Bo] is initial concentration of
bone tissue which is used for normalisation, i.e. [Bo] = [Old Bini] + [New Bini]. From
second reaction (2)

[Old B]

[Old Bini]
= exp(−k+2[MNOC] △ t), (16)

where [Old Bini] is the initial concentration of old bone at time t = 0 and [Old B] at time
t =△ t. To set the k+2 parameter, it is needed to calculate the concentration change of
old bone in time caused by MNOC. It was already mentioned that 1 MNOC dissolves
390µm3/h of bone tissue in average. Since

[Old B] = [OCy]
.
= 20[OB], (17)

we have

[Old B] = 20
1010

NA

mol

l
= 2 10−4 1

NA

mol

µm3
, (18)

which means that there is approximately 1 OCy in every 5000µm3. To verify this num-
ber as well as previous estimates, we will calculate an average distance between OCy:
dist = 3

√
5000− 3

√
3
√

5000
.
= 17− 29µm, which is in very good correlation with Sugawara

observation: 24.1±2.8µm [19]. In total, 1MNOC dissolves 3.9 102 ·2 10−4 = 7.8 10−2 of
OCy per hour, i.e. 7.8 10−2

3.6 103 = 2.17 10−5 OCy per 1s. We may (without loss of generality)
further assume that this rate is independent on MNOC concentration, i.e. noncompet-
ing. Finally, the time change of [Old B] decreases every second in following manner (using
eq (14)):

△ [Old B]

△ t = 1s
=
△ [OCy]

1s
=

5.14 107 · 2.17 10−5

NA

.
=

1.12 103

NA

mol

ls
, (19)

and thus the value k+2 satisfies (relation (16) used)

[Old B]

[Old Bini]
=

[Old Bini]− △ [Old B]

[Old Bini]
=

20 1010 − 1.12 103

20 1010

NA

NA
= 1− 5.6

109
=

= exp(−k+2 ·
5.14 107

NA

) =
∞∑

n=0

(

−k+2 · 5.14 107

NA

)n

n!
≈ 1− k+2 ·

5.14 107

NA

.

(20)
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By solving the last equation we obtain

k+2 =
5.6

5.14

NA

1016

.
= 6.5 107mol

l
. (21)

Interestingly, we may infer this value from a very different point of view: let us assume
that OCy are located so that they are ’tuned’ together to communicate. Speed of wave
propagation in bone (fluid) is around 2900 m/s [14] and when realizing that typical
distance between OCy is 20µm (which corresponds to λ/2) we have

f =
2900m/s

2 · 20 10−6m
⇒ T =

2π

f
=

8π

29
10−7s.

Since concentration changes with time proportionally to concentration (with coefficient
k+α) we have

dc

dt
= −k+αc⇒

c(t)

c0
= exp(−k+αt) (22)

¿From here it can be seen that 1
k+α
equals to characteristic time, and it may be summarised

from (22) that k+α ∼ 1
T

.
= 29

8π
107 .

= 1.15 107. If we compare these two estimates, we see
that they are closely related. It would be interesting to test the second hypothesis - to
see whether the distance among OCy is so crucial for proper mechanosensing/function
of bone adaptation.
Knowledge of the k+2 value enables us to find the relation between computational

time τ and real time t

τ = k+2[Bo]t = 6.5 107 · 20 1010

NA

t
.
= 2 10−5t. (23)

Useful information for further parameter setting is to know the time τ equivalent to 1
day and duration of BR cycle(1h + 20d+ 9d+ 140d+ 140d ≈ 310d):

τday = 2 10−5 · 24 · (60)2 .
= 1.7 τBR = τday · 310 = 527. (24)

BR creates a new bone after 310 day by replacing old bone tissue. This new bone
tissue, as it is called, is a regular bone tissue that has just been recently formed and has
smaller mineral content since the secondary ossification has not started yet. Nevertheless
it can be remodelled if needed. The model has the same features - it creates a new
bone tissue which is transformed into Old B. This transformation is realized by fluxes of
particular substances - outflow of New B (JNew B) and inflow of Old B (JOld B). In the
model it holds:

JOld B = JNew B (25)

which guarantees us that 1 mol of New B is changed into 1 mol of Old B (actually, we
may now rename Old B simply into Bone and New B into formationindex because
new bone New B after being formed is changed into Old B which then represents total
amount of bone). Now, we will calculate the value of JOld B. We know that 1 MNOC
resorbs 390µm3/h and in whole skeleton there are 9 107 MNOCs which means that
3.5 1010µm3/h = 35mm3/h of bone tissue is removed. Because bone tissue is mostly
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in equilibrium (resorption is balanced with formation), we may assume that the same
amount of bone is produced and resorbed:

d

dt
[Old B] = resorbtion + JOld B

equilib
= 0⇒

⇒ JOld B = resorbtion = 35mm3/h
.
= 107µm3/s,

(26)

and thus amount of bone resorbed per second in mols is

△ #Old B

△ t
= 107 · 2 10−4/NA = 2 103/NAmol · s−1, (27)

where equation (18) was used and when realizing that skeleton has volume of 2l we may
conclude

△ [Old B]

△ t
=

2 103

2NA
=

103

NA

mol

l
= JOld B (28)

⇒ JOld B = JOld B ·
1

k+2[Bo]2
.
= 3 10−4. (29)

Bone remodelling is a very long process. Cells taking part in it must be several times
replaced. This fact is actually exploited by body itself as a control mechanism - e.g. estro-
gen promotes osteoclast apoptosis [17]. Apoptosis of MNOC plays substantial role since
its mean life in vivo is 3 days [20]. Using this knowledge we may determine J3(=negative
flux of MNOC=MNOC apoptosis) analogically to (28):

decrease of [MNOC]/s =
#MNOC

volume · time =
9 107

2l · 3 · 24h
=

1.7 102

NA

mol

l · s (30)

⇒ J3

JNew B

=
1.7 102

NA

· NA

103
=

1

6
. (31)

Another family of parameters - βi - are determined by sum of normalised initial
concentrations of appropriate substances

β6 =
[Old Bini] + [New Bini] + [Osteoidini] + [OBini] + [N6ini]

[Bo] = [Old Bini] + [New Bini]
.
=

.
= 1 +

[Osteoidini] + [OBini] + [N6ini]

[Old Bini]
= 1 +

0 + 1/20[Old Bini] + 0

[Old Bini]
= 1.05,

(32)

where relation between OB and OCy was used and a consideration that remaining prod-
uct (N6) and osteoid are not present in given volume when BR is initiated. Similarly

β8 =
[osteoprogenitorini] + [New Bini] + [Osteoidini] + [OBini]

[Bo]
=

1

10
, (33)

β14 =
[New Bini] + [N14ini]

[Bo]
=

1

20
, (34)

β11 =
[New Bini] + [Osteoidini] + [N11ini]

[Bo]
= 0.7, (35)

β1 =
[RRini]− [MCELLini]

[Bo]
=

1

4
, (36)

β3 =
[MNOCini]− [Old Bini] + [MCELLini]

[Bo]
= 0. (37)
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Last group of parameters, Dα, describes the effect of dynamic loading on rate of
chemical reactions:

Dα =
lαvd(1)

k+2[Bo]2
[1], (38)

rα = lαvd(1) + lααAα (39)

where d(1) = divv = ∂v1
∂x1

+ ∂v2
∂x2

+ ∂v3
∂x3

= −1
ρ

dρ
dt
is the trace of the deformation rate tensor,

ρ is concentration of material, rα and Aα is a chemical reaction rate and affinity of the
α−th reaction, respectively. In case of thermodynamic equilibrium, all quantities depend
on equilibrial values (T, eeq, [Ni]eq). When the system is deflected from equilibrium, they
may be described using the following linear relations (Curie-Prigogine principle - linear
nonequilibrium thermodynamics [13]):

rα = lα vd(1) + lα αAα, (40)

pα = lv αd(1) + lv vAα, (41)

where lv v, lα v = lv α, lα α are functions of temperature T , and the invariants of a strain
rate tensor dij, i.e. d(1) - volume rate, d(2) - shear rate. We assume that the process
is isothermic (body temperature), further that the linear dependence in equation 40 is
sufficient to describe the dependence on d(1), and that the influence of shear rate is
constant, i.e. we assume that shape and size of canaliculi, lacunas, and osteocytes in
bone does not change noticeably. Elastic deformations of canaliculi and lacunas induce
both their volume deformation and shear bone fluid flow past osteocytes. The measure of
these stimulations is summarised in the phenomenological coefficients lv v, lα v, lα α which
can be patient (genetically) dependent.
As can be seen from (38), we need to determine the influence of mechanical loading

on each chemical reaction. The unknown parameters lαv were calculated as a solution
of constraint extremum problem (or minimisation problem of appropriate functional) for
unknowns lαv:

[OB]% = 4.5% (42)

with constraints:

ρmax

ρmin

= 20 (43)

[MNOC]% = 0.023%⇐⇒ [OB]

[MNOC]
=

2000

9

.
= 200 (44)

and conditions describing that concentrations of all substances in stationary solution
are positive. We know that spongy bone is located in part of bone which experiences
smaller deformations/strains, and conversely cortical bone creates weightbearing support
on outer cortex. We used this fact for setting lαv so that the maximal (found in cortical
bone - the properly loaded case) and the minimal apparent density (found in spongy
bone - unloaded case leads to minimal density) in stationary state are in the following
relations:

ρ = ρ(d(1)) ⇒ ρmax

ρmin
=

ρcort, max

ρspongy, min
=

2.0 g/cm3

0.1 g/cm3
= 20 (45)
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which guarantees us correct range of apparent bone density [5, 15, 3]. The equation (42)
ensures that the percentage of osteoblasts OB in a stationary state will be 4.5% and
similarly the relation (44) ensures the correct MNOC percentage.
Even if all stationary solutions are positive, it is still needed to check whether all

the concentrations of substances are positive for all time t > 0. Dα parameters that
solve above mentioned constraint extremum problem and also satisfies conditions from
previous sentence are listed in table 46.

δ1 = 480, δ3 = 2, δ4 = 1
7 = δ5

β1 = −0.5, β3 = 0.4, β6 = 1.02, β8 = 1
10 , β11 = 1

3 , β14 = 1
20

JOld B = JNew B = 3 10−4, J3 = 1
6J5,

l1v = −8.96 10−13mol
l , l2v = 4.1 10−19mol

l , l3v = −2.82 10−17mol
l ,

l4v = −7.91 10−18mol
l , l5v = 5.91 10−19mol

l .

(46)

3 Discussion and Conclusion

The bone remodelling process together with its control is still not fully understood even
if there has been a great step forward in last decade, especially on the cellular level.
It is very important to be able to predict response of bone to varying condition - both
mechanical (e.g. joint implants) and biological (e.g. hormonal) changes. Models that are
nowadays used for simulation of BR are still not sufficient.
The model here presented combines both the mechanical stimuli and biochemical

control. With current settings of parameter the model has all the following features that
already describe the bone remodelling process to reasonable extent:

• realistic and measurable model paramteres

• positiveness of all molar concentration of involved substances

• unique positive stationary solution

• rate of chemical reactions

• resorption rate of bone

• number of active BMU (active remodelling foci)

• molar concentrations: [MNOC], [OB], [OCy]

• relation between time scales(computational and real time)

• 1 mol of New B transforms into 1 mol of Old B (mass may differ)

• MNOC apoptosis (mean life in vivo is 3 days; compare to BR)

• initial concentration of involved substances

• the influence of mechanic stimuli on reaction rates-determined by solving the min-
imalisation of appropriate functional with constraints such as ρmax

ρmin
= 20.
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We are about to start using the presented model for predicting bone adaptation in humans
and use the results for further verification.

Acknowledgement
I would like to thank to my supervisor Professor F. Maršík, Eng., D.Sc. for gratuitous
passing of know-how, for advice, pleasant consultations, and help with writing this article.
This research has been supported by the Czech Science Foundation project number

106/08/0557, by Research Plan No. AV0Z20760514 of the Institute of Thermomechanics
AS CR, and by Research Plan MSM 6840770010 ’Applied Mathematics in Technical and
Physical Sciences’ of the Ministry of Education, Youth and Sports of the Czech Republic.

References

[1] E. F. Eriksen and M. Kassem. The cellular basis of bone remodelling. Triangle 31
(1992), 45–57.

[2] H. M. Frost. Tetracycline-base histological analysis of bone remodelling. Calcif Tissue
Res (1969), 211–237.

[3] B. Helgason, E. Perilli, E. Schileo, and F. Taddei. Mathematical relationships between
bone density and mechanical properties: A literature review. Clinical Biomechanics
23 (2008), 135–146. doi:10.1016/j.clinbiomech.2007.08.024.

[4] P. A. Hill. Bone remodelling. British Journal of Orthodontics 25 (1998), 101–107.

[5] R. Hodgskinson and J. D. Currey. Youngś modulus, density and material properties
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Abstract. The aim of our work is to compute the (factor) complexity function C(n) of the infinite
word uβ associated with β-expansions, where β is a non-simple Parry number. In general it is
hard to find an explicit formula for the complexity function of an infinite word u and it seems
it holds also for the case of uβ. However, we are able to find all left special factors that, in
a certain sense, completely determine the complexity. The notion of (right) special factor was
introduced by Berstel in 1980 and considerably enhanced by Cassaigne in his paper from 1997.
We introduce another slight enhancement, a tool that will help us to identify all infinite left
special branches of a fixed point of substitutions satisfying some natural assumption. Further,
the knowledge of the structure of left special factors will allow us to formulate a simple sufficient
and necessary condition for the complexity of uβ to be affine.

Abstrakt. Cílem naší práce je najít (faktorovou) komplexitu C(n) nekonečného slova uβ přís-
lušného β-rozvojům, kde β je nejednoduché Parryho číslo. Obecně je často nemožné najít explic-
itní formuli popisující komplexitu nekonečného slova a zdá se, že to platí i pro případ, kdy jako
nekončné slovo bereme uβ. Přesto se dá docílit alespoň nepřímého popisu faktorové komplexity a
to za pomoci levých speciálních faktorů, které v jistém smyslu komplexitu zcela určují. Metoda
výpočtu komplexity pomocí (pravých) speciálních faktorů byla poprvé uvedena v Berstelově
článku v roce 1980 a významně rozvinuta v Cassaigneho článku z roku 1997. Výsledkem naší
práce je pak další rozšíření, které umožňuje nalézt všechny levé nekonečné speciální větve pro
pevné body substitucí splňujících poměrně obecné předpoklady. Dalším důležitým výsledkem
je, mimo nalezení všech levých speciálních faktorů slova uβ, také jednoduchá formulace nutné
a postačující podmínky pro to, aby komplexita uβ byla afinní funkcí.

1 Introduction

Generally speaking, our aim is to understand the combinatorial structure of aperiodic
infinite words over a finite alphabet. In particular, we are interested in the word uβ
associated with β-numeration, where β is a non-simple Parry number. In order to be
able to better explain the problem, we need some basic notation.

Definition 1. Let A = {0, 1, . . . , q − 1}, q ≥ 1 be a finite alphabet. An infinite word
over the alphabet A is a sequence u = (ui)i≥1 where ui ∈ A for all i ≥ 1. If v =
ujuj+1 · · ·uj+n−1, j, n ≥ 1, then v is said to be a factor of u of length n and the index j
is an occurrence of v, ǫ is the factor of length 0.
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By Ln(u) we denote the set of all factors of u of length n ∈ N, the language of u is
then the set L(u) =

⋃

n∈N
Ln(u).

Definition 2. An infinite word u is said to be eventually periodic if u = v1v2v2v2 · · · =
v1(v2)

ω, where v1 and v2 are finite words and v2 is non-empty. If u is not eventually
periodic, then it is aperiodic.

From our point of view, eventually periodic words are not interesting as their structure
is completely described by the simple finite rule. No such a rule exists in the case of
aperiodic words, therefor some tools how to measure their irregularity have been proposed.
One of such basic tools is the (factor) complexity function C : N → N, which counts the
number of factors of a given length, i.e.

C(n) = #Ln(u),

where #A is the number of elements of a set A. It is easy to realize, that the complexity
of u is bounded if and only if u is eventually periodic. Other known results on the
complexity functions are listed in the following proposition.

Definition 3. A mapping ϕ which maps each letter of a finite alphabet A to a finite word
over the alphabet is a substitution.
A substitution ϕ is primitive if there exists k ∈ N such that for all a, b ∈ A the word

ϕk(a) contains b.

Proposition 4. Let u be an infinite word over a finite alphabet A.

(i) 0 ≤ C(n) ≤ (#A)n,

(ii) u is aperiodic if and only if the first difference of the complexity function is positive,
i.e. △C(n) := C(n + 1)− C(n) ≥ 1, for all n ∈ N,

(iii) if u is a fixed point of a primitive substitution then C(n) is a sublinear function,
i.e., C(n) ≤ an+ b, for some a, b ∈ N,

(iv) if u is a fixed point of primitive substitution then △C(n) is bounded.

Items (i) and (ii) are obvious, (iii) is due to [15], (iv) was proved in [13] and in a
more general context in [5]. For more properties see e.g. [1].
Infinite words appears in various fields of mathematics [4]. The word uβ we are

interested in has origin in the theory of non-standard numeration, namely β-numeration.
For more on this topic see [12].

β-numeration is a generalization of the classical numeration, when each number is
represented as a sum of powers of an integer base b > 1. Humans use the representation
in base b = 10, computers use binary representation b = 2. For each positive real number
x one can found its representation in base b using a greedy algorithm:

1. Find k ∈ N such that bk ≤ x < bk+1.

2. Set xk := ⌊x/bk⌋ and rk := {x/bk}.
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3. For 0 ≤ i < k, let xi = ⌊bri⌋ and ri := {bri+1}.

⌊x⌋ is the integer part and {x} is the fractional part of a real number x. Obviously, digits
xi takes value in the set {0, 1, . . . , ⌊b⌋ − 1}. If b > 1 is an integer, we obtain classical
representation in an integer base. If we replace b by some non-integer number β > 1, we
obtain the β-expansion of x.
For x ∈ [0, 1), the β-expansion can be computed also by using the piecewise linear

map Tβ : [0, 1) → [0, 1) defined as Tβ(x) = {βx}. The sequence dβ(x) = x1x2x3 · · · is
obtained by iterating Tβ with xi = ⌊βT i−1

β (x)⌋. The difference between β-expansion and
dβ(x) arises for x = 1 since the Rényi expansion of unity dβ(1) is not a β-expansion.
Parry [14] showed that dβ(1) plays a very important role in the theory of β-numeration.
Among other things, it allows us to define Parry numbers.

Definition 5. A real number β > 1 is said to be a Parry number if dβ(1) is eventually
periodic. In particular,

a) if dβ(1) = t1 · · · tm is finite, i.e. it ends in infinitely many zeros, then β is a simple
Parry number,

b) if it is not finite, i.e. dβ(1) = t1 · · · tm(tm+1 · · · tm+p)
ω, then β is called a non-simple

Parry number.

Note, that the parameters m, p > 0 are taken the least possible. It implies that
tm 6= tm+p which will be a very important fact.
As the infinite word uβ is tightly connected with a geometrical interpretation of β-

integers, we first introduce β-integers along with some of their properties.

Definition 6. The real number x is a β-integer if the β-expansion of |x| is of the form
∑k

i=0 aiβ
i. The set of all β-integers is denoted by Zβ.

The definition of β-integers coincides with the definition of classical integers in the case
of β in Z. But there are several new phenomena linked with the notion of β-integers when
β is not an integer. For our purposes, the most interesting difference between classical
integers and β-integers is the difference in their distribution on the real line. While the
classical integers are distributed equidistantly, i.e. gaps between two consequent integers
are always of the same length 1, the lengths of gaps between β-integers can take their
values even in an infinite set. More precisely, Thurston [16] proved the following theorem.

Theorem 7. Let β > 1 be a real number and dβ(1) = (ti)i≥1. Then the length of gaps
between neighbors in Zβ takes values in the set {△0,△1, . . .}, where

△i =
∑

k≥1

tk+i
βk

, for i ∈ N.

Corollary 8. The set of lengths of gaps between neighbors in Zβ is finite if and only if β
is a Parry number. Moreover, if β is a simple Parry number, i.e. dβ(1) = t1 · · · tm,
the set reads {△0,△1, . . .△m−1}, if β is a non-simple Parry number, i.e. dβ(1) =
t1 · · · tm(tm+1 · · · tm+p)

ω, we obtain {△0,△1, . . .△m+p−1}.
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Now, let us suppose that we have drawn β-integers on the real line and assume that
β is a Parry number. If we read the length of gaps from zero to the right, we obtain an
infinite sequence, say {△ik}k≥0. Further, if we read only indices, we obtain an infinite
word over the alphabet {0, . . . , m− 1} in the case of simple Parry numbers, and over the
alphabet {0, . . . , m+p−1} in the non-simple case. The obtained infinite word is just the
word uβ we are interested in. However, there exists another way to define it. Fabre [9]
proved that uβ can be defined as the unique fixed point of a substitution ϕβ canonically
associated with a Parry number β and defined as follows.

Definition 9. For a simple Parry number β the canonical substitution ϕβ over the alphabet
A = {0, 1, . . . , m− 1} is defined by

ϕβ(k) =

{

0tk+1(k + 1) if k ∈ A \ {m− 1},
0tm if k = m.

Definition 10. For a non-simple Parry number β the canonical substitution ϕβ over the
alphabet A = {0, 1, . . . , m+ p− 1} is defined by

ϕβ(k) =

{

0tk+1(k + 1) if k ∈ A \ {m+ p− 1},
0tm+pm if k = m+ p− 1.

We see that the definition of ϕβ is given by dβ(1) and that the only difference between
simple and non-simple cases appears in the image of the last letters m−1 and m+ p−1.
While in the simple case the last letters of images ϕβ(k), k = 0, 1, . . . , m−1, are all distinct
and so the images form a suffix-free code, in the non-simple case either ϕβ(m) = 0tmm is
a prefix of ϕβ(m + p− 1) = 0tm+pm or vice versa. As we will see later on, this property
is crucial from the point of view of computing the complexity of the infinite word uβ.

Definition 11. Let β > 1 be a Parry number. The unique fixed point of the canonical
substitution ϕβ is denoted by

uβ = lim
n→∞

ϕnβ(0) = ϕ∞
β (0).

The uniqueness of uβ follows from the definitions of ϕβ, the letter 0 is the only
admissible starting letter of a fixed point.

2 Special factors and factor complexity

In this section, we will recall the notion of special factors of an arbitrary infinite word
and we will explain how the structure of special factors of an infinite word determines its
factor complexity.
In what follows, we shall restrict ourself to those infinite words which are fixed point

of some substitution ϕ defined over a finite alphabet A. We shall further assume that ϕ
is injective and primitive.
It is well known that any fixed point of a primitive substitution is uniformly recurrent,

i.e. if each factor occurs infinitely many times and the gaps between its two consecutive
occurrences are bounded in length. It implies that each factor is extendable both to the
right and to the left.
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Definition 12. Let v be a factor of u, the set of left extensions of v is defined as

Lext(v) = {a ∈ A | av ∈ L(u)}.

If #Lext(v) ≥ 2, then v is said to be a left special (LS) factor of u.
In the analogous way we define the set of right extensions Rext(u) and a right special

(RS) factor. If v is both left and right special, then it is called bispecial.

The connection between (left) special factors and the complexity follows from the
following reasoning. Let us suppose that Ln(u) = {v1, . . . , vk} and let Lext(vi) =

{a(i)
1 , . . . , a

(i)
li
}, li ≥ 1, i = 1, . . . , k. Now, it is not difficult to realize that

Ln+1(u) = {a(1)
1 v1, . . . , a

(1)
l1
v1, a

(2)
1 v2, . . . , a

(k−1)
lk−1

vk−1, a
(k)
1 vk, . . . , a

(k)
lk
vk},

i.e. by concatenating all factors of length n and all their left extensions we obtain all
factors of length n+ 1. It implies that

#Ln+1(u)−#Ln(u) =△C(n) =
∑

v∈Ln(u)
v is LS

(#Lext(v)− 1). (1)

Hence, if we know all LS factors along with the number of their left extensions, we are
able to evaluate the complexity C(n) using this formula.

2.1 Classification of LS factors

Let a, b ∈ Lext(v) be left extensions of a factor v of u, it means that both av and bv are
factors of u. If there exists a letter c ∈ Rext(av)∩Rext(bv), we say that v can be extended
to the right such that it remains LS with left extensions a, b, indeed a, b ∈ Lext(vc).

Definition 13. Let a, b ∈ Lext(v) be distinct left extensions of a LS factor v of u. v is an
(a, b)-maximal LS factor if Rext(av) ∩Rext(bv) = ∅, in words, v can not be extended to
the right such that it remains LS with left extensions a, b.

It can also happen that a LS factor v with left extensions a and b is extendable to
the right infinitely many times remaining LS. In this way we obtain a so-called infinite
LS branch.

Definition 14. An infinite word w called an infinite LS branch of u if each prefix of w
is a LS factor of u. We put

Lext(w) =
⋂

v prefix of w

Lext(v).

Proposition 15.

(i) If u is eventually periodic, then there is no infinite LS branch of u,

(ii) if u is aperiodic, then there exists at least one infinite LS branch of u,
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f-image
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ϕ-image f-image
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ϕ(w) ϕ(w)

Figure 1: Images of LS factors.

(iii) if u is a fixed point of a primitive substitution then the number of infinite LS
branches is bounded.

(i) is obvious, (iii) is a direct consequence of (1) and Proposition 4 (v). Item (ii) is
a direct consequence of the famous König’s infinity lemma [11].
Taking all together, our aim is to find all (a, b)-maximal LS factors and also all infinite

LS branches of u.

Remark 16. The term “special factor” (for us it was RS factor) was introduced in 1980 [2]
and it has been used for computing the factor complexity since then (eg. [3], [8]). The
notations introduced above are based on Cassaigne’s article [6]. An (a, b)-maximal factor
is a new term, actually it is a special case of a weak bispecial factor proposed there. It
is also shown in the article that bispecial factors determine the second difference of the
complexity in a similar way as LS factors determine the first difference of the complexity.

Remark 17. Everything what has been (and will be) defined or showed for LS factors can
be defined or showed similarly for RS factors.

2.2 How to find infinite LS branches

Before introducing a new notion, let us consider for example the substitution

ϕ : 1 7→ 1211, 2 7→ 311, 3 7→ 2412, 4 7→ 435, 5 7→ 534 (2)

with u = ϕ∞(1). Further, let w be a LS factor (or infinite LS branch) of u with left
extensions 1 and 2. Is ϕ(w) again LS factor? From Figure 1 (the first line) we see that
it is not since the letter 1 is its only left extension. In order to obtain a LS factor, we
have to prepend the factor 11 which is the longest common suffix of ϕ(1) = 1211 and
ϕ(2) = 311, then 11ϕ(w) is a LS factor with left extensions 2 and 3. In the case when
Lext(w) = {2, 3} (the second line in Figure 1), ϕ(w) is a LS factor since the longest
common suffix of ϕ(2) = 311 and ϕ(3) = 2412 is the empty word ǫ.

Definition 18. Let ϕ be a substitution defined over an alphabet A. For each couple of
distinct letters a, b ∈ A we define fL(a, b) as the longest common suffix of words ϕ(a)
and ϕ(b).
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Definition 19. Let ϕ be an injective substitution defined over an alphabet A having a
fixed point u. For each unordered couple of distinct letters a, b ∈ A such that Rext(a) ∩
Rext(b) 6= ∅ we define the set gL(a, b) as follows.
(i) If fL(a, b) is a proper suffix of both ϕ(a) and ϕ(b), then gL(a, b) contains just the
last letters of factors ϕ(a)(fL(a, b))

−1 and ϕ(b)(fL(a, b))
−1.

(ii) If fL(a, b) = ϕ(a) (i.e. W.L.O.G. |ϕ(a)| < |ϕ(b)|), then gL(a, b) contains the last
letter of the factor ϕ(b)(fL(a, b))

−1 and all the last letters of factors ϕ(c), where
c ∈ Lext(a) such that Rext(ca) ∩ Rext(b) 6= ∅.

Assumption 20. A substitution ϕ defined over A is injective and it has a fixed point u
such that for all a, b ∈ A, for which gL(a, b) is defined, it holds that #gL(a, b) = 2.
Moreover, if fL(a, b) = ϕ(a) (i.e. W.L.O.G. |ϕ(a)| < |ϕ(b)|) and d is the last letter of

the factor ϕ(b)(fL(a, b))
−1, then for all c ∈ Lext(a) such that Rext(ca) ∩ Rext(b) 6= ∅ it

holds that d is not the last letter of ϕ(c).

Assumption 20 is valid for all suffix-free substitutions since gL(a, b) from point (i)
of Definition 19 contains always just two elements and the case when fL(a, b) = ϕ(a)
never happens. If fL(a, b) = ϕ(a), then Assumption 20 says that if v is a LS factor
with Lext(v) = {a, b}, then the last letter of ϕ(c) is the same for all c ∈ Lext(av) and,
moreover, dϕ(a) is not a suffix of ϕ(b) – in other words, for each LS factor v the factor
fL(a, b)ϕ(v) is again LS. We will see that this complicated assumption is satisfied for the
(not suffix-free) substitution ϕβ, where β is a non-simple Parry number.

Definition 21. Let ϕ be a substitution satisfying Assumption 20. Then for each LS factor
(or infinite LS branch) w having distinct left extensions a and b we define f -image of w
as the factor fL(a, b)ϕ(w).

With respect to the preceding discussion, Assumption 20 says that f -image is al-
ways a LS factor and it has just two left extensions, namely two elements of gL(a, b),
corresponding to two original left extensions a and b.
Assumption 20 along with the notation introduced above allow us to define the fol-

lowing graph.

Definition 22. Let ϕ be a substitution defined over an alphabet A satisfying Assump-
tion 20. We define a directed labelled graph GLϕ as follows:

(i) vertices of GLϕ are all unordered couples of distinct letters a, b such that Rext(a)∩
Rext(b) 6= ∅,

(ii) there is an edge from a vertex (a, b) to a vertex (c, d) labelled by fL(a, b) if gL(a, b) =
{c, d}.

In fact, Assumption 20 states that out-degree of each vertex is exactly one. The
graph GLϕ for our example substitution is drawn in Figure 2, this substitution satisfies
Assumption 20 for it is suffix-free.
Now, let us consider the case when w is an infinite LS branch with a, b ∈ Lext(w), a 6=

b. Obviously, f -image ofw is uniquely given. For most substitutions even a “f -preimage”
of each infinite LS branch exists.
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Figure 2: The graph GLϕ for the Substitution (2).

Assumption 23. An infinite word u is a fixed point of a substitution ϕ satisfying As-
sumption 20. For each infinite LS branch w of u with a, b ∈ Lext(w), a 6= b there exists
at least one infinite LS branch w with left extensions c and d such that f -image of w
equals w and gL(c, d) = {a, b}.

This assumption is very weak. Actually, we have not found any substitution not
satisfying it.

Theorem 24. Let u be a fixed point of a primitive injective substitution ϕ satisfying
Assumption 23 and let w be an infinite LS branch with a, b ∈ Lext(w), a 6= b. Then
either w is a periodic point of ϕ, i.e

w = ϕl(w) for some l ≥ 1, (3)

and (a, b) is a vertex of a cycle in GLϕ labelled by ǫ only or w = sϕl(s)ϕ2l(s) · · · is the
unique solution of the equation

w = sϕl(w), (4)

where (a, b) is a vertex of a cycle in GLϕ containing at least one edge with non-empty
label, l is the length of this cycle and

s = fL(g
l−1
L (a, b)) · · ·ϕl−2(fL(gL(a, b))ϕ

l−1(fL(a, b)). (5)

3 Results for uβ

Definition 25. Let β > 1 be a non-simple Parry number. The set S is defined as follows:
β belongs to S if and only if one of the following conditions is satisfied

a) dβ(1) = t1 · · · tm(0 · · ·0tm+p)
ω and tm > tm+p,

b) dβ(1) = t1 · · · tm−qp
︸ ︷︷ ︸

6=0

0 · · ·0
︸ ︷︷ ︸

qp−1

tm(tm + 1 · · · tm+p)
ω, q ≥ 1, tm < tm+p.

As an outstanding subset of S, we define a set S0 = {β > 1 | dβ(1) = t1(0 · · ·0(t1−1))ω}.
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Due to the previous lemma, β ∈ S if and only if z = sp, s ∈ N.

Proposition 26. Let β > 1 be a non-simple Parry number and let uβ be the fixed point of
the canonical substitution ϕβ. Then

(i) if p > 1, then uβ is an infinite LS branch with left extensions {m,m+ 1, . . . , m+
p− 1},

(ii) if β /∈ S, then uβ is the only one infinite LS branch,

(iii) if β ∈ S, then there are m infinite LS branches

0tmϕm(0tm)ϕ2m(0tm) · · ·
...

ϕm−1(0tm)ϕ2m−1(0tm)ϕ3m−1(0tm) · · · .

There are no other infinite LS branches of uβ.

We have found all infinite LS branches. To obtain complete knowledge of the structure
of LS factors we need to find all (a, b)-maximal LS factors as well. It is possible to do
so but it requires introducing a lot of notations. Therefore, we present only the most
important result formulated as the following lemma.

Lemma 27. β ∈ S0 if and only if uβ contains a finite number of (a, b)-maximal LS factors
for any a, b ∈ A.

It is important since one can prove the following.

Lemma 28. The complexity of uβ is affine if and only if uβ contains a finite number of
(a, b)-maximal LS factors for any a, b ∈ A.

This equivalence is not valid in general, for a counter example see [7]. These two
lemmas give us our main result.

Theorem 29. Let β > 1 be a non-simple Parry number and let uβ be the fixed point of
the canonical substitution ϕβ. The factor complexity of uβ is affine if and only if β ∈ S0.
Then, C(n) = (m+ p− 1)n+ 1. Moreover,

(i) if p > 1 and β ∈ S0, then uβ and 0−1uβ are the only infinite LS branches,

(ii) uβ is Sturmian if and only if p = 1 and β ∈ S0, i.e. dβ(1) = t1(t1 − 1)ω.

The characterization of the Sturmian case is given in [10]. Remark that numbers from
S0 are all Pisot numbers (Frougny).
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Abstract.We consider an invariant quantum Hamiltonian H = −∆LB+V in the L2 space based
on a Riemannian manifold M̃ with a discrete symmetry group Γ. Typically, M̃ is the universal
covering space of a multiply connected manifold M and Γ is the fundamental group of M . To
any unitary representation Λ of Γ one can relate another operator on M = M̃/Γ, called HΛ,
which formally corresponds to the same differential operator as H but which is determined by
quasi-periodic boundary conditions. We give a brief review of the Bloch decomposition of H
and of a formula relating the propagators associated to the Hamiltonians HΛ and H. Then we
concentrate on the example of the Aharonov-Bohm effect with two vortices.

Abstrakt. Mějme invariantní Hamiltonián H = −∆LB + V na L2(M̃ ), kde M̃ je Riemanovská
varieta se spočetně konečnou grupou symetrií Γ. M̃ je nejčastěji univerzální nakrývací prostor
variety M a Γ je její fundamentální grupa. Ke každé unitární reprezentaci Λ grupy Γ lze
přiřadit operátor HΛ na M = M̃/Γ. Ten je formálně stejný jako operátor H, navíc je určen
kvazi-periodickými okrajovými podmínkami. V následujícím textu stručně nastíníme konstrukci
Blochova rozkladu operátoru H a rozklad propagátoru náležející operátor̊um HΛ a H. Tento
postup je následně aplikován na Aharono-Bohmův jev se dvěma cívkami.

1 Introduction

Suppose that there is given a connected Riemannian manifold M̃ with a discrete sym-
metry group Γ. Let us consider a Γ-periodic Hamilton operator in L2(M̃) of the form
H = −∆LB + V where ∆LB is the Laplace-Beltrami operator and V is a Γ-invariant
bounded real function on M̃ . To any unitary representation Λ of Γ one can relate another
operator on M = M̃/Γ, called HΛ, which formally corresponds to the same differential
operator as H but which is determined by quasi-periodic boundary conditions. In the
framework of the Feynman path integral there was derived a remarkable formula relating
the propagators KΛ

t (x, x0) and Kt(x, x0) associated respectively to the Hamiltonians HΛ

and H [11, 12].There exists also an opposite point of view when one decomposes the
operator H into a direct integral with components HΛ where Λ runs over all irreducible
unitary representations of Γ [14, 1, 4]. The evolution operator then decomposes corre-
spondingly. This type of decomposition is an essential step in the Bloch analysis. Let us
also note that an alternative approach to the Bloch analysis, based on a more algebraic
point of view, has been proposed recently in [5].
The both relations, the propagator formula on the one hand and the generalized Bloch

decomposition on the other hand, are in a sense mutually inverse [8]. In the current paper
we give a brief review of basic results concerning this relationship and further consider
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the example of the Aharonov-Bohm effect with two vortices. In this case M̃ is identified
with the universal covering space of the plane with two excluded points and Γ is the
fundamental group of the same manifold.
The paper is organized as follows. In Section 2 we give a brief review of basic results

concerning the relationship between the generalized Bloch analysis and the formula for
propagators associated to periodic Hamiltonians. In Section 3 we explain the construction
of the propagator on the universal covering space in the case of the Aharonov-Bohm effect
with two vortices and discuss the application of the propagator formula in this particular
case.

2 Propagators associated to periodic Hamiltonians

2.1 Periodic Hamiltonians

Let M̃ be a connected Riemannian manifold with a discrete and at most countable sym-
metry group Γ. The action of Γ on M̃ is assumed to be smooth, free and proper (also
called properly discontinuous). Denote by µ̃ the measure on M̃ induced by the Rie-
mannian metric. The quotient M = M̃/Γ is a connected Riemannian manifold with an
induced measure µ. This way one gets a principal fiber bundle π : M̃ → M with the
structure group Γ. The L2 spaces on the manifolds M and M̃ are everywhere tacitly
understood with the measures µ and µ̃, respectively.
Typically, M̃ is the universal covering space of M and Γ = π1(M) is the fundamental

group of M . For example, this is the case when one is considering the Aharonov-Bohm
effect.
To a unitary representation Λ of Γ in a separable Hilbert space LΛ one relates the

Hilbert space HΛ formed by Λ-equivariant vector-valued functions on M̃ . This means
that any function ψ ∈HΛ is measurable with values in LΛ and satisfies

∀s ∈ Γ, ψ(s · y) = Λ(s)ψ(y) almost everywhere on M̃.

Moreover, the norm of ψ induced by the scalar product is finite. If ψ1, ψ2 ∈HΛ then the
function y 7→ 〈ψ1(y), ψ2(y)〉 defined on M̃ is Γ-invariant and so it projects to a function
sψ1,ψ2 defined on M , and the scalar product is defined by

〈ψ1, ψ2〉 =

∫

M

sψ1,ψ2(x) dµ(x).

As already announced, our discussion concerns Γ-periodic Hamiltonians on M̃ of
the form H = −∆LB + V where ∆LB is the Laplace-Beltrami operator and V (y) is
a Γ-invariant measurable bounded real function on M̃ . Here we accept the Friedrichs
extension as the preferred self-adjoint extension of semibounded symmetric operators
defined on test functions.
To the same differential operator, −∆LB +V , one can relate a selfadjoint operator HΛ

in the spaceHΛ for any unitary representation Λ of Γ. Let us define ΦΛ : C∞
0 (M̃)⊗LΛ →

HΛ by
∀ϕ ∈ C∞

0 (M̃), ∀v ∈ LΛ, (ΦΛϕ⊗ v) (y) =
∑

s∈Γ

ϕ(s · y) Λ(s−1)v.
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Since the action of Γ is proper, the vector-valued function ΦΛ ϕ⊗ v is smooth. Moreover,
ΦΛ ϕ ⊗ v is Λ-equivariant and the norm of ΦΛ ϕ ⊗ v in HΛ is finite. Furthermore, the
range of ΦΛ is dense in HΛ. The Laplace-Beltrami operator is well defined on Ran(ΦΛ)
and it holds

∆LBΦΛ[ϕ⊗ v] = ΦΛ[∆LBϕ⊗ v].
One can also verify that the differential operator−∆LB is positive on the domain Ran(ΦΛ) ⊂
HΛ. Since the function V (y) is Γ-invariant, the multiplication operator by V is well de-
fined in the Hilbert spaceHΛ. The Hamiltonian HΛ is defined as the Friedrichs extension
of the differential operator −∆LB + V considered on the domain Ran ΦΛ.

2.2 A generalization of the Bloch analysis

Let Γ̂ be the dual space to Γ (the quotient space of the space of irreducible unitary
representations of Γ). In the first step of the generalized Bloch analysis one decomposes
H into a direct integral over Γ̂ with the components being equal to HΛ. As a corollary
one obtains a similar relationship for the evolution operators U(t) = exp(−itH) and
UΛ(t) = exp(−itHΛ), t ∈ R. To achieve this goal a well defined harmonic analysis on the
group Γ is necessary.
It is known that the harmonic analysis is well established for locally compact groups

of type I [13]. So all formulas presented bellow are perfectly well defined provided Γ is
a type I group. A countable discrete group is type I, however, if and only if it has an
Abelian normal subgroup of finite index [17, Satz 6]. This means that there exist multiply
connected configuration spaces of interest whose fundamental groups are not of type I.
For example, the fundamental group in the case of the Aharonov-Bohm effect with two
vortices is the free group with two generators and it is not of type I. Fortunately, in this
case, too, there exists a well defined harmonic analysis [16].
Let us recall the basic properties of the harmonic analysis on discrete type I groups

[13]. In that case the Haar measure on Γ is chosen as the counting measure. Let dm̂
be the Plancherel measure on Γ̂. Denote by I2(LΛ) ≡ L ∗

Λ ⊗ LΛ the Hilbert space
formed by Hilbert-Schmidt operators on LΛ (L ∗

Λ is the dual space to LΛ). The Fourier
transformation is defined as a unitary mapping

F : L2(Γ)→
∫ ⊕

Γ̂

I2(LΛ) dm̂(Λ).

For f ∈ L1(Γ) ⊂ L2(Γ) one has

F [f ](Λ) =
∑

s∈Γ

f(s)Λ(s).

Conversely, if f is of the form f = g ∗ h (the convolution) where g, h ∈ L1(Γ), and
f̂ = F [f ] then

f(s) =

∫

Γ̂

Tr[Λ(s)∗f̂(Λ)] dm̂(Λ).

It is known that if Γ is a countable discrete group of type I then dim LΛ is a bounded
function of Λ on the dual space Γ̂ [17, Korollar I]. Using the unitarity of the Fourier
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transform one finds that

m̂(Γ̂) ≤
∫

Γ̂

dim LΛ dm̂(Λ) = 1.

The following rule satisfied by the Fourier transformation is also of crucial importance:

∀s ∈ Γ, ∀f ∈ L2(Γ), F [f(s · g)](Λ) = Λ(s−1)F [f(g)](Λ).

Now we are going to construct a unitary mapping

Φ : L2(M̃)→
∫ ⊕

Γ̂

L
∗
Λ ⊗HΛ dm̂(Λ)

which makes it possible to decompose the Hamiltonian H . Observe that the tensor
product L ∗

Λ ⊗HΛ can be naturally identified with the Hilbert space of 1⊗Λ-equivariant
operator-valued functions on M̃ with values in L ∗

Λ ⊗LΛ ≡ I2(LΛ). For f ∈ L2(M̃) and
y ∈ M̃ set

∀s ∈ Γ, fy(s) = f(s−1 · y).

The norm ‖fy‖ in L2(Γ) is a Γ-invariant function of y ∈ M̃ , and the projection of this
function onto M can be checked to be square integrable. Hence for almost all x ∈M and
all y ∈ π−1({x}) it holds fy ∈ L2(Γ). We define the component Φ[f ](Λ), Λ ∈ Γ̂, by the
prescription

Φ[f ](Λ) (y) := F [fy](Λ) ∈ I2(LΛ).

In particular, if f ∈ L1(M̃) ∩ L2(M̃) then

Φ[f ](Λ) (y) =
∑

s∈Γ

f(s−1 · y)Λ(s).

Equivalently one can define Φ in the following way. For ϕ ∈ C∞
0 (M̃), v ∈ LΛ and

y ∈ M̃ set
Φ[ϕ](Λ)(y)v = (ΦΛ ϕ⊗ v)(y). (1)

Then Φ introduced in (1) is an isometry and extends unambiguously to a unitary mapping.
Finally one can verify the formula

ΦHΦ−1 =

∫ ⊕

Γ̂

1⊗HΛ dm̂(Λ)

which represents the sought Bloch decomposition. As a corollary we have

ΦU(t)Φ−1 =

∫ ⊕

Γ̂

1⊗ UΛ(t) dm̂(Λ). (2)
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2.3 A construction for propagators associated to periodic
Hamiltonians

In equality (2), the evolution operator U(t) is expressed in terms of UΛ(t), Λ ∈ Γ̂. It is
possible to invert this relationship and to derive a formula for the propagator associated
to HΛ which is expressed in terms of the propagator associated to H .
The propagators are regarded as distributions which are introduced as kernels of the

corresponding evolution operators. Recall that by the Schwartz kernel theorem (see, for
example, [7, Theorem 5.2.1]), to every B ∈ B(L2(M̃)) there exists one and only one
β ∈ D ′(M̃ × M̃) such that

∀ϕ1, ϕ2 ∈ C∞
0 (M̃), β(ϕ1 ⊗ ϕ2) = 〈ϕ1, Bϕ2〉.

Moreover, the map B 7→ β is injective. One calls β the kernel of B.
The kernel theorem can be extended to Hilbert spaces formed by Λ-equivariant vector-

valued functions. In this case the kernels are operator-valued distributions. To every
B ∈ B(HΛ) there exists one and only one β ∈ D ′(M̃ × M̃)⊗B(LΛ) such that

∀ϕ1, ϕ2 ∈ C∞
0 (M̃), ∀v1, v2 ∈ LΛ,

〈v1, β(ϕ1 ⊗ ϕ2)v2〉 = 〈ΦΛ ϕ1 ⊗ v1, BΦΛ ϕ2 ⊗ v2〉.

The distribution β is Λ-equivariant:

∀s ∈ Γ, β(s · y1, y2) = Λ(s)β(y1, y2), β(y1, s · y2) = β(y1, y2)Λ(s−1)

In this case, too, the map B 7→ β is injective.
Denote by Kt ∈ D ′(M̃ × M̃) the kernel of U(t) ∈ B(L2(M̃)), and by KΛ

t ∈ D ′(M̃ ×
M̃) ⊗B(LΛ) the kernel of UΛ(t) ∈ B(HΛ). Here and everywhere in this section, t is a
real parameter. The kernel KΛ

t is Λ-equivariant:

∀s ∈ Γ, KΛ
t (s · y1, y2) = Λ(s)KΛ

t (y1, y2), KΛ
t (y1, s · y2) = KΛ

t (y1, y2)Λ(s−1).

First we rewrite the Bloch decomposition of the propagator (2) in terms of kernels.
It is possible to prove that, for all ϕ1, ϕ2 ∈ C∞

0 (M̃), the function Λ 7→ Tr[KΛ
t (ϕ1⊗ϕ2)] is

integrable on Γ̂ and

Kt(ϕ1 ⊗ ϕ2) =

∫

Γ̂

Tr[KΛ
t (ϕ1 ⊗ ϕ2)] dm̂(Λ).

An inverse relation was derived by Schulman in the framework of path integration [11, 12]
and reads

KΛ
t (x, y) =

∑

s∈Γ

Λ(s)Kt(s−1 · x, y). (3)

It is possible to give (3) the following rigorous interpretation. Suppose that ϕ1, ϕ2 ∈
C∞

0 (M̃) are fixed but otherwise arbitrary. Set

Ft(s) = Kt
(
ϕ1(s

−1 · y1)⊗ ϕ2(y2)
)
for s ∈ Γ,
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and
Gt(Λ) = KΛ

t (ϕ1 ⊗ ϕ2) ∈ I2(LΛ) for Λ ∈ Γ̂.

One can show that Ft ∈ L2(Γ) and Gt is bounded on Γ̂ in the Hilbert-Schmidt norm.
Recalling that m̂(Γ̂) ≤ 1 we have ‖Gt(·)‖ ∈ L1(Γ̂) ∩ L2(Γ̂). In [8] it is verified that

Ft = F
−1[Gt].

and, consequently,
Gt = F [Ft]. (4)

Rewriting (4) formally gives equality (3).

3 The Aharonov-Bohm effect with two vortices

3.1 The propagator on the universal covering space

The configuration space for the Aharonov-Bohm effect with two vortices is the plane with
two excluded points, M = R2 \ {a, b}. This is a flat Riemannian manifold and the same
is true for the universal covering space M̃ . Let π : M̃ → M be the projection. It is
convenient to complete the manifold M̃ by a countable set of points A ∪ B which lie on
the border of M̃ and project onto the excluded points, π(A) = {a} and π(B) = {b}.

M̃ looks locally like R2 but differs from the Euclidean space by some global features.
First of all, not every two points from M̃ can be connected by a geodesic segment. Fix
a point

y ∈ M̃ which can be connected with x by a geodesic segment. The domain D(x) is one
sheet of the covering M̃ → M . It can be identified with R2 cut along two halflines with
the limit points a and b, respectively. Thus the border ∂D(x) is formed by four halflines.
The universal covering space M̃ can be imagined as a result of an infinite process of
glueing together countably many copies of D(x) with each copy having four neighbors.
The fundamental group of M , called Γ, is known to be the free group with two

generators ga and gb. For the generator ga one can choose the homotopy class of a simple
positively oriented loop winding once around the point a and leaving the point b in the
exterior. Analogously one can choose the generator gb by interchanging the role of a and
b. One-dimensional unitary representations Λ of Γ are determined by two numbers α, β,
0 ≤ α, β < 1, such that

Λ(ga) = e2πiα, Λ(gb) = e2πiβ.

The standard way to define the Aharonov-Bohm Hamiltonian with two vortices is to
choose a vector potential

−→
A for which rot

−→
A = 0 on M and such that the nonintegrable

phase factor [18] for a closed path from the homotopy class ga or gb equals e2πiα or
e2πiβ , respectively (assuming that 0 < α, β < 1). The Hamiltonian then acts as the
differential operator (−i∇−−→A )2 in L2(M). A unitarily equivalent and for our purposes
more convenient possibility is to work with the Hamiltonian HΛ = −∆ in the Hilbert
space HΛ of Λ-equivariant functions on M̃ , as introduced in Section 2.1. Parallelly one
considers the free Hamiltonian H = −∆ in L2(M̃). H is Γ-periodic. In order to compute,
according to prescription (3), the propagator KΛ(t, x, y) associated to HΛ one needs to
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derive a formula for the free propagator K(t, x, y) on M̃ . Such a formula is recalled below
following [15].
Let ϑ be the Heaviside step function. For x, y ∈ M̃ ∪ A ∪ B set χ(x, y) = 1 if the

points x, y can be connected by a geodesic segment, and χ(x, y) = 0 otherwise. Given in
addition t ∈ R we define

Z(t, x, y) = ϑ(t)χ(x, y)
1

4πit
exp

(
i

4t
dist2(x, y)

)

,

Furthermore, for x1, x2, x3 ∈ M̃ ∪ A ∪ B such that χ(x1, x2) = χ(x2, x3) = 1, and for
t1, t2 > 0 we set

V

(
x3, x2, x1

t2, t1

)

= 2i

((

θ − π + i log

(
t2r1
t1r2

))−1

−
(

θ + π + i log

(
t2r1
t1r2

))−1
)

where θ = ∠ x1, x2, x3 ∈ R is the oriented angle and r1 = dist(x1, x2), r2 = dist(x2, x3).
Note that if the inner vertex x2 belongs to the set of extreme points A∪B then the angle
θ can take any real value.
We claim that the free propagator on M̃ equals

K(t, x, x0) =
∑

γ

Kγ(t, x, x0) (5)

where the sum runs over all piecewise geodesic curves γ : x0 → C1 → . . . → Cn → x
with the inner vertices Cj , 1 ≤ j ≤ n, belonging to the set of extreme points A∪B. This
means that it should hold χ(x0, C1) = χ(C1, C2) = . . . = χ(Cn, x) = 1. Let us denote
by |γ| = n the length of the sequence (C1, C2, . . . , Cn). In particular, if |γ| = 0 then γ
designates the geodesic segment x0 → x. To simplify notation we set everywhere where
convenient C0 = x0 and Cn+1 = x. With this convention, the summands in (5) equal

Kγ(t, x, x0)

=

∫

Rn+1

dtn . . .dt0 δ(tn + . . .+ t0 − t)
n−1∏

j=0

V

(
Cj+2, Cj+1, Cj

tj+1, tj

) n∏

j=0

Z(tj, Cj+1, Cj).

(6)

In particular, if |γ| = 0 then Kγ(t, x, x0) = Z(t, x, x0), and if |γ| = 1 then γ designates a
path composed of two geodesic segments x0 → C → x, with C ∈ A ∪ B, and

Kγ(t, x, x0) = ϑ(t)

∫ t

0

V

(
x, C, x0

t− s, s

)

Z(t− s, x, C)Z(s, C, x0) ds .

For detailed derivation of this formula see [9].

3.2 The propagator associated to HΛ

Without loss of generality we can suppose that the vortices are located in the points
a = (0, 0) and b = (̺, 0). Let (ra, θa) be the polar coordinates centered at the point a
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and (rb, θb) be the polar coordinates centered at the point b. To express the propagator
for HΛ it is convenient to pass to a unitarily equivalent formulation. Let us cut the plane
along two half-lines,

La = ]−∞, 0[×{0} and Lb = ]̺,+∞[×{0}.

The values θa = ±π correspond to the two sides of the cut La, and similarly for θb and
Lb. The unitarily equivalent Hamiltonian H ′

Λ is formally equal to −∆ in L2(R2, d2x) and
is determined by the boundary conditions along the cut,

ψ(ra, θa = π) = e2π i αψ(ra, θa = −π), ∂raψ(ra, θa = π) = e2π i α∂raψ(ra, θa = −π) ,

ψ(rb, θb = π) = e2π i βψ(rb, θb = −π), ∂rbψ(rb, θb = π) = e2π i β∂rbψ(rb, θb = −π) .

In addition, one should impose a boundary condition at the vortices, namely ψ(a) =
ψ(b) = 0.
Let us denote D = R2 \ (La ∪ Lb). Then one can embed D ⊂ M̃ as a fundamen-

tal domain. We wish to find a formula for the propagator K′Λ(t, x, x0) associated to
the Hamiltonian H ′

Λ. It can be simply obtained as the restriction to D of the propa-
gator KΛ(t, x, x0) associated to the Hamiltonian HΛ. On the other hand, to construct
KΛ(t, x, x0) one can apply formula (3) and the knowledge of the free propagator on M̃ ,
see (5), (6). Thus we get

KΛ(t, x, x0) =
∑

g∈Γ

∑

γ

Λ(g−1)Kγ(t, g · x, x0). (7)

Fix t > 0 and x0, x ∈ D. One can classify piecewise geodesic paths in M̃ ,

γ : x0 → C1 → . . .→ Cn → g · x, (8)

with Cj ∈ A ∪ B and g ∈ Γ, according to their projections to M . Let γ be a finite
alternating sequence of points a and b, i.e., γ = (c1, . . . , cn), cj ∈ {a, b} and cj 6= cj+1.
The empty sequence γ = () is admissible. Relate to γ a piecewise geodesic path in M ,
namely x0 → c1 → . . . → cn → x. Suppose that this path is covered by a path γ in
M̃ , as given in (8). Then Cj ∈ A iff cj = a and Cj ∈ B iff cj = b. Denote the angles
∠ x0, c1, c2 = θ0 and ∠ cn−1, cn, x = θ. Then the angles in the path γ in (8) take the values
∠ x0, C1, C2 = θ0 + 2πk1, ∠Cn−1, Cn, g · x = θ + 2πkn and ∠Cj, Cj+1, Cj+2 = 2πkj+1 for
1 ≤ j ≤ n − 2 (if n ≥ 3), where k1, . . . , kn are integers. Any values k1, . . . , kn ∈ Z are
possible. In that case the representation Λ applied to the group element g occurring in
(8) takes the value

Λ(g) = exp(2πi(k1σ1 + . . .+ knσn))

where σj ∈ {α, β} and σj = α if cj = a, and σj = β if cj = b.
Using the equalities

∑

k∈Z

exp(2πiαk)

(
1

θ + 2kπ − π + is
− 1

θ + 2πk + π + is

)

= − sin(πα)

∫ +∞

−∞

exp((θ + is)τ)

sin(π(α + iτ))
dτ
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and ∫ ∞

−∞

exp((θ + is)τ)

sin(π(α+ iτ))
dτ = 2

exp(−α(s− iθ))

1 + exp(−s + iθ)
,

that are valid for 0 < α < 1, |θ| < π, one can carry out a partial summation in (7)
over the integers k1, . . . , kn. This way the double sum in (7) reduces to a sum over finite
alternating sequences γ.
Let us conclude our contribution by giving the resulting formula for K′Λ(t, x, x0). We

set
ζa = 1 or ζa = e2π i α or ζa = e−2π i α

depending on whether the segment x0x does not intersect La, or x0x intersects La and
x0 lies in the lower half-plane, or x0x intersects La and x0 lies in the upper half-plane.
Analogously,

ζb = 1 or ζb = e2π i β or ζb = e−2π i β

depending on whether the segment x0x does not intersect Lb, or x0x intersects Lb and
x0 lies in the upper half-plane, or x0x intersects Lb and x0 lies in the lower half-plane.
Furthermore, let us set

ζa = ei α ηa , ζb = ei β ηb , where ηa, ηb ∈ {0, 2 π,−2 π}.

Then one has

K′Λ(t, x, x0)

= ζaζb
1

4πit
exp

(

i
|x− x0|2

4t

)

− ζa
sin(πα)

4π2i

∫ ∞

0

dt1
t1

∫ ∞

0

dt0
t0

δ(t1 + t0 − t)

× exp

(

i

(
r 2
a

4t1
+
r 2
0a

4t0

))
exp[−α(sa − i(θa − θ0a − ηa)]

1 + exp(−sa + iθa − iθ0a)

− ζb
sin(πβ)

4π2i

∫ ∞

0

dt1
t1

∫ ∞

0

dt0
t0

δ(t1 + t0 − t)

× exp

(

i

(
r 2
b

4t1
+
r 2
0b

4t0

))
exp[−β(sb − i(θb − θ0b − ηb)]

1 + exp(−sb + iθb − iθ0b)

+
1

4πi

∑

γ,n≥2

(−1)n
∫ ∞

0

dtn
tn

. . .

∫ ∞

0

dt0
t0

δ(tn + . . .+ t0 − t)

× exp

(
i

4

(
r2

tn
+

̺2

tn−1

+ . . .+
̺2

t1
+
r2
0

t0

))

Sγ(s, θ, θ0),

where

Sγ(s, θ, θ0) =
sin(πσn)

π

exp[−σn(sn − iθ)]
1 + exp(−sn + iθ)

sin πσn−1

π

exp(−σn−1sn−1)

1 + exp(−sn)

× . . .× sin(πσ1)

π

exp[−σ1(s1 − iθ0)]
1 + exp(−s1 + iθ0)

,
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and

sa = log

(
t1r0a
t0ra

)

, sb = log

(
t1r0b
t0rb

)

, sj = log

(
tjrj−1

tj−1rj

)

for 1 ≤ j ≤ n.

In addition, (r, θ) are the polar coordinates of the point x with respect to the center cn,
(r0, θ0) are the polar coordinates of the point x0 with respect to the center c1. The sum∑

γ, n≥2 runs over all finite alternating sequences of length at least two, γ = (c1, . . . , cn),
such that for all j, cj ∈ {a, b}, cj 6= cj+1, and σj = α (resp. β) depending on whether
cj = a (resp. b).
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Abstract. This paper presents an overview of the techniques used to solve constrained optimiza-
tion problems using evolutionary algorithms. The construction of the fitness function together
with the handling of feasible and infeasible individuals is discussed. Approaches using penalty
functions, special representations, repair algorithms, methods based on separation of objective
and constraints and multiobjective techniques are mentioned.

Abstrakt. Tento příspěvek podává přehled metod pro řešení optimalizačních úloh s omezeními
pomocí evolučních algoritmů. Zmíněny jsou některé způsoby vytváření fitness funkce spolu se
zpracováním přípustných a nepřípustných jedinců. Zahrnuty jsou přístupy využívající penal-
izační funkce, speciální reprezentace, opravné algoritmy, metody založené na oddělení účelové
funkce a omezení a vícekriteriální metody.

1 Introduction

Evolutionary algorithms have been successfully used in a range of applications. [1] Ma-
jority of the papers presented pertain to unconstrained optimization problems. As [2] ar-
gues, virtually all real problems are constrained. Thus, the study of constraint-handling
methods that can be used with evolutionary algorithms is an important subject.
Evolutionary algorithms are based on a analogy with the evolution process occurring

in nature: The individuals have genes that encode the solution. The individuals are
compared with others and those that perform better (have higher fitness) get higher
probability of propagating their genes into the next generation. The genes of the offspring
population are the product of applying genetic operators to the genes of their parent
individuals.
For an evolutionary algorithm, the following is needed:

• A representation of the potential solution (an individual).

• A way of initializing the population of the individuals.

• Genetic operators that act on the (parent) population – typically recombination
and mutation.

• Selection operator that chooses which individuals propagate to the next generation.

Evolutionary algorithm can be formally defined as follows (based on [1]):
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Definition 1. (Evolutionary algorithm) The following algorithm is called an Evolutionary
Algorithm:

1. t← 0

2. initialize:
P0 =

{
a0, . . . , aµ(0)

}
⊆ I

3. while ( ι ((P0, . . . , Pt)) 6= 1 ) do

(a) recombine:
P ′
t ← r

(t)

φ
(t)
r

(Pt)

(b) mutate:
P ′′
t ← m

(t)

φ
(t)
m

(P ′
t)

(c) select: if χ = 1:
Pt+1 ← s

(t)

(φ
(t)
s )

(P ′′
t )

else:
Pt+1 ← s

(t)

(φ
(t)
s )

(P ′′
t ∪ Pt)

(d) t← t+ 1

where:

• I 6= ∅ is the individual space

• a0, . . . , aµ(0) is the initial population

•
(
µ(i)
)

i∈N0
is a sequence of the parent population sizes

•
(

µ′(i)
)

i∈N0

is a sequence of the offspring population sizes

• ι :

{(

Iµ(i)
)t

i=0

∣
∣
∣t ∈ N0

}

→ {0, 1} is the terminating criterion

• χ ∈ {0, 1} chooses between (µ, λ) and (µ+ λ) selection method

•
(
r(i)
)

i∈N0
is a sequence of recombination operators:

r(i) : Ξ(i)
r →

[

Iµ(i) → Iµ′(i)
]

where Ξ
(i)
r is the set of recombination parameters and θ

(i)
r ∈ Ξ

(i)
r

•
(
m(i)

)

i∈N0
is a sequence of mutation operators:

m(i) : Ξ(i)
m →

[

Iµ′(i) → Iµ′(i)
]

where Ξ
(i)
m is the set of mutation parameters and θ

(i)
m ∈ Ξ

(i)
m
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•
(
s(i)
)

i∈N0
is a sequence of selection operators:

s(i) : Ξ(i)
s →

[

Iµ′(i)+χµ′(i) → Iµ(i+1)
]

where Ξ
(i)
s is the set of mutation parameters and θ

(i)
s ∈ Ξ

(i)
s

In this paper we focus on applying evolutionary algorithms to constrained optimization
problems. By this we mean the following:

min
x∈Ω

f(x) (1)

subject to:

gi(x) ≤ 0 ∀i ∈ {1, . . . , ng} (2)

hj(x) = 0 ∀j ∈ {1, . . . , nh} (3)

where the set Ω is the search space. Let n denote the total number of constraints:

n = ng + nh

The constraints (3) and (2) implicitly define the feasible set Φ:

Φ =
{
x ∈ Ω|gi(x) ≤ 0 ∧ hj(x) = 0

∀i ∈ {1, . . . , ng} , ∀j ∈ {1, . . . , nh}
}

We make no additional assumptions about the feasible set. In general it can be a
non-convex, even a disconnected set.
Defining Υ = Ω− Φ, it can be stated that the search space Ω is partitioned into two

disjoint sets: the feasible set Φ and the infeasible set Υ.
The level of violation of the constraints (2) and (3) by a point x ∈ Ω can be measured

as follows:

Gi(x) = max {0, gi(x)} (4)

Hj(x) = |hj(x)| (5)

Note that for all x ∈ Φ

Gi(x) = 0

Hj(x) = 0

for all i ∈ {1, . . . , ng}, j ∈ {1, . . . , nh}.
An equality constraint hj(x) = 0 can be transformed into inequality constraints in

the following way:
|hj(x)| ≤ ε

where ε is a small constant specifying the tolerance.
This approach allows the equality constraints to be treated as inequalities, which can

be useful for methods that do not treat equality constraints separately.
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2 Fitness function

The fitness function is a function F : I → R that evaluates the individuals according to
how well they solve given problem.
The design of the fitness function can be a non-trivial task even for an unconstrained

problem. In case of constrained problems, the design of a good fitness function is even
more difficult. In [2] the following points guiding the design of the fitness function are
listed:

1. How should two feasible points be compared?

2. How should two infeasible points be compared?

3. How are the functions for feasible and infeasible points related? Should feasible
points be always ”better” than infeasible ones?

4. Should infeasible points be considered harmful and removed from the population?

5. Should infeasible points be ”repaired”?

6. If individuals are repaired, should this repaired individual be used only for evalu-
ating its fitness (Baldwin effect) or should the individual be replaced (Lamarckian
evolution)?

7. Should infeasible individuals be penalized?

8. Should the algorithm start with a feasible population and keep the feasibility
throughout the run of the algorithm?

During the run of the algorithm, the population can generally contain both feasible
and infeasible individuals. In the end though, the answer must be a feasible solution, as
the infeasible individual, no matter its fitness from the point of view of the evolutionary
algorithm, is not a solution to the original problem.
An obvious method of ensuring this works by removing all the infeasible solutions, so

that the population never contains an infeasible individual. While this method has been
used, in many problems it does not work. (See section 3 for more information on this
approach.)
This leads to the conclusion that the evolutionary algorithm should allow the infeasible

individuals in the population. Because of this, a decision has to be made on how to
compare the feasible and the infeasible individuals.
One way to tackle this task is to define the fitness function as follows:

F (x) =

{
FΦ(x) x ∈ Φ
FΥ(x) x ∈ Υ

(6)

When evaluating FΦ, the actual value of the constraints should not be important,
as the point is in the feasible set. When evaluating FΥ, the question is if the value of
the objective function f should be taken into account. FΥ should react to the fact that
the solution is not feasible and direct the search into the feasible set. Yet, should it be
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based on the amount of the violation, or should it only reflect the number of violated
constraints?
While the inclusion of the objective f in FΥ might help guide the search, sometimes

(in case the objective is not defined outside of the feasible region Φ) this is not possible.
It should be noted that in some evolutionary algorithms the fitness function is not

explicitly needed. For example, if the evolutionary algorithm uses the tournament se-
lection, all that is needed is an ordering relation defined over the individual space I.
Still, this does not relieve us of the burden of satisfactorily answering the aforementioned
questions.
An overview of some of the methods that were used to solve constrained optimization

problems follows. The methods differ by how they answer the aforementioned questions.

3 Penalty functions

The oldest and most common approach to solving constrained optimization problems
using evolutionary algorithms is the use of a penalty function. The method is based in
the idea of adding to the objective function f a function that penalizes solutions laying
in the infeasible set, thus decreasing their fitness.
There are two basic options: interior penalty functions – this approach starts from

a feasible solution and the penalty function is defined so that its value approaches to
infinity as the solution moves towards the boundary of the feasible set, and exterior
penalty functions – this approach starts from any (generally infeasible) point in the search
space and the penalty is used to guide the search into the feasible set.
An advantage of the exterior approach is that it does not require an initial feasible

population.
The generic formula for the fitness function with an exterior penalty is:

F (x) = f(x) + P (t)(x) (7)

where P (t) : I → 〈0,+∞) is the penalty function satisfying for all x ∈ Φ and for all
t ∈ N0:

P (t)(x) = 0

A problem with this approach is the choice of the value of the penalty: Too small
penalty value does not discourage the algorithm from the infeasible set, possibly resulting
in an infeasible optimum. On the other hand, too high penalty value might prohibit the
algorithm from crossing the feasible set boundary (which might be useful or even necessary
in case the feasible set is non-convex or disconnected) and from exploring the boundary
of the feasible set.
In [3] author suggests the relation between an infeasible individual and the feasible set

plays an important role in the penalization. There are several ways how this relationship
could be reflected in the penalty function:

1. the penalty is constant – the individual is being penalized for being infeasible

2. the penalty reflects the amount of constraint violation
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3. the penalty reflects the effort needed to make the individual feasible

This method was advanced in several directions in order to tackle this issue:

static penalties In this approach, the value of the penalties is independent of the gener-
ation number. Typical choice for P (t) is:

P (t)(x) =

ng∑

i=1

aiGi(x)
β +

nh∑

j=1

bjHj(x)
γ

with β, γ ∈ {1, 2}, ai, bi positive constants called penalty factors and Gi, Hj as
defined in (4) and (5).

dynamic penalties In this approach, the value of the penalties is dependent on the gener-
ation number. Typically, the penalties rise over time. This enables the population
to explore the search space (low penalties) and eventually move into the feasible
set. An example of this approach is:

P (t)(x) = (ct)α

(
ng∑

i=1

aiGi(x)
β+

nh∑

j=1

biHj(x)
γ

)

annealing penalties This method was inspired by simulated annealing: The penalties
change when the algorithm gets stuck in a local optimum. The penalty rises over
time to penalize infeasible solutions in the end of the run of the algorithm.

adaptive penalties Within this approach, the penalty uses the previous states of the
algorithm: The penalty with respect to a constraint is increased if all the individ-
uals in the previous generation were infeasible. The penalty is decreased if all the
individuals in the previous generation were feasible.

co-evolutionary penalties In this approach, there are more populations, for example a
population for the evolution of solutions and a population for the evolution of the
penalty factors. A co-evolution scheme is then used.

death penalty This is a simple method that works by eliminating all the non-feasible
individuals form the population. While it can be easily implemented, it tends to
work only if the feasible set is a reasonably large subset of the search space and
when the feasible set is convex. [2]

Another approach in this category works by focusing the search on the boundary of
the feasible set Φ. According to [1], many real-world tasks have optimum for which at
least some constraints are active, so the focus on the boundary of the feasible set seems
reasonable. The way the border is explored is by varying a penalty and thus forcing the
individuals to cross between the feasible and the infeasible set.
The main disadvantage of the penalty methods is their dependency on multiple pa-

rameters. While some guidance has been provided, often the parameters have to be
empirically determined. [1] Also, penalty methods often do not perform well when the
problem is highly-constrained or when the feasible set is disconnected. [2]



Evolutionary Algorithms for Constrained Optimization Problems 121

4 Special representations

This approach tackles the optimization problem by designing a special, problem-dependent,
representation of the individuals. This in turn calls for special operators to be used on
those individuals. The operators used typically preserve the feasibility of the population.
The motivation behind this approach is to simplify the feasible set Ω.
The representation is problem-specific. While the approach was successfully used on

specific problems, it is difficult to generalize this approach.

5 Repair algorithms

This approach works by repairing infeasible individuals. Two ways are possible: The
repaired individual is used only to evaluate the fitness of the original, or the infeasible
individual is replaced with the repaired one.
The resulting individual is not necessarily feasible, but the amount of constraint vio-

lation is reduced.
This method was generalized into the area of constrained multiobjective evolutionary

optimization in [4] and [5].
The repair approach often has problems with keeping the diversity of the population.

Also, the repair operator can sometimes introduce a strong bias into the search process. [3]

6 Separation of constraints and objectives

The following approaches do not mix the objective and the constraints together. There
are several different methods reported in [2] and [3].

6.1 Superiority of feasible points

In this approach feasible individuals are always considered superior to infeasible ones.
One way to ensure this is to map the objective function onto a bounded-above interval,

e. g. (−∞, 1) and specify the fitness function like:

F (x) =

{
f(x) x ∈ Φ
L(x) x ∈ Υ

(8)

where L : Υ→ (1,+∞) is a function measuring the level of constraint violation.
An interesting adaptation that does not require the objective to be bounded-above is:

F (x) =

{
f(x) x ∈ Φ

f
(t)
max + L(x) x ∈ Υ

(9)

where f (t)
max = maxx∈P(t)∩Φ f(x) and L : Υ → R+ is a function measuring the level of

constraint violation.
A different way to ensure the feasible points are always superior is to use tournament

selection with the rules (x and y denotes the individuals being compared) from table 1.
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Table 1: Tournament selection for the superiority of feasible points method
x ∈ Φ y ∈ Υ x is preferred over y
x ∈ Υ y ∈ Φ y is preferred over x
x ∈ Φ y ∈ Φ decide based on f(x) and f(y)
x ∈ Υ y ∈ Υ decide based on constraint

violation

6.2 Behavioral memory

This method requires a linear ordering of the constraints. Then it proceeds as follows:

1. initialize the population randomly

2. evolve the individuals to minimize the violation of the first constraint; stop when
the percentage of individuals feasible with respect to the first constraint surpasses
given percentage

3. j → 2

4. while j ≤ n do:

(a) evolve the individuals to minimize the violation of the j-th constraint while
removing individuals which do not satisfy any of the constraints 1 . . . j; stop
when the percentage of individuals feasible with respect to the j-th constraint
surpasses given percentage

(b) j → j + 1

5. evolve the individuals to minimize the objective f while removing infeasible indi-
viduals from the population (death penalty – see section 3)

This approach is similar to the lexicographic ordering approach mentioned in subsec-
tion 7. A drawback is that the initial ordering of the constraints influences the results
obtained.
Those methods do not work well when the size of the feasible set is relatively small

(when the constraints are difficult to satisfy). Another problem mentioned in [3] is the
difficulty of maintaining the diversity of the population.
An interesting point to make is that those approaches never evaluate the objective on

infeasible points, making it interesting for problems with hard constraints.

7 Multiobjective techniques

The technique works by transforming the original constrained optimization problem into
an unconstrained multiobjective problem, turning the original constraints into additional
objectives. The problem (1) – (3) turns into:

min
x∈Ω

(f,G1(x), . . . , Gng
(x), H1(x), . . . , Hnh

(x)) (10)
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Table 2: Tournament selection for the min-max approach in [6]
x ∈ Φ y ∈ Υ x is preferred over y
x ∈ Υ y ∈ Φ y is preferred over x
x ∈ Φ y ∈ Φ decide based on f(x) and f(y)
x ∈ Υ y ∈ Υ select the individual having

the smallest maximal constraint
violation.

The ideal solution of (10) is an xideal ∈ Φ such that:

f(xideal) = minx∈Φf(x)

Gi(x
ideal) = 0 ∀i ∈ {1, . . . , ng}

Hj(x
ideal) = 0 ∀j ∈ {1, . . . , nh}

Unlike in actual multiobjective optimization, here we are not interested in finding
good trade-offs between the objectives (the original objective (1) and the constraints):
Any feasible point might be acceptable, no matter the actual value of the constraint
violation values. On the other hand, a global minimum that lies in the infeasible set is no
solution to the original problem, even if it means a good trade-off in the multiobjective
problem.
In [6] a min-max-like approach was described: The evolutionary algorithm uses the

tournament selection with the rules (x and y denotes the individuals that are compared)
according to table 2.

8 Conclusion

This paper presents several ways of handling constrains together with evolutionary op-
timization. Majority of the approaches does need to evaluate the objective outside the
feasible set, which renders the methods unusable for constraints that cannot be relaxed.
Handling such problems with evolutionary algorithms seems therefore like an interesting
option for further research.
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Abstract. Compositional models theory (originally developed by Radim Jiroušek) represents
an alternative approach to Bayesian networks. This text should familiarize the reader with
new results in this theory, namely with partial solution of the equivalence problem (in the sense
independence equivalence). Four different operations on persegram which preserve independence
model are introduced. By help of these operations we may generate the class of persegrams
equivalent to a given one.

Abstrakt. Teorie kompozicionálních modelů (zformulovaná Radimem Jirouškem) představuje
určitou alternativu k Bayesovským sítím. V tomto článku jsou uvedeny nejnovější poznatky
v této oblasti, konkrátně částečné řešení problému ekvivalence (ve smyslu nezávislostní ek-
vivalence). Zavádíme čtyři různé operace na persegramu (dvě jsou zveřejněny poprvé) které
zachovávají nezávislostní model a umožňují generovat různé ekvivalentní persegramy.

1 Introduction

The ability to represent and process multidimensional probability distributions is a nec-
essary condition for application of probabilistic methods in Artificial Intelligence. Among
the most popular approaches are the methods based on Graphical Markov Models, e.g.,
Bayesian Networks. An alternative approach to Graphical Markov Models are the so-
called Compositional models, which try to be more efficient than Bayesian networks
(more efficient in computations, etc.). Nevertheless, the theory has not been finished yet
and many substantial problems remain to be solved.

2 Compositional Models

Bayesian networks may be defined as a multidimensional distribution factorizing with re-
spect to an acyclic directed graph. Alternatively, the Bayesian network may be uniquely
defined by its graph and an appropriate system of low-dimensional (oligodimensional)
conditional distributions. Similarly, Compositional models are defined as a multidimen-
sional distribution assembled from a sequence of oligodimensional unconditional distribu-
tions, with the help of operators of composition. The main advantage of both approaches
lies in the fact that oligodimensional distributions could be easily stored in computer

∗The research was partially supported by Ministry of Education of the Czech Republic under grants
no 1M0572 and 2C06019.
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memory. However, computing with a multidimensional distribution that is split into
many pieces is exceptionally complicated. The advantage in comparison with Bayesian
networks consists in the fact that compositional models explicitly express some marginals,
whose computation in the Bayesian network may be demanding.

2.1 Notation and Basic Properties

In this paper we consider a system of finite-valued random variables with indices from
a non-empty finite set N . All probability distributions discussed in the paper will be
denoted by Greek letters. For K ⊂ N , π(xK) denotes a distribution of variables {Xj}j∈K .
Consider a distribution π(xK) and three disjoint subsets A,B,C ⊂ K such that

A 6= ∅ 6= B. A ⊥⊥ B|C[π] denotes that two groups of variables {Xj}j∈A and {Xj}j∈B
are conditionally independent given {Xj}j∈Z . Suppose, that L ⊂ K, we denote its
corresponding marginal distribution either π(xL), or π↓L. These symbols are used to
highlight the variables for which the marginal distribution is defined.
To describe how to compose low-dimensional distributions to get a distribution of a

higher dimension we use the following operator of composition.

Definition 1. For arbitrary two distributions π(xK) and κ(xL) their composition is given
by the formula

π(xK) ⊲ κ(xL) =

{
π(xK)κ(xL)
κ(xK∩L)

when π↓K∩L ≪ κ↓K∩L,

undefined otherwise,

where the symbol π(xM) ≪ κ(xM) denotes that π(xM) is dominated by κ(xM), which
means (in the considered finite setting)

∀xM ∈ ×i∈MXi; (κ(xM ) = 0 =⇒ π(xM) = 0).

The result of the composition (if defined) is a new distribution. We can iteratively
repeat the process of composition to obtain a multidimensional model. This is why these
multidimensional distributions are called compositional models . To describe such a model
it is enough to introduce an ordered system of low-dimensional distributions π1, π2, . . . , πn.
If all compositions are defined, we view this ordered system as a generating sequence, in
which the composition operator is applied from left to right:

π1 ⊲ π2 ⊲ π3 ⊲ . . . ⊲ πn−1 ⊲ πn = (. . . ((π1 ⊲ π2) ⊲ π3) ⊲ . . . ⊲ πn−1) ⊲ πn.

In that case we say that a generating sequence defines (or represents) a multidimensional
compositional model. From now on, we consider generating sequences π1(xK1), π2(xK2), . . . ,
πn(xKn

) which define a distribution

π1(xK1) ⊲ π2(xK2) ⊲ . . . ⊲ πn(xKn
).

Therefore, whenever distribution πi is used, we assume it is defined for variables {Xj}j∈Ki
.

In addition, each set Ki can be divided into two disjoint parts. We denote them Ri and Si
with the following sense. Ri denotes variables fromKi emerging in the sequence (meaning
from left to right) the first time. Ri denotes the already used.
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Ri = Ki\(K1 ∪ . . . ∪Ki−1), Si = Ki ∩ (K1 ∪ . . . ∪Ki−1) .

In the proofs of the upcoming lemmata will be used the following assertion, which is
proved e.g. in [1].

Lemma 2. Let M ⊆ K1 ∪ K2. If M ⊇ K1 ∩ K2 then for any probability distributions
π1(xK1) and π2(xK2)

(π1 ⊲ π2)
↓M = π↓K1∩M

1 ⊲ π↓K2∩M
2 .

2.2 Perfect Sequence Models

Not all generating sequences are equally efficient in their representations of multidimen-
sional distribution. Among them, so-called perfect sequences hold an important position.
From the original definition (e.g. in [1]) one can hardly see the importance of this gen-
erating sequences class. Instead, for the purpose of this text let us define it by another
equivalence property, which is more suitable for our needs.

Definition 3. A generating sequence π1, π2, . . . , πn is perfect iff all the distributions πi
are marginal to the represented distribution, i.e., for all i = 1, 2, . . . , n

(π1 ⊲ . . . ⊲ πn)
↓Ki = πi.

Perfect sequences have many pleasant properties which are advantageous for multi-
dimensional distributions representation. One of them says that, for a perfect sequence
model, all distributions in model are pair-wise consistent. This feature is in other parts
of this paper highly used.

2.3 Conditional Independencies

It is well-known that one can read conditional independence relations of a Bayesian net-
work from its graph. A similar technique is used in compositional models. An appropriate
tool for this is a persegram. Persegram is used to visualize the structure of a composi-
tional model and is defined bellow.

Definition 4. Persegram of a generating sequence is a table in which rows correspond to
variables (in an arbitrary order) and columns to low-dimensional distributions; ordering
of the columns corresponds to the generating sequence ordering. A position in the table
is marked if the respective distribution is defined for the corresponding variable. Markers
for the first occurrence of each variable (i.e., the leftmost markers in rows) are squares
(we call them box-markers) and for other occurrences there are bullets.

All persegrams discussed in the paper are denoted by P , modified by P ′. Since i-th
column corresponds to πi, we denote the markers in i-th column Ki. In accordance with
the other marking of variables in the i-th distribution πi(xKi

), box-markers in i-th column
are denoted like Ri and bullets like Si. Ki = Ri ∪ Si.
Example 5. Let π1(xK1), . . . , π6(xK6) be a generating sequence. K1 = {1, 4}, K2 =
{4, 2}, K3 = {2, 5}, K4 = {5, 3}, K5 = {5, 7}, K6 = {4, 5, 6}. Then the corresponding
persegram P is in Figure 1.
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π1 π2 π3 π4 π5 π6

X6

X7

X3

X5

X2

X4

X1

Figure 1: Persegram corresponding to the model in Example 5

Like the Bayesian networks, conditional independence of groups of variables is indi-
cated by the absence of a trail connecting relevant markers and avoiding the respective
subset which is defined below.

Definition 6. Consider a generating sequence π1(xK1), . . . , πn(xKn
), its corresponding

persegram and a subset Z ⊂ K1 ∪ . . . ∪Kn. A sequence of markers m0, . . . , mt is called
a Z-avoiding trail that connects m0 and mt if it meets the following 4 conditions:

1. for each s = 1, . . . , t a couple (ms−1, ms) is in the same row (i.e., horizontal connec-
tion) or in the same column (vertical connection);

2. each vertical connection must be adjacent to a box-marker (one of the markers is a
box-marker);

3. no horizontal connection corresponds to a variable from XZ ;

4. vertical and horizontal connections regularly alternate with the following possible
exception: two vertical connections may be in direct succession if their common
adjacent marker is a box-marker of a variable from XZ ;

If a Z-avoiding trail connects two-box markers corresponding to variables Xj and Xk, we
also say that these variables are connected by a Z-avoiding trail. Such situations will
be denoted Xj  Z Xk.

Theorem 7. Consider a generating sequence π1(xK1), . . . , πn(xKn
), and three disjoint sub-

set J1, J2, Z ⊂ K1∪. . .∪Kn such that J1 6= ∅ 6= J2. If there does not exist a trail Xj  Z Xk

in the corresponding persegram with j ∈ J1 and k ∈ J2 then:

XJ1 ⊥⊥ XJ2 |XZ [π1 � . . .� πn].

Definition 8. Let P be a persegram over N . The formal independence model MP =
{〈A,B|C〉 ∈ T (N);A ⊥⊥ B|C[P ]} is a model induced by persegram P , where T (N) is a
system of all triples of disjoint subsets of N where A 6= ∅ 6= B.

3 Equivalence problem

By the equivalence problem we understand the problem how to recognize whether two
given persegrams P,Q over N induce the same independence model. It is of special
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importance to have an easy rule to recognize that two persegrams are equivalent in this
sense and an easy way to convert P into Q in terms of some elementary operations
on persegrams. Another very important aspect is the ability to generate all persegrams
which are equivalent to a given persegram. For all these problems, the last one is partially
solved in this paper.

Definition 9. Persegrams P,Q (over the same variable set N) are called independently
equivalent, if they induce the same independence modelMP =MQ.

Like in Bayesian networks, it may happen that different persegrams induce the same
independence model.

Example 10. 1. The following example is simple: N = {a, b} and the following two
persegrams P,Q:

P :
π1 π2

b

a

Q:

π1 π2

b

a

MP =MQ = ∅ in this case.

2. On the other hand, the persegrams which have the same variable sets in columns
in different order do not have to be equivalent. Let N = {a, b, c} and consider the
following persegrams:

P :
π1 π2 π3

a

b

c

Q:

π1 π2 π3

a

b

c

a ⊥⊥ b|∅[P ] but a 6⊥⊥ b|∅[Q]. On the contrary, a 6⊥⊥ b|c[P ] but a ⊥⊥ b|c[Q]. The order
of the columns in persegram is important.

Four different simple operations on persegram preserving independence model were
discovered. We call them IE operations (Independence Equivalent). These operations can
be divided into two groups according to the behavior of columns in a persegram: Either
changing their order (this group is called permutations) or adding/removing them (exten-
sions/reductions). Let us note, that when these operations are applied on compositional
model (its persegram), its generating sequence is accordingly modified.
To facilitate the reader survey, basic overview of the mentioned operations is presented

in the form of definition.

Definition 11. Let P be a persegram over N and two adjacent columns i, i + 1 with
Ki, Ki+1 markers. The so called IE operations are the following set of operations with
columns.
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• Independent permutation is swapping of columns i, i+1 when no box-marker turns
into bullet and vice-versa. (∪i−1

j=1Kj ⊇ Ki ∩Kj .)

• Intersection permutation is swapping of columns i, i+ 1 if all their bullets belong
to their intersection (Si ∪ Si+1 ⊆ Ki ∩Ki+1).

• Removing of a column containing bullets only is called Bullets extension/reduction
(Ki = Si).

• Removing of a column i, which is a subset of the column i+1 that has box-markers
elsewhere only, is called Subset extension/reduction. (Ki = Si+1.)

Graphic representation of a compositional model - persegram is inherently connected
to real data - distributions. If one applies the above defined IE operations to persegram
(assume that we have already proved, these operations preserve independence model), we
know that modified persegram has the same ”power” as the original one - It expresses
the same (un)conditional independencies (or dependencies). However, imagine that we
change the order of distributions (or add/remove some) in the generating sequence as
well as in the corresponding persegram. Will the resulting multidimensional distribution
be the same?
In other words, first, identity of independence models has to be proven. Then, we

have to show that multidimensional distributions represented by the original and the
modified generating sequence are equal. Denote by π1, π2, . . . πn the original generating
sequence. We can iteratively repeat IE operations to obtain a new multidimensional
model represented by sequence π′

1, π
′
2, . . . π

′
m. We need to prove π1 ⊲ π2 ⊲ . . . ⊲ πn =

π′
1 ⊲ π

′
2 ⊲ . . . ⊲ π

′
m. Or, if that is not valid in general, under what conditions.

In order to simplify the following lemmata we will work with the model where gen-
erating sequence consists of three distributions π1, π2, π3. This simplification is not in
any way at the expense of universality. (π1 can be internally composed from several
distributions and π1, π2, π3 can be a beginning of much longer sequence.)

Lemma 12. (Independent permutation) If K1 ⊇ (K2∩K3) then π1 ⊲π2 ⊲π3 = π1 ⊲π3 ⊲π2.

Proof of this assertion can be found for example in [1]. The declaration of this lemma
can be translated into the language of persegrams as following: ”Two columns in perseg-
ram can be swapped, if no bullet turns into box-marker and vice-versa.”
The proof of the assertion that this operation preserves the independence model is

obvious: If no box-marker turns into a bullet and vice-versa, then all Z-avoiding trails
from definition 6 are maintained. (The vertical connections are moved with swaped
columns and the horizontal ones shortened/extended.)

Lemma 13. (Intersection permutation) If π2 and π3 are consistent then

S2 ∪ S3 ⊆ K2 ∩K3 =⇒ π1 ⊲ π2 ⊲ π3 = π1 ⊲ π3 ⊲ π2. (1)

Remark 14. The condition of lemma 13 is given in the form S2 ∪ S3 ⊆ K2 ∩ K3 since
it seems to be closer to the verbal designation of condition: ”All swapped distributions
bullets must be included in their intersection.” However, for the purposes of the proof, we
will rewrite it into its equivalent form. The idea is outlined in the following form.
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S2 ∪ S3 ⊆ K2 ∩K3 ⇔
{
S2 ⊆ K2 ∩K3

S3 ⊆ K2 ∩K3 ⇔ S3 = K2 ∩K3

}

⇔ S2 ⊆ S3 ⊆ K2.

Proof. (lemma 13) First, let us show, that under given assumptions, π1⊲π2⊲π3 is undefined
iff π1 ⊲ π3 ⊲ π2 is undefined. From the definition of the operator we know that π1 ⊲ π2 ⊲ π3

is not defined iff
π↓K1∩K2

1 6≪ π↓K1∩K2

2 (2)

or
(π1 ⊲ π2)

↓(K1∪K2)∩K3 6≪ π
↓(K1∪K2)∩K3

3 (3)

Analogously, π1 ⊲ π3 ⊲ π2 is not defined iff

π↓K1∩K3

1 6≪ π↓K1∩K3

3 (4)

or
(π1 ⊲ π3)

↓(K1∪K3)∩K2 6≪ π
↓(K1∪K3)∩K2

2 (5)

Because of the remark 14:

K1 ∩K3 = K1 ∩ S3

= (K1 ∩ S2) ∪ (K1 ∩ (R2 ∩ S3))

= (K1 ∩ S2) ∪ (K1 ∩ R′
2) (6)

= K1 ∩ S2 = K1 ∩ (K1 ∩K2) = K1 ∩K2

and

(K1 ∪K3) ∩K2 = (K1 ∩K2) ∪ (K3 ∩K2)

= (K1 ∩K3) ∪ (K2 ∩K3) (7)

= (K1 ∪K2) ∩K3 = S3.

Regarding the fact that in our case π2 and π3 are consistent and the fact that K1 ∩K2 =
K1 ∩K3, (2) is equivalent to (4). Since K1 ∪K2 ⊇ S3 ⊇ K1 ∩K2 and K1 ∪K3 ⊇ S3 ⊇
K1 ∩K3 we can apply lemma 2 getting

(π1 ⊲ π2)
↓S3 = π↓S3

1 ⊲ π↓S3

2 = π↓S3

1 ⊲ π↓S3

3 = (π1 ⊲ π3)
↓S3 ,

where the second equality follows from the consistency of π2 and π3. Thus we got that
(3) is equivalent to (5) and both conditions coincide.
Now, assume that both expressions in formula (1) are defined. Because of (6), (7)

and the fact that π2 and π3 are consistent, the expressions

π1 ⊲ π2 ⊲ π3 =
π1π2π3

π↓K1∩K2
2 π

↓K3∩(K1∪K2)
3

,

π1 ⊲ π3 ⊲ π2 =
π1π2π3

π↓K1∩K3

3 π
↓K2∩(K1∪K3)
2

are mutually equivalent, which finishes the proof.
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Lemma 15. Let P be a persegram. If P ′ arises from P by applying of Intersection per-
mutation thenMP =MP ′.

Proof. Let P is a persegram over variable set N . Suppose, that two adjacent columns i,
i+ 1 meet the condition Ki ∩Ki+1 = Si ∪ Si+1.
We have to consider the following two situations:

(a)Si = Si+1,

(b)Si ⊂ Si+1.

It is needless to consider

(c)Si ⊃ Si+1

because it is in dispute with assumptions.
Consider the situation (a) where Si = Si+1 (i.e the intersection contains bullets only).

By swapping the corresponding columns, no bullet will change into a box-marker and
vice-versa. It passes into proof of Independent permutation, which is evident.
Now consider the situation (b). Regarding the fact, that (un)conditional indepen-

dencies in persegram are indicated by absence of corresponding Z-avoiding trails, we
have to prove, that the sequence of markers remain Z-avoiding trail after Intersection
permutation.
Suppose, that there is a Z-avoiding trail which passes through swapped columns.

Horizontal parts remain the same. Vertical parts have to be connected with a box-marker.
Assume, that the original trail fulfilled all the conditions imposed. After reordering, the
corresponding vertical connection may contain:

• two box-markers → In this case everything is all right.

• one box-marker → In this case everything is all right.

• no box-marker → In this case vertical connection contains two bullets. According
to the assumptions they belong into both columns. Hence, vertical connection can
be transferred into the other column. Then the vertical connection will contain, at
least, one box-marker there, which corresponds to the box-marker from the original
vertical connection.

In accordance with the definition 11, lemmata about Bullets extension/reduction
should follow now. The first of them can be found e.g. in [1].
Suppose that we remove/add column of bullets. It is easy to prove that this operation

preserves the Independence model. According to the definition 6 of Z-avoiding trail,
no vertical connection of that trail can pass through column without any box-marker.
Therefore, the removal/addition of such column will bring no change in its independence
model. Now proceed with the last of IE operations - Subset extension/reduction.

Lemma 16. (Subset extension/reduction) If π2 and π3 are consistent then

K2 = S3 =⇒ π1 ⊲ π2 ⊲ π3 = π1 ⊲ π3. (8)
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Proof. Let us start, again, by showing that, under given assumptions π1 ⊲ π2 ⊲ π3 is
undefined iff π1⊲π3 is undefined. From the definition of operator ⊲ follows that π1⊲π2⊲π3

is undefined if

π↓K1∩K2

1 6≪ π↓K1∩K2

2

or
(π1 ⊲ π2)

↓(K1∪K2)∩K3 6≪ π
↓(K1∪K2)∩K3

3 (9)

Because of (K1 ∪ K2) ∩ K3 = S3 = K2 and the consistence of π2 and π3 , the
expression (9) can be rewritten into the following form: π↓K2

1 ⊲π2 6≪ π2. This condition is
invalid under any circumstances. Therefore the condition (9) is invalid and under given
assumptions, π1 ⊲ π2 ⊲ π3 is not defined iff

π↓K1∩K2
1 6≪ π↓K1∩K2

2 (10)

Analogously, π1 ⊲ π3 is not defined iff

π↓K1∩K3
1 6≪ π↓K1∩K3

3 (11)

Under the given assumption K2 = S3, these two conditions (10), (11) coincide because

S2 = K1 ∩K2 = K1 ∩ S3 = K1 ∩K3

and π2, π3 are consistent.
Now, supposing that both expressions in (8) are defined,

π1 ⊲ π2 ⊲ π3 =
π1π2π3

π↓S2

2 π↓S3

3

=
π1π3

π↓S2

2

=
π1π3

π↓K1∩K3

3

which finishes the proof.

Lemma 17. Let P be a persegram. If P ′ arises from P by applying of Subset exten-
sion/reduction thenMP =MP ′.

Proof. This lemma can by proved the same way as lemma 15, or one can realize that
Subset extension/reduction can be spread out into Subset permutation and Bullets ex-
tension/reduction, where both of them preserve Independence modelMP .

The previous proof narrows the set of IE operations in three of them (Subset exten-
sion/reduction can be omitted since it can be substituted by the sequence of the others).

Lemma 18. Let P be a persegram. If P ′ become from P by iterative application of the
IE operations thenMP =MP ′.

Proof. Since all of IE operations preserve theMP , the proof is clear.

Lemma 19. Let π1, π2, . . . , πn be a perfect sequence. If π′
1, π

′
2, . . . , π

′
m is obtained by iter-

ative application of IE operations, then

π1 ⊲ π2 ⊲ . . . ⊲ πn = π′
1 ⊲ π

′
2 ⊲ . . . ⊲ π

′
m

Proof. Because π1, π2, . . . , πn is a perfect sequence, then π1, π2, . . . , πn are pairwise con-
sistent.

Example 20. An example of four different persegrams with the same independence model
is on Figure 2. They were produced by iterative application of IE operations from the
most left persegram.
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π3 π2 π1
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b
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d

e

Figure 2: Process of application IE operations in persegram

4 Conclusion

The main achievements of this report are various operations in persegram, denoted as IE
operations, which preserve the (un)conditional independencies expressed by persegram.
By iterative application of the IE operations we can obtain big amount of various perseg-
rams. However, may we obtain all of them? All persegrams with the same independent
model? May two persegram with the same independent model be converted each other
by application of IE operations only ?
According to our preliminary studies, the answer is YES. Nevertheless, the corre-

sponding proof has not been finished yet. To do it, a number of different assertions has
to be bringed out, but it goes beyond the scope of this paper.
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Abstract. Real complex dynamic systems are subject of advanced modelling yet. Knowledge,
decision and action in such systems are often distributed into a set of individuals called agents.
Present paper introduces a simple model of an environment with renewable resources. In this
environment, agents are operating, namely they exploit from the resources. The system depends
on various parameters and global rules which are assessed and optimized in the second part of
the paper.

Abstrakt. Reálné složité dynamické systémy jsou předmětem pokročilého modelování. Znalosti,
rozhodování i akce v takových systémech jsou často rozloženy mezi jedinci - agenti. Předložený
příspěvek představuje jednoduchý model prostředí s obnovitelnými zdroji. V tomto prostředí
působí agenti tak, že čerpají z těchto zdrojů. Systém závisí na několika parametrech, které jsou
zkoumány a optimalizovány v druhé části článku.

1 Intoduction

Modeling of dynamic systems has a long tradition and stochastic dynamic programing
and control theory has introduced many useful concepts how to act on a system and so
influence its behavior [2].
In present, new works occurs dealing with operation of multiagent society on the

system. There are two main tendencies: first group of researchers are experts[3] in AI
and they intend to introduce lot of logic, communication and so on[4]. On the other hand
there are experts who the agents only admit into their sophisticated physical models.
This paper is different. The model is constructed step by step from both points of

view and the objective to assess the operation of agents in a particular task is achieved.
Section 2 introduces the model and section 3 shows results and conclusion on this model.
Section 4 summarizes most interesting results.

2 Model Desription

For a multi-agent system, it is important to specify the environment, its state, flow of time
and particular components. The model applied for this work simulates agents’ behavior
in the environment with renewable resources. The state of the system can represented as

135



136 K. Macekx ∈ Rn+m where n is number of resources and m is number of agents; xj is the amount
of material in agent or resource j. The time is discrete and has a finite horizon t0.
Basic system dynamic cosnsist in discrete steps. In each steps two affairs happen:

1. Natural changes - from states x(t) evolves temporary new states x(∗)(t+ 1).

2. Agents’ actions - from temporary new states x(∗)(t + 1) evolves final new statesx(t+ 1).

2.1 System Components and their Properties

The system is composed from two kinds of entities, viz. of resources and of agents.
Abstraction of both is the class natural object. An natural object contains an amount of
material. The capacity have upper and lower limits. The amount of material in natural
object j varies in time as a difference equation with limits according following formula:

x∗j (t+ 1) = min
(
xmaxj ,max(xminj , xj(t) · gj + aj)

)
(1)

where aj and gj are parameters specific for each natural object and corresponds to linear
(arithmetic) or exponential (geometric) trends.
The system contains a set of resources. A resource is - in fact - a natural objects. A

renewable resource have aj > 0 or gj > 1. Possitive aj stands for resources with regular
feed, e.g. for water source. Situation with gj > 1, is typical for living natural objects,
e.g. for growing wood in a forest. Resources considered in our simulation are considered
to have gj > 1, aj = 0, and xminj = 0. Therefore, if a resource is exploited totaly, it is not
able to recover its state.
Second set contained in the system are agents. From the natural object’s point of

view, it holds aj < 0 and gj = 0. It means that the agents consumes regulary a portion
of the material thay contain. However, the agents differ from other natural objects in a
more important aspect: they act. In each time step, they choose an action. There are
following options what an agent may do

• load the material from the actual resource,

• move to another resource,

• or wait doing nothing.
Nevertheless, there is a condition to act, namely xj(t) > 0 because if xj(t) ≤ 0, the agent
is not able to consume usual amount aj and dies.
Waiting is very simple to be implemented and movement as well. All resources are

considered to be conected by equaly long way. Hence, the only parameter for movement
is which resources is to be visited next.
If agent i loads from resource j, is the situation more complicated. The agent strives

to load its maximum, but there are two limits: agent’s free capacity and the speed of
loading. Nevertheless, the resource may not contain enough material. Therefore the
loading is given by following formula:

li(t) = min
(
x∗j(t)− xminj , max(xmaxi − x∗j (i), lmaxi )

)
(2)



Multiagent Exploation from Renewable Resources 137

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α = 0.5

α = 0.6

α = 0.7

α = 0.8

α = 1

Figure 1: Pugnancity depending on relative state xj

xmax
j

for different α

Hence after actions the states of loading agents will be xi(t) = x∗i (t) + li(t) and the state
of resources as follows:

xj(t) = x∗j(t)−
∑

i∈Lj(t)

li(t) (3)

where Lj(t) are agents loading from the resource at time t.
The problem occurs if more than one agents are at the same resource. In this case,

agents are in a queue and load one after other. The point is how to sort this queue, who
will load first. Let pi(t) is actual pugnancity of agent i. The ordering can have e.g. such
form:

• The strongest agents load first - selfish apporach.

• The order is random - random approach.

• The weakest agents load first - altruistic approach.
A sorting algorithm called groggy sort has been developed which can parametrize this.
The system parameter γ ∈ [−1, 1] passes from the altruistic approach through the random
to the selfish one smoothly.
The pugnancity depends on relative filling of the agent. If an agent is almost empty,

it means it is hungry and is weak. Nevertheless, the agent may lose the power if it is
nearly completely full. The relation is given by following formula:

pj = −α−2

(
xj
xmaxj

− α
)2

+ 1 (4)

The pugnancity express how the agent’s vigour depends on the relative filling and is
always ∈ [0, 1]. Parameter α ∈ [0.5, 1] sets the relative filling by maximal pugnancity, as
shown in Figure 1.
The last remaining aspect of the system is the mechamism how the agents decide.

The selection of an action is random. Each action have a score that is updated. Agents
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have memory about all visited resources and amounts of material that they loaded there.
The score of movement to a resource is calculated as follows:

si,j(t) = c
vsuccessfuli,j (t)

vtotali,j (t)

l(tlast)

lmaxi

1

n
tanh(τ(t− tlast)) (5)

where c is a constant > 0 and represents the traveling preference. The first fraction is
the ratio of visits when the load was not zero. The second fraction express the ratio of
successfulness of last visit. Third fraction is important to ensure the comparability of
the action travel and action load for all possible amount of resources n. The latter term
express the time influence: longer absence, bigger curisousity to visit the resource. The
parameter τ can be denoted as nostalgia. The function tanh is applied in order to keep
also this term in [01].

2.2 Objectives

The system is running with given parameters finite period. During this time natural
changes happen and the agents act. There are some thinks that can be considered as
objectives:

Total production - the sum of loaded material during the simulation is maximal.

Humanism - the amount of not empty agents after the simulation is maximal. In other
words, this approach maximizes the amount of living agents in the system.

Ecology - the amount of not empty resources after the simulation is maximal. In other
words, this approach attempts to keep resources able to be renewed.

Egoism - the sum of loaded material during a period is maximal. If the system has m
agents, there are m egoist criteria. This model would suppose heterogenous agents. As a
simplification, this objective has been skipped.
It is obvious some criteria are conflicting. E.g. if the agents would not load the

material, they will die soon and no resource will be used. Nevertheless, in a long term
horizon, it can be supposed that these conflicting criteria are not conflicting in fact. If
there is no production, no agent can survive. If there are no resources able to be renewed,
the agents can not survive as well.
The conflict of several criteria is solvable by multicriterial methods. One of them is

presented bellow. For a proper formulation of a multicriterial problem it is necessary to
state also the input space, i.e. parameters and values from which can be the parameters
of the system selected.

2.3 Parameters

The system has following parameters The fourth column states which parameters are
fixed for performed simulation. In fact, the parameters that are considered not to be
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Parameter Stands for Range Default
n Number of resources N 20
m Number of agents N 20
a a = −ai for all agents i R+ 1

amax maximal load limit for each agent R+ 1
g g = gj for all resources j 1 + R+ 1.3
α pugnancity parameter [0.5, 1] -
γ groggy sort parameter [−1, 1] -
c traveling preference R+ -
τ time parameter R+ -

xmaxag , xmaxres maximal states for agents and for resources R+ 10, 20
xinitag , x

init
res initial states for agent and resources R+ 4, 9

xminag , xminres minimal states for agent and resources R+ 0, 0

Table 1: Considered system parameters

subject of decision making have been fixed. Parameters g, α influence the ordering of
agents if more than one come to the same resource. Parameters c, τ are part of the
decision making procedure of each agent.

3 Multicriterial Genetic Optimization

The system described was described completely. The question is which values shall the
system parameters have with respect to proposed objectives.
Multicriterial decision making has been a subject of research for a long time. Nev-

ertheless, usual methods consider convex decision space and special (linear, quadratic,
convex, etc.) objective functions.
However, if the objective function corresponds to a result of a simulation, the assump-

tions are not possible. Therefore, another approach is necessary. Following text presents
a modification of algorithm described [1].
First, let the multicriterial optimization problem be formulated properly. The in-

put space is an interval S ⊂ R
4 where particular attributes corresponds to parameters

α, g, c, τ . The objective function has 3 components: total production, number of non
empty agents, and number non empty resources. The objectives will be denoted f1, f2,
and f3. Because the system is stochastic, these values are obtained as average from s
simulation. The parameter s = 20 was used.
The basic principle of multicriterial analysis consist in elimination of dominated vari-

ants. A variant is dominated if there is another one that is at least same in all criteria and
in at least one better. The aim of presented method is to find nondominated variants.
The dominanace will be denoted x(i) ≻ x(j) (6)

and a non dominated variant within a setx(i) ≻ S (7)
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finally a subset dominanting particular solution will be denoted Si. Of course, Si will be
empty for all non dominated variants. The method is a modification of an usual genetic
algorithm with selection, crossover, and mutation.

3.1 Selection

This operatdion respects the levels of nondominance. I.e. non dominated individuals
have the probability highest. They have rank 1. After omitting them, other individuals
are non dominated. They have rank 2 etc. Formaly

ri = 1 if x(i) ≻ S (8)

ri = 1 + max
j∈Si

rj (9)

The ranking is afterwards used for caclulation of two distribution functions:

ρi = k1(exp rj + 1) (10)

θi =
k2

rj
(11)

where k1, k2 are constants do
∑
ρi =

∑
θi = 1. In each time step given number of

crossovers and mutations are performed. ρ is used for sampling parents of these opera-
tions, while θ is used for locating the place.

3.2 Crossover

The crossover is perfomed per components, i.e. the component of the first child are
selected with 0.5 probablility form the first parent and with 0.5 from the other one. The
not selected component is put into the second child.

3.3 Mutation

The mutation adds random noise form normal distribution with the mean µ = 0 and
standard deviation that may differ for each attribute is defined as follws:

σj =
1

log(log(t))
(12)

σj =
1

sj log(log(t))
(13)

where sj is standard deviation of the j−th component of the population.

4 Results

Practical part of the work consist of two parts. First, the model was implemented in
Java. Afterwards an multicriterial algorithm was coded in Matlab. This algorithm uses
the Java classes for the objective function calculation, of course.
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Number of iterations 10000
Size of population 100
Number of crossovers in an iteration 1000
Number of mutations in an iteration 1000
Simulations required for fitness calculation 20

Table 2: Optimization parameters

α γ τ c
Agents alive −0.12366 −0.036367 −0.19365 −0.36289
Non empty resources −0.014428 −0.00093429 −0.013190 −0.0072702
Total production −0.12346 −0.033927 −0.18654 −0.33625

Table 3: Correlation matrix for all generated results

Simulation and optimization parameters are to be distinguished. Some simulation
parameters have been fixed, some of them were variable. The objective was to find such
values of these variable parameters, leading to non dominated solutions with respect to
above mentioned objectives. Table 1 shows in column Default which parameters are fixed
and their values. Only such parameters were selected to be subject of optimization that
influece the behavior of agents. Table 2 shows the optimization parameters.
The optimization algorithm discovered 5 non dominated solutions. For basic orienta-

tion in dependencies between parameters of non dominated solutions and corresponding
values of objective functions, correlation analysis was performed. Table 3 provides part
of correlation matrix for the entire population, Table 4 for non dominated solutions. The
first one represents all solutions, but we are interested only in the non dominated ones.
GFurthermore, the values of Table 3 are not s
The correlations for non dominated solutions are more signifficant. At level 0.1 for

t-test, four correlations are signifficant:

• Agents alive - τ
• Total production -τ
• Agents alive - c

• Total production -c
Both parameters τ and c influence the agent’s will to travel. Agents obtain better results
in exploiting if they load instead of travel.
Other correlations between variable parameters and objectives are not so significant.

Parameters α and γ have the opposite effect. It seems that the exploaition is more effective
if more pugnant agents are prefered and the pugnancy grows with agent’s material.

5 Discusion

Present work have introduced simple multi-agent model of an environment with renewable
resources. Parameters influencing the problem were mentioned. Afterwards an multicri-
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α γ τ c
Agents alive 0.10876 0.22804 −0.75014 −0.82158
Non empty resources −0.29206 −0.17625 0.47344 0.47121
Total production 0.10872 0.22842 −0.75076 −0.82220

Table 4: Correlation matrix for all non dominated solutions

terial optimization algorithm was introduced and applied. Results were presented and
discussed.
Main benefits are these: design and implementation of a multi-agent system, general

framework for conflict modelling and resolution via pugnancity and groggy sort, basic
modelling of agents’ memory and decision making, and finally modification and imple-
mentation of an multicriterial optimization evolution algorithm.
The work opens also some challenges for further research. The model could deal also

with placement of the resources in a plane or in a graph so the movement of agents
is not so easy, but more realistic. The behavior of resources could depend on other
resources (phreatic water) or external conditions (wheather). The model of agent could
be improoved as well, especially with respect to communuication, knowledge sharing,
reasoning, coolation formation etc.
Regarding the optimization of the system, other criteria and parameters can be in-

volved, more testing can be performed. The optimization method can employ other
selection, mutation or crossover. The relationships between variable simulation parame-
ters and optimization objectives could be examined by advanced methods than applied
correlation analysis.
There is lot of open work and I intent to deal with it within next phases of my PhD

course.
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Abstract. This contribution deals with numerical solution of the Gray-Scott model. We intro-
duce two numerical schemes for the 2D GS model based on the method of lines. To perform
spatial discretization we use FDM in first case and FEM in the second case. Resulting sys-
tems of ODEs are solved using the Runge-Kutta-Merson method. We present our numerical
simulations.

Abstrakt. V tomto příspěvku se věnujeme numerickému řešení Grayova-Scottova modelu. Před-
stavujeme dvě numerická schémata pro 2D GS model založená na metodě přímek. K prostorové
diskretizaci používáme v prvním případě FDM, ve druhém FEM. Vzniklé systémy ODEs řešíme
metodou Runge-Kutta-Merson. Uvádíme výsledky numerických simulací.

1 Introduction

Reaction-diffusion systems are a class of systems of partial differential equations of
parabolic type. It includes mathematical models describing various phenomena in the
field of physics, biology and chemistry. They describe how the concentration of one or
more substances distributed in space changes under the influence of two processes: local
chemical reactions in which the substances are converted into each other, and diffusion
which causes the substances to spread out in space. Reaction and diffusion of chemical
species can produce a variety of patterns.
Gray-Scott model is one of these models. It was first introduced in 1984 in an article

by P. Gray and S. K. Scott [1] as a mathematical model of autocatalytic chemical reaction

U + 2V −−−→ 3V

V −−−→ P, (1)

where U , V are input reactants and P is inert product. Gray-Scott model can be written
as the following system two PDEs of parabolic type (see [3, 4])

∂u

∂t
= a∇2u− uv2 + F (1− u),

∂v

∂t
= b∇2v + uv2 − (F + k)v. (2)

Here u, v are unknown functions representing concentrations of chemical substances U ,
V . Parameter F denotes the rate at which the chemical substance U is being added
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during the chemical reaction, F + k is the rate of V → P transformation and a, b are
constants characterizing the environment where the chemical reaction takes place.
We solve (2) on a finite domain Ω, which is a square or line depending on whether

we are solving the system in 2D or 1D. We use zero Neumann boundary conditions.
Our choice of initial data is such that v(x, 0)) = vini, u(x, 0)) = 1 − vini. We usually
take F > 0, k > 0. For a = 0, b = 0 the system (2) is a model of the reaction (1) in
continuously fed well stirred tank reactor (CSTR), the CSTR model. If a > 0, b > 0
then the system (2) models the reaction in continuously fed unstirred reactor (CFUR),
the CFUR model (see [7]). Dynamics of the CSTR model is rich and covers standing
pulses, traveling pulses, traveling fronts, self-replicating patterns, spatio-temporal chaos
and others (see [3]). Most of these pattern have been observed also in the CFUR model
(see i.e. [9]).
For other dimensionless forms of the Gray-Scott model and their application see i.e.

[4, 5, 6].

2 Numerical schemes

We use two numerical schemes to solve initial-boundary-value problem for the Gray-Scott
model (2). Both of them are based on the method of lines. For spatial discretization we
used finite difference method (FDM) in the first case and finite elements method (FEM)
in the second case. We use structured numerical grids (see Fig. 1). To solve resulting
systems of ordinary differential equations Runge-Kutta-Merson method is used.

FDM grid FEM grid

Figure 1: Numerical grids we used for our numerical simulations.

2.1 FDM based numerical scheme

Let h be mesh size such that h = L
N−1
for some N ∈ N+. We define numerical grid as a

set

ωh = {(ih, jh) | i = 1, . . . , N − 2, j = 1, . . . , N − 2} ,
ωh = {(ih, jh) | i = 0, . . . , N − 1, j = 0, . . . , N − 1} .
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For function u : R2 → R we define a projection on ωh as uij = u (ih, jh). We introduce
finite differences

ux1,ij =
ui+1,j − ui,j

h
, ux1,ij =

ui,j − ui−1,j

h

ux2,ij =
ui,j+1 − ui,j

h
, ux2,ij =

ui,j − ui,j−1

h
,

and define approximation ∆h of the Laplace operator ∆ as follows

∆huij = ux1x1,ij + ux2x2,ij.

Then semi-discrete scheme has the following form

d

dt
uij(t) =

a

h2
∆huij + F (1− uij)− uijv2

ij,

d

dt
vij(t) =

b

h2
∆hvij − (F + k)vij + uijv

2
ij, (3)

plus corresponding initial and boundary conditions.

2.2 FEM based numerical scheme

To induce the semi-discrete scheme we begin with variation formulation of the initial-
boundary-value problem for the Gray-Scott model (2). Let

ϕ1(x), ϕ2(x) ∈ C∞
0 (Ω),

ψ1(t), ψ2(t) ∈ C∞
0 (0, T )

are test functions and

f1(u, v) = F (1− u)− uv2,

f2(u, v) = −(F + k)v + uv2

denote right-hand sides of differential equations (2). Using standard approach (see [8])
we induce weak formulation of the problem

d

dt
(u, ϕ1) + a(∇u,∇ϕ1) = (f1, ϕ1),

d

dt
(v, ϕ2) + b(∇v,∇ϕ2) = (f2, ϕ2),

u(·, 0) = uini,

v(·, 0) = vini, (4)

with solution u, v from the Sobolev space W (1)
2 (Ω). We are looking for Galerkin approx-

imation

uh(t) =
N∑

i=1

αi(t)Φi,

vh(t) =

N∑

i=1

βi(t)Φi
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of this weak solution in the finite dimensional space Sh ⊂ W
(1)
2 (Ω), where Φ1, . . . ,ΦN

are its basis functions. Functions αi, βi are real functions which we get using common
technique as solutions of initial value problems. Choosing basis functions Φi in the form
of pyramidal functions

Φi(Pj) = δij for all grid nodes Pj ,

and using mass-lumping we can rewrite the problem for finding functions αi, βi in the
following form

d

dt
uij(t) =

2a

3h2
[ui+1,j + ui+1,j+1 + ui,j−1 + ui,j+1 + ui−1,j +

+ui−1,j+1 − 6uij] + F (1− uij)− uijv2
ij

d

dt
vij(t) =

2b

3h2
[vi+1,j + vi+1,j+1 + vi,j−1 + vi,j+1 + vi−1,j +

+vi−1,j+1 − 6vij ]− (F + k)vij + uijv
2
ij (5)

plus corresponding initial and boundary conditions. For details on induction of presented
semi-discrete schemes we refer reader to [9].

3 Numerical experiments

3.1 EOC measurements

To determine the order of convergence of our numerical algorithm based on the FDM
based semi-discrete scheme (3) we use experimental order of convergence (EOC). For our
measurements we used formula

‖ v − vh2 ‖
‖ v − vh1 ‖

=

(
h2

h1

)α

, (6)

where v is numerical solution computed on the grid of size 2000× 2000 and substitutes
the analytical solution, vh2, vh1 are numerical solutions computed on courser grids with
mesh sizes h2, h1 and α is the EOC coefficient. We present some of our measurements for
different Gray-Scott model parameter values and initial conditions (see Table 1, Table 2,
Table 3). According to the presented results the EOC coefficient depends notably on
initial concentration data and model parameter values. Our results vary between the
values of 1 and 2. More research into this problem is needed including EOC measurement
for the FEM based numerical algorithm.

3.2 Diversity of solutions

In this section we present some of our numerical results. In the figures Figure 3 and Figure
2 we can see spatial distribution over the domain Ω of chemical substance V concentration
for given Gray-Scott model parameter values and time. These results demonstrate the
diversity of GS model solutions. We can see that patterns vary between geometrically
simple ones and those which are more complex. In the Figure 2 we can see growing-line
like patterns which we were able to observe for parameter values a = 2·10−5, b = 1·10−5,
F = 0.0737, k = 0.061882, L = 0.5 and different initial conditions.
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Nx ×Ny h EOC L2 EOC L∞
100x100 0.0050505 - -
150x150 0.0033557 1.6479179 1.6364127
200x200 0.0025125 1.8042298 1.5663398
250x250 0.0020080 1.9112146 1.7531840
300x300 0.0016722 1.9725610 1.8660718
350x350 0.0014326 2.0089377 1.8995297
400x400 0.0012531 2.0336490 1.9882238

Table 1: Table of EOC coefficients.

Nx ×Ny h EOC L2 EOC L∞
100x100 0.0101010 - -
150x150 0.0067114 0.8225371 0.5550153
200x200 0.0050251 0.9222231 0.7584173
250x250 0.0040160 0.9995422 0.9052681
300x300 0.0033444 1.0667171 1.0124643
350x350 0.0028653 1.1237827 1.0727512
400x400 0.0025062 1.1754085 1.1689477

Table 2: Table of EOC coefficients.

Nx ×Ny h EOC L2 EOC L∞
100x100 0.0050505 - -
150x150 0.0033557 2.0466270 1.0203486
200x200 0.0025125 2.0460521 0.9659226
250x250 0.0020080 2.0512043 1.1006299
300x300 0.0016722 1.9143909 0.9491632
350x350 0.0014326 1.5423185 1.0946135
400x400 0.0012531 1.5552072 0.9893100

Table 3: Table of EOC coefficients.
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Initial data for Solution at time Solution at time
concentration v t = 10000 t = 20000

Initial data for Solution at time Solution at time
concentration v t = 8000 t = 20000

Initial data for Solution at time Solution at time
concentration v t = 2000 t = 20000

Figure 2: Growing line-like patterns. Parameter values: a = 2 ·10−5, b = 1 ·10−5, F =
0.0737, k = 0.061882, L = 0.5. Grid size: 1000 × 1000. Numerical method:
FDM. Time evolution of concentration v is shown for different initial data.
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a = 1·10−5, b = 1·10−6 a = 1·10−6, b = 1·10−7 a = 1·10−6, b = 1·10−7

F = 0.2,k = 0.007, F = 0.15,k = 0.009, F = 8·10−4,k = 0.2,
L = 0.5, t = 2000 L = 0.5, t = 700 L = 0.5, t = 1900

a = 1·10−6, b = 1·10−7 a = 1·10−6, b = 1·10−7 a = 1·10−6, b = 1·10−7

F = 8·10−4,k = 0.02, F = 0.002,k = 0.02, F = 0.004,k = 0.02,
L = 0.5, t = 980 L = 0.5, t = 2080 L = 0.5, t = 5000

a = 1·10−6, b = 1·10−7 a = 1·10−6, b = 1·10−7 a = 1·10−5, b = 1·10−7

F = 0.007,k = 0.03, F = 0.03,k = 0.04, F = 0.001,k = 0.008,
L = 0.5, t = 940 L = 0.5, t = 4940 L = 0.5, t = 2000

Figure 3: Results demonstrating diversity of solutions of the GS model computed using
FDM based numerical scheme (3) and grid size 400×400 for different parameter
value combinations. Spatial distribution of concentration v is presented.
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Abstract. This paper deals with the numerical simulation of dislocation dynamics. Dislocations
are described by means of the evolution of a family of closed and open smooth curves Γ(t) : S1 →
R

2, t ≧ 0. The curves are driven by the normal velocity v which is the function of curvature κ
and the position vector x ∈ Γ(t). In this case the equation is defined this way: v = −κ + F .
The equation is solved using direct approach by two numerical schemes, ie. semi-implicit and
semi-discrete. Results of the dislocation dynamics simulation are presented.

Abstrakt. Tento článek se zabývá numerickou simulací dislokační dynamiky. Dislokace jsou
popsány pomocí časového vývoje množiny uzavřených a otevřených hladkých křivek Γ(t) :
S1 → R2, t ≧ 0. Vývoj křivek je ovlivňován normálovou rychlostí v, jenž je funkcí křivosti
κ a polohového vektoru x ∈ Γ(t). V tomto případě má rovnice tvar v = −κ + F . Rovnice je
řešena přímou metodou pomocí dvou různých numerických schémat, semi-implicitním a semi-
diskrétním. Výsledky simulace dislokační dynamiky jsou také uvedeny.

1 Introduction

In the field of material science, the dislocations are defined as an irregularity or error in
crystal structure of the material. The presence of dislocations strongly influences many
of the material properties, that is why it is important to develop suitable physical and
mathematical model. The physical model already exists but there still is a lot of to do
concerning mathematical model. From the mathematical point of view, the dislocations
are defined as smooth closed or open plain curves which evolve in time. The example of
dislocation in the material is shown in Figure 1.

2 Mathematical model

The evolving curves can be mathematically described in several ways. One possibility is
to use the level-set method [1, 2, 3], where the curve is defined by the zero level of some
surface function. One can also use the phase-field method [4]. Finally, it is possible to
use the direct (parametric) method [5, 6] where the curve is parametrized in usual way.
This article discusses this direct approach.

∗This work is supported by grant no. MSM 6840770010, project no. LC06052 of Nečas center for
mathematical modeling.
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Figure 1: Dislocation in steel. http://en.wikipedia.org/wiki/Dislocations

3 Parametric description

When using the parametric approach, the dislocation curve Γ(t) is described by a smooth
time-dependent vector function

X : S × I → R
2,

where S = (0, 1) is a fixed interval for curve parametrization and I = 〈0, T 〉 is the time
interval. Dislocation curve Γ(t) is then given as

Γ(t) = {X(u, t) = (X1(u, t), X2(u, t)), u ∈ S}.
The family of curves satisfies the equation for time evolution

v = −κ + F (1)

where v is the normal velocity of the curve evolution. The normal velocity v is the
function of the curvature κ and the position vector x. κ is the mean curvature and F is
the forcing term.
The evolution law (1) is transformed into the parametric form. The unit tangential

vector ~T is defined as ~T = ∂uX/|∂uX|. The unit normal vector ~N is perpendicular to the
tangential vector and ~N · ~T = 0 holds. The curvature κ is defined as

−κ =
∂uX

⊥

|∂uX|
· ∂

2
uuX

|∂uX|2
= ~N · ∂

2
uuX

|∂uX|2
,

where X⊥ is a vector perpendicular to X. The normal velocity v is defined as a time
derivative of X projected into the normal direction,

v = ∂tX ·
∂uX

⊥

|∂uX|
.

The equation (1) can now be written as

∂tX ·
∂uX

⊥

|∂uX|
=

∂2
uuX

|∂uX|2
· ∂uX

⊥

|∂uX|
+ F
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which holds provided

∂tX =
∂2
uuX

|∂uX|2
+ F (u, t)

∂uX
⊥

|∂uX|
. (2)

The term ∂2
uuX/|∂uX|2 in (2) contains some tangential force which makes curve points

to move along curve. To neglect this tangential force, some term α in the tangential
direction must be subtracted, so the equation changes to

∂tX =
∂uuX

|∂uX|2
− α ∂uX

|∂uX|
+ F (u, t)

∂uX
⊥

|∂uX|
. (3)

One can derive that the tangential force contained in the equation has the form

α =
∂uuX · ∂uX
|∂uX|

. (4)

We obtain the equation where there is no tangential force at all. The equation has the
following form:

∂tX =
∂uuX

|∂uX|2
− ∂uuX · ∂uX

|∂uX|2
∂ux+ F (u, t)

∂uX
⊥

|∂uX|
. (5)

This equation is not suitable for numerical simulations because points cannot move along
curve and often create areas with high density of points and areas where points are
very sparse causing very slow computation. The equation (2) is better for numerical
simulations but still for long time simulations similar grouping of points usually happens.
One of the solutions is to use some algorithm for tangetial redistribution of points.
For long time computations with time and space variable external force F (u, t), the

algorithm for curvature adjusted tangential velocity is used. This algorithm moves points
along the curve according to the curvature, i.e., areas with higher curvature contain
more points than areas with lower curvature. This improves numerical stability and also
precision of computation. Unlike the case with no tangential force (5), the term α is not
given by a simple formula but it is based on relative local length between points. Details
are described in [12].

4 Numerical scheme

For numerical approximation we consider a regularized form of (3) which reads as

∂tX =
∂2
uuX

Q(∂uX)2
− α ∂uX

Q(∂uX)
+ F (u, t)

∂uX
⊥

Q(∂uX)
, (6)

where Q(x1, x2) =
√

x2
1 + x2

2 + ε2. Two numerical schemes are used for the numerical
solution of the differential equation (3), semi-implicit and semi-discrete. With two nu-
merical schemes it is possible to compare the solution and error of computation.
In the semi-discrete scheme spatial derivatives are approximated by fourth-order cen-

tral differences. The first derivative is approximated as

∂uX ≈
[
X1
j−2 − 8X1

j−1 + 8X1
j+1 −X1

j+2

12h
,
X2
j−2 − 8X2

j−1 + 8X2
j+1 −X2

j+2

12h

]

,



154 P. Pauš

and the second one as

∂2
uuX ≈

[−X1
j−2 + 16X1

j−1 − 30X1
j + 16X1

j+1 −X1
j+2

12h2
,

−X2
j−2 + 16X2

j−1 − 30X2
j + 16X2

j+1 −X2
j+2

12h2

]
,

where X i
j denotes an approximation of X

i(jh, ·), i ∈ {1, 2}, h = 1/m. Here m is a number
of points on the curve. Differences are denoted as Xu for the first derivative and Xuu for
the second derivative.
The equation (6) in semi-discrete scheme has the following form:

dXj

dt
=

Xuu,j

Q2(Xu,j)
− αj

Xu,j

Q(Xu,j)
+ F (u, t)

X⊥
u,j

Q(Xu,j)
,

j = 1, · · · , m− 1, t ∈ (0, T ), (7)

where again Q(x1, x2) =
√

x2
1 + x2

2 + ε2, X⊥
u,j is a vector perpendicular to Xu,j, and αj is

redistribution coeficient. The term ε serves as a regularization to avoid singularities when
the curvature tends to infinity. This scheme is solved by the fourth order Runge-Kutta
method.
Second approach uses the semi-implicit scheme. In this case lower order differences

are used. The first derivative is discretized by backward difference as follows

∂uX ≈
[
X1
j −X1

j−1

h
,
X2
j −X2

j−1

h

]

,

and the second derivative as

∂2
uuX ≈

[
X1
j+1 − 2X1

j +X1
j−1

h2
,
X2
j+1 − 2X2

j +X2
j−1

h2

]

.

The approximation of the first derivative is denoted as Xū,j and the second derivative as
Xūu,j.
The semi-implicit scheme for equation (3) has the form of

Xk+1
j − τ Xk+1

ūu,j

Q2(Xk
ū,j)

+ ταj
Xk+1
ū,j

Q(Xk
ū,j)

= Xk
j + τF (u, t)

X⊥k
ū,j

Q(Xk
ū,j)

,

j = 1, · · · , m− 1, k = 0, · · · , NT − 1, (8)

where Q(x1, x2), X⊥
ū,j, m, and αj have the same meaning as for semi-discrete scheme.

Xk
j ≈ X(jh, kτ), τ is a time step and NT is the number of time steps. The matrix
structure of one component Xk+1 looks like









1 + 2t
h2Q2 − tα

hQ
−t
h2Q2 0 · · ·

−t
h2Q2 + tα

hQ

. . . . . . . . .

0
. . .

...
. . .









.

The scheme (8) is solved for each k by means of a factorization method.
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5 Results of numerical simulation

In this section, the results of numerical simulation by previous schemes will be presented.
Schemes were tested on open and closed curves with and without tangential redistribution
of points. At first, we simulated evolution of a circle and compared with analytical
solution. Experimental order of convergence and absolute error were measured. See [13].
Figure 2(a) illustrates the evolution of a closed curve with external force variable in

space. Values are as follows: F = 10 for |X| < 0.35, F = −5 for |X| > 0.35. The initial
curve is a four-leaf clover curve. The positive force moves the curve to the center but the
negative force move the rest of the curve from the center. In a short time, high curvature
appears and neglects the positive external force F = 10. It causes the whole curve to
expand.
Figure 2(b) shows the evolution of the curve which intersects itself. Intersections

cause singularities and it is not possible to continue evolution because curvature goes to
infinity. That is why we added regularization term Q(x1, x2) =

√

x2
1 + x2

2 + ε2 to the
scheme. This allows the curve to evolve beyond singularities. One can see that the curve
evolves to the circle.
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-0.5

 0

 0.5

 1

-1 -0.5  0  0.5  1

(a) t ∈ (0, 0.184), h = 1/200, F = 10 for |X | <
0.35, F = −5 for |X | > 0.35

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-1.5 -1 -0.5  0  0.5  1  1.5

(b) F = 0, t ∈ (0, 0.495), h = 1/400

Figure 2: Time evolution of closed curves, scheme (7)

Figures 3(a) and 3(b) show the evolution of star shaped curve using the scheme (8)
for α = 0 and α computed by (4). It was already said that the equation (2) contains
some tangential force which helps to move points along curve and improve the stability
of the computation. In Figure 3(a), one can see that the points are equally distributed
at the end of simulation. On the other hand, when the tangential force is completely
removed, points stay in groups causing long computation times and worse precision (see
Figure 3(b)).
For the simulation of dislocation dynamics, long time computations with periodical
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(a) With tangential force. Eq. (8), α = 0
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(b) Without tangential force. Eq. (8), α
according to (4)

Figure 3: Comparison of evolution with and without tangential force.

change of the external force are needed. In this case, grouping of points happens for both
equations (2) and (5) and one has to use for example the algorithm mentioned at the
end of section 3 (see also [12]). Figures 4(a) and 4(b) present the position of an open
curve at t = 1.38. There is an external force F = 3 which periodically changes the sign
(i.e., F = 3 or F = −3). This force causes the curve to move up and down. Why we
need this periodic force is described in the next chapter. Figure 4(b) shows the evolution
by equation (2). One can see that the middle part of the curve contains many points
while ends are very sparse. If tangential redistribution is used (Figure 4(a)), all points
are equally redistributed along the curve.
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 0  0.2  0.4  0.6  0.8  1

Parametric

(a) With tangential redistribution
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 0  0.2  0.4  0.6  0.8  1

Parametric

(b) Without tangential redistribution

Figure 4: Comparison of evolution with and without tangential redistribution.
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6 Dislocation dynamics

The main purpose of this work is to simulate dislocation dynamics. Dislocation curves
in the material evolves in time. It means they change the shape, the topology, etc. The
following simulations should tell us whether this way can be used for this purpose.
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(a) Dislocation curve expands (F = −3) for t ∈
(0, 0.54).
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(b) Curve goes back and expands to the other
side (F = 3) for t > 0.54.

Figure 5: The evolution of the dislocation curves with variable external force F .

Figure 5 illustrates the evolution of dislocation curves in time. The external force
F = −3 is applied to the curve which causes the expansion in the up direction. At time
t = 0.54, the direction of the force is changed. In the real material, one can observe
similar behavior.
During the curve evolution, a barrier which blocks the curve evolution can appear.

According to the value of external force in the barrier, the curve can be either locked or
can pass through it. Figure 6 shows the case with weak force. Dislocation curve expands
by means of F = −3 until it reaches the barrier made by the spatially variable force
F = 9 at x2 = 1.7. This barrier is not strong enough to lock the curve because at the
ends of the barrier there is a very high curvature. High curvature causes strong force
against the external force. The curve can leave the barrier and continues to expand. The
simulation in Figure 7 was computed for t ∈ (0, 2.1).
In the case of strong external force, the curve is locked in the barrier and cannot

continue in evolution. The curve can only expand to sides. The barrier is again at
x2 = 1.7 and the value of barrier force is |F | = 35. Figure 7(a) illustrates the curve
expansion by F = −3 and the case when it is locked at the barrier (t ∈ (0, 1.5)). Figure
7(b) shows the curve shrinking by F = 3 for t ∈ (1.5, 3). The curve is locked at the
barrier and cannot go back to a straight line. This example should simulate the real
dislocation curve expansion when the curve is locked at so called channel.
The evolution of the curve at the endless channel is shown in Figure 8. Again, the
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Figure 6: The dislocation curve expands over a barrier created by spatially variable ex-
ternal force.
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(a) Curve expansion
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(b) Curve moves back

Figure 7: Spatially variable external force F with high value, t ∈ (0, 1.5).

endless channel is created by spatially variable external force. The curve cannot cross
these barriers (at x2 = 1.2 and x2 = 0).

7 Conclusion

The dislocation dynamics simulation is important in practice because dislocations affect
many material properties. Dislocation dynamics can be mathematically simulated by
mean curvature flow. We presented a method based on a parametric approach and two
numerical schemes. We applied the model to situations similar to the real context. The
scheme had to be improved by an algorithm for tangential redistribution of points.
Acknowledgement. This work was partly supported by the project MSMNo. 6840770100

“Applied Mathematics in Technical and Physical Sciences” and by the project No. LC06052
“Nečas Center for Mathematical Modelling” of the Ministry of Education, Youth and
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Figure 8: Curve evolution at the channel.
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Abstract. We propose a vector/tensor field visualization technique based on solving an initial
boundary value problem for the Allen-Cahn equation with diffusion anisotropy controlled by a
tensor field. Focus is put on the details of the numerical solution of the given problem by means
of the method of lines, presenting the results of both theoretical and experimental convergence
analysis. Afterwards, the aspects of the parallel implementation of the numerical algorithm are
dealt with, concentrating on the efficiency benchmarks. Finally, vector field visualization results
are presented and the possibilities of applying the method in MR tractography are outlined.

Abstrakt. Vyvinuli jsme metodu pro zobrazování vektorových a tenzorových polí založenou na
řešení smíšené úlohy pro Allenovu-Cahnovu rovnici s anizotropní difuzí, která je řízena ten-
zorovým polem. Tento článek se soustředí na detaily numerického řešení daného problému
metodou přímek a uvádí výsledky teoretické i experimentální konvergenční analýzy. Dále se
zabývá aspekty paralelní implementace numerického algoritmu s důrazem na testování efektiv-
ity. Nakonec jsou prezentovány výsledky vizualizace a jsou nastíněny možnosti uplatnění této
metody v MR traktografii.

1 Introduction

Vector fields or tensor fields are a common output of simulations in computational fluid
dynamics and are also produced as an intermediate result of the Diffusion Tensor Imaging
(DTI) medical examination technique [3]. DTI represents one of the applications of
a magnetic resonance (MR) scanner and is capable of tracking the diffusion of H2O
molecules in human brain (as well as some other tissues of an animal). This motion
is directly related to the neural fiber structures in the brain. In order to interpret the
described kind of data, an appropriate visualization technique needs to be chosen. In this
paper, we propose an approach based on solving a problem for the Allen-Cahn partial
differential equation [7, 2], introduce a numerical method for its solution and investigate
properties of the method itself as well as the properties of its parallel implementation.
The main idea of the method is as follows. Suppose a static vector field v is defined in

a rectangular domain Ω = (0, L1)×(0, L2). Generating a noisy texture in Ω and making it
undergo an anisotropic diffusion process with the diffusion focused in the direction v (x)
at each point x, the streamlines of the vector field emerge as ”smudges”. In addition to
smearing, one may impose advection on the texture in order to interpret the flow of the
fluid along the vector field.
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2 Formulation

Let p : J × Ω 7→ R, p = p(t,x) be the function of texture intensity at each point x ∈ Ω
and at the time t ∈ J̄ , where J = (0, T ) is the time interval. The initial boundary value
problem for the Allen-Cahn equation with advection (see [8]) reads

ξ
∂p

∂t
+ ξv · ∇p = ξ∇ · T 0 (∇p) +

1

ξ
f0(p) + c0F in J × Ω, (1)

p|∂Ω = 0 on J × ∂Ω, (2)

p|t=0 = I in Ω, (3)

where

f0(p) = p(1− p)
(

p− 1

2

)

.

In (1), the term ∇ · T 0(∇p) is responsible for anisotropic diffusion of p focused into
the direction of the vector field. Consider a vector η = (η1, η2)T ∈ R

2 and denote the
coordinates of η in the orthonormal basis ( 1

v
v, 1

v
v⊥) by η̃1, η̃2. The anisotropic operator

T 0 is defined as
T 0(η) = Φ0(η)Φ0

η(η),

where

Φ0(η) =

√

α · (η̃1)2 + β · (η̃2)2 , Φ0
η(η) =

(
∂η1Φ

0(η)
∂η2Φ

0(η)

)

. (4)

The coefficients α, β depend on the vector field and should be chosen such that the
absolute value of T 0 is largest in the case when the directions of v and ∇p coincide. Our
choice is

α = κ (1 + σ |v|) , β = κ, κ, σ > 0.

The term v · ∇p in (1) causes texture advection [7, 2]. The polynomial f0 makes
nucleation occur during the time. In this context, nucleation is a formation of areas
where the value of p is near 0 or 1. As described for example in [7, 1], the parameter ξ is
proportional to the diffuse interface layer between such areas. ξ is chosen such that it is
small in comparison with the dimensions of Ω. The sense of the parameter F is related
to the problem of mean curvature flow and is explained e.g. in [7, 2].
In the context of visualization, if I : Ω 7→ R represents the intensity of a noisy texture

at each point, the solution p will reflect the gradual diffusion of the initial image I with
increasing time. Both the state of p at some final time T and the entire solution evolution
can be regarded as the result.

2.1 Tensor field visualization

The anisotropy introduced with the T 0 operator is a generalization of the diffusion tensor
model [9], based on replacing T 0(∇p) in (1) by the term

D∇p,
where D is a symmetric positive definite matrix. Indeed, it is easy to verify that defining

Φ0(η) =
√

ηTDη,
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we obtain
T 0(∇p) = D∇p.

On the other hand, our special choice (4) can be expressed in terms of the diffusion tensor
model. The corresponding tensor is such that it has the form

D =

(
α

β

)

expressed in the basis ( 1
v
v, 1

v
v⊥).

3 Numerical solution

For numerical solution, we use the method of lines, which converts the problem (1-3) to
the solution of the system of ODEs in the form

dp

dt
= f(t,p). (5)

The spatial discretization is carried out by the finite difference method; for the temporal
discretization, we employ the 4th-order Runge-Kutta-Merson solver with adaptive time
stepping. First, let us introduce the notations

h = (h1, h2), hk :=
Lk

mk
, k ∈ {1, 2},

xi,j = (x1
i , x

2
j ) = (i · h1, j · h2),

ωh =
{
xi,j

∣
∣i = 1, ..., m1 − 1, j = 1, ..., m2 − 1

}
,

ω̄h =
{
xi,j

∣
∣i = 0, ..., m1, j = 0, ..., m2

}
, γh = ω̄h − ωh,

Hh =
{
u
∣
∣u : ω̄h → R

}
, ui,j = u(xi,j), (6)

Phw = w
∣
∣
ω̄h
∈ Hh defined for any w : Ω 7→ R.

In the sense of (6), we introduce the following difference quotients approximating the
derivatives, gradient and divergence:

ux̄1,i,j =
ui,j − ui−1,j

h1
, ux1,i,j =

ui+1,j − ui,j
h1

,

ux̄2,i,j =
ui,j − ui,j−1

h2
, ux2,i,j =

ui,j+1 − ui,j
h2

,

∇̄hu = (ux̄1, ux̄2) , ∇hu = (ux1, ux2) ,

∇h · V = V 1
x1 + V 2

x2, ∇̄h · V = V 1
x̄1 + V 2

x̄2 , V =
(
V 1, V 2

)T
.

Using the above definitions, we assemble the semi-discrete scheme of the problem (1-
3) for the unknown grid function ph : J → Hh which represents the vector of functions
of time p in (5):

ξ
dph

dt
+ ξPh(v) · ∇̄hp

h = ξ∇h · T 0(∇̄hp
h) +

1

ξ
f0(p

h) + c0F in J × ωh, (7)

ph|γh
= 0 on J × γh, (8)

ph(0) = PhI in ωh. (9)
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∽

∇h · T 0(
∼
∇hp

h)
∼
∇h · T 0(

∽

∇hp
h)∇̄h · T 0(∇hp

h)∇h · T 0(∇̄hp
h)

Figure 1: Versions of ∇ · T 0 (∇p) discretization used for assembling the weighted scheme.

4 Numerical scheme weighting

The original numerical scheme (7-9) suffers from artificial numerical isotropic diffusion,
which in accordance with the spectral error analysis theory [4] affects structures in ph con-
taining high frequencies. As a result, the formation of streamlines is degraded. However,
due to the asymmetry of the scheme, the amount of additional isotropic diffusion depends
on the direction of the vector field v. This property of the scheme has been exploited to
design mixed forward/backward difference quotients approximating the gradient by

∼
∇hu = (ux̄1, ux2)T ,
∽

∇hu = (ux1, ux̄2)T

and the divergence by

∼
∇h · V = V 1

x̄1 + V 2
x2 ,

∽

∇h · V = V 1
x1 + V 2

x̄2 .

These expressions allow four versions of discretization of the term ∇ · T 0 (∇p) in (1), as
listed in Figure 1. Two complementary scheme asymmetries are obtained, corresponding
to two perpendicular directions of the strongest numerical diffusion. Finally, all dis-
cretization versions are combined into a single scheme, weighting them with respect to
the direction of the vector field. As a result, the weighted scheme always prefers the dis-
cretization version with a weaker numerical diffusion. The improvement can be observed
in Figure 2.

5 Convergence analysis

The work [8] contains a detailed convergence analysis, proving the following theorem:

Theorem 1. Let I ∈ H1
0(Ω) ∩ C(Ω̄), v ∈ C(Ω̄)2. Then the solution ph of the semidiscrete

scheme (7-9) converges in L2(J ; L2(Ω)) to the unique weak solution p of the anisotropic
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Figure 2: Visualization of the straight vector field in the direction corresponding to the
strongest artificial diffusion in the original scheme. Result obtained by the origi-
nal scheme (left) and the weighted scheme (right). All parameters were identical for
both computations.

diffusion problem (1-3), where p satisfies

p ∈ L2(J ; H1
0(Ω)),

∂p

∂t
∈ L2(J ; L2(Ω)).

The proof is based on interpolation theory, suitable a priori estimates and the method
of compactness.

5.1 Experimental proof of convergence

In addition to the theoretical results, the measurement of the experimental order of
convergence (EOC) has been performed for both the original and the weighted schemes.
EOC is obtained by computing the solution on a sequence of gradually refining grids and
is defined as

EOC =
log
(
Errori
Errori−1

)

log
(

‖hi‖
‖hi−1‖

) ,

where ‖h‖ = max
j
hj and Errori is the difference of the i-th solution from the precise

solution measured in an appropriate norm. The results indicating the convergence are
summarized in Table 1 and Table 2.



166 P. Strachota

Grid size h L∞(J ; L2(Ω))
error

L∞(J ; L∞(Ω))
error

EOC in
L∞(J ; L2(Ω))

EOC in
L∞(J ; L∞(Ω))

100× 100 0.01 0.0257814 0.2909448 - -
200× 200 0.005 0.0082178 0.1145193 1.6495124 1.3451547
400× 400 0.0025 0.0027553 0.0465855 1.5765111 1.2976364
800× 800 0.00125 0.0007728 0.0133288 1.8339980 1.8053344

Table 1: Experimental order of convergence of the original scheme (7-9).

Grid size h L∞(J ; L2(Ω))
error

L∞(J ; L∞(Ω))
error

EOC in
L∞(J ; L2(Ω))

EOC in
L∞(J ; L∞(Ω))

100× 100 0.01 0.0249912 0.2056547 - -
200× 200 0.005 0.0073023 0.0633514 1.7750009 1.6987763
400× 400 0.0025 0.0022840 0.0196849 1.6768129 1.6862861
800× 800 0.00125 0.0006455 0.0060901 1.8230700 1.6925603

Table 2: Experimental order of convergence of the weighted scheme.

6 Parallelization

In order to allow reasonably fast calculations on large grids, a parallel implementation of
the numerical algorithm has been developed by means of the MPI library (see [6]). Very
fine grids are necessary e.g. for the convergence verification of several numerical scheme
modifications.
The idea of parallelization of the finite difference algorithm is to decompose the grid ωh

into blocks, each of those being handled by a different process. Our choice was to compose
a block of several rows of the grid. The processes belonging to the adjacent blocks need
to interchange (synchronize) data in order to complete each step of the Runge-Kutta
method.
Since the method of lines is extremely demanding on the amount of synchronization,

much attention has been paid to benchmarking and scalability improvement of the code.
Using the nonblocking communication operations, we are able to optimize the flow of the
calculation by requesting the operations as soon as possible and completing them as late
as possible. Since the synchronized data is used for calculation of the border nodes of
the blocks only, we can calculate the value of the right hand side of (5) in the interior of
the block before the communication is complete.

6.1 Dynamic load balancing

In addition to message passing optimization, an interesting method of dynamic load
balancing during the calculation has been developed, making it possible to utilize non-
homogeneous clusters for efficient computation. The technique is based on the changes
of the block sizes, corresponding to the particular processes. For a given period, each
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Figure 3: Efficiency testing on CLX, different grid sizes (small=200× 200, medium=400× 400,
large=800 × 800) and MPI communication order (opt=nonblocking “request soon,
complete late”, noopt=nonblocking “all at once”).

process accumulates the wall time of its autonomous calculations (between synchroniza-
tions). The acquired time values are then converted to relative speeds of the processes.
Afterwards, the master process calculates the new block sizes, proportional to the process
speeds. We assume that with such block sizes, the idle times of the processes (waiting
for synchronization) should be eliminated. Rearrangement of the blocks requires data to
be redistributed among the blocks. The algorithm implementation tries to minimize the
amount of data being sent and provides mechanisms to avoid meaningless rearrangements
(when the changes to be made are negligible).
Of course, the proposed load balancing system is not suitable for advanced homoge-

neous cluster solutions controlled by load sharing managers such as LSF or PBS. On such
a system, all nodes utilized by the user application have the same performance and they
are fully at its disposal for the whole program run time. No load balancing is therefore
necessary.
Extensive efficiency benchmarks have been performed on the CLX Linux cluster at

CINECA, Italy. Some efficiency results are shown in Figure 3.

7 Visualization results

The results of the numerical algorithm based on the weighted scheme and applied to some
sample vector fields are displayed in Figure 4. Color visualization has been achieved by
separately solving the above problem for the R, G, B components of the image. The
advection term in (1) together with a suitable choice of the boundary condition may be
useful for flow visualization, as depicted in Figure 5.

8 Application in MR Tractography

As already suggested in the introduction, each DTI examination generates a tensor field
describing the directional distribution of water diffusion in human brain [10, 3, 5]. As
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Figure 4: Sample vector field visualizations.

Figure 5: Flow visualization by means of advection together with a stripe-like Dirichlet bound-
ary condition.
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Figure 6: MR tractography using anisotropic diffusion. Colorized by fractional anisotropy [9].

neural fibers act as tubes for the H2O molecules, tracking the direction of the strongest
diffusion may help discover the pathways of the neural tracts. This process is called
tractography. Using the choice

T 0(η) = Dη

in (1), we are able to employ our visualization approach to reveal the streamlines of
the tensor field, interpretable as neural fiber bundles. A sample result of neural tract
visualization in a transverse plane is displayed in Figure 6.

9 Conclusions

We have developed an optimized parallel algorithm for the numerical solution of the
anisotropic diffusion problem (1-3). The solution is suitable for use as a vector or ten-
sor field visualization technique, as demonstrated on several examples. The convergence
analysis justifies the suitability of both the original and the weighted schemes. Thorough
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tests of algorithm efficiency prove the possibility to create a well scalable parallel imple-
mentation of the method of lines despite the huge amount of necessary communication.
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Abstract. Classifier aggregation is a method for improving quality of classification – instead
of using just one classifier, a team of classifiers is created, and the outputs of the individual
classifiers are aggregated into the final prediction. Common methods for classifier aggregation
are static, i.e., they do not adapt to the currently classified pattern. In this paper, we introduce
a formalism of dynamic classifier systems, which use the concept of dynamic classification
confidence to dynamically adapt to the currently classified pattern. Results of experiments
with quadratic discriminant classifiers on four artificial and four real-world benchmark datasets
show that dynamic classifier systems can significantly outperform static classifier systems.

Abstrakt. Spojování klasifikátorů je metoda pro zlepšení kvality klasifikace – místo používání
jednoho klasifikátoru je vytvořen tým klasifikátorů a výstupy jednotlivých klasifikátorů jsou poté
agregovány pro získání finální predikce. Většina metod pro agregaci klasifikátorů je statická,
tj. agregace se nepřizpůsobuje konkrétním klasifikovaným vzorům. V tomto článku popíšeme
dynamické systémy klasifikátorů, které používají koncept dynamické konfidence klasifikace, aby
se přizpůsobily konkrétnímu vzoru. Výsledky experimentů na 4 umělých a 4 reálných datových
množinách ukazují, že dynamické systémy mohou dosahovat signifikantně lepších výsledků než
statické systémy.

1 Introduction

Classification is a process of dividing objects (called patterns) into disjoint sets called
classes [7]. Many machine learning algorithms for classification have been developed –
for example naive Bayes classifiers, linear and quadratic discriminant classifiers, k-nearest
neighbor classifiers, support vector machines, neural networks, or decision trees. If the
quality of classification (i.e., the classifier’s predictive power) is low, there are several
methods we can use to improve it.
One comonly used technique for improving classification quality is called classifier

combining [11] – instead of using just one classifier, we create and train a team of classi-
fiers, let each of them predict independently, and then combine (aggregate) their results.
It can be shown that a team of classifiers can perform better in the classification task
than any of the individual classifiers.

∗The research presented in this paper was partially supported by the Program “Information Society”
under project 1ET100300517 and by the grant ME949 of the Ministry of Education, Youth and Sports
of the Czech Republic.
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There are two main approaches to classifier combining: classifier selection [1, 17] and
classifier aggregation [12, 10]. If a pattern is submitted for classification, the former
technique uses some rule to select one particular classifier, and only this classifier is
used to obtain the final prediction. The latter technique uses some aggregation rule to
aggregate the results of all the classifiers in a team to get the final prediction.
A common drawback of classifier aggregation methods is that they are static, i.e., they

are not adapted to the particular patterns that are currently classified. In other words,
the aggregation is specified during a training phase, prior to classifying a test pattern.
However, if we use the concept of dynamic classification confidence (i.e., the extent to
which we can “trust” the output of the particular classifier for the currently classified
pattern), the aggregation algorithms can take into account the fact that “this classifier
is not good for this particular pattern”.
Surprisingly, such dynamic classifier systems are not used very often in classifier com-

bining. However, there has already been some work done in the field of dynamic classifier
systems – Robnik-Šikonja and Tsymbal et al. [13, 14] study dynamic aggregation of
random forests [4], i.e., dynamic classifier systems of decision trees. The authors report
significant improvements in classification quality when using dynamic voting compared
to simple voting. However, they study dynamic classifier systems only in the context of
random forests, and they use only confidence measures based on the so-called margin.
In this paper, we provide a general formalism of dynamic classification confidence

measures and dynamic classifier systems, and we experimentally study the performance
of confidence-free classifier systems (i.e., systems that do not utilize classification confi-
dence at all), static classifier systems (i.e., systems that use only “global” confidence of
a classifier), and dynamic classifier systems (i.e., systems that adapt to the particular
pattern submitted for classification).
The paper is structured as follows. In Section 2, we introduce the formalism of

classifier combining, namely in Section 2.1, we define basic concepts of classification, in
Section 2.2 we introduce the concept of classification confidence, and we introduce three
dynamic confidence measures, in Section 2.3 we deal with classifier teams and ensembles,
and in Section 2.4, we finally define classifier systems and show several examples of
dynamic classifier systems. In Section 3, we experimentally compare performance of the
proposed dynamic classifier systems. Section 4 then concludes the paper.

2 Formalism of Classifier Combining with Classification Con-
fidence

2.1 Classification

Throughout the rest of the paper, we use the following notation. Let X ⊆ Rn be a
n-dimensional feature space, an element ~x ∈ X of this space is called a pattern, and let
C1, . . . , CN ⊆ X , N ≥ 2, be disjoint sets called classes. The index of the class a pattern
~x belongs to will be denoted as c(~x) (i.e., c(~x) = i iff ~x ∈ Ci). The goal of classification
is to determine to which class a given pattern belongs, i.e., to predict c(~x) for unknown
patterns.
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Definition 1. We call a classifier every mapping φ : X → [0, 1]N , where [0, 1] is the unit
interval, and φ(~x) = (µ1(~x), . . . , µN(~x)) are degrees of classification (d.o.c.) to each class.

The d.o.c. to class Cj expresses the extent to which the pattern belongs to class Cj
(if µi(~x) > µj(~x), it means that the pattern (~x) belongs to class Ci rather than to Cj).
Depending on the classifier type, it can be modelled by probability, fuzzy membership,
etc.

Remark 2. This definition is of course not the only way how a classifier can be defined,
but in the theory of classifier combining, this one is used most often [11].

Definition 3. Classifier φ is called crisp, iff ∀~x ∈ X ∃i, such that:

µi(~x) = 1, and ∀j 6= i µj(~x) = 0.

Definition 4. Let φ be a classifier, ~x ∈ X , φ(~x) = (µ1(~x), . . . , µN(~x)). Crisp output of φ
on ~x is defined as φcr(~x) = arg maxi=1,...,N µi(~x).

2.2 Classification Confidence

Classification confidence expresses the degree of trust we can give to a classifier φ when
classifying a pattern ~x. It is modelled by a mapping κφ.

Definition 5. Let φ be a classifier. We call a confidence measure of classifier φ every
mapping κφ : X → [0, 1].

The higher the confidence, the higher the probability of correct classification. κφ(~x) =
0 means that the classification may not be correct, while κφ(~x) = 1 means the classifi-
cation is probably correct. However, κφ does not need to be modelled by a probability
measure.
A confidence measure can be either static, i.e., it is a constant of the classifier, or

dynamic, i.e., it adjusts itself to the currently classified pattern.

Definition 6. Let φ be a classifier and κφ its confidence measure. We call κφ static, iff it
is constant in ~x, we call κφ dynamic otherwise.

Remark 7. Since static confidence measures are constant, independent on the currently
classified pattern, we will omit the pattern (~x) in the notation, i.e., we will denote them
just κφ.

Remark 8. In the rest of the paper, we will use the indicator operator I, defined as
I(true) = 1, I(false) = 0.

2.2.1 Static confidence measures

After the classifier has been trained, we can use a validation set to assess its predictive
power as a whole (from a global point of view). These methods include accuracy, precision,
sensitivity, resemblance, etc. [7, 9], and we can use these measures as static confidence
measures. In this paper, we will use the Global Accuracy measure.
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Global Accuracy (GA) of a classifier φ is defined as the proportion of correctly classified
patterns from the validation set:

κ
(GA)
φ =

∑

~y∈M I(φcr(~y)
?
= c(~y))

|M| , (1)

where M is the validation set of φ (i.e., a set of patterns φ was not trained on,
intended for parameter fine-tuning), and φcr(~y) is the crisp output of φ on ~y.

2.2.2 Dynamic confidence measures

An easy way how a dynamic confidence measure can be defined is to compute some
property on patterns neighboring with ~x. Let N(~x) denote a set of neighboring validation
patterns. In this paper, we define N(~x) as the set of k patterns nearest to ~x under
Euclidean metric. Now we will define three dynamic confidence measures which use
N(~x):

Euclidean Local Accuracy (ELA) measures the local accuracy of φ in N(~x):

κ
(ELA)
φ (~x) =

∑

~y∈N(~x) I(φcr(~y)
?
= c(~y))

|N(~x)| , (2)

where φcr(~y) is the crisp output of φ on ~y.

Euclidean Local Match (ELM) is based on the ideas from [5], and measures the propor-
tion of patterns in N(~x) from the same class as φ is predicting for ~x:

κ
(ELM)
φ (~x) =

∑

~y∈N(~x) I(φcr(~x)
?
= c(~y))

|N(~x)| , (3)

where φcr(~x) is the crisp output of φ on ~x.

Euclidean Average Margin (EAM) is defined as mean value of the margin [4, 13, 14] in
N(~x):

κ
(EAM)
φ (~x) =

∑

~y∈N(~x)mg(φ(~y))

|N(~x)| , (4)

where the margin is defined as mg(φ(~y)) =






µc(~y)(~y)− max
i=1,...,N
i6=c(~y)

µi(~y) if φcr(~y) = c(~y),

0 otherwise.
, (5)

where φ(~y) = (µ1(~y), . . . , µN(~y)), and φcr(~y) is the crisp output of φ on ~y.

The dynamic confidence measures defined in this section have one drawback – they
need to compute N(~x), which can be time-consuming, and sensitive to the similarity
measure used. There are also dynamic confidence measures, which compute the classifi-
cation confidence directly from φ(~x), e.g., the ratio of the highest degree of classification
to the sum of all degrees of classification. However, our preliminary experiments with
such measures with quadratic discriminant classifiers and random forests show that such
confidence measures give very poor results.



Static vs. Dynamic Classifier Systems in Classifier Aggregation 175

2.3 Classifier Teams

In classifier combining, instead of using just one classifier, a team of classifiers is created,
and the team is then aggregated into one final classifier. If we want to utilize classification
confidence in the aggregation process, each classifier must have its confidence measure
defined.

Definition 9. Classifier team is a tuple (T ,K), where T = (φ1, . . . , φr), r ∈ N, r ≥ 2 is
a set of classifiers, and K = (κφ1 , . . . , κφr

) is a set of corresponding confidence measures.

If a classifier team consists only of classifiers of the same type, which differ only in
their parameters, dimensionality, or training sets, the team is usually called an ensemble
of classifiers. For this reason the methods which create a team of classifiers are sometimes
called ensemble methods. The restriction to classifiers of the same type is not essential,
but it ensures that the outputs of the classifiers are consistent. Well-known methods for
ensemble creation are bagging [3], boosting [8], error correction codes [11], or multiple
feature subset methods [2].
If a pattern is submitted for classification, the team of classifiers gives us two different

informations – outputs of the individual classifiers (a decision profile), and values of
classification confidences of the classifiers (a confidence vector).

Definition 10. Let (T = (φ1, . . . , φr),K = (κφ1 , . . . , κφr
)) be a classifier team, and let ~x ∈

X . Then we define decision profile T (~x) ∈ [0, 1]r,N and confidence vector K(~x) ∈ [0, 1]r

as

T (~x) =








φ1(~x)
φ2(~x)
...

φr(~x)








=








µ1,1(~x) µ1,2(~x) . . . µ1,N(~x)
µ2,1(~x) µ2,2(~x) . . . µ2,N(~x)

. . .
µr,1(~x) µr,2(~x) . . . µr,N(~x)







, K(~x) =








κφ1(~x)
κφ2(~x)
...

κφr
(~x)








(6)

Remark 11. Here we use the notation T for both the set of classifiers, and for the decision
profile, and similarly for K. To avoid any confusion, the decision profile and confidence
vector will be always followed by (~x).

2.4 Classifier Systems

After the pattern ~x has been classified by all the classifiers in the team, and the confidences
were computed, these outputs have to be aggregated using a team aggregator, which takes
the decision profile as its first argument, the confidence vector as its second argument,
and returns the aggregated degrees of classification to all the classes.

Definition 12. Let r,N ∈ N, r,N ≥ 2. A team aggregator of dimension (r,N) is any
mapping A : [0, 1]r,N × [0, 1]r → [0, 1]N .

A classifier team with an aggregator will be called a classifier system. Such system
can be also viewed as a single classifier.

Definition 13. Let (T ,K) be a classifier team, and letA be a team aggregator of dimension
(r,N), where r is the number of classifiers in the team, and N is the number of classes.
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~x

φ1

φ2

...
φr

T (~x) A Φ(~x)

(a) Confidence-free

~x

φ1

φ2

...
φr

T (~x)

Kconst

A Φ(~x)

(b) Static

~x

φ1

φ2

...
φr

κφ1

κφ2

...
κφr

T (~x)

K(~x)

A Φ(~x)

(c) Dynamic

Figure 1: Schematic comparison of confidence-free, static, and dynamic classifier systems.

The triple S = (T ,K,A) is called a classifier system. We define an induced classifier of
S as a classifier Φ, defined as

Φ(~x) = A(T (~x),K(~x)).

Depending on the way how a classifier system utilizes the classification confidence, we
can distinguish several kinds of classifier systems.

Definition 14. Let (T ,K) be a classifier team. (T ,K) is called static, iff ∀κ ∈ K : κ
is a static confidence measure. (T ,K) is called dynamic, iff ∀κ ∈ K : κ is a dynamic
confidence measure.

Definition 15. Let A be a team aggregator of dimension (r,N). We call A confidence-free,
iff it is constant in the second argument.

Definition 16. Let S = (T ,K,A) be a classifier system. We call S confidence-free, iff A
is confidence-free. We call S static, iff (T ,K) is static, and A is not confidence-free. We
call S dynamic, iff (T ,K) is dynamic, and A is not confidence-free.
Confidence-free systems do not utilize the classification confidence at all (for example

a team of classifiers aggregated by simple voting). Static systems utilize classification
confidence, but only as a global property (for example a team of classifiers aggregated by
weighted voting with constant classifier weights). Dynamic systems utilize classification
confidence in a dynamic way, i.e. the aggregation is adapted to the particular pattern
submitted for classification (for example a team of classifiers aggregated by weighted
voting with classifier weights computed for every pattern). The different approaches are
schematically shown in Fig. 1.
Many methods for aggregating the team of classifiers into one final classifier have

been proposed in the literature [11, 12]. These methods comprise simple arithmetic
rules (voting, sum, product, maximum, minimum, average, weighted average, etc.), fuzzy
integral, Dempster-Shafer fusion, second-level classifiers, decision templates, and many
others.
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In the following text, we define several team aggregators. We will use the notation
from Def. 10 and Def. 13. Let Φ(~x) = A(T (~x),K(~x)) = (µ1(~x), . . . , µN(~x)).

Mean value aggregation (MV) is the most common aggregation technique. Its aggrega-
tor is defined as

µj(~x) =

∑

i=1,...,r µi,j(~x)

r
. (7)

If the classifiers in the team are crisp, MV coincides with voting.

Static weighted mean aggregation (SWM) computes aggregated d.o.c. as weighted mean
of d.o.c. given by the individual classifiers, where the weights are static classification
confidences:

µj(~x) =

∑

i=1,...,r κφi
µi,j(~x)

∑

i=1,...,r κφi

. (8)

Dynamic weighted mean aggregation (DWM) has the same aggregator as SWM, but
the weights are dynamic classification confidences:

µj(~x) =

∑

i=1,...,r κφi
(~x)µi,j(~x)

∑

i=1,...,r κφi
(~x)

. (9)

Filtered mean aggregation (FM) has the same aggregator as MV, but prior to com-
puting the aggregated values, the classifiers which have (dynamic) classification
confidence lower than T ∈ [0, 1] are discarded:

µj(~x) =

∑

i=1,...,r
κφi

(~x)>T

µi,j(~x)

|{φ ∈ T |κφi
(~x) > T}| . (10)

3 Experiments

To compare confidence-free, static, and dynamic classifier systems, we implemented the al-
gorithms described in Sec. 2.4, and we tested their performance on four artificial (Clouds,
Concentric, Gauss 3D, Waveform) and four real-world (Breast, Phoneme, Pima, Satim-
age) datasets from the Elena database [15] and from the UCI repository [6].
For all the classifier systems we used, the classifier team (T ,K) was an ensemble of

quadratic discriminant classifiers [7], created either by the bagging algorithm [3] (which
creates classifiers trained on random samples drawn from the original training set with
replacement), or by the multiple feature subset method [2] (which creates classifiers using
different combinations of features), depending on which method was more suitable for
the particular dataset.
For the comparison, we designed the following classifier systems (refer to Section 2.2

and Section 2.4 for the description of the algorithms):

MV confidence-free system aggregated by mean value aggregation
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SWM cl. system aggregated by static weighted mean aggregation; as a confidence mea-
sure, we used GA

DWM cl. system aggregated by dynamic weighted mean; as a confidence measure, we
used ELA, ELM, and EAM

FM cl. system aggregated by filtered mean; as a confidence measure, we used ELA,
ELM, and EAM

We also compared the systems’ performance with the so-called non-combined classifier
(NC), i.e., a common quadratic discriminant classifier (the NC classifier represents an
approach which we had to use if we could use only one classifier).
All the methods were implemented in Java programming language, and a 10-fold

crossvalidation was performed to obtain the results. For the dynamic confidence mea-
sures, we used k = 20. The threshold T for FM aggregators was set to T = 0.8 or
T = 0.9, depending on the particular dataset. The parameters were set based on some
preliminary testing; no fine-tuning or optimization was done.
The results of the testing are shown in Table 1. Mean error rate and standard deviation

of the error rate of the induced classifiers from a 10-fold crossvalidation was measured.
We also measured statistical significance of the results – at 5% confidence level by the
analysis of variance using the Tukey-Kramer method (by the ’multcomp’ function from
the Matlab statistics toolbox).
The results show that for most datasets, the dynamic classifier systems outperform

both confidence-free and static classifier systems. For three datasets, these results were
statistically significant. FM usually gives better results than DWM, and if we compare
the three dynamic confidence measures, we can say that ELM gives usually the best
results, ELA and ELM being slightly worse. However, the performance of the individual
confidence measures depends on the particular dataset [16]. Generally speaking, the
FM-ELM was the most successfull algorithm in this experiment.
It should be noted that the experimental results from this paper are relevant only

to quadratic discriminant classifiers, because for any other classifier types (k-NN, SVM,
decision trees, etc.), the dynamic confidence measures could give quite different results.

4 Summary

In this paper, we have studied dynamic classifier aggregation. We have introduced the
formalism of classifier systems which can be used with (dynamic) classification confidence,
and we have defined confidence-free, static, and dynamic classifier systems. We have
introduced three dynamic classification confidence measures (ELA, ELM, EAM), and we
have shown a way how these measures can be used in dynamic classifier systems – we
have introduced two algorithms for dynamic classifier aggregation.
In our experiments, we have compared the performance of confidence-free, static, and

dynamic classifier systems of quadratic discriminant classifiers. The results show that
dynamic classifier systems can significantly outperform both confidence-free and static
classifier systems.
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Table 1: Comparison of the aggregation methods – non-combined classifier (NC), mean
value (MV), static weighted mean (SWM) using GA confidence measure, dy-
namic weighted mean (DWM) using confidence measures ELA, ELM, EAM, and
filtered mean (FM) using confidence measures ELA, ELM, EAM. Mean error
rate (in %) ± standard deviation of error rate from a 10-fold crossvalidation was
measured. The best result is displayed in boldface, statistically significant (at
5% level) improvements to NC, MV, and SWM are marked by footnote signs.
The (B/M) after dataset name means whether the ensemble was created by
Bagging or Multiple feature subset algorithm.

Non-combined Conf.-free Static Dynamic
Dataset NC MV κ SWM κ DWM FM

Clouds (M) 25.0 ± 1.7 25.0 ± 2.1 GA 24.7 ± 1.6 ELA 23.4 ± 1.5 22.3 ± 1.5 ∗†‡

ELM 23.2 ± 1.2 22.0± 2.1 ∗†‡

EAM 23.5 ± 1.5 23.3 ± 1.4

Concentric (B) 3.5 ± 1.0 3.8 ± 0.6 GA 4.0 ± 0.8 ELA 3.2 ± 1.1 2.1 ± 1.3 †‡

ELM 2.9 ± 1.6 1.8± 0.8 ∗†‡

EAM 3.8 ± 1.3 4.3 ± 1.5
Gauss 3D (B) 21.4 ± 1.7 21.6 ± 1.1 GA 21.5 ± 2.1 ELA 21.5 ± 1.4 21.7 ± 1.3

ELM 21.3± 2.0 22.0 ± 1.3
EAM 21.5 ± 2.0 21.7 ± 1.3

Waveform (B) 14.9 ± 2.5 15.0 ± 1.4 GA 14.8 ± 0.9 ELA 14.7 ± 1.9 15.0 ± 1.2
ELM 14.8 ± 2.5 14.5± 1.2
EAM 14.6 ± 2.0 15.5 ± 1.0

Breast (M) 4.8 ± 2.9 4.7 ± 2.5 GA 4.2 ± 2.4 ELA 3.0 ± 2.1 2.9 ± 1.8
ELM 3.0 ± 1.9 3.1 ± 2.1
EAM 3.2 ± 2.0 2.9± 1.7

Phoneme (M) 24.7 ± 1.1 23.5 ± 1.6 GA 24.0 ± 1.4 ELA 21.5 ± 1.9 ∗‡ 17.2 ± 1.4 ∗†‡

ELM 21.2 ± 1.8 ∗‡ 16.9± 2.0 ∗†‡

EAM 21.9 ± 0.9 ∗ 20.7 ± 1.7 ∗†‡

Pima (M) 27.1 ± 4.4 25.4 ± 3.6 GA 25.0 ± 5.6 ELA 25.8 ± 6.5 24.0 ± 2.7
ELM 24.0 ± 4.1 25.0 ± 7.4
EAM 24.8 ± 6.3 23.5± 5.4

Satimage (B) 15.6 ± 1.7 15.5 ± 1.2 GA 15.5 ± 1.7 ELA 15.3 ± 1.6 15.2 ± 2.4
ELM 15.3 ± 1.3 14.4± 1.0
EAM 15.5 ± 1.2 15.0 ± 1.5

∗Significant improvement to NC
†Significant improvement to MV
‡Significant improvement to SWM

The main contribution of this paper is the verification that the concept of dynamic
classification confidence can significantly improve the classification quality, and that it is
a general concept, which can be incorporated into the theory of classifier aggregation in
a systematic way.
In our future work, we plan to study dynamic classification confidence measures for

other classifiers than quadratic discriminant classifier, mainly decision trees and support
vector machines, and to study model-specific confidence measures for these classifier
types. We will also incorporate local classification confidence into more sophisticated
classifier aggregation methods.
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Abstract. The aim of this paper is to study asymptotical behaviour of an infinite two-dimensional
periodic rectangular network. A general singular coupling in the vertices is supposed. We will
show that for certain vertex couplings the system behaves significantly differently from the
spectrum of the corresponding one-dimensional system, i.e. that the classification of spectral
asymptotics of one-dimensional periodic networks is not applicable here.

Abstrakt. Předmětem práce je studium asymptotického chování spektra nekonečné dvoudimen-
zionální periodické obdélníkové mřížky. Ve vrcholech předpokládáme obecnou singulární vazbu.
Ukážeme, že pro určité vazby může tento systém vykazovat chování, které se silně odlišuje od
chování spektra příslušných jednodimenzionálních systémů, jinak řečeno, že zde nelze využít
klasifikaci spektra známou pro jednodimenzionální sítě.

1 Introduction

The term quantum graph denotes an ordered pair (Γ, H), where Γ is a metric graph (an
undirected graph with a metric) and H is a Hamiltonian on Γ, i.e. self-adjoint differential
operator of the second order acting on the graph edges as a minus second derivative
(see [4]). These mathematical objects serve as natural models of graph-like structures
of nanometer sizes, which may be made of various materials, usually of semiconductors.
The technological progress in last decades of the twentieth century has enabled a mass
production of such microscopic structures and, consequently, their practical utilization.
As a result, the theory of quantum graphs gained a wide application potential, which is
hitherto growing. This fact attracted the attention of mathematical physicist, and at the
end of the eighties an intensive study in this field has begun, which continues till this
time. However, it is a relatively new theory with many open problems remaining.
One of the open problems concerns spectra of infinite periodic systems. It is well

known from a more general theory that a periodic system has a band spectrum. The
interesting and important question is, how the asymptotics of the spectral bands looks
like.
The easiest situation is a line with periodically located point interactions of the

same type. One can consider either δ-interaction, which is a classical, very well ex-
amined Kronnig-Penney model, or a general point interaction. The case of infinite one-
dimensional periodic network with a general point interaction in each vertex has been
already described in the work [1]. The authors studied high-energy asymptotics of the
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spectrum and have derived the following result: The system has a purely absolutely con-
tinuous spectrum and the structure of its spectral bands can conform only to one of the
following three situations:

• band widths are asymptotically constant, gap widths grow asymptotically linearly,

• widths of both bands and gaps are growing,

• band widths grow asymptotically linearly, gap widths are asymptotically constant.
In this paper we will deal with a natural generalization of a one-dimensional network,

namely with a planar rectangular network (see Fig. 1). We will ask if it is true that the
assymptotics of the spectral bands is described by the three situations enumerated above,
or if there is an interaction for which a new type of assympotics arises.

2 Vertex coupling

Let v ∈ V be a vertex with n outgoing edges. Let us denote the wavefunctions on
these edges by ψ1 . . . , ψn. The limits of these functions and their first derivatives (in the
outgoing sense) in the vertex v form two vectors:

Ψ(0) =






ψ1(0)
...

ψn(0)




 , Ψ′(0) =






ψ′
1(0)
...

ψ′
n(0)




 .

All physically admissible boundary conditions can be described by the group of unitary
matrices in the following sense: Boundary conditions in a vertex are admissible if and
only if there is a unitary matrix U such that

(U − I)Ψ(0) + i(U + I)Ψ′(0) = 0 . (1)

As a result, a family of admissible boundary conditions can be parametrized by n2 real
parameters.
The most common type is the δ-coupling, already mentioned in the introduction. It

corresponds to a unitary matrix U given as a sum a · I + b · J , where a = −1, b = 2
n+iα

(α ∈ R), I is an identity matrix and J is a matrix, whose all elements are equal to 1.

3 Spectral condition

Consider an infinite rectangular network with the cell parameters a and b (see Fig. 1).
Let a coupling corresponding to a given unitary matrix U be imposed on all vertices - on
every vertex the same coupling. Our aim is to describe the high-energy assymptotics of
the spectrum and to find if there is a matrix U for which the spectral properties show a
significantly different behaviour with respect to infinite one-dimensional networks.
The considered graph is obviously a periodic system, thus it is natural to analyse it

using the Floquet decomposition. Let us consider an elementary cell according to the
Fig. 1, for the wavefunction we use the notation marked in the figure.
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Figure 1: A periodic two-dimensional network

Let there be a particle with the energy E confined to this graph. First of all, we
realize that for any matrix U the corresponding Hamiltonian is bounded below, thus its
spectrum is bounded below as well. Therefore, to study its high-energy asymptotics it
suffices to consider E > 0. For notation purposes, let us denote E = k2, k > 0. Since the
Hamiltonian acts as a minus second derivative, the wavefunction on each edge has to be
a linear combination of the functions eikx and e−ikx, i.e.

ψ1(x) = C+
1 eikx + C−

1 e−ikx, x ∈ [−a/2, 0]

ψ2(x) = C+
2 eikx + C−

2 e−ikx, x ∈ [0, a/2]

ϕ1(x) = D+
1 eikx +D−

1 e−ikx, x ∈ [−b/2, 0]

ϕ2(x) = D+
2 eikx +D−

2 e−ikx, x ∈ [0, b/2]

(2)

Moreover, the wavefunctions have to satisfy the boundary conditions in the vertex, i.e.

(U − I)







ψ1(0)
ψ2(0)
ϕ1(0)
ϕ2(0)







+ i(U + I)







−ψ′
1(0)

ψ′
2(0)

−ϕ′
1(0)

ϕ′
2(0)







= 0 . (3)

For the Floquet decomposition we suppose that the wavefunctions satisfy the conditions

ψ2(a/2) = eiθ1ψ1(−a/2) ψ′
2(a/2) = eiθ1ψ′

1(−a/2)

ϕ2(b/2) = eiθ2ϕ1(−b/2) ϕ′
2(b/2) = eiθ2ϕ′

1(−b/2)
(4)

for some θ1, θ2 ∈ [−π, π).
Substituting (2) into (4) enables one to rewrite (3) in the form

[U(M − kN)− (M + kN)]







C+
1

C−
1

D+
1

D−
1







= 0 , (5)

where the matrices M and N are given by

M =







1 1 0 0
ei(θ1−ak) ei(θ1+ak) 0 0

0 0 1 1
ei(θ2−bk) ei(θ2+bk) 0 0






, N =







−1 1 0 0
ei(θ1−ak) −ei(θ1+ak) 0 0

0 0 −1 1
ei(θ2−bk) −ei(θ2+bk) 0 0






.
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The functions (2) correspond to a nonzero solution iff the vector
(
C+

1 , C
−
1 , D

+
1 , D

−
1

)

is nonzero. Therefore, a number k2 belongs to the spectrum of the Hamiltonian if and
only if (5) has a non-trivial solution for certain pair (θ1, θ2), in other words, if there is a
pair (θ1, θ2) such that

det (U(M − kN)− (M + kN)) = 0 . (6)

It can be easily shown that the determinant on the LHS is equal to the term

[

C22

(
eiθ2
)2

+ C21e
iθ2 + C20

] (
eiθ1
)2

+

+
[

C12

(
eiθ2
)2

+ C11e
iθ2 + C10

]

eiθ1 + C02

(
eiθ2
)2

+ C01e
iθ2 + C00 ,

where Cij are expression not containing the Floquet parameters θ1 and θ2.
It is convenient to divide equation (6) by eiθ1eiθ2 and then rearrange the terms:

C11 +
(
C21e

iθ1 + C01e
−iθ1
)

+
(
C12e

iθ2 + C10e
−iθ2+

)
+

+
(
C22e

iθ1eiθ2 + C00e
−iθ1e−iθ2

)
+
(
C20e

iθ1e−iθ2 + C02e
−iθ1eiθ2

)
= 0 , (7)

where

C22 = 16k2(u12u34 − u32u14)

C00 = 16k2(u21u43 − u41u23)

C20 = 16k2(u12u43 − u42u13)

C02 = 16k2(u21u34 − u31u24)

C21 =k3 · 8i sin bk · (u12 + detU(2, 1)− u32u13 − u42u14 + u12u33 + u12u44)+

+ k2 · 16 cos bk · (−u12 + detU(2, 1))+

+ k · 8i sin bk · (u12 + detU(2, 1) + u32u13 + u42u14 − u12u33 − u12u44)

C01 =k3 · 8i sin bk · (u21 + detU(1, 2)− u31u23 − u41u24 + u21u33 + u21u44)+

+ k2 · 16 cos bk · (−u21 + detU(1, 2))+

+ k · 8i sin bk · (u21 + detU(1, 2) + u31u23 + u41u24 − u21u33 − u21u44)

C12 =k3 · 8i sin ak · (u34 + detU(4, 3)− u14u31 − u24u32 + u11u34 + u22u34)+

+ k2 · 16 cos ak · (−u34 + detU(4, 3))+

+ k · 8i sin ak · (u34 + detU(4, 3) + u14u31 + u24u32 − u11u34 − u22u34)

C10 =k3 · 8i sin ak · (u43 + detU(3, 4)− u13u41 − u23u42 + u11u43 + u22u43)+

+ k2 · 16 cos ak · (−u43 + detU(3, 4))+

+ k · 8i sin ak · (u43 + detU(3, 4) + u13u41 + u23u42 − u11u43 − u22u43)
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C11 =− k4 · 4 sin ak sin bk · (1 + detU + u11 + detU(1, 1) + u22 + detU(2, 2)+

+ u33 + detU(3, 3) + u44 + detU(4, 4)+

+ u11u22 + u11u33 + u11u44 + u22u33 + u22u44 + u33u44−
− u12u21 − u13u31 − u14u41 − u23u32 − u24u42 − u34u43)+

+ k3 · 8i cos ak sin bk · (−1 + detU − u33 + detU(3, 3)− u44 + detU(4, 4)+

+ u11u22 − u12u21 − u33u44 + u34u43)+

+ k3 · 8i cos bk sin ak · (−1 + detU − u11 + detU(1, 1)− u22 + detU(2, 2)+

+ u33u44 − u34u43 − u11u22 + u12u21)+

+ k2 · 16 cos ak cos bk · (1 + detU + u12u21 − u11u22 + u34u43 − u33u44)+

+ k2 · 8 sin ak sin bk · (−1− detU + u11u44 + u22u33 + u11u33 + u22u44−
− u14u41 − u23u32 − u13u31 − u24u42+

+ u12u21 − u11u22 + u34u43 − u33u44)+

+ k · 8i cos ak sin bk · (−1 + detU + u33 − detU(3, 3) + u44 − detU(4, 4)+

+ u11u22 − u12u21 − u33u44 + u34u43)+

+ k · 8i cos bk sin ak · (−1 + detU + u11 − detU(1, 1) + u22 − detU(2, 2)+

+ u33u44 − u34u43 − u11u22 + u12u21)+

− 4 sin ak sin bk · (1 + detU − u11 − detU(1, 1)− u22−
− detU(2, 2)− u33 − detU(3, 3)− u44 − detU(4, 4)+

+ u11u22 + u11u33 + u11u44 + u22u33 + u22u44 + u33u44−
− u12u21 − u13u31 − u14u41 − u23u32 − u24u42 − u34u43)

Lemma 1. Let U ∈ Cn,n be a unitary matrix, let us denote detU = eiϕ. Then:

(1 + detU) · e−i ϕ
2 ∈ R

i(1− detU) · e−i ϕ

2 ∈ R
(8)

(ujj + detU(j, j)) · e−i ϕ

2 ∈ R for all j ∈ n̂
i(−ujj + detU(j, j)) · e−i ϕ

2 ∈ R for all j ∈ n̂
(9)

(−ujk + detU(k, j)) · e−i ϕ

2 = (−ukj + detU(j, k)) e−i ϕ
2 for all j, k ∈ n̂, j 6= k

(ujk + detU(k, j)) · e−i ϕ

2 = −(ukj + detU(j, k)) e−i ϕ

2 for all j, k ∈ n̂, j 6= k
(10)

If moreover n = 4 and {j, k, ℓ,m} = {1, 2, 3, 4}, then

[(ujjukk − ujkukj) + (uℓℓumm − uℓmumℓ)] · e−i ϕ
2 ∈ R

i [(ujjukk − ujkukj)− (uℓℓumm − uℓmumℓ)] · e−i ϕ

2 ∈ R
(11)

(ujkuℓℓ + ujkumm − ujℓuℓk − ujmumk) e−i ϕ
2 = −(ukjuℓℓ + ukjumm − ukℓuℓj − ukmumj) e−i ϕ

2

(12)

(ujkuℓm − ujmuℓk) · e−i ϕ

2 = (ukjumℓ − ujℓumk) · e−i ϕ
2 (13)
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We would like to stress that double indices wherever in this lemma do not mean the
Einstein summation.

Proof. The validity of (8) is obvious, to prove other equalities, the following well known
formula is useful:

[U−1]jk =
(−1)j+k · detU(k, j)

detU
.

Since U is unitary, it holds U−1 = U∗, i.e. [U−1]jk = ukj. Together we have

ukj =
(−1)j+k · detU(k, j)

detU
. (14)

This lemma implies the following proposition.

Proposition 2. There are real numbers

• V4, V3, V
′
3 , V2, V

′
2 , V1, V

′
1 , V0,

• W3,W
′
3,W2,W

′
2, W̃2, W̃

′
2,W1,W

′
1,

• α3, β3, α2, β2, α̃2, β̃2, α1, β1

that depend only on U , such that equation (7) can be written as

− k4 · sin ak sin bk · V4+

+ k3 · [cos ak sin bk · V3 + cos bk sin ak · V ′
3+

+ sin bk ·W3 sin(θ1 + α3) + sin ak ·W ′
3 sin(θ2 + β3)]+

+ k2 · [cos ak cos bk · V2 + sin ak sin bk · V ′
2 + cos bk ·W2 cos(θ1 + α2)+

+ cos ak ·W ′
2 cos(θ2 + β2) + W̃2 · cos(θ1 + θ2 + α̃2) + W̃ ′

2 · cos(θ1 − θ2 + β̃2)
]

+

+ k · [cos ak sin bk · V1 + cos bk sin ak · V ′
1+

+ sin bk ·W1 sin(θ1 + α1) + sin ak ·W ′
1 sin(θ2 + β1)]+

+ sin ak sin bk · V0 = 0 .

(15)

Proof. It suffices to multiply equation (7) by e−i ϕ
2 , then the statement follows almost

immediately from Lemma 1. Equalities (8), (8) and (8) imply that the term C11 · e−i ϕ

2

can be written as

− k4 · sin ak sin bk · V4 + k3 · (cos ak sin bk · V3 + cos bk sin ak · V ′
3)+

+ k2 · (cos ak cos bk · V2 + sin ak sin bk · V ′
2) + k · (cos ak sin bk · V1 + cos bk sin ak · V ′

1)+

+ sin ak sin bk · V0

for certain V4, V3, V
′
3 , V2, V

′
2 , V1, V

′
1 , V0 ∈ R. Using Lemma 1, all pairs of terms of (7), that

are coupled in parentheses, can be decomposed into several expressions according to the
power of k as well.
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4 Spectral behaviour

The positive spectrum of the considered periodic network contains such numbers k2, for
which there exist parameters θ1, θ2 ∈ [−π, π) such that equation (15) is satisfied. Such
numbers k2 form bands, which can have various structure. In the introduction we have
reffered to a result concerning one-dimensional network saying that the band structure
can be classified into three groups. The common property of all of them is the following:
the bands are either assymptotically growing, or assymptotically constant. The aim of
this section is to show that for the two-dimensional case such classification is not sufficient.
We will study the structure of (15) in order to find a concrete example of a coupling, for
which the spectral behaviour is different.
The examination of (15) can be divided into two essentially different situations ac-

cording to the value of V4. If V4 6= 0, then the higer order of k contained in (15) is equal
to 4, otherwise it it less or equal to 3. For our purposes it suffices to consider the first
case, i.e. V4 6= 0. In such situation one may divide the whole equation by k4 and separate
the term sin ak sin bk · V4 as follows:

sin ak sin bk · V4 =
1

k
· [cos ak sin bk · V3 + cos bk sin ak · V ′

3+

+ sin bk ·W3 sin(θ1 + α3) + sin ak ·W ′
3 sin(θ2 + β3)] +

+
1

k2
· [cos ak cos bk · V2 + sin ak sin bk · V ′

2 + cos bk ·W2 cos(θ1 + α2)+

+ cos ak ·W ′
2 cos(θ2 + β2) + W̃2 cos(θ1 + θ2 + α̃2) + W̃ ′

2 cos(θ1 − θ2 + β̃2)
]

+

+
1

k3
· [cos ak sin bk · V1 + cos bk sin ak · V ′

1+

+ sin bk ·W1 sin(θ1 + α1) + sin ak ·W ′
1 sin(θ2 + β1)] +

+
1

k4
sin ak sin bk · V0 .

(16)

Since all the terms Vj , Wj etc. are constant with respect to k, the RHS is of the order
O( 1

k
), and the same has to hold for the product sin ak sin bk at the LHS. Therefore, the

bands correspond to either sin ak small or to sin bk small. Let us suppose a > b. To
find a coupling that do not fall within the 1-D classification, we will focus on bands
corresponding only to sin ak small. Let us denote Ja :=

{
n ∈ N

∣
∣| sin bnπ

a
| ≥ 1

3

}
and

A :=
⋃

n∈Ja

(
nπ
a
− π

12b
, nπ
a

+ π
12b

)
. Since a > b and 1

3
<

√
2

2
, it holds |Ja| =∞, therefore A

is a countable set of equally long intervals. The following inequality will be usefull:
Let k ∈ A, k ∈

(
nπ
a
− π

12b
, nπ
a

+ π
12b

)
, let us put k = nπ

a
+ δ

b
, |δ| ≤ π

12
. Then

| sin bk| =
∣
∣
∣sin b

nπ

a
· cos δ + cos b

nπ

a
· sin δ

∣
∣
∣ ≥ 1

3
· cos

π

12
− sin

π

12
=

2−
√

3

3
√

2
> 0 , (17)

i.e. the set {| sin bk| | k ∈ A} is bounded below by some positive constant.
We will study asymptotical behaviour of solutions of (16) that are contained in the
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set A. Let us assemble all the terms of (16) containing sin ak on the LHS:

sin ak

(

sin bk · V4 −
1

k
cos bk · V ′

3 −
1

k
·W ′

3 sin(θ2 + β3)−
1

k2
· sin bk · V ′

2−

− 1

k3
· cos bk · V ′

1 −
1

k3
W ′

1 sin(θ2 + β1)−
1

k4
sin bk · V0

)

=

=
1

k
· [cos ak sin bk · V3 + sin bk ·W3 sin(θ1 + α3)] +

+
1

k2
· [cos ak cos bk · V2 + cos bk ·W2 cos(θ1 + α2) + cos ak ·W ′

2 cos(θ2 + β2)+

+W̃2 · cos(θ1 + θ2 + α̃2) + W̃ ′
2 · cos(θ1 − θ2 + β̃2)

]

+

+
1

k3
· [cos ak sin bk · V1 + sin bk ·W1 sin(θ1 + α1)] .

(18)

We distinguish two situations:

(a) W3 6= 0,

(b) W3 = 0.

In the case (a) one can write (18) in the following way:

sin ak

(

sin bk · V4 +O(
1

k
)

)

=
1

k
· [cos ak sin bk · V3 + sin bk ·W3 sin(θ1 + α3)] +O(

1

k2
) .

(19)
If k is sufficiently big, inequality (17) enables us to divide the whole equation by the
expression in the parentheses:

sin ak =
1

k
·
[

cos ak · V3

V4

+
W3

V4

sin(θ1 + α3)

]

+O(
1

k2
) . (20)

The expression in the brackets is uniformly bounded with respect to k, therefore the RHS
is of the order 1

k
, i.e. | sin ak| = O

(
1
k

)
. Let k be a solution; for the notation purposes we

put
ak = nπ + δ |δ| ≤ π ; (21)

obviously O(k) = O(n) and 1
k

= a
nπ+δ

= a
nπ

+ δ · O( 1
n2 ). Since sin ak = (−1)n sin δ and

| sin δ| ≥ 2
π
|δ|, we have δ ≤ π

2
| sin ak| = O

(
1
k

)
= O

(
1
n

)
. This allows us to write

sin ak = (−1)n · δ
(
1 +O(δ2)

)
= (−1)n · δ

(

1 +O(
1

n2
)

)

,

cos ak = (−1)n ·
(
1 +O(δ2)

)
= (−1)n ·

(

1 +O(
1

n2
)

)

,

1

k
=

a

nπ
+O(

1

n3
) .

(22)

Putting all together, we may transform (20) into

δ =
a

nπ
·
(
V3

V4

+
W3

V4

sin(θ1 + α3) · (−1)n
)

+O(
1

n2
)



High-Energy Asymptotics of the Spectrum of a Rectangular Periodic Network 191

(we have divided both sides by (−1)n). Finally, when the parameter θ1 runs through
[−π, π), the term sin(θ1 + α3) takes all values from (−1, 1). Therefore, δ runs through

(
a

nπ
·
(
V3

V4
−
∣
∣
∣
∣

W3

V4

∣
∣
∣
∣

)

+O(
1

n2
),
a

nπ
·
(
V3

V4
+

∣
∣
∣
∣

W3

V4

∣
∣
∣
∣

)

+O(
1

n2
)

)

.

With respect to (21), the value of k belongs to the set
(
nπ

a
+

1

nπ
· V3

V4

− 1

nπ
·
∣
∣
∣
∣

W3

V4

∣
∣
∣
∣
+O(

1

n2
),
nπ

a
+

1

nπ
· V3

V4

+
1

nπ
·
∣
∣
∣
∣

W3

V4

∣
∣
∣
∣
+O(

1

n2
)

)

.

We immediately see that for sufficiently big n, this interval lies whole in the set A. The
easy computation of the the length of the corresponding interval for k2 gives the result

4

a
·
∣
∣
∣
∣

W3

V4

∣
∣
∣
∣
+O(

1

n2
) ,

i.e. the we have found an infinite set of assymptotically constant bands.
Consider now the situation (b), i.e. W3 = 0. We will proceed in a similar way, but

this time we take into account more terms of (18):

sin ak

(

sin bk · V4 −
1

k
cos bk · V ′

3 −
1

k
·W ′

3 sin(θ2 + β3) +O(
1

k2
)

)

=

=
1

k
· cos ak sin bk · V3+

+
1

k2
· [cos ak cos bk · V2 + cos bk ·W2 cos(θ1 + α2) + cos ak ·W ′

2 cos(θ2 + β2)+

+W̃2 · cos(θ1 + θ2 + α̃2) + W̃ ′
2 · cos(θ1 − θ2 + β̃2)

]

+O(
1

k3
) .

For all k ∈ A, sin bk is uniformly bounded below by a positive constant, thus for suf-
ficiently big k one can divide both sides of the equation by the term standing in the
parentheses on the LHS and obtain

sin ak =
1

k
· cos ak · V3

V4

+
1

k2
· V3 cos ak

V 2
4 sin bk

· [cos bkV ′
3 +W ′

3 sin(θ2 + β3)] +

+
1

k2
· 1

V4 sin bk
· [cos ak cos bk · V2 + cos bk ·W2 cos(θ1 + α2) + cos ak ·W ′

2 cos(θ2 + β2)+

+W̃2 · cos(θ1 + θ2 + α̃2) + W̃ ′
2 · cos(θ1 − θ2 + β̃2)

]

+O(
1

k3
) .

Now we use (22) similarly as in the case (a), subsequently we again divide the whole
equation by the expression (−1)n, arriving at

δ =
a

nπ
· V3

V4

+
a2

n2π2
· 1

V4 sin bk
·
[

cos bk ·
(
V3V

′
3

V4

+ V2

)

+

+
V3W

′
3

V4
sin(θ2 + β3) + cos bk · (−1)n ·W2 cos(θ1 + α2) +W ′

2 cos(θ2 + β2)+

+W̃2 · (−1)n cos(θ1 + θ2 + α̃2) + W̃ ′
2 · (−1)n cos(θ1 − θ2 + β̃2)

]

+O(
1

n3
) .
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If the parameters θ1, θ2 run through the interval [−π, π), the values of the expression in
the bracket form an interval. Since the values are uniformly bounded, as well as 1

V4 sin bk

by virtue of k ∈ A and (17), there is a γ > 0 independent of k (and n) such that

δ ∈
(
a

nπ
· V3

V4

− a2

n2π2
γ,

a

nπ
· V3

V4

+
a2

n2π2
γ

)

,

and therefore the solutions of (16) form an interval that is contained in
(
nπ

a
+

1

nπ
· V3

V4

− a

n2π2
γ,
nπ

a
+

1

nπ
· V3

V4

+
a

n2π2
γ

)

.

We observe that if k is sufficiently big, the whole interval lies in the set A. The length of
the band, i.e. of the corresponding interval for k2, is bounded above by the term

(
nπ

a
+

1

nπ
· V3

V4

+
a

n2π2
γ

)2

−
(
nπ

a
+

1

nπ
· V3

V4

− a

n2π2
γ

)2

=
4γ

nπ
, (23)

thus the bands are neither assymptotically growing, nor assymptotically constant. It is
a situation that does not occur in the case of one-dimensional network.
However, to prove that such situation really exists, it is necessary to find an example

of a unitary matrix U ∈ Cn,n such that V4 6= 0, W3 = 0, and moreover to show that
infinitely many of the intervals (23) do not collapse to single points.
Let us consider the following matrix:

U =
1

2
·







1 1 1 1
1 1 −1 −1
−1 1 1 −1
−1 1 −1 1






. (24)

The unitarity is obvious. A simple calculation gives V4 = 32 6= 0, W3 = 0. To exclude
the collapsing case, we will show that the expression

V3W
′
3

V4

sin(θ2 + β3) + cos bk · (−1)n ·W2 cos(θ1 + α2) +W ′
2 cos(θ2 + β2)+

+W̃2 · (−1)n cos(θ1 + θ2 + α̃2) + W̃ ′
2 · (−1)n cos(θ1 − θ2 + β̃2)

is not constant with respect to (θ1, θ2). It can be shown that for U given by (24) this
expression is equal to

− cos bk · (−1)n · 32 cos θ1 + 32 cos θ2 − 16 · (−1)n cos(θ1 + θ2)− 16 · (−1)n cos(θ1 − θ2) ,
i.e. obviously not constant.

5 Conclusions

We have studied the spectral properties of an infinite periodic network with a rectangular
cell. Our results demonstrate that the structure of its spectrum may strongly differ from
the case of one-dimensional network, namely that the spectral bands may asymptotically
shorten. It would be interesting and useful to find a complete classification of high-energy
asymptotics. We aim to study the problem in more detail, believing that the results will
be much more complex that in the one-dimensional case.
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Abstract. A model of a quantum dot with impurity in the Lobachevsky plane is considered.
Relying on explicit formulae for the Green function and the Krein Q−function which have
been derived in a previous work we focus on the numerical analysis of the spectrum. The
analysis is complicated by the fact that the basic formulae are expressed in terms of spheroidal
functions with general characteristic exponents. The effect of the curvature on eigenvalues and
eigenfunctions is investigated. Moreover, there is given an asymptotic expansion of eigenvalues
as the curvature radius tends to infinity (the flat case limit).

Abstrakt. Příspěvěk pojednává o modelu kvantové tečky v Lobačevského rovině. Numeric-
ká analýza energetického spektra se opírá o znalost explicitních předpisů pro Greenovu funkci
a Kreinovu Q−funkci, které byly odvozeny v předchozí práci. Analýza je ztížena výskytem
sferoidálních funkcí s obecným charakteristickým exponentem právě v těchto předpisech. Vliv
křivosti na vlastní hodnoty a vlastní funkce je podroben zkoumání. Navíc předkládáme asym-
ptotické rozvoje vlastních hodnot pro poloměr křivosti jdoucí k nekonečnu (plochá limita).

1 Introduction

The influence of the hyperbolic geometry on the properties of quantum mechanical sys-
tems is a subject of continual theoretical interest for at least two decades. Numerous
models have been studied so far, let us mention just few of them [7, 1, 10, 11]. Naturally,
the quantum harmonic oscillator is one of the analyzed examples [5, 6]. It should be
stressed, however, that the choice of an appropriate potential on the hyperbolic plane is
ambiguous in this case, and several possibilities have been proposed in the literature. In
[9], we have modeled a quantum dot in the Lobachevsky plane by an unbounded poten-
tial which can be interpreted, too, as a harmonic oscillator potential for this nontrivial
geometry. The studied examples also comprise point interactions [3] which are frequently
used to model impurities.
A Hamiltonian describing a quantum dot with impurity has been introduced in [9].

The main result of this paper is derivation of explicit formulae for the Green function
and the Krein Q−function. The formulae are expressed in terms of spheroidal functions
which are used rather rarely in the framework of mathematical physics. Further analysis is
complicated by the complexity of spheroidal functions. In particular, the Green function
depends on the characteristic exponent of the spheroidal functions in question rather
than directly on the spectral parameter. In fact, it seems to be possible to obtain a

195
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more detailed information on eigenvalues and eigenfunctions only by means of numerical
methods. The particular case, when the Hamiltonian is restricted to the eigenspace of the
angular momentum with eigenvalue 0, is worked out in [13]. In the current contribution
we aim to extend the numerical analysis to the general case and to complete it with
additional details.
The Hamiltonian describing a quantum dot with impurity in the Lobachevsky plane,

as introduced in [9], is a selfadjoint extension of the following symmetric operator:

H = −
(
∂2

∂̺2
+

1

a
coth

(̺

a

) ∂

∂̺
+

1

a2
sinh−2

(̺

a

) ∂2

∂φ2
+

1

4a2

)

+
1

4
a2ω2 sinh2

(̺

a

)

,

Dom(H) = C∞
0 ((0,∞)× S1) ⊂ L2

(
(0,∞)× S1, a sinh(̺/a)d̺ dφ

)
,

where (̺, φ) are the geodesic polar coordinates on the Lobachevsky plane and a stands for
the so called curvature radius which is related to the scalar curvature by the formula R =
−2/a2. The deficiency indices of H are known to be (1, 1) and we denote each selfadjoint
extension by H(χ) where the real parameter χ appears in the boundary conditions for
the domain of definition: f(̺, φ) belongs to Dom(H(χ)) if there exist f0, f1 ∈ C so that
f1 : f0 = χ : 1 and

f(̺, φ) = − 1

2π
f0 log(̺) + f1 + o(1) as ̺→ 0+

(the case χ = ∞ means that f0 = 0 and f1 is arbitrary), see [9] for details. H(∞) is
nothing but the Friedrichs extension of H . The Hamiltonian H(∞) is interpreted as
corresponding to the unperturbed case and describing a quantum dot with no impurity.
After the substitution ξ = cosh(̺/a) and the scaling H = a−2H̃, we make use of

the rotational symmetry (which amounts to a Fourier transform in the variable φ) to
decompose H̃ into a direct sum as follows

H̃ =

∞⊕

m=−∞
H̃m,

H̃m = − ∂

∂ξ
(ξ2 − 1)

∂

∂ξ
+

m2

ξ2 − 1
+
a4ω2

4
(ξ2 − 1)− 1

4
,

Dom(H̃m) = C∞
0 (1,∞) ⊂ L2((1,∞), dξ).

Let us denote by Hm, m ∈ Z, the restriction of H(∞) to the eigenspace of the
angular momentum with eigenvalue m. This means that Hm is a self-adjoint extension of
a−2H̃m. It is known (Proposition 2.1 in [9]) that H̃m is essentially selfadjoint for m 6= 0.
Thus, in this case, Hm is the closure of a−2H̃m. Concerning the case m = 0, H0 is the
Friedrichs extension of a−2H̃0. For quite general reasons, the spectrum of Hm, for any
m, is semibounded below, discrete and simple [14]. We denote the eigenvalues of Hm in
ascending order by En,m(a2), n ∈ N0.
The spectrum of the total Hamiltonian H(χ), χ 6=∞, consists of two parts (in a full

analogy with the Euclidean case [4]):

1. The first part is formed by those eigenvalues of H(χ) which belong, at the same
time, to the spectrum of H(∞). More precisely, this part is exactly the union of
eigenvalues of Hm for m running over Z \ {0}. Their multiplicities are discussed
below in Section 5.
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2. The second part is formed by solutions to the equation

QH(z) = χ (1)

with respect to the variable z where QH stands for the Krein Q-function of H(∞).
Let us denote the solutions in ascending order by ǫn(a2, χ), n ∈ N0. These eigen-
values are sometimes called the point levels and their multiplicities are at least one.
In more detail, ǫn(a2, χ) is a simple eigenvalue of H(χ) if it does not lie in the
spectrum of H(∞), and this happens if and only if ǫn(a2, χ) does not coincide with
any eigenvalue Eℓ,m(a2) for ℓ ∈ N0 and m ∈ Z, m 6= 0.

Remark. The lowest point level, ǫ0(a2, χ), lies below the lowest eigenvalue of H(∞) which
is E0,0(a

2), and the point levels with higher indices satisfy the inequalities En−1,0(a
2) <

ǫn(a
2, χ) < En,0(a

2), n = 1, 2, 3, . . ..

2 Spectrum of the unperturbed Hamiltonian H(∞)

Our goal is to find the eigenvalues of the mth partial Hamiltonian Hm, i.e., to find square
integrable solutions of the equation

Hmψ(ξ) = zψ(ξ),

or, equivalently,
H̃mψ(ξ) = a2zψ(ξ).

This equation coincides with the equation of the spheroidal functions (A.1) provided we
set µ = |m|, θ = −a4ω2/16, and the characteristic exponent ν is chosen so that

λmν

(

−a
4ω2

16

)

= −a2z − 1

4
.

The only solution (up to a multiplicative constant) that is square integrable near infinity
is S |m|(3)

ν (ξ,−a4ω2/16).
Proposition 3 describes the asymptotic expansion of this function at ξ = 1 for m ∈ N.

It follows that the condition on the square integrability is equivalent to the equality

ei(3ν+1/2)πKm
−ν−1

(

−a
4ω2

16

)

+Km
ν

(

−a
4ω2

16

)

= 0. (2)

Furthermore, in [9] we have derived that

S0(3)
ν (ξ, θ) = α log(ξ − 1) + β +O((ξ − 1) log(ξ − 1)) as ξ → 1+,

where

α =
i tan(νπ) e−i(2ν+1/2)π

2πs0
ν(θ)

(
ei(3ν+1/2)πK0

−ν−1(θ) +K0
ν (θ)

)
.

Taking into account that the Friedrichs extension has continuous eigenfunctions we con-
clude that equation (2) guarantees square integrability in the case m = 0, too.
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Figure 1: Eigenvalues of the partial Hamiltonian H1

As far as we see it, equation (2) can be solved only by means of numerical methods.
For this purpose we made use of the computer algebra system Mathematica 6.0. For the
numerical computations we set ω = 1. The particular case m = 0 has been examined in
[13]. It turns out that an analogous procedure can be also applied for nonzero values of
the angular momentum. As an illustration, Figure 1 depicts several first eigenvalues of
the Hamiltonian H1 as functions of the curvature radius a. The dashed asymptotic lines
correspond to the flat limit (a→∞).
Denote the nth normalized eigenfunction of the mth partial Hamiltonian H̃m by

ψ̃n,m(ξ). Obviously, the eigenfunctions for the values of the angular momentum m and
−m are the same and are proportional to S |m|(3)

ν (ξ,−a4ω2/16), with ν satisfying equa-
tion (2). Let us return to the original radial variable ̺ and, moreover, regard H̃m as an
operator acting on L2(R+, d̺). This amounts to an obvious isometry

L2(R+, a−1 sinh(̺/a)d̺)→ L2(R+, d̺) : f(̺) 7→ a−1/2 sinh1/2(̺/a)f(̺).

The corresponding normalized eigenfunction of H̃m, with an eigenvalue a2z, equals

ψn,m(̺) =

(
1

a
sinh

(̺

a

))1/2

ψ̃n,m

(

cosh
(̺

a

))

. (3)

At the same time, relation (3) gives the normalized eigenfunction of Hm (considered on
L2(R+, d̺)) with the eigenvalue z. The same Hilbert space may be used also in the limit
Euclidean case (a = ∞). The eigenfunctions Φn,m in the flat case are well known and
satisfy

Φn,m ∝ ̺|m|+1/2e−ω̺
2/4

1F1

(

−n, |m| + 1,
ω̺2

2

)

. (4)

The fact that we stick to the same Hilbert space in all cases facilitates the comparison
of eigenfunctions for various values of the curvature radius a. We present plots of several
first eigenfunctions of H1 (Figures 2, 3, 4) for the values of the curvature radius a = 1 (the
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solid line), 10 (the dashed line), and ∞ (the dotted line). Again, see [13] for analogous
plots in the case of the Hamiltonian H0. Note that, in general, the smaller is the curvature
radius a the more localized is the particle in the region near the origin.

3 The point levels

As has been stated, the point levels are solutions to equation (1) with respect to the
spectral parameter z. Since, in general, Q(z̄) = Q(z) the function Q(z) takes real values
on the real axis. Let H̃(∞) = a2H(∞) be the Friedrichs extension of H̃ . An explicit
formula for the Krein Q-function QH̃(z) of H̃(∞) has been derived in [9]:

QH̃(z) =− 1

4πa2

(

− log(2)− 2Ψ(1) + 2 Ψsν

(

−a
4ω2

16

)

s0
ν

(

−a
4ω2

16

))

+
1

2a2 tan(νπ)

(

eiπ(3ν+3/2) K
0
−ν−1(−a4ω2

16
)

K0
ν (−a4ω2

16
)
− 1

)−1

+
log (2a2)

4πa2
,

where ν is chosen so that

λ0
ν

(

−a
4ω2

16

)

= −z − 1

4
.

The symbol K0
ν(θ) stands for the so called spheroidal joining factor,

Ψsν(θ) :=

∞∑

r=−∞
(−1)ra0

ν,r(θ) Ψ(ν + 1 + 2r),

where the coefficients a0
ν,r(θ), r ∈ Z, come from the expansion of spheroidal functions in

terms of Bessel functions (for details see [9, the Appendix])), and s0
ν(θ) is defined by the

formula

(smν (θ))−1 :=

∞∑

r=−∞
(−1)ramν,r.

Figure 2: The first eigenfunction of the partial Hamiltonian H1
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Figure 3: The second eigenfunction of the partial Hamiltonian H1

Figure 4: The third eigenfunction of the partial Hamiltonian H1

One can obtain the Krein Q-function of H(∞) simply by scaling QH(z) = a2QH̃(a2z).
Since we know the explicit expression for the Krein Q-function as a function of the

characteristic exponent ν rather than of the spectral parameter z itself it is of importance
to know for which values of ν the spectral parameter z is real. Propositions 1 and 2 give
the answer. For ν ∈ R and for ν of the form ν = −1/2+ it where t is real, the spheroidal
eigenvalue λmν (−a4ω2/16) is real, and so the same is true for z. Moreover, these values
of ν reproduce the whole real z axis. With this knowledge, one can plot the Krein Q-
function QH = QH(z) for an arbitrary value of the curvature radius a. Note that for
a =∞, the Krein Q-function is well known as a function of the spectral parameter z [8]
and equals (setting ω = 1, Ψ is the logarithmic derivative of the gamma function)

Q(z) =
1

4π

(

−Ψ

(
1− z

2

)

+ log(2) + 2Ψ(1)

)

.

Again, equation (1) can be solved only numerically. Fixing the parameter χ one may
be interested in the behavior of the point levels as functions of the curvature radius a.
See Figure 5 for the corresponding plots, with χ = 0, where the dashed asymptotic lines
again correspond to the flat case limit (a =∞). Note that for the curvature radius a large
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Figure 5: Point levels for H(0)

enough, the lowest eigenvalue is negative provided χ is chosen smaller thanQ(0) ≃ 0.1195.

4 Asymptotic behavior for large values of a

The mth partial Hamiltonian Hm, if considered on L2(R+, d̺), acts like

Hm = − ∂2

∂̺2
+

m2 − 1
4

a2 sinh2( ̺
a
)

+
1

4
a2ω2 sinh2

(̺

a

)

=: − ∂2

∂̺2
+ Vm(a, ̺).

For a fixed ̺ 6= 0, one can easily derive that

Vm(a, ̺) =
m2 − 1

4

̺2
+

1

4
ω2̺2 +

1
4
−m2

3a2
+
ω2̺4

12a2
+O

(
1

a4

)

as a→∞.

Recall that the mth partial Hamiltonian of the isotropic harmonic oscillator on the Eu-
clidean plane, HE

m, if considered on L
2(R+, d̺), has the form

HE
m := − ∂2

∂̺2
+
m2 − 1

4

̺2
+

1

4
ω2̺2.

This suggests that it may be useful to view the Hamiltonian Hm, for large values of the
curvature radius a, as a perturbation of HE

m,

Hm ∼ HE
m +

1

12a2
(1− 4m2 + ω2̺4) =: HE

m +
1

12a2
Um(̺).

The eigenvalues of the compared Hamiltonians have the same asymptotic expansions up
to the order 1/a2 as a→∞.
Let us denote the nth eigenvalue of the Hamiltonian HE

m by E
E
n,m, n ∈ N0. It is well

known that
EE
n,m = (2n+ |m|+ 1)ω
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Table 1: Comparison of numerical and asymptotic results for the eigenvalues, a2 = 24

E0,0 E1,0 E2,0 E0,1 E1,1 E2,1

numerical 1.0265 3.162 5.42 2.060 4.259 6.58
asymptotic 1.0268 3.169 5.46 2.058 4.258 6.59
error (%) -0.03 -0.22 -0.74 0.10 0.02 -0.15

and that the multiplicity of EE
n,m in the spectrum of H

E equals 2n + |m| + 1. The
asymptotic behavior of En,m(a2) may be deduced from the standard perturbation theory
and is given by the formula

En,m(a2) = EE
n,m +

1

12a2

〈Φn,m, UmΦn,m〉
〈Φn,m,Φn,m〉

+O

(
1

a4

)

as a→∞, (5)

where Φn,m denotes a (not necessarily normalized) eigenfunction of HE
m associated with

the eigenvalue EE
n,m (see (4)). The scalar products occurring in formula (5) can be readily

evaluated in L2(R+, d̺) with the help of Proposition 4. The resulting formula takes the
form

En,m(a2) = (2n+ |m|+ 1)ω +

(

2n(n+ |m|+ 1) + |m|+ 3

4

)
1

a2
+O

(
1

a4

)

(6)

as a → ∞. This asymptotic approximation of eigenvalues has been tested numerically
for large values of the curvature radius a. The asymptotic eigenvalues for a2 = 24 are
compared with the precise numerical results in Table 1. It is of interest to note that the
asymptotic coefficient in front of the a−2 term does not depend on the frequency ω.

5 The multiplicities

Since H−m = Hm the eigenvalues En,m(a2) of the total Hamiltonian H(∞) are at least
twice degenerated if m 6= 0. From the asymptotic expansion (6) it follows, after some
straightforward algebra, that no additional degeneracy occurs and thus theses eigenvalues
are exactly twice degenerated at least for sufficiently large values of a.
Applying the methods developed in [4] one may complete the analysis of the spectrum

of the total Hamiltonian H(χ) for χ 6=∞. Namely, the spectrum of H(χ) contains eigen-
values En,m(a2), m > 0, with multiplicity 2 if QH(En,m(a2)) 6= χ, and with multiplicity 3
if QH(En,m(a2)) = χ. The rest of the spectrum of H(χ) is formed by those solutions to
equation (1) which do not belong to the spectrum of H(∞). The multiplicity of all these
eigenvalues in the spectrum of H(χ) equals 1.

Appendix: Auxiliary results

In this appendix we summarize several auxiliary results. For the page limit we omit the
proofs. Firstly, for our purposes we need the following observations concerning spheroidal
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functions. The spheroidal functions are solutions to the equation

(1− ξ2)
∂2ψ

∂ξ2
− 2ξ

∂ψ

∂ξ
+
[
λµν(θ) + 4θ(1− ξ2)− µ2(1− ξ2)−1

]
ψ = 0. (A.1)

For the notation and properties of spheroidal functions see [2]. A detailed information on
this subject can be found in [12], but be aware of somewhat different notation. A very
brief overview of spheroidal functions is also given in the Appendix of [9].
In the last named source, the following proposition has been proved in the particular

case m = 0. But, as one can verify by a direct inspection, the proof applies to the general
case m ∈ Z as well.

Proposition 1. Let ν, θ ∈ R, m ∈ Z. Then λmν (θ) ∈ R.

The following claim is also of interest.

Proposition 2. Let ν = −1/2 + it where t ∈ R, and θ ∈ R, m ∈ Z. Then λmν (θ) ∈ R.

Another auxiliary result concerns the asymptotic expansion of the radial spheroidal
function of the third kind.

Proposition 3. Let ν /∈ {−1/2 + k| k ∈ Z} , m ∈ N. Then

Sm(3)
ν (ξ, θ) ∼ (−1)m2m/2−1Γ(m) tan(νπ)

πsmν (θ) e−i(ν+3/2)π

(

Km
−ν−1(θ) +

Km
ν (θ)

ei(3ν+1/2)π

)

(ξ − 1)−m/2

as ξ → 1 + . (A.2)

Further some auxiliary computations follow that we need for evaluation of scalar
products of eigenfunctions (see (5)).

Proposition 4. Let 1F1(a, b, t) stand for the Kummer confluent hypergeometric function,
and n,m, l ∈ N0. Then

∫ ∞

0

tm+le−t1F1(−n, 1 +m, t)2 dt

= (m!)2

n∑

k=max{0,n−l}
(−1)n+k

(
n

k

)
(k + l)!

(k +m)!

(
k +m+ l

n +m

)

.
(A.3)

Corollary 5. In the case l = 0, (A.3) takes a particularly simple form:
∫ ∞

0

tme−t1F1(−n, 1 +m, t)2 dt =
n!

(m+ n)!
.
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Abstract. The paper addresses the design of trading strategy for futures markets. The problem
is formulated as dynamic decision making task and as such is solved. Iterations-spread-in-
time and Monte Carlo methods are employed to the solution. The results of off-line real-data
experiments are presented.

Abstrakt. Text popisuje návrh obchodní strategie určené pro trhy s futures kontrakty. Návrh
se sestává z definice úlohy jako problému dynamického rozhodování. Následně je úloha řešena
pomocí iterací rozložených v čase a metody Monte Carlo. Text obsahuje výsledky experimentů
prováděných na reálných datech.

1 Introduction

The paper describes a part of research aiming to design automatic trading system for
futures markets. The trading on exchanges is based on knowledge and prediction of the
price of given commodity, which represents a very complex task.
The futures trading problem is formulated as a particular decision making (DM) task.

DM reformulates the task as mathematical problem, which leads to integral equations.
We need to solve the equations, but to find the analytical solution is almost impossible
and the numerical calculation leads to bad conditioned or long calculated solutions. DM
task is necessary to solve in given time, e.g. when the trader on exchange needs the solu-
tion each day, the calculation cannot take 3 days and is restricted by 24 hours. Although
the reformulation like a DM task is good, we need feasible solution, which calls for an
approximation. This paper considers by task redefinition and introduces the approxima-
tions.

The paper’s outline is as follows. Section 2 introduces terminology of futures exchange,
recalls main terms of DM theory and reformulates futures trading problem as dynamic
DM task. Section 3 contains approximation of DM. Section 4 presents the experimental
results obtained on real data. Section 5 addresses open questions as well as possible
directions to approach’s improvement.

∗This work has been supported by the grants MŠMT 2C06001 and GA ČR 102/08/0567.
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2 Preliminaries

2.1 Trading futures

The following definition by of the futures exchange is proposed by [2]. A futures exchange
is a central financial exchange where people can trade standardized futures contracts; that
is, a contract to buy specific quantities of a commodity (basic resources and agricultural
products such as iron ore, coal, sugar, coffee beans, wheat, gold, etc) or financial in-
strument (cash, evidence of an ownership interest in an entity) at a specified price with
delivery set at a specified time in the future. A futures contract gives the holder the
obligation to buy or sell.
The term position means a commitment to buy or sell a given amount of commodities.

The basic types of position are distinguished: short, long and flat.
A long position yields a trader’s benefit when the price increases, and trader’s loss

otherwise. This position refers to the situation when

• a trader buys an option contract that he has not already written (i.e. sold), he is
said to be opening a long position.

• a trader sells an option contract that he already owns, he is said to be closing a
long position.

A short position yields a trader’s profit when the price decreases, and trader’s loss oth-
erwise. This position refers to the situation when

• a trader sells an option contract that he does not already own, he is said to be
opening a short position.

• a trader buys an option contract that he has written (i.e. sold), he is said to be
closing a short position.

A flat position denotes the state when no other type of position is active. Flat position
means neither trader’s profit nor trader’s lose with any price change.
The aim of trader is design such a strategy of positions selecting, which ensures trader’s

profit with minimal risk. The strategy design is based on prediction of price behavior
and is very sensitive i.e. the small impreciseness in strategy make big change of profit.

2.2 Decision making under uncertainty

Decision maker is either human being or device aiming to influence a part of the World
he is interested in (so called System) The influence desired is expressed by DM aim. To
reach this DM aim a decision maker designs and applies a DM strategy, Rt. This strategy
maps observations of the system’s behavior y1, . . . , yt available to decision maker and past
decisions x1, . . . xt−1 to decisions xt:

Rt : [y1, . . . , yt, x1, . . . xt−1]→ xt.

The available knowledge grows with time, because it is extended each time step by new
system output yt and also by new decision xt. The decision typically influences the system,
therefore decision maker works with respect to closed loop ’decision maker - system’.
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All knowledge about system available to decision maker to design decision xt is called
experience Pt = (y1, x1, . . . , yt−1, xt−1, yt). Ignorance Ft is knowledge about system un-
available to decision maker. System behavior consists of experience, decision and igno-
rance Q = (Pt, xt,Ft).
Gain is mapping of system behavior to real non-negative number G : Q → [0,∞].

Gain express the success of reaching the decision maker aims with given decision making
strategy. The gain is not causal and it is necessary to measure the potential strategy
success. Therefore the expected value is defined. Conditioned expected value E(.|.) is
functional which returns the value of the gain independent on ignorance for the given
strategy and conditioned by experience.
The expected gain conditioned by experience is chosen as following integral:

E
[
G(Pt, xt,Ft)

∣
∣Pt, xt

]
=

∫

Ft

G(Pt, xt,Ft)f(Ft|Pt, xt)dFt, (1)

where f(Ft|Pt, xt) is probability density function of the ignorance conditioned by expe-
rience, this terms stands for the decision makers imagination of the ignorance based on
experience. See [3] for general derivation of this equation.
The decision maker chose the decision xt ∈ X to maximize of expected value in each

time t:
xt = argmax

xt∈X
E
[
G(Q)

∣
∣Pt, xt

]
, (2)

which is the idea based on principle of optimality - see [1].

2.3 Futures trades as DM task

This subsection reformulates futures trading task as a decision making problem.
The system is exchange with one kind of futures contract. The system output yt is a

price of the contract. We design the strategy for discrete time starting from 1, finishing
by horizon T . The strategy starts and finishes with the flat position.
The decision maker designs in each time t an integer number xt ∈ Z as decision. The

decision xt characterizes traders position, i.e. |xT | characterizes count of contracts and
sign(xT ) characterizes the type of position 1 long, -1 short and 0 flat. The flat position
at the beginning and at the horizon is expresses as: x0 = xT = 0.
The profit influenced only by the decision xt is expressed via:

g(xt, xt−1, yt+1, yt) = (yt+1 − yt)xt − C|xt−1 − xt|, (3)

where (yt+1−yt)xt is profit caused by the change of price and C is normalized transaction
costs for position change and |xt−1 − xt| is change of position. The gain from the whole
trading can be expressed as a sum of partial gain (3) over time t ∈ {1, 2, . . . , T}. The
gain function Gt(.) expresses the profit caused by decisions xt, . . . , xT :

Gt(xt−1, . . . , xT , yt, . . . , yT ) = −C|xT−1 − xT |+
T−1∑

k=t

(yk+1 − yk)xk − C|xk−1 − xk|, (4)

Easy to see, that the function Gt(.) is additive and backward recursive

Gt(xt−1, . . . , xT , yt, . . . , yT ) = g(xt, xt−1, yt+1, yt) +Gt+1(xt, . . . , xT , yt+1, . . . , yT ) (5)
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with initial condition
GT (xT−1, xT , yT ) = −C|xT−1 − xT |. (6)

2.4 Solution of dynamic DM problem

To maximize the profit, the gain over the decisions x1, . . . , xT should be maximized:

max
{x1,...,xT }

G1(x0, . . . , xT , y1, . . . , yT ). (7)

Using the optimality principle (see [1] for details) and additivity of the gain function the
optimal gain in time t can be expressed:

Bt(xt−1, . . . , xT , yt, . . . , yT ) = max
xt

[

g(xt−1, xt, yt, yt+1)+ max
{xt+1,...,xt}

Gt+1(xt, . . . , xT , yt, . . . , yT )
]

.

Function Bt(.) is called Bellman’s function and hold the following recursive shape:

Bt(xt−1, . . . , xT , yt, . . . , yT ) = max
xt

[

g(xt−1, xt, yt, yt+1) +Bt+1(xt, . . . , xT , yt, . . . , yT )
]

,

where the maximal argument is the optimal decision at time t. But to find this argument,
the knowledge of future decisions and prices is needed, i.e. xt+1, . . . , xT , yt, . . . , yT . These
variables are the part of ignorance, therefore the expected value must be used:

Vt(xt−1, yt) = max
xt

E
[

g(xt−1, xt, yt, yt+1) + Vt+1(xt, yt+1)
∣
∣
∣x0, . . . , xt, y1, . . . , yt

]

, (8)

where Vt(.) is called admissible Bellman’s function.

3 Approximation of decision making

The substitution (3) into the equation (8) results in more suitable form:

Vt(xt−1, yt) = max
xk

[

− ytxt − C|xt−1 − xt|+ xt E(yt+1|x0, . . . , xt, y1, . . . , yt)
︸ ︷︷ ︸

(∗)

+ E
(

Vt+1(xt, yt+1)
∣
∣
∣x0, . . . , xt, y1, . . . , yt

)

︸ ︷︷ ︸

(∗∗)

]

. (9)

This paragraph concerns expressing the term (∗), which characterizes expected value of
future price yk+1 conditioned by the experience.
The probability density function f(yk+1|x0, . . . , xt, y1, . . . , yt) is required to express the

expected value (∗). The probability density function can be written in the parameterized
form:

f(yt+1|x0, . . . , xt, y1, . . . , yt) =

∫

θ

f(yt+1|θ, x0, . . . , xt, y1, . . . , yt)f(θ|x0, . . . , xt, y1, . . . , yt)dθ

(10)
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The last expression consists of two density functions: f(θ|x0, . . . , xt, y1, . . . , yt) is the den-
sity of model parameters conditioned by experience, where θ is vector of the parameters.
f(yt+1|θ, x0, . . . , xt, y1, . . . , yt) is density of price yt+1 conditioned by model parameters
and experience.
The assumed model is autoregressive and has following shape:

yt = a1yt−1 + a2yt−2 + . . .+ aNyt−N + b+ et, (11)

where θ = (a1, . . . , aN , b) are model parameters, N denotes model’s order and et is white
noise with distribution N(0, σ2), therefore the model prediction is normally distributed:

f(yt+1|θ, x0, . . . , xt, y1, . . . , yt) = N(a1yt + a2yt−1 + . . .+ aNyt−N+1 + b, σ2). (12)

The density function of model parameters f(θ|x0, . . . , xt, y1, . . . , yt) is estimated using
software MIXTOOLS [4], which works with the distribution f(θ|x0, . . . , xt, y1, . . . , yt) and
generates samples of model parameters.
This scheme corresponds with principles of Monte Carlo method and the expected

value of the future price can be calculated using the following formula:

ŷk+1 =
∑

i∈S
(a1,iyk + a2,iyk−1 + . . .+ aN,iyk−N+1 + bi)pi, (13)

where S is a set of samples, i is an index of sample, (a1,i, . . . , aN,i, bi) is a sample vector
and pi is probability of the sample i.

Let approximate the term (∗∗) of the equation (9). The main problem of calculat-
ing the term is backward character of equation (8), where the future value of Bellman’s
function Vt+1(.) is needed to calculation the Vt(.). This problem is solvable two ways: ex-
pressing the generalized shape of Bellman’s function or approximation by suitable shape.
We need to find formal solution of equation (9) to express the generalized shape

of Bellman’s function. The desired solution must be valid for all sequences y1, . . . , yT .
However this task is very complex and it seems impossible to find the formal solution.
The approximation of Bellman’s function is more promising way. The approximation

must be suitable for further computing, but at the same time contains the parameters of
Bellman’s function, therefore the following shape has been chosen:

Vt(xt−1, yt) ≈ Vt(xt−1, yt) ≡ p(xt−1)yt + q(xt−1), (14)

where p(.) and q(.) are real functions. The approximation does not depend on ignorance,
therefore the expected value in term (∗∗) is expressed as follows:

E
(

Vk+1(xk, yk+1)
∣
∣
∣x0, . . . , xt, y1, . . . , yt

)

≈ Vk+1(xk, yk+1). (15)

The tasks is to design algorithm how to find functions p(.) and q(.) in definition (14).
The approximation generates a non-preciseness in equation (8):

Vk(xk−1, yk) + ek = max
xk

E
[

g(xk, xk−1, yk+1, yk) + Vk+1(xk, yk+1)
∣
∣
∣x0, . . . , xt, y1, . . . , ytBig],

(16)



210 J. Zeman

where ek is introduced non-preciseness, which is restricted by constant.
All terms in equation (16) are known or calculable. The design assumes, that Bell-

man’s function shape does not vary. Therefore if the tth approximation of Bellman’s
function is V̂t(xt−1, yt), the non-preciseness of approximation in time t can be expressed
via:

et = max
xt

E
[

g(xt, xt−1, yt+1, yt) + V̂t+1(xt−1, yt)
∣
∣
∣x0, . . . , xt, y1, . . . , yt

]

− V̂t(t−1, yt). (17)

Then we minimize the sum of squares minV̂t

∑t
k=1 e

2
k and arguments of minimum are

the best approximation of the function V̂t(.) . The minimization leads to least squares
method.

4 Experimental part

This section describes the experimental setup, data and results obtained. The designed
trading strategy is defined at discrete time t ∈ {1, 2, . . . , T}. The time step corresponds
with interval of 24 hours. The trading period is given by available data.
The data used for design of the strategy are so-called close prices, which are collected

once a day. It is the last price, when the exchange closes trading. The economic specialists
grant that close price is the most stable price. The close price yt is assumed to be known
in time t, i.e. yt is available to design the decision xt.
The part of data sets is transaction costs ct. Moreover the price changes during

the day and the close price represent the best approximation, but the risk constant is
demanded. Therefore the slippage constant cs, which characterizes typically change of
the price in delay between decision and real trading is employed. This constant is used
as penalization for each action in design. And the whole transaction costs C (firstly used
in the equation (3)) is defined as C = ct + cs.
The general equations used in this paper do not specify the restriction to decision

xt. The restrictions depend on the trader’s account, because traders must own money to
buy or sell contract at an exchange and the range of contracts to position is limited by
owned money. We use following values of decision xt ∈ {−1, 0, 1}. This three values are
enough for experiments, because the wider range of actions leads only to use the extremal
values of decision. This phenomenon is caused by the shape of gain function (3), which
is partially linear function of decision xt. The strategy starts and ends with flat position,
therefore x0 = xT = 0.
The order of model (see equation (11)) is set to N = 2, because this value gives the

best profit of strategies in the previous research. Predictions are generated by Monte
Carlo method. The count of Monte Carlo samples is chosen dynamically: The decision
is final, when it is not influenced by new Monte Carlo samples.

4.1 Used data

There are 35 available price sequences for the experiments. The sequences contain prices
for more than 15 year, i.e. about 3900 trading days in each sequence. The experiment
set is too wide to present all results here, therefore the following five futures contracts
were chosen as reference markets.
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Ticker Description

CC Cocoa - CSCE
CL Petroleum-Crude Oil Light
FV2 5-Year U.S. Treasury Note
JY Japanese Yen - FOREX
W Wheat - CBT

The reference markets were chosen by economic specialist to include all typical kind of
markets - i.e. cocoa and wheat are typical agriculture product, petroleum-crude oil is
mined material, Japanese Yen is typical foreign currency and treasury note stands for
bond markets.

4.2 Results

There are many ways, how evaluate the quality of designed strategy. The net profit
calculated by (4) is the main criterion, secondary criteria are gross loss (sum of loss
trades profit), gross profit (sum of win trades profit), count of winning and losing trades.
By using these criteria it is possible to calculate sum of the transaction cost and sum of
slippages.
The main non-quantitative pointer is the plot of cumulative gain depending on time.

It is difficult to analyze it but it gives important information about the strategy. In ideal
case, the plot increases.

CC CL FV2 JY W

Net profit -40530.00 29390.00 -26368.75 -76992.50 -13210.00
Gross profit 23020.00 120360.00 52692.50 180000.00 54707.50
Gross loss -63550.00 -90970.00 -79061.25 -256992.50 -67917.50
Transaction cost -1780.00 -1580.00 -1900.00 -3080.00 -2060.00
Slippages -8900.00 -6320.00 -17812.50 -38500.00 -15450.00
Trades 89 79 95 154 103
Wining trades 24 42 31 50 39
Losing trades 65 37 64 104 64

Table 1: Result overview

The results overview is in Table 1. The system designed good strategy for exchange
with oil futures (CL), where the net profit is positive and the profit grows almost all the
time (see Figure 1). Worst results were at cocoa future market, where the profit decreases
in time. Other markets finished with negative profit, but the curve of cumulative gain
shows only local decreasing, e.g. the FV2 curve decreases only at interval [1000,2500]
and the other parts stagnate (see Figure 2).
The practical approach of presented design is good, because the algorithm works at

one of reference markets. And three reference markets seems that the better settings or
small algorithm changes can improve them to positive results.
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Although the results do not suffice the requirements to usage at real trading, the
theoretical results brought improvements. The methods of Monte Carlo and iterations-
spread-in-time were applied and tested to new task, where the properties of both methods
can be explored.

5 Future work

The main directions of the further research are:

Bellman’s function - the used approximation is oversimplified. A more complex approxi-
mation is typically used to reach better results. The analytical properties of Bellman
function should be explored to find the better approximation, which should lead to
higher profit.

High dimensional model - present model uses only the close price to prediction, but
other data channels are available too. The usage of the high dimensional model
is traditional way, how obtain better results. Additional channels contain new
prices, information about traders positions etc., which brings the new important
information for decision maker.

Prediction quality influenced indirectly the trading system quality. Testing of prediction
quality is related with model and settings of Monte Carlo method, which can be
innovated by knowledge about prediction behavior.

The listed open problems should lead to improve the results and better knowledge about
the approximate dynamic programming. The further approach should support the usage
of this design to trading in markets as fully automatic system.
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Abstract. For the past decade, High Energy and Nuclear Physics experiments have been heading
towards a distributed computing model in an effort to concurrently process tasks over enormous
data sets, that have been increasing in size as a function of time. In order to optimize all available
resources, it is necessary to face also the question of efficient data transfers and placements.
In this work a model tackling this issue, based on Constraint Programming technique (CP) is
introduced, as well as the representation of most important aspects of a real life scenario such
as the sharing of infrastructure both when it comes to networking or storage. Methods for
reducing a search tree and their side by side comparison are shown. Performance of scheduler
based on Choco library is compared also with a Peer-2-Peer network simulator. Based on the
preliminary results, using the CP model seems to be promising and gives good expectations for
ongoing extensions.

Abstrakt. Fyzikálne experimenty vysokých energií v posledných rokoch napredujú smerom dis-
tribuovaného výpočtového modelu v snahe paralelizovať výpočty nad enormným množstvom
dát, ktoré sa zvyšuje z roka na rok. Za účelom optimalizácie využitia všetkých dostupných
zdrojov je potrebné čeliť i otázke efektívneho presunu a rozmiestnenia dát v distribuovanom
prostredí. V tejto práci predstavíme model založený na programovaní s obmedzujúcimi pod-
mienkami a reprezentáciu najdôležitejších vlastností reálneho prostredia. Budeme sa zaoberať i
metódami zúženia prehľadávaného priestoru a predvedieme ich vzájomné porovnanie. Plánovač
implementovaný za využitia knižnice Choco porovnáme tiež so simulátorom Peer-2-Peer siete.
Na základe výsledkov sa použitie modelu zdá byť sľubné a dáva predpoklady na ďalšie rozšírenia.

1 Introduction

1.1 Problem area

Computationally challenging experiments such as the one from the High Energy and
Nuclear Physics community (HENP) have developed a distributed computing approach
(a.k.a. Grid computing model) to face the massive needs of their Peta-scale experiments.
The era of data intensive computing has surely opened a vast arena for computer scien-
tists to resolve practical and exciting problems. One of such HENP experiments is the

∗The investigations have been partially supported by the IRP AVOZ10480505, by the Grant Agency of
the Czech Republic under Contract No. 202/07/0079, by the grant LC07048 of the Ministry of Education
of the Czech Republic and by the U.S. Department Of Energy
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STAR1 (Solenoidal Tracker at Relativistic Heavy Ion Collider) experiment located at the
Brookhaven National Laboratory (USA).
In addition to a typical Peta-scale challenge and large computational needs, this ex-

periment, as a running experiment acquires a new set of valuable real data every year,
introducing other dimension of safe data transfer to the problem. From the yearly data
sets, the experiment may produce many physics ready derived data sets which differ in
accuracy as the problem is better understood as time passes. Thus, demands for a large-
scaled storage management and efficient scheme to distribute data grows as a function
of time, while on the other hand, end-users may need to access data sets from previous
years and consequently at any point in time. Coordination is needed to avoid random
access destroying efficiency.
The user’s task is typically embarrassingly parallel; that is, a single program can run

N times on fraction of the whole data set split into N sub-parts without any impact on
science reliability, accuracy, or reproducibility. For a computer scientist, the issue then
becomes how to split the embarrassingly parallel task into N jobs in the most efficient
manner while knowing the data set is spread over the world and/or how to spread ’a’
dataset and best place the data for maximal efficiency and fastest processing of the task.
The purpose of this work is to design and develop an automated system that would

efficiently use all available computational and storage resources. It will relieve end users of
making decisions among possible ways of their task execution (which includes locating and
transferring data to desired sites that appear optimal to user) while preserving fairness.
Users’ knowledge of the whole system and data transfer tools will be reduced just to the
communication with the future planner that will guarantee its decision to spread the task
and data sets over chosen sites was, under current circumstances, the most efficient and
optimal.

1.2 Milestones

Rather than trying to solve the problem directly from a task scheduling perspective
within a grid environment, we split the problem into several stages. By isolating data
transfer/placement and computational challenges from each other we get an opportunity
to study the behavior of both sets of constraints separately.
Since individual tasks depend on a dataset with a non-trivial size, the time required

for its staging and transfers is also inconsiderable. Therefore, the first milestone is to
design and develop the data transfer planner/scheduler. For a given dataset needed at
some site, its aim is to create a plan with an objective to prepare files from the dataset at
a given site within the shortest time. The next requirement is to define and achieve fair
share transfers within a multiuser environment. This means that if one user asked for a
huge amount of data at some site, then another user who asked just for one file shouldn’t
wait until the first user’s plan is finished.
The next milestone generalizes data transfer planning between sites. The goal for

this stage is not to transfer files to one particular site, but do the transfer to several
destinations. More precisely, the planner’s goal is to achieve presence of each file (from
user’s input task) at one out of all possible destinations, while still having the objective

1http://www.star.bnl.gov
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in mind, to minimize the finish time of the last file transfer the user waits for.
The second milestone is highly corellated with the final milestone - scheduling the

data transfers together with particular tasks (jobs) on a grid. The subtask is not finished
after a file is transfered at some destination site, but when the user’s job executed at
the same site (and dependent on this file) is finished. Thus, the planner still has the
freedom of choosing a destination site for each file, but it has to consider that each site
has a specific characteristic of its computational performance. These attributes include,
for example, the number of available CPUs at current site or the actual load, so it can
be more effective to transfer some files over the slower link to the computationally high
performance site (or vice versa). The final objective is to minimize the finish time of the
last user’s job. In this article we focus on the first milestone.

2 Problem formalization

In the following part we will present a formal description of the problem and an approach
based on Constraint Programming technique, used in artificial intelligence and operations
research, where we search for assignment of given variables from their domains, in such
a way that all constraints are satisfied and value of an objective function is optimal [3].
We will introduce the transfer network consisting of sites holding information which

files are available at the site. For each file we will search for a path leading to the
destination and time slots for each link on transfer path, when a particular file transfer
should occur.
The network consists of a set of nodes N and a set of directed edges E. The set

OUT(n) consists of all edges leaving node n, the set IN(n) of all edges leading to node
n. Input received from a user is a set of file names needed at a destination site dest. We
will refer to this set of file names as to demands, represented by D. For every demand d
we have a set of sources (orig(d)), sites where the file (d) is already available. We will
use one decision variable for every demand and link of the network (edge in graph). The
{0, 1} variable Xde denotes whether demand d is routed over edge e of the network. The
second variable startde denotes start time of transfer corresponding to the demand d over
edge e. More approaches can be found in [5].

min
Xde,startde

max
e∈E

(

startde +
size(d)

speed(e)

)

︸ ︷︷ ︸

endde

·Xde (1)

∀d ∈ D :
∑

e∈∪OUT(n|n∈orig(d))

Xde = 1,
∑

e∈∪IN(n|n∈orig(d))

Xde = 0 (2)

∀d ∈ D :
∑

e∈OUT(dest(d))

Xde = 0,
∑

e∈IN(dest(d))

Xde = 1 (3)

∀d ∈ D, ∀n /∈ {orig(d) ∪ dest(d)} :
∑

e∈OUT(n)

Xde ≤ 1,
∑

e∈IN(n)

Xde ≤ 1,
∑

e∈OUT(n)

Xde =
∑

e∈IN(n)

Xde
(4)
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∀e ∈ E, ∀d ∈ D : Xde = 1 :
⋂

[startde, startde +
size(d)

speed(e)
︸ ︷︷ ︸

endde

] = ∅ (5)

∀n ∈ N, ∀d ∈ D :
∑

e∈IN(n)

(

startde +
size(d)

speed(e)

)

︸ ︷︷ ︸

endde

·Xde ≤
∑

e∈OUT(n)

startde ·Xde (6)

Xde ∈ {0, 1}
startde ∈ N+

The path constraints (2, 3, 4) state that there is a single path for each demand (path
starting right in one of origin sites, leading to the destination). Equation (5) ensures
there is only one active file transfer over every edge in time. The last equation states
that a transfer of the file at any site can start only if the file is already available at the
site (Eq. 6)(i.e., a transfer of the file to this site has finished). The objective (Eq. 1) is
to minimize the latest finish time of transfer over the whole files.

2.1 Constraint model

For implementation of the solver we use Choco 2, a Java based library for constraint sat-
isfaction problems (CSP), constraint programming (CP). Among 70 available constraints
Choco provides also a set for scheduling and resource allocation, we require most. Closer
illustration of several Choco uses can be found in [1], [2], and [6]. In addition, Java based
platform allows us an easier scheduler integration with currently used tools in the STAR
environment.
Constraints introduced in the previous section were used directly via appropriate

Choco structures, except the equation 5, that ensures at most single file transfer in any
time on any link. For this, we used the cumulative scheduling constraint and notation
of tasks and resources. Tasks are represented by their duration, by ranges for starting
and ending times, and by resource consumption respectively. They are allocated to the
resource(s) in such a way that in any time resource capacity can not be exceeded.
In our case, each link acts as a separate resource with capacity 1 (unary resource) and

each file demand creates a single task on every resource, which duration depends on the
current link speed (resource characteristic) and consumption of the resource corresponds
to the value of variable X, i.e. no consumption if the transfer path for demand does not
include current link (resource), or consumption 1 otherwise. In the Figure (1) is shown
one possible schedule for transferring one file (F ) with an origin at Site1 and Site2 to a
destination Dest. Values of the X variables define the path, while the resource profile
for each link is on the right side.
The search strategy, following Choco notation, is split into two goals. First one is

to find assignment for X variables, i.e. paths for each transfer, while the second is to
allocate time slot, assign start variables, for each transfer at chosen links. For both goals

2http://choco.sourceforge.net
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Figure 1: Example of a schedule solution with file F and its origin at Site1 and Site2.

the default ‘minimum domain‘ variable selection and ‘increasing value‘ value selection
heuristic were used.

3 Direct connections

In order to closely analyze the problem, its scale, and behavior of used techniques, we
started with several restrictions that simplify the case. We started to explore the network,
where only direct connections for data movement are allowed. In other words, file can
not be transferred from its origin to the destination by a path longer than one.
One can think that such a restriction shrinks the search space enormously, but closer

look reveals that the number of possible combinations is still large:
Let’s suppose that we have a network of 5 sites, all connected to the destination and

100 files available at each site (|orig(f)| = 5). The number of decision variables X is
therefore 500 (= |D| ∗ |E|). Even if an upper bound for all possible combinations (2500) is
reduced by a propagation to 5100 (solver has a freedom of 5 choices of an origin for each
file), brute-force methods can run ’forever’.
With an intend to stay close to a reality, we fixed the number of sites to 5, which

approximately represents the number of sites currently available in the STAR experiment.
For each link we introduced a slowdown factor that influences the transfer time needed
to move the data over this link. Slowdown factor 1 means that file of size 1 unit can be
transferred in 1 unit of time, but with a slowdown factor 4 only in 4 units of time, etc.
Considering the second part of the input, the file demands, we studied the following

cases: a) every file is available only at one particular site [distinct]; b) file is available
at sites given by a probability function, that represents the reality [weighted]; c) file is
available at all sites [shared]. For all cases we fixed the file size to a 1 unit, i.e. all files
have the same size.

3.1 Shared links

So far we have assumed that all links incoming or outgoing from any site have their own
bandwidth (slowdown factor) that is not affected by other ones. Nevertheless, in reality
this is not always feasible, since several links leading to a site usually share the same
router and/or physical fiber which bandwidth (capacity) is less than the sum of their
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own values. Hence, simultaneously one can’t use all links at their maximum bandwidths.
We express this constraint by adding an additional resource per each group of shared
links. Capacity of the resource will be the bandwidth of a shared link or a router, while
tasks correspond to the scheduled transfers using any link belonging to this group with
consumptions equal to its slowdown factor.

3.2 Reducing a search time

We studied also several techniques for reducing the time spent during a search.

3.2.1 Symmetry breaking

One of the common techniques for reducing the search tree is detecting and breaking vari-
able symmetries. This is usually done by adding variable symmetry breaking constraints
that can be expressed easily and propagated efficiently using lexicographic ordering. One
idea that can be applied in the studied case (direct connections and fixed file size) is
following: if two files have the same origin sets, links selected for the first one and for
the second one respectively must be ordered. The reason behind is that both files must
be transferred to the destination and their size is equal, it is not necessary to check also
’swapped’ case, since the transfer time can not be shorter.

3.2.2 Decomposition and search limits

Another approach is based on the idea, where instead of searching for a global optimal
solution that can be very computing time consuming, we try to find an optimal solution
for smaller parts of the input, where sum of the time spent will be just a portion of time
needed otherwise. This principle is even more suitable for our needs, since network link
speeds vary in time, some sites can be down after the schedule is produced, generally,
transferring all data files takes significant amount of time and during this time a lot of
factors can be different to the ones the scheduler considered at the beginning. Thus the
computed optimal schedule for the full input doesn’t have to be valid anymore.
One of the approximations is splitting the input files into chunks and producing an

optimal schedule for each chunk separately, while propagating the results from the previ-
ous ones. More precisely, result of the scheduler for a given chunk of files is information of
computed starting/ending times for each file at particular links. In other words, current
solver receives times for each link, by which the link will be busy, thus further schedul-
ing for current chunk cannot place file transfer in these time-slots. We achieve this by
allocating a fake task, with fixed starting and ending times, that were propagated from
previous schedules (Figure: 2).
Also limits can be imposed on the search algorithm to avoid spending too much time

in the exploration. One of them is fixing the time limit on a search tree. When the
execution time is equal to the time limit, the search stops whether an optimal solution
is found or not. One of the algorithms we studied was based on this, with a time-limit
linearly dependent on the number of files in a request.
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Figure 2: Allocating fake tasks according to the previous schedule.

4 Directed (simple) paths

Considering the model, no changes are necessary to perform in order to allow solver search
for transfer paths longer than one. However, since data set transit takes some storage
space, one must be sure that during file transfer from site A to C, using site B, there is
enough space at intermediate site B.

4.1 Storage capacity

In order to respect storage restrictions we introduce the next attribute for each site, the
available (free) space, or the storage capacity. All the time during the execution of a
schedule, the storage capacity constraint for each site must be respected.
For each site we consider all possible ways (pairs of inLink and outLink how a file

can be transferred trough it. Whether or not a pair is really used for the demand d is
expressed by channelingV ariable, using which we define also consumption of the task
(Figure: 3).

Free space
startd,inLink endtd,outLink

size(d)× channelingV ariable

Figure 3: Storage resource.

If the pair is not used, the consumption is set to zero and storage resource is invariable
to this task, otherwise the consumption is set to the file size.

5 Comparative studies

In this section we present the performance comparison of several methods of the CSP
solver introduced in previous sections as well as of the Peer-2-Peer simulator. We will also
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show an effect of one constraint (storage based) for a simple paths case and an example
of the optimal schedule produced by the solver.

5.1 Peer-2-Peer simulator

To provide a base comparison with the results of our CSP based solver we chose to im-
plement a Peer-2-Peer (P2P) model as well. This model is well known and successfully
used in similar fields like file sharing, telecommunication, or media streaming. We im-
plemented a P2P simulator by creating the following work-flow: a) put an observer for
each link leading to the destination; b) if an observer detects the link is free, it picks up
the file at his site (link starting node), initiate the transfer, and waits until the transfer
is done. We introduced a heuristic for picking up a file as typically done for P2P. Link
observer picks up a file with a smallest cardinality in the sense of its |origin|, i.e. the file
that is available at the smallest number of sites and if there are more files available with
the same cardinality, it randomly picks any of them. After each transfer, the file record is
removed from the list of possibilities over all sites. This process is typically resolved using
distributed hash table (DHT) [4], however in our simulator only simple structures were
used. Finally an algorithm finishes when all files reach the destination, thus no observer
has any more work to do.

5.2 Results

In Figure 4, we show a comparison of times needed to produce the schedules and diver-
gence of the results (makespan) to the optimal solution between several algorithms. We
present results only for weighted case with direct connections and will only describe the
qualitative features for the other cases. Weights (probabilities) that were used for sites
considering file’s origins were 1.0, 0.6, 0.01, and 0.01.
The X axes denote the number of files in a request while Y is the time (in units)

needed to generate the schedule and percentage loss on optimal solution. We can see
that time to find an optimal schedule without any additions grows exponentially and is
usable only for a limited number of files, 50 in the weighted case and 20 in the shared
case. This difference is induced by a higher number of possible configurations as long
as any site can be selected as an origin. By introducing symmetry breaking, the solving
time is improved, but still not usable for more than 200 files. Using the time-limit on the
other hand we are moving apart from an optimal solution with increasing files in request,
which is even more visible in shared case. Thus setting the time-limit as a linear function
to the number of files, while using a default search strategy based on minimal domains,
is not sufficient.
In contrast, splitting the input into chunks is giving the best performance results both

in the running time and also in the quality of the makespan. Even scheduling by chunk
of size 1, i.e. file by file, doesn’t produce worse result than using larger chunks due to
previous conditions propagation. We note as well the efficacious performance of a simple
P2P algorithm, but it is worth to mention that this model is usable only in a direct
connection case, while our intent is to study more complex networks with much more
restrictions.
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Figure 4: Approximation of the runtime (left) and makespan loss on optimal schedule
(right) for weighted case.

To see the real effect of the storage constraint, in Gantt charts (Figure 5) are shown
two schedules (without and with enabled constraint) for the same dataset, considering
the funnel network displayed in the upper part of the figure with a limited available space
at Site3 only for one file size unit. This extreme example permits only a single transfer
via site Site3, that fills available space until a file is fully transfered to the destination
Site4. After that, the space at Site3 is again released and another file can go trough.

6 Conclusion

We presented an approach using a Constraint Programming model to tackle the efficient
data transfers/placements and job allocations problem within a distributed environment.
Usage of constraints and declarative type of programming offers straightforward and more
error prone way of representing many real life restrictions. On the other hand, since a
search space is usually extensive, methods like symmetry breaking or approximations
and understanding the scale of the problem are fundamental. We showed that using
the scheduling of data transfers by sequence of smaller chunks gives results close to
the optimal solution and provides very acceptable running time performance. We have
implemented also several constraints for dealing with shared network links or limited
storage capacities at sites and actual results indicate that it is worth to continue research
with this technique.
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