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spolu s nékterymi tstavy Akademie véd CR a pokryva témata od matematickych modeli
prirodnich procesii pies otazky kvantové teorie az po databézové systémy ¢i neuronové
sité.

Letosni Doktorandské dny jsou jiz druhé v tfadé. V ramci tohoto setkani predstavi
doktorandi svoji praci ostatnim studentim, Skolitelim i vSem zajemcum z fad odborné
vefejnosti. Texty prispévku jsou predkladéany v tomto sborniku.

Workshop Doktorandské dny si klade za cil umoznit doktorandim konfrontovat své
vysledky na Sirsim foru, poskytnout prostor pro oponentni pripominky k studentové praci
ze strany Skoliteli a pfitomnych odborniku, a tim tak prispét ke zkvalitnéni vychovy
doktorandii oboru Matematické inzenyrstvi. Uchovani piispévki ve sborniku pak umozni
sledovat postup préace jednotlivych studentii na jejich védeckém tikolu.

Editofi






Factor Frequencies of Reversal Closed Languages

Lubomira Balkova

3rd year of PGS, email: 1.balkova@centrum.cz

Department of Mathematics, Faculty of Nuclear Sciences and Physical
Engineering, CTU

advisor: Zuzana Masédkova, Department of Mathematics, Faculty of Nuclear
Sciences and Physical Engineering, CTU

Abstract. We study infinite words over a finite alphabet. In particular, we focus on frequencies
of factors (subwords) of infinite words whose language is reversal closed, i.e. u contains with each
factor also its mirror image. Crucial is the notion of Rauzy graphs associated with the infinite
word. Investigation of symmetries of the reduced Rauzy graph I';,, n € N, allows us to determine
a good and easily calculable upper bound on the number of different factor frequencies.

Abstrakt. Studujeme nekonecné slova nad kone¢nou abecedou. Specidlné se zaméfujeme na
frekvence faktoru nekone¢nych slov, jejichz jazyk je uzavien na reverzi, tj. s kazdym slovem
obsahuje také slovo, které ziskdme, kdyz precteme dané slovo pozpatku. Klicovym pojmem je
Rauzyho graf pfifazeny nekonec¢nému slovu. Zkoumani symetrii redukovaného Rauzyho grafu
I',, n € N, ndm umozni nalézt dobry a snadno vypocitatelny horni odhad na pocet ruznych
frekvenci faktoru nekonecného slova.

1 Introduction

Everybody who is about to study a foreign language is interested in word frequencies of
this language. The reason is simple. If you start, there is no point in beginning with
low-frequency words provided your aim is to manage everyday communication. Word
frequencies are in focus of designers of internet search engines, but also of the one who
wants to raise the visit rate of his web page. There exist so-called “stoplists" which
provide frequencies of most often used words. For instance, just three words I, and,
the account for ten percent of all words in printed English. This is “easy” to calculate.
Prepare a sheet of paper, go through all printed matters in English, for each word you
read, put a black tally on the sheet, and each time you see I or and or the, put a red
tally on the sheet. At the end, divide the number of red tallies by the number of black
tallies and you should obtain approximately 0,1. In the Czech language, similar role is
played by words a, v, se, na, je, Ze, o which take about 9 percent of a written text. In
this paper, our point of view will not be linguistic (statistic), we will instead move to
the domain of Combinatorics on Words and Graph Theory. We will turn our attention
to factor frequencies in infinite words, so the number of occurrences of a factor will be
possibly infinite and the definition of factor frequency will have to be generalized. We
will show how to find a good upper bound on the number of different factor frequencies in
infinite words which contain with every factor also its mirror image. Let us also mention
that we have studied factor frequencies in several classes of infinite words (to be found
in the thesis) and the results confirm accuracy of the obtained upper bound.
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Having introduced notation and basic definitions, we will first recall well-known re-
lations holding for frequencies of edges and vertices in Rauzy graphs (Kirchhoff’s law).
Afterwards, we will introduce a useful tool- reduced Rauzy graph. With this in hand, one
can easily deduce the upper bound derived by Boshernitzan (Theorem 7). Knowing that
for any infinite reversal closed word u, the mirror map does not change factor frequencies
will allow us to improve essentially the upper bound in case of words whose language is
reversal closed (Theorem 10).

2 Preliminaries

First, let us recall our “vocabulary” which will be used throughout this paper. An alphabet
A is a finite set of symbols called letters. A concatenation of letters is a word. Length of
a word w is the number of letters contained in w and is denoted |w|. We will also deal
with right-sided infinite words u = uguius.... A finite word w is called a factor of the word
u (finite or infinite) if there exist a finite word w and a word w® (finite or infinite)
such that v = wMww®. An infinite word u is said to be recurrent if each of its factors
occur infinitely many times in u and u is uniformly recurrent if for any n € N there exists
an R(n) € N such that any factor of u of length R(n) contains all factors of length n. An
infinite word u is said to be eventually periodic if there exist finite words v, w such that
u = vw", where w* means that w is repeated infinitely many times. A word which is not
eventually periodic is called aperiodic. Language L£(u) of an infinite word u is the set of
all factors of u. A language L(u) is reversal closed, if for every factor w = wowy . .. wy,
where w; € A, i € {0,...,n}, also its mirror image W = w, ...wjwy belongs to L(u).
We denote by £, (u) the set of factors of length n of the infinite word w. Then, we can
define complezity function (or complexity) C, : N — N which associates to every n the
number of different factors of length n of the infinite word w, i.e.

Cu(n) = #L,(u).

Let us mention that if there exists n € N such that C,(n) < n, then the infinite word
w is eventually periodic. In other words, aperiodic words has complexity C'(n) > n + 1
for all n € N. Aperiodic words with the lowest possible complexity are called Sturmian.
Similarly, let us denote by Pal,(u) the set of palindromes of length n contained in u and
let us define palindromic complexity P, : N — N which associates to every n the number
of different palindromes of length n of the infinite word u. We recall that palindrome is
a word which is equal to its mirror image. We say that a € A is right extension of a factor
w € L(u) if wa is also a factor of u. We denote by Rext(w) the set of all right extensions
of win u, i.e. Rext(w) = {a € A| wa € L(u)}. If #Rext(w) > 2, then the factor w is
called right special (RS for short). Analogously, we define left extensions, Lext(w), left
special factor (LS for short). Moreover, we say that a factor w is bispecial (BS for short)
if w is LS and RS. With this in hand, we can give a formula for the first difference of
complexity AC,(n) = Cy(n+ 1) — Cy(n). We leave the proof as an easy exercise.

AC,(n) = Z (#Rext(w) — 1) = Z (#Leat(w) — 1), neN. (1)

WEL (1) wEL (u)
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To have everything prepared for the deduction of an improved upper bound on the number
of different frequencies, it remains to define Rauzy graph, and, of course, factor frequency.

Definition 1. Rauzy graph I',, of an infinite word u (of order n) is a directed graph whose
set, of vertices is £,,(u) and set of edges is £,,1(u). Let wo, wy, ..., w, be letters in A and
let e = wow; ... w,_jw, be an edge of I',,, then e starts in the vertex w = wowy ... w,_1
and ends in the vertex v = wy ... w,_1w,.

Definition 2. Let w be a factor of an infinite word u over a finite alphabet A, then (factor)
frequency of w (in u) is defined as

#{occurrences of w in v}

w =
plw) v|—o00,vEL () |v|

if the limit exists.

3 Upper bound on the number of factor frequencies

In the sequel, let us suppose that frequencies of all factors of £(u) exist. It is not difficult
to see that the frequency of a vertex w in I',, is equal to the sum of frequencies of the
edges starting in w, or, by symmetry, the sum of frequencies of the edges ending in w.
Let us formalize this observation and leave its proof as a simple exercise.

Lemma 3 (Kirchhoff’s law). Let w be a factor of u, then

plw)= > plaw)= Y p(wa).

a€ Lext(w) a€ Rext(w)

Consequently, if a factor w € L(u) is neither LS nor RS, then both the frequency of
the unique edge starting in w and the frequency of the unique edge ending in w is equal
to p(w). Formally rewritten, this observation has the following reading.

Corollary 4. Let w be a factor of uw which is neither LS nor RS. Let us denote by a the
only left extension of w and by b its only right extension. Then, p(w) = p(aw) = p(wb).

We can label every edge e in the Rauzy graph I', of u by p(e). Then the number
of different frequencies of factors in £,.(u) corresponds to the number of different edge
labels in T',,. For a factor w € £,,(u) which is neither LS nor RS, it is thus evident that
the unique edge ending in w has the same label p(w) as the unique edge starting in w.
Consequently, if we are interested in the number of different edge labels, we can remove
the vertex w from the graph and replace the incoming and outgoing edge with a new edge
keeping the label p(w). Repeating this procedure, we obtain the so-called reduced Rauzy
graph, which has obviously the same set of edge labels. Let us give precise definitions.

Definition 5. Let I',, be the Rauzy graph of order n of an infinite word u. A directed path
w@w® 4w in T, such that its initial vertex w® is LS or RS, its final vertex w(™ is
also LS or RS, and the other vertices are neither LS nor RS factors is called simple. We
define label of the simple path as the label of any edge of this path.
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Definition 6. Reduced Rauzy graph I',, of u (of order n) is a directed graph whose set
of vertices is formed by LS and RS factors of £,,(u) and whose set of edges is given in
the following way. Vertices w and v are connected with an edge e if there exists in I',
a simple path starting in w and ending in v. We assign to such an edge e the label of the
corresponding simple path.

The number of different edge labels in the reduced Rauzy graph T, is clearly less or
equal to the number of edges in T',. Let us thus calculate the number of edges in I,
in order to get an upper bound on the number of frequencies of factors in £, (u). For
every RS factor w € L, (u), it holds that # Rext(w) edges begin in w, and for every LS
factor v € L, (u) which is not RS, only one edge begins in v, thus we get the following
relation

#{e| e edge inT,} = Z #Rext(w) + Z 1. (2)

w RS v LS not RS
Using Equation 1, we deduce that

#{c|eedgein [} =AC(n)+ > 14+ Y 1 (3)
v RS v .S not RS

The following result initially proved by Boshernitzan in [3] follows immediately.

Theorem 7 (Boshernitzan). Let u be an infinite word such that for every factor w € L(u),
the frequency p(w) exists. Then for every n € N, it holds

#{p(e) | e € Los1(u)} < 3AC(n).

This upper bound can be lowered for an infinite word v whose language £(u) is reversal
closed. In this case, each factor of u has the same frequency as its mirror image.

Lemma 8. Let u be an infinite word whose language L(u) is reversal closed and such that
for each factor w € L(u), the frequency p(w) exists. Then p(w) = p(w) holds for each
factor w of L(u).

Proof. Take an arbitrary factor w € £(u) and let (v™)> | be any sequence of a strictly
growing length in L£(u). Since the frequency of w exists, we can write

(w) = 1 #{occurrences of w in v™}
p(w) = lim

n—00 ‘,U(n) ’

As L(u) is reversal closed, we get

#{occurrences of w in v™} = #{occurrences of w in v},

Using [0 | = |[u™], we can then rewrite p(w) as follows

. # occurrences of w in v
p(w) = lim { - } = p(w).

n—o0 |U(n) ‘

The last equality holds thanks to the assumption that frequencies of all factors exist. [
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We have now everything prepared for an improvement of the upper bound on the
number of edge labels in [',,, or, equivalently, on the number of different factor frequencies
of L,11(u) of an infinite word u whose language is reversal closed. The following lemma
will play an essential role in this improvement.

Lemma 9. Let u be an infinite word whose language L(u) is reversal closed and such that
for each factor w € L(u), the frequency p(w) exists. Then for every n € N, we have

#{p(e)\eeﬁnﬂ}g%(P(n) + P(n+1) + AC(n) —Zl - Zl >+ Zl.

w BS in L, w BS in Pal, w RS in Ly,

Proof. Let T',, be the Rauzy graph of u of order n. Let us define a mapping f which to
every vertex w € L, (u) associates the vertex w, to every edge e € £,,,1(u) associates the
edge 2, and to every path w©@w® ... w(™ in T, associates the path w®) .. w® w0,
Then, clearly, f?2 = Id and thanks to the closeness of £(u) under reversal, f maps the
Rauzy graph I',, onto itself, in fact, f is an automorphism of I';,. Let us replace the Rauzy
graph I', by the reduced Rauzy graph [,. We know already that the set of edge labels
of T, is equal to the set of edge labels of T',,. Let us denote by A the number of edges e
in T, such that e is mapped by f onto itself and by B the number of edges e in T',, such
that e is not mapped by f onto itself, then clearly, #{e| e edge in fn} = A+ B. To be
more precise, if e is an edge in T, corresponding to the simple path w©@w® .. w™ in
[, then f(e) is the edge in I, corresponding to the simple path f(w@w® .. ™) =

w™ . w® w0, Consequently, if e is mapped by f onto itself, then the corresponding
simple path w@w® .. w™ satisfies that its central vertex w(%) is a palindrome (for m

m—1

even) or its central edge going from w("2") to w™) is a palindrome (for m odd). On
the other hand, every palindrome of length n + 1 forms the central edge of a simple path
in '), which is mapped by f onto itself and every palindrome of length n forms either the
central vertex of a simple path which is mapped by f on itself or is BS and thus a vertex
in I',,. Therefore,

A=Pn)+Pn+1)—+#{w € L,|w BS in Pal, }. (4)

We subtract the number of palindromic BS factors of £,,(u) since they form vertices, not
edges in I',,. Now, let us turn our attention to edges e which are not mapped by f onto
themselves. If e is an edge in T, going from a vertex w to v, where f(e) # e, then there
exists an edge ¢/ in I',, going from T to W with ¢’ # f(¢’), namely ¢’ = f(e). However, e
and ¢’ have the same label. (If e corresponds to the simple path w@w® . w®™) in T,

then €’ corresponds to the simple path w( .. w® w© in I',,. Lemma 8§ implies that
the label of these simple paths is the same.) These considerations lead to the following
estimate

#(oe)] ¢ € Loa(w)} A+ B= A+ (A4 B) (5)

Rewriting Equation (3), we obtain
A+B=AC(n)+2 > 1- > 1L
w RS in L, w BS in L,

The statement follows then using Equation (4). O
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Theorem 10. Let u be an infinite word whose language L(u) is reversal closed and such
that for every factor w € L(u), the frequency p(w) exists. Then for every n € N, we have

#{ple)le € Loy} < 2AC(n)+1—%< oo+ Y 1) < 2AC(n)+ 1.

w BS in Pal, w BS in L,

The equality #{p(e)le € Ln11(u)} = 2AC(n) + 1 holds for all sufficiently large n if and
only if u is periodic.

Remark 11. To approve that the estimate from Theorem 10 cannot be easily lowered
keeping its general validity, let us demonstrate that it is reached for all lengths n € N in
the case of Sturmian words. Thanks to [4], we know that every Sturmian word is reversal
closed and all BS factors are palindromes. Moreover, since AC(n) = 1 for all n € N, the
upper bound on the number of different frequencies can be simplified as follows

#pe)le € Lon(w)} < 3 - ) L

To see that the upper bound is reached, it suffices to recall the result of Berthé in [2]

2 if n is the length of a BS factor,
3 otherwise.

#{ple)le € Lsr(u)} = {

Proof of Theorem 10. Tt has been shown in [1] that
P(n)+Pn+1) <AC(n)+2 forevery n € N. (6)

The term ) g, . 1 can be bounded by > noi o (FFRext(w) — 1) = AC(n). Ap-
plying these bounds on the result of Lemma 9, we obtain

#{p(e)\eeﬁnﬂ}SZAC’(n)—i—l—%( Z 1+ Z 1).

w BS in Pal, w BSin L,

Let us turn our attention to eventually periodic words. Since L(u) is reversal closed, it
follows immediately that u is recurrent. If u is eventually periodic and recurrent, then
u is known to be periodic. Thus, there exists a minimal period K such that u = 2%,
where |z| = K. Then, C(n) = K for every n > K and every factor of length n occurs
with frequency +. Thus, #{p(e)| e edge in I',} = 2AC(n) +1 = 1 for n > K. If
w is aperiodic, then AC(n) > 1 together with the fact that every LS factor is prefix
of a BS factor implies that for every N € N, there exists a BS factor in £(u) of length
n > N, hence #{p(e)| e edge inT',} <2AC(n)+1—1 (X4 psin par, L+ Dow Bsin 2, 1) <
2AC(n) + 1. O

For completeness’ sake, let us mention another proof which will not use Equation (6),
nevertheless, similar ideas as those ones occurring in [1| will be present. Going through
this second version of the proof, it can be in particular noticed that Theorem 10 does not
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require uniform recurrence of the infinite word u. We will keep notation from Proof of
Lemma 9 and we will make use of a partial result rewritten in a different way this time:

1 1
#p(e)le € Lupi(u)} < A+ 5B =(A+B) - 3B. (7)
We want to find a lower bound on B, i.e. on the number of edges in I, which are not
mapped by f on themselves. I', contains the following disjoint subgraphs (whose union
comprises all vertices of I';,) of three types:

1. subgraphs containing two vertices w and w, where w is RS not LS, and all edges
connecting them mutually

2. subgraphs containing two vertices w and w, where w is non-palindromic BS, and
all edges connecting them mutually (attention! number of subgraphs of this type
is just 1#{w € £,(u) | w non-palindromic BS})

3. subgraphs containing one vertex w, where w is a palindromic BS, and eventually
edges-loops starting and ending in w

Clearly, all edges in I, which are mapped by f on themselves are contained in the above
subgraphs. Since (reduced) Rauzy graphs of infinite words are connected, each subgraph
is connected with an edge to the union of the remaining subgraphs. Moreover, since
the language L£(u) is reversal closed, if an edge e starts in a subgraph I' and ends in
a subgraph I, then the edge f(e) starts in [V and ends in I'. It follows that B is greater
or equal to 2x the minimal number of edges which can ensure connection of the disjoint
subgraphs of the graph:

B > 2 x number of subgraphs — 2 = 2 Z 1+ Z 1 - Z 1—-2. (8)

w RS in L, w BS in Paly, w BSin L,

Implanting in Equation (7) the just deduced lower bound on B together with the expres-
sion of A+ B derived in Proof of Lemma 9

A+B=ACm)+2 > 1- > 1,

w RS in L, w BSin Ly,

and with the fact that > pq;, . 1 can be bounded by > poi o (#Rext(w) — 1) =
AC(n), we have proved the upper bound from Theorem 10

#{p(e)| e edge in Fn}§2AC(n)+1—% ( Z 1+ Z 1) .

w BS in Pal, w BSin L,

To conclude, let us throw in that we have studied frequencies of infinite words as-
sociated with (-integers for § being a quadratic non-simple Parry number, thus defined
over a two-letter alphabet, and we have learned that the upper bound from Theorem 10
is either reached (for most of the lengths) or is only by 1 greater than the real number
of factor frequencies of a given length. Another example of an infinite word, even over
a k letter alphabet, where the upper bound is reached for all lengths, is the k-interval
exchange word. (Description of frequencies has been recently given by Ferenczi [5].)
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Abstract. The article briefly summarizes numerical solution of Mean-Curvature Flow problem
for the Level Set method and its parallelization. The numerical solution is based on spatial
discretization by finite differences, and time discretization is given by the Runge-Kutta and
the Runge-Kutta-Merson scheme. The algorithm is parallelized for the shared memory systems
using OpenMP. The computational results demonstrate the time evolution of the initial curve
under given curvature.

Abstrakt. Tento piispévek kratce shrnuje numerické feseni rovnice Mean-Curvature Flow, s
pouzitim Level Set methody, a moznosti paralelizace. Regenf se skladé z diskretizace prostorové
oblasti pomoci koneénych diferenci a nasledného feseni ¢asové ulohy pomoci Runge-Kuttovy a
Runge-Kutta-Mersnovy metody. Algoritmus byl paralelizovan pro systémy se sdilenou paméti
pomoci OpenMP. Vypocetni vysledky ukazuji ¢asovy vyvoj pocatecni kiivky pod vlivem kfivosti.

1 Introduction

The equation describes the motion of the hypersurface I'(¢) with the velocity, which is its
mean curvature. The problem can be written as

Ur = —KF + F on F(t), (1)

where or is the normal velocity, Kr is the mean curvature of the hypersurface I'(¢) and
F' is the forcing term. Such a system of equations has been studied by many authors
throughout last decade (see [2] 3], [4], [5], [6])-

We would like to track possible topological changes of I'(¢) and therefore we have
chosen the Level Set method. This method describes the hypersurface I'(¢) as the zero
Level Set of an auxiliary function P : R"™! x [0,00) — R, i.e.

[(t) = {x € R"|P(z,t) = 0}. (2)

Assume that VP # 0 in a neighbourhood of I'(¢). Then the outer normal to I'(¢), its
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mean curvature and the normal velocity are given by

vP
nr = _Wa (3)
) ., VP
Kr =div(nr) = _dlv(WP])’ (4)
0P

Let © be a bounded domain in R"™!.The equation (1) yields into partial differential
equation (PDE) for P.

oP ., VP
VP~ d1v(m) + F on  x [0, 00), (6a)
P(z,0) = Py(x) on €, (6b)
P
g—np =0 on 0. (6¢)

2 Numerical algorithm

The equation (6) is highly nonlinear, degenerate parabolic PDE. We solved it by the
method of lines. This technique for solving PDEs starts with discretising all but one
dimension using finite difference and then solve resulting semi-discrete problem, that is
a set of ordinary differential equations (ODEs).

2.1 Spatial discretization

We performed spatial discretization using two different finite differential scheme. Schemes
are written using following notation.

Ly Lo
h = [hl, hg], hy = ﬁl, hy = E;-Ti,j = [x}7jax?7j]a Pi,j = P(xi,j)a (7)
P"—P',l' P,l._P..
Pfi': 1,] i—1,7 sz: 1+1,7 1, ]
1,20 hl ) 1,2, hl ) ( )
Pij— Py Piji1— Py
Pa:'g,i,j - JTJ? Pa:g,i,j - %7 (9)
VP = [Py, Pr), VinP = [Py, Pry), (10)
P, =P,P. (11)

2.1.1 Regularized scheme

This scheme is based on operator form of equation (6), where we substitute derivative
operators using discrete differential operators (10), (see [4])

4P,
dt

Vi )) + QF, (12)

=QV, - <7Q(V‘nPn
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where
Q(VP) =/ +||[VP|2,  €>0,(e=1077), (13)
-1 _
2.1.2 Central difference scheme
Expanding divergence and gradient operators in the equation (6) yields
5P — Oproy P05y P)? + Opyoy P(0y, P)? — 20, POy, POy, 0, P
t (02, P)2 + (0, P)? (15)

+ (02, P)2 + (0., P)2F

Substituting spatial derivatives using central differences we get following

Pij+1=2P; j+Pi i1 (Pz'+1,j—Pz'—1,j)2 4 Py =2Pig+ by (Pi,j+1—Pi,j—1

ODE

)2

) (16)

a P . dx% 2d$1 dx% 2dx2
e (Pi+1,j*Pi—l,j )2 + (Pi,j+1*Pi,j71 )2
2dx1 2dzo
9 (Pi+l,j*Pi—l,j) ( 1= -1 ) ( ir1,j+1—Piy1,j-1—Pi—1j11+Pi—11
o 2dxq 2dzo 4dz1dxe
(Pz+1] —P;_ 13)2 + (Pi,j+1—Pi,j—1)2
2dxq 2dz2

Pi+1j_Pi—1j)2 <Pij+1_Pij—1>2
* \/< 2dxy * 2dx,

2.2 Time discretization

To solve this system of ODE’s we use the Runge-Kutta-Merson, that is a modified Runge-
Kutta method with adaptive time stepping (see [11]). The time-step length adaptivity
may shorten the time needed for computation. The algorithm can be written in the

following form

compute k1;;(dt)
compute k2;;(dt)
compute k3;;(dt)
compute k4;;(dt)
compute k5w(dt)
q = max{|2k1;;(d
if(q < adaptivity)

{

9. y;j(t0 +dt) = v;5(t0) + (k1;j(dt) + 4k4;5(dt) + k5;5(dt)) /6
10.  t0=t0+dt
1.}
12. dt = dtw(adaptivity/q)°>

£) — Ok3,;(dt) + 8k, (dt) — k5,;(dt)]/30}

© N oA WD =
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where coefficients k1, ..., k5 are defined as follows
k1(dt) = dtf(t0,y(t0))
k2(dt) = def(t0 + dt/3,y(t0) + k1(dt)/3)
k3(dt) = dtf(t0 + dt/3, y(t0) + (k1(dt) + k2(dt))/6) (17)
k4(dt) = dtf(t0 + dt/2, y(t0) + 0.125k1(dt) + 0.375k3(dt))
E5(dt) = dtf(t0 + dt, y(t0) + 0.5k1(dt) — 1.5k3(dt) + 2.0k4(dt))

where f is the right hand side of equations (12) or (16). We usually choose adaptivity €
106,107 ,w € [0.8,0.9].

3 Stability of numerical algorithm

We do not know the analytical solution for the equation (1), so to demonstrate stability
and consistency, we have to use numerical results computed on a refined grid. We linearly
interpolate the solution on the finest grid and compare it with the remaining solutions
(see Tables 1,2 and 5,6).

For the initial condition, where the zero levelset is the circle with the radius ry and
the forcing term F' = 0 the equation (1) yields

dr_ 1
-

Friai (18)

This equation has the exact analytical solution

r(t) = \/ré —2t. (19)

Tables 3,4 and 7,8 presents convergence errors and EOC coefficients computed using
exact solution (19).

Mesh Lo(0,T5L5) | Loo(0,T; L)
h error of u error of u
0.2040816 | 0.0475471 0.2709150
0.1010101 | 0.0138025 0.1251500
0.0502513 | 0.0046021 0.0533660
0.0250627 | 0.0013799 0.0177440

Table 1: Table of convergence errors. Space discretization: Regularized scheme, Time
discretization: RK-mersn scheme, adaptivity = 0.00001. Computed for the hypersurface
I.
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Mesh
h

EOC u
Ly

EOC u
L

0.2040816
0.1010101
0.0502513
0.0250627

0.0000000
1.7586649
1.5731378
1.7314871

0.0000000
1.0980984
1.2207927
1.5828592

Table 2: Table of EOC coefficients.

I.

Space discretization: Regularized scheme, Time
discretization: RK-mersn scheme, adaptivity = 0.00001. Computed for the hypersurface

Mesh

L(0,T L)

h

error of u

0.2083333
0.1020408
0.0505050
0.0251256
0.0125313

0.0080304
0.0035612
0.0013680
0.0006267
0.0002926

Table 3: Table of convergence errors. Space discretization: Regularized scheme, Time
discretization: RK-mersn scheme, adaptivity = 0.00001. Computed for the zero Level
Set.

Mesh
h

EOC u
L,

0.2083333
0.1020408
0.0505050
0.0251256
0.0125313

0.0000000
1.1392145
1.3604080
1.1179657
1.0951178

Table 4: Table of EOC coefficients. Space discretization: Regularized scheme, Time
discretization: RK-mersn scheme, adaptivity = 0.00001. Computed for the zero Level
Set.

Mesh Lo(0,T5L5) | Loo(0,T; L)
h error of u error of u
0.2040816 | 0.0475471 0.2709150
0.1010101 | 0.0121113 0.1251500
0.0502513 | 0.0033617 0.0533660
0.0250627 | 0.0010117 0.0177440

Table 5: Table of convergence errors. Space discretization: Central difference scheme,
Time discretization: RK-mersn scheme, adaptivity = 0.00001. Computed for the hyper-
surface I'.



Mesh
h

EOC u
Ly

EOC u
L

0.2040816
0.1010101
0.0502513
0.0250627

0.0000000
1.9445204
1.8357707
1.7261743

0.0000000
1.0980984
1.2207927
1.5828592

Table 6: Table of EOC coefficients. Space discretization: Central difference scheme, Time

discretization: RK-mersn scheme, adaptivity = 0.00001. Computed for the hypersurface
r.

Mesh L(0,T5 Ly)

h

error of u

0.2083333
0.1020408
0.0505050
0.0251256
0.0125313

0.0047062
0.0011564
0.0002992
0.0000714
0.0000193

Table 7: Table of convergence errors. Space discretization: Central difference scheme,
Time discretization: RK-mersn scheme, adaptivity = 0.00001. Computed for the zero
Level Set.

Mesh
h

EOC u
L,

0.2083333
0.1020408
0.0505050
0.0251256
0.0125313

0.0000000
1.9664470
1.9224476
2.0527963
1.8825815

Table 8: Table of EOC coefficients. Space discretization: Central difference scheme, Time
discretization: RK-mersn scheme, adaptivity = 0.00001. Computed for the zero Level
Set.
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4 Numerical results

This section contains results for the Mean-Curvature Flow problem. Results are repre-
sented by graphs displaying the Level Set hypersurface. The solution was computed at
the time interval [0, 1.4] using the space domain [—3, 3] x [—3, 3] with the grid containing
200 x 200 points and the Neumann boundary condition.

3 3
“solutioh t=0.00" + ”so\utio‘n t=040"  +
"X "solution t=0.60"  x
0" x "solution t=0.80" ¥
“solution t=0.15"  © "solution t=1.00" ©
“solution t=0.20"  m “solution t=1.20"  w
2F lutiont=0.25" o 4 2F "solutiont=1.40" o
lution t=0.30" e
1+ 1 1r R
0t 1 0f —
A1F 4 -1F 4
2+ 4 2t p
3 Il Il Il Il Il 3 Il Il Il Il Il
3 2 1 0 1 2 3 3 2 1 0 1 2 3
3 T 3 T
"solution t=0.00"  + "solution t=0.40"  +
“solution t=0.05" X "solution t=0.60"  x
“solution t=0.10" "solution t=0.80" %
“solution t o "solution t=1.00" @
“solution t u
2r "soluiont=0.25" o 4 21 E
"solution t=0.30"
1t 11t —
3 Kt
o
0F { % & fi 41 0F R
Rk LS
SN 4 a1t p
2+ +* 4 2+ 4
3 1 1 1 1 1 3 1 1 1 1 1
3 -2 -1 0 1 2 3 3 2 -1 0 1 2 3

Figure 1: Solution of (6) with f = 0.
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5 Parallelization of numerical algorithms

The main purpose of our work was to compare the efficiency of parallel algorithms for
numerical solution of the Mean-Curvature Flow problem on systems with shared memory.
Shared memory means that all data are saved in the memory that can be accessed by all
CPUs. This concept is used by OpenMP APT (see [1]).

The results of efficiency measurement are presented in Table 9. The table has the
following structure. The first column contains the grid dimension. The second column
contains the time of sequence program in seconds, this means the time of the computation
made by only one processing unit. The remaining columns contain the time of parallel
program and the efficiency of this program in the brackets. In the header of these columns
there is specified how many OpenMP processes were used in the computation. The
time duration of each computation was measured by the C gettimeofday() function as
a difference between the start and the end time. The times listed in here are the times
needed for the computation only. This means the times needed for the value initialization
and result saving is excluded. The efficiency is calculated from the following formula:

sequence time

efficiency = (20)

parallel time X number of processors

grid OMP=2
50x50 6.100 4.714(0.647)
100x100 | 25.609 | 15.298(0.837)
150x150 | 62.783 | 35.192(0.892)
200200 | 114.270 | 61.042(0.936)
250x250 | 178.611 | 98.789(0.904)
300300 | 261.127 | 145.881(0.895)
(0.921)

(0.939)

(0.958)

(0.941)

350x350 | 357.475 | 194.069(0.921
400x400 | 438.124 | 233.293(0.939
450x450 | 550.205 | 287.163(0.958
500500 | 679.820 | 361.222(0.941

Table 9: Time and efficiency of parallel program using Central difference scheme, Time
discretization: RK-mersn scheme, adaptivity = 0.001.

6 Conclusion

We solved the Mean-Curvature Flow problem for the Level Set method using several
different initial conditions. Numerically proved the stability and consistency of both
Regularized and Central difference schemes in combination with RK-mersn scheme and
shown that OpenMP is suitable for this equation.
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Abstract. The specific initial and main aim of the project INDECS was to drive the neutron
diffractometer KSN-2 in its upgraded form maintaining the position sensitive detectors (PSD).
For the purpose of collecting data from these detectors a special complex structure called PSD
Acquisition Path (PSDAP) was created and it will be integrated into the concept of project
INDECS as one of its External Execution Modules (EEM).

Abstrakt. Ptivodnim hlavnim cilem projektu INDECS bylo #idit neutronovy difraktometr KSN-
2, ktery ve své vylepSené podobé obsahuje pozi¢né citlivé detektory (PSD). Za ti¢elem sbiréni dat
7 téchto detektort byla vytvofena specidlni komplexni struktura nazvand PSD Acquisition Path
(PSDAP), ktera bude integrovana do konceptu projektu INDECS v podobé External Execution
Modulu (EEM).

1 Introduction

Upgrade of the KSN-2 neutron diffractometer from a simple (one channel) counting detec-
tor type to a type with a set of position sensitive detectors (PSD) required a completely
different and much more complicated way of collecting data from the detectors. It was
also one of the reasons for launching project INDECS, to create a software that would
do just that, among other things related to driving the diffractometer.

In this article we would briefly describe the design of the part of the project INDECS
that is meant to collect data from the PSDs of KSN-2 diffractometer and do its basic
evaluation to the form of a neutron-counting histogram, which is supposed to be the
raw output of the neutron diffractometer for the physicists, who then use this form of
data to do further processing and thereby extracting other studied information about the
measured samples. This part is called the PSD Acquisition Path or the PSDAP.

At some points we are going to be rather specific on the implementation and hardware
that is currently used for the KSN-2 data collection and processing, but the global concept
of the PSDAP is designed in a way that its individual parts can be replaced with adequate
parts for different hardware setup, should this change in the future, or to adapt it for a
different diffractometer setup.

*This work has been supported by grants MSM6840770021 and JINR 22-03007.
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EG&G ORTEC EG&G ORTEC
570 142PC

>

A
A

EG&G ORTEC
584 Y
—— EG&G
PCI-9812 —= JL = > " |lortec PSD
I 533

EG&G ORTEC EG&G ORTEC
570 142PC

A

Figure 1: Electronics of the position sensitive detector used on the KSN-2 neutron diffrac-
tometer.

1.1 KSN-2 detector hardware

The hardware surrounding the actual PSD on the KSN-2 diffractometer is shown in a
block scheme on figure 1. For a little more specific description, see for instance [2| (chapter
2), and for the description of the principles of the PSD, see the [1] or any other common
literature about the PSDs.

For our purposes it is sufficient to know, that the PSD acts like a big resistor and
that the signal pulse generated by the event of an incoming neutron is split in two and
travels through the resistor to either end of the detector, where it is preamplified by a
preamplifier (EG&G Ortec 142PC in our case) and then amplified and shaped by the
shaping amplifier, which in our case is the EG&G Ortec 570), where not only is the
pulse amplified to a level that we can further sample, but it is also given a proper and
quite nicely looking (compared to the actual signal coming out of the preamplifier) semi-
gaussian shape, an example of which you can see on figure 2. This signal on either side
of the PSD is then sampled by an A/D converter card, which in the case of KSN-2 is
the ADLink PCI-9812, and the sampling is triggered by the predefined trigger level to
distinguish the higher peaks of a neutron event from the much lower peaks produced by
different sources of radiation. And this is the point where the role of the PSDAP begins.

2 PSD Acquisition Path

The PSDAP has several processing steps to do. First the raw sampled signal has to
be obtained. Then it can possibly be split into multiple neutron events, which may be
detected by one signal trigger event. After that a position of the event on the detector
has to be determined. And finally the event’s position has to be written to the adequate
bin in the resulting histogram. As these are the steps that are done sequentially one
by one with each signal pulse, we call this processing tool a "path", because each signal
pulse has to walk this processing path step by setp from the source into the hostogram.
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35 T T
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Figure 2: Semi-gaussian-shaped signal that comes out of the shaping amplifier upon an
event detection.

There are two ways to incorporate this into the structure of project INDECS’ re-
sources. One way would be to create each step along the path as a separate External
Execution Module (EEM, see [3]) and let the data be pushed between them by virtual
instructions passing through the Execution Engine (EE, see [3]) VPU each time. Though
this might be much more flexible, it is also a bit more and unnecessarily complicated
and more importantly, rather slow, as the events are coming at rates about thousands of
events per second and quite large amount of data must be pushed through the path (up
to 64 KB per event for the PCI-9812). Since we need to miss as little events as possible
we also need to process the sampled data as fast as possible to be able and ready to
process next.

For this reason the other way of implementing was chosen. The entire PSDAP is
implemented as just one complex EEM, which however is consisting of submodules, each
doing one step along the path. The path has to be configured by assembling appropriate
submodules of the PSDAP together before it can be used. For some modules there are
more possibilities to choose from different modules doing slightly different work. Let’s
describe them a little closely in the following subchapters.

The top-level implementation of the PSDAP is substantiated by a library called
libpsdap and all the modules are implemented on the MMSR level of project INDECS.

2.1 Data Source

The Data Source is the first module at the entry of the path. Its purpose is to acquire
the raw sampled signal from the signal source, decode them and send them further along
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the path. Currently there exist two types of the Data Source module.

2.1.1 PCI9812

The PCI9812 Data Source module is the Data Source module that acquires the raw signal
data from two channels of the ADLink PCI-9812 A /D converter card, decodes them into
two separate signal sequences and sends them together with a timestamp and data size
in a third channel to the next step of the PSDAP. Because (as said above) we want to
miss as little neutron events as possible (and also because the computer so far dedicated
to data acquisition for the first channel of the KSN-2 is just a PIT 400 MHz), we are
currently acquiring data under the RTLinux OS, which is an implementation of the hard
real-time OS running under common Linux itself (see [2]).

A special real-time driver was written for the PCI-9812. This driver is launched as a
real-time thread scheduled by the hardware interrupt of the PCI-9812, so that it gets a
very high priority and can run anytime necessary regardless of the other state of the OS.
The data are transferred using fixed number of preallocated DMA buffers, one per event,
and pushed through the RT-FIFO mechanism to the non-real-time application process,
which is the PSDAP.

There are several parameters that can be preset, among which the most important
ones are the trigger level which is used for triggering the event. The event length, which
determines how much samples are samplet per one event and, though, what would be
the length of the sampled signal. And the sampling rate at which the signal would be
sampled. Depending on the setting of the shaping constants of the shaping amplifier,
the optimal frequency to catch the event should not be much less than 10 MHz, but to
have some reserve for the signal analysis a full 20 MHz sampling rate of the PCI-9812 is
recommended.

One downside of the RTLinux implementation of the driver is that its free variant is so
far only implemented on the old 2.4.x Linux kernel architecture, which is now obsoleted
by the progressive 2.6.x version. However, with a reasonably new PC computer, a litle
different variation of the driver (using partly dynamic buffer queues) can possibly be
created and run even on standard non-real-time Linux 2.6.x kernels. This work has,
however, not been started, yet.

2.1.2 SDCF

The SDCF Data Source module is an analogy of the PCI9812 module, but it does not
acquire the data from the PCI-9812 card, but is decoded from a SDCF file, into which
the raw signal can be stored by the below described Signal Storage module.

This decoding module actually consists of three MMSR transcoders. First transcoder
reads the data from the given SDCF file. Second is a general demultiplexer transcoder
for the SDCF streams. This part of the decoder is implemented by the libmdsdcf li-
brary, which, of course, uses the general Multiplexer/Demultiplexer (1ibmd), the SDCF,
the MMSR and the Stream Cache library. This general demultiplexer extracts the
global header packets of the SDCF stream and first two data substreams, all of which
are separately decoded by its individual decoder transcoders each. These stream de-
coder transcoders are also implemented within the 1ibmdsdcf. When the first two data
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streams are decoded, their data along with appropriate timestamps are forwarded to the
last transcoder of this decoding module, which is the Synchronization Barrier Decoder
transcoder (also called "synbar"), which basically takes the data and timestamps from
the two separate independent channels and puts the data from the same time together.
So it synchronizes the two channels to be sent along with the timestamp and datalength
information in a separate third channel further along the PSDAP.

2.2 Signal Storage

Signal Storage module is a module that is used to store the signal data somewhere,
possibly into a file of some kind, otherwise it is transparent, so it sends out the same
data that it receives. This also means, that there can possibly be more of these modules
chained at the specific point of the the PSDAP, though it is strongly discouraged, as
storage itself may be quite a delaying work at these datarates and if the computer and
its relevant peripherials aren’t fast enough, the whole processing can possibly be delayed
so much, that it may miss some neutron events that would normally be detected and
thereby the effectivity of the whole system can go down.

The signal storage modules can be placed both after the Data Source module and
after the Multi Event Separator module (see below).

2.2.1 SDCF

The SDCF Signal Storage module is used to store the sampled event (meaning a signal
on two channels and a timestamp) into a SDCF file. Tt is using the SDCF library for that
and it is a reversed process to that of the SDCF Data Source module. Each data channel
is stored in a separate SDCF data substream and before each event a global header with
a synchronization timestamp is forced. This is (so far) the most effective way to store
the acquired signal, in the means of redundancy, however no signal compression on the
SDCEF file has been implemented, yet.

2.2.2 RAW

The RAW Signal Storage module is an analogy of the SDCF Signal Storage module, but
instead of storing the event signals into the SDCF file, it stores them into a raw text file,
one event per file. The format is simple, just two columns of signal data and commented
header containing information like timestamp and sampling frequency. This is not the
most effective way of storing the event data, but it comes handy when you want to do
an eye inspection of the data or manual processing of the signal by other programs like
GNU Plot or MatLab, which can easily read data from raw text files.

2.2.3 Send/Receive

This is a little different kind of module. 1t is a communication module, that can generate a
special kind of data transfer virtual instructions and send them to the predefined target of
the EE that the EEM containing this module is attached to. Instead of passing the event
signal data through and further along the PSDAP, the data are actually diverted from
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this PSDAP and sent via these data transfer virtual instructions for further processing
to another PSDAP, possibly in another computer.

When this kind of virtual instructions arrive to the PSDAP EEM, it can be received
by the same module at the same position of that PSDAP, decoded and sent further along
the PSDAP for further processing there. The main purpose of this module is to be able
to divert the next processing steps of the acquiring PSDAP to another computer, if the
acquiring computer is not fast enough to do all the processing.

2.3 Multi Event Separator

The Multi Event Separator is another step in the PSDAP path. Its purpose is to separate
possible multiple events sampled at one shot on one trigger. So if during the original signal
acquisition we sample a signal of some length, where more than one neutron event occurs.
This signal can be split into multiple events and sent further along the PSDAP as separate
events.

There can be various methods of event separation, but given that the shaping pream-
plifier gives us nice semi-gaussian shapes of the event pulse and that it has certain dead
time to prevent total overlapping and noise from other unwanted radiation, we can very
well use the easiest method of separation by the same trigger level as by which the initial
acquisition was fired. Of course, another methods of separation can possibly be investi-
gated and appropriate modules written in the future.

2.4 Peak Analyzer

The Peak Analyzer module is the part that does the main processing along the PSDAP.
It takes the sampled signal from the two ends of the PSD on the input. And calculates
the position of the event along the PSD where it occured.

The point is to find the corresponding peaks (generated by the event) on either of
the channels, the peaks can not be further from one another than is the time needed to
travel from one end of the PSD to another, and by comparing the heights of the peak
from the two channels determine the position. Because from each position on the PSD
the signal travels a specific distance accross the PSD to either end of the detector, and
since it is a big resistor, the further the signal travels there the bigger the resistivity it
has to pass through and though the lower the ampliture it has. So when the event occurs
in the middle of the detector, the peaks are the same height, when it is close to one end
of the detector, the corresponding peak is high, while the other is much lower and vice
versa.

This, however, as much of another physically measured variables, is introduced with
certain distortion, so each particular detector should be callibrated by covering it with
shielding and opening just on several channels (positions) of the PSD. This can construct
a compenstation curve, which is then used as a transformation function for calculating the
exact position. Peak Analyzer module can construct this compensation curve when run
under a special mode. The curve can be sent or received by special virtual instructions.
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2.5 Event Storage

The Event Storage module has similar functionality to the signal storage module, but so
far only a transparent module that can send the events via special virtual instructions
exists. The event in this case is represented only by a single number determining the
position (also called channel) on the position sensitive detector, where the neutron event
occured. No other variant of this module has been created, yet. But if there would be
any use for it, another variants can be crated in the future.

2.6 Histogrammer

This is the final point of the PSDAP. It is a module which maintains a histogram with
a preset number of bins (that generally represents the number of channels of the PSD
given by its resolution). And the events, that come in the form of the position, are sorted
into appropriate bins and counted there. Resulting histogram can be sent upon request
to the specified target of the attached EE and then used for further processing outside of
the PSDAP. The histogram can also be reset by a virtual instruction.

2.7 Final Notes

The PSDAP EEM can send and receive virtual commands, some of which have been
mentioned above. Another of these commands are a start and stop commands, which
determine when to start and when to stop acquiring data. You can set various parameters
of the PSDAP by sending it virtual commands, including its configuration and compen-
sation curve. You can make is start and/or stop by an external event coming from the
INDECS system, namely it can be a timer for a measurement over a specific period of
time, or it can be a threshold on the monitor detector counter, so that the measurement
stops after a certain number of neutrons entering the measured sample, and so on. And
finally you can let the PSDAP send you some status information about the processing.

3 Conclusion

Most of the parts of the PSDAP are finished already, some of them are close to be
finished. The PSDAP still has to undergo some real testing, so far we are testing it only
with the data that we have collected separately. A full integration of the PSDAP into
the INDECS system and its thorough testing has to be done. Also EEMs and drivers
for another devices of the KSN-2 neutron diffractometer still need to be written, so that
the KSN-2 can be fully driven by the INDECS system. Motor handling and temperature
control are some of them.
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Abstract. Classical models for capillary pressure - saturation relationship have been shown to
hold only in the state of thermodynamical equilibrium and thus a modified dynamic capillary
pressure-saturation relationship has been proposed by Hassanizadeh et al. that includes the
classical capillary pressure function in the state of thermodynamic equilibrium and a product of
relaxation time 7 and a partial time-derivative of saturation. However, this approach importantly
affects the nature of the governing two-phase flow equations for immiscible and incompressible
flow in porous media. New numerical and theoretical studies are required in order to understand
this phenomena. In the presented work, a onedimensional problem and an implicit numerical
scheme is presented to model various effects of the order in magnitude of the dynamic effect
coefficient 7 on the saturation and pressure profiles in homogeneous porous medium.

Abstrakt. Klasické modely pro zéavislost kapilarniho tlaku na saturaci plati pouze ve stavu
termodynamické rovnovahy. Hassanizadeh et al. navrhuji novy model pro kapilarni tlak, ktery
zahrnuje jak klasickou funkci kapilarniho tlaku na saturaci v termodynamické rovnovaze, tak
nové i ¢asovou derivaci saturace nasobenou relaxa¢nim casem 7. Tento pfistup ovSem méni typ
doposud pouzivanych rovnic pro simulaci dvoufdzového nestlacitelného a nemisivého filtra¢niho
proudéni a je proto zapotiebi zjistit, jakym zpiisobem se zméni stdvajici modely pii implementaci
dynamického kapilarniho tlaku. V této praci je uvazovana jednorozmérné tuloha, kterd je feSena
kone¢nymi diferencemi. Navrhnuté numerické schéma je pouzito k porovnani profili saturace a
tlaku pro fadové ruzné hodnoty relaxaéniho parametru 7.

1 Introduction

In many countries, more than half of the population depend on groundwater as their
supply for drinking water. The groundwater sources are often endangered by leaks from
disposal dumps, accidental spills of substances used in industry or leaking storage tanks.
Mathematical modelling is one of the important tools that helps to predict the spreading
of the contaminant in the water saturated zones. In addition, the mathematical models
can facilitate extraction of valuable substances such as oil or gas.

This manuscript focuses on the dynamic phenomena in the capillary pressure - satu-
ration relationship that has been examined in various papers in the past decades. The
main objective is to propose a numerical scheme that implements the dynamic capillary
pressure - saturation relationship for heterogeneous porous media. In this report, only
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preliminary results of numerical experiments in the homogeneous porous medium are
given in order to allow for future generalization of the numerical code also for heteroge-
neous porous media.

2 Background

Fundamental constitutive quantities used in modelling flow in porous media are described
in the following subsections. Thorough definitions, descriptions, and examples can be
found in (8], [17], [1], [16], [2], |6], or [7].

2.1 Wettability

As two immiscible phases are present in the porous media, a meniscus of fluid-fluid
interface is formed as a result of the presence of the solid phase (sand grains). The
interaction between adhesive and cohesive forces within the fluids leads to the specific
angle 9 between the solid surface and the fluid-fluid interface. The wettability of fluid is
then determined as:
¥ =0 V€ (0,5) V>3
completely wetting, partially wetting, non-wetting.

2.2 Saturation

The fluid distribution in immiscible multiphase flow in porous media is described by
the saturation S, [—| that indicates the volumetric portion of void space within pores
occupied by the fluid phase a. Therefore, S, is always between 0 and 1, and the sum of
saturations S, of all fluids present in the porous media is 1, i.e., > S, = 1.

Since not all volume of the fluid phase can be displaced in rr?ultiphase flow from a
porous medium due to hysteretic effects, the a-phase residual saturation quantity Sy, [—|
is introduced. It expresses the minimal saturation of the phase o that will retain in the
porous medium due to adhesion effects with respect to the solid matrix. Therefore, the
effective saturation S¢ [—| that describes only volumetric portions of displaceable fluid
phases is introduced as

Se Sa - Sra

STIo%s, W
g

2.3 Capillary pressure

Following the standard definitions in literature, the capillary pressure p. [ML™'] on the
pore scale is defined as the difference between the non-wetting phase pressure p,, [ML™?]
and the wetting phase pressure p,, [M L], i.e.,

Pe = Pn — Pw- (2)
This definition is then averaged over a representative elementary volume (REV), see

[1], [16], and thus holds for both pore and macroscopic scale relationship for modelling
capillarity phenomena.
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The capillary pressure function has been commonly considered as a function of wetting
phase saturations and so it has been widely used in model equations in literature, see
for instance [21], [11], [9], or [10]. The following Brooks and Corey (3) explicit capillary
pressure - effective wetting phase saturation parametrization has been used in two-phase
flow models and is given by '

pE(SE) = pa(SE) 3, (3)

where p; [M L] is the entry pressure and A [—] describes pore distribution of the grains
in porous material. The Brooks and Corey relationship (3) is suitable for modelling het-
erogeneous porous media because the difference in the entry pressure coefficients py in
different porous materials preserves the barrier effect that has been observed in experi-
ments, for details see [21], [16], [1], [8]. As the main objective of the ongoing research is to
study dynamic effects of capillarity in heterogeneous porous media, other capillary pres-
sure - saturation models like that by van Genuchten |25] which does not involve barrier
effect will not be considered in this manuscript.

2.4 Dynamic capillary pressure

The classical capillary pressure - saturation relationships such as (3) has been used in
almost all mathematical studies on porous media flow modelling in the past decades.
Recently, theoretical studies [15], [14], [5], [12], [13], [3], |23], as well as the empirical
approach in [24| have produced new aspects in the two-phase flow theories. The most
important result is that the classical capillary pressure - saturation relationships hold only
in the state of thermodynamic equilibrium. Therefore, the classical approach cannot be
used in the modelling of capillarity when the fluid content is in motion and, consequently,
a new capillary pressure - saturation relationship is proposed in the following form:

o D = DE(S5) — 7(5) o = (S, 00), (@)
where p® is the capillary pressure - saturation relationship in equilibrium and 7 [M L™1T71]
is the dynamic effect coefficient. In (4), the partial derivative of S,, after ¢ is shortly de-
noted as 0,5, in the second argument of the capillary pressure function p..

Various researchers have developed formulae that are similar to (4). The characteristic
dynamic effect quantity 7 is regarded as a measure for the distance of the system from
equilibrium [17].

Early in 1978, Stauffer 24|, (or see |17], [18], [23|), proposed a linear dependence in
(4) and proposed the following definition of 7:

o — Qsto® [ Pa i (5)
ST KN \pug)

where ag = 0.1 [—] denotes the scaling parameter, p,, [M LT~ is the wetting phase
dynamic viscosity, ® [—] is the porosity of the material, K [L?] is the intrinsic permeability,
pw [ML73] is the wetting phase density and g [LT?] is the gravitational acceleration

LA superscript “@ is used in the definition (3) with respect to latter and it indicates the capillary
pressure - saturation relationship model in equilibrium.
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constant. Both A\ and py are the Brooks and Corey parameters from relationship (3).
Thus, the coefficient 7¢ can be calculated for a given porous medium and wetting fluid.

The Stauffer model for the dynamic effect coefficient 7 is obtained by correlating
experimental data. The values of 7 vary between 7¢ = 2.7-10* Pas and 7¢ = 7.7-10* Pas,
see |17, page 27|, but the value of 7g for sand parameters used in this manuscript is
7¢ = 1.88 - 10° Pas. However, other researchers suggest that the magnitude of 7 should
be in the order of 10*> — 10 Pa s, |4|, or, on the other hand, it should be also in the
order of 10* — 10% Pa s as estimated in [14]. Moreover, some authors assume a general
nonlinear dependence

7 =T7(5), (6)

where the explicit dependence remains an open problem and thus only constant values
of 7 are studied in next sections.

3 Mathematical model

3.1 Governing equations

A mathematical model describing the two-phase flow in a onedimensional domain is pre-
sented in this section in order to demonstrate how the two-phase flow in porous medium
is affected by the introduction of the dynamic capillary pressure relationship (4) instead
of the classical relationships in thermodynamic equilibrium.

The governing two-phase flow equations in onedimensional domain [0, L] are given by
the p, — S, formulation [1]

L (7)
Uy = —%km (%(pw +Pe) = P g) : (8)
_q)a;;” — —%Uw, (9)
Uy = —%km (%%” — P g) (10)

where ko = k.o(S,) [—] is the a-phase relative permeability function and u, [LT7!]
is the a-phase Darcy velocity, for details see [8], [16], [1], or [2]. Initial and boundary
conditions for equations (7-10) are given separatedly for each experimental problem.

3.2 Discrete problem

A standard finite difference discretization technique is used in order to determine ap-
proximate discrete solution S}, pl ; of the problem (7-10), generally defined as ff =
f(EAt,iAzx), where i = 0,1,....m, mAx =L, and k =0,1,.. ..

Since the nonlinear problem (7-10) involves the dynamic capillary pressure function
defined in (4) that includes time derivative of S,,, an implicit numerical scheme is proposed
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in the following form:

k+1 k k,k+1 k1
Q)Sn,i — Sni _ Uit T Yo
JAN Az ’
k-+1 k k+1 k+1
_Q)Sn,i - Sn,i _ o Y T Wi
At Az '

where the upwinded discrete Darcy velocities are given as

k+1 k+1 kok+1 kok+1
kk+1 —Ek (Sk;-i—l) ( Puw,it1 = Pu,i n Pejivi = Pei on
n,4,0+1 Lin TnA\M~n,x R AI‘ AI‘ n
diry,

Sktiy if dir, > 0.
Sﬁtl = upwinded saturation S, .
SEELif dir, < 0.

k+1 k
k,(c+1 —p 1— Sk+1 _Sn,i - Sn,i
[eX) c n,g At .

and
k1 k+l
k41 ——Ek ( k+1) Puwit1 — Pwi
uw,z’,i—f—l - L rw\Mn 4 \—AZE png
diry,

Sktiy if dir, > 0.
Sﬁ;} = upwinded saturation .S, 4
SEELif dir, < 0.

(15)

The numerical scheme is solved using the Newton iteration method for a system of
nonlinear equations. The Jacobi matrix used in the Newton iteration method is sparse
and can be reordered to a penta-diagonal matrix. It is therefore inverted using the LU

decomposition algorithm for multi-diagonal matrices.

4 Numerical experiments

4.1 Comparison to semianalytical solution

Firstly, the numerical scheme (11-12) was compared to the semianalytical solution for
onedimensional advection-diffusion problem, see [19], [26], [20], [10], [22], [9], [11], [8], or

[7]-

The semianalytical solution can be computed for onedimensional problem (7-10) with-
out gravity (i.e., g = 0), including only classical capillary pressure - saturation relationship
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(3), and with a special initial and boundary conditions in the form

Sn(0,2) =0 for all x > 0, (16)
Pw(0,2) = patm for all x > 0, (17)
Uy(t,0) =0 for all t > 0, (18)
Pw(t,0) = Datm for all ¢t > 0, (19)
Sn(t,L) =0 for all ¢ > 0, (20)
uy(t, L) = At™2 for all £ > 0, (21)

where constant A [LT_%] is the parameter of the semianalytical solution, see [10], and
characterizes the input flux magnitude with value A = 9.321-1073 ms~2 for this numerical
experiment. Since the pressure is differentiated in the problem equations (7-10), the
solution does not depend on the prescribed value of py;,, and so pu, = 0 is used for all
numerical experiments .

Although the semianalytical solution gives a good quantitative comparison with the
solution obtained by the numerical scheme, the qualitative study (i.e., computation of
the experimental order of convergence) is impossible due to singularity of the boundary
flux (21) at ¢ = 0. The results obtained for the sand and fluid properties in Table 1 are
shown in Figure 1 at time ¢ = 10, 000 s.

Symbol Units Value
Porosity P [—] 0.42
Intrinsic Permeability K [m?] 2.73-10711
Residual Water Sat. Swr [—] 0
Brooks-Corey Dd [Pal 3433.5
parameters A [—] 2
Water viscosity faw kg m™ts™ 1073
Air viscosity L, kg m™'s71 | 1.83-107*

Table 1: Parameter setup for the sand and fluid properties.

4.2 Numerical experiments with dynamic effect

Assuming the previously presented reliability of the quantitative comparison of the nu-
merical scheme solution to the semianalytical solution, a series of tests were proceeded in
order to determine influence of various values of the dynamic effect coefficient 7 on the
solution.

A onedimensional vertically positioned column filled with homogeneous sand is ini-
tially fully water saturated. At t = 0 a pressure head in the lower end of the column
(x = L) begins to decrease and the air enters the column from the top (x = 0). The
pressure drop is characterised by constant wetting phase flux u,(t,L) = A. Together,
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Figure 1: Semianalytical solution compared to the numerical solution obtained by the scheme
(11-12).

the initial and boundary conditions are given as follows:

Sn(0,2) =0

pw(oa I) = Patm — pcq(l) + pwgx
Su(£,0) = 0

Pw (ta O) = Patm

Sn(t,L) =0

uy(t,L) = A

for all x > 0, (22)
for all z > 0, (23)
for all t > 0, (24)
for all t > 0, (25)
for all t > 0, (26)
for all t > 0, (27)

Numerical simulations were done using the fluid and material properties shown in

Table 1 with A =5-107° ms~!. The final time of the simulations is ¢t = 10, 000s.

Reference solutions are obtained using only classical capillary pressure - saturation

relationship in the equilibrium and are shown in Figure 2. Next, Figure 3 shows solution
obtained for the Stauffer coefficient 7¢. In order to examine the situations for higher

orders of magnitude of 7, two simulations for 7 = 10" kgm~

s7tand 7 =10% kgm~ts™

1
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were carried out and are depicted in Figure 4 and 5, respectively.

The results indicate that the Stauffer model for the parameter 7¢ does not significantly
changes the pressure/saturation profiles with respect to the reference state. However, the
increase in orders of magnitude of the dynamic effect coefficient 7 is more important as
it is obvious in Figures 4 and 5

Saturation
1 - Pressure
— — =200 nodes 5000 ‘
0.8 — 3200 nodes |; — — - 200 nodes
c —— 3200 nodes
7))
5 06f e 0
£ =
% 0.4} 7
» S -5000
0.2}
0 -10000 ‘ :
0 3 0 1 2 3
distance x distance x

Figure 2: Numerical solutions with no dynamic effect (reference solution), i.e., 7 =0 Pas.

Saturation
1 - Pressure
— — =100 nodes 5000
0.8% —— 1600 nodes |; — — =100 nodes
c —— 1600 nodes
n
.5 0.61 . 0
[ g
2 0.4} @
I
» S -5000
0.2t
0 -10000
0 3 0 1 2 3
distance x distance x

Figure 3: Numerical solutions using Stauffer dynamic effect coefficient 75. For the given problem
(Table 1) its value is 75 = 1.88 - 10° Pas.
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Figure 4: Numerical solutions obtained for 7 = 107 Pas. ).
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Figure 5: Numerical solutions obtained for 7 = 10® Pas. ).
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5 Conclusion and future work

This manuscript presents recently obtained numerical simulations using the nonclassi-
cal dynamic capillary pressure in simulating two-phase incompressible flow in porous
medium. The presented results indicate the numerical scheme is applicable for the given
problem and allows for experimental implementation of two-phase flow in heterogeneous
porous medium.

Consideration of material heterogeneity involves various possibilities how the inter-
facial conditions between different porous materials can be treated. The investigation
of all possible implementations is going to be the main goal of the author’s future work
since the main objective of the project is to develop robust and stable implementation of
interfacial conditions for two and three dimensional codes including the dynamic capillary
pressure - saturation relationships also across the material interface.
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Syntéza periodicko-stochastickych textur
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Abstract. This paper describes two methods for seamless enlargement of difficult colour textures
containing both regular periodic and stochastic components. Such textures cannot be modelled
using neither simple tiling nor using purely stochastic models. The first novel method automati-
cally recognizes and separates periodic and random texture components. Each of this components
is subsequently modelled using the coresponding optimal method. Both independently enlarged
texture components are combined in the resulting synthetic near regular texture. The second
method detects two main direction of periodicity in regular periodic component and generates
several double-toroidal tiles of the same general shape, which can seamlesly enlarge given near-
periodic texture without visible regularity. While the presented texture synthesis methods allow
only moderate compression, they are extremely fast due to complete separation of the analytical
step of the algorithm from the texture synthesis part. The methods are universal and easily
viable in a graphical hardware for purpose of real-time rendering of any type of near regular
static textures.

Abstrakt. Tento ¢lanek popisuje dvé metody pro syntézu slozitych barevnych textur obsahuji-
cich periodickou i stochastickou slozku. Takové textury nelze modelovat bud jen jednoduchym
dlazdicovanim nebo ¢isté stochastickymi modely. Prvni nova metoda automaticky rozpoznava a
oddéluje periodickou a stochastickou slozku textury. Kazda z téchto komponent je nasledné mo-
delovana pomoci odpovidajicich optimélnich metod. Obé nezavisle syntetizované komponenty
jsou zkombinovany, ¢imz vznikne vysledna syntetickd periodicko-stochastickd textura. Druha
metoda detekuje dva hlavni sméry periodicity pravidelné periodické komponenty a generuje ne-
kolik toroidnich dlazdic stejného obecného tvaru. Pomoci téchto dlazdic 1ze generovat periodicko-
stochastickou texturu bez viditelnych rusivych pravidelnosti. A¢koliv prezentované metody pro
syntézu textur umoznuji poze ¢asteénou kompresi, jsou extrémné rychlé, a to diky completné
oddélené fazi analyzy od faze syntézy algoritmu. Metody jsou univerzalni a snadno implemen-
tovatelné v grafickém hardwaru, zejména za tucelem renderingu libovolného typu periodicko-
stochastickych statickych textur v redlném case.

1 Uvod

Mnoho aplikaci v pocitacové grafice, v pocitacovém vidéni a pii zpracovani obrazu vy-
zaduje textury libovolnych rozméri. Pro tyto aplikace je syntéza textur velmi dilezita,
protoze je alternativnim a ve vétsiné piipadi i jedinym moznym zpiisobem jejich vytva-
feni. Cilem syntézy textur je vytvoreni nové textury z daného texturniho vzorku, pficemz
nova textura by méla realisticky odpovidat textufe ptuvodni. Vzhled obou textur by mél
byt takovy, jako by byly vytvofeny na zékladé stejného generujictho procesu. Problé-
mem je ale navrzeni algoritmu, ktery bude efektivni a zaroven bude dosahovat kvalitnich
vysledkii.

39
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Obrazek 1: Nékolik ptikladu realistickych periodicko-sto-  Obréazek 2: Vlevo ukazka pe-
chastickych textur, obrazky jsou o velikosti 256 x 256 ob- riodické textury, vpravo sto-
razovych bodi. chastickeé.

V zavislosti na dalsi aplikaci Ize klast diraz jak na urciré kvalitativni vlastnosti tex-
tury, tak i na vlastnosti algoritmii pro jejich generovani. Algoritmy pro modelovani textur
maji prirozené ¢ast analyzy, ve které se odhaduji parametry potiebné pro dalsi syntézu,
a c¢ast syntézy, ve které se generuje nova textura. Tyto dvé ¢asti nejsou c¢asto oddéleny.
Aby byly metody vyuzitelné v praktickych aplikacich, byva ¢astym pozadavkem jejich
rychlost, zejména pak rychlost syntézy.

Tento ¢lanek je zaméfen na modelovani periodicko-stochastickych textur (obr. 1,
obr. 2). Periodicko-stochasticka textura obsahuje globalni pravidelné struktury, které
predstavuji zasadni problém pro vzorkovaci metody, a nepravidelné stochastické struk-
tury, které nemohou byt vérohodné reprodukovany pouhym dlazdicovanim. Pokud se
omezime pouze na periodicko-stochastické textury, pak lze navrhnout specializovanou
metodu pro jejich syntézu. V tomto ¢lanku budou prezentovany dvé pribuzné metody, jez
lze pro syntézu periodicko-stochastickych textur vyuzit.

Prvni z nich piivodné vychazi ze zaméru vénovat se editaci textur. Dal$i motivaci je
moznost vyrazné komprese texturnich dat, zejména pak u stochastické slozky. Zaklad-
nim prvkem metody je oddéleni periodické struktury od zbyvajici, zpravidla stochastické
¢asti. Periodickou strukturu lze pak rozsitovat vhodnym vzorkovacim algoritmem a sto-
chastickou c¢ast lze vcelku uspésné modelovat pomoci nékterého adaptivniho modelu.
Vezmeme-li v tivahu vice takovych textur, mizeme jejich periodické a stochastické casti
libovolné zaménovat a generovat textury zcela nové.

Druha metoda vznikla ¢astecné z nedostatki ptivodni metody. Umoziiuje generovat
periodicko-stochastické textury, jejichz periodické struktury jsou libovolné natoceny a
dosazené vysledky jsou na tomto natoceni nezavislé. S vyuzitim faktu, 7e se ve vzorku
vyskytuje jista periodicita, dokdzeme extrahovat nékolik minimélnich dlazdic, které jsou
si velmi podobné, a jejich hrany optimalizovat tak, ze do sebe vSechny vzajemné zapadaji.
Jejich kombinaci dokdzeme generovat vystupni texturu libovolnych rozmért, pricemz ne-
dochazi k umélému vnéseni periodicity do stochastickych struktur textury.

2 Modelovani periodicko-stochastickych textur

2.1 Separace periodické a neperiodické ¢asti

Periodickd a neperiodickd ¢ast textury je detekovana ve zjednodusené monospektralni
textute ziskané pomoci Karhunen-Loevovy transformace vstupni barevné textury. Nové
vznikla spektralni pasma jsou vzajemné nekorelovand, pro dalsi zpracovani se uvazuje
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Obrazek 3: Vstupni textura (vlevo) je po-
moci Karhunen-Loevovy transformace pre-
vedena na monochromatickou (uprostied) a
najde se nejvétsi periodicky vytez (vpravo),
ktery se navic prevzorkuje.

Obrazek 5: Po filtraci a binarizaci s piihléd-
nutim k periodicité (vlevo) je oddélena pe-
riodicka slozka (uprostied) od stochastické
(vpravo).

| R

Obrazek 4: V amplitudovém spektru (vlevo)
se ponechaji jen vyrazné frekvence (upro—
stied). Dale se provede zpétna Fourierova
transformace (vpravo).

Obrazek 6: Pro potifeby uc¢eni adaptivnich
metod je t¥eba stochastickou ¢ast (vlevo)
zrekonstuovat, aby byla bez neznamych pi-
xeltu (vpravo).

spektralni pasmo nesouci maximum informace a odpovidajici nejvétsimu vlastnimu ¢islu
(obr. 3).

Abychom ziskali dlazdici odpovidajici nejvétsi periodické ¢asti textury, musi byt zna-
my periody podél horizontalni a vertikalni osy. Existuje nékolik metod pro nalezeni period
zalozenych bud na riuznych statistickych pfistupech nebo na Fourierové transformaci (viz.
diskuse v [1]). Pro tento tucel byla pouzita suma ¢tvercovych diferenci, tak jako v [1].

Po nalezeni horizontalni a vertikdlni periody se ze vstupni textury vyfizne nejveétsi
mozna periodicka ¢ast. Vytez je pak prevzorkovan na rozméry odpovidajici mocnindm
dvou (obr. 3), které jsou vyzadovany pro filtraci zaloZené na rychlé Fourierové trans-
formaci. Filtr ponecha pouze koeficienty, které jsou lokalnimi maximy v amplitudovém
spektru, a koeficienty v jejich okoli. Navic je na lokdlni maxima kladena podminka, 7e
musi byt vétsi, nez predem stanoveny prah. Jako okoli lokdlnich maxim uvazujeme hie-
rarchické okoli prvniho nebo druhého Fadu (obr. 4).

Po filtraci se provede zpétna Fourierova transformace, pievzorkuje se zpét na pi-
vodni rozmér a tim se dostane odfiltrovany vytez. Tento vytez je pak binarizovan pomoci
urcitého prahu. Pro nalezeni korespondence k periodické a neperiodické ¢asti originalni
textury se binarni obrazek testuje na posuny o velikosti horizontalni a vertikalni peri-
ody a rozhoduje se, zda urc¢ity obrazovy bod patii nebo nepatii do periodické struktury

(obr. 5).
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2.2 Syntéza

Po oddéleni lze libovolnymi zptisoby provadét syntézu periodické a neperiodické ¢asti, a to
nezavisle na sobé, riznymi metodami. Pro rozsifovani periodické ¢asti je vhodné vyuzit
metodu zalozenou na dlazdicovani. V naSem ptipadé jsme vyuzili diive publikovanou
metodu Toroidni vdlecek [4], kterou jsme navic mohli zjednodusit diky pfedem zndmym
velikostem period a tedy i predem zndmym rozmériim minimalni toroidni dlazdice. Pro
rozSitovani neperiodické ¢asti lze vyuzit adaptivnich metod zalozenych na matematickych
modelech nebo lze vyuzit i nékterou z vhodnych vzorkovacich metod, v zavislosti na
charakteru neperiodické ¢asti.

Syntéza periodické ¢asti je jednoducha, uvazujeme pouze jeji znamé body. Ovsem pro-
blém nastava pii syntéze stochastické ¢asti, pokud chceme pouzit nékterou z adaptivnich
metod. Adaptivni metody vyzaduji pro fazi uceni dostatecné velky vzorek vstupni tex-
tury, obvykle alespon 256 x 256 bodi, ve kterém jsou vSechny body znamé. Po odfiltrovani
periodické struktury vsak nemame zajisténo, 7ze budeme mit k dispozici dostate¢né velky
vzorek pro uceni.

Budeme-li predpokladat, ze stochastické slozka je dostatecné homogenni, tedy v misté
periodické ¢asti by se nevyskytovaly vyrazné nehomogenity, pak lze pro doplnéni nezna-
mych oblasti vyuzit vhodnou vzorkovaci metodu (obr. 6). Pro nase acely jsme vyvinuli
metodu, jejiz zéakladni myslenka vychazi z algoritmu Image Quilting |2]. Z duvodu zacho-
vani slozitejsich elementii v neperiodické ¢asti vyuzivame syntézy pomoci bloki textury.
Pro optimalizaci hran bloku pti vkladani vyuzivame fezii s minimalni chybou. Pro syn-
tézu vyuzivame pouze bloky, které neobsahuji ani jeden neznamy pixel. Tento zpiisob se
osvédcil, je dostatecény pro vétSinu textur a ¢asto lze uspésné zrekonstuovat celou puvodni
podkladovou texturu.

Po nezavislé syntéze obou ¢asti se jiz jen vlozi periodické ¢ast pres syntetickou texturu
stochastické casti. Timto zpusobem lze také kombinovat periodické a stochastické ¢asti
libovolnych textur.

2.3 Zhodnoceni metody

Metoda funguje spolehlivé pro vétsinu periodickych struktur obsazenych ve vstupnich
texturach. Jednou 7 moznych komplikaci je pozadavek, aby periodicka sturktura byla pe-
riodickd ve smyslu celého vzorku textury, a to z duvodu vyuzivani Fourierovské filtrace.
Pokud lze vstupni texturu ofiznout tak, Zze maximalni vyiez je periodicky ve vodorov-
ném i svislém sméru, nevznikd zde zadny dalsi principielni problém. OvSem pokud bude
periodicka ¢ast v textufe natocena o obecny tihel, neméme jiz zajisténo, 7ze lze nalézt ma-
ximalni periodicky vyiez v obou smérech a nelze potom Fourierovskou filtraci periodickou
cast odfiltrovat.

Vysledek filtrace také dosti zavisi na charakteru vstupni textury, zejména pokud je
ve stochastické ¢asti pritomna néjaka vyznamnéa frekvence. Pak se nemusi podafit poza-
dované odfiltrovani periodické ¢asti.
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Obrazek 7: Vstupni textura (vlevo) a vysece korelaéniho Obrazek 8: Minimalni dlaz-
pole pro hledani period ve dvou ruznych smérech. Vpravo dice a vice dlazdic se stej-
pak vyfiznutda minimalni dlazdice. nymi hranami.

3 Vzorkovani periodicko-stochastickych textur

V pripadé predchozi metody nardzime na problém, kdyz je periodicka struktura natocena.
Protoze predchozi metoda selhava zpravidla uz pii detekei periodicit v horizontalnim
nebo vertikdlnim sméru, je tfeba se poohlédnout po jiné, obecnéjsi metodé, jak detekovat
vyznamné periodicity.

3.1 Detekce vyznamnych periodicit

Je ziejmé, ze pro hryby odhad velikosti periody a sméru periodicity lze snadno vyuzit
amplitudového spektra Fourierovy transformace. My vSak potiebujeme zjistit periodu ve
dvou ruznych smérech presné. Nalezneme je pomoci lokalnich maxim v poli korela¢nich
koeficientu pro ruzné posuvy. Abychom korela¢ni pole nemuseli pocitat celé, vyuzijeme
odhadu 7 Fourierovy transformace a budeme korela¢ni koeficienty pocitat jen na vysecich
(obr. 7), které ur¢ime na zakladé dvou maximélnich koeficientt v amplitudovém spektru.
Tyto dva maximélni koeficienty musi urcovat dva rizné nerovnobézné sméry. Presné
periody a jejich sméry najdeme na zakladé korelacniho koeficientu pocitaného pro rizné
posuvy vstupni textury.

3.2 Minimalni toroidni dlazdice

Ptesné periody nam soucasné urcuji velikost a smér hran minimélni toroidni dlazdice,
kterou budeme chtit ziskat ze vstupni textury. Pro hledani optimalni minimalni dlaz-
dice a jejich optimalnich hran zavadime obecné horizontalni a vertikalni oblasti prekryvu
(obr. 8). Uvazujeme, 7e protejsi okraje dlazdice se ¢asteéné piekryvaji a v téchto oblastech
prekryvu hledame optimalni ¥ez s minimalni chybou. Vhodny je algoritmus A*, ptipadné
Dijkstriiv algoritmus.

3.3 Ne¢ekolik toroidnich dlazdic

Jelikoz budeme chtit ziskat syntetickou texturu, ktera nebude vykazovat pravidelnost, mii-
7zeme hned vyftiznout nékolik minimalnich dlazdic a jejich hrany optimalizovat tak, aby
do sebe protéjsi hrany zapadaly. Jejich vzajemnou libovolnou kombinaci pak muzeme
generovat texturu pozadovanych rozméri. Hledani dalsich vhodnych dlazdic provadime
pomoci korelace. Vyfiznutou minimalni dlazdici véetné oblasti prekryvu posouviame po
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Obrazek 9: Princip syntézy textury. Vlevo vstupni textura, uprostied princip skladani
miniméalnich toroidnich dlazdic generujicich novou vystupni texturu a vpravo nova syn-
teticka textura.

vstupni textufe a na zakladé korelacniho koeficientu hledame dalsi vhodné dlazdice. Je-
likoz nékolik takto nalezenych dlazdic je velmi podobnych, hleddme stejny optimalni fez
pro v8echny dlazdice najednou (obr. 8), ¢im7 zajistime jejich vzajemnou névaznost.

3.4 Syntéza

Syntéza textury je velmi jednoducha a nevyzaduje zadné komplikované vypocty. Proces
syntézy je pouhé vyplnéni konecné oblasti nékolika vzajemné navazujicimi toroidnimi
dlazdicemi (obr. 9). Dlazdice jsou umistovany postupné po krocich danych dvéma hlav-
nimi periodami. Po vyplnéni konecné oblasti timto zptisobem ziskdme novou texturu
libovolnych rozméri.

3.5 Zhodnoceni metody

Tato metoda velmi tispésné generuje syntetické textury z libovolného vzorku periodicko-
stochastické textury. Znacnou vyhodou je nezavislost na natoceni periodické casti. V
pripadé, ze budeme vyzadovat syntetickou texturu otocenou jinak, nez je vzorek, staci
otocit vzorek a pak teprve metodu pouzit. Neni tfeba otacet az vystupni texturu, ktera

Castym pozadavkem je rychla faze syntézy, nejlépe v redlném case. Analyticka ¢ast
slouzi k odhadu nebo hledani parametru, které se vyuziji pii syntéze. Analyza je obvykle
¢asové velmi naro¢né a nebyvaji na ni kladeny zadné zasadni ¢asové naroky. Cést syntézy
by v§ak méla byt co nejrychlejsi a v idedlnim ptipadé by méla byt oddélena od analyzy, aby
nebyla zatizena naro¢nymi vypocty. Pravé tyto pozadavky metoda splhuje a umoznuje
proto syntézu v redlném case.

Jako nevyhoda se miize jevit obecny tvar toroidnich dlazdic, ktery muze na prvni
pohled komplikovat manipulaci s nimi. Z divodu zachovani vzajemné navaznosti vice
dlazdic v8ak nelze hrany déle optimalizovat a je nutné zachovat jejich obecny charakter.
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Obrézek 10: Syntéza jednotlivych slozek periodicko-stochastické textury. Vlevo vzorkovani
periodické slozky a vpravo modelovani stochastické slozky.

Obréazek 11: Vysledky syntézy periodicko-stochastickych textur. Periodicka ¢éast je rozsi-

s vz

fovana dlazdicovanim, stochasticka ¢éast je modelovéana.
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Obréazek 12: Ukazka editace textur. Pravidelné slozka textury je kombinovéna se stochas-
tickou slozkou textury jiné.

Obrazek 13: Vysledky vzorkovani periodicko-stochastickych textur, pro syntézu nové tex-
tury bylo pouzito 4 az 8 dlazdic.
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4 Vysledky

Obé metody dosahuji velmi dobrych vysledki a byly testovany na Sirokém spektru peri-
odicko-stochastickych textur. Vétsina vyslednych syntetickych textur je vizualné neroz-
ligiteln4 od vstupnich vzorku, navic lze provést syntézu v redlném case a nezavisle na
vzorku o velikosti 256 x 256 nebo 512 x 512 bodu vyzaduje ¢as v faddu nékolika minut.
éasy byly méfeny na PC Intel Core 2 Duo 2.4GHz s 2GB RAM.

Na obrazku 10 je ukazka oddéleného zpracovani periodické a stochastické slozky tex-
tury. Periodicka slo7ka je vzorkovana, v nasem piipadé algoritmem Toroidni vdlecek [4],
stochasticka slozka je modelovana pomoci kauzalniho autoregresniho modelu [5]. Obra-
zek 11 prezentuje vysledky syntézy, periodicka slozka byla opét vzorkovana a stochasticka
modelovana. Na obrazku 12 je zndzornéna alternativni moznost vyuziti metody k editaci
textur, kombinovani periodické a stochastické slozky ruznych textur.

Vysledky syntézy periodicko-stochastickych textur vzorkovaci metodou jsou na ob-
razku 13, pro syntézu bylo pouzito 4 az 8 toroidnich dlazdic, v zavislosti na charakteru
vstupniho vzorku.

b Zaver

Syntéza textur je alternativnim a vétSinou jedinym moznym zpiisobem generovani textur
k pfimému pouziti v pocitacové vizualizaci. Ma Siroké uplatnéni v pocitacové grafice,
zejména pak v oblasti virtualni reality, protoze v ruznych aplikacich je tfeba modelovat
objekty realného svéta. Aby tyto objekty vypadaly co nejvérohodnéji, je nutné je pokryt
vhodnym povrchem. A zde se pfimo nabizi syntéza textur. Misto velké textury, ktera by
pokryla cely objekt, sta¢i mit maly vzorek, ze kterého se vhodnou metodou ziska textura
patfi¢nych rozméri. Takto ziskana textura se pak mapuje na povrch objektu.

Vhodnou metodou se rozumi takova metoda, ktera odpovida pozadavkim aplikace.
Hlavnimi faktory ovliviujici vybér metody jsou vyslednd kvalita, rychlost a moznost
komprese. Casto je tieba zvolit ur¢ity kompromis mezi kvalitou a rychlosti. Navic je tato
prace zaméfena na periodicko-stochastické textury. Vyuzijeme-li vlastnosti periodicko-
stochastickych textur, pak lze pro toto spektrum textur vyvinout efektivni specializované
metody.

Obé metody jsou schopny modelovat syntetické periodicko-stochastické textury z da-
ného texturniho vzorku, pficemz vstupni vzorek a syntetickd textura jsou ve vétsiné
pripadi vizualné nerozlisitelné.

Prvni z metod umoznuje priimérnou kompresi pii manipulaci s periodickou slozkou,
zatimco stochastickou slozku lze diky adaptivnim metodam modelovat na zdkladé nékolika
malo parametri, ¢imz lze dosdhnout znac¢né komprese.

Druha z popsanych metod je pouzitelna nejen pro syntézu periodicko-stochastikych
textur a dosahuje velmi dobrych vysledku. Z charakteru metody je zifejmé, 7Ze nebude fun-
govat na vzorcich textur, které jsou poskozeny nerovnomérnou intenzitou jasu ve vzorku,
nejsou dostateéné reprezentativni a nebo které jsou poskozeny geometrickou transformaci.
Dodejme, ze v téchto piipadech selhavaji metody povazované za $pickové.
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Abstract. The paper briefly presents the development of software system HARP which is being
developed in IITA. The HARP system is designed as a decision support tool (DSS) for purposes
of fast assessment of radiological consequences of accidental releases of radionuclides into living
environment. Particular attention is devoted to assimilation subsystem of the HARP system
and its exploitation in analysis and prediction of further evolution of a scenario dealing with
long-term deposition of 137C's over terrain. The present work demonstrates utilization of Kalman
filter in assimilation process of the scenario and also a model used for modeling of long-term
exposure due to groundshine in Japan DSS OSCAAR (Off-Site Consequence Analysis code for
Atmospheric Releases in reactor accidents) is introduced.

Abstrakt. Prispévek strucné popisuje soucasny stav vyvoje softwarového systému HARP vyvi-
jeného v UTTA. Jedna se o pomocny néastroj pro hodnoceni a analyzu néasledka unika radionuk-
lidia z jadernych elektraren do okolniho prostiedi. Zvlastni pozornost je vénovana asimila¢nimu
subsytému systému HARP a jeho vyuZiti pro analyzu a predikci vyvoje aktivity z dlouhodobé
depozice radioaktivniho 37C's na terénu. V piispévku je popsan Kalmaniv filtr a jeho vyuziti
v asimilaénim procesu konkrétniho scénare vyuzivajictho model pro davky zareni z dlouhodobé
depozice radionuklidi na zemském povrchu adaptovaného z japonského baliku modeli OSCAAR
(Off-Site Consequence Analysis code for Atmospheric Releases in reactor accidents).

1 Introduction

In the current state of development is software system HARP capable to model atmo-
spheric dispersion of radioactive pollutants and subsequent dose distributions and health
effects in the exposed population. Main objective is to improve reliability of the model
predictions via advanced statistical techniques of assimilation of model results with ob-
servations from terrain. The aim is to develop modeling, simulation and educational tool
with unified user-friendly graphical interface for utilization in radiation protection.

2 HARP system

The HARP system consists of three main parts: Atmospheric dispersion model (ADM),
Dose model (DOS) and Food-chain model (FCM), more in [3]. In recent development

*This work is part of the grant project GACR No. 102/07/1596, which is funded by Grant Agency
of the Czech Republic.
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of HARP were numerical algorithms modified from deterministic to their probabilistic
versions, see |2|. Probabilistic version enables for sensitivity analysis, uncertainty analysis
and also for statistical estimate of error covariance structure of generated data. The block
diagram of system architecture is in the Fig. (2).
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Figure 1: The architecture of the HARP system. Deterministic numerical kernel is inter-
connected to visualization and assimilation submodule via graphical user interface.

2.1 Assimilation submodule

Assimilation submodule offers comfortable graphical user interface for interactive inser-
tion of data and its maintenance and evaluation. Numerical and assimilation subsystem
have direct binding to visualization submodule (see Fig. (2)), so both modeled data and
measurements can be easily visualized on relevant scalable map background. Evalua-

tion of results is also supported by data tables and comparative graphs. Also access
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to ORACLE database of meteorological forecasts and measurement stations included in
Radiation Monitoring Network of the Czech Republic is established there. In the cur-
rent state of the art are implemented following assimilation algorithms: Interpolation
procedures, successive corrections method, optimal interpolation and Kalman filter.

2.2  Atmospheric dispersion model

ADM in HARP is based on segmented Gaussian plume model (SGPM). The segmentation
allows us to use different set of input parameters for each of the segments. In the current
state of development the model has more than hundred input parameters and the most
significant of them P; — Py (resulting from sensitivity analysis) are listed in Table (2.2).
In the table are distributions of random parameters multiplicatively applied to nominal
values of input parameters in order to obtain probability distributions of those. Parameter
distributions are expert-based estimates supplemented by measurements. The influence
of the rest of model input parameters on variation of model output is assumed to be
unimportant and these parameters are on input set to their best estimate values.

We divide the parameters into to groups: Local and global. The global parameters
don’t vary through the segments and remains same for all of them. Values of local
parameters vary in time and/or with spatial location. SGPM enables to take into account

Variable G/L Min Mean Max Distribution o
P, - intensity of release 1.0 normal 0.20
P, - horiz. dispersion 1.0 normal 0.13
Pj - horiz. fluct. of wind dir. -5 0 5 disc. uniform

0.41 1.0 1.6 uniform
0.41 1.0 1.6 uniform
0.2 1.0 5.0 log-uniform
0.2 1.0 5.0  log-uniform
-1.0 0.0 1.0 uniform
0.5 1.0 1.5 uniform

P, - dry deposition of elem.
P5 - dry deposition of aero.
Ps - elution of elem. iodine
P- - elution of aero.

Py - advection speed of plume
Py - wind profile

DEONORQRORORONPNGNPNYP:

Py - vertical dispersion 1.0 normal 0.13
Py; - mixing layer height 0.6 1.175 1.75 uniform
Pj5 - heat flux G 0.0 0.5 1.0 uniform

Table 1: The most significant parameter of ADM and distribution of multiplicative factors
used for their generating from nominal values.

realistic weather forecasts hourly provided by the Czech Hydro-Meteorological Institute.
ADM also accounts for many factors affecting the plume depletion (dry/wet deposition,
influence of terrain type etc.).

3 Scenario for long-term deposition of '*’C's over terrain

The plume moving over the terrain leaves behind a radioactive trace due to dry and wet
activity deposition. Movement of a plume over observed area lasts usually few hours.
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When the plume leaves observed area, the trace represents an initial condition for predic-
tion of further evolution of radiological situation on terrain. Our analyzed scenario starts
just after the plume leaves the observed terrain. An emphasis is laid on prediction of long
term evolution of radiological situation in time horizon of years up to tens of years. This
knowledge is important for planning of long-term countermeasures relating to food-chain
model, which is also a part of the HARP system.

The only nuclide assumed in this scenario is 37C's. As half-time to decay of 137C's is
approximately 30 years, it is one of most significant and dominant source of radioactivity
in long term scenarios.

Initial conditions (background field) for assimilation is given by the ADM when the
radioactive plume is gone. As s model of radiation situation evolution is used the relation
according to Eq. (3) from the OSCAAR model. The crucial task is to estimate error
covariance structure of the model and the background field. As a first attempt, we
are trying to estimate error covariance structure by Monte-Carlo approach as a sample
covariance of a drawn sample of size N ~ 103. The sample was generated according to
given probability distributions, see Table (3.1).

Alternative way of estimation of error covariance structure could be a spatial filter
widely used in meteorology because of high dimensionality of problems solved there. Spa-
tial filters are based on assumption: The bigger distance between two points the smaller
correlation between modeled /measured values in these points. This assumption is rather
unrealistic and physically inexact and also denies one of major advantages of assimila-
tion methods - embodying of physical information. Spatial filters for determination of
correlation between points ¢ and j proposed by Bergthorson and Doos are as follows:

P/ = i 1

ij — €Tp A ( )
o Tiq T

Pl =(1+ fj)exp [—fj} (2)

where 7;; is the distance between the points and L is a chosen constant called radius of
influence.

3.1 OSCAAR model

Abbreviation OSCAAR stands for Off-Site Consequence Analysis code for Atmospheric
Releases in reactor accidents and it has been developed within the research activities on
probabilistic safety assessment at the Japan Atomic Research Institute |7]. OSCAAR
consists of a series of interlinked modules and that are used to calculate the atmospheric
dispersion and deposition of selected radionuclides. In this work are adopted formulae
and principles used in OSCAAR for prediction of dose rate due to long-term groundshine.
It can be expressed by the Eq. (3).

D,(t)=SDy-R(t)- E(t)- DF,-L-Y _ fi- (OF™ + OF" - SF) (3)

The interpretation of terms in Eq. (3) is in the Table (3.1). The following exponential
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D,(t) dose rate on day t after deposition of a radionuclide (Sv s™')
SDy  total deposition of the radionuclide at place k (Bq m™2)
R(t)  factor to account for radioactive dacay occuring
between the deposition and ¢
E(t)  factor to account for the environmental dacay
of groundshine (Sv s~! per Bqg m=2)
DF, dose-rate conversion factor for groundshine
L geometric factor (%)
fi fraction of i-th occupation group (%)
OF?“  outdoor occupancy factor for i-th occupation group (%)
OF!™ indoor occupancy factor for i-th occupation group (%)
SF shielding factor for wooden of brick house (%)

Table 2: Interpretation of term in Eq. (3)

functions represent the two factors of R(¢) and E(t) as a functions of time. The experi-
ments had shown that the mitigation of groundshine due to environmental decay follows
relation given by superposition of two exponentials (Eq. (5), (6)).

t

R(t) = exp(—=In2 - ) (4)
T,
t t
E(t) =ds - exp(—In2 - —) + ds - exp(—In2 - T—) (5)
sf ss
where
df +dy, =1 (6)

Ground deposition model formulae are semi-empirical, it means that some of equation
parameters are determined empiricaly upon measurements and the parameter values de-
pend on the local conditions in the place of model application (soil type etc.). The dose
conversion factor was calculated by the method of Kocher (1980) in which the exposed
individual was assumed to stand on a smooth, infinite plane surface with uniform con-
centration of source of radioactivity. Data used in the groundshine dose calculations

Variable Mean Min Max Distribution Units
d, 0.52 0.40 0.71 Uniform -
Ts¢ 1.1 041 14 Uniform y
Ty 28 24.3 294 Uniform y
L 0.45 0.2 0.7 Uniform -
SF (wood) 0.52 0.26 0.78 Uniform -
SF (brick) 0.2 0.1 0.3 Uniform -
DF, 5.86 x 1071 - - Sv s'/Bgm™?

Table 3: Parameter values used for ground exposure calculations in OSCAAR model.

are given in Table (3.1). The parameter distributions were determined for ¥"C's from
Chernobyl disaster. The appropriate data for other elements are not available but it is



54 R. Hofman

assumed that the long-term influence of most of them is not significant. For elements
with high half-time to decay are assumed the same equations of groundshine mitigation
as for 137C's. As in the HARP, the approach used in OSCAAR adopted probabilistic
methodology and it allows us to determine error covariance structure of the model. It is
a necessary condition for application of advanced assimilation techniques to the model

(Kalman filter, ADVAR).

4 Data assimilation

The goal of data assimilation is to provide an analysis which relies on measurements
and so called background field from a model forecast. Other inputs to data assimilation
process can be physical constraints on the problem or any additional prior knowledge not
included in the model. Merging of these contending sources of information had shown
to be very promising in many branches of contemporary Earth sciences like meteorology
and oceanography.

In data assimilation we try to adjust model according to measured values what repre-
sents research effort to move from isolated model prediction forward reality. An automatic
procedure for bringing observations into the model is called objective analysis. The major
progress of the objective analysis was achieved in the field of meteorological forecasting
techniques that represents efficient tool in struggle with tendency to chaotic destruction
of physical knowledge, see |5|. Advanced assimilation methods are capable to take into
account measurements and model errors in form of error covariance matrices.

In the Fig. (4) we can see the schematic of two stage assimilation process. In the first
stage called data update step are modeled values adjusted according to all measurements
available in certain time step. This part of data assimilation process is often called
intermittent assimilation. This step allows us to get new and hopefully better initial
conditions for time update step which performs the prediction of evolution of an analyzed
quantity. Advanced assimilation algorithms also enables for prediction of evolution of
model errors. Without data update step we could get a prediction substantially diverging
from the true evolution.

4.1 Kalman filter

The Kalman filter (|1]) has long been regarded as the optimal solution to many tracking
and data prediction tasks. The purpose of filtering is to extract the required information
from a signal, ignoring everything else. Kalman described his filter using state space
technique which enables filter to be used as either a smoother, a filter or a predictor. In
this paper is presented exploitation of Kalman filtering method in a special assimilation
scenario.

As was already stated in previous paragraph, initial condition for the task of prediction
of radiological situation evolution is given as a result of ADM when the plume is gone.
Reliability of this initial value x; (often called background field) can be improved by
assimilation process. If there are available some measurements y’ at time ¢ which we
assume to be more reliable then the model, we can adjust the model according to their
values with respect to physical information contained in the model. Error covariance
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Figure 2: The schematic of data assimilation process.

structure is expressed in form of error covariance matrices of model P'} and measurements
R’. The result of this process in time ¢ is a new better initial condition x!, called analysis
(Eq. (7), Eq. (8)) and information on its error covariance structure P’ (Eq. (9)). H
is a linear operator for transformation of points from space of model into the space of
measurements. This process is called data update step of Kalman Filter.

x, = x; + K'(y, — Hx}) (7)
K'=P/H"(R'+ HP/H") ™' (8)
P, = (I1-K'H)P, (9)

The second step is called time update and in this step is performed time evolution of an

analyzed quantity via linear model M (Eq. (10)) and also evolution of its error covariance

structure (Eq. (11)). Output of second step of Kalman filter is prediction x;“ and

information on error of this prediction P'}H.
x?l = Mx!, (10)
P =MPM" + Q (11)

This two steps can be iteratively repeated as long as new measurements are available.
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5 Results and Conclusion

In assumed scenario the exposure was assumed with no shielding, so shielding coefficients
were set to 1. Because of lack of real measurements testing of an assimilation process
was performed with simulated measurements sampled from the same numerical model
using perturbed input parameters. Early results which will be presented in oral part of
presentation show that this task can be successfully solved via two step data assimilation
process, but there are still some problems especially with estimation of error covariance
structure and its propagation forward in time.

The achieved results had shown so far that the differentiation of ADM input pa-
rameters to local and global introduced in paragraph 2.2 substantially influences error
covariation structure of the model. Choice of parameters to vary in order to estimate
error covariance structure is important part of assimilation process. Some results were
already published in [6]. The results from spatial filter (Eq. (1), (2)) could by used for
weighing of statistical estimate of error covariance structure and to mitigate the influence
of global vs. local property of certain input parameter.

In the next development of assimilation methodology and HARP system is intended
to implement some other advanced assimilation methods based on Bayesian approach.
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Abstract. The EM algorithm has been used repeatedly to identify latent classes in categori-
cal data by estimating finite distribution mixtures of product components. Unfortunately, the
underlying mixtures are not uniquely identifiable and, moreover, the estimated mixture param-
eters are starting-point dependent. For this reason we use the latent class model only to define
a set of “elementary” classes by estimating a mixture of a large number components. As such a
mixture we use also an optimally smoothed kernel estimate. We propose a hierarchical “bottom
up” cluster analysis based on unifying the elementary latent classes sequentially. The clustering
procedure is controlled by minimum information loss criterion.

Abstrakt. Shlukovani kategoridlnich dat je ¢asto FeSeno hledanim tzv. latentnich t¥id pomoci
EM algoritmu. Tento pfistup ovSem zévisi na pocatecnim feSeni a narazi na problém neiden-
tifikovatelosti smési. Popisovand metoda vyhledava shluky nikoliv jako jednotlivé komponenty
smési jako v piipadé latentnich t¥id, ale jako podsmési vzniklé slouc¢enim nékolika jednoduchych
t¥id z odhadnuté distribu¢ni smési s vys$sim pocétem komponent. Extrémni variantou takové
smési miize byt jadrovy odhad, jehoz optiméalni vyhlazeni je v préci popsano. V praci je dale
predstavena metoda hierarchického shlukovani s kritériem nejmensi informacni ztraty.

1 Introduction

The concept of cluster analysis is closely related to the similarity of objects or distance of
data vectors defined by a metric. The cluster analysis of categorical (nominal, qualitative)
data is difficult because the standard arithmetical operations are undefined and also
there is no generally acceptable definition of distance for multivariate categorical data.
For these reasons the available methods of cluster analysis cannot be applied directly to
categorical data.

At present the standard approach to cluster analysis of categorical data is to introduce
some similarity measure or distance function in a heuristical manner. It appears that the
only statistically justified method to analyze multivariate categorical data is the latent
class model of Lazarsfeld |5|. Motivated by sociological research he proposed the fitting
of multivariate Bernoulli mixtures to binary data with the aim to identify possible latent
classes of respondents. Serious drawback of the Lazarsfeld’s idea has been the tedious and
somewhat arbitrary methods used for fitting the models. The numerical problems have
been removed by the computationally efficient EM algorithm [1]. In the last years the
original idea of Lazarsfeld has been widely applied and frequently modified by different
authors (cf. e.g. [3] and [9] for extensive references).

*This research was supported by the grant GACR 102/07/1594 of the Czech Grant Agency and by
the projects of the Grant Agency of MSMT 2C06019 ZIMOLEZ and 1M0572 DAR.

o7
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In this paper we propose a hierarchical approach to cluster analysis of categorical
data in the context of data mining. Applying the latent class model to large multivariate
databases we assume a large number of classes (M = 10" = 10?) with the aim to approxi-
mate the unknown probability distribution. The EM algorithm yields different parameter
estimates but the approximation accuracy of the estimated mixture is comparable. The
initial parameters of the estimated mixture can be chosen randomly without affecting the
quality of estimates essentially. Unlike the latent class analysis we use the estimated mix-
ture components only to identify “elementary” latent classes with the posterior component
weights playing the role of membership functions. The underlying decision problem can
be characterized by the statistical decision information. We assume that the statistical
properties of data can be described by the estimated mixture even if the “elementary”
components are not defined uniquely. We assume that potential clusters can be identified
by the optimal decomposition of the estimated mixture into sub-mixtures. We propose
a hierarchical clustering procedure based on sequential unifying of the elementary latent
classes. The procedure is controlled by the minimum information loss criterion.

Another way to describe the given data is the kernel estimate. In this paper we present
an optimally smoothed kernel estimate which can be used as a distribution mixture for
above mentioned clustering.

The paper is organized as follows. We first describe the idea of latent class analysis and
the related problem of estimating discrete product mixtures by means of EM algorithm
(Sec. 2). Section 3 introduces the statistical information criterion, Sec. 4 describes the
method of hierarchical cluster analysis and the section 5 describes the possibility of kernel
estimation. The application of the method is illustrated by numerical example in Sec. 6.
Finally we discuss the main results in the Conclusion.

2 Latent Class Model

Let us suppose that some objects are described by a vector of discrete variables taking
values from finite sets:

= (x1,...,2N), Tp Xy, |Xy| <00, TEX =X X+ X Xy. (1)

We assume that the variables are categorical (i.e. non-numerical, nominal, qualitative)
without any type of ordering. Considering the problem of cluster analysis we are given a
set of data vectors

S={zW, . 25} z®ecx (2)

and the goal of cluster analysis is to partition the set S into “natural” well separated
subsets of similar objects

= {81,32, ce ,SM}, S = U;»lesj SZ ﬂSj = Q), for ¢ 7é j (3)

In this sense the concept of cluster analysis is closely related to some similarity or dissimi-
larity measures. Unfortunately, in case of categorical variables the arithmetical operations
are undefined and therefore we cannot compute means and variances nor there is any gen-
erally acceptable way to define distance for the categorical data vectors @ € X. Binary
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data, as a special case, may appear to be naturally ordered, however, the values 0 and 1
are often assigned quite arbitrarily. For these reasons the available algorithms of cluster
analysis are not directly applicable to categorical data.

The standard way to avoid this difficulty is to introduce a similarity measure or
distance function for categorical data in a heuristical manner. It may appear quite easy
to define a distance table for a single categorical variable, especially in case of some
well interpretable values. However, in a multidimensional space the problem of distance
definition becomes difficult because of uneasy foreseen consequences of interference of
different distance tables.

As it appears the only statistically justified approach to clustering categorical data
can be traced back to the latent structure analysis of Lazarsfeld |5 who proposed to
identify latent classes in binary data by estimating multivariate Bernoulli mixtures. The
method is easily generalized to categorical variables and it is often applied in different
modifications as “latent class analysis” [9]. The latent class model is defined as a finite
mixture of a given number of product components

P(x)= Y wyF(xlm), xeX, ~M={1,... M} (4)
meM
Here w,, are non-negative probabilistic weights
Zwmzl, 0<w,<1l, meM, (5)
meM

F(x|m) are the mixture components defined as products of univariate conditional (com-
ponent specific) discrete distributions f,,(z,|m)

F(alm) = [] fulaalm), N =1{1,...,N} (6)
neN

and M, N are the index sets of components and variables respectively.

The latent class model (4) naturally defines a statistical decision problem. Having
estimated the mixture parameters we can compute the conditional probabilities
Wy, F(2|m)
jeEM ’LUJF(JZ‘]) ’

qg(mlx) = reX, meM (7)
2

which can be viewed as membership functions of the estimated latent classes. They are
particularly useful if there is some interpretation of the mixture components, e.g. if the
components can be shown to correspond to some real “latent classes” |5], “hidden causes”
[6] or “clusters” having a specific meaning.

A unique classification of data vectors € X can be obtained by means of Bayes
decision function (with the ties arbitrarily decided)

d(z) = argmax{q(jlz)}, = €X. (8)

By using the Bayes decision function d(x) we obtain the elementary “latent class” partition
R of the set S by classifying the points « € S:

R=1{S.S0....Su), Sn={xecS:dx)=m}, meM. 9)
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In other words the partition R is defined by the maximum posterior weights ¢(m|x) and
represents the result of latent class analysis in the original form as proposed by Lazarsfeld
(cf. [5], [3]), [9])- The latent class model (4) seems to be one of the most widely applicable
tools of cluster analysis of categorical data. The original idea of Lazarsfeld has been used
by many authors to identify individual classes of bacteria (cf. e.g. [3]) and more recently
Vermunt et al. |9] describe different modifications of the latent class analysis as applied
in diverse fields.
The standard way of estimating mixtures is to use EM algorithm (cf. [1], [4]).

particular to compute maximum-likelihood estimates of mixture parameters we maximize
the log-likelihood function

|S|ZlogP |S|Zloglz Wy, F :c|m] (10)

xeS xeS meM

A serious disadvantage of the latent class analysis relates to the fact that the resulting
clusters may be non-unique. It is obvious that, if the estimated mixture is not defined
uniquely, then the corresponding interpretation of data in terms of latent classes may
become questionable. Unfortunately, there are at least three sources of uncertainty which
may influence the resulting mixture parameters. First, there is no exact method to
choose the proper number of mixture components (cf. [4]). Another source of multiple
solutions is the existence of local maxima of the log-likelihood function (10). For this
reason we can expect different locally optimal solutions depending on the chosen initial
parameters. However, even if we succeed to manage the computational aspects of mixture
estimation, there is still the well known theoretical problem that the latent class model
is not identifiable (cf. [3]). In particular it is easily verified that any non-degenerate
mixture (4) can be expressed equivalently in infinitely many different ways [2|.

3 Minimum Information Loss Criterion

In view of Sec. 2 the latent class model (4) is the only information source about the
structural properties of the data set S. For this reason we identify the clusters by means
of the optimal decomposition of mixture (4) into sub-mixtures.

Recall that having estimated the mixture parameters we can define the elementary
latent classes by classifying the data vectors € S according to the maximum posterior
weight g(m|x) (cf. (8), (9)). The underlying decision problem can be characterized by
the statistical decision information. By using the Shannon formula we can write

(X, M) = H(M) - HM|X), H(M)= > —w,logw,, (11)
meM
H(M|X) =) P(x)H,(M) =Y P(x) >  —q(m|z)logq(m|z). (12)
xreX xeX meM

Here H(M) is the uncertainty connected with estimating the outcome m € M of a
random experiment with the probabilities {wy, ..., wy} without any other knowledge.
Given a vector * € X we can improve the estimation accuracy by computing the more
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specific conditional probabilities ¢(m|x). The statistical decision information (X, M)
contained in the latent class model is defined as the difference between the a priori entropy
H (M) and the mean conditional entropy H(M|X') which corresponds to the knowledge
of x € X.

It can be seen that a partition I/ of the index set M

C
U={M My, . . Mc}y, [ JMe=M, i#j=MnM; =0 (13)
c=1

actually defines a decomposition of the estimated mixture into sub-mixtures:

Z Z Wy, F(x|m) = Z (x|M,.) p(c), =xeX, (14)

c=1 meM., =1
W
P(x|M,) = Z mF(m\m), p(c) = Z Wy, c¢=1,....C. (15)
mE./\/lc meMc

The sub-mixtures P(x|M,) can be then used to define the partition of the space X
into corresponding clusters. We can write

p(clz) = p(CH;((z\)Mc) _ Zme/\/lpu():) (|m) _m;; a(mla), (16)
d(xlU) = arg mfmx{p(c\a:)}, reX (17)

and by using the decision function d(x|U/) we obtain the partition
o={xW x@  x x=ulx0  xOnx0) =0, fori#j (18)
for which we get
c
P(X9) = ) Pl)=) P@XIM)pl):  PEIIM)= Y PlxlM.) (19)
X (© =1 e X (©)

Here the clusters X(¢) € ® correspond to the respective sub-mixtures P(x|M.). By
using the Shannon formula we can express the statistical decision information contained
in the decomposed mixture. In analogy with (11), (12) we can write

[(®,U) = H(®) — H(®U), H®) = Z —P(X9)log P(X), (20)
x@ed
H(®U) =) plc)Hp, (@ Hu (@) = ) —P(XY|M,)log P(XD|M,). (21
ceU xXWed

Intuitively it is clear that by fusing sub-mixtures (or components) we loose some
decision information. Indeed, we can easily verify that the decision information decreases
if we join any two subsets M;, M; € U of a given partition U (for more see [10]).
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4 Minimum Information Loss Cluster Analysis

In view of the above equations any cluster analysis based on mixture decomposition is
connected with some information loss from the point of view of the underlying decision
problem. Naturally we would be interested in maximizing the statistical information
about ® contained in U/ and therefore the elementary information loss seems to be a
suitable criterion to control the process of sequential fusion of the components and sub-
mixtures in the original latent class model. However, our experiments have shown that
better results are gained when relative information is used.

In order to evaluate the information loss connected with the partitions ® and U we
have to estimate the information I(®,U) by means of the observation sample S. By using
the estimates

G(m| Xy = §: (m|x), P@wﬂy:Eﬁk jeM (22)

rs | 2 3]

we can write

pelX )= > amx) =% — Z (me) (23)

meM. meM. Se €S
and therefore

HuUl®)= ) P o (@) == Y PX9) ) p(clX)logp(c| X)) (24)

X ecd X ecd ceUu

and finally we obtain the criterion @);;

A

Heu) I1@.u)  HUP) N H(U'|®)
HU)  HUW) — HU) H(U')

Qij = (25)

The described criterion ();; is an estimate of the relative information loss arising after
union of the two subsets M,;, M, in the partition &/ and the corresponding clusters X0
XU) in the partition ®. In the following we use the estimated relative information loss Qij
as a criterion for the optimal choice of the pair of subsets to be unified. In other words,
in each step of the procedure we unify the two sets M;, M, € U and X0 x0) e & for
which the resulting information loss ();; is minimized.

In the considered decision-making framework a natural goal of cluster analysis is to
preserve maximum decision information with a minimum number of clusters. Let us re-
mark that the most general result of the above algorithm is the sequence of information
loss values {Qz(f)}ﬁ/le produced by the hierarchical clustering procedure. The form of
the sequence suggests different possibilities of final clustering and simultaneously it can
be seen how justified are the resulting clusters. For a given mixture (4) the sequence
{ng)}kle is defined uniquely and the form of the sequence should be similar for compa-
rably good estimates of the underlying latent class model.

The proposed method of cluster analysis of categorical data can be summarized as
follows:
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Algorithm:

1. Estimation of the latent class model (4) for the categorical data set S by means of
EM algorithm for a sufficiently large M.

2. Definition of the basic mixture U = {{1},{2},...,{M}} and the basic latent class
partition & = {xXM x@  yxO0H}

3. Sequential unifying the most similar subsets M;, M; € U and X0 x0 e @ for
which the resulting relative information loss ();; (cf. (25)) is minimal.

4. Choice of the optimal partition U* according to the point of ng).

5. Definition of the resulting clusters in S by means of the decision function d(z|U*).

5 Discrete Kernel Estimate

In previous sections we worked with distribution mixtures with component count M < |S|
which parameters were estimated by EM algorithm. Another way to approximate the
propability distribution P(x) is a non-parametric kernel estimate. For a given data
sample S the discrete Parzen estimate can be defined as

= 1] ZG x|y) (26)

yeSs

where the kernel function G(x|y) can be expressed as a product of binomial functions g,

o, for x, =y,, a, € (11
w‘y H gn xn’yn gn(xn‘yn) = <1201n> (27)
neN 671 for Tn 7é Yns 671 — Kn—1

where the parameters «,, and 3, are the smoothing parameters.

The kernel eqtimate (26) is formally a distribution mixture with uniform component
weights equal to E and, therefore, it could be used for the cluster analysis in the way
described in the previous sections, without loosing the decision information during the
mixture estimation.

5.1 Optimally Smoothed Kernel Estimate

Choosing the values of the smoothing parameters a,,,n € N seriously affects the quality
of the estimate. We use a method based on log-likelihood cross-validation (Duin |7])
which is based on maximizing the log-likelihood function.

In order to avoid the trivial results (a,, = 1) we use the following modification of the
log-likelihood function:

Zlog = > 1 9n(ealyn an) (28)

xes yeS, y£x neN
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As there is no general analytic solution we use the iterative method based on EM
algorithm for maximizing the criterion (28). The EM algorithm modification is following

E-step:
G(zly, o)

(t+1) _
1 (y‘w) ZzGS,z!:m G(CE|Z, a(f))

(29)

M-step: (implicit form)

<t+1>fdrgmdx{z S ¢ (ylz) log (C?(fvly;a) } (30)

G(z|y, altD)
xS yeS,x#y ’
which can be explicitly written as

D) — Za:ES ZyES,xnzyn,myﬁy q(t+1)(y|$)
! ZmES Zyes,myéy q(t+1) (y‘w)

neN (31)

6 Numerical examples
Handwritten Non-stylized Numerals

In the example the proposed minimum information loss cluster analysis has been applied
to classification of handwritten non-stylized numerals on a binary raster. We have used
400 000 numerals from the NIST database uniformly representing the classes 0,1,...,9.
Each of the numerals in the data base has been normalized to a square 16 x 16 binary
raster, i.e. it has been represented by a 256-dimensional binary vector.

O 02000 O NOOQDDOOO000 OO0
'S VNIV VPPNV PI VI I
ENr iy drArd v dr - e R N o e e v e [ [ O e e e e = e s
Elc KE S KB ek ke R EEREEEECLIE T EEE
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S s S s A S SA S A58 5 S S5 555554
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Figure 1: Examples of numerals from the NIST database normalized to the 16x16 binary
raster.

Normally the NIST numerals are used as a benchmark problem for a supervised pat-
tern recognition. The supervised classifier is trained for each class separately with the
resulting relatively low classification error. Obviously, the non-supervised solution of the
problem cannot be expected to achieve comparable accuracy, however, from the point of
view of cluster analysis, we have again the possibility of a visual inspection of results.

Fig. 1 illustrates the properties of the NIST database. In the rows there are examples
of numerals from the database. Again we have estimated the latent class model in the form
of a 256-dimensional Bernoulli mixture. We have chosen a model of M = 60 components.
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Figure 2: The component parameters (in square arrangement) of the mixture of 60 com-
ponents estimated from the NIST database.

elass 1 class2 class 2 classa  classd class 6 class T class 2 class9  class10
11265 =] 5536 52 G002 a2 132 2156 19z 330

12554 2857 102 22 162 198 8874 22 55 24
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Figure 3: Resulting cluster means for the final 13 clusters. The matrix illustrates the
coincidence of the resulting clusters with the original classes.

The EM algorithm has been initialized randomly with the uniform component weights and
stopped after 30 iterations and the estimated parameters 0,,, (in the raster arrangement)
are shown in Fig. 2. The estimated elementary latent classes as characterized by the
components in Fig. 2 have been unified sequentially by using the algorithm of Sec. 5.
The hierarchical procedure based on pairwise unifying the most similar sub-mixtures has
been stopped at the level of 13 clusters which precedes a local increase of the information
loss Qi;-

Fig. 3 describes the properties of the resulting clusters. The number of clusters
is higher than 10 because for some numerals there are different variants which are too
dissimilar in the high-dimensional description. The distribution of data vectors in the
resulting clusters with respect to the true classes can be seen in the corresponding rows.
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7 Conclusion

The latent class models have been used repeatedly as a tool of cluster analysis of multi-
variate categorical data since the standard approaches are usually not directly applicable.
Unfortunately, the underlying discrete distribution mixtures with product components are
not uniquely identifiable. In order to avoid the problem of identifiability the latent class
model is applied only to identify elementary latent classes. We assume that the potential
clusters can be constructed by unifying the elementary classes even if they are not defined
uniquely. A hierarchical procedure is proposed to define the optimal decomposition of
the underlying mixture or optimally smoothed kernel estimate. The hierarchical cluster
analysis is controlled by minimum information loss criterion.
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Abstract. Image retrieval deals with a problem of finding similar pictures in image database.
Our task is to find originals of modified images, typically stolen and republished on the web.
Our problem is specific in terms of the database size (millions of photos), demanded speed of
the search (seconds), and unknown image modifications (loss of quality, radiometric degrada-
tion, crop, etc.). Proposed method works in the following tree steps: 1. Image preprocess —
normalization for robustness to the modifications. 2. Retrieval of candidates from the database
index — stochastic decision in each vertex of the index tree is used to find the most relevant
candidates. 3. Verification of the candidates modified phase correlation is used. The method
was implemented in practice with very good results. Based on wide experiments, it was shown

that the success rate of the search depends on the level of image modification.

Abstrakt. Image retrieval se zabyva vyhleddnim snimkti v obrazové databézi na zakladé urcité
podobnosti. Nagim tkolem je vyhledat v databazi origindly snimkt dodateéné upravenych,
konkrétné neopravnéné publikovanych na webu. Tato tiloha je specificka velikosti databaze (mil-
iony snimkii), pozadovanou rychlosti odezvy (sekundy) a pfedem neznamym pogkozenim snimku
(ztrata kvality, radiometrické poskozeni, ofez atd.). Predkladana metoda pracuje v nasledujicich
tfech krocich: 1. Ptredzpracovani snimku normalizaci je zajiSténa odolnost viiéi zménam. 2.
Vyhledani kandidatt v indexu databéaze — diky stochastickému rozhodovani v indexovém stromu
databéze jsou nalezeny nejpravdépodobnéjsi kandidati. 3. Ovéfeni kandidati  pouzivame mod-
ifikovanou fazovou korelaci. Metoda jiz byla implementovana a dosahuje velmi dobrych vysledk.
Na zékladeé riiznorodych experimentti je ukdzano, ze ispésnost vyhledavani zavisi nejvice na mire
modifikaci snimku.

1 Introduction

Large image databases are often run on a commercial basis  browsing through and
viewing images is free of charge while downloading and re-using them on your webpages
and articles is a subject of a fee. However, some users republish the downloaded images
without paying the fee, which is a violation of copyright law. The copyright owner
thus wants to regularly scan suspicious domains or websites to check if there are any
unauthorized copies of the database images.

This paper describes an original method which we developed for an international
advertising and press company. This company runs a database of more than 10 millions

*The author thanks his colleagues Jakub Bican and Jan Kamenicky for their cooperation and consul-
tations.
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photographs updated everyday. They estimate hundreds thousands images being used
without permission on the web. Detection of illegal copies is complicated by two principal
difficulties the unauthorized images are usually modified before they are post on the web
and the response of the system must be extremely fast because of an enormous number
of database images. Although this problem formulation looks like an image retrieval
task, this is not the case. In traditional image retrieval, we want to find in the database
all ssmilar images to the query image, where similarity is evaluated by colors, textures,
content, etc. Here we want to identify only the equivalent images to the query (we call this
task image identification. This is why we cannot apply most of standard image retrieval
techniques. By the term "equivalent images" we understand any pair of images which
differ from one another by the following transformations.

e Quality reduction. Either compression to different image format or resize changes
the image representation, although the image seem very similar to human eye (in
Fig. 1b).

e Radiometric and color distortions. We consider changes of image brightness and

contrast (in Fig. 1c), changes of color tone or conversion of the image to gray-scale
(in Fig. 1d).

e Crop of the image. Image part can be cropped from the background, still we
consider that the major part of the image is preserved. Also, a frame can be added
to the image or aspect ratio can be changed (in Fig. le).

e Local changes. A logo can be added to the image, or a thin label can go throw the
image (in Fig. 1f).

e Combinations. Reasonable combination of distortions mentioned above is also con-
sidered. However, their increasing amount and significance will surely impact the
algorithm results (in Fig. 1g).

@ (b) (© (d) (2

Figure 1: Possible modifications of the query image. The first image is the original stored
in the database.

We decided to include the above transforms into our "equivalence relation" because,
according to the earlier statistics performed by the company, they are frequently present
in unauthorized copies.
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It is not possible to use directly any of the existing methods. Probably the closest
published method is by Obdrzalek et al. in [4]. It is suitable for recognition of man-made
objects with partially planar surface, such as goods in a supermarket. It can handle
very general situations including partial occlusion and affine transform of the objects but
this is useless for our purpose. Our method is different is several aspects. We can not
use several maximum extremal regions per image, because on our database images they
may not exist. Our index tree is thousand times bigger than that one considered in [4],
so we need to use different, space-efficient tree structure. Finally, we include another
independent image comparison to eliminate false positives matches.

We present an original image identification method, which is based on a hierarchical
structure of the database, representation of the images by proper invariant features, and
a fast tree-searching algorithm. Our method has got very good identification rate in a
reasonable response time. In this article, we present main idea of the method as well as
selected details.

2 Algorithm outline

A kind of binary decision tree is used for the database indexing. Some image features
are needed to characterize the image in the index. We require the features to be robust
to considered degradations, stable, but mainly to be extensible and discriminate enough
for any database size. We use image intensities in various pixel positions, surely after
dealing with the image distortions. This choice is simple in principle, but we found it
effective in presented method. Our image identification works in these three steps:

1. Normalization. Robustness to the modification is ensured by normalization of the
images during a process. In other words: Each of the considered modification
corresponds with a change of an evaluative image quality. We apply the modification
once again in an amount, that was established to set the qualities to the same value
for all the images. This process annuls the impact of considered modifications.

2. Stochastic index. The database images are organized in binary decision tree. Thus,
we obtain several candidates for match with a query image very quickly. Decisions
in the tree are based simply on image intensity at certain position. The position and
threshold are set for each vertex during build of tree. For individual query image,
stability of decisions in the tree is evaluated. We alternate the unstable decisions
during the image identification. So, we get many candidates per query.

3. Candidate verification. Edge information of the image serves for the the final com-
parison of a candidate with the query image. More concretely, phase correlation
restricted to low-pass fourier transform is used.

3 Normalization

Both the query image and the database images are preprocessed previously. We apply
some normalizations to make the images invariant to considered modifications. First, we
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Figure 2: Schema of the image identification. First, normalization of the query image is
done. Then, the most probable candidates are found in the index tree. And finally, the
candidates are verified by modified phase correlation.

convert the images to gray-scale to handle color distortions. Then, the lowest and the
highest 10 percent image histogram fraction are found and their centers of gravity are set
to fixed values (by addition / multiplication of the image intensity values). This ensures
image invariance to brightness and contrast changes.

The image crop is tougher modification to handle. The first idea could be to use
features invariant to crop, such as corners (found for example by Harris corner detector
[1]) or intersection points. We do not use them because it is not possible to stably match
(identify) those points for all the database images after crop. We consider that the crop
preserves major part of the image. For most of the images, the part is separable from
the background by color. So, we segment the major part of the image and bound it by a
crop invariant frame.

We introduce a special color-based segmentation for separation of the image major
part. The algorithm finds a frame in the image which fulfill following requirements: it
is big enough, ir does not lay on the image border, it is color specific and it as stable as
possible. It was developed heuristically with respect to experiment results. Our algorithm
works in principle as follows: In principle, it divides the image into blocks, computes the
block color character, and finds neighborhood blocks with the same character for each
possible starting block. The segmented region is broadly bounded by box, which we call
a frame. Stability and "quality" of a the frame is evaluated. For the database images,
just area bounded by the best frame is used for image identification in the index tree. It
is reasonable to consider that this frame will be found in the modified image as one of
the best, too. Therefore we use the best five variants of the frame for the image search.

4 Stochastic index

The task for the index is to retrieve image from the database quickly. Response time to
a query must be principally shorter than proportional to the database size, which goes
to millions of images. Input for the index is a query image that have been normalized
and blurred the same way as the database images were. They should be very similar,
but still, we need to evaluate stability of each decision in the index tree to be robust to
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Figure 3: Image preprocess. The original is converted to gray-scale, crop-invariant frame
is found and its brightness and contrast are normalized. On the right, multiple invariant
frames used for the image identification are shown.

minor image changes.

The database images are organized in a binary decision tree, commonly used to handle
huge amount of data (a survey is done in [3]). Decision in the tree are based on intensities
of image pixels. The pixel (threshold) position is taken relatively to the valid image area
(frame). Once we have two different branches of the tree, each of them can contain
images differing mainly (and therefore the most stably) in a different image part. Such a
threshold position is established during the tree build. So, each node of the tree contains
threshold value and relative position of the threshold pixel.

Now we describe the search for image in the index tree. In a node, pixel of the query
image is compared with the threshold value and its sub-branch (next node) is chosen. We
establish stability of the comparison as a likelihood, that the image belong to the same
(left /right) branch even after following image distortions. We assume that the threshold
pixel can change its intensity (with uniform distribution in certain intensity interval) and
it can change its position (the miss-place has a two-dimensional gaussian distribution)
(in Fig. 4). This stochastic model is similar to the one presented by Obdrzalek [4], but
their usage of the model is different.

Figure 4: Stability of decision in the tree. The image and the threshold position, likelihood
that a pixel is above the threshold, likelihood of threshold position change, and their
multiplication.

This way we go throw the index tree till we reach a leaf containing an image candidate
for the match. Now, we select node with the least stable decision. Now we continue throw
the alternate branch and get an other match candidate. This way we found 20 images
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from the index with the highes probability to match the query image. Note, that some
candidates are found even for totally dissimilar query image.

It was mentioned above that the index tree needs to be prepared previously. Because
of the huge number of images, the tree is build gradually. Our algorithm works in principle
as follows:

1. Read normalized version of a database image from a disk one by one.

2. Find a leaf in the partially builded tree for the image and register the image to the
leaf.

3. If the leaf contains enough images, convert the leaf to inner tree node and redis-
tribute its images as follows:

(a) Choose randomly several positions of a threshold.

b) For each threshold candidate, get intensity values at the processed position
g y
(for all the images belonging to the leaf).

(¢) For the threshold candidate, compute the threshold value as a median of the
intensity values.

(d) For the threshold candidate, compute its stability as a sum of decision stabil-
ities for all the images belonging to the leaf. It means, evaluate the likelihood
described in the paragraph about search (and in Fig. 4).

(e) Choose the most stable threshold of the threshold candidates and save its
position and the processed node (leaf).

(f) Create left and right sub-node of the processed node. Based on the new thresh-
old, redistribute the images of the processed node to them.

4. After all the database images have been processed by previous steps and are reg-
istered to some leaf, divide the leafs till they contain only one image. (Do it the
same way as in steps 3a to 3f).

5 Rest of the method

In the last step, the candidate images are compared one by one with the query image.
We use modified phase correlation (originally introduced by Kuglin |2] in 1975). Phase
correlation is robust to overlap, shift and radiometric degradation. We restrict the cor-
relation only to low-pass of the fourier spectrum to make the comparison more stable for
image quality changes (in Fig. 5).

For better performance in practical experiments, many improvements have been made
on the basic method scope described above. The algorithm use several parameters and
options, that affect both the identification rate and algorithm speed. There is another
tradeoff with the normalization: the more quantities are normalized, the more information
is lost and it is harder to identify the original image; but it makes it possible to identify
images with harder combination of distortions. We overcome this situation by usage of
more than one versions of preprocess (with different normalization and different parameter
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Figure 5: Candidate verification. Low-pass of phase correlation bases the image compar-
ison on their major edges.

set). And, of course, more than one index tree. We use two independent index trees in
the prototype implementation: one is build from images with normalized histogram, the
second is build and searches for the image parts bounded by the invariant frames.

The method is being implemented as a configurable framework. A structured con-
figuration file controls application of zero to several normalization algorithms per image,
build and search in several index trees as well as it contains all parameters for all the
algorithms. (Note, that some simple preprocess algorithms, such as mirroring or blurring,
are not, described in this article). We have also implemented implemented optional index
ability to work with color images. In that case, a threshold value is replaced by a plain
in RGB color space.

6 Experiment results

Prototype of the proposed method was implemented in Matlab. Tests have been done on
100 000 image database. First, a thousand of query images was generated for each con-
sidered modification (the images are still "equivalent", see samples on Fig. 1). Strength
of the modification is varying around the level expected from the practice. The identifi-
cation ratio is very good, better than we expected. Original images are found successfully
in 99.5 % of cases. The rest 0.5 % are cases, when the database contained a very-similar
image (e.g. with some retouching), that has been identified before the original one. For
typical automatically republished images, identification rate is more than 90 %, which
is very good for practical use of the method. The identification rate surely decrease for
harder modifications, but even for combinations of radiometric degradations, crop and
logo is still about 20%. See table 1 for more details.

Response speed of the Matlab prototype is up to 20 seconds per image. Image retrieval
from the index tree takes about 0.2 second, rest belong to the one by one candidate
verification by the fourier transform. Build of the index tree takes less than a second per
image. But, the database build can take several days with some non-trivial normalization
(such as invariant frame — about 3 seconds per image). Overall, the method speed as well
as the identification rate depends on appropriate set of parameters.
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‘ Degradation ‘ True positives ‘ False positives ‘
| Original | 99.5 % | 04 % |
Logo added 98.2 % 0.2 %
Scale 94.6 % 0.4 %
Brightness and contrast 71.2 % 0.7 %
Crop 45.0 % 0.2 %
Scale + logo 93.4 % 0.2 %
Scale + logo + frame 35.8 % 0.4 %
Radiometric deg. + crop + logo 182 % 0.5 %

‘ Not in the database ‘ 0.0 % ‘ 0.3 % ‘

Table 1: Identification rate on 100000 image database. The identification rate depends
on kind of image modification.

7 Conclusion

In this article, we presented our method for modified image identification. The task is
specific by character of the modifications, the database size, and required response speed.
The method is novel in normalization during the image preprocessing (invariant frame,
normalization) and in stochastic backtracking throw the image index. Tt was shown in
experiments on huge database that the method performs very well. It is ready to catch
majority of illegally republished database images on scanned web sites.
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Abstract. The behaviour of a classical charged particle confined in a plane, under influence
of homogeneous magnetic field and time-periodic Aharonov-Bohm flux is studied. At first the
canonical transformation to action-angle coordinates is constructed. Then the resonant effect
between the strength of the magnetic field and the frequency of the Aharonov-Bohm flux is
studied by the means of averaging method. The result is demonstrated on particular example
and the numerical solution of the original problem is compared with the analytical result obtained
with the help of averaged system.

Abstrakt. Tento prispévek ze zabyva chovanim klasické nabité ¢astice pohybujici se v rovi-
né, na niz pusobi homogenni magnetické pole na tuto rovinu kolmé a periodicky ¢asové zévisly
Aharonov-Bohmiuv tok. Nejprve je sestrojena kanonicka transformace do proménnych akce-tihel.
Poté je studovan rezonantni efekt mezi silou magnetického pole a frekvenci Aharonova-Bohmova
toku metodou stiedovani. Vysledek je demonstrovan na konkrétnim piipadé porovnanim nume-
rického tefeni piivodnfho problému s analytickym vysledkem ziskanym z vystfedovaného sys-
tému.

1 Introduction

We are interested in qualitative behaviour of a classical charged particle in a plane in-
fluenced by a homogeneous magnetic field perpendicular to the plane, and time-periodic
Aharonov-Bohm flux. The system is studied from the viewpoint of nonrelativistic classical
mechanics.

Let the Cartesian coordinates in the plane be denoted by ¢ = (q1,¢2) € R%. Suppose
that there is a particle with mass m and charge e confined to this plane. The vector
potential A consists of two parts. The homogeneous magnetic field of strength b > 0
perpendicular to the g-plane is generated by the potential

_bl

Ah(q) = 7(] )

where ¢t = (=g, q1). The second part corresponds to the Aharonov-Bohm flux ®(¢)
located in the origin of the coordinate system and is given by

o) |

Aw(g,t) = mq :
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This term contains a singularity in the origin, the phase space (R? \ {0}) x R? is not
simply connected. It is assumed that the flux ® is real valued, continuously differentiable,
and periodic function of real variable. However, until Section 3 the periodicity is not
important. Introduce the polar coordinates (r,60) € (0,00) x (0,27) by

q1 =rcosf, g =rsinb.

The Hamilton’s function of the system then reads

2
1 2 Do — %7(:) eb
H(r767pr7p9>t): % pr+ f_‘__r

The phase space is (RT x S;) x R2. Obviously the coordinate 6 is cyclic, i.e. pg = 0.
Therefore py is an integral of motion (in fact, it is the angular momentum). Thus the
system has effectively only one degree of freedom. From Hamiltonian equations of motion
it follows that the radial motion of the particle is governed by the equation

ed(t) 2
- e2b? Do — =

r = )
" 4m? mr3

In the following sections we will investigate the behaviour of solution of this equation in
the resonant situation.
2 Transformation to Action-Angle Coordinates

Let us begin with the construction of the action-angle coordinates (for more details confer
[2]). In order to simplify the expressions we set the charge and mass equal to one,
e = m = 1. Note that the Hamilton’s function of radial motion is

H(r,p,t) = % (pi n (@ n %»)2) , (1)
where a(t) = py — ©(t)/2m. Denote
V(r)=

The minimum of V for r > 0 is

V( 2—;):ab a >0,

Vmin = R V) = v( 27‘1'):0 a<0.

Now we will construct action-angle coordinates in case when a(t) = a is constant, i.e.
our Hamiltonian is independent of time'. For a fixed energy level E > V,,;, the motion

IThis is the case when there is no Aharonov-Bohm flux.
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is constrained to the interval [ry,r_]. These constraints are obtained as a solution of
equation V(r) = E. Thus we have

T 82

where 5
= <2E —ab+ /(2 —ab)? — a2b2)

The action is defined by integral

um:lﬁ Jﬁfﬁfiv__ ¢ 2w —r2) de =

™

>
—_
c~|+—\ o

= 2 =) = (B = d(a)ab) = 3(E = Vi),

Generating function of the transformation reads

/de_ / 07— o)~ 12)dp =
/r 1\/ z)(x —1r?) da.

This integral can be evaluated explicitly, and after some minor adjustments one obtains
the expression

47 — br? +2
S(r, 1) \/861'7"2 (br? — 2|a|)? — I arctan ( r+ 2al ) -

\/8bIr2 — (br? — 2al)?
: (W +2]a|) /8bI7> — (br” — 2\a|>2> |

— Slarctan
g M b2rd — 4bIr? + 4]af?

The induced transformation of variables (r,p) = W(p,I) is defined as follows: U =
F o G7', where the transformations (r,p) = F(u,v) and (p,I) = G(u,v) are given
respectively by the relations

0S(u,v)
ou

0S(u,v)

I =w.
ov v

r=u, p= and =

By direct computation we get

\/bI(1
\/_\/I—i-—%—\/ (I +lal)sing, p= (L +|a)) cosp

\/I+‘a|+ I+]a\)smgp

and conversely,

1 a*  bPr? 1 1 la] b\’
= —arctan | — (pP+ L =2 T=c(H=Vin) == |2+ (L -Z) ).
7 arcan(bpr (p +7"2 4 ))’ b( Vinin) 2b (p +(r 2)
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Let us switch to the time-dependent case with a Hamiltonian H(r,p,t). Seeking the
action-angle variables for the frozen Hamiltonian at each moment of time one in fact
constructs a time-dependent transformation of variables. Hence the generating function
of the transformation, S(u,v,t), is time-dependent as well. One arrives again at a Hamil-
tonian system with a Hamiltonian K (¢, I,t) and it holds

0S(u, I,t)

K(p, I,t) = H(¥(p,1,1),1) + o

)

u=",(p,I,t)

where W, denotes component of U belonging to r. Our Hamiltonian depends on time ¢
only through function a(t), ¢f. (1). New Hamiltonian now reads

V1 cos o
VI + Ja(t)] +VIsing

Finally the Hamiltonian equations of motion are

K(p,1,t) =bl — arctan < ) a(t)sgna(t)

S aa  Ccosp 1
Y =07 N )
2 \/I(I+la|)2l + |a| +2+/I(I + |a])sinp

=B lala . (3)
2 21 + |a] + 2+/I(I + |a|) sin ¢
3 The Averaged System

Henceforth assume that a(t) # 0. Further simplification of (2) and (3) is achived by
passing to the coordinates ¢ and G given by

21
G:m—f‘l, d):QO—bt. (4)

Obviously (¢, G) € (1,00) x [0,27). Hence

G

:é<1 L _c;), 6)
a G1+msm(bt+¢)

b= _acos(bt + ¢) 1
 aGVGEP =11+ /1 -1/Gsin(bt + ¢)

Denote A(t) = a(t)/a(t). From the assumptions laden on the flux ® it follows that the
Fourier series

(6)

1
27 /Q

1
27 /Q

A(t) =

D At A, = / T A dt,
0

ne”L

is uniformly convergent on R. Since A(t) is real it holds A, = A_,,, moreover it is true
that AO = 0.
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Now suppose that /b = p/q, where p, ¢ are coprime natural numbers. Then the right
hand sides of (5) and (6) are 27p/Q-periodic with respect to the time ¢t. The averaged
system is obtained by computing the time average of the right hand sides of (5) and (6).
Further, the averaging principle? states, that the solution of the averaged system might
be a good approximation to the original system provided the A(t) is small in some sense.
The averaged system is given by

. 1 a? 1 1
G:%/o Al (51+msin(bt+¢) _G> 4"
) i
b= _ 1G> 1 Bl e cos(bt + ¢) d&t
V1-1/G2%p 1++/1—1/G?sin(bt +¢)

~
Iz

where we treat G and ¢ as constants. We also denote § = /1 — 1/G? and keep in mind
that 0 < 8 < 1. Putting 7 = bt + ¢ in integrals we arrive to

L 1 2ra [(A, + Ay) cos (1 — ¢) +i(A, — Ay)sin "2(1 — ¢) |

1_\/27T/Qa EN/o 1+ BsinT i
1/b (An + Ay) cos "2(1 — ¢) +i(A, — A_,) sin (T — ¢)

I = WZ/ 1+ Bsinr cos Tdr.

Now notice that integrals

2mq  cos %’7’ 2mq  gin %7’ 214 CcOS T COS %’7’ 2mq cos T sin %7’
———d7 = ———d7 = ——————dr = ——dr
o 1+ fsinT o Ll+pfsinT o 1+ [BsinT o 1+ pBsint

are equal to zero, if % ¢ N. This can be seen by dividing the domain of integration to

pieces of length 27, shifting all the domains to (0, 27) and summing the integrands. Using
relations from Section 4 we finally arrive at

_ 2 Y S [iAne /] (G—l)m
,/271'/ G+1 ’

neN
(REN)
: 2 1 ~ G—1\"?
= S [A, e otm/2) 7
¢ \/QW/QG2—1HEZN [ } G+1
(nEN)

where 7 = 2 and J(e) is an imaginary part of a complex number ¢. This is certainly
Hamiltonian system, with Hamilton’s function given by

2 Z —zn +7r/2)} (G—l)ﬁ/Z
V21 /0 = G+1

(neN)

H(¢,G) =

Note that this series is uniformly convergent.

2For more details consult [3] or [4]. The applicability of the averaging principle is an open problem
that will not be discussed here. The numerical computation is employed to check our results. See below.
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3.1 Example

As an example we choose a(t) = v + £sin Qt, where 0 < ¢ < 7. Or, in other words, we
take the flux ®(t) = —2mesinQt. It can be computed (with the aid of relations from
Section 4), that

A, = V2718 30D ( 2l )  neN,

L+ +/1—(e/7)?

Therefore
o0 q 2 m
— 20 R I £/v G—1\"
H($,G)=""8{ —i — | iz la—p)=ipe ( ) )
(0.6) == { mzml <1+«/71—(e/y)2) G+
2(6,G)

This series can be easily summed with the aid of geometric series, the desired result is

H(9,G) = %111\1 — z(¢,G)].

Since this is two dimensional time-independent Hamiltonian system, it is easy to
compute invariant curves, i.e. trajectories in the phase space. However, it turns out that
these solutions are good approximation to the original problem only if p/q € N. For the
sake of simplicity we confine ourselves to the case {2 =b=p = ¢ = 1. Thus

H($,G) =21 —e ™ e/ -1

. 7
1+/1—-¢e2/42VGE+1 0
5

Obviously 0 < # < 1. Since the Hamiltonian is time independent, it is conserved during
the time evolution. The equation

H(¢,G) =h € (—o0,In4)

defines implicitly G as a function of ¢. It is straightforward to compute these invariant
curves, on the other hand the result is not so nice. One must treat cases 0 < h < In4
and h < 0 separately. In the latter case, the curve must be sometimes stitched from two
pieces. Summary of the results follows:

e h <0< In4:

2+ (cosd+ \/cos?p — 1+ eh)?
Cp- (cos ¢+ \/cos2 ¢ — 1 + eh)?

if ¢ € [0,27) such as cos¢<1—% and cos ¢ + /cos2 ¢ — 1 +eh < f3.

G(9) (8)

e —c0o< h<0:

B+ (cosp+ \/cos?p — 1+ eh)?
Cp- (cos + \/cos2 ¢ — 1 + eh)?

G(¢)
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if ¢ € [0,27) such as V1 — e gcos¢<1—% and cos ¢ 4+ \/cos2¢ — 1 +eh < 3.

B2+ (cosd — /cos2p — 1+ eh)?
- (cos ¢ — y/cos2 ¢ — 1 + eh)?

if ¢ € [0,27) such as v/1 — e < cos ¢ and cos ¢ — \/cos ¢ — 1 + el < .

G(o)

(10)

These invariant curves are depicted in Figure 1. Note that if h = 0 then the curve hits
line G = 1. It seems that this is a pathological feature of the averaged system, i.e. the
original system does not posses such behaviour. At least it is not verified by the numerical
computation. We see that ¢ tends to constant and G escapes to infinity. This means
that (cf. (2) and (4)) in the course of time the particle will get arbitrarily far from and
close to the origin.

[
T

LLL!

[

o
N
N

w
5

N
N

Figure 1: Invariant curves of the averaged Hamiltonian (7) given by formulae (8), (9),
and (10). Parameter [3 is equal to 0.8.

We compare the numerical solution of (5) and (6) (where we use special a(t) and
values of parameters mentioned at the beginning of this subsection) with the invariant
curves computed above. The value of h is computed from the initial conditions ¢, and
Go. Choice of € and v is noted above each frame in Figure 2.
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:1,’)/=2,¢0:1.7,Go=2

=H(¢,G)

H(¢0,Go) e ____d m

V4 3n 2

N
N

€= 0.5,’)/ = 3, ¢0 = 1.53,G0 =3

o
R
N
w
N
N
N

Figure 2: The numerical solution (solid line) of (5) and (6) and the invariant curve
(dashed) of the averaged Hamiltonian (7). Small dots denote the initial point.
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4 Evaluation of Auxiliary Integrals

This section contains the proof of the following proposition. For n € Ny and |5] < 1 it is
true that

2
cosnt G ™
——— dt =27 cos —, 11
/0 1+ Bsint V1- 321+ /1_ﬂ2)n (11)
2 :
t n
/ 78111”_ dt = —2m b sin ¢ (12)
o 14 Bsint V1= 321+ /1= 3%
/2”cosnt0f)st df — 9 gnt L (13)
o 14 Bsint (1++/1—p32)n
and for n € N ,
v : t t n—1
/ SHnecost ijs dt =27 b cos 2| (14)
o 1+ [Bsint (14 +/1— 32" 2

For n = 0 this is obviously zero.

We will check the equality (11). The proof of the others is analogous. For the sake of
brevity denote the LHS of (11) by symbol /. Using the multiple angle formula for cosine,
the geometric series expansion of the denominator, and the relation

2 1+ (=DM (1 + (=1)" 1 1
/ cosktsin”tdt:( + ))2( +( ) )B< tk l+n
0

5 R ),n,kENo,

one obtains

- 7 > (1+ (—1)k)(1+(—1)m+”)3<1+k 1

1:2eog§(n—k) (—B)™ T . 2(1+m+n—k))

The summands with £ or m + n odd are zero. Hence we can assume that k£ and m 4+ n
are even. Furthermore if n is also odd then cos(m(n — k)/2) = 0 and therefore I = 0.
We must investigate the case of n = 2N where N € Ny. After re-notation of indexes we
clearly have

N e’}
_ 2N N—k 2m 1 1 -
[= M( ” )(—1) n;)ﬂ B(Qk,2+N+m k)

Rewriting the Beta function in terms of Gamma function and using the Gauss hyperge-
ometric series
= T(a+m)L(b+m) 2"

c+m) m!’

F(a,b,c,z) =

mO

we arrive at

I:(_l) 27T(22N g QN—(;;g (Qk) FTeg( LN — k+1/2 N+1 6)
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where F™9(a,b,c,z) = F(a,b,c,2z)/T'(c) is regularised hypergeometric function. Next
step is to take adventage of the symmetry in interchange of a, b and of the integral
representation of hypergeometric function

[(c)

F(a,b,c,z) = m/{) 1 =) (1 —t2) 7 dt.

It turns out that

(=D~
I= WWHQN“F(N +1,N +3/2,2N + 2, 3%),

where the binomial theorem was used. Final step is to look in [1] and find relation 15.1.14:
Fla,a+1/2,2a,2) = 22711 — 2)"Y2(1 + 1 = 2)- 2,

Hence

N 52N
I =2m(—1 .
( ) /1_52(1+ /1_62)2N
Combining results for odd and even n one obtains the formula which was to be proved.

For the sake of completeness note, that for the computation of the two last integrals one
needs formula [1], 15.1.13

F(a,a+1/2,2a+1,2) = 2**(1 + V1 — 2)7>*,

5 Conclusion

We studied the dynamics of the classical charged particle placed in the homogeneous
magnetic field and influenced by time-periodic Aharonov-Bohm flux. With the aid of
the averaging method it is possible to compute a good approximation to the solution of
action-angel equations of motion, provided the ratio of the magnetic field strength and
the flux frequency is a natural number. In this resonant situation the radial motion of
the particle is highly oscillatory, more precisely the particle can be located arbitrary close
to and far from origin.
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Abstract. In the article we present a newly developed method for invariant picture region
detection without a priori information. The goal is to detect such picture regions that remain
more or less unchanged after various simple transformations have been applied (such as change
of brightness, contrast, scale, cropping of the picture, etc.). Such regions can be then used for
automatic picture identification.

The method itself is based on block processing of the picture. The importance of a block
is given by representation of individual intensities in the block. Individual blocks are then put
together and rated according to other criterions. The result is based on one (or more) "stable"
region(s) of the picture.

At the end, experimental results on real data are presented, verifying the functionality and
practical usage of the method.

Abstrakt. V ¢lanku je prezentoviana nové vyvinutd metoda pro vyhledavani invariantnich oblasti
obrazkiu bez apriornich informaci. Cilem je nalézt takové oblasti obrazku, které ztustavaji
viceméné nezménéné po aplikaci riznych jednoduchych transformaci (zména jasu, kontrastu,
méfitka, ofiznuti obrazku, apod.). Takové oblasti je ddle mozné vyuzit pro automatickou iden-
tifikaci obrazku.

Metoda samotné je zalozena na blokovém zpracovini obrédzku. Vyznamnost bloku je déna
zastoupenim jednotlivych intenzit v tomto bloku. Jednotlivé bloky jsou poté sdruzovany a
ohodnoceny podle dalsich kritérii. Vysledkem je pak jedna (nebo vice) "stabilnich" oblasti
obrazku.

Na zavér jsou uvedeny vysledky na realnych datech, které potvrzuji funkénost a praktickou
pouzitelnost navrzené metody.

1 Introduction

1.1 Background

Large image databases are often run on a commercial basis  browsing through and
viewing images is free of charge while downloading and re-using them on web pages or in
articles is a subject of a fee. However, some users republish downloaded images without
paying the fee, which is a violation of copyright law. The copyright owner thus wants
to regularly scan suspicious domains or websites to check if there are some unauthorized
copies of their database images.

Detection of such illegal copies is complicated by two principal difficulties the unau-
thorized images are usually modified before they are republished on the web, and the re-
sponse of the system must be extremely fast because of the enormous number of database
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images. Although this problem formulation looks like an image retrieval task, this is not
the case. In traditional image retrieval, we want to find in the database all similar im-
ages to the query image, where similarity is evaluated by colors, textures, content, etc.
Here we want to identify only the equivalent images to the query (we call this task image
identification). This is why we cannot apply most of standard image retrieval techniques.
By the term "equivalent images" we understand any pair of images which differ from one
another by the following transformations.

e quality reduction - recompression or resize

e radiometric and color distortions - changes of brightness, contrast, color tone, con-
version to gray-scale

e cropping of the image - major part still preserved
e local changes - addition of logos or thin labels

e combinations - reasonable combinations of the modifications mentioned above (how-
ever, their increasing complexity will surely impact the algorithm results)

1.2 Motivation

We have developed a new method for the above mentioned image identification. This
method consists of several steps. The core of the identification process is an intensity
based stochastic tree, which needs whole (rectangular) pictures on input. If we want to
overcome problems with some mentioned transformations (especially scaling and crop-
ping) and still provide rectangular image, we need to extract some "important" part of
the picture which can then be used as the required input. So, we do an invariant picture
region detection and use the best one. In this article we will describe this process in more
detail.

As we have already said, the problem is to crop the input picture in such way, that
it gives as similar result to the crop of the corresponding database picture as possible
(provided that the input picture was created by modifying the original). In other words,
image A and transformed image A’ should give the same (or similar) invariant regions.
Otherwise we wouldn’t be able to identify the modified image properly.

The only restriction we presume is that the main (most important) part of the pic-
ture remains (it is not destroyed be any mentioned transformation). In practice it is a
reasonable assumption because what is usually cropped away is background or some not
very important information.

Summarizing the main requirements for our desired method:

e invariance to simple basic transformations such as change of brightness and/or
contrast, repacking (i.e. weak noise), cropping, scaling, etc., and their combinations

e stability - picture modified as described above should give same (or at least similar)
results compared to the original
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e speed - the maximum time available for one picture (about 0.3 Mpixel large) is only
about five seconds

It is impossible to develop a method exactly fulfilling all the above mentioned require-
ments. So at first we have to choose the importance of individual requirements and then
create a method which is as good as possible with respect to them. Not only we deal
with a huge amount of images but also we need to process several images per minute.
Therefore, the most important for us is the time available, thus the method should be
fast in the first place.

There are several possible basic approaches to this problem. One of them is crit-
ical /significant point detection. In this case we are trying to detect stable important
points, such as line endings or corners. These methods typically result in many points of
interest but what we need is as few stable points as possible, preferably only the best one.
So, this approach cannot be used in our case because it is very difficult, if not impossible,
to decide what critical point is the best and would be detected in the modified image in
the same way.

Another approach is to detect local homogeneous regions (i.e. regions with homo-
geneous intensity values). Many methods solving this problem exist, an overview of
segmentation methods can be found in [1|. Probably the most useful approach for us
is region growing. This approach is much better because it is possible to decide which
region is better. We can use size of the region, intensity variance, compactness, and so
on for this decision. Some region growing algorithms can be found in [2], [3], [4], [5] or
6].

But we have another problem — speed. Region growing methods generally take their
time and we need fast response. That’s why we have developed a new method based on
homogeneous region detection which is more simple but still gives reasonable results.

2 Method description

The presented method is a method for detection of stable regions of an image, i.e. regions
detected invariantly to some basic transformations (mentioned above).

Current version of our method is intended for grayscale images only, though further
improvements making use of the color information can be done and can potentially lead
to better results because more information is available.

Method itself consists of two main steps: stable point detection, and region extraction.

2.1 Stable point detection

Our stable point detection is based on local homogeneous region detection through in-
tensity variance local minimization. The resulting points are then selected as centers of
gravity of these regions.

Finding region with minimal intensity variance is very time consuming. Therefore we
apply block processing for this task. At first we divide the image into overlapping blocks.
The size of these blocks can be chosen either as static (e.g. 20 pixels) or dynamically as
further described in experimental section.
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On these blocks we compute intensity variance. Now we have much smaller matrix
with variance values which is much faster to work with. We call it stability map and we
apply thresholding on it resulting in a small binary image.

Now we label different continuous areas of the stability map. As we need stable areas
which can be detected even on cropped images, we eliminate areas touching the border
of the image. Such areas are either background or too unstable to be used. Especially

likely to be very unstable.
Now we have a set of stable areas and the only thing left is to select the best of them.
For this decision we use:

e the size of the area — the larger area the better (more stable),

e its homogeneity  the less variance the better, we already used this criterion in
stability map creation and its thresholding,

e compactness the more compact the area is the better (again more stable),

e distance from the border — as we already mentioned, areas nearing the border are
likely to be misdetected.

So, we have the best stable regions. One possibility is to use it directly as final stable
region. The problem is we used block processing for stability map creation. Therefore
detected areas are accurate only on the level of these blocks. In case of typical blocks of
size about 20 pixels, we can see that usage of these stable areas is very inaccurate on the
image level. That’s why we compute a stable point as the region representation and then
use region extraction back in image domain.

The stable point itself is chosen as the center of gravity of the best stable area.

2.2 Region extraction

What we need to do, is to select a region based on the detected stable point with specific
requirements. Certainly we want it to correspond to the detected homogeneous area.
Using a predefined threshold we select intensity interval from the input image. We take
the mean intensity value computed during stable point detection as the interval centre, the
range is given by the threshold. Now we extract stable region as a compact (continuous)
area with the stable point in its interior.

As described in the motivation section 1.2, we need rectangular picture as a result.
Therefore we select final region as frame surrounding the detected stable area.

This frame is defined by the center of gravity and second order central moments of the
stable area. This means we take the center as the center of our frame and select width
and height having the same second order moments as the original region.

So, the final picture used for the identification through our stochastic tree is the
picture cropped by the above computed frame.
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Figure 1: (a) original picture (b) stability map, (c¢) thresholded stability, (d) border areas
removed, (e) best regions segmented from the original image

3 Experimental results

In this section we will describe behavior of the method and then we will show experimental
results on real data.

3.1 Method functionality

At first we will demonstrate functionality of the method on a sample picture. In figure 1
you can see:

e (a) The original picture.

e (b) The stability map, i.e. the block computed variance. The block size and shift
of an image with size m x n are computed as Bg;.e = 2Bgpift = 24/(m +n)/10, in
this case it is 20 and 10 pixels respectively.

e (c) Thresholded stability map.

e (d) Thresholded stability map with marginal areas removed.

(e) Three final best stable regions. These regions are segmented back from the
original image based on previously detected stable points.

You can see the final frames in figure 2. The best detected frame is drawn by a solid
line, the two next frames are represented by a dashed line.

3.2 Results after modifications

Now we can demonstrate how the method handles required modifications. We will do
this on the same image for more simple comparison of the achieved results. You can see
best detected regions in the image after applying several modifications in figure 3. The
thicker yellow rectangles represent detected regions, while the thinner green rectangles
correspond to expected locations of regions detected in the original image.
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Figure 2: Best stable regions

Figure 3: Best regions in modified images. (a) brightness and contrast, (b) white noise,
(d) added artifacts, (e) scaling, (c, f) cropping
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Table 1: Statistical results — possibility of successful identification

modification successfulness
original 100%
JPEG compression 86%
scaling 62%
brightness and contrast change 58%
cropping 47%
added artifacts 42%

The first modification is slight brightness and contrast change and the second is a
white noise addition. In both cases, the impact of the intensity changes on the results
is quite noticeable. The best region is still detected correctly (with a small difference).
However, when the regions are further used for picture identification, the error rate can
be rather high.

Next modification we can see in the figure is some artifact addition, namely some
rectangles near the border. We can see that the only problem in this case arises when
originally detected regions are overlapping (or nearing) the artifacts. These regions are
then not detected correctly, however, we expect these artifact to appear only near the
border, so important parts of the image should not be affected.

Another important transformation is scaling. In the experiment we used scaling down
by the factor of 1.7. As we can see, the impact is very insignificant, the result is nearly
the same compared to the original image. Naturally, with increasing scaling factors the
results become worse, but we expect reasonable factors to appear most often.

Last modification we have tested here is cropping, which is also quite important for
us. Again, we can see that the main problem arises when the originally detected regions
approach or even exceed image borders. So, positive identifications can be made only if
the important part remains inside the image. However, this is just what we expect to
happen.

3.3 Statistical results

We have tested the method on one thousand of pictures, each modified by methods shown
in the previous section. We used random coefficients (such as scale factor, brightness
change, cropping, etc.) taken from meaningfully restricted intervals. Individual results
are similar to the described ones, sometimes slightly worse.

The statistical overview is shown in table 1. These are only very rough numbers
indicating the possibility of further successful identification for individual modification
types. It should be mentioned that 50% is a very good result for us, as we use the method
for automatic identification. In fact, there is much more important for us to keep the
number of false alarms as low as possible, than achieving very high successful hit ratio.

As we can see, practical results are acceptable while fulfilling required attributes.
The time needed to compute best stable regions for one image (modification) is about
one second.
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4 Conclusion

In the article we have presented a newly developed method for invariant picture region
detection. It is intended for cases where speed is critical. The performance of the method
has been demonstrated on real experiments. Quality of the results together with rather
fast computing time is quite promising.

Many further modifications of the method can be made according to specific usage
conditions.
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Abstract. The capacity of bone to adapt to functional mechanical requirements has been known
for more than a century, and many theoretical and experimental models have been developed for
bone remodelling. However, these models are still not able to sufficiently predict its behaviour.
A thermodynamic model based on recent knowledge of biochemical control mechanisms is pre-
sented. Despite the complexity of the regulatory system of bone adaptation, the calculated
results are in very good correlation with the experimental observations - the inner structure of
bone can be elucidated, simulation of the influence of dynamic loading together with biochemical
factors is carried out, e.g. the fundamental RANKL-RANK-OPG pathway, and a comparism
between model prediction and x-ray pictures of human patients of the effect of bone adaptation
to prosthesis insertion is done.

Abstrakt. Uz vice nez sto let je zndma schopnost kosti pfizptisobovat se mechanickym poza-
davkiim a téz mnoho teoretickych a experimentalnich model pro remodelaci kosti bylo vytvoteno.
Stéale vsak nejsou tyto modely dostate¢né schopné ptredpovidat jeji chovani. Zde predkladame
termodynamicky model zaloZzeny na souc¢asnych znalostech biochemického fizeni procesu. Navz-
dory veliké slozitosti Fidictho systému adaptace kosti jsou vypocitané vysledky ve velmi dobré
shodé s experimentalnimi pozorovanimi - muzeme vysvétlit vnitini strukturu kosti, byly prove-
deny simulace vlivu dynamické zatéze spolu s biochemickymi faktory - napt. zakladniho fetézce
RANKL-RANK-OPG - a byla porovnana predpovéd modelu adaptace kosti na vloZzeni totalni
endoprotézy s rentgenovymi snimky pacienti.

1 Introduction

Bone is biological system which keeps adapting its structure to mechanical environment.
In the 19th century Julius Wollf [30] described the fact that the internal trabecular ar-
chitecture of bone matches trajectories of the mechanical stress (trajectorial hypothesis).
At the same time Wilhelm Roux suggested a quantitative self-regulating mechanism of
trabecular formation and functional adaptation. Mechanical stimuli to local cells was
considered critical for the bone adaptation process [24] and this interaction was later
described by Heft in 1970s [7]. In 1987, Frost [5] suggested a feedback mechanism, the
“mechanostat”, controlling bone mass behaviour in response to mechanical loading.
When mechanical stresses are placed upon bone, it remodels in order to withstand
the stresses. This process may also be considered to be structural optimisation. The op-
timisation process systematically, iteratively and continually eliminates and redistributes

*This research has been supported by the Grant agency of the Czech Republic no. 106/03/1073 and
by the project 1M06031 of Ministry of Education, Youth and Sports of Czech Republic.
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osseous material throughout the domain to obtain an optimal arrangement of internal
bony structures.

With the development of computer-aided strategies and based on the knowledge of
bone geometry, applied forces and elastic properties of the tissue, it may be possible to
calculate mechanical stress transfer inside the bone (FE-analysis). Assuming the above
mentioned structural optimisation process the change of stress in particular compart-
ments of the bone should further be followed by internal bone density distribution. This
logical consequence allows us to think about mathematical models that can be used to
study functional adaptation quantitatively and furthermore to create the mineral bone
density distribution patterns [8, 29]. Similar mathematical models have been built in
the past. Since they calculate just mechanical transmission inside the bone and not con-
sidering humoral cell-biologic factors of bone physiology, they just partially correspond
to reality seen in living organisms. We realize that biochemical reactions are initiated
and influenced primary by genetic effects and the external biomechanical effects (stress
changes). The aim of following mathematical model is to combine the biological factors
with biomechanical ones|11, 15, 16|. Such model may also reflect changes in remodelling
behaviour corresponding to pathological changes of the bone metabolism |13, 12].

Biology of bone remodelling

Bone remodelling (BR) occurs when the populations of bone cells break down old
bone and replace it with new bone. This reformation results in the reorientation of
internal bone structure and eventually in changing the shape of the bone, which means
that bone can better adapt to the loads that are being placed upon it. Loads on bone
cause mechanical strains and even micro-damage generating signals that specific cells can
detect and to which they or other cellular populations respond. Actually remodelling
depends on time-varying straining. Because of the viscoelastic properties of bones, the
strains vary not only at varying loading but the strain changes continue and fade as the
elastic after-effects at constant loads and after unloading. In this manner, the existence
of remodelling effects even at rest can be explained [26].

The signalling and subsequent change in cellular phenotype may be called activation
and represents the first stage of the remodelling process. The aim of activation is to
prepare sufficient, pool of executive cells concentrated in the domain of the bone that is
to be repaired. The original bony structures (Old B) infracted by the initiating biome-
chanical stimuli are intended to be absorbed and subsequently replaced by the new bone
(New_B). The generated bone mass will be structurally and morphologically adjusted
to new mechanical loads. These two phases described as resorption and formation, ac-
complish the whole process of remodelling.

Biology of the bone remodelling itself is not completely understood in this moment.
Frost has defined the minimum effective strain neither apposition nor resorption below
1500-2500 microstrains. According to Frost [3], the strains above that threshold level
affect modelling and remodelling activities in ways that change the size and configuration
of growing bones, tendons, ligaments and fascia to their new mechanical usage and return
their strains to the threshold level. Recently, the control mechanism between resorption
and formation of bone was described, by so called RANKL-RANK-OPG pathway [17,
18, 19] and our mathematical model covers the crucial moments (based on chemical
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description of bone remodelling process [23]).

System of basic multicellular units (BMU) is widely accepted for bone remodelling
description [4, 21]. Tt represents local populations of osteocytes (OC'), osteoblasts (OB)
and of mononuclear precursor osteoclasts (MCFELL). Osteocytes are presumed to react
to mechanical strain either piezoelectrically through ionic currents induced when bone
is deformed or by detecting fluid flow in the periosteocytic lacunas. They respond to
this strain by sending signals that activate bone formation or existing bone removal.
During the activation M CELL turn to multinucleated osteoclasts (M NOC') having high
metabolic activity. M NOC's are charged with resorption of the old bone and the defect
is subsequently filled with osteoid, non mineralised bone matrix produced by activated
osteoblasts (OB) that during next 5-15 days becomes mineralised.

2 Methods

2.1 Thermodynamic BR model

The only cells that are able to resorb bone tissue are osteoclasts (as mentioned in section
1). To be active they need to be coupled in multinucleated complex, which formation
can be described as follows:

kt1
D+ MCELL = MNOC + D, (1)

where Dy is mixture of substances that are initiating reaction with mononuclear cells
(MCELL). MNOC is abbreviation for multinucleated osteoclast and D, is a remaining
product from reaction (1).

Bone decomposition can be characterised by following chemical reaction:

ko

MNOC +0ld B = D+ Dy, 2)

where Old__ B denotes old bone, Dg and D7 are products made during degradation of an
old bone. The end product in reaction (2) is divided into two parts because one of them
(D7) participates in activation of osteoblast as will be elucidated in subsequent paragraph.
The chain RANKL-RANK-OPG which is important as the control mechanism for bone
remodelling is substituted by the concentration level of the mixture of substances D;.

Before osteoblasts (OB) secret collagen in hollowed cavity they need first to be ac-
tivated. This activator (Activ OB) is being produced after resorption in given volume
(cavity). Thus behaviour of osteoblasts at specific site can be represented by following
reaction scheme:

kt
D:+0ld_B = Activ_OB + Dy (3)
ki
Activ_OB + OB = Osteoid + Do, (4)

where Di5 is remaining substratum.
The longest period in bone remodelling process pertains to mineralisation (deposing
calcium, etc.  Dj3  into matrix) of osteoid:

kts
D3 + Osteoid = New B + Dss, (5)
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where New B denotes new bone formed by remodelling process and Dy is the residuum
of bone formation reaction.

These chemical equations (1)-(5) describe the essential processes of bone remodelling.
There are 15 substances involved and by using the law of active mass and adding the
external fluxes, 5 differential equations describing the whole system can be obtained:

ONMCELL

e = —01(f1+NmcerL)Nucerr +Js + INew B — D1 (6)
ONoiw B
—5 = —(Bs = Nmcerr + Noiwda B + Nactiv 0B + Nosteoid + NNew B)Nowd B — (7)

—03(B7 — Noiwa B — 2(Nactiv 0B + Nosteoid + N14))Noia B +2INew B — D2 —Ds
8AfActivaB

o = 33(87 — Nowd_B —2(Nactiv 0B + Nosteoid + NNew B))Noiwd_B — (8)
—064(B10 — Nosteoid — NNew B)Nactiv o +Ds —Da
% = 04(B10 — Nosteoid = NNew B)Nactiv 0B —
—05(813 — NNew_B)NOsteoid + Pa — Ds (9)
8]\[1:;%*3 = 05(B13 — NNew B)Nosteoid = INew B + Ds, (10)
where 7 =t - kyy-npg,, N; = "%, 6, = i*”, Bi = >, D, = lvde s Ji = . In
By +2 nBO kyang k+2"30

other words 9, is ratio of rate of p-th reaction to second reaction, D, i 1@ a parameter that
describes the influence of dynamic loading on rate of p-th chemical reaction, ; is a sum
of initial molar concentration of relevant substances and V; is a normalised concentration
of i-th substance.

By solving these kinetic equations, time evolution of MCFELL, Old_B, Activ_ OB,
Osteoid, New B concentrations are obtained. All remaining can be calculated (for more
details and for detailed mathematical analysis see [10]).

3 Results

It can be shown thatAs was mentioned in section the key role in presented model plays
the coupling of the dynamic loading and chemical reaction rates'. Thus for the validation
of the model a following simulation in ANSYS FE software (ANSYS 10.0, Ansys inc.)
was used: rate of deformation in each element and consequently the rates of chemical
reactions in each element (D,) were calculated. Then with the aid of kinetic equations (6)-
(10) we can describe time dependency of concentrations of each substance. Thus density
changes (precisely changes in concentration of Old B, New B) can be calculated in
each element of bone.
Hence after running several iterations we may simulate the density distribution through-

out the bone according to the presented model. By comparing these calculated results
with density distribution in living bone validation can be carried out.

"Moreover, reaction may run even in a case when some chemical reactions have negative affinity A,.
Then the influence of such reaction w,.A, < 0 is compensated by the enhanced efficiency of the other
reactions
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‘ o Ansys program was used to calculate strains
N 2

Boundary conditions: (Sllm of prln(’lpal StrainS) and stresses in each
M =Ty element of bone during walking. Real geome-
aVy T’l‘m_-zfg' .
My w=0 try was gained from CT-scan and external forces
vy TR = . . . .
v, e were applied as is shown in Fig.1.

Values of D, parameters are derived from
deformation rate tensor. Since ANSYS calcu-
lates just deformations (strains), to determine
the spheric part of deformation rate tensor d;)
following approximation was used:

del(I) Ael(I) 61([)
s 200 2D oD

v,
where e(1)(/) is the trace of deformation tensor

in I-th element. Provided that no deformation
exists at the beginning of each iteration, last
equality in (11) is valid. Thus At is the time in-
terval between loaded and unloaded state. The
change of At enables to include the influence of
frequency of the loading (e.g. the setting of the
paces) on bone remodelling which will later be discussed.
The density in each element can be calculated as follows:

Figure 1: Geometry and boundary
conditions used for calculations. Elas-
tic constants depend on bone compo-
nents, especially Noyg 5 and Nyey o

Dens([) =p- (NNewib(]) + NOldib(I)) , (12)

where p is a reference (apparent) density and Nyew 5, Now » are normalised concentra-
tions of old and new bone in I-th element, respectiv;/ly. -

We are not interested only in density distribution but also in withstanding to applied
load after effects of bone remodelling. Thus in each element of bone material properties
are modified according to changes in density as power to three:

E..(I)= <Ezz old " Jrac_Noiw p+

Dens(I)\ 3 (13)
+ Ezz new ° fraciNNew b) . (w) )
- P

where
Now (1)

Nyew (1) + Now v(1)

Jrac_Now » =

and
NNewib([)

Nyew v(I) + Now v(1)

are ratios of Nojg p» and Nye, 5 in I-th element, respectively. E.,(I) is the Young modu-
lus in direction of axis 'z’ in I-th element, E.. .4 and E., ., are the material properties
of old and new bone. We expect stiffness of bone to vary not only with density but also
with the old/new bone ratio. Similarly were calculated E,,, E,,, Gy, Gy, andG,,.

fraciNNewib =



98 V. Klika

At first, the impact of mechanic loading on density will be elucidated on a single
element.

Presented model calculates (molar) concentrations in considered volume of bone. By
means of eq. (1)-(5) are described chemical reactions that are assumed to run in each
part of bone independently.

Thermodynamical model of bone remodelling Thermodynamical model of bone remodelling
18 1.8 T T T T T T
—— without mech. load
—— with mech. load — without mech. load
16 \ lower mech. loading 16l ]
— load treshold exceeded : —
14 - —

[ 141

T End points; stationary points ye
| y
/
: /
1+ f
0.8 \ . L
06 ~ 8l
«—— Starting point
0.4+
0.2

0

New bone

; ; . , \ \ \ | . | |
-0.1 0 01 0.2 03 0.4 05 06 07 0.8 0 0.5 1 1.5 2 25 3 35 4 45 5
Old bone time

Figure 2: Evolution of structure in several cases of mechanical loading - Fig. (a) - and
density of bone in 1 (isolated) element - Fig. (b).

To illustrate the effect of dynamic loading we varied the D, parameters of the model.
If no stimuli is present, the bone resorbs (concentration of both old bone and new bone is
decreasing) and after some period of time reaches equilibrium where almost no new bone
is being produced (Fig.2a, blue line). On the other hand if proper exercise is applied
(yet not possible to determine what type of exercise it represents) firstly a moderate
decrease in density may be observed. This decrease is soon shifted into significant rise
where formation predominates resorption. When the activity is increased furthermore
(by higher frequency or higher load) the stationary solution may become unreal (negative
value of Old B) - Fig.2a, black line. According to the model, there is a threshold for
dynamic loading. Exceeding this threshold leads to bone fracture.

3.1 Simulation results

The only parameters of mathematical model of BR that vary throughout the bone are
D,,p € 5 (all the other parameters are assumed to be constant throughout the whole
bone and independent on time). In other words, all the calculated results here presented
are consequence of solely dynamic loading as a control factor.

On the other hand if mechanical stimuli in given element is small, the bone mass is
not zero. In this case the biochemical factors prevails, such as hormones and nutrition.

As a initial state a homogeneous distribution of density throughout the whole bone was
used (Dens(I) = p,VI). Since each iteration is calculated by solving differential equation
(6)-(10) describing “thermodynamic BR model”, each iteration is not just approximation
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of correct solution but is actually a time evolution of bone remodelling in bone. We are
trying to simulate nature - to create the bone organ from homogeneous tissue.

Each step shows density changes (impact of remodelling) in each part of bone. Steady
state is reached after a few tens of iterations, one iteration step corresponds approximately
to 10 thousands strides. Approach to a steady state is checked by mean and maximal
density change. After 35 iterations the values are following: max difference =~ le — 03
and mean diff. &~ le — 04.
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Figure 3: 'Healthy state’ - result from ANSYS computation using thermodynamic BR
model calculated from initial homogeneous density distribution. Notice the clear forma-
tion of cortical and cancellous bone.

The Fig.3 depicts a calculated result from initial homogeneous distribution of density
after 35 iterations of BR according to presented model. It refers to healthy person -
similar as in Fig.2a, red line.

Notice the eminent correspondence in Fig.4 where you may compare calculated re-
sults with the inner structure of proximal femur as it is known from human anatomy.
BR process (according to our model) creates cortical and cancellous bone (even from ho-
mogeneous distribution) even when only influence of external forces is considered. From
here is patent how mechanic (dynamic) loading not only significantly influences the bone
remodelling process - resorption or formation of bone in a given element - but also de-
termines the shape, thickness and emplacement of cortical bone. See enclosed graphs of
time evolution of Young modulus in different parts of bone, where can be clearly seen the
formation of spongy and cortical bone.

The main goal for every theoretical model in biological sciences is of course the ap-
plication and possibly prediction of evolution of the particular process. One of the very
important applications of bone remodelling model is the prediction of adaptation of bone
to different mechanical conditions. Such a change occurs e.g. when degenerative arthro-
sis disables a proper function of joint and a surgical total replacement of joint is needed.
This replacement is done by prosthesis made from various materials (mainly steel, com-
posites,...) which are very different from bone tissue from mechanic point of view. And
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Figure 4: Cuts of a proximal femur - compare the calculated distribution of density in
healthy case and isovalues of von Mises stress (probable direction of osteons in bone) with
figure from anatomical atlas.

this of course causes a great changes in stress and strains magnitudes and its distribution
in bone resulting in changes of density distribution.

On Fig.5 are depicted the X-ray pictures of human proximal femur right after opera-
tion, 6 years after operation, and density distribution predicted by the presented model.
Great unknown in the joint-replacement problem is how will the bone respond in terms
of remodelling to a new stress-strain field in bone after the replacement. Usually there
is considerable resorption in the vicinity of implant (especially in proximal-medial and
proximal-lateral part of femur) but in some cases there is also a significant deposition of
bone in specific sites that strengthens the imposition of prosthesis in bone. Fig.5 shows
one example when adequate physical activity (50-year-old man at the time of operation,
approx. 10 thousand gaits per day) guarantees sufficient bone density for a long time
(Fig.5b).

Our research group tries to give some insight into this problematics. Despite the
complexity , when not only person-specific gene expression together with diet and activity
that he performs but also the choice of material for prosthesis, angle of insertion and
hollow created plays a role, the same type of response — the same pattern of density
distribution - after month from operation is obtained as in clinical observation - Fig.5c.
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Figure 5: The change of human bone (right femur) density distribution after hip joint
replacement. During the course of time the denser regions in the bone shift in the distal
direction towards the implant tip. The bone is markedly thicker near the implant tip.
a) X-ray image immediately after operation, b) X-ray image 6 years after operation, c)
bone density evolution calculated by our method.

4 Discussion

There are nowadays several bone adaptation theories (remodelling models) but vast ma-
jority of them is based only on influence of mechanical loading [9, 20, 25, 27, 28, 31|.
These models predict that bone mass will be zero if stresses in bone are zero. This is
not in agreement with in vivo observances. When limbs are casted (and the bone loading
is minimal), bone is rapidly lost but it reaches new steady state with lower bone density.
Notice that the bone loss is not complete. This result suggests that there are some effects,
e.g. hormones, nutrition, that are missing. On the other hand there are a few biological
models [14] but with no influence of mechanical loading, which is as it is known very
important stimuli for bone remodelling [2]. The magnitude and direction of the applied
forces used in simulation are common for walking [1].

Model proposed in this paper combine both - the mechanical stimuli and also the
biological background. Using FEM software we are able to calculate the density distri-
bution and consequently also material properties (the dependency of E on density was
experimentally determined as power to three [9]) throughout the whole bone. The cal-
culated pattern is in great agreement with the knowledge of bone anatomy. Moreover,
calculated isostress lines do correspond to osteon direction as |6, 22| claims. Using this
approach we may simulate different loading cases (exercise, patients) but also nutrition or
other biological features (and possibly the influence of several hormones involved in bone
remodelling). These simulations (and possible predictions) are being studied nowadays.

As was shown in this article, locomotion or dynamic loading is crucial for correct bone
development and remodelling. The only parameters that were varying throughout the
bone were D, - the effect of dynamical loading on rate of running chemical reactions.
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Nevertheless the agreement with structure of bone is remarkable. Frequency of loading
is also found as an very important factor.

The limitation of “thermodynamic BR”" model is mainly caused by the difficulty to
adjust the different parameters. Up to now it would be uneasy to determine many of
parameters experimentally even though they actually are characterising chemical reac-
tions (1)-(5) (and thus they have a real meaning). Partial solution of this problem may
be found in comparing calculated results for given set of parameters with real data from
clinical observation. Parameters of model were chosen so that concentrations of all of
the substances were positive and so that model showed in fundamental aspects the same
behaviour as clinically observed. If the presented thermodynamic model fits on clinical
data, it can be used for predictions or even treatment of skeletal disorders connected
with bone remodelling, e.g. osteoporosis, osteomalatia and inborn skeletal defects called
bone dysplasias. Some of these inborn defects of locomotor apparatus appear to us like
an experiment of nature and making it possible to study pathobiomechanics of skeleton
directly. Also other possible usage may be in designing implants of hip joints. Thus the
application of presented thermodynamic bone remodelling model may reach the clinically
broad domain.

This model was originally intended as a simplified model of bone metabolism mod-
elling. But even such a model, which does not contain the detailed mechanisms of bone
remodelling control, gives results that are very challenging.
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Abstract. This paper deals with the problem of marginalization of multidimensional probability
distributions represented by a compositional model. By the perfect one in this case. From
the computational point of view this solution is more efficient than any known marginalization
process for Bayesian models. This is because the process mentioned in the paper in a form of
an algorithm and takes an advantage of the fact that the perfect sequence models have some
information encoded; if can be obtained from the Bayesian networks by an application of rather
computationally expensive procedures. One part of that algorithm is marginalization by means
of reduction. This paper describe a new faster algorithm to find a reduction in a compositional
model.

Abstrakt. Marginalizace multidimenziondlnich distribuci reprezentovanych perfektnimi kom-
pozicionalnimi modely je mnohem efektivnéjsi nez jakykoli marginaliza¢ni proces v bayesovskych
sitich. Divod je prosty. Marginaliza¢ni algoritmus, zminény v tomto ¢lanku, vyuziva informaci
zakodovanych ve struktuie kompozicionalnich modeli, které se v bayseovskych sitich musi slozité
vypocitat. V tomto ¢lanku se zabyvame jednou podsekci marginaliza¢niho algoritmu - marginal-
izaci redukci. Je zde pfedstaven novy rychlejsi zpiisob hledani redukci v kompozicionalnich
modelech.

1 Introduction

The ability to represent and process multidimensional probability distributions is a nec-
essary condition for application of probabilistic methods in Artificial Intelligence. Among
the most popular approaches are the methods based on Graphical Markov Models, e.g.,
Bayesian Networks. This paper deals with an alternative approach to Graphical Markov
Models, so called the Compositional Models. The presented algorithm enables us to
effectively compute marginal distributions from really multidimensional models.

One possible solution of this task for Bayesian Networks is given in papers by R.
Shachter [6, 7]. His well known procedure is based on two rules: node deletion and edge
reversal. Roughly speaking, the effectiveness of his algorithm is like the effectiveness of
our algorithm without the accelerating procedures. This advantage consists in the fact
that compositional models express explicitly some marginals, whose computation in the

*The research was partially supported by Grant Agency of the Academy of Sciences of CR under grant
A2075302, Austrian-Czech grant AKTION 45p16 and Ministry of Education of the Czech Republic under
grants no 1M0572 and 2C06019.
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Bayesian network may be computationally expensive. One of the accelerating procedures
is marginalization by means of reduction. In this paper is presented an alternative algo-
rithm to search such reduction. This algorithm is currently used in a system MUDIM'.

2 Notation and Basic Properties

In this paper we will consider a system of finite-valued random variables with indices
from a non-empty finite set N. All the probability distributions discussed in the paper
will be denoted by Greek letters. For K C N, m(xf) denotes a distribution of variables
{Xitier

Having a distribution 7(xx) and L C K, we will denote its corresponding marginal
distribution either 7(z), or £, These symbols are used when we want to highlight the
variables, for which the marginal distribution is defined.

To describe how to compose low-dimensional distributions to get a distribution of a
higher dimension we will use the following operator of composition.

Definition 1. For arbitrary two distributions m(x ) and k(zy) their composition is given
by the formula

m(z)k(zr) when 7lENL < F&umL’

B> — K(TrnL)
m(xx) > r(rr) {undeﬁned otherwise,

where the symbol m(z)y) < k(zy) denotes that w(zy,) is dominated by k(zy), which
means (in the considered finite setting)

Yau € XieMXi (/‘i(l‘]\/[) =0= ’/T(I'M) = O)

The result of the composition (if it is defined) is a new distribution. We can iteratively
repeat the application of this operator composing a multidimensional model. This is why
these multidimensional distributions are called compositional models. To describe such
a model it is enough to introduce an ordered system of low-dimensional distributions
m, Mo, ..., T,. We denote this ordered system as a generating sequence, to which the
operator is applied from left to right:

MM . . DTy 1 D = (.. (M >me)bm3)>.. . DT, 1) > T,

Then we say that a generating sequence defines (or represents) a multidimensional com-
positional model.
In the process of marginalization we will also need another important operator.

3 Perfect Sequence Models

Now the attention will be focused on marginalization of distributions given by a special
subclass of generating sequences. From now, we will consider generating sequences

T (TK, ) > me(rK,) > (K,

Therefore, whenever distribution 7; is used, we assume it is defined for variables {Xi}l-eKj.

IExperimental system based on Multidimensional models.
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Definition 2. We call a generating sequence 7y, s, ..., m, perfect if for all j =2,... n
(’/Tl [>...D7Tj,1)[>’/'('j = 7Tj[>(’/T1 [>...[>7Tj,1)
hold true.

Perfect sequences have many pleasant properties, which are advantageous for mul-
tidimensional distributions representation. The most important one is expressed in the
following assertion.

Theorem 3. A generating sequence my, o, ..., T, is perfect iff all the distributions m; are
marginal to the represented distribution, i.e., for allt=1,2,....n
(T o) =7y

Now, let us formulate universal rules which make it possible to decrease the dimen-
sionality of compositional models by one. By iterative application of these rules may be
obtained any required marginal. The proof of the following assertion, which holds not
only for perfect but for all generating sequences, can be found in [5].

Theorem 4. Let 71,7, ..., T, be a generating sequence and
(e K;,NK,N...NK,,

for a subsequence (i1, 4z, .. .,0m) of (1,2,...,n) such that { & K; for all j & {i1,i2, ..., 0m}-
Then
(T > .. o) = k> Ry D Ky,

where
Iij = 7Tj, \V/j ¢{i1,i2,...,im},
—{¢
Ky, = 7Ti1{ }7
—{¢
KRiy = (7ri1 @LiQ,l 7ri2) {}?
—{¢
K'i3 = (T(Z'l @Li2_1 7ri2 @Li3—l ﬂ-iB) { }’
—{¢
K;im = (ﬂ-il @ngfl 7Ti2 @Li3,1 o ‘@L { }7

and Likfl = (K1 U K2 Uu...uU Kikfl) \ {g}

Wim)

i —1

The iterative application of this theorem always leads to the desired marginal distri-
bution.

More effective marginalizing procedures are, however, based on the different properties
which reminds rather of graph’s algorithms than statistical processes. One of them is
denoted like marginalization by reduction

However, these effective marginalization procedures could be used only in a special
case and, therefore, they are used as accelerating supplement only together with the
general algorithm shown in Theorem 4.

First, let us define an auxiliary notion of a reduction of a generating sequence, which
will simplify formulations in the following text.
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Definition 5. Let 7, 79, ..., m, be a generating sequence, (j1,J2, - ., Jm) & subsequence of
{1,2,...,n} and s € Z = {j1,..., Jm} be such that

(U x)nlJK) c K.

JjeZ ¢4
Then s and Z determine a reduction of generating sequence 1, ..., T, (or simply that
(s, Z) is a reduction).
Theorem 6. Let s € Z and Z = {ji1,...,jm} determine a reduction of a perfect sequence
m, Mo, ..., T,. Then, denoting
1e{l,...5}1\Z Jj€Z

for all j & Z, marginal distribution (71 >ma>...>m,)' can be expressed
L
(MDD .. D) =KD K> ... DKy,

where
Kj = T for je€Z,

Kj = il for g 7.

A functional algorithm based on the proof of Theorem 6 was presented in [1].

The most difficult part of this algorithm is how to find the reduction (s, 7). An old
solution is based on an iterative extension of the set Z with recounting W(Z, j) in every
step and testing validity of reduction (s, 7). This extension could be time-consuming
and has to be done regardless of effect. (As mentioned above, reduction by Z does not
have to exist) Because of this, the advantage gained by accelerating algorithm is wasted
by searching the set Z. The possible solution of this situation is described at the end of

the following section.

4 Marginalization Algorithm

Marginalization is one of the basic operations computing with multidimensional models.

Considering a perfect generating sequence (g, ), To(Zk,), - - -, Tn(Zk, ) and a set of
indices L C (K; UKy U...U K,). The marginalization algorithm performs computa-
tion of a generating sequence ky(zr,),...,km(2r,, ), representing the required marginal
distribution:

(mi(xg,) > o (2g,) > o D T (2, )Y = Ky (2p,) D Ro(2p,) Do > Kp(r, ).

The marginalization algorithm itself, as is implemented in MUDIM system, is depicted
in |1]. The algorithm consists in (cyclical) employment of five procedures.

e Truncation of an unavailing tail,
e Deletion of redundant elements,
e Simple marginalization [j],
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e Marginalization by means of reduction,

e General marginalization [j].

First four of them try to accelerate the computation. If these procedures fails, the general
marginalization procedure will be applied. As the reader can see from theorem 4, the
general marginalization procedure can be applied anytime but is very time consuming.
Therefore, accelerating procedures such as marginalization by means of reduction are
needful.

4.1 Marginalization by means of Reduction

The simple procedures could decrease dimension of the multidimensional distribution
either by one, or by more than one, but only when the variables to be deleted appeared
“in the tail” of the generating sequence. A more complex algorithm - Marginalization
by means of Reduction, which proves to be very efficient in many situations, especially
when the number of the variables to be deleted is really high, is described in [1|. This
algorithm is not dependent on the order of distributions in a generating sequence. For
this, one has to find a reduction (s, Z) such that Z contains all indices of the variables
for which the computed marginal distribution should be defined (L C Z). And it is this
search for reduction what makes the process rather complicated. There was published
one algorithm in the paper [1|. Unfortunately, time demand factor of that algorithm is
very high and this algorithm does not fulfil basic properties of accelerating procedures: If
possible, accelerate computation. If not possible, do not cause any additional delay. This
one is referred to as Full-Scan algorithm with regards to its structure and functionality.

4.2 Full-Scan algorithm

The structure of the Full-Scan algorithm is depicted in the Figure 1. It employs four
relatively simple procedures described in [1|. Quite naturally, all these procedures work
with the generating sequence in question m (2, ), m2(Zk,), .. ., T(Zk,) (but only one of
them - Marginalization [s, Z'] - modifies it). To find a reduction, the process employs
sets W(Z,j) (defined below) and their properties, which were proven in [2].

Having a set Z C {1,...,n} and j & Z the symbol W (Z, ) denotes the following

subset, of indices:

ez
(notice that sets W (Z, j) depend not only on Z and j but naturally also on the considered
generating sequence).
The basic idea of this algorithm is as follows: The algorithm extends set Z until there
exists s € (| W(Z,j) or Z = (1,..,n). Let us try to evaluate the time complexity of the
gz
particular steps of this algorithm. The complexity will be present in multiples of |Z| of
set functions.

e W(Z,j): O(Z])
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e Extension of Z: O(]Z]?)
e Constr. of a conn. set Z: O(|Z]%)

e Constr. of a bridge Z: O(|Z]?)

Find the smallest
Zc{lnp:Mc(JK)

icZ

v
—>| | .Extension of Z | |

Construction of a
connected set Z

| Choose se (W (Z.) |
e Z

Marginalization| |
[( s,{l ..... n}) \ Z]

| | Construction of | |
a bridge Z

| ZezouZ |

Figure 1: Marginalization by means of reduction

Because we know that |Z| is a function of n where n is a number of distributions
in a model; we can assume that O(n') = O(|Z[|'),i € N. The total complexity of this
reduction search algorithm is minimally O(n?) of set functions. The space complexity of
this algorithm has not been computed.

4.3 DFS algorithm

Let us present a slightly modified algorithm to find a reduction which does not discover
all reductions but is very fast. This algorithm will be denoted as the DFS algorithm. The
time and space complexity of Full-Scan algorithm were the reason why DFS algorithm
was created. The rest of marginalization algorithm remains same as it was published in
[1].

Marginalization by meas of reduction does not depend on the order of distributions in
generating sequence. Therefore, if we ignore that order, we can treat a multidimensional
model as a group of subsets (distributions). That is exactly how hypergraph can be
defined. In other words, consider a generating sequence of compositional model as a hy-
pergraph (see the definition and an illustration bellow). Reduction K5 in a model 3 seems
like a bridge in a hypergraph. We can convert the problem of finding a reduction (s, Z)
to the problem of searching for a bridge in a hypergraph. Every bridge in a hypergraph
corresponds to a reduction in corresponding multidimensional model. Nevertheless, there
are reductions in a multidimensional model which can not be represented by bridges in a
corresponding hypergraph.

Let us defined a hypergraph H on n vertices to be an ordered pair (V, E), where V is
the set of vertices, with |V| = n, and E is a multiset of subsets(hyperedges) of V. For an
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Figure 2. Slmple Hypergraph: V= {UI7U27U37U47U57U67U7}7E - {61 - {U17U27U3}762 -
{va, v}, e3 = {vs, vs, v}, €4 = {va}}

arbitrary hypergraph H, we let v(H) denote the number of vertices of H and e(H) denote
the number of hyperedges of H. In general, we will consider hypergraphs labeled so that
if the hypergraph has n vertices, they are labeled by the elements of n = 1,2, 3, ..., n, and
if the hypergraph has m edges, they are labeled by the elements of m. For simplicity, we
will call such objects labeled hypergraphs.

We define a walk in a hypergraph to be a sequence vy, e1,v1, ..., Un_1, €n, Un, where for
all i, v; € V, e € F, and for each ¢;, v;_1,v; C e; . We define a path in a hypergraph to
be a walk in which all v; are distinct and all e; are distinct. A walk is a cycle if the walk
contains at least two edges, all e; are distinct, and all v; are distinct except vy = v,,.

A hypergraph is connected if for every pair of vertices v,v" in the hypergraph, there
is a path starting at v and ending at v’. The hypergraph in Figure 2 is not connected
in contrast to the hypergraph in Figure 3. More information about hypergraphs can be
found in [4].

Figure 3: Visualization of a Multidimensional Model

Definition 7. A hyperedge in connected hypergraph is called a bridge if the deletion of
that hyperedge disconnects the hypergraph.

Whilst an effective algorithm of searching for bridges in hypergraphs does not exist,
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the algorithm for an articulation point does. For that we convert the hypergraph into a
simple graph. We define a graph G on n vertices to be an ordered pair (V, E), where V
is the set of vertices, with |V| = n, and E is a subset £ C V x V. Let connected graph
be defined as usual. Exact definition can be found in [3].

Definition 8. A node in a connected graph is called an articulation point if the deletion
of that node disconnects the graph.

To convert the generating sequence (hypergraph) to a respective graph, we are using
the representative graph of hypergraph defined below.

Definition 9. Given a hypergraph H = (V, E), its representative graph G = (E*, E**)

is a graph whose vertices are points €], ..., e’ representing the edges eq, ..., e, of H, the

9y Cm

vertices e, e being adjacent if and only if e; (e, # 0.

Because not every reduction can be represented by a bridge in a hypergraph, the
modified algorithm does not discover all reductions in a model. We may loose some
reductions during the conversion of a reduction search problem to a bridge search problem.
Nevertheless, our measuring of time consumption proves that this loss is sufficiently
compensated.

Hence, considering a multidimensional model (71, ..., 7,) as a hypergraph, we convert
it into its representative graph G(V, E) as follows:

1. Each distribution is considered to be a vertex (mq,...,m, — V)

2. (m,m;) € E & (K;NK; # 0) (if two arbitrary distributions in the generating
sequence have non-empty intersect, then we join them by an edge.)

Then, G is the representative graph of the multidimensional model (71, ..., 7,).

K7 K5 Kl
\KG/I \K4-K3/I
[ s
Ko
Kg ~

Figure 4: Representative graph

When we apply this conversion procedure to the model visible in Figure 3 we gain the
graph as in Figure 4.

Both problems of searching a reduction and searching a bridge in the hypergraph
are equivalent in a way. Both bridge and articulation point split a graph (hypergraph)
into two independent parts. Nevertheless, if we think about reduction as we did, sev-
eral reductions could be lost during the searching of bridges. We consider this loss as
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unimportant. After all, the reduction search procedure should serve as an accelerating
procedure and therefore it should be as fast as possible.
The conversion is justified (in light of reduction) by the following lemma.

Lemma 10. Let Pig is an arbitrary but fived articulation found in a representative graph
derived from generating sequence. Then there ezists a corresponding reduction (Z,s) in
generating sequence of multidimensional model where Z is given by representative graph.

Proof: Let 7w, be an articulation in the representative graph G of a multidimensional
model. By removing vertex m, from graph G, the graph is split into several independent
parts. Let denote them Z and the rest as n\ Z. Then (|J K;) N (U K;) € K holds

jcZ 27
because 7, is the articulation point. This formula is consis]tent with ]]Diﬁnition 5 and the
lemma is proved. [

The whole procedure of marginalization by means of reduction employs three simple
steps that we are going to describe now. You can see that this approach is much easier

than the old one, regrettably, it is not so powerful.

1. The generating sequence (considered as a hypergraph) is read from the model as a
simple graph. Data are returned as an associative array which presents the simple
graph as an adjacency list2.

2. The adjacency list is processed by standard DFS procedure. (That is the reason
why the new approach is referred as DFS algorithm)

3. All found articulations are deleted according to Lemma 1.

The complexity of the DFS algorithm is computed in basic functions, in contradiction
to the previous algorithm.

e Conversion to simple graph: O(n)
e DFS procedure: O(n+ m)

A total (time and space) complexity of this algorithm is O(n + m). It is much less
then in previous algorithm.

5 Conclusions

In this paper a slightly modified algorithm for marginalization in compositional models
is described. More precisely, an algorithm for models which are represented by perfect
sequences. The algorithm is based on theoretical properties proven in several assertions
published in |2]. The algorithm is currently realized in the system MUDIM?. Tts efficiency
is being tested on artificially generated data.

In Table 1 we refer to computations with two models constructed for artificially gen-
erated data. Let us stress that it would be easy to construct a model, for which the

2An adjacency list is the representation of all edges or arcs in a graph as a list.
3The system is realized in R and C language
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Table 1: Computational time in seconds

OFF DFS FullScan

Model 1

marginalization 167 s

from 24 to 3
variables

0.53.s| 0.95s

Model 1
marginalization
from 24 to 3
variables

1.39s | 1.38s 2.15s

Model 2
marginalization
from 30 to 3
variables

>30s | 4.21 s 4.02 s

Model 2
marginalization
from 30 to 3
variables

>30s | 1556 s | 12.25s

reduction substantially decreases the computational time. Nevertheless, on purpose we
are presenting examples which are, in a way, from this point of view inconvenient. They
represent distributions of 24 and 30 variables. The difference between the first two rows
of Table 1 shows that the efficiency of the process does not depend only on the model —
probability distribution, but also on which variables are to be marginalized out. This also
explains the difference between the 3rd and 4th rows. First model illustrates the follow-
ing situation: Reduction exists in the first row while no reduction can be found for the
variables in the second row. The delay caused by Full-Scan algorithm is for this number
of variables approximately 0, 5s. DFS algorithm does not delay the process compared to
the speed when the reduction is switched off. (The lower time is caused by incorrectness
of measuring tool.) The following model observed this situation: DFS algorithm did not
discover the same reduction as the Full-Scan algorithm. Nevertheless, a computation is
still faster than without this accelerating procedure. The last row illustrates a similar
situation.

During the testing of the original algorithm published in |1]| several problems ap-
peared. The application of the accelerating reduction procedure (realized by Full-Scan
algorithm) was very time-consuming because of its nature and also because of the re-
duction condition. With the help of hypergraphs another approach was discovered. The
created DFS algorithm is not as powerful as the original Full-Scan algorithm but can be
briskly performed by computer.

The way of treating multidimensional models as hypergraphs opens new extensions
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in the theory of multidimensional models for the future. Nevertheless, in this paper
hypergraphs are only a bridge to connect the multidimensional model to the articulation
in simple graphs. In fact, the hypergraphs are not used in DFS algorithm.
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Abstract. The paper deals with steps of the non-materialized data integration, and focuses on
schema matching and schema mapping issues. The proposal is for data sources on the Semantic
Web; the crucial assumption for the considered task is the availability of the ontologies describing
data to integrate. These ontologies are used to find correspondences between source schemas
elements, and also for found mapping expression.

Abstrakt. Clének se zabyva tlohami, které je tifeba TesSit pfi nematerializované integraci dat.
Zaméiuje se na hledani korespondenci mezi schématy a mapovani schémat. Navrh ptistupu
FeSeni téchto tloh na Sémantickém webu tézi z dostupnych ontologiich popisujicich integrované
zdroje. Ontologie jsou vyuzity jak k hledani mapovani, tak i pii jejich popisu.

1 Uvod

Integrace dat |1] je tiloha, ktera se zabyva sloucenim dat. Jejim cilem je prezentovat data
pochazejici 7z ruznych datovych zdroju jako jediny celek a umoznit je zpracovavat, jako
by 7 jediného datového zdroje opravdu pochéazela. V piipadé tzv. nematerializovaného
pristupu [25] byva feSenim tlohy poskytnuti unifikovaného pohledu na zdroje dat. Tento
pohled je vyuzivan jako novy zdroj obsahujici vSechna data. Ve skutecnosti jde o pohled
virtualni a data zustavaji fyzicky ulozena v ptivodnich zdrojich.

Aby bylo mo7né integraci zalozit na vyuziti virtuadlniho pohledu, neboli aby bylo
mozné k datim pres tento pohled pristupovat, je nezbytné definovat jeho vazby na fyzicka
data. Proto je tfeba se v tomto pristupu zabyvat schématy dat. Vazby mezi pohledem
a daty se pak zajisti definovanim vztahi mezi jednotlivymi ¢astmi schématu pohledu a
¢astmi schémat piivodnich zdroji. Ty jsou pak dale vyuzity pti zpracovani dat, naptiklad
pii dotazovani.

Proces integrace je mozné nahlizet jako kolekci nékolika tloh, které spolecné prinaseji
pozadovany vysledek. Zakladni kroky pfi feseni integrace dat pomoci virtuadlniho pohledu
jsou:

e Hled4ni korespondenci mezi schématy (schema matching) - Za pfedpokladu, ze da-
tové zdroje, které maji byt integrovany, byly vytvoreny nezavisle, riznymi designéry

*Prace byla podpofena projektem 1ET100300419 programu Informaéni spole¢nost (Tématického pro-
gramu IT Narodniho programu vyzkumu v CR: “Inteligentni modely, algoritmy, metody a néstroje pro
vytvaieni sémantického webu”) a vyzkumnym zamérem AV0Z10300504 “Informatika pro informaéni spo-
le¢nost: Modely, algoritmy, aplikace”.
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a pro ruzné ucely, jsou jejich schémata obecné heterogenni. Proto je diilezitou tilo-
hou nalezeni jejich vzajemnych korespondenci. Problém hledani korespondenci mezi
schématy byva oznafovan jako schema matching [20], [21].

e Mapovani schémat (schema mapping) - Obvyklym zptisobem jak vyjadiit nalezené

souvislosti mezi schématy zdroju je pouziti tzv. mapovdni. Mapovani je struktura,
napf. mnoZina tvrzeni, kterd popisuje vazbu mezi elementy schématu pohledu (ob-
vykle oznafovaného jako globéalni schéma) a schémat datovych zdroju (oznacova-
nych jako lokélni schémata).
P¥i tvorbé mapovani jsou vyuzivany dva zakladni p¥istupy [14], [3]: Global As View
(GAV) piistup, ktery spoc¢iva v definovani globalniho schématu jako mnoziny po-
hledi nad lokalnimi schématy, a Local As View (LAV) p¥istup, ktery definuje lokalni
schéma zdroje pomoci pohledi nad globdlnim schématem. Je samoziejmé mozné
oba pfristupy kombinovat.

e Zpracovani dotazi (query processing) - Vytvoieni mapovani je stézejni uloha, jejiz
vysledek ma dilezitou roli pti p¥istupu k datiim pomoci dotazi.
P1i pouziti systému, ktery integruje data, klade uzivatel dotazy tvorené nad posky-
tovanym pohledem, tj. vyuziva jeho jazyk, schéma atd. Pro vyhodnoceni dotazu
nad daty je tfeba puvodni (globalni) dotaz n&jakym zptisobem zpracovat |18].
Tim se zabyvaji dva zakladni pristupy. Prvnim je query rewriting - dotaz je dekom-
ponovan na ¢asti odpovidajici lokdlnim zdrojum. Ty jsou dale piepsany tak, aby
byly vyjadieny v prostiedi piislusného lokalniho zdroje. Nad lokalnimi zdroji jsou
pak vzniklé lokalni dotazy vyhodnoceny a ze ziskanych lokalnich odpovédi je opét
sestavena globalni odpovéd, ktera je vracena jako vysledek na puvodni dotaz.
Druhou moznosti je query answering, kterda nijak nespecifikuje, jak ma byt dany
dotaz zpracovan. Jejim cilem je vyuzit vSechny dostupné informace k ziskdni odpo-
védi na dotaz. Prikladem muze byt hledani takovych dat, u nichz lze dle dostupnych
znalosti usuzovat, ze jsou hledanym vysledkem.

Tento c¢lanek se déale zabyva prvnimi dvéma kroky integrace, tedy hledani korespon-
denci mezi schématy a jejich popisem pomoci vhodné struktury. Zaméruje se na datové
zdroje Sémantického webu.

Sémanticky web [2], [13], |8] je zamyS§len jako sémantické roz§iteni webu soucasného.
V soucasné dobé jsou hlavnimi technikami pii popisu dat Sémantického webu piredevsim:

e jazyk XML [33] pro strukturovani dat
e RDF(S) [30], [31] pro popis metadat
e OWL [28] pro specifikaci ontologii.

Omezeni na data Sémantického webu spociva v pozadavku vyjadieni dat pomoci
RDF /XML a dostupnych ontologii [6] popisujici jednotlivé zdroje.

Clanek je ¢lenén nasledovné: Kapitola 2 predstavuje obecné tilohu hledani korespon-
denci spolu s pristupy, které se touto tlohou zabyvaly. Kapitola 3 se zaméfuje na onto-
logicky piistup hledani korespondence mezi schématy na Sémantickém webu. Vyjadieni
mapovani se vénuje Kapitola 4.
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2 Uloha hledani korespondenci mezi schématy

Vstupem v tloze hledani korespondenci jsou dvé schémata, mezi nimiz je tifeba nalézt
vzajemné vztahy. Tato tiloha je pfedmétem mnoha vyzkumi. Bohuzel vSak je v riznych
projektech ¢ implementacich FeSena predev§im manuélné |15|, tzn. je zaloZzena na lid-
ském zasahu, uzivatel - ¢lovék je ten, kdo vztahy nalezne. To s sebou pfinasi mnoha
omezeni, je to naptiklad ¢asové naroc¢né, nachylné k chybam, drahé. Pfirozen& snaha o
zautomatizovani provadéné operace ma ovsem vétsinou za nasledek pouze tzv. kandidaty
moznych korespondenci a je to opét ¢lovék, kdo musi rozhodnout, zda nalezené mozné
korespondence skutec¢né plati.

Zpusoby, kterymi byvaji korespondence hledany, lze rozdélit na zékladé tirovné infor-
maci, které jsou pii porovnavani schémat vyuzivany:

e Na tirovni instanci - Srovnavaci piistupy pracuji s vlastnimi daty ze zdroji, aby
nalezly korespondence mezi jejich schématy.

e Na trovni pouzitych pojmi - Ptistupy pracujici na této trovni byvaji lingvisticky
zalozené (napf. jsou zaloZené na jménech a textovych popisech elementi schémat).
Mohou pracovat se znamymy vztahy mezi pouzitymi pojmy (synonyma, homonyma,
apod.) nebo mohou pojmy zpracovavat jako fetézec znaku (a vyuzivat vztahu jako
je prefix, sufix, kofen apod.)

e Na urovni struktury - Pii hledani korespondenci (piedev§im mezi schématy, které

vvvvvv

navani struktur mohou byt vyuzity napiiklad metody z oblasti teorie grafii.

Tyto techniky mohou byt samoziejmé kombinovanay. Naptiklad pii porovnéavani jed-
notlivych elementu schémat je mozné brat v avahu jak jejich jména, datové typy, aktivni
domény, ale i jejich strukturu.

Moznost existence mapovani, ke kterému se nalezeny kandidat vztahuje, byva casto
vyjadiena pomoci néjaké funkce, kterd podobnost porovnavanych elementii vyjadiuje.
Je mozné ji zalozit na pravdépodobnosti [16], kosinové mife piiznakovych vektoru [23],
nebo mife vyjadiujici po¢et shodnych zkoumanych aspekti [27]. PouZita mira muze byt
vyuzita pri vybéru skuteé¢nych korespondenci z kandidati, ¢imz je mozné lidsky zésah
vice eliminovat. Nékdy jsou navic pouzity i dalsi techniky, jako naptiklad zptresnovani
kandidatn [7| ¢ machine learning |26].

3 Hledani korespondenci mezi schématy na Sémantickém webu

V prezentovaném piistupu se predpoklada, ze spolu s integrovanymi zdroji jsou k dispo-
zici také ontologie, které popisuji data ulozena ve zdrojich. Pomoci nich jsou vyvozovany
pozadované korespondence mezi jednotlivymi elementy schémat. Jelikoz je p¥istup orien-
tovan na Sémanticky web, predpoklada, 7ze ontologie zdroji jsou vyjadieny v jazyce OWL
[28].

V obecném piipadé miize jeden element korespondovat s jednim nebo vice jinymi ele-
menty, miize korespondovat s kombinaci elementii, nebo nemusi korespondovat s zadnym
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jinym elementem. V této souvislosti se obvykle pii hledani korespondenci pouziva pojem
kardinalita, ktera pro urcitou korespondenci vyjadiuje, kolik elementit mapovanych sché-
mat do vztahu vstupuje. Kardinalita korespondence miize byt 1:1, 1:N, N:1, N:M. OvSem
vétSina existujicich pristupu vyuziva kardinalit 1:1 or 1:N.

Prezentovany pristup uvazuje vztahy nasledujicich kardinalit:

e 1:1 - pri vzajemném porovnavani dvou schémat. Tento pt¥ipad vyjadiuje, 7e element
jednoho schématu je ve vztahu s jednim elementem druhého schématu.

e 1:N - pfi porovnavani jednoho schématu s vice dalsimi schématy. Tento ptipad je
mozné vidét jako mnozinu korespondenci kardinalit 1:1. Kardinality 1:N se ¢asto
vyuziva v integrci dat pro vyjadieni korespondenci mezi schématem globalniho vir-
tualniho pohledu a schématy lokalnich zdroji.

Pojeti korespondence pii porovnavani schémat je formalizovano néasledovné:

e Korespondence kardinality 1:1 je tvrzeni:

€1 P €2

kde

€1 je element jednoho schématu
€5 je element druhého schématu
p je vztah mezi €1 a g9, ktery vyjadiuje jejich vzajemnou korespondenci.

e Korespondence kardinality 1:N je mnozina tvrzeni kardinalit 1:1:

{51 Pi 5i}

kde

1 je element jednoho schématu
g; je element druhého schématu
p; je vztah mezi €, a g;, ktery vyjadruje jejich vzajemnou korespondenci.

Vztahem p mohou byt nasledujici druhy korespondenci:

e Is-a hierarchicky vztah (tj. jeden element je obecnéjsi nez druhy, nebo naopak).
Tento druh je oznacen jako 2O, resp. C.

e Ekvivalence mezi elementy.
Tento druh je oznacen jako —=.

e Disjunktnost, tj. mezi elementy neni zadna souvislost.
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3.1 Hledéani korespondenci v piipadé sdilené ontologie

V nejjednodussim piipadé je popis vSech zdroji dostupny v jediné ontologii. Tato ontolo-
gie je lokadlnimi zdroji sdilena a pokryva popis vSech lokalnich dat. Vztahy mezi elementy
jednotlivych schémat mohou byt nalezeny piimo v této ontologii.

Pro to je pouzito pravidlo:

Sémanticky vztah mezi pojmy definovany v ontologii implikuje stejny vztah mezi ele-
menty schemat, které jsou témito poymy oznacené.

Uvazujeme-li diive zminéné typy korespondenci, je mozné ptistup zalozit na is-a hi-
erarchii definované sdilenou ontologii. Jsou-li porovnavana dvé schémata, pro kazdy ele-
ment jednoho schématu a kazdy element druhého schématu je jejich vztah hledan v této
ontologii. Je-li mezi nimi vztah nelezen, je prislusné korespondence i mezi uvazovanymi
elementy.

Nékteré vztahy nemusi byt v ontologii vyjadieny pirimo, ale je mozné je z ontologie
ziskat vyuzitim tranzitivity is-a vztahu. Je-li naptiklad pouzit pfistup k ontologii jako
grafu s t¥idami popisujicimi jednotlivé pojmy jako uzly a s orientovanymi hranami vyja-
Fujicimi existenci is-a vztahu, nalezenou korespondenci neznamena pouze existujici hrana,
ale také prislusné znacené cesta.

V pripadé, ze jsou elementy disjuntkni, znamena to, Ze by v is-a hierarchii neméla byt
zadna cesta a neni tedy nutné néjaky vztah hledat. V praxi vede tato situace ke stejnému
efektu, jako kdy7 je vztah hledan, ale Zadny neni nalezen. OvSem je vhodné tuto informaci
o disjunktnosti dale uchovavat, protoze muze byt dale vyuzita pii rozSifovani pristupu
napiiklad o dalsi usuzovavani apod.

Vsechny korespondence, které jsou ze sdilené ontologie ziskany, jsou prijaty. Neni na
né nahlizeno nejprve jako na kandidaty, nebot zde neni zZddny odhad korespondenci -
vSechny 7z nich jsou v dané ontologii definovany. Tento krok tedy nevyzaduje zadny zésah
(lidského) uzivatele.

3.2 Obecny pripad hledani korespondenci zaloZeny na ontologiich

Obecné nemusi byt ontologie, kterd by popisovala vSechna zpracovavanéa data, dostupna.
Nékteré zdroje mohou sdilet nékteré pojmy, avsak sdileni vSech pojmii v§emi zdroji nelze
predpokladat. Je tfeba pracovat obecné s vice ontologiemi.

Slou¢enim vsech ontologii, které popisuji integrované datové zdroje, ziskdme “novou”
sdilenou ontologii, a tak je tento obecny piipad preveden na piedchozi. Slouc¢ovanim
ontologii se zabyva fada vyzkumu z oblasti ontology alignment a ontology merging a je
tedy pro toto mozné vyuzit nékterou ze znamych metod.

V souvislosti s ontologemi, pojmy alignment a merging spolu tzce souvisi [10]. Pro
oba jsou také relevantni tlohy hledani korespondenci (matching) a mapovéani (mapping).
Ontology alignment obvykle oznac¢uje stanoveni binarnich vztahii mezi dvéma ontologiemi.
To umoznuje definovat zpiisob, jak tyto ontologie sloucit. Vysledkem ontology merging je
nova integrovana ontologie.

Metody ontology alignment a ontology merging jsou, podobné jako metody pfii po-
rovnavani schémat, provozovany na nékolika turovnich: instance (napt. srovnani mnoziny
instanci popisovaného pojmu), element (napi. lexikalni techniky) a struktura (napi. gra-
fové techniky), a také vyuzivaji nejen sémantické, ale i syntaktické piistupy.
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V obou oblastech lze najit i podobnost s pouzivani kandidati. Metody vyzaduji lidskou
interakci nebo jsou zalozeny na heuristikach z predchozich rozhodnuti. Ackoliv pii odvo-
zovani vztahu schémat ze sdilené ontologie 7adni kandidati nevznikaji a korespondence
jsou piimo urceny, v obecném piipadé mohou vznikat pravé piri vyuzivani existujicich
metod pii feSeni podiilohy jak sdilenou ontologii najit.

Je patrné, Ze metody pro hledéni korespondenci v ontology merging a ontology alig-
nment jsou zalozeny na podobnych principech jako metody pro hledéni korespondenci
mezi schématy. Divodem toho je, 7Ze ontologie a datova schématy spolu tzce souvisi.
Hlavnim duvodem je tcel, ke kterému jsou pouzity. Ontologie jsou vytvareny, aby popi-
sovaly pojmy pouzivané v néjaké oblasti, zatimco schémata jsou vytvarena, aby mode-
lovala néjaka konkrétni data. Specialné pro schémata vyuzivajici sémanticky model neni
casto patrny rozdil a neni zfejmy zpitisob, jak identifikovat, kterd reprezentace je schéma
a kterd je ontologie. V praxi maji ¢asto schémata i ontologie dobie definované pouzité
pojmy. Protoze schémata obecné neposkytuji explicitni sémantiku pro data, pouzivaji se
pri hledani korespondenci techniky, pomoci nichz se odhaduje vyznam uzivanych pojmu.
Predpokladame-li, ze datové zdroje jsou popsany v dostupnych ontologiich, pouziti tako-
vych technik neni nutné, nebot potiebnou informaci mame.

Metodymi pro ontology merging, jez je napiiklad mozné pii hledani sdilené ontologie
pouzit, se zabyva mnoho vyzkumnych projektii:

e Chimaera [12| - Systém Chimaera poskytuje nastroj pro slucovani ontologii. Je zalo-
7en na ontologickém editoru Ontolingua [9]. UvaZzuje pouze hierarchicky is-a vztah.
Chimaera je interaktivni nastroj, ktery vyzaduje interakci uzivatele: generuje se-
znam pojmiu (kandidata pro vztah), coz poméaha uzivateli pii urcovani pojmu ke
slouc¢eni. Chimaera ponechava rozhodnuti plné na uzivateli, sim nenabizi zadné
navrhy.

e PROMPT [17| - PROMPT je algoritmus pro semiautomatické slouceni ontologii.
Provadi nékteré akce automaticky. Také determinuje mozné nekonzistence plynouci
z uzivatelovych rozhodnuti a nabizi, jak je vyfesit.
PROMPT nejprve vytvori inicidlni seznam pro korespondence zaloZeny na pojmech.
Néasleduje cyklus vybéru kandidatu uzivatelem a automaticky provadénych akci -
algoritmus vyuziva datové typy, lingvistické techniky a is-a hierarchii.
Algoritmus PROMPT byl implementovan jako rozsiteni ontologického editoru Protégé-
2000 |29].

e FCA-MERGE |22| - FCA-MERGE je metoda pro slu¢ovani ontologii, ktera nabizi
strukturalni popis. Pro zdrojové ontologie extrahuje instance z relevantnich texto-
vych dokumenti dané domény a aplikuje techniky zpracovani ptirozeného jazyka.
Po extrakei instanci, jsou pouzity techniky FCA (Formal Concept Analysis) [19] a je
ziskan strukturalni vysledek FCA-MERGE. Extrakce instanci a FCA-MERGE algo-
ritmus jsou plné automatické. Vygenerovany vysledek je transformovan do sloucené
ontologie se zdsahem uzivatele.

e HCONE |[11] - Piistup HCONE vyuzivda WordNet [32|, externi informaéni zdroj.
HCONE z WordNetu ziskava lexikalni informace. Lingvistické a strukturalni infor-
mace o ontologiich jsou ziskiny pomoci metody LSI - Latent Semantics Indexing
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[5]. Jednotlivé koncepty jsou asociovany s jejich neformalnimi, lidsky orientovynymi
interpretacemi z WordNetu.

Metoda preklada formalni definice pojmi do bézného slovniku, které pak vysetiuje
s vyuzitim deskrip¢ni logiky. Cilem je ovérit mapovani mezi ontologiemi a najit mi-
nimalni mnozinu axiomii pro vyslednou slou¢enou ontologii. Neni plné automaticky,
lidsky zasah je nutny v pocatecnich fazich procesu.

4 Mapovani na Sémantickém webu

Vysledek tlohy hledéni vzajemnych vztahti mezi schématy, tedy nalezené korespondence,
se Casto oznacuje jako mapovani. Obecné mize mapovani piedstavovat libovolna struk-
tura. K vyjadieni mapovéni lze pouzit od jednoduchych 1-1 mapovacich pravidel vyja-
diujicich primou korespondenci mezi elementy, pres mapovani konceptu na dotaz nebo
pohled [4], a7 po pomocné mapovaci struktury (napiiklad referen¢éni model v [24]). Rizné
projekty obvykle pouzivaji vlastni pojeti mapovéani.

Kromé naptiklad pouzivani mapovacich pravidel jako tvrzeni pro elementy globalnich
a lokalnich schémat, které jsou orientovany na konkrétni feSenou tilohu, je mozné vyuzit
popisu mapovani mezi elementy schématu globélniho pohledu a schémat lokalnich zdroju
bude slouzit ontologie OWL.

Uziti ontologie pro mapovani pfinasi moznost znovupouziti také v jinych tlohéch ¢i
situacich. Je také mozné pii odvozovani dalSich korespondenci, naptiklad pii integrovani
dalsiho zdroje, vyuzit mapovéani v ontologii jako dalsi ontologii, ktera integrované zdroje
popisuje. Tak je mozné dale vyuzivat jiz jednou zjisténé skute¢nosti. Navic, bude-li v
budoucnu tfeba zachytit i dalsi typy vztahi mezi elementy, muze byt ontologie déle
vyuzita, nebot je schopna zachytit rizné typy vztahu.

K popisu mapovéani bude v zavislosti na typu vztahu vyuZit odpovidajici [28] kon-
strukt. Abstraktnim mechanismem pro seskupovani popisovanych zdroju v OWL je t¥ida
(class). Zdrojem je na webu jakakoli identifikovatelné entita. Proto bude pojeti owl:Class
pouzito pro korespondenci elementii:

e Is-a hierarchicky vztah, tj. e C g9, lze vyjadrit pomoci podtiid.
Piislusnym rysem OWL je rdfs:subClass0f, ktery umoziuje vyjadfit, ze extenze
popisu jedné tiidy je podmnozinou extenze popisu jiné tiidy.

e Vztah ekvivalence, tj. €1 = €9, 1ze v OWL vyjadfit s owl:equivalentClass.
owl:equivalentClass umoziuje vyjadrit, ze dvé tfidy maji stejnou extenzi.
V tomto ptipadé miuze byt také pouzit rdfs:subClass0f tak, 7e definujeme &
jako podtiidu t¥idy €9 a soucasné e5 jako podtiidu t¥idy &1, fikdme, 7e €1 a €9 jsou
ekvivalentni t¥idy.

e Disjunktnost (neboli tvrzeni, 7e extenze popisu jedné tiidy neméa 7adné spoleéné
prvky s extenzi popisu jiné tiidy) lze vyjadiit pomoci owl:disjointWith.
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K vyjadieni mapovani slouzi ontologie OWL. Zdrojem, ze kterého je mapovani ziska-
vano je ontologie sdilena zdroji, také ontologie OWL. Dana sdilena ontologie je“nadontologii”
hledané ontologie v tom vyznamu, Ze popisuje vSechny tiidy a jejich vztahy obsazené v
mapovani.

5 Shrnuti a zavér

Hledani korespondenci mazi schématy (schema matching) je st&Zejni ¢asti integraéniho
procesu. Jeho vysledkem je mapovani, které je dale vyuzivano pii zpracovavani integro-
vanych dat. Pti hledani vztahii je mozné vyuzit riznych technik zaloZenych na riznych
informacich o datech. Jsou-li dostupné ontologie zdroji, je mozné odvodit hledané kore-
spondence také z nich.

Dilezitou otazkou je také zpiisob, jak nalezené mapovani zaznamenat. V popsaném
pristupu je k tomuto vyuzita ontologie OWL. To pfinasi moznost mapovani sdilet ¢i
znovu pouzivat. Navic mapovani, které je vyjadieno pomoci standardizované struktury
miize byt dale vyuzivano i v jinych situacich a lze jej zpracovavat riznymi nastroji. Pro
toto mapovani je naptiklad mozné pouzivat metody vyvinuté pro zpracovavani ontologii.

Je-1i k dispozici jedina ontologie, ktera popisuje data v integrovanych datovych zdro-
jich, lze mapovani v podstaté snadno ziskat piimo 7 této ontologie. V obecném ptipadé,
kdy je pro popis dat vyuzito vice ontologii, jsou tyto ontologie integrovany. Vysledkem
integrace ontologii je sdilena ontologie a tiloha je prevedena na ptedchozi piipad. Timto
zpusobem je tiloha hledani korespondenci mezi schématy pievedena na tilohu slu¢ovani
ontologii, pro kterou je mozné vyuzit nékterou z dostupnych metod.

Mapovani schémat zalozené na ontologiich je podilohou celého procesu integrace. V
budoucnu je proto planovano zamérit se také na nasledujici fazi, tj. vyuziti mapovani pro
zpracovani dotazii.
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Abstract. This contribution deals with numerical solution of the Gray-Scott (GS) model. We
introduce two numerical schemes for the 2D GS model based on the method of lines. To perform
spatial discretization we use FDM in first case and FEM in the second case. Resulting systems
of ODEs are solved using the Runge-Kutta-Merson method. We present some of our numerical
simulations.

Abstrakt. V tomto piispévku se vénujeme numerického Feseni Grayova-Scottova (GS) modelu.
Predstavujeme dvé numericka schémata pro 2D GS model zalozend na metodé primek. K pros-
torové diskretizaci pouzivame v prvnim piipadé FDM, ve druhém FEM. Vzniklé systémy ODEs
fesime metodou Runge-Kutta-Merson. Uvadime vysledky numerickych simulaci.

1 Introduction

Reaction-diffusion systems are a class of systems of partial differential equations of
parabolic type. It includes mathematical models describing various phenomena in the
field of physics, biology and chemistry. Gray-Scott model is one of these models. It was
first introduced in 1985 in an article by P. Gray and S. K. Scott. It is a mathematical
description of autocatalytic chemical reaction

Uu+2v —— 3V
Vv — P (1)

and can be written in this form

% = aViu—uw® + F(1 —u),
% = bV +u? — (F + k). (2)

Here u, v are unknown functions representing concentrations of chemical substances U,
V. Parameter F' denotes the rate at which the chemical substance U is being added
during the chemical reaction, F' 4 k is the rate of V' — P transformation and a, b are
constants characterizing the environment where the chemical reaction takes place (see

12, 3, 6]).
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2 Problem formulation

Assume that = (0, L) x (0, L) is an open square representing the square reactor where
the chemical reaction (1) takes place, 92 is its boundary and v is its outer normal.
Then initial-boundary value problem for the Gray-Scott model we solve is a system (2)
of two partial differential equations with initial conditions and zero Neumann boundary
conditions

% = aViu —w? + F(1 —u),
% = W +w® — (F+kwv inQx(0,7T),
U(,O) = Uini,
v(-,0) = Vi,
ou
Em loa = 0,
ov
g, 3
o loa = 0 (3)

3 Numerical schemes

We use two numerical schemes to solve initial boundary value problem (3). Both of them
are based on the method of lines. For spatial discretization we used finite difference
method (FDM) in the first case and finite elements method (FEM) in the second case.
We use structured numerical grids (see Fig. 1). To solve resulting systems of ordinary
differential equations Runge-Kutta-Merson method is used.

FDM grid FEM grid

Figure 1: Numerical grids we used for our numerical simulations.

3.1 FDM based numerical scheme

Let h be mesh size such that h = ﬁ for some N € N*. We define numerical grid as a
set

wp = {(ih,jh)|izl,...,N—Q,j:1,...,N—2},
o, = {(ih,jh)]i=0,...,N—1,7=0,...,N—1}.
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For function u : R* — R we define a projection on @y, as u;; = u (ih, jh). We introduce
finite differences

uxl Z] — u2+1,.7 — uZJ , ujl Z] — uZJ B ui_l’j
) h ) h
Uigj+1 — Uiy Uij — Wij—1
Uz ,ij = Q,U@ ij = e
’ h ’ h

and define approximation A, of the Laplace operator A as follows
Ahuij = Uzyzy,ij T Uzpaa,ij-

Then semi-discrete scheme has the following form

d

dtum (t) = 72 Ahum + F(l — ’LLij) — ’LLij’UZ-Zj,

d b

dt’l)w(t) = ﬁAh’UU (F + k’)?)” -+ U450 z]? (4)

plus corresponding initial and boundary conditions.

3.2 FEM based numerical scheme

To induce the semi-discrete scheme we begin with variation formulation of the problem
(3). Let

e1(z), pa(z) € CF(Q),
1/)1(15)71/)2(75) S 080(07T)
are test functions and

filu,v) = F(1—u) —w?
fo(u,v) = —(F + k)v+ uv?

denote right-hand sides of differential equations (2). Using standard approach (see [1])
we induce weak formulation of the problem

o) +a(Va, V) = (frg),

dt
((ii (v, 2) +b(V, V) = (fa,02),
( ) = Uini,
v(-,0) = Vi, (5)

with solution u, v from the Sobolev space I/V21 (©2). We are looking for Galerkin approx-
imation

N

u(t) = > ai(t)®;,

op(t) = Zﬁi(t)(l%-
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of this weak solution in the finite dimensional space S C Wél)(Q), where ®&q,..., Oy
are its basis functions. Functions «;, §; are real functions which we get using common
technique as solutions of initial value problems. Choosing basis functions ®; in the form
of pyramidal functions

®,(P;) = 0;; for all grid nodes P,

and using mass-lumping we can rewrite the problem for finding functions «;, ; in the
following form

d 2a
auij(t) - W[Um,j t U141 T U1+ Uiy + Ui1j +
+ui—1,j+1 — 6Uz]] + F(l - uij) - UijU?j
d 2b
Evlj (t) = W[Uzqu,j + Vit+1,5+1 + Vi j—1 + Vi j+1 + Vi—1,5 +
+vi1511 — 6vy] — (F + k)vy; + uijvin (6)

plus corresponding initial and boundary conditions.

For details on induction of presented semi-discrete schemes we refer reader to [5].

4 Numerical experiments

4.1 EOC measurements

To determine the order of convergence of our numerical algorithm based on the FDM
based semi-discrete scheme (4) we use experimental order of convergence (EOC). For our

measurements we used formula
| v —vpa || _ (@)a
| v —wvn || hl/) ’

where v is numerical solution computed on the grid of size 2000 x 2000 and substitutes
the analytical solution, vys, v, are numerical solutions computed on courser grids with
mesh sizes h2, h1 and « is the EOC coefficient. We present some of our measurements for
different GS model parameter values and initial conditions (see Tab. 1, Tab. 2, Tab. 3).
According to the presented results, the question about the EOC do not have easy answer.
Our results vary between the values of 1 and 2. More research into this problem is needed
including EOC measurement for the FEM based numerical algorithm.

4.2 Comparison of FDM and FEM

We performed a series of computations to compare our numerical schemes. According to
our results the GS model is very sensitive on the numerical scheme used for numerical
simulation. FEM based scheme (6) provides results less dependent on the numerical grid
size (see Fig. 2). Here, spatial distributions of chemical V' concentration over the domain
Q) are visualized. Lighter color means higher concentration. For concentrations u,v of
chemicals U,V a relation u = 1 — v applies in each point of the domain €.
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Ny x Ny

h

EOC L,

EOC L

100x100
150x150
200x200
250x250
300x300
350x350
400x400

0.0050505
0.0033557
0.0025125
0.0020080
0.0016722
0.0014326
0.0012531

1.6479179
1.8042298
1.9112146
1.9725610
2.0089377
2.0336490

1.6364127
1.5663398
1.7531840
1.8660718
1.8995297
1.9882238

Table 1: Table of EOC coefficients.

Ny x Ny

h

EOC L,

EOC L

100x100
150x150
200x200
250x250
300x300
350x350
400x400

0.0101010
0.0067114
0.0050251
0.0040160
0.0033444
0.0028653
0.0025062

0.8225371
0.9222231
0.9995422
1.0667171
1.1237827
1.1754085

0.5550153
0.7584173
0.9052681
1.0124643
1.0727512
1.1689477

Table 2: Table of EOC coefficients.

N, x N,

h

EOC Ly

EOC Ly

100x100
150x150
200x200
250x250
300x300
350x350
400x400

0.0050505
0.0033557
0.0025125
0.0020080
0.0016722
0.0014326
0.0012531

2.0466270
2.0460521
2.0512043
1.9143909
1.5423185
1.5552072

1.0203486
0.9659226
1.1006299
0.9491632
1.0946135
0.9893100

Table 3: Table of EOC coefficients.
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FDM,100 x 100,t = 1000 FEM,100 x 116,t = 1000

FDM, 150 x 150,¢ = 1000 FEM, 150 x 174,t = 1000

FDM,200 x 200, = 1000 FEM,200 x 230,¢ = 1000

FDM,400 x 400,¢ = 1000 FEM,400 x 462,t = 1000

Figure 2: Dependence of numerical solution on numerical scheme and grid size. GS model
parameter values: a =2e — 5,0 =1e — 5, F = 0.024, k = 0.054, L = 1.0.
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a=1le—5b=1le—6 a=1le—6,b=1le—7 a=1le—6,b=1le—7
F=2e—1k="Te—-3, F=15e—1,k=9e -3, F=8e—4k=1e—2,
L =0.5,t=2000 L=0.5,t="700 L=0.5,t=1900

a=1le—6,b=1le—7 a=1le—6,b=1le—7 a=1le—6,b=1le—7
F=8e—4k=2e—2, F=2e—3k=2e—2, F=4e—3k=2e—2,
L =0.5,t=980 L =0.5,t=2080 L =0.5,t=5000

e ‘l-_’

L]
L]
°

»

a=le—6,b=1e—-7 a=le—6,b=1e—-7 a=le—5,b=1e—-7
F=T7e—-3k=3e—2, F=3e—2k=4e—2, F=1le—-3k=8e—3,
L =0.51t=940 L =0.5,1t=4940 L =0.5,t=2000

Figure 3: Results demonstrating diversity of solutions of the GS model computed using
FDM based numerical scheme (4) and grid size 400 x 400 for different parameter value

combinations.
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FDM,400 x 400, = 0 FDM,400 x 400,t = 0 FEM,400 x 462,t = 0

" S
J ./

FDM,400 x 400,t =250  FDM,400 x 400, =250 FEM,400 x 462,t = 250

FDM,400 x 400,t = 500  FDM,400 x 400, = 500  FEM,400 x 462,t = 500

FDM,400 x 400,t = 1000 FDM,400 x 400, = 1000 FEM,400 x 462,t = 1000

FDM,400 x 400,t = 4000 FDM,400 x 400, = 4000 FEM,400 x 462,t = 4000

Figure 4: For some parameter value combinations solutions are becoming more and more
similar even when using different initial conditions. GS model parameter values: a =
le—5b=1le—6, F =1le—3, k =4e—2, L = 0.5. FEM used to verify results (3"
column).
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4.3 Diversity of solutions

On the Fig. 3 and the Fig. 4 we present some of our numerical results. The meaning
of images is the same as in the previous text. These results demonstrate the diversity of
GS model solutions and some interesting phenomena we found. We can see that patterns
are changing from geometrically simple ones to those which are much more complex.
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Abstract. In this work we analyze and analytically describe the specific statistical changes
brought into the covariance structure of signal by the interpolation process. We show that
interpolated signals and their derivatives contain specific detectable periodic properties. Based
on this, we propose a blind, efficient and automatic method capable to find traces of resampling
and interpolation. The proposed method can be very useful in many areas, especially in image
security and authentication. For instance, when two or more images are spliced together, to
create high quality and consistent image forgeries, almost always geometric transformations
such as scaling, rotation or skewing are needed. These procedures, typically, are based on
a resampling and interpolation step. By having a capable method of detecting the traces of
resampling, we can significantly reduce the successful usage of such forgeries.

Abstrakt. Tento pFispévek se zabyva statistickymi zménami pfindSenymi do signalu interpo-
lacnim procesem. Analyticky ukidzeme, Ze interpolované signily, obsahuji specifické deteko-
vatelné periodické vlastnosti. Déle predstavime efektivni slepou metodu, kterd dokaze detekovat
v digitalnim signalu a jeho derivacich stopy po pfevzorkovani a interpolace. Tato metoda muze
byt velmi uzitecna v oblasti ovéFeni pravosti digitalnich fotografii. Kdy7 jsou ve fotomontazi
dva ¢i vice snimku nakombinované navzajem, k vytvoreni jednoho kvalitniho padélku, jsou skoro
vzdy potfebné geometrické transformace jako je zména rozméru ¢i rotace. Tyto operace jsou
obvykle zaloZzeny na pievzorkovani a interpolaci. Proto, nabizena metoda muZe byt efektivni ve
snizovani aspe$ného zneuzivani tohoto typu padélku.

1 Introduction

Despite of importance, massive usage! and history? of interpolation, to our knowledge,
there exist only a few published works concerned with the specific and detectable sta-
tistical changes brought into the signal by this process. In this paper we analytically
describe specific periodic properties presence in the covariance structure of interpolated
signals and their nth derivatives. Without the detailed knowledge of how the statistics
of the signal is changed by the interpolation process, applications based on statistical ap-

!For instance, almost every image resizing or rotation operation requires an interpolation process
(nearest neighbor, linear, cubic, etc.).

2Interpolation has a long history and probably started to being used as early as 2000BC by ancient
Babylonian mathematicians. For instance, it had an important role in astronomy which in those days
was all about time keeping and making predictions concerning astronomical events [1].
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proaches working with resampled /interpolated signals or with their derivatives can yield
miscalculations and unexpected results.

Furthermore, we propose a blind, efficient and automatic method capable to detect the
traces of resampling and interpolation. The method is based on a derivative operator and
radon transformation. The knowledge whether the given signal or some of its portions
have been resampled can play an essential role in many fields, especially in image security
and authentication.

When two or more images are spliced together (for an example, see Figure 1), to cre-
ate high quality and consistent image forgeries, almost always geometric transformations
such as scaling, rotation or skewing are needed. Geometric transformations typically
require a resampling and interpolation step. Therefore, by having sophisticated resam-
pling/interpolation detectors, altered images containing resampled portions can be easily
identified and their successful usage significantly reduced.

Existing digital forgery detection methods are divided into active |2, 3|, and passive
(blind) [6, 7, 4, 5, 8] approaches. The passive (blind) approach is regarded as the new
direction. In contrast to active approaches, passive approaches do not need any explicit
priori information about the image. They work in the absence of any digital watermark
or signature. Passive approaches have not yet been thoroughly researched by many.
Different methods for identifying each type of forgery must be developed. Then, by
fusing the results from each analysis, a decisive conclusion may be drawn.

@ _ ()

Figure 1: An example of image forgery based on resampling and interpolation. Shown
are: source image (a), source image (b), tampered image (¢). In (d) is shown the adjusted
difference between image (a) and the tampered image (c¢). The tampered image has been
created by splicing source image (a) with a resized part of source image (b). This part
has been resized by scaling factor 1.30 using the bicubic interpolation.
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In this work, we study and analytically describe the periodic properties of the covari-
ance structure of interpolated signals and their derivatives. Using the theory we bring
the main contribution of this paper which is a fast, blind and efficient method capable to
detect traces of arbitrary affine transformation. The method can be used for estimating
the scaling factors or rotation angles as well as skewing factors. The core of our method
is a radon transformation applied to the derivative of the investigated signal. We briefly
extend the theory for two-dimensional cases as well. Also we analyze and show periodic
patterns of interpolation by an application of Taylor series to the interpolated signals.

2 Basic Notations and Preliminaries

First, a proper mathematical model simulating the acquisition system is required. Peri-
odic properties of interpolation can be effectively studied by using the following simple,
linear and stochastic model and assumptions:

f(x) = (uxh)(z) + n(z) (1)

where f, u, h, ¥, and n are the measured image, original image, system PSF, convolution
operator, and random variable representing the influence of noise sources statistically
independent from the signal part of the image. For simplicity without loss of generality
we assume that E{(u*h)(z)} =0 and E{n(z)} = 0. The covariance of (1) can be shown

to be Ry(w1, w2) = E{(f(x1) = f(21))(f(22) — f(22))} = Cov{n(z1), n(x2)} = Ru(x1, 72),
where Ry is the covariance matrix of measured image f(x), and R, is the covariance of
random process n(z).

We will denote by fi a discrete signal representing the samples of f(x) at the locations
kA, fx = f(kA,), where A, € R, is the sampling step and k € Ny. Furthermore, we
assume that the sampling process satisfies the Nyquist criteria. Note that inherent to
mentioned assumptions is that f(z) is bandlimited and all derivatives exist at all points.
We assume f(z) is bandlimited to +53—.

For the sake of simplicity we introduce the operator D"{e}, n € Ny, which is defined
in the following way: D"{f}(z) = f(z) forn = 0 and D"{f}(z) = %Ef) forn € N.
In other words, D%{ f}(z) is identical to f(x) and D"{f}(x), where n > 0, is the nth
derivative of f(z). In discrete signals derivative is typically approximated by computing
the finite difference between adjacent samples.

3 Periodic Properties of Interpolation

There are two basic steps in geometric transformations. In the first step a spatial trans-
formation of the physical rearrangement of pixels in the image is done. The second step
is called the interpolation step. Here pixels intensity values of the transformed image
are assigned using a constructed low-pass interpolation filter, w. To compute signal val-
ues at arbitrary locations, as the word interpolation signifies® discrete samples of f;, are
multiplied with the proper filter weights when convolving them with w.

3The word "interpolation" originates from the Latin word "inter", meaning "between", and verb
"polare", meaning "to polish" [1].
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Following the sampling theory, if the Nyquist criterion is satisfied, the spectrum F'(w)
do not overlap in the Fourier domain. The original signal f(z) can be reconstructed
perfectly from its samples f; using the optimal sinc interpolator. The sinc function
is hard to implement in practice because of its infinite extent. Thus, many different
simpler interpolation kernels of bounded support have been investigated and proposed
so far |10, 11]. We will be concerned mainly with following low-order piecewise local
polynomials: nearest-neighbor, linear, cubic and truncated sinc. These polynomials are
used extensively because of their simplicity and implementation unassuming properties.

Combining the derivative theorem with the convolution theorem leads to the conclu-
sion that by convolution of fj with a derivative kernel D"{w}, it is possible to reconstruct
the nth derivative of f(x). We denote the result of interpolation operation by f*“(z), re-
spectively by D{f“}(x). Formally,

D f"}H(a Z D {wh 5 — F) 2)

As pointed out in [12], it is easy to show that the covariance function of an interpolated
image or its derivative is given by:

Rpngpoy(z,x +§) = Z Z D {w}( __kl)pn{ }(

k1=—00 ka=—00

VR (K1, k2)

If we assume band-limited white noise then the variance of D™{ f*}, var{D"{f*}(x)},
as a function of the position x can be represented in the following way:

var{D"{f"}(x)} = Rpnu)(z,7) = 0 Z D”{w} —k)? (3)

k=—00

where 0% = R,,(ky, ko). Similarly, the covariance can be represented like:

Ronigoy (o +) =0 30 Dwh - HD" wh(5E - 0
Now, we can notice that
var{D"{f“}(x)} = var{D"{f"}(z + IA,)},0 € Z (4)

Thus, var{D™{f"}(z)} is periodic over x with period A, (as aforementioned, A, is
the sampling step). We verify this in the following way:

var{D"{f"}(x + VA,)} = 0> Y D”{w}(% — k)?

k=—00

=0’ Z D™ {w}( ——(k ¥))* = var{D"{f"}(=)}

k=—o00
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In other words we have shown that interpolation brings into the signal and their
derivatives a specific periodicity. This periodicity is dependant on the interpolation kernel
used. Several widely used interpolation kernels will be studied in the next section.

Similarly, it can be shown that the covariance of f*, Rpn{puwy(x,z +§), is periodic as
well. The periodicity is apparent for offset £ = 9A,, ¥ € Z.

Rpnipey(w, 2 +&) = Rpngpuy (2,2 +04,)

Before going on, it can be interesting to have a look on application of Taylor series on
D"{f*}(x). By assuming that the first (m + 1) derivatives of f(x) exist, we can rewrite
Equation (2) as following:

i = 3 {30 P s, oy R ka0 for - - 1) 6)

By defining

Tuw) = 3 B2y L gy

k=—o0

Rpr(2,k0;) = 3 Ru(z, kAgE)D”{w(Ai !

x

k=—o00
we can rewrite (5) as:
D{f"(x Z 2D {fH (@) + Roya (2, kA,)

Now, by analyzing Tm(aj) we can notice that it is periodic with period A, as well:

Tne+08) = 3 (kAx—(i;ﬁAx)) D }(:E—HS‘A o
=y G (k) = Tl
k=—o00 ’ z

3.1 Multidimensional Extension

The theory studied in this section can be analogously extended for the multidimensional
cases. If we assume that f, is a constant variance two-dimensional signal with variance
one and ¥ € Z, then the Equations (3) and (4) becomes:

var{D"{f*}(z,y)} = Z Z D”{w} — 1)’ (6)

k=—o00l=—0 y

var{D™{ "} (x,y)} = var{D"{f*}(x + VA, y + A,)} (7)
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3.2 Interpolation Kernels

As it is apparent from Equation (3) different interpolators, see Figure 2, change the
statistical structure of the signal in different ways. The nearest neighbor interpolator
is a zero-degree kernel and the simplest of all piecewise, local polynomials. Its variance
function is a constant function. Note that derivatives of the nearest neighbor polynomial
are zero. Therefore, signals interpolated by this interpolator can be easily recognized by
applying a derivative operator to them.

@ (b)

Figure 2: Several popular interpolation kernels : (a) nearest-neighbor, (b) linear, (c)
Catmull-Rom cubic, (d) truncated sinc (N-—6).

Figure 3 shows periodic variance functions generated via Equation (3) with o = 1 for
linear interpolation and linear first and second derivative filter. The linear interpolation
is a first-degree member of piecewise, local polynomials. It results in an interpolated
signal which is continuous, but its first derivative is discontinuous. In Figure 4 the gener-
ated periodic variance functions for Catmull-Rom cubic interpolation and cubic first and
second order derivative interpolation filter (o = 1) are illustrated. Cubic interpolation
is a very frequently used interpolation technique and has been widely studied. It uses
a third-order interpolation polynomial as kernel. In Figure 5 the variance functions for
truncated sinc (with 6 supporting points) interpolation and derivative interpolation filter
(0 = 1) are shown.

4 Detection of Periodic Properties of Resampled Images

The proposed method is based on a few main steps: ROI selection, signal derivative
computation, radon transformation and search for periodicity. Each step is explained
separately in the following sections.

4.1 Region of Interest Selection

In general, a typical image, f(x,y), consists of several consistent regions. To investigate
if any of these regions has been resampled we select this region by a block of R x R pixels
(we denote this block by b(z,y)) and apply the method to this image subset. If we are
not able to define any ROI in the given image or there is a need to find all resampled



Detecting Traces of Affine Transformation 143

A=0.5

A=0.4

/ A=0.3

A=0.2

A=0.1

05
0 o1 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1

XIT-[x/T] X/T-1x/T] X/ T-1x/T]

Figure 3: The periodic variance of the linear and linear first and second derivative filter.
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Figure 5: The periodic variance of the truncated sinc and first and second derivative
truncated sinc filter (N = 6).

regions, the image can be tiled by overlapping blocks, b;(x,y), of R x R pixels. Blocks can
be horizontally slid by N, N € N pixels rightwards starting with the upper left corner
and ending with the bottom right corner. Each block can be analyzed by the method
separately. In our experiments R is mostly set to 128 pixels.

4.2 Signal Derivative Computation

To emphasize the periodic properties presence in an interpolated image, the nth derivative
of b(x,y), D™{b(x,y)}, is computed. The derivative operator is applied to the rows of
b(z,y). In our experiments the derivative order, n, is set to 2. Similar results can be
achieved by other derivative orders or using a laplace operator as well as Gabor filters.
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4.3 Radon Transformation

To find traces of affine transform we apply the radon transformation to |D™{b(z,y)}|.
Radon transformation computes projections of |D"{b(x,y)}| along specified directions
determined by angle 6. A projection of |[D"{b(x,y)}| is a line integral in a certain direc-

tion. By assuming that
2 | | cosf sind x
y | | —sinf cosf Y

it is possible to represent the radon transform in the following way:

pe(z') = / D™{b(z,y)} - (2" cosO — y'sin @, 2" sin 6 + ¢’ cos §)dy'.

—0o0

The proposed method computes the radon transformation at angles from 0 to 180°,
in 1° increments. Hence, the output of this section is 180 one-dimensional vectors.

4.4 Search for Periodicity

The radon transformation step results in 180 vectors, py. If the investigated image has
been interpolated, typically some of the auto-covariance sequences of py contain a specific
strong periodicity. As mentioned previously, our goal is only to determine if the image
being investigated has undergone a geometric transformation. Therefore we focus only on
the strongest periodic patterns presence in auto-covariance sequences R, (k). This can
effect that when the analyzed image has undergone several geometric transformations,
our method may not detect all particular transformations presence in this signal, but
only those what have the clearest and strongest periodic properties.

To exhibit and detect the searched periodicity, the magnitudes of the Fast Fourier
transformation of the autocovariance sequences are computed and all plotted together,
|FFT(R,,)|. This is the main output of the proposed method. In order to easily find
strong peaks signifying interpolation, a derivative filter of order one is applied to vectors
po before computing the [FFT(R,,)|. If the analyzed signal contains interpolation, peaks
in the spectrum are mostly clear and cannot be missed. The spectrum of such a signal has
totally different properties compared to non-interpolated signals. To automatically detect
interpolation peaks, we apply a simple peak detector searching for the local maximum.

4.5 Experimental Results

Figure 6 shows several outputs of the presented method applied to different TIFF format
images that have undergone various transformations. The size of the investigated region
in all cases is 128 x 128 pixels (denoted by a black box). As it is apparent, peaks signifying
interpolation are clearly detectable. Note that the way in which we process the outputs
of the presented method does not propose a description of all concrete transformation
which the investigated image has undergone. For example, in Figure 6(c), only peaks
representing the scaling transformation are visible.
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7 .
E
j'“,L Lw

Figure 6: (a) Skewing factor=0.3 (bicubic); (b) scaling factor 1.3; rotation anlge=10°
(bicubic); (c) scaling factor 1.2; skewing factor in x-direction—0.2; skewing factor in y-
direction—0.4 (bicubic).

5 Discussion

Results obtained show that it is possible in a simple and fast way to find traces of
geometric transformation when a low order interpolation polynomial has been used. But,
please note that not all resampling factors bring detectable changes in the covariance
structure of the signal. For instance, the scaling factor 0.5 does not introduce any periodic
correlation into the signal.

The proposed method works well for low order interpolation polynomials: nearest
neighbor, linear or cubic. These interpolators have a strong detectable effect on the
covariance structure of the signal. The detection performance decreases as the order of
interpolation polynomial increases. Different interpolation orders introduce correlations
of varying degrees between neighboring samples. These correlations become more difficult
to detect as each interpolated sample value is obtained as a function of more samples.
Note that when the ideal sinc interpolator is used, the covariance structure of the signal
does not change and therefore this interpolator is not detectable. Also, it must be noted
that the presented method is highly sensitive to noise.

By applying the proposed method to JPEG compressed images, the detection per-
formance decreases. Experiments show that the presented method works well for JPEG
compression quality of 96 - 100. But, generally, obtained results are based on image
properties and distribution.

It must be mentioned that obtained results can be affected by spatial correlations
presence in the signal. The best results are obtained by applying the method to an
interpolated white noise signal (the autocorrelation of a white noise signal have a strong
peak at x = 0 and is close to 0 elsewhere).
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Abstract. Irreversible thermodynamics is used to investigate the dependency of maximum pos-
sible efficiency of energy conversion in a polymer electrolyte membrane fuel cell (PEMFC) on
membrane water content. The importance and plausibility of choice of the value of a propor-
tional parameter in a linear model describing swelling of Nafion 117 membranes is examined.
An experiment for simultaneous in-situ measurement of all transport parameters is described.

Abstrakt. Pomoci termodynamiky nerovnovaznych stavi bude vySetfovana zavislost maximalni
ucinnosti konverze energie v palivovéem ¢lanku s polymerickou membréanou (PEMFC) na ob-
sahu vody v membrané. Zaroven bude anylyzovana diilezitost spravné volby multiplikativniho
parametru v linedrnim modelu pro popis objemovych zmén membran z Nafionu 117. Déle
bude popsan experiment pro soucasné stanoveni v8ech transportnich parametri ve funkénim
palivovém ¢lanku.

1 Introduction

1.1 Model equations and transport parameters

In [17|, a simple isothermal, diffusion-type model of a hydrogen polymer-electrolyte mem-
brane (PEM) fuel cell was introduced. The model was based on mass balance equations
for HyO and H30T,

ocn,0 dey,o+
ot ot

where cp,0 and ¢y o+ are concentrations of the respective species, jy,o and jy,o+ are
molar flux densities of the respective species, r, is the anode reaction rate, and r. is the
cathode reaction rate. The molar flux densities can be expressed as linear combinations
of gradients of the species’ electrochemical potentials:

= —4r, + 6r. — divgy,o, =dr, —4dr. — divgy,o+, (1)

Fr0 = ~Luw Vo = LueViiot, (2)
Ju,0+ = —Lew V0 — Lee Vitg,o+, (3)

where 1, denotes the electrochemical potential of a species «, and Ly, Lye, Lew, and
L. denote phenomenological transport coefficients. It follows from Onsager reciprocity
relations that the "cross" coefficients are equal to each other, i. e.

Lew == LWe> (4)
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which reduces the number of unknown transport parameters in our model to three. Note
that all of them are of the same physical dimensions (mol?J'm~!s™!). If we neglect the
effect of concentration changes of H3O, and assume that the reaction mixture behaves
as an ideal solution, we can write:

. RT
]HQO - _LWW—VCH2O - LweFng), (5)

CH,0

. RT
Jns0t = _Lew —VCHQO — Lee FV¢, (6)

CH,0

where R is the universal gas constant, T" is the temperature, F' is the Faraday constant
and ¢ is the electrostatic potential. From Ohm’s law and the obvious fact that current
density 3 = Fjy,o+, it follows that

g

Lee - ﬁ>

(7)

where ¢ is conductivity. This can easily be seen by putting Vep,o = 0 in (6). Now, let
us eliminate V¢ from (5), (6). Thus we get

. RT Lye RT .
Ji,0 = ~Luw——Vem,o - (‘Lew = Vego — JH30+) -
CH20 Lee CH20
RT Lwe .7 LweLeW RT
= _wa—v f—
CH,0 G20 + Lee F' Lee CH,0

(8)

VCHQ().

This equation says that water transport through the cell is a superposition of two phe-
nomena, namely diffusion and electro-osmotic drag,

d

. n- .
Ju,0 = _DHQOVCHQO + F.?a (9)

with diffusion coefficient Dy, and electro-osmotic drag coefficient nd. These two coef-
ficients can be related to the phenomenological coefficients by comparing eqgs. (8) and

(9):

Lo Loy T Lie
DHQO = (LWW - - > i d

: nt = —. (10)
Lee CH,0 Lee
Note that very often, the last term in eq. (8) is neglected. Such step yields a more
straightforward expression for the diffusion coefficient,
RT
DHQO - wa—7 (11)
CH,0
and is acceptable since usually Lye < Lee.

The electro-osmotic drag coefficient has a physical meaning of the average number
of water molecules dragged per H3O" ion moved by electric field through the cell. Note
that
g 4

Lye = Leen® = VeI

(12)



Irreversible-thermodynamic Analysis of PEM Transport Parameters 149

As was shown in [17], there is a relation between efficiency of energy conversion and the
transport parameters or, more precisely, the degree of coupling: The maximum possible
efficiency of the conversion of chemical energy into electrical energy in a hydrogen-oxygen
fuel cell is

q

Dmasx = (1_— \/1_q2> 7 (13)

where the degree of coupling between diffusion and migration is defined as
q= A
VEwwLee
Since the majority of experimentators presents their results in terms of conductivity,
diffusion coefficient and electro-osmotic drag coefficient instead of the phenomenological

coefficients Ly, Lye, Lee, 0ne has to convert their values by using the formulas (11), (12)
and (7) in order to calculate g and 7. The only difficulty in doing this is to calculate

(14)

CH50-

1.2 Water concentration in the membrane and membrane water content

Most commonly, PEM fuel cell membranes are made of a perfluorosulfonic acid known
as Nafion. From now on, we shall consider exclusively membranes made of Nafion 117.
Let us recall that, generally, the transport parameters do not depend on driving forces (i.
e., Vo and Vg, o+), but they do depend on state variables (i. e., the values of pm,0
and fuy,0+). In practice, however, transport parameters of Nafion fuel cell membranes
are considered to be functions of the so-called membrane water content A\, which is the
average number of water molecules per sulfonic acid site. In other words,

A= 20 (15)
Cso;

For membranes in the dry state, the concentration of sulfonic acid sites can be calculated
as

dr
CdI‘y — my (16)
SO3 My’

where pd™ is density of the membrane in its dry state, and My, is the effective molar

mass (or equivalent weight) of the membrane. For Nafion 117, pdv = 1980 kg/m? and
— dry 3
M,, = 1100 g/mol, thus Cso; = 1800 mol/m?.
The simplest option is to assume that Cs0; = ngy— which results in the formula
3
0 = A (17)

sO;

This simplified relation was used e. g. in [3]." Tts problem lies in the assumption that
the membrane retains a constant volume regardless of the amount of water it contains

dry

— 3 :
so; = 200 mol/m*® was reported in [3].

"Note that an incorrect value of ¢
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(i. e., pm = p¥). A real membrane, however, will increase its volume with rising water

content. This phenomenon is known as membrane swelling. In |24], the following linear
formula was proposed for its description:

V =VI(1+ s)), (18)

where V is volume of the swollen membrane, VI is volume of the same membrane
when it contains no water, and s is a proportional constant. The corresponding relation
between cp,o and A can be derived as follows: From (18), (21), and (16) we obtain

dry dry
pin
TR G A Cra Y 19
TsA= Vdry o T CHyO M ) ( )
Cso; A m CH,0

which can easily be rearanged into the following form that was presented e. g. in [16]:

o
M, 14 s\

CH,O = (20)

Clearly, (17) can be obtained from (20) by putting s = 0. Thus, the only question
that remains to be solved is to determine the correct value of s. Let us briefly review the
existing results on s. From the measured thickness of dry and fully hydrated Nafion 117
membranes, the authors of [24] determined s to have a value of 0.0126. Correctness of this
value was called into question in |16]. Experimental results encourage this scepticism.
For Nafion 117, the following values were reported [2]: cgo- = 1290 mol /m? for \ = 13,
and Cso; = 1050 mol/m? for A = 21. Since clearly

Cdry
V _ S0y (21)
V/dry CSO; ’

we can easily calculate the corresponding s from (18), which gives s = 0.0304 for A = 13,
and s = 0.0340 for A = 21. A similar value of s = 0.0324 was derived theoretically in
[27].

2 Results and discussion

All in all, we have at least three different values of s to choose from (i. e., 0, 0.0126,
and ~ 0.03). In order to examine which one is the most plausible one as well as to what
extent would the results obtained for different values of s differ, we decided to calculate
the dependency of the degree of coupling ¢ and the maximum efficiency 7,.x for various
experimental data sets by using the three values 0, 0.0126, and 0.0324. We tried to gather
as much experimental data as possible, but it turned out that it was rather difficult to
find suitable experimental data sets. More precisely, we encountered the following two
problems considering experimental data on transport parameters:

1. There are not many research groups that measured all three transport parameters.
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2. Even those who measured all three transport parameters did not do so at the same
conditions and for the same values of \.

To mitigate the first issue and obtain more variety of data sets, we used besides data
of Kreuer et al. (Refs. [11], [6]) and Zawodzinski et al. (Refs. [31], [29]) also those
presented by van Bussel et al. (Ref. [3|), although in their work no original data on the
electro-osmotic drag coefficient were published and data from [29] were used instead. The
second problem was addressed as follows: For those values of A where only two transport
coefficients had been measured, the missing coefficient was calculated by means of inter-
and extrapolation. The possible difference between other conditions under which the
individual transport coefficients were measured was neglected.

The obtained dependencies of 7,2 0n A are shown in Figs. 1, 2, 3. We can see that the
choice of s has a significant impact on the resulting dependency. Since reported efficiencies
of real fuel cells are certainly higher than 50 percent, we can conclude that the choice
of s = 0.0324 gives results that correspond with the physical reality the most. Quite
surprising is the dramatical difference among the shapes of the dependencies obtained
from the individual data sets. Interestingly, the data of van Bussel et al. (Fig. 3) give the
closest results to what one would expect: For low membrane water contents the efficiency
is poor, while good membrane hydration results in better fuel cell performance. The
data of Zawodzinski et al. (Fig. 2) confirm the fact that the membrane must be well-
hydrated in order to obtain reasonable performance, but the corresponding dependency
is not monotonously increasing. A cause might lie in the possible inaccuracy of the
electro-osmotic drag coefficient values for lower water contents (these values come from
another experiment [29]). The most surprising result — a concave dependency — was
obtained from the data of Kreuer et al. (Fig. 1). However, their data were rather sparse
and extrapolation had to be used to a greater extent in this case, so reliability of this
dependency is questionable.

3 An application: In-situ measurement of the electro-osmotic
drag coefficient

As indicated above, there is a lack of experimental data sets of all three transport param-
eters in existing literature. Furthermore, the majority of them comes from measurements
of the membrane properties under artificial conditions. Thus, it is desirable to find a
method that would be able to measure all three transport parameters simultaneously
and in-situ, i. e., in a working fuel cell. We give a description of such experiment based
on the irreversible-thermodynamical approach developed above.

First, let us notice that in-situ measurement of conductivity is possible and has been
performed [28|. Therefore, we can restrict ourselves on measurement of diffusion and
electro-osmotic drag coefficients. Second, a method for in-situ measurement of the so-
called effective drag coefficient is also available [8]. The effective (or net) drag coefficient is
the ratio of water and proton fluxes through the membrane. It immediately follows from
this definition that the effective drag coefficient coincides with the "classical" electro-
osmotic drag coefficient n if and only if the concentration gradient of water in the
membrane is zero — cf. (9). Using the relation (9), we are able to determine —Dy,0
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Figure 1: The maximum efficiency 7., versus membrane water content A according to
Nafion 117 data of Kreuer et al. [11], [6].
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Figure 2: The maximum efficiency 7,ax versus membrane water content A according to
Nafion 117 data of Zawodzinski et al. |31], [29].
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Figure 3: The maximum efficiency 7,ax versus membrane water content A according to
Nafion 117 data of van Bussel et al. |3].

and ”—Fd by measuring water flux through the cell in response to known values of water
concentration gradient and current density. The only issue to solve is how to measure
the water flux gy, o and the concentration gradient Vep,o.

In [8], ju,0 was determined by means of condensing the water at the exit of the cell
gas channels in a cold trap and weighing. For further details, the reader is referred to
Ref. [8].

To determine the water concentration gradient, the composition of gas samples ob-
tained from cathode and anode channels of the fuel cell should be analyzed. One could
also think of the following simplification: If we assume that all gas components within
the fuel cell obey the ideal gas law, we can write

RT RT 0 _ Vpu,0

VCH2O == RT 9
CH,0 CH,0 CH,0

(22)

where pp,o is the partial pressure of water, which could be approximed with satura-
tion pressure corresponding to cell temperature. The applicability of this approximation
should be examined, however, in case that actual partial pressure could not be measured,
it might be used as the first attempt.

Once the values of the transport parameters o, nd, and Drr,0 were determined, we
can also determine the corresponding water content A\ by means of measuring the cell
open circuit voltage. Since the efficiency of a real fuel cell is the ratio of the actual open
circuit voltage U°C and the reversible open circuit voltage

A.G
UOC:— r
rev 2F’
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A, G being the Gibbs energy of the electrochemical reaction occuring within the cell [15],
we can equate this ratio to the maximum efficiency of energy conversion (13), which yields

UOC_<1—\/W>2_ (23)

URe q

From this formula we can calculate ¢, and then express L., from the definition of the
degree of coupling (14). Finally, we obtain cp,o from (11) and the corresponding A from
(20).

4 Conclusion

Available experimental data on transport coefficients together with irreversible thermody-
namics were used to examine plausibility of choice of the value of a proportional parameter
in a linear model describing swelling of Nafion 117 membranes. The result confirms pre-
viously reported empirical data of Beattie et al. [2] as well as theoretical considerations
of Weber and Newman [27]. Furthermore, the dependency of maximum possible effi-
ciency of energy conversion on membrane water content was investigated. Surprisingly,
qualitatively different results were obtained for different experimental data sets. Finally,
an experiment for simultaneous in-situ measurement of all transport parameters was de-
scribed. Since data on transport coefficients available in the literature are rather sparse
and contradictory, this experiment could help to deepen the corresponding knowledge.
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Abstract. The paper resumes a logical framework for formulating preferences and proposes their
embedding into relational algebra through a single preference operator parameterized by a set of
user preferences of sixteen various kinds, inclusive of ceteris paribus preferences, and returning
only the most preferred subsets of its argument relation. Most importantly, conflicting set of
preferences is permitted and preferences between sets of elements can be expressed.

Formal foundation for algebraic optimization, applying heuristics like push preference, also is
provided: abstract properties of the preference operator and a variety of algebraic laws describing
its interaction with other relational algebra operators are presented.

Abstrakt. Prispévek shrnuje logické ptistupy k vyjadfovani preferenci a navrhuje jejich zaclenéni
do relac¢ni algebry pomoci jediného preferencéniho operdtoru parametrizovaného mnozinou az Sest-
nécti ruznych druht preferenci, véetné preferenci ceteris paribus, a vracejiciho nejpreferované;jsi
podmnoziny relace, kterd je v jeho argumentu. Podstatné je, ze koncept zahrnuje preference,
které mohou byt navzajem v konfliktu a umoziuje reprezentovat i preference mezi mnozinami.

Navrzeny jsou také zakladni principy algebraické optimalizace jako je napf¥. propagovani pref-
erencniho operatoru vyrazem rela¢ni algebry smérem ke vstupnim relacim. Podobné heuristické
metody vychazeji z algebraickych vztaht operaci rela¢ni algebry — v tomto p¥ipadé preferenc¢niho
operatoru, které jsou také prezentovany.

1 Introduction

If users have requirements that are to be satisfied completely, their database queries are
characterized by hard constraints, delivering exactly the required objects if they exist and
otherwise empty result. This is how traditional database query languages treat all the
requirements on the data. However, requirements can be understood also in the sense of
wishes: in case they are not satisfied, database users are usually prepared to accept worse
alternatives and their database query is characterized by soft constraints. Requirements
of the latter type are called preferences.

Building on a logical framework for formulating preferences and their embedding into
relational algebra (RA) through a single preference operator, introduced in [10] to combat
the empty result and the flooding effects, this paper presents an approach to algebraic

*This has been supported by the project TET100300419 of the Program Information Society (of the
Thematic Program II of the National Research Program of the Czech Republic) “Intelligent Models,
Algorithms, Methods and Tools for the Semantic Web Realization" and by the Institutional Research
Plan AV0Z10300504 “Computer Science for the Information Society: Models, Algorithms, Applications".
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optimization of relational queries with various kinds of preferences. The preference oper-
ator selects from its argument relation the best-matching alternatives with regard to user
preferences, but nothing worse." Preferences are specified using a propositional logic no-
tation and their semantics is related to that of a disjunctive logic program. The language
for expressing preferences i) is declarative, ii) includes various kinds of preferences, iii) is
rich enough to express preferences between sets of elements, iv) and has an intuitive, well
defined semantics allowing for conflicting preferences.

In Sect. 2, the above mentioned framework for formulating preferences and in Sect. 3
an approach to their embedding into RA are revisited. Presenting a variety of algebraic
laws that describe interaction with other RA operators to provide a formal foundation
for algebraic optimization, Sect. 4 provides the main contribution of this paper. A brief
overview of related work in Sect. 5 and conclusions in Sect. 6 end this paper. All the
nontrivial proofs are given.

To improve the readability, = (z,y) A— > (y,x) and = (z,y)A = (y, z) is substituted
by = (z,y) and = (z,y), respectively.

2 User Preferences

A user preference is expressed by a preference statement, e.g. “a is preferred to b", or
symbolically by an appropriate preference formula. Preference formulas comprise a simple
declarative language for expressing preferences. To capture its declarative aspects, model-
theoretic semantics is defined: considering a set of states of affaires S and a set W = 2
of all its subsets — worlds, if M = (W, =) is an order = on W such that w > w’ holds for
some words w, w’ from W, then M is termed a preference model of w > w’ a preference
of the world w over the world w’, which we express symbolically as M = w > w'.

The basic differentiation between preferences is based on notions of optimism and
pessimism. Defining a-world as a world in which a occurs, if we are optimistic about a
and pessimistic about b for example, we expect some a-world to precede at least one b-
world in each preference model of a preference statement “a is preferred to 6. This kind of
preference is called opportunistic. By contrast, if we are pessimistic about a and optimistic
about b, we expect every a-world to precede each b-world in each preference model of
a preference statement “a is preferred to b”. This kind of preference is called careful.
Alternatively, we might be optimistic or pessimistic about both a and b. Then we expect
some a world to precede each b-world or each a-world to precede some b-world in each
preference model of a preference statement “a is preferred to b”. This kind of preference
is called locally optimistic or locally pessimistic, respectively. Locally optimistic, locally
pessimistic, opportunistic and careful preferences are symbolically expressed by preference
formulas of the form: a ¥>M b, a ™>™ b, a M>™ b, and a ™>M b, respectively.

Also, we distinguish between strict and non-strict preferences. For example, if w
precedes w’ strictly in a preference model, then we strictly prefer w to w’.

In addition, we distinguish between preferences with and without ceteris paribus pro-
viso — a notion introduced by von Wright |11| and generalized by Doyle and Wellman

LA similar concept was proposed independently by KieRling et al. [6, 7| and Chomicki et al. [2] and,
in a more restricted form, by Borzsonyi et al. [1] (for more detail refer to Sect. 5).
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[3] by means of contextual equivalence relation — an equivalence relation on 1.2 For ex-
ample, a preference model of a preference statement “a is carefully preferred to b ceteris
paribus" is such an order on W that a-worlds precede b-worlds in the same contextual
equivalence class. Specifically, the preference statement “I prefer playing tenis to playing
golf ceteris paribus" might express by means of an contextual equivalence that I prefer
playing tenis to playing golf only if the context of weather is the same, i.e., it is not true
that I prefer playing tenis in strong winds to playing golf during a sunny day.

Next, we revisit the basic definitions introducing syntax and model-theoretic semantics
of the language for expressing user preferences:

Definition 1 (Language). Given a finite set of propositional variables p, ¢, ..., the set L
of propositional formulas and the set L of preference formulas is defined as the smallest
set, satisfying the following:

Lo ¢ plpAd)| -
LoD,V o>V | >V | =D |(PAY) forz,ye{m, M}

If we identify propositional variables with tuples over a relation schema R, then the
elements of L are termed preference formulas over R. A relation instance I(R), i.e., a set
of tuples over R, creates a world w, an element of a set W.

The preference model is defined so that any set of (possibly conflicting) preferences is
consistent: the partial pre-order, i.e., a binary relation which is reflexive and transitive,
in the definition of the preference model, enables to express some kind of conflict by
incomparability:

Definition 2 (Preference model). A preference model M = (W, =) over a relation schema
R is a couple in which W is a set of worlds, relation instances of R, and > is a partial
pre-order over W, the preference relation over R.

A set of user preferences of various kinds can by represented symbolically by a pref-
erence specification, which corresponds to an appropriate complex preference formula in
the above defined language.

Definition 3 (Preference specification). Let R be a relation schema and Py a set of pref-
erence formulas over R of the form {p; > v; : i = 1,...,n}. A preference specification
P over R is a tuple (Py|> € { *>Y, *>V |z,y € {m, M}}), and M is its model, i.e., a
preference specification model, iff it models all elements Py of the tuple:

MEP. <= Y(p>) €EPe - MEp, > .

3 Preference Operator

To embed preferences into RQL, the preference operator wp returning only the best sets
of tuples in the sense of user preferences P is defined:

2As it has been shown [5] that any preference with contextual equivalence specification can be ex-
pressed by a set of preferences without contextual specification, we can restrict ourselves only to prefer-
ences without ceteris paribus proviso.
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Definition 4 (Preference operator). If R is a relation schema, P a preference specification
over R, and .# the set of its models; then the preference operator wp is defined for all
instances I(R) of R as follows:

wp(I(R))={weW |w CI(R)AIM} = (W, =) € M st. Yuw' € W :
w' CI(R)A = (W' w) = = (w,w)} .

Remark 5 (Preference operator notation). To be precise, we should write wp(2/(%)) instead
of wp(I(R)). Thus it makes sense to write wp({a, b, c¢}), where the argument of preference
operator is a set of elements a, b, and c.

3.1 Basic Properties.
The following propositions are essential for investigation of algebraic properties describing

interaction of the preference operator with other RA operations:

Proposition 6. Given a relation schema R and a preference specification P over R, for
all instances I1(R) of R the following properties hold:

wp(I(R)) C 2/
wp (wp(I(R))) = wp(I(R)) ,
wpempty(f (R) = 2™,

where Pempty 15 the empty preference specification, i.e., containing no preference.

Preference operator is not monotone or antimonotone with respect to its relation
argument. However, partial antimonotonicity holds:

Proposition 7 (Partial antimonotonicity). Given a relation schema R and a preference
specification P over R, for all instances I(R), I'(R) of R the following property holds:

I(R) C T'(R) = 2" nwp(I'(R)) C wp(I(R)) .

Proof. Assume w € 2!®) N wp(I'(R)). Tt follows that w C I(R) and from the definition
(Def. 4) of preference operator w C I'(R) AN IMy € A st. Yw' € W :w' C I'(R)\ =
(W', w) ==, (w,w'). As I(R) C I'(R), we can conclude that IM, € 4 s.t. Yuw' €
W :w CI(R)A = (w',w) == (w,w’), which together with w C I(R) implies w €
wr(I(R), .

The following theorem enables to reduce cardinality of an argument relation of the
preference operator without changing the return value:

Theorem 8 (Reduction). Given a relation schema R, a preference specification P over R,
for all instances I(R), I'(R) of R the following property holds:

I(R) C I'(R) Awp(I'(R)) C 21 = wp(I(R)) = wp(I'(R)) .
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Proof.  C: Assume w € wp(I(R)). Then, it follows from the definition of the prefer-
ence operator w C [(R) AIMy € A s.t. Yw' € W w' CI(R)N =k (W', w) ==
(w,w'). The assumption wp(I'(R)) C 2/ implies Vu' € 2I'0) — 21(B) + — =,
(w',w), and we can conclude IM; € A st. Y € W : w C I'(R)\N =y
(w',w) = (w,w’), which together with the assumption I(R) C I'(R) implies
w € wp(I'(R)).

DO: Immediately follows from Prop. 7. O

The following theorem ensures that the empty query result effect is successfully elim-
inated:

Theorem 9 (Non-emptiness). Given a relation schema R, a preference specification P
over R, then for every finite, nonempty instance I(R) of R, wp(I(R)) is nonempty.

3.2 Multidimensional Composition.

In multidimensional composition, we have a number of preference specifications defined
over several relation schemas, and we define preference specification over the Cartesian
product of those relations: the most common ways are Pareto and lexicographic compo-
sition.

Definition 10 (Pareto and lexicographic composition). Given two relation schemas R; and
R,, preference specifications P; over R; and Py over Ry, and their sets of models .#; and
Mo, the Pareto composition P(Py, Ps) and the lexicographic composition L(Py, Ps) of Py
and P, is a preference specification Py over the Cartesian product R; x Rs, whose set of
models .# is defined as:

VM, = (Wi X Wa, =) € Mo, AIMy, = (Wh, =) € A, M = (Wa, =) € Mo st

Vwy, wy € Wi, Ywg, why € Wy i, (wy X we, w] X wh) = = (wy,w)) A = (we, w))

and

le,wll € Wl,ng,wé € W2 .
/

o (W1 X wo,wy X wh) = =g (wr,wh) V(=g (wi, w))A =y (wa, wy))

respectively.

4 Algebraic Optimization

As the preference operator extends RA, the optimization of queries with preferences can
be realized as an extension of a classical relational query optimization. Most importantly,
we can inherit all well known laws from RA, which, together with algebraic laws govern-
ing the commutativity and distributivity of the preference operator with respect to RA
operations, constitute a formal foundation for rewriting queries with preferences using
the standard strategies (push selection, push projection) aiming at reducing the sizes of
intermediate relations.
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4.1 Commuting with Selection

The following theorem identifies a sufficient condition under which the preference operator
commutes with RA selection:

Theorem 11 (Commuting with selection). Given a relation schema R, a preference spec-
ification P over R, the set of its preference models . , and a selection condition @ over
R, if the formula
VM = (W, =) € A Yw,w' € W = (W, w) ANw = o,(w) = w' = o,(w)
is valid, then for any relation instance I(R) of R:
f
wp (0, (I(R))) = op(wp(I(R))) = {w € wp(I(R))|o,(w) = w} .

Proof. Observe that:

w € wp(o,(I(R))) =w C I(R) N oy(w) = wA

(VM € A, T : (W' CI(R) A oy(w') =w'A = (W, w)) .

w € oy (wp(I(R)))

w

N

I(R) N\ oy(w) = wA
—(VMy, € A, T 2 (W' CI(R)A =, (W', w)) ,

Obviously, the second formula implies the first. To see that the opposite implication also
holds, we assume w ¢ o,(wp(I(R))) and prove that than also w & wp(o,(I(R))). There
are three cases when w & o,(wp(I(R))). If w € I(R) or o,(w) # w, it is immediately
clear that w & wp(o,(I(R))). In the third case, VM € A4, Fw' : (w' C I(R)A =y (w',w).
However, due to assumption of the theorem, VM, € .Z,3w’ : (w' C I(R) A o,(w') =
w'A = (W', w), which completes the proof. O

4.2 Commuting with Projection

The following theorem identifies sufficient conditions under which the preference operator
commutes with RA projection. To prepare the ground for the theorem, some definitions
have to be introduced:

Definition 12 (Restriction of a preference relation). Given a relation schema R, a set of
attributes X of R, and a preference relation > over R, the restriction 0y (>) of = to X
is a preference relation >y over mx(R) defined using the following formula:

x (wx,wy) = Yw,w' €W :inx(w) =wx A mx(w') =wy = = (w,u) .
Definition 13 (Restriction of the preference model). Given a relation schema R, a set of
relation attributes X of R, and a preference model M = (W, =) over R, the restriction
Ox (M) of M to X is a preference model Mx = (Wx,»x) over mx(R) where Wx =
{rx(w) |we W}.
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Definition 14 (Restriction of the preference operator). Given a relation schema R, a set
of attributes X of R, a preference specification P over R, and the set .#x of its models
restricted to X, the restriction fx(wp) of the preference operator wp to X is the preference
operator w defined as follows:

wg(’ﬂx([(R))) = {’LUX € WX ‘ Wx g Wx([(R)) VAN HMX S %X s.t.
V’LU/X e Wy Zw;( - ’/Tx(I(R))/\ ~x (’LU/X,wx) = ~x (wx,’LUIX)} .

Theorem 15 (Commuting with projection). Given a relation schema R, a set of attributes
X of R, a preference specification P over R, and the set of its preference models A , if
the following formulae

VMk € ///,le,wg,wg ceW:

Tx(w1) = mx(we) A mx(wy) # mx(w3)A =k (w1, w3) = = (wa, w3)

VM, € M ,Nwy, w3, wy € W :
mx(ws) = mx(wy) Amx(wr) # mx(ws)A =k (w1, ws) = = (W, wy)

are valid, then for any relation instance I(R) of R:

X (rx(I(R))) = mx(wp(I(R))) < {mx(w) | w € wp(I(R))} .

Proof. We prove: mx(w) € wa (mx(I(R))) <= nx(w) € mx(wp(I(R))).

=: Assume 7y (w3) € w (7x(I(R))). The case mx(ws) € mx(I(R)) is trivial. Other-
wise, it must be the case that VMyx € #x,Jwy s.t. wxy C mx(I(R)) and >x
(wx,mx(w3)), which implies VM € A NYwi,wy € W : wx(w1) = wx A mx(wy) =
mx(w3) == (w1, wy) and thus 7x(w3) € mx(wp(I(R))).

<: Assume 7x(w3) € mx(wp(I(R))). Then VMy € A4 and Yw, C I(R) s.t. mx(wy) =
mx(ws), there is wy C I(R) s.t. >g (w1, wy) and wx(wy) # mx(ws). From the
assumption of the theorem, it follows that Yws,wy C I(R) : mx(wy) = mx(wy) A
x(wy) = mx(ws) ==, (w2, wy), which implies Ox (=) (mx (w1), 7x(ws3)) and thus
mx(ws) € wp (rx(I(R))). O

4.3 Distributing over Cartesian Product

For preference operator to distribute over the Cartesian product of two relations, the
preference specification, which is the parametr of the preference operator, needs to be
decomposed into the preference specifications that will distribute into the argument re-
lations:

Theorem 16 (Distributing over Cartesian product). Given two relation schemas Ry and
Ry, and preference specifications Py over Ry and Py over Ry, for any two relation in-
stances I(Ry) and I(Ry) of Ry and Ry, the following property holds:

wro(I(R1) x I(Ry)) = wp, (I(Ry)) X wpy(I(Rs)) <
{wy; X we | w1 € wp, (I(Ry)) Nwy € wp,(I(R2))}

where Py = P(P1,Pa) is a Pareto composition of Py and Ps.
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Proof. We prove:
w1 X Woy ¢ CU’[JO(I(Rl) X I(RQ)) < W1 X W2 ¢ wpl([(Rl)) X wPQ(I(Rg)) .

=: Assume wy X wy & wp,([(Ry) x I(Ry)). Then VM,, € #,, models of Py, there
are wy C I(Ry),wy C I(Ry) s.t. =, (W) x wh,w; X wy). Consequently, VM €
M, NM, € Mo, models of Py and Py, there are w] C I(Ry),wy C I(Ry) s.t.
= (Wi, wy) or = (wh,wsy), which implies wy & wp, (I(Ry)) or wy & wp,(I(Rs)) and
thus wy X wy & wp, (I(Ry)) X wp,({(R2)).

<: Assume w; X wy € wp,(I(R1)) X wp,({(R2)). Then w; & wp, (I(Ry)) or wy &
wp,(I(Ry)). Assume the first. Then VM € #), models of P;, there must be
w) C I(Ry) s.t. =k (w),w;). Consequently, VM,, € .#, models of Py, Jw] C
I(Ry) 2= (W) X we, wy X wy), which implies wy X wqy & wp,(I(R1) X I(Ry)). The
second case is symmetric. O

For lexicographic composition, we obtain the same property as for Pareto composition:

Theorem 17 (Distributing over Cartesian product). Given two relation schemas Ry and
R, and preference specifications Py over Ry and Py over Rs, for any two relation in-
stances I(Ry) and I(Ry) of Ry and Ry, the following property holds:

wro(I(R1) x I(Ry)) = wp, (I(R1)) X wpy(I(Rs)) <

{wy; X we | w1 € wp, (I(Ry)) Nwy € wp,(I(R2))}
where Py = L(Py,Pa) is a lexicographic composition of Py and Ps.
Proof. We prove:

wy X wy & wp,(I(Ry) X I(Ry)) <= w1 X we & wp, (I(Ry)) X wp,(I(R2)) .

=: Assume w; X wy & wp,(I(Ry) x I(R2)). Then VM,, € 4, models of Py, there
are w) C I(Ry),w)y C I(Ry) s.t. =, (w) x wh,w; x ws). Consequently, VM, €
M, NM; € Mo, models of Py and Py, there are wy C I(Ry),wy C I(Ry) s.t.
=k (W], wy) or =5 (w,wy)A =, (wh, ws), which implies wy € wp, (I(Ry)) or wy &
wp,(I(Ry)) and thus wy X we & wp, (I(Ry)) X wp,(I(R2)).

<: Assume w; X wy € wp,(I(R1)) X wp,(I(R2)). Then wy; & wp, (I(Ry)) or wy &
wp,(I(R2)). Assume the first. Then VM, € .#), models of Py, there must be
w) € I(Ry) s.t. =k (w),wy). Consequently, VM,, € #j, models of Py, there must
be w] s.t. =, (W) X wg,wy X wy), which implies wy X we & wp,(I(Ry) X I(R2)).
The second case is symmetric. O

Both Theorem 16 and Theorem 17 make it possible to derive the transformation rule
that pushes preference operator with a one-dimensional preference specification down the
appropriate argument of the Cartesian product:

Corollary 18. Given two relation schemas Ry and Rs, a preference specifications Py over
Ry, and an empty preference specification Py over Ry, for any two relation instances
I(Ry) and I(Rs) of Ry and Ry, the following property holds:

de
wp, (I(Rl) X I(Rg)) = Wp, (I(Rl)) X QI(RQ) :f {’LUl X Wy ’ wy € wWp, ([(Rl)) AT g [(RQ)} ,
where Py = P(P1,Pa) is a Pareto of lexicographic composition of Py and Ps.
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Proof. Follows from previous theorems and from the equality wp,, . (I(R)) =2/®. O

4.4 Distributing over Union

The following theorem shows how the preference operator distributes over the union of
two relations:

Theorem 19 (Distributing over union). Given two compatible relation schemas® R and S,
and a preference specification P over R (and S), if the following formula

wp(I(R)UI(S)) C 21 y 2

is valid for relation instances I1(R) and I(S) of R and S, then the following property
holds:

wp(I(R) U I(5)) = wp(wp(I(R)) Uwp(I(5))) -

Proof. Obviously, wp(I(R)) Uwp(I(S)) C 21V 1 we show that wp(I(R) U I(S)) C
wp(I(R)) Uwp(I(S)), the theorem immediately follows from Theorem 8.

Indeed, if w € wp(I(R) U I(S)), then it follows from the definition of the preference
operator w C I(R)UI(S)AIMy € A s.t. V' € W :w' CI(R)UI(S)A =, (', w) ==
(w,w’). As we know that w C I(R)V w C I(S) from the assumption of the theorem, we
can conclude w € wp(I(R)) Uwp(I(9)). O

4.5 Distributing over Difference

Only in the trivial case, the preference operator can be distributed over difference:

Theorem 20 (Distributing over difference). Given two compatible relation schemas R and
S, and a preference specification P over R (and S), for any two relation instances I(R)
and I(S) of R and S, the following property holds:

wp(I(R) = I(5)) = wp(I(R)) — wp(I(5))

iff the preference specification P is empty.

4.6 Push Preference

The question arises how to integrate the above algebraic laws into the classical, well-
known hill-climbing algorithm. In particular, we want to add heuristic strategy of push
preference, which is based on the assumption that early application of the preference
operator reduces intermediate results. Indeed, the Theorem 8 provides a formal evidence
that it is correct to pass exactly all the tuples that have been included in any world
returned by the preference operator to the next operator in the operator tree. This leads
to a better performance in subsequent operators.

3We call two relation schemas compatible if they have the same number of attributes and the corre-
sponding attributes have identical domains.
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5 Related Work

The study of preferences in the context of database queries has been originated by Lacroix
and Lavency [8]. They, however, haven’t addressed the issue of algebraic optimization.

Nevertheless, only at the turn of the millennium this area attracted broader inter-
est again. Kiekling [6] and Chomicki et al. [2] have pursued independently a similar,
qualitative approach within which preferences between tuples are specified directly, us-
ing binary preference relations. They have defined an operator returning only the best
preference matches. However, they, by contrast to the approach presented in this paper,
don’t consider preferences between sets of elements and are concerned only with one type
of preference. Moreover, the relation to a preference logic unfortunately is unclear. On
the other hand, both Chomicki et. al. [2] and Kiefling [7, 4] have laid the foundation for
preference query optimization that extends established query optimization techniques.

A special case of the same embedding represents skyline operator introduced by
Borzsonyi et al. [1]. Some examples of possible rewritings for skyline queries are given
but no general rewriting rules are formulated.

In [9], actual values of an arbitrary attribute were allowed to be partially ordered
according to user preferences. Accordingly, RA operations, aggregation functions and
arithmetic were redefined. However, some of their properties were lost, and the the query
optimization issues were not discussed.

6 Conclusions

We build on the framework of embedding preferences into RQL through the preference
operator that is parameterized by user preferences expressed in a declarative, logical
language containing sixteen kinds of preferences and that returns the most preferred
sets of tuples of its argument relation. Most importantly, the language is suitable for
expressing preferences between sets of elements and its semantics allows for conflicting
preferences.

The main contribution of the paper consists in presenting basic properties of the pref-
erence operator and a number of algebraic laws describing its interaction with other RA
operators. Particularly, sufficient conditions for commuting the preference operator with
RA selection or projection and for distributing over Cartesian product, set union, and
set difference have been identified. Thus key rules for rewriting the preference queries
using the standard algebraic optimization strategies like push preference or push projec-
tion have been established. Moreover, a new optimization strategy of push preference
has been suggested.

Future work directions include identifying further algebraic properties and finding the
best possible ordering of transformations for optimization of RA statements with the
preference operator. Also, expressiveness and complexity issues have to be addressed in
detail.
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Numericka simulace dislokacni dynamiky*
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Abstract. This paper deals with the numerical simulation of dislocation dynamics. Dislocations
are described by means of the evolution of a family of closed and open smooth curves I'' : §1 —
R2, ¢t > 0. The curves are driven by the normal velocity v which is the function of curvature
x and the position vector € I'!. In this case the equation is defined this way: v = —k + F.
The equation is solved using direct approach by two numerical schemes, ie. semi-implicit and
semi-discrete, both are compared with analytical solution. Results of the dislocation dynamics
simulation are presented.

Abstrakt. Tento ¢lanek se zabyva numerickou simulaci disloka¢ni dynamiky. Dislokace jsou po-
psany pomoci ¢asového vyvoje mnoziny uzavienych a otevienych hladkych kiivek I't : St — R2,
t 2 0. Vyvoj k¥ivek je ovliviiovan normélovou rychlosti v, jenz je funkei k¥ivosti x a polohového
vektoru x € I't. V tomto pifpadé m4 rovnice tvar v = —k + F. Rovnice je fefena pfimou meto-
dou pomoci dvou ruznych numerickych schémat, semi-implicitnim a semi-diskrétnim. Obé tato
schémata jsou porovnéna s analytickym fesenim. Vysledky simulace disloka¢ni dynamiky jsou
také uvedeny.

1 Uvod

V odvétvi vyzkumu materiali a pevnych latek se dislokace definuji jako porucha ¢i ne-
pravidelnost v krystalové mfizce materidlu. Pritomnost dislokaci v materidlu vyrazné
ovliviimje mnohé z jeho vlastnosti, a proto je velmi dilezité vyvinout vhodny matema-
ticky model. Z matematického hlediska jsou dislokace definovany jako hladké uzaviené
nebo oteviené rovinné kiivky, které se vyvijeji v ¢ase. Ukézka dislokace v materidlu je
zndzornéna na obrazku 1.

2 Matematicky model

Ktivky, které se v ¢ase vyvijeji, je mozné matematicky popsat nékolika zpiisoby. Jednou
z moznosti je pristup metodou Level Set |1, 2, 3|, kdy vysledna kiivka je nulovou hladinou
plochy. Dalsi mo7nosti je metoda fazového pole (Phase Field) [4] a nakonec i piima
(parametricka) metoda [5, 6], kdy je kiivka parametrizovana b&éZnym zptsobem. V tomto
¢lanku se budeme zabyvat pravé touto metodou.

*Tato prace byla podpofena grantem ¢. MSM 6840770010, projekt ¢. LC06052 Necasova centra pro
mathematické modelovani.
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Obrézek 1: Dislokace v nerezové oceli, zdroj: Wikipedia.org

2.1 Rovnice

PTi pouZiti parametrického p¥istupu popiseme disloka¢ni kiivku I'(¢) pomoci hladké
¢asové zavislé vektorové funkce X (.5, I)

X:SxI—R?

kde S = (0, 1) je pevny interval pro parametrizaci kiivky a I = (0,7T') je ¢asovy interval.
Dislokac¢ni kiivka I'(¢) je pak dana jako

I(t) = {X(u,t),u € S},
kde u je parametr a t € (0,7) je Cas.

Mnozina téchto kiivek musi spliiovat rovnici pro ¢asovy vyvoj, ktera je obecné zadana
jako v = B(k, x), kde v je normalova rychlost vyvoje kiivky. Normalova rychlost je obecné
funkei kiivosti k a polohového vektoru x. V nasem piipadé méa tato rovnice jednoduchou
podobu

v=—k+F, (1)

kde F' vyjadruje externi silu aplikovanou ve sméru normély ke kiivce.

2.2 0Odvozeni diferencialni rovnice

Pro odvozeni diferencialni rovnice je tfeba definovat nekolik zakladnich pojmi. Méjme
hladkou k¥ivku z : ST — R2. Jednotkovy tetny vektor T 1ze definovat t jako T = 0,2/|0,2|.
Jednotkovy norméalovy vektor Nj je kolmy na te¢ny vektor a plati NT = 0. Kiivost krivky
je dana vzorcem

Ot O - O
|Ou|  |0Fx] ||

Normalova rychlost je definovana jako derivace x podle ¢asu ¢ ve sméru normaly.

Nyni lze zapsat rovnici (1) jako

Ox 0%z Oy
" 4 2
ot = 10z T (0w 2)
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2.3 Numerické schéma

Pro fedeni diferencialni rovnice (2) jsou pouzita dvé numericka schémata: semi-implicitni
a semi-diskrétni. Pouziti dvou schémat je z divodu moznosti porovnani vysledki a zjisténi
jejich presnosti.

Pro feSeni rovnice pomoci semi-diskrétniho schématu je pouzita Runge-Kuttova metoda
¢tvrtého rfadu s automatickou volbou ¢asového kroku. Pro diskretizaci derivaci v prostoru
jsou pourzity stFedové diference rovnéz ¢tvrtého fadu. Prvni derivace je diskretizovana
takto:

— J
ou 12h ’ 12h
a druh& derivace takto:
0z N —xj o+ 16x] | — 30x) + 162], — x5,y —x7 5+ 1627 | — 3027 + 1627, — 27,
ou? 12h2 ' 12h2
Néahrady derivaci ozna¢ime x,, pro prvni derivaci a z,,, pro druhou.
Rovnice (2) pro semi-diskrétni schéma ma tvar

1 1 1 1 2 2 2 2
Y

dt Q*zy)  Qlay)
kde Q(z,y) = /22 +y? + 2 a xjj je kolmy vektor k w,;. Clen ¢ je do rovnice pridan
proto, aby pfi feseni nedochéazelo k ukonceni vypoctu pri dosazeni singularity.

j=1,---,m—1,t€(0,7), (3)

Pouziva se i semi-implicitni schéma feSené pfimym feSicem. V tomto ptipadé jsou
pouzity jednodussi prostorové diference. Prvni derivace je diskretizovana pomoci zpétné
diference

ou ho 7 h
a druh& derivace je diskretizovana takto:

2 1 _ 1 1 2 _ 2 2

1.1 2 _ .2

ou? h? ’ h?
Rovnice (2) pro semi-implicitni schéma mé tvar
L Y
k+1 uuj k uj .
P M kg ep W i) m—1,k=0,--- ,Np—1, (4
’ Q2(xﬁj) ! Q(ﬁﬁg) / ’ )

kde Q(z,y) a xjj maji stejny vyznam jako pro semi-diskrétni schéma. Struktura matice
pro jednu komponentu z**! ma tvar
l-we mp O
—t
h2Q?

0
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3 Vysledky numerické simulace

V této kapitole budou prezentovany vysledky numerické simulace pomoci vyse uve-
denych numerickych schémat. Lety provéfeny tesi¢ pro semi-diskrétni schéma pouziva
Runge-Kuttovu metodu ¢tvrtého fddu a je napsan a pro rychlost odladén v jazyce Fortran.
Resic pro semi-implicitni schéma je napsan v jazyce C, zatim v8ak neni tak sofistikovany.
Na jeho vyvoji se stale pracuje.

3.1 Testovani na uzavicenych kiivkach

K ovéteni, zda je zvoleny piistup k feseni rovnice vhodny, bylo nutno provést testovani
s riznymi poc¢ateénimi podminkami. Vysledky byly poté porovnany bud s analytickym
fesenim nebo s vysledky dostupnymi v literatuie [6, 7, 8.

1 : T T 1 T T T
| \ | -
( /
ot E ot = \
0.5 + / 05 F 2
1

= ! ! 1

-1 -0.5 0.5 1 -1 -0.5 0 0.5 1

0
(a) F =0, t € (0,0.495), h = 1/200 (b) t € (0,0.184), h = 1/200, F = 10 pro |z| <

3

S
0.35, F = =5 pro |z| > 0.35

Obrézek 2: éasovy vyvoj uzavienych kiivek

Nejjednodussi piipad pro ovéfeni feSeni rovnice (2) je zvolit po¢atecéni podminku jako
jednotkovy kruh se stfedem v pocatku soutadnic a jako externi silu zvolit 0, tj. ZAdnou
externi silu. Simulace tohoto p¥ipadu je vidét na obrazku 2(a). Bez externi sily se kruh
postupné zmensuje a nakonec zistane pouze jeden bod. Pro tento pripad je také mozné
zjistit analytické teSeni, které je dané vzorcem

r=+1-2i, (5)

kde r je polomér zmensujiciho se kruhu a ¢ je ¢as. Porovnani numerického vypoctu a
analytického feSeni je uvedeno nize. Pti zvoleni externi sily rovné kiivosti si kruh zachova
svou velikost a v ¢ase se pak nebude vyvijet.
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Na obrazku 2(b) je zobrazena komplikovanéjsi situace, kdy externi sila F' neni v pro-
storu konstantni, ale pro body |z| < 0.35 je F' = 10, pro ostatni je F' = —5. Vzhledem k
vyssi kiivosti v zahybech je ale sila F' = 10 prekonana a tvar se postupné transformuje
na kruh, ktery se déle rozpina.

le-07 T T T T T T 7e-09 T T T T T T T
9e-08 | - N
6e-09 | -
8e-08 |- - .
.
7e-08 |- J 5e-09 - B
6e-08 [ g oL
. 40-00 [ . -
5 5 N N
S 5e.08 | ] 5
w + w +
* 3e-09 | - B
se08 - | e . - .
.,
. i .
\
£ 1 2e00F Tl * o, 1
WA I
2e-08 - [ - i P .
S e e
St 3 te0s T e I
1e-08 - IR E WS e
b, i TR e ey
bt g £
0 | | | | | | Pk 0 | | | | | L e
06 065 07 075 08 08 09 095 1 06 065 07 075 08 08 09 095 1
Radius Radius
(a) Semi-diskrétni (3), h = 1,/200 (b) Semi-diskrétni (3), h = 1/400
0.0014 T T T T T T T T T 0.0002 T T T T T T T T
N
00012 - | 000018 [ -
000016 - -
0001 | -
000014 |- -
.
0.0008 | i 000012 |- -
< .
5 5
= i £ oom
0.0006 |- -
Be-05 |+ -
.\
0.0004 - " 4 6e-05 - ’ 4
a .
" 46-05 | . i
*, +
0.0002 |- %, ] .
2¢-05 | R ]
e,
P o P e I
0 01 02 03 04 05 06 07 08 09 1 01 02 03 04 05 06 07 08 09 1
Radius Radius
(c¢) Semi-implicitni (4), h = 1/200 (d) Semi-implicitni (4), h = 1/400

Obrazek 3: Chyba schémat vici analytickému feseni

3.2 Ovéreni numerického feSeni

Jak jiz bylo zminéno, rovnici (2) je mozné pro jisté piipady pocatec¢nich podminek Fesit i
analyticky. Jednim z téchto pt¥ipadi je poc¢atec¢ni podminka ve tvaru kruhu s jednotkovym
polomérem. Regeni je pak déano vzorcem (5). Obé pouzita numericka schémata (3) (4) byla
porovnana s timto feSenim. Chyba je dana rozdilem analytického feSeni a numerického,

tJ Tanalyt — T'numer-
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Vysledky pro semi-diskrétni schéma zachycuji grafy 3(a) a 3(b). Je vidét, ze se zmen-
Senim velikosti A se také snizi velikosti chyby. Diky pouziti metody ¢tvrtého fadu a také
diferenci tého7 ¥adu se dosahlo dobré piesnosti v fadu 1077 pro h = 1/200, resp. 107°
pro h = 1/400.

Semi-implicitni Fesi¢ zatim nedosahuje takovych presnosti jako semi-diskrétni fegi¢. V
grafech 3(c) a 3(d) je zobrazen rozdil analytického a numerického feseni pro stejnou situaci
jako v predchozim piipadé. Opét zde dochazi k ristu presnosti pii snizovani velikosti A,
tj. presnost je v fadu 1072 pro h = 1/200, resp. 10~* pro h = 1/400.

3.3 Dislokaéni dynamika

Hlavnim cilem této metody bude simulace disloka¢ni dynamiky. Dislokac¢ni k¥ivky v
materialu se rizné vyvijeji, kmitaji méni svou topologii a podobné. Nésledujici simulace
maji ovérit, zda metoda muze byt pouzita pro tento tcel.

2 T 2
15| 15|
1r 1r
05 b 05
0 0r
-05 | B -0.5
1+ 1+
15k p 15k
-2 -15 -1 -0.5 0 05 1 15 2 -2 -15 -1 -0.5 0 05 1 15 2
(a) Disloka¢ni kiivka expanduje (F' = —3) (b) Kiivka se stdhne a expanduje na dru-
hou stranu.

Obrazek 4: Vyvoj disloka¢ni k¥ivky s proménlivou externi silou F

Obréazek 4 ilustruje pribéh disloka¢ni kiivky v case. Na kiivku piisobi externi sila
' = —3, coz zptsobi expanzi nahoru. V ¢ase t = 0,54 se zméni smér sily F' = 3. Ktivka
se vraci do ptivodniho stavu a prokmitne na druhou stranu. V materialu se objevuje prave
podobné chovéni, ale je ovlivnéno vice faktory.

Pti evoluci dislokacni kiivky se miize stat, Ze se objevi bariéra, ktera brani v jejim
vyvoji. Podle velikosti sily se muze stat, ze kiivka bud bariéru piekona nebo zustane v
této bariéfe uzamcena. Obrazek 5 ilustruje pravé tuto situaci. Disloka¢ni k¥ivka expanduje
za pusobeni externi sily F' = —3, dokud nedosahne bariéry tvofené prostorovou zménou
externi sily F' vy = 1.7. Tato bariéra ovSem neni dost silné (|F| = 9), aby kiivku udrzela,
protoze na koncich je velmi vysoka krivost, a tim padem i vysoka sila piisobici proti externi
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Obrazek 5: Dislokac¢ni kiivka prekona bariéru tvofenou prostorové proménnou externi
silou.

sile. Kfivka se uvolni a pokracuje dal v expanzi. Tato simulace se odehrava v ¢asovém
intervalu ¢t € (0,2.1). V redlném piipadé by se po dotknuti ruznych ¢asti k¥ivky méla
krivka rozdélit na vice ¢asti, které se pak vyvijeji dale. Toto zatim souc¢asny matematicky
model nedovoluje.

2 3 3 2

(b) Navrat kiivky zpé&t

3 2 2 3

(a) Expanze krivky

Obrézek 6: Prostorové proménné externi sila F' s vysokou hodnotou

Kdyz je externi sila prili§ silné, tak nedovoli kiivce pokracovat ve vyvoji. Kiivka je
tedy drzena mezi dvéma body a expanduje do stran. Bariéra je opét v y = 1.7 a hodnota
externi sily v ni je |F| = 35. Obrazek 6(a) zobrazuje expanzi kiivky a jeji zachyceni pii
F =-3avcaset € (0,1.5). Obrazek 6(b) zobrazuje navrat kiivky zpét pii F' = 3 v Case
t € (1.5,3). Kfivka je ovSem zadrZena v bariéfe a nemuze se vratit do puvodniho stavu.
Tato simulace ma demonstrovat vyvoj dislokacni kiivky v materidlu, kdy zachycena v
tzv. kanalu.
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0.5 4

0.5 I I I I I I I

Obrézek 7: Vyvoj kiivky v kanalu

Vyvoj kiivky v kanalu je zndzornén na obrazku 7. Pomoci externi sily jsou zde vy-
tvofeny nekonecné dlouhé bariéry, pres které se dislokace nemiuze dostat. Vyviji se tedy
pouze do stran. V redlném piipadé by pak méla dislokace kmitat pravé v tomto kanalu.

4 7Zaveér

Modelovani disloka¢ni dynamiky je pro praxi velmi dilezité, protoze dislokace maji
velky vliv na vétsinu vlastnosti materidlu. Dislokace je mozné modelovat pomoci v ¢ase
se vyvijejicich hladkych ktivek. V tomto ¢lanku je uveden matematicky model pro feSeni
pomoci parametrického pfistupu a navrzena dvé numerickd schémata pro feSeni rovnice
na pocitaci. Vysledky jsou porovnany bud s analytickym FeSenim nebo s vysledky v
literatute. Uvedeny jsou také simulace demonstrujici vyvoj kiivek podobny realnym dis-
lokacim, ale ty zatim plné neodpovidaji, protoze do modelu neni implementovana vhodna
fyzika.
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Abstract. This paper describes two variants of the tree-structured self-organising map (TS-
SOM) algorithm that are used in two different image-browsing and retrieval systems, GalSOM
and PicSOM. It studies how methods used to optimise GalSOM work in PicSOM and makes
some suggestions on parameter optimisation based on the results of heuristic analysis.

Abstrakt. Tento ¢lanek popisuje dvé varianty algoritmu samoorganizujici se mapy se stromovou
strukturou, které jsou pouzity ve dvou ruznych systémech prohlizeni a vyhledédvani obrazu,
GalSOM a PicSOM. Studuje jak metody pouzitivané k optimalizaci GalSOM pracuji v systému
PicSOM a navrhuje nékolik moznosti jak optimalizovat jeho parametry na zakladé vysledku
heuristické analyzy.

1 Introduction

In our previous workshop paper [10], we described the tree-structured variant of the
well-known self-organising map (SOM) algorithm, and some of the problems that can
occur when using it for multi-resolution visualisation tasks. In this paper we analyse a
variant of the tree-structured self-organising map and explore some aspects of the task
of optimising its parameters.

Self-organising maps are a type of artificial neural network that uses unsupervised
learning. They were developed by Kohonen [2]| in the eighties and have since been em-
ployed successfully in a number of applications; in particular they have been used for
cluster analysis and visualising high-dimensional data.

In an effort to speed up large SOM and acquire mappings at different resolutions,
hierarchical variants were developed. These include the Multi-Layer SOM [1], the Evolv-
ing Tree |7] and most importantly, the Tree-Structured Self-Organising Map (TS-SOM)
[3, 4], which this paper describes in detail. One of the best-known applications to use
TS-SOM is PicSOM |[5, 6], which uses multiple TS-SOM to facilitate content-based image
retrieval.

Incorporating TS-SOM into the GalSOM image browser led to an improvement of
the algorithm with multi-resolution correction as described in [8]. In this paper we apply
the results from experiments with GalSOM to the PicSOM in an attempt to optimise
it. More general information about using TS-SOM for image browsing and data analysis
with GalSOM is discussed in [9, 11].

*In cooperation with J. Laaksonen, M. Koskela and M. Sjoberg of The Laboratory of Computer and
Information Science, Helsinki University of Technology.
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2  Algorithms

In this section we describe the SOM and TS-SOM algorithms. Because the two primary
applications of the TS-SOM, GalSOM and PicSOM, implement it differently, they are
described separately in sections 2.2 and 2.3.

2.1 SOM
The self-organisation process is achieved as follows:

1. Initialise the codebook vectors n;;(0) at random (usually by setting them to ran-
domly chosen input vectors).

2. Select a random input i(¢) and find the best matching neuron (BMN) nges:(t) (i-e.
the neuron with the closest codebook vector). Every input sample has the same
probability of being selected.

3. Move the BMN and its topological neighbours within a certain neighbourhood dis-
tance towards the selected input vector. Units located topologically further from
BMN are moved less.

i (t+1) = ny () +n(t) - 60, 5, 1) - [it) = n(@)]; (1)

where
n(t): No— <0;1> monotonously decreasing, (2)

¢(Z,j,t> NO X NO X N0—> <0,1 >,

¢ decreases monotonously with the topological distance of n;; from 7., and with
t. The topological distance is the length of the shortest path from one neuron to
the other in the graph (grid) that represents the network’s topology.

4. Proceed to iteration ¢ + 1. Repeat 2 and 3 iteratively, reducing the proportion of
the distance moved n and the neighbourhood distance ¢ each iteration, until they
reach a certain predetermined threshold.

As a result the codebook vectors will be attracted to large clusters of input vectors
as these will have a higher probability of being selected than sparsely populated areas
of input space. 1 and ¢ must be selected with care if the algorithm is to achieve good
results [12].

2.1.1 Neighbourhood function

Function ¢ in (2) is called the neighbourhood function. It determines how much and how
distant (from the BMN) neurons will be affected at a given moment during the adaptation
process. Typically, it will apply a neighbourhood kernel to the topology of the network
surrounding the BMN to determine how much neurons within a the current topological
radius should be affected.

By default, GalSOM uses a triangular neighbourhood kernel, which is defined as
follows.
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donlt) :{ é—d/r(t) Z;;Eg ’ (3)

where d is the topological distance of a neuron from the BMN and r(¢) is the neigh-
bourhood radius at time ¢.

2.2 TS-SOM (GalSOM)

One way we can simultaneously analyse input space with high and low input ratios is
to use a tree-structured self-organising map (TS-SOM), [3, 4]. This is a hierarchical
structure of SOMs of exponentially increasing size. Each level of the TS-SOM adapts
separately, but in the lower levels, the search for the best-matching neuron is limited to
those hierarchically connected to the BMN of the previous layer. See figure 1.

2.2.1 The basic algorithm

The algorithm works as follows:
1. Perform one iteration of the SOM algorithm on the top layer.

2. Perform one iteration of the SOM algorithm on the next layer, but limit the search
for the BMN to the neurons located under the winning neuron of the previous layer.

3. Repeat 2 until all layers have been updated.
4. Repeat 1 to 3 until the SOM thresholds have been met.

The advantages of such a structure are obvious. Instead of performing a full-search
for the BMN at the lower layers, we restrict ourselves to a constant number of neurons
per given layer, thus greatly increasing the adaptation speed. The complexity of the
algorithm is O(logN), where N is the number of neurons on the bottom layer [4]. Also,
due to the hierarchical structuring, all the SOM will be orientated similarly in input space
and the TS-SOM as a whole may be considered a multi-resolution mapping of the given
data set. See figure 2.

Unfortunately, reducing the scope when searching for the BMN will often return
suboptimal results, i.e. finding neurons that are further from the input than the closest
one. As shown in my detailed analysis [8|, this effect increases with each subsequent layer
causing the lower high Nl-ratio layers to return poor results.

2.2.2 Wide-search TS-SOM

The unfortunate property of the TS-SOM to propagate errors to the lower layers is caused
by inputs bordering between two neurons on a higher layer, which gradually become
more and more poorly quantified as the search for the BMN becomes more and more
restricted. As noted in [6], better results may be achieved by allowing searching for the
BMN in a wider scope, which includes neurons adjacent to those directly under a higher
layer (figure 3). This is further corroborated by my experiments in |8|, where I show that
wide-searching is superior to the standard TS-SOM in almost all respects.
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Figure 1: A 3-layer TS-SOM with 4 neurons at the top layer and 64 at the bottom.

Figure 2: 4 layers of a TS-SOM show colour distribution of an input space of images at
different resolutions.
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Figure 3: Wide-search for the BMN in neighbouring neurons.

2.2.3 Maulti-resolution correction

One unfortunate side effect of the wide-search improvement of the TS-SOM algorithm is
that the separate layers become unsynchronised. This degrades the quality of the TS-
SOM as a multi-resolution mapping. In [8] we describe a simple and effective method for
rectifying this problem and removing the desynchronising effect. It should be noted that
good synchronisation also improves the quality of the search for the BMN and brings the
TS-SOM closer to the quality of the standard full-search methods. However, as we will
show later on, this property only applies to the GalSOM variant of the TS-SOM.

2.3 TS-SOM (PicSOM)

The PicSOM system |5 was originally developed for the task of content-based image
retrieval using query by pictorial example [6]. The data is mapped to multiple SOM,
each of which maps a different representation of it using different feature vectors.

The user is presented with a number of images from the database, which he labels
either positive (similar to the target image) or negative. This feedback is plotted to the
BMN of each TS-SOM and a “value map” of each is updated — the unit on the map
that corresponds to the BMN for positively-labelled images has its value increased, while
that corresponding to the negatively-labelled ones is decreased. A convolution filter and
normalisation is then applied to the value-maps to generalise the results. A new set of
images located at the nodes that score highest on the value-maps is then presented to
the user, and the process is repeated until the target image has been found.

The user feedback can be replaced with annotated training samples and used for
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learning to detect high-level features and classes using the multiple mappings of low-level
features.

Only the bottom levels of the TS-SOM are used, so the algorithm is optimised towards
getting the best result on them. The only purpose of the other levels is to speed up
the search process. For this reason, the TS-SOM structure used by PicSOM is slightly
different than the ones that GalSOM uses, as were described in section 2.2.

In a PicSOM TS-SOM, each node is hierarchically connected to an area of 4 x 4 nodes
on the subsequent level. Thus, each map level contains 16 times as many nodes as the
previous one, causing the size to increase with great rapidity. PicSOM uses wide-searching
similar to that described in section 2.2.2, but the search is restricted to the 10 x 10 area
beneath a node rather than just the immediate neighbours of the descendants.

The second major difference is that the levels of the TS-SOM are adapted one at
a time, starting from the top level. Each subsequent level has its neurons initiated by
extrapolating the position of those on the previous level according to the hierarchical
connections. This is to improve the performance on the lower levels per given number of
iterations by reusing information gained from the iterations made on the higher ones.

3 Experiments

We have conducted a number of experiments studying and comparing the TS-SOM meth-

ods used in GalSOM and PicSOM.

3.1 MRC with PicSOM

In this experiment we compared the basic PicSOM algorithm with variants using the
multi-resolution correction as described in section 2.2.3. Four different variants were
used.

1. 100 runs® using the default PicSOM configuration.
2. Asin 1, but with MRC performed after all runs have been completed.
3. MRC is performed twice, once every 50 runs.

4. MRC is performed after every run.

In 3 and 4 the runs following each MRC begin at the top level again.

Table 1 shows the average quantisation error (AQE) and tree search quality (TSQ) of
the 4 variants on each level of 4-level TS-SOM. As can be seen, variants 2-4 have a higher
AQE on the more important lower levels, but an improved result on the higher ones.

TSQ is defined as the percentage of BMN located using tree search that are the same
as BMN located using a full search on a given level of the map. As can be seen, MRC
reduces the TS(Q on all levels except the top ones, where tree search is equivalent to full
search.

LA run consists of one iteration performed for each input.
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MRC test
Measure AQE TSQ
Level 1. 2. 3. 4. 1. 2. 3. 4.
1 197,213 | 189,362 | 188,764 | 190,869 1 1 1 1

159,151 | 153,726 | 153,878 | 159,857 | 0,951545 | 0,900166 | 0,901104 | 0,928091

2
3 128,144 | 113,595 | 113,772 | 126,069 | 0,914735 | 0,811203 | 0,813411 | 0,709161
4 72,9938 | 85,7821 | 85,6351 | 101,604 | 0,941446 | 0,812583 | 0,812804 | 0,707726

Table 1: MRC used in variants 2-4 reduces AQE on the lower levels of the TS-SOM, but
increases it on the higher ones. It reduces TSQ on all levels except the top ones.

MRC test - HLF

Measure 1. 2. 3. 4.

Avgprec 0,1472 | 0,1444 | 0,1325 | 0,1409
W. avgprec 0,0112 | 0,0112 | 0,0102 | 0,0109
A priori avgprec | 16,3233 | 16,2401 | 14,2412 | 16,3332

Table 2: MRC decreases the average precision regardless of whether it is weighted in
favour of small or large classes.

Table 2 shows the average, the weighted average, and the a priori average average
precision (avgprec) for locating objects containing queried high-level features (HLF) of
34 classes. These classes includes such HLF as people, water, buildings and crowds.

Because each class had a different number of objects for training and testing, it was
necessary to examine whether small classes with few objects were not skewing the results.
This was done with the weighted average, where the avgprec of each class was weighted
by the number of objects it contained.

However, because objects in small classes have a much lower a prior: probability of
being located in a large database, a higher avgprec may be considered a greater achieve-
ment. The a priori avgprec of class i is calculated by dividing its avgprec by its a prior:
probability P;, which is defined as follows.

P, = 0;/N, (4)

where O; is the number of objects in class ¢ and N is the total number of objects in
the entire database. Unfortunately, this measure is more susceptible to noise than the
other two as it magnifies the results of small classes.

As can be seen from the results in table 2, variant 1 scored the best in all three
different measures.

MRC essentially damages the lower-level mappings, which were produced using a
static positioning of the higher ones. Because the lower levels were produced recycling
the iterations of the higher levels as well as their own, they are much more finely tuned.
MRC recycles this fine-tuning when it corrects the positions of the higher levels. However,
in non-visualisation tasks that only use the lowest level of the PicSOM TS-SOM (such
as HLF detection), MRC provides no benefit at all.
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Tri test - improvement %

Level | AQE TSQ
1 4,36 0
2 2,50 0,0035
3 2,52 0,0176
4 8,48 0,0375

Table 3: Using a triangular neighbourhood kernel improves AQE and TSQ on all levels
of the TS-SOM.

MRC test - HLF
Measure Rect Tri
Avgprec 0,1190 | 0,1281
W. avgprec 0,0092 | 0,0098
A priori avgprec | 14,5450 | 15,1471

Table 4: Using a triangular neighbourhood kernel improves HLF detection.

3.2 Triangular neighbourhood kernel

The default configuration of PicSOM uses a rectangular neighbourhood kernel (see section
2.1.1). In this experiment we replaced it with a triangular one and compared the results.

Table 3 shows the percentage of improvement to average AQE and TSQ of 7 separate
tests using different features, which this modification achieved. As can be seen, using a
triangular kernel improved the map quality of each level of the T'S-SOM. This also applies
to each separate feature as well as the average score.

Table 4 compares the HLF test results of rectangular and triangular neighbourhood
kernels using the average of the same 7 features. The avgprec (using the same three
measures as in the previous experiment) was on average better in each case, although for
one or two features the a priori avgprec decreased slightly.

Overall it may be concluded that the triangular outperforms the rectangular neigh-
bourhood kernel.

3.3 Convolution radius

During the convolution phase of the PicSOM algorithm, a triangular kernel of radius C'
(not to be confused with the neighbourhood kernel in the previous section) is used to
generalise the input from training data or user feedback (see section 2.3). The default
value of C'is 9 (i.e. the values on the value map of neurons within a topological range
of 9 from the BMN of positive or negative hits will be modified in proportion to their
distance).

The graph in figure 4 shows the avgprec of each of the 34 classes examined at values
of C' ranging from 1 (the convolution does not affect the value map) to 20. In most cases,
the avgprec starts very low and rapidly increases to a maximum value, after which it
slowly begins to decrease.

There are a few exceptions to this general rule. The plotted values that decrease
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Figure 4: Dependence of average precision on convolution radius for 34 different classes.

monotonically with the increasing value of C' belong to very small classes with very
similar objects. These classes do not benefit from the generalisation that convolution
produces. Also, there are two high-scoring classes that remain more or less constant.
These are the classes, face and person, which are primarily dependent on a feature that
registers successful face-detection. This produces a high degree of separability, which
diminishes the influence of convolution.

When the optimal value of C' is selected for each class, instead of the default value
of 9, the avgprec was improved by 4.7%. However, when these optimised values of C'
were employed with subsets and supersets of the training data, the resulting avgprec
was lower than with the default value. The optimisation of the convolution parameter
was effectually over-learning. It was observed that when using a constant value of C'
for all classes, the subset experiment scored highest for higher values, while the superset
did better with lower ones. It may be concluded from this that sparser data requires a
greater degree of generalisation. Also, based on the general trend of most classes, it can
be noted that higher values of C' offer less risk, as they increase the chances of avoiding
the steep rise prior to the peak.

4 Conclusions

In this paper we described in detail the difference between two variants of the TS-SOM
algorithm used in the projects GalSOM and PicSOM. Methods used for optimising Gal-
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SOM were applied to PicSOM with mixed success. MRC, which had previously been used
successfully to improve the quality of GalSOM mappings was found to be unsuitable for
PicSOM. Conversely, triangular neighbourhood kernels were found to improve PicSOM’s
results significantly. Finally, experiments with the convolution parameter of PicSOM

in over-learning. The analysis also suggests that higher values of the parameter will have
more stable, albeit suboptimal results.
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Abstract. We describe behavior of the burning air-coal mixture in power plant furnace, using the
Navier-Stokes equations for gas and particle phases, accompanied by a turbulence model. The
undergoing chemical reactions are described by the Arrhenian kinetics (reaction rate proportional
to exp (—%) , where T' is temperature). We also consider the heat transfer via conduction and
radiation. The system of PDEs is discretized using the finite volume method (FVM) and an
advection upstream splitting method as the Riemann solver. The resulting ODEs are solved
using the 4th-order Runge-Kutta method. Sample simulation results for typical power production
levels are presented.

Abstrakt. Popisujeme chovani hotici smési praskovéhoo uhli a vzduchu v elektrarenském kotli
pomoci Navier-Stokesovych rovnic pro plynnou a pevnou fazi spolu s modelem turbulence. Mo-
delovani chemickych reakci se popisuje tzv. Arrheniovskou kinetikou (rychlost reakce je umérna
exp (—%) , kde T je teplota). Dale uvazujeme pienos tepla vedenim a radiaci. Systém parciél-
nich diferencialnich rovnic je diskretizovim metodami kone¢nych objemt a "advection upstream
splitting". Vysledny systém obyc¢ejnych diferencidlnich rovnic je feSen metodou Runge-Kutty-
Merson 4. fadu. Jsou prezentovany vysledky simulaci pro typicky vykon elektrarny.

1 Uvod

Hlavnim cilem zkouméni hoteni a vytvoreni modelu hoteni je jeho pouziti k vyvoji Ti-
dicich systémii pro industrialni aplikace (stavajici model pouziva parametry z kotle K5
v Otrokovicich). Dal§im duvodem je optimalizace produkce oxidu dusiku, jejichz tvorba
je silné ovlivnéna teplotnim profilem, pfitomnosti spalovaciho vzduchu a paliva, muze
byt tedy kontrolovidna vhodnou distribuci uhelného prasku a sekundarniho vzduchu na
hotécich.

Spalovaci komora je obvykle ¢tvercového prutezu s nékolika patry hofaka (viz Obra-
zek 1), které mohou byt umistény na sténach nebo v rozich. V nasem piipadé je komora

*Tato prace je ¢aste¢né podpoiena grantem "Applied Mathematics in Technical and Physical Sciences"
MSM 6840770010 Ministerstva skolstvi, mladeze a tslovychovy Ceské Republiky a grantem "Advanced
Control and Optimization for Power Generation" ¢islo 1H-PK /22 Ministerstva primyslu a obchodu Ceské
Republiky.

fSpolupracovali Jindfich Makovi¢ka, Michal Bene§ and Vladimir Havlena
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30m vysoka a 7 metri Sirokd, hotaky jsou ve c¢tyfech patrech.
Rozméry spalovaci komory a pocet hordki je dan energetic-
kymi pozadavky . V nasem piipadé vykon kotle ¢ini 90 MW,
spolu s parogeneratorem produkuje az 100 tun stlacené pie-
hraté pary za hodinu. Hotaky se obvykle nachazeji ve spodni
¢asti komory. Do nich je privadéna smés priméarniho vzduchu
a uhelného prasku, predehiatého na urcitou teplotu, dale pak
sekundéarniho vzduchu a nakonec nad poslednim patrem je pti-
veden vzduch dohotivaci. Jak smés hofi prenasi ¢ast tepla do
plasté komory, ktery obsahuje trubky z vodou, zbytek tepla
odchézi spolu se spalinami do horni ¢asti kotle, jenz obsahuje \/

ruzné kovekéni plochy (ohfivaky vzduchu a vody, vyparnik, pre-

hifvak) a kde dochazi k dalsimu pienosu tepla (viz napiiklad —Obrazek 1: Schéma kotle
[4]). Nejvétsi snahou bylo namodelovani procest v oblasti, kde dochézi k hoteni a k tvorbé
oxidi dusiku spolu s presnéjsim fyzikdlnim modelem samotného hoteni a jevi které ho
doprovazeji.

O\
0N
|

2 Matematicky model

Matematicky model hoteni je zalozen na Navier-Stokes rovnicich pro reakéni smés, kde
uhelné ¢astecky jsou povazovany za jednu z komponent (jinaéi pFistup je zaloZen na
vlastnich rovnicich pro uhelné ¢astice a spaliny |1]). Tento pFistup byl zvolen nebot zjed-
nodusuje model v pfipadé uvazeni turbulence a odstranuje nékolik empirickych vztaht a
konstant.

Stavajici model zahrnuje nasledujici komponenty smési:

e chemické latky ucastnici se pii tvorbé oxidu dusiku: dusik (Ns), kyslik (O,), oxid
dusnaty (NO), kyanovodik (HCN), amoniak (NH3) a voda (H2O)

e pevna (char) a tékava (volatile) ¢ast uhelné ¢astice

Plynna faze je popsana nasledujicimi rovnicemi.
Zakon zachovani hmoty pro kazdou komponentu (je pouzito Einsteinovo sumacni pravi-
dlo):

0 0 >

E(PYi) + a—xj(PYiuj) = VJ; + R;, (1)
kde p je hustota spalin, ¥; hmotnostni koncentrace komponenty a u; jsou slozky rychlosti
spalin. Cleny na pravé strané popisuji laminarni a turbulentni difuzi a tvorbu ¢i zanik
komponenty v chemickych reakcich.

Vyse uvedené rovnice jsou doplnény rovnici kontiniuty:

dp n d(pu;)
8t 81']'

= 0. 2)
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Rovnici zachovani momentu hybnosti:

0 op
a(ﬂui) + a—%(ﬂuz%) o,
0 Ou; Ouj 2 _ Ou
+8—:ch [Meﬁ“ (&Ej + e géux—l>] + 9is (3)

vz 2

kde § = [g1, g2, 93] je piisobeni vnéjsi sily na tekutinu, v nasem piipadé gravitace. Efektivni
koeficient dynamické viskozity peg je pomoci modelu turbulence vyjadien jako:
]{32
prott = pu+ e =+ pCu—,

kde p je laminarni dynamické viskozita, k£ turbulentni kinetickd energie a € rychlost di-
sipace k. Konstanty jako C),, a daldi aditivni konstanty zminéné pozdéji v textu, musi
byt urc¢eny empiricky pro dany problém, v nasem piipadé uzivime C),, = 0.09, coz dava
uspokojivé vysledky. VSechny empirické konstanty pro model turbulence jsou prevzaty 7

[13].
Posledni rovnice popisuje zachovani energie:
8 a dmcoa
a(ph) + %(pujh) = —Ncoal dt 1hcomb
J
+qr + qe + g, (4)

kde ¢leny na pravé strané jsou po radé, spalné teplo, prenos tepla radiaci, vedenim a ¢len
popisujici vznik ¢ zanik tepla. Cleny jsou modelovany néasledovné:

—q. =V - (AVT),
prenos tepla vedenim, ktery je popsan Fourierovym zakonem vedenim tepla a
—q, =V - (cI°VT),

pro pienos tepla salanim (radiaci). Pienos tepla radiaci je plné popséan integro-diferencialnimi
rovnicemi, které je velmi vypocetné nakladné fesit. Nicméneé, spaliny lze povazovat za op-
ticky husty material a lze aplikovat priblizny model radiace, tzv. Rosselandiv model
[13].
Clen popisujici zanik tepla je nenulovy jen na hranici komory a popisuje viménu tepla
se zdmi komory vedenim a salanim
ds = A(Tgas - Twall) + B(T4 - T4all)7

gas Wi

kde A a B jsou konstanty zavisejici na vlastnostech rozhrani mezi modelovanou oblasti a
jejim okoli.

Hmotnostni zména uhelnych ¢éstic je popsana jednokrokovou Arheniovskou kinetikou,
zv1ast pro pevnou a tékavou ¢ast — tékava slozka ho¥i mnohem rychleji nez pevné.

dm o E,
dtp = —A,m; [05)% exp (_RTp> ,
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kde m,, je hmotnost hoflaviny, A,, £, jsou empirické konstanty, [Os] koncentrace kysliku
a T, je teplota castice.
Vyse uvedené rovnice jsou doplnény stavovou rovnici

1
p = (K —1)pgas <egas — §v§as) )

Zde, r je Poissonova konstatna a eg,s je celkova energie na jednotku hmotnosti.
Model turbulence je standartni k-e model, ktery popisuje vyvoj turbulence pomoci
dvou rovnic  rovnice turbulentni kinetické energie

) 9 9 Y\ Ok
57 Pk) + a—xj(/)kug) = or; KlH— Uk) 8%}
‘f‘Gk — pE, (5)

a rovnice rychlosti disipace turbulentni kinetické energie

0 9 0 i\ e
o1 P+ gy rew) = 5 [(’” a€> axj]

j
2
€ €
—G — Coep—. 6
Konstanty musi byt zjistény empiricky a v nasem piipadé uzivame: C. = 1.44, Cy. = 1.92,
O — 10, O¢ = 1.3.
Produkci turbulence Gy, lze odvodit z Reynoldsova procesu zprimeérovani a zapsan
ve tvaru fluktujicich ¢asti rychlosti nabyva tvaru
ou,; ——0u;
Gy =)= = —pu/u)—2,
k gl 3351 P j laxl
kde 7;; je Reynoldstiv tenzor napéti. AvSak fluktuace u}; a u jsou béhem vypoctu nezndmé.
Po pouziti hypotézy Boussinesqa, ze Reynoldsovo napéti je imérné stfedni rychlosti de-

formace L /8 5
ot U; Uj
55 =3 (axj * 3xi> ’

lze zapsat produkci v uzaviené formé
Gy = mS% S = (28;8:)"2.

Difuze latek sestava ze dvou procesu  laminarnich a turbulentnich a difuzni ¢len v
rovnici (1) miaZzeme napsat jako

+Ole

SCt

Prvni ¢len je laminarni difuze, druhy turbulentni. Jelikoz turbulentni ¢len obecné pieva-
7uje nad laminarnim a D ,,, je obtiZné zjistit, je laminarni ¢len vypustén. Sc, je turbulentni
Schmidtovo ¢islo a pokladdme Sc; = 0.7.

K popisu pevné faze ¢astic (zv1asté pak celkovéemu povrchu ¢astic) potifebujeme jesté
popsat pocetni hustotu ¢astic:

J=- (pDi,m + ﬂ) VY.

ancoa 0 Necoal Ucoa, 0 NcoalVeoa
1 + ( 1 l) + ( 1 1)
3t 3x1 8![’2

~0. (7)
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3 ZjednoduSeny model tvorby NOx

Tento model byl vypracovan tak aby priblizné popisoval mnozstvi oxidu dusiku pfi spa-
lovani uhli v kotli. Pfesny mechanismus hoteni uhli je velikce komplikovany a obsahuje
spousty chemickych latek a rovnic, proto je pouzit zjednoduseny model, ktery postihuje
jen nejdulezitejsi reakce a latky jenz maji vliv na kone¢nou koncentraci oxdiu dusiku ve
spalinach.

V naprosté vétsiné pripadii zna¢enim NOx rozumime skupinu oxidu dusnatého (NO)
a oxidu dusi¢itého (NOs). Tyto plyny silné znecistuji zivotni prostiedi a podileji se na
vzniku kyselych destu. Jsou znamy dvé hlavni cesty jak mohou p¥i spalovani NOxy vzni-
kat. Prvni jsou znamy pod nazvem Termdlni NOzxy nebo Zeldovicovy NOxy a vznikaji oxi-
daci atmosférického dusiku pfi vysokych teplotach. Druhé jsou nazyvany Palivové NOzy,
povstavajici pti spalovani paliva, které samo o sobé obsahuje dusik vazany v palivu. Po-
kud se dafi drzet teploty v kotli na hladinadch nizSich nez jsou potiebné pro zahajeni
reakci, pti kterych vznikaji Termélni NOxy, jsou Palivové NOxy hlavnim zdrojem imisi
oxidu dusik.

Jsou znamy i dal$i mechanismy vzniku NOxu (Promptni NOz (Fenimore) nebo me-
chanismus s oxidem dusnym jako meziproduktem). P¥ispevek téchto mechanizmu je v
pripadé spalovani uhli za norméalnich podminek zanedbatelny a nebyl v modelu uvazo-
Van.

3.1 Termalni NO

Mechanismus vzniku termalnich NOxt funguje pouze pii vysokych teplotach (okolo 1800K)
a je popsan tfemi reakénimi rovnicemi poprvé zveiejnénymi Zeldovicem [5] a rozsifenych
Bowmanem [6]

O+N, < N+NO
N+0, <2, 0+NO
N+OH <%, H+NO

Tyto rovnice mohou béZet obéma sméry a jejich rychlostni konstanty jsou z databaze [7].

K vypocétu koncentrace NO musime znat koncentraci radikali O, OH a N o kterém
pro zjednoduseni predpokladame, 7e je ve kvazistabilnim stavu. Ve skutecnosti je formace
N limitujicim faktorem produkce termalnich NOxu, diky velmi vysoké aktivacni energii
molekuly dusiku (za v8e muze trojné vazba mezi atomy dusiku). Tedy zména koncentrace
NO je popsana rovnici

d[NOJ 1 - fikalol
— 2k - [0] - [N,] - — Rl O

k3 [O2)+k7 [OH]

Za jistych podminek se molekula kysliku §tépi a rekombinuje cyklicky.

0, &% 0+ 0,
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coz vyjadiuje nasledujici stav ¢astec¢né rovnovahy
0] = K, -[0o] -T2,
Pro radikdl OH méame podobnou ¢astecnou rovnovahu
O+ H,0 &% OH+ OH
s priblizenim
[OH] = Ky -[0]'” - [H,0]"* - 7077,

Rovnovazné konstanty K7 a K5 jsou

T
—4
K, = 2.129-102-exp( 75;95).

—27123
K, = 36.64exp (7> ,

3.2 Palivovy NO

Analyza slozeni uhli ukazuje, 7e dusikaté latky jsou v ném vice ¢ méné zastoupeny, ob-
vykle az do desitkek hmotnostnich procent. Pokud je uhli zahtivano, tyto latky prechazeji
v jisté meziprodukty a nésledné na NO. Samo uhli je tedy vyznamnym zdrojem oxidu
dusiku. Pokud je ¢astice uhli zahtivana, predpokladame, ze dusikaté slouceniny se rozdeéli
mezi pevnou a tékavou ¢ast. Mnoho praci bez opodstatnéni uvadi, 7e polovina vazaného
dusiku ptejde do pevné c¢asti a polovina do tékavé. Jelikoz k tomu neni zadny duvod,
zavadime parametr «, ktery popisuje distribuci vazaného dusiku mezi pevnou a tékavou
¢ast.

N o N
Myop = O My,
N o N
Mchar = (]' - Oé) * Mot

kde o €< 0,1 >, ml_ je celkové mnoZstvi vazané¢ho dusiku, mY | je mnozstvi dusiku v
o P N P
tekavé casti a mg,, v pevné Casti.

Jak jiz bylo zminéno, dusik piechazi v imise skrze meziprodukty, kterymi jsou obvykle
amoniak NHj a kyanovodik HCN.

Dale je t¥eba rozlisit ¢tyfi ruzné reakéni cesty (viz [9, 10]). Aby proces tvorby imisi
mohl byt co nejvice komplexni je nutné zavést t¥i dalsi parametry (podobné «a):

e (3 je distribuce mY, mezi HCN a NHj.
e 7 je distribuce m{.y mezi prvni a druhou reakéni cestou.

e ) je distribuce mﬁHB mezi tieti a ¢tvrtou reakéni cestou.

e 3, v, 6 €(0,1).
Napiiklad, mnozstvi dusiku v pevné ¢asti vstupujici do druhé reakéni cesty, mizeme
napsat jako
ng,char = m‘lc\cit ' ﬁ ’ (1 - 7) ’ (1 - Oé).
Pét obecnych reakci popisujicich vznik anebo zédnik NO bylo pouzito pii modelovani
spalovani.
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3.2.1 NO, HCN, NH; reakce
Vzhledem k [11], rychlostni konstanty reakci

R1

NHs + 0, 2 NO+ ...
HCN +NO % Ny + ...

NH; + NO 24 Ny + ...

jsou dany rovnicemi

Rl =1.0- 1010 : XHCN . ng - exp

Ry = —3.0-10" - Xgen - Xno - exp

Ry =—1.8-10° - Xyp, - Xxo - €xp

—16111.0
R2 =4.0- 106 : XNH3 . ng - exp (7) s

kde X je molarni zlomek a a fad reakce kysliku.

3.2.2 Heterogeni redukce NO na pevné ¢asti
Na pevné ¢asti dochazi k néasledujicimu adsorbénimu procesu

Char + NO %, Ny, + ...

Levy [12] u7il povrch port v pevné ¢asti (BET) k vyjadieni zaniku NO

NO
Sads = ks cs - Arr - Mo - PNOS

kde ks = 2.27-1073 - exp (%) je rychlostni konstanta, SN2 je zdrojovy ¢len NO, ¢,
je koncentrace castic, Aggr je plocha poru a pyo je parcialni tlak NO.

Celkovy zdrojovy ¢len pro NO, ktery vznikne sumaci vSech zdrojovych ¢lent uvede-
nych vyse, je posléze pouzit v transportni rovnici, stejné tak pro ostatni latky. Déle je
predpokladano, 7e dusik jak z tékavé tak pevné c¢asti prechazi na meziprodukty rychle a

bezezbytku.

4 Numerické reSeni

K numerickému teSeni rovnic byla pouzita metoda kone¢nych objemu. Na levé a pravé
strany v rovnicich (1), (2), (3), (4), (5), (6), (7), byla aplikovina metoda ,advection
upstream splitting® (viz [2|) k aproximaci toki a metoda dualnich objemu k aproximaci
druhych derivaci. Detailni popis fe§ice lze nalézt v [4].
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5 Vysledky simulaci

Nyni jsou uvedeny vysledky simulaci spalovani v kotli, spolu s porovndnim dvou modelii.
Hlavni rozdil mezi prvnim a druhym modelem je vylepseni fyzikalni ¢asti(termofyzikalni
konstanty nahrazeny funkcemi) a dikladnéj$i model turbulence (pfidany nékteré dalsi
¢leny, obvykle zanedbavané). Hlavni rozdil je ovSem ve vypoctu celé spalovaci komory
(druhy model) a ne jen jeji poloviny (prvni model), coZ se projevi v symetrii FeSeni.
Teplotni profily a vystupni koncentrace oxidu dusiku se viceméné shoduji z hodnotami
namérenymi v otrokovické teplarné. Ve vSech pripadech je v provozu 8 horaku, tj. 4 na
kazdé sténé kotle.

&%
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Obrazek 2: Teplotni profil  tok spalin: 18 kg/s, prvni model
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Obrézek 3: Teplotni profil — tok spalin: 28 kg/s, prvni model
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Obrazek 4: NOx profil  tok spalin: 48 kg/s, prvni model
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Pseudocolor
Var: data/temperature
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Obrézek 5: Teplotni profil — mnozstvi paliva: 5.63 kgf/s, druhy model
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Obrazek 6: Teplotni profil  mnozstvi paliva : 5.63 kg/s, druhy model
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Obrazek 7: NOx profil  mnozstvi paliva : 5.63 kg/s, druhy model

Obrazek 8: Proudnice — mnozstvi paliva : 5.63 kg/s, druhy model
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6 Shrnuti

Byl vytvoren matematicky model, ktery aproximuje slozité procesy hoteni v prumyslovém
kotli. Tento model se ukazal byti pfijatelny jak z hlediska vypocetniho tak fyzikalniho.
Jako dalsi, bude snaha pouziti stavajiciho modelu k vypoc¢tu mnohem komplikovanéjsiho
fluidniho kotle s dvojim druhem paliva a cirkulaci materialu.
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Abstract. Classifier combining is a succesful method for improving the quality of classification.
In this paper, we introduce the concept of confidence of classification and define two confidence
measures  the local accuracy and the local diversity. We propose algorithms for classifier ag-
gregation which utilize the concept of confidence. We then compare the performance of these
algorithms with several state-of-the-art classifier combining techniques. Results of these bench-
mark tests show that by incorporating confidence into classifier aggregation algorithms, the
state-of-the-art methods can be improved.

Abstrakt. Kombinovani klasifikitori je ispésna metoda pro zvySeni kvality klasifikace. V tomto
¢lanku zavedeme koncept spolehlivosti klasifikace a definujeme dvé miry spolehlivosti klasifikace
lokalni presnost a lokalni diverzitu. Vytvofime algoritmy pro agregaci klasifikitort, které
vyuzivaji koncept spolehlivosti klasifikace. Poté porovname tyto algoritmy s né€kolika standardné
pouzivanymi p¥istupy ke kombinovani klasifikitori. Vysledky téchto testii ukazuji, ze standardni
algoritmy pro agregaci klasifikatortu se daji zavedenim spolehlivosti klasifikace vylepsit.

1 Introduction

Classifier combining is a succesful method for improving the quality of classification, based
on using many classifiers and combining their outputs, instead of using just one classifier.
The literature shows that a team of multiple classifiers can perform the classification task
better than any of the individual classifiers. However, to achieve this, the classifier outputs
have to be combined wisely. For this purpose, many methods have been introduced in
the literature. These can be grouped into classifier selection and classifier aggregation.

In classifier selection, some rule is used to determine which classifier to use for the
current pattern; only this “expert” classifier is then used for the final prediction, and the
rest of the team is discarded. In classifier aggregation, outputs of all the classifiers are
aggregated into the final decision.

Common drawback of classifier aggregation methods is that they are global, i.e., they
do not adapt themselves to the particular patterns to classify. In other words, the com-
bination is specified during a training phase, prior to classifying a test pattern. A typical
example is that if we use the weighted mean aggregation rule, the weights of the indi-
vidual classifiers are usually based on the classifiers’ accuracies. Although it is true that

*The research reported in this paper was partially supported by the Program “Information Society”
under project 1IET100300517.
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if a classifier has high accuracy, its weight should be higher, still, for the curent pattern,
some other classifier could be more suitable.

While classifier selection methods use some techniques to determine which classifier
is locally better than the others, such algorithms select only one classifier, discarding
much potentialy useful information, thus reducing the robustness compared to classifier
aggregation.

In this paper, we try to incorporate the strong points of classifier selection techniques
into classifier aggregation methods. This will enable us to create novel methods for
classifier aggregation, which can provide better results than state-of-the-art methods for
classifier combining.

We introduce the concept of confidence of classification, which can be used both as a
criterium for classifier selection, and for improving classifier aggregation. We define two
confidence measures, and propose algorithms for classifier aggregation which utilize the
concept of confidence. We then show that these algorithms outperform commonly used
methods for classifier combining on three benchmark datasets.

The paper is structured as follows: Section 2 deals with basic aspects of classifier
combining, namely Section 2.1 contains reference to the literature about ensemble meth-
ods, Sections 2.2 and 2.3 describe the differences between classifier selection and classifier
aggregation. Section 3 introduces the concept of confidence of classification. Section 4
contains experiments Section 4.1 describes algorithms used in the experiments, and in
Section 4.2, the results of the experiments are discussed. Finally, Section 5 then summa-
rizes the paper.

2 Classifier Combining

Throughout the rest of the paper, we use the following notation. Let X C R”™ be a
n-dimensional feature space, an element ¥ € X of this space is called pattern, and let
Ci,...,Cy C X be disjoint sets called classes. The goal of classification is to determine
to which class a given pattern belongs. We call a classifier any mapping ¢ from the
following:

o possibilistic classifier — ¢ : X — [0, 1], where ¢(Z) = (uy,. .., un) are degrees of
classification to each class.

e normalized possibilistic classifier — ¢ : X — [0,1], where ¢(Z) = (1, ..., pn),

doipi = 1.

o crisp classifier — ¢ : X — {1,..., N}, where ¢(Z) is the predicted class label of
pattern Z. Crisp classifier can also be defined as a special case of a normalized
possibilistic classifier, such that one degree of membership is equal to 1, and the
others are equal to 0.

Normalized possibilistic classifiers are sometimes called probabilistic [11]. However,
they do not need to be based on probablility theory, so we will call them normalized
possibilistic. Other types of classifiers, such as rank classifier [13|, can be defined, but we
deal with crisp and possibilistic classifiers only in the rest of the paper. The conversion
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of a possibilistic classifier ¢, to a crisp classifier ¢, is called hardening:

¢c(T) = arg maXi:l,...,N{:U’i}? (1)

where ¢,(Z) = (g1, ..., pin).
In classifier combining, we create a team of classifiers, let each of the classifiers predict

independently, and then combine the classifiers’ outputs into one final prediction. This
combined classifier can perform its classification task better than any of the individual
classifiers in the team. Methods which use more or less this idea can be found under many
names in the literature  classifier combining, classifier aggregation, classifier fusion,
classifier selection, mixture of experts, classifier ensembles, etc. Basically, there are two
main approaches to classifier combining;:

e classifier selection, where we use some rule to determine which classifier to use for
the current pattern; only this “expert” classifier is then used for the final prediction

e classifier aggregation, where all the classifiers in the team are used for the final
decision

Classifier combining consists of two steps — first, we create a team of classifiers, and
then we adopt some strategy to combine the classifiers’ outputs into the final decision.
The former step is common for both classifier selection and aggregation (algorithms for
creating a team of classifiers are descibed in Sec. 2.1), while for the latter step, different
algorithms are needed (these are described in Sec. 2.2 and 2.3).

2.1 Ensemble Methods

If the team of classifiers consists only of classifiers of the same type, which differ only in
their parameters, dimensionality, or training sets, the team is usually called an ensemble
of classifiers. That is why the methods which create a team of classifiers are sometimes
called ensemble methods. The restriction to classifiers of the same type is not essential,
but it ensures that the outputs of the classifiers are consistent.

Well-known methods for ensemble creation are bagging [4|, boosting |7|, error correc-
tion codes [10|, or multiple feature subset (MFS) methods [3]. These methods try to
create an ensemble of classifiers which are both accurate and diverse.

2.2 Classtifier Selection

Crisp classifiers are not much appropriate for classifier combining, because they do not
provide information about degree of classification to each class. For these classifiers, only
simple techniques like voting or single best selection can be used. That’s the reason why
we restrict to possibilistic classifiers in this paper. In the rest of the paper, we suppose
that we have constructed an ensemble (¢, ..., ¢,) of r possibilistic classifiers using some
of the methods described in Sec. 2.1.

Classifier selection algorithms [15, 2, 14| use some criterion to determine which classi-
fier is most suitable for the current pattern, and the output of this classifier is taken as the
final result. The criterion for selection can be some global property of the ensemble, as in
single best selection (SBS), or some local property, as in dynamic best selection (DBS).
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In SBS, the criterion for selection is usually the validation error rate of the individual
classifiers. The classifier with the lowest validation error rate is used for prediction of all
the patterns (i.e. the other classifiers are entirely discarded). In DBS, the classifier opti-
mizing some local criterion (for example local accuracy of the classifier in neighborhood
of the current pattern) is selected for the prediction.

2.3 Classifier Aggregation

For classifier aggregation, the output of the ensemble (¢4, ..., ¢,) for input pattern & can
be structured to a r x N matrix, called decision profile (DP):

b1 (f) M1 H12 .. HIN
DP(f) _ </52.( ) _ a1 22 . Mo, N (2)
¢r (f) ,Ur,l ,UT,Q cee ,UT,N

The i—th row of DP(¥) is an output of the corresponding classifier ¢;, and the j—th
column contains the degrees of classification of & to the corresponding class C; given by
all the classifiers.

Many methods for aggregating the ensemble of classifiers into one final classifier have
been reported in the literature. A good overview of the commonly used aggregation
methods can be found in [11|. These methods comprise simple arithmetic rules (sum,
product, maximum, minimum, average, weighted average, see [11, 8|), fuzzy integral
[11, 9|, Dempster-Shafer fusion |11, 1|, second-level classifiers |11], decision templates
[11], and many others.

In this paper, we introduce the concept of confidence of classification, which can be
used both as a criterion for classifier selection, and for improving classifier aggregation.
The concept of confidence is described in the next section.

3 Confidence Classifiers

The classifiers defined in Sec. 2 (both crisp and possibilistic) give us information about
the evidence of classification (i.e., degrees of classification) of the current pattern Z. This
is all we need to know if we are classifying patterns using a single classifier. However, in
classifier combining, we have a team of classifiers, and the information about “how can
we trust the output of classifier ¢;” could be very useful. For this purpose, we introduce
a concept of confidence of classification.

The concept of confidence is not new to classifier combining in classifier selection,
the criteria for selection can be viewed as some confidence measures. In weighted mean
classifier aggregation, the individual classifiers’ error rates (which can again be viewed
as some confidence measure) are used to adapt the weights of the individual classifiers
etc. In this paper, we try to generalize different methods which use this approach, and
incorporate all of them into the concept of confidence. This enables us to create general
algorithms for classifier aggregation, which use some properties of classifier selection,
improving both classifier aggregation and classifier selection. This is what makes the
approach novel.
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Suppose we have a classifier ¢, and a pattern @ to classify. The confidence of classifi-
cation of the pattern # using classifier ¢ is a real number in the unit interval [0, 1], and
we model it by a mapping kg : X — [0,1]. The mapping ks will be called confidence
measure, and the tuple (¢, ky) will be called confidence classifier.

The confidence of classification k,(Z) can be any property estimating the degree to
which we can trust the output of ¢ for current pattern Z. In this paper, we will use the
following two confidence measures:

e [ocal accuracy with parameter & LA(k)
LA(k) is commonly used criterion for classifier selection [14]. The confidence of
classification of ¥ using ¢ is defined as the estimate of local accuracy of ¢ near 7.
Let Ni(Z) denote the set of k nearest neighbors from the training (or validation)
set, closest to # under Euclidean metric. Then x.*®) (%) is defined as the ratio of
the number of patterns from N () classified correctly by ¢, to the number of all

patterns from N (7).

e [ocal diversity with parameter k  LD(k)
Diversity of an ensemble is a measure indicating how different are the classifiers in
the ensemble. If the diversity of an ensemble is too low, classifier combining fails to
improve the classification. Several methods for measuring diversity of an ensemble
have been proposed in the literature, see for example [12], but none of these is
generally accepted.

For our experiments, we used the double-fault diversity measure |12|, computed on
neighbors of pattern . The double-fault diversity measure expresses the similarity
of the classifiers’ misclassifications. Let ¢;, ¢, be two different classifiers from the
ensemble (¢1,...,¢,), and let N(Z) be the set of k nearest neighbors from the
training (or validation) set, closest to ¥ under Euclidean metric. Then we define
DF;; as the ratio of the number of patterns from N (Z) classified incorrectly by
both classifiers ¢; and ¢; (so-called double-faults), to the number of all patterns
from Ny (Z). DF;; varies from 0 (no double-faults) to 1 (both classifiers misclassify
all the patterns), and holds information about some degree of similarity of the
two classifiers. Let DF; = ﬁ 22:1;#1‘ DF;; be the average of DF;;. The lower the
DF;, the higher the confidence of classification, therefore we define the confidence of
classification of # using the ¢—th classifier from the ensemble as mé?(k) () =1-DF;.

Of course, instead of the local accuracy, any other measure of quality of classification
could be used (precision, sensitivity, etc.), and for local diversity, any other diversity
measure could be used (Q-statistics, entropy-based diversity measures, etc.).

State-of-the-art methods for classifier combining do not use both evidence and con-
fidence of classification heavily. In classifier selection, confidence is used to select a
classifier, and the evidence of other classifiers is discarded. Simple algorithms for clas-
sifier aggregation (mean value, product, maximum, minimum, etc.) use the evidence of
classification only, and they disregard the confidence. Advanced classifier aggregation
methods (weighted mean, fuzzy integral, etc.) incorporate confidence into aggregation,
but only global confidence measures (i.e., measures independent on the current pattern,
e.g. based on validation accuracy of the classifiers) are commonly used.
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However, by incorporating local confidence measures (like LA or LD) into algorithms
for classifier aggregation, performance of the algorithms could be improved. To show this,
we modify state-of-the-art methods for classifier aggregation, so that they use the confi-
dence of classification, and study the resulting methods’ performances on three datasets
the Phoneme, Balance, and Satimage datasets. The details are given in the next section.

4 Experiments

To show that the concept of confidence of classification can improve state-of-the-art meth-
ods for classifier combining, we developed simple algorithms for classifier aggregation
(Weighted Mean Value using Confidence, Filtered Mean Value, Filtered Weighted Mean
Value), and compared them to other methods (Mean Value, Weighted Mean Value, Dy-
namic Best Selection), on three datasets from the UCI repository |5] — the Phoneme,
Balance, and Satimage datasets.

The algorithms used in the experiments are described in the next section.

4.1 Algorithm Description

Let (¢1,...,,) be a team of classifiers, (2) the output of the team for a pattern Z. For
combining the outputs of the individual classifiers, we used the following algorithms:

1. Dynamic Best Selection — DBS
DBS is a classifier selection algorithm. From the team (¢1,...,d,), the classifier
with the maximal confidence k,,,, is selected for prediction. If there is more than
one classifier with confidence K,,.,, a random one among them is selected.

2. Mean Value MV
MV is a classifier aggregation method. MV computes mean value of degree of
classification to each class, i.e. the aggregated degree of classification to class C}
is defined as the average of the degrees of classification to class C; through all the
classifiers in the team:

1 T
= > i (3)
=1

3. Weighted Mean Value — WMV
WMV computes weighted mean of the degrees of classification to class C; through
all the classifiers in the team:

- D iy Willij (4)
’ D i Wi
The weights wy,...,w, are defined as training accuracies of the classifiers in the
team.

4. Weighted Mean Value using Confidence WMVC
WMVC is a modification of WMV the difference being that the weights wy, ..., w,
are not training accuracies of the classifiers, but the confidences of classifications
instead, i.e. w; = Ky, (7).
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5. Filtered Mean Value — FMV
FMV is a modification of MV, the difference being that prior to computing the
mean value, classifiers with confidence of classification of the current pattern lower
than some threshold T are discarded. If T" = 0, FMV coincides with MV. If there
are no classifiers with confidence higher than 7' (i.e., all the classifiers would be
discarded), T is lowered to the value of maximal confidence in the team.

6. Filtered Weighted Mean Value — FWMV
FWMYV is a modification of WMV, such that prior to computing the weighted mean,
classifiers with confidence lower than T are discarded in the same way as in FMV.

In addition to the methods above, the data was classified by the single, non-combined
classifier (for comparing the benefits of classifier combining)  this classifier will be de-
noted NC, and will be used as a reference classifier.

4.2 Experimental Results

For the experiments, we used an ensemble of classifiers (¢4, ..., ¢,), constructed using the
Multiple Feature Subset method, i.e., we created classifiers with all possible combinations
of features (all 1-D classifiers, all 2-D classifers, etc.). The ensemble (¢, ..., ¢,) consisted
of Bayesian classifiers [6].

The combination of the ensemble was done using the algorithms described in the
previous section. As confidence measures for WMVC, FMV, and FWMV, we used LA(20)
and LD(20). The value of the threshold 7" for FMV and FWMV was set experimentally.
All the algorithms were implemented using the Java programming language. The results
of the testing are shown in Fig. 1-3. We measured mean error rate and standard deviation
of error rate from 10-fold crossvalidation.

The best results were obtained for the Phoneme dataset for this dataset, the algo-
rithms which used the confidence of classification (WMVC, FMV, FWMV, DBS) shown
dramatic improvement to the other combination strategies (MV, WMV). The local ac-
curacy confidence measure shown better performance than the local diversity confidence
measure.

For the Balance dataset, the MV, WMV, and WMVC algorithms were worse than
the NC classifier — suggesting that the ensemble of classifiers was designed poorly. Still,
the FMV and FWMYV show slight improvement to the NC classifier, particularly for the
local diversity confidence measure — however, this improvement is small, and (due to high
standard deviation) probably insignificant.

In the case of the Satimage dataset, the classification was improved best by the FMV
and FWMYV algorithms using the local accuracy diversity measure. For the local diversity
confidence measure, the results were comparable to the NC classifier, except for the DBS
algorithm, which performed worse than the NC classifier.

In general, we can summarize the that the FMV and FWMYV algorithms shown best
performance. The DBS selection algorithm performed well most of the time, but it is quite
unstable  for the Phoneme and Satimage datasets, when the local accuracy confidence
measure was replaced by the local diversity confidence measure, the performance of DBS
fell rapidly, while the results for FMV and FWMYV were still comparable. This is due to
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Figure 1: Mean + standard deviation of the test error rate for the Phoneme dataset.
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Figure 2: Mean + standard deviation of the test error for the Balance dataset.

the fact that DBS selects just one classifier, while for the classifier aggregation algorithms,
the output is a consensus of several classifiers.

When we compare the two confidence measures (local accuracy and local diversity
using the double-fault diversity measure), we can roughly say that the local accuracy
measure gives better results. In addition, the time complexity of computing the diversity
of an ensemble is higher than computing the accuracy of a single classifier. These facts
and figures favorize the local accuracy measure.

5 Summary

In this paper, we introduced the concept of confidence of classification, which can be
used both as a criterium for classifier selection, and for modifying classifier aggregation
methods. We defined two confidence measures (the local accuracy and the local diver-
sity), and introduced simple algorithms for classifier aggregation which use the concept
of confidence of classification the Filtered Mean Value, Filtered Weighted Mean Value,
and Weighted Mean Value using Confidence algorithms. Experimental results showed
that even such simple modifications of state-of-the-art classifier aggregation algorithms
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Figure 3: Mean + standard deviation of the test error rate for the Satimage dataset.

can yield improvements in the classification.

Moreover, the concept of confidence of classification can be incorporated into many
classifier combining techniques, possibly resulting in very successful methods. In addition,
other confidence measures than those reported in this article can be used to further
improve the algorithms. Apart from general confidence measures, based on common
attributes of classifiers (like accuracy, diversity, etc.), measures which consider the specific
type of the classifier (e.g. confidence based on the sum of distances to neighbors of the
current pattern for k-NN classifiers) could be developed. These issues are topics of our
future research.

References

[1] M. R. Ahmadzadeh and M. Petrou. Use of Dempster-Shafer theory to combine
classifiers which use different class boundaries. Pattern Anal. Appl. 6 (2003), 41 46.

[2] M. Aksela. Comparison of classifier selection methods for improving committee
performance. In 'Multiple Classifier Systems’, 84 93, (2003).

[3] S. D. Bay. Nearest neighbor classification from multiple feature subsets. Intelligent
Data Analysis 3 (1999), 191-209.

[4] L. Breiman. Bagging predictors. Machine Learning 24 (1996), 123-140.

[5] C. B. D.J. Newman, S. Hettich and C. Merz. UCT repository of machine learning
databases, (1998). www.ics.uci.edu/~mlearn/MLRepository.html.

[6] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification (2nd Edition).
Wiley-Interscience, (2000).

[7] Y. Freund and R. E. Schapire. Experiments with a new boosting algorithm. In
‘International Conference on Machine Learning’, 148-156, (1996).



210 D. Stefka

[8] J. Kittler, M. Hatef, R. P. W. Duin, and J. Matas. On combining classifiers. IEEE
Trans. Pattern Anal. Mach. Intell. 20 (1998), 226-239.

[9] L. I. Kuncheva. Fuzzy versus nonfuzzy in combining classifiers designed by boosting.
[EEE Transactions on Fuzzy Systems 11 (2003), 729-741.

[10] L. I. Kuncheva. Using diversity measures for generating error-correcting output codes
in classifier ensembles. Pattern Recogn. Lett. 26 (2005), 83-90.

[11] L. I. Kuncheva, J. C. Bezdek, and R. P. W. Duin. Decision templates for multiple
classifier fusion: an experimental comparison. Pattern Recognition 34 (2001), 299—
314.

[12] L. I. Kuncheva and C. J. Whitaker. Measures of diversity in classifier ensembles.
Machine Learning 51 (2003), 181-207.

[13] O. Melnik, Y. Vardi, and C.-H. Zhang. Mized group ranks: Preference and confidence
in classifier combination. IEEE Trans. Pattern Anal. Mach. Intell. 26 (2004), 973
981.

[14] K. Woods, J. W. Philip Kegelmeyer, and K. Bowyer. Combination of multiple clas-
sifiers using local accuracy estimates. IEEE Trans. Pattern Anal. Mach. Intell. 19
(1997), 405-410.

[15] X. Zhu, X. Wu, and Y. Yang. Dynamic classifier selection for effective mining from
noisy data streams. In 'ICDM ’04: Proceedings of the Fourth IEEE International
Conference on Data Mining (ICDM’04)’, 305-312, Washington, DC, USA, (2004).
IEEE Computer Society.



Vznik vlastnich hodnot jako nasledek lokalni
perturbace periodického kvantového grafu

Ondrtej Turek

2. ro¢nik PGS, email: tureko1@kml.fjfi.cvut.cz

Katedra matematiky, Fakulta jaderna a fyzikalné inzenyrska, CVUT
skolitel: Pavel Exner, Ustav jaderné fyziky, AV CR,,

Pierre Duclos, Université du Sud, Toulon — Var

Abstract. We will determine the spectrum of the Hamiltonian of an infinite periodic quantum
graph formed by joined circles with §-couplings with a general parameter o € R in the points
of contact. We will show that the Hamiltonian of such system has a band spectrum. After that,
we will consider a bending deformation of the chain and examine its influence on the spectrum.
It will be shown that as a result new eigenvalues appear in the spectral gaps. We will describe
these eigenvalues and determine their number.

Abstrakt. Obsahem préce je vySetfeni spektra hamiltonidnu nekonetného periodického kvanto-
vého grafu tvofeného navzajem se dotykajicimi kruhy s §-vazbami s obecnym parametrem o € R
v mistech dotyku. Nejprve ukdzeme, 7ze hamiltonidn takového systému ma pasové spektrum. Poté
uvazime tvarovou deformaci spocivajici v ohybu fetizku a vySetiime jeji vliv na spektrum. Uka-
zeme, 7e disledkem je vznik vlastnich hodnot ve spektralnich mezerach, tyto vlastni hodnoty
popiSeme a urcime jejich pocet.

1 Uvod

Pod pojmem kvantovyj graf rozumime uspoiadanou dvojici (I', H), kde T' je metricky graf
(neorientovany graf s metrikou) a H je hamiltonian na I, tj. samosdruzeny diferencialni
operator 2.fadu pusobici na funkce na hranach grafu jako zaporné vzata druhé derivace
(viz [3|). Tyto matematické objekty slouzi jako pfirozené modely pro grafim podobné
struktury o rozmérech v fadu nanometru vytvorené 7 ruznych materiali, ¢asto polovo-
dic¢i. Technologicky pokrok v poslednich dekddach, jenz umoznil vyrobu mikroskopickych
struktur tohoto typu a tim jejich praktickou vyuzitelnost, oteviel teorii kvantovych grafi
siroké aplika¢ni moznosti. Proto byl koncem osmdesatych let minulého stoleti v této
oblasti zahajen intenzivnéjsi vyzkum, ve kterém matematicka fyzika pokracuje dodnes.
Stéle se vsak jedna o relativné novou teorii s mnoha nezodpovézenymi otazkami. Jednim
7 problému, ktery dosud neni obecné vyfteSen, je otazka, jak se obecné projevuje lokalni
perturbace periodického kvantového grafu na jeho spektru. Panuje pfesvédcéeni, ze di-
sledkem je vzdy vznik vlastnich hodnot, ale ditkaz tohoto tvrzeni nebyl dosud ptedlozen,
stejné tak zatim nikdo nenalezl protiptiklad. K hlubsimu porozuméni problému a k obje-
veni cesty, jak jej obecné vyfeSit, mize napomoci studium konkrétnich ptikladu. Snahou
tedy je prozkoumat vliv lokalnich perturbaci na spektrum v nékolika modelech a pokusit
se vypozorovat spole¢né rysy zmén, ke kterym ve spektru doslo.

Tato prace si klade za cil prispét k hledani odpovédi konkrétnim ptikladem. Jedné se
o nekonecny ftetizek tvoreny vzajemné se dotykajicimi krouzky o jednotkovém poloméru
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s d-vazbami v mistech dotyku krouzku (viz obr. 1). Pfipomefime na tomto misté, ze -
vazbou ve vrcholu kvantového grafu se rozumi vazba vyjadiend néasledujicimi okrajovymi
podminkami:

$;(0) = ¥(0) = (0), j.ken, ng<0>=aw<0>,

kde n = {1,2,...,n} je mnozina indexi hran vychéazejicich z uvazovaného vrcholu a
a € RU {+00} je tzv. parametr vazby.

Obréazek 1: Neperturbovany graf

Nejprve nalezneme spektrum hamiltonianu volné bezspinové ¢astice na uvazovaném
nekonecném ftetizku, a poté uvazime perturbaci spocivajici v ohybu fetizku v jednom
misté (rovinnost grafu zustane zachovana) o uhel ¥, viz obrazek 2. U perturbovaného
grafu vySetfime spektrum hamiltonianu a popiSeme jeho vztah ke spektru piivodniho
systému.

Obréazek 2: Perturbovany systém

2 Spektrum nekonecéného periodického systému

Pivodni, neperturbovany kvantovy graf je periodickym systémem, proto k vypoctu jeho
spektra vyuzijeme metodu Floquetova rozkladu (viz [4]). Uvazujme jednu elementarni
buniku (viz obr. 3) s vlnovymi funkcemi oznacenymi zptisobem naznacenym na obrazku.
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7 v,

®4 ®,

Obréazek 3: Elementarni bunka periodického systému

Predpokladejme, 7e ¢astice na grafu mé energii £/. Protoze vlastni funkce musi byt v
takovém piipadé linearni kombinaci funkci ¢iVEe 3 ¢=VEZ Piitom neni podstatné, zda je

energie nezaporna, anebo zaporna: pro E = —k? (k > 0) staéi polozit VE = ix. Mame
tedy
Pi(z) = Cf VP 4 Cre VB e [—m/2,0)
Uy(z) = Cf VP 4+ Ce! Ew, z € (0,7/2] )
p1(x) = D+ WEBr L Dre VB g e [—7/2,0]

po(z) = D;el‘/_x + Dye VBT € 0,7/2]
V misté dotyku krouzku je predepsana d-vazba s parametrem «, tj.
1(0) = ¥2(0) = 91(0) = ¢2(0)
—11(0) + ¥5(0) — ¢1(0) + ¢5(0) = o - ¥1(0)

K pouziti Floquetova rozkladu predpokladejme, 7e vinové funkce splhuji nasledujici pod-
minky:

<
[}
—~
3
\
S
~—
I

efyn(=m/2)  Wy(r/2) = M (-7/2)
efoi(=m/2)  h(m/2) = e (—7/2)
pro n&jaké (libovolné) k € [0, 27).

Po vyuziti piedpisu (1) a tpravach obdrzime rovnosti

C;»r-sin\/EW:D;f-sin\/Eﬂ, C: -sin\/EW:D; -sinVET,

J

z nichz plyne, Ze pro VE ¢ Ny je CJr C a DJr D . Povazujme nyni tento predpoklad

za splnény s tim, 7e singularni pfipad \/_ E e No Vysetrlme nakonec.
Po eliminaci dalsich proménnych dojdeme k rovnici druhého stupné pro e

ek el <2 cos VET + sin \/Eﬂ') +1=0, (2)

1k

o
2V E
kterd ma realné koeficienty a jejiz diskriminant je urcen vyrazem

2
= (2 CoS \/ETF + sin \/E?T) —4

@]
WE
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Ukolem je uréit, pro jaké hodnoty E existuje k € 0,27) takové, aby byla splnéna rov-
nice (2), neboli pro jaké £ ma (2) jakozto rovnice o neznamé e?* alespoii jeden koten o
absolutni hodnoté 1. Pov§imnéme si, 7e sou¢in kazdé dvojice kofentu (2), bez ohledu na
hodnotu v/E, je vidy roven 1, nebot jsou si rovny koeficienty u kvadratického a linearniho
¢lenu. To ovSem znamend, Ze budto jsou oba kofeny komplexni jednotky, anebo ma jeden
z nich absolutni hodnotu vétsi nez jedna, zatimco druhy mensi nez jedna. Je zfejmé, ze
kladny diskriminant odpovid& prvni situaci a nekladny té druhé. Dostavame tak zaveér:

Véta 1. Je-li E> 0 a VE ¢ Ny, pak VE € o(H) prdve tehdy, je-li splnéna podminka

sin VE® -

7B <1. (3)

cosx/Ew—i—%-

Vratme se jesté k situaci, kdy V'E € Ny. Jak si lze lehce predstavit, lze zkonstruovat
funkci s nosi¢em na pouhém jednom krouzku tak, aby byla vlastni funkci hamiltonianu:
staci zvolit na horni pilkruznici funkei sin vEx (x € [0,7]) a na dolni pulkruznici funkci
—sinVEz (z € [0,7]). To ovéem znamend, 7e hodnoty n? pro n € Ny patii do bodového
spektra.

Vyslovme charakteristiku spektralnich pasi uré¢enych podminkou (3):

Tvrzeni 2. o Je-li a > 0, pak v kazdém intervalu [n*, (n+1)?] (n € Ny) je pravé jeden
spektrdlni pds, jehoZ levy krajni bod lezi uvnitt tohoto intervalu a pravy krajni bod
splijvd s hodnotou (n + 1),

o je-li o < 0, pak v kazdém intervalu [n?, (n+ 1)%] (n € Ny) je prdvé jeden spektrdlni
pds, jeho? levj krajni bod splyjvd s hodnotou n* a pravy krajni bod leZi uvniti tohoto
intervalu,

o je-li « = 0, pak podminku (3) spliiuje kazdé vV E > 0, tedy ve spektru lezi vSechna
nezdpornd cisla.

Vidime tedy, 7e pravé jeden z krajnich bodu kazdého spektralniho pasu, totiz druha
mocnina celého ¢isla, odpovida vlastni hodnoté hamiltonidnu.

Poznamenejme, Ze podminka (3), jiz jsme obdrzeli, je podobné odpovidajici podmince
z Kronig-Penneyova modelu se vzdalenosti interakci m, jediny rozdil je v koeficientu u
sinu: zde mame ¢, zatimco v K-P modelu § (viz napt. [1]). To znamen4, 7e spektralni
pasy uvazovaného “Fetizku” s d-vazbami s parametrem « maji krajni body stejné jako ty
u K-P modelu se vzdalenosti mezi interakcemi rovnou 7 a parametrem interakce o/2.
Podstatny rozdil mezi obéma modely vSak spoc¢iva v tom, ze K-P model ma prazdné
bodové spektrum.

Vyifesme jesté otazku, jak vypada zaporna ¢ast spektra. Oznaéme vVE = ix pro £ > 0
a s vyuzitim znadmych vztahu pro goniometrické funkce komplexnich argumenti prepisme
nerovnost (3) do podoby

« sinh k7

coshmr—l—z- <1.

K

Pro E < 0 je vzdy sin(\/E) # 0, takze zde odpadd problém, na ktery jsme narazili u
nezapornych energii. Jednoduse lze dokézat nésledujici tvrzeni:
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Tvrzeni 3. o Je-li a > 0, pak zdporné spektrum je prdazdné,

o je-li a € [—8/7,0), pak zdporné spektrum je rovno intervalu [—r?,0], kde ki je
jediné reseni rovnice }cosh KT+ % . %} =1,

o Je-li o < —8/m, pak zdporné spektrum je rovno intervalu [—k?, —k3], kde K12 1501

jedind dvé kladnd reseni ’cosh KT+ - Sth’”’ =1, K1 > Ko.

3 Perturbovany systém

Predpokladejme nyni, 7e ptivodné rovny, nekonecny fetizek v jednom misté modifikujeme
zpiisobem dle obrazku 2. Uhel ohybu ¢ budeme uvazovat libovolny v intervalu (0,7), byt
pro ¥ > 27 /3 je deformace naznacena na obrazku prakticky neproveditelny. Teoretickym
uvaham v8ak nic nebrani, nebot ohyb je mosné ekvivalentné nahradit deformaci nultého
krouzku.

Uvazovanou perturbaci sice systém ztraci puvodni periodicitu, ale stale si zachovava
urc¢itou symetrii, kterd umoznuje vypocet spektra mirné zjednodusit. Vidime, ze pertu-
rbovany systém je symetricky vici ose, kterd je do obrazku 2 zakreslena c¢erchovanou
¢arou. Rozlozime vinovou funkci na soucet dvou funkcei: jedné, ktera je “suda” vuci této
ose, a druhé, ktera je vzhledem k ni “licha”. Hamiltonian systému pak podobnym zpu-
sobem rozlozime na direktni soucet operatoru H*, ktery pisobi na sudou slozku vlnové
funkce, a H~, ktery puisobi na lichou slozku. Spektrum operatoru H = H™ @ H~ je pak
dano jako sjednoceni spekter H a H~.

Vesgkeré slozky vinové funkce (ve smyslu funkce na v8ech hranach grafu) budou dény
jako linearni kombinace funkci eVEz 4 e_i\/E’”, tak jako v pripadé neperturbovaného sys-
tému, je vSak vhodné zavést nové znaceni. Krouzky budeme indexovat celymi ¢isly, pfti-
¢emz zavedeme umluvu, 7e krouzek, jimz prochéazi osa soumérnosti, bude oznacen ¢islem
0. Protoze se budeme zabyvat funkcemi symetrickymi vuci ose, staci studovat situaci na
pravé ¢asti systému, ktera je na obrazku zakreslena vodorovné. Vinovou funkei na kaz-
dém krouzku rozdélime na funkeci na horni pulkruzni-ci a na funkei na dolni pulkruznici
a oznaCime je po fadé 1; a @;, kde j vyjadiuje index krouzku. Mame tedy

Y;(z) = C’;rei‘/ﬁaC + C'j_e_i‘/ﬁx, x € [0, 7]
w;(z) = D;-rei‘/ﬁx + Dj’e’i Er  re 0, 7]

(4)

pro j € N. Je dulezité poznamenat, ze v pripadé j = 0 sice plati stejny predpis, ale
proménné probihaji jiné intervaly, tj.

. . -9
bo(x) = Cf VB 4 Cre VB g e {W 5 ,’/T:|

: : v
wo(z) = D(J{e“/ﬁx + Dye VBT p e [W;L ,’/T:|

Protoze v bodech dotyku jsou piedepsany d-vazby s parametrem «, plati

¥;(0) = ¢;(0) P;(m) = @;(m) (6)
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¥;(0) = ;1 () (7)
P3(0) + @3 (0) — Py (7) — @4 (m) = a - 1;(0) (8)

Dosazenim (4) do (6) a elementérni upravou ziskdme podminky
Ccy -sinVE®T = D;’-sin\/ﬁﬁ a Cf -sinVEm = Dy -sinVET,

takze pro vE ¢ Ny musi platit C’J?L = D;-L a C; = Dy . (Ptipad VE € Ny lze okomen-
tovat obdobné jako v pripadé nekone¢ného linedrniho fetizku a dojit tak k zavéru, ze
druhé mocniny celych ¢isel jsou vlastnimi hodnotami.) VyuZijeme-li dokdzané rovnosti k
tpravé (7) a (8), dostaneme rovnici

iVET 71\/_7r
() Lram)e™ (9)
n - o ivVET o} —ivVE® C
/ THVES <1 - 41\/5) ¢ g1
Y}

platnou pro vsechna j > 2. 7Z ni okamzité plyne, 7Ze pro vSechna j > 2 je

() (%),

odkud vyplyva asymptotické chovani posloupnosti absolutnich hodnot vektori (C’;r, CJ-_)T:
Necht je (C},Cy )7 vlastnim vektorem matice M. Pak plati:

e prislugi-li (C], C;)T vlastnimu ¢islu v absolutni hodnoté mensimu nez 1, pak
H(C;r, CJ_)TH exponencialné kles4,

fislugi-li (CyF, C7)T vlastnimu &slu v absolutni hodnoté men§imu ne7 1, pak
‘((fr CJ_)TH exponencialné roste,

li (Cf,C)T vlastnimu ¢&slu v absolutni hodnoté mensimu ne7 1, pak
_)TH nezavisi na j.

V obou piipadech, jak u operatoru H, tak i H ™, je absolutni hodnota vlnové funkce na j-
tém i (-j)-tém krouzku p¥imo urcéena konstantami C;” a Cj . Ty jsou zase, dle vzorce (10),
dany vektorem (C},C)”. Uvédomime si, ze pokud by rozklad vektoru (Cy,C7)T do
vlastnich podprostori M obsahoval nenulovou slozku prtislusejici vlastnimu ¢islu M s
absolutni hodnotou vétsi nez 1, norma vektoru (C+ o )T by asymptoticky exponencialné
rostla. Je evidentni, ze v ’rakovem piipadé by konqtan’ry C’jE nemohly urc¢ovat vlastni funkci
ani zobecnénou vlastni funkci H, resp. H~

Stejné tak lze nahlédnout, ze sklada-li se vektor (Cf,C7)T jen z vlastnich vektort M
prisluejicich vlastnim ¢islim o absolutni hodnoté mensi nez (resp. nebo rovné) 1, pak je
konstantami C’;—L ur¢ena vlastni (resp. zobecnéna vlastni) funkce, tj. odpovidajici hodnota
E patii do bodového (resp. spojitého) spektra.

U obou operatorit H™ i H™ nejprve uré¢ime, jak vypada vektor (Cf, C7)T, a poté roz-
hodneme, pro jaké hodnoty v/ E miZe byt vlastnim vektorem M piislugejicim vlastnimu



Vznik vlastnich hodnot jako nasledek lokalni perturbace 217

¢islu o absolutni hodnoté mensi nez 1, eventudlné rovné 1. Charakteristickym polynomem
matice M je

N—X-2. (COS\/E’/T-F a sin@w) +1,
4WE
coz je polynom s redlnymi koeficienty. Podobnymi tivahami jako v kapitole vénované
neperturbovanému systému dostavame, ze M ma vlastni ¢islo v absolutni hodnoté mensi
nez jedna tehdy a jen tehdy, je-li diskriminant tohoto polynomu kladny, coz je ekvivalentni
podmince

«Q
cosV Em + sinVv En
W E

a vlastni ¢islo v absolutni hodnoté rovné 1, pokud

> 1,

«
cosvV Em + sin vV Er
IWE

Porovnanim s podminkou (3) vidime, 7e spektralni pasy se po perturbaci zachovavaji
(co7 ostatné plyne i z toho, 7e hamiltonian perturbovaného systému mé kone¢né indexy
defektu, a tedy nedochézi ke zméné esencialniho spektra, viz [2|), a déle, ze pfipadné nové
vzniklé vlastni hodnoty hamiltonidnu mohou lezet jen ve spektralnich mezerach.

Vzhledem k tomu, Ze v pripadé kladného diskriminantu jsou vlastni ¢isla ddna pred-
pisem

<1,

2
o «
Ao =cosVEr+ sin vV Er =+ (COSVE7T+ sinva) -1,
b WE \/ WE

plati, Ze je-li diskriminant kladny, je ptislusnym vlastnim ¢islem v absolutni hodnoté
mensim nez jedna

e )\, pro cos VET + ﬁsin@w > 1,

e )\ pro cos VET + ﬁ sinvVE® < —1.

3.1 Spektrum H*

Operator H' odpovida sudé slozce vinové funkce, uvazovano ve smyslu symetrie viéi ose.
Sudost je vyjadiena nasledujicimi okrajovymi podminkami v bodech A a B (viz obr. 2):

e AN , (THIN

V misté dotyku nultého a prvniho krouzku (ozn. C) je d-vazba s parametrem «:

Yo(m) = po(m) = ¥1(0) (11)
P1(0) + 1 (0) = hg(m) — () = - 9o () (12)
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Dosadime-li nyni za jednotlivé funkce z (4) a (5) a pouzijeme-li uz znamy vztah ¢/ (0) =
¥1(0), ziskdme vektor (CyF, C7)T (aZ na jeho nasobeni konstantou):

: sinvVEm «
Ofr _ 1 +1 cos VEm+cos VEU o 2\/E>
Ol_ 1—1i sinvEw .« )
cos VEm+cos VEU 2VE

Aby VE € o,(H*), musi byt vektor (C;,C)” nasobkem vlastniho vektoru M piislu-
Sejictho vlastnimu ¢islu v absolutni hodnoté mensimu nez 1. ReSenim této podminky
dostaneme rovnost

sin? \/EW

cos VEY = — cos VET + -
ﬁsin@wi%(ms@w—l—ﬁsin@w) -1

;o (13)

kde znaménko ve jmenovateli je rovno znaménku cos v Em + ﬁ sin vV B,

Ozna¢me vyraz na pravé strané symbolem f(v/E). Bez dikazu nyni uvedeme nésle-
dujici dilezité tvrzeni o funkci f:

Tvrzeni 4. V kaZdém intervalu, v némZ | cos xm + = sinxn| > 1, je funkce [ ostie mono-
tonni a probihd interval [—1,1].

Na levé strané rovnosti (13) stoji vyraz cos vV EV, kde ¥ je tthel ohybu, lezici v intervalu
(0, 7). Jelikoz ¥ < , je délka intervalu, ve kterém funkce cos z1) probéhne interval [—1, 1],
vétsi nez 1. Na druhou stranu, jak uz vime, je délka spektralnich mezer mensi nez 1. S
ohledem na posledni Tvrzeni tak s pouzitim véty o stfedni hodnoté dostavame, ze v
kazdém uzavéru spektrilni mezery existuje pravé jeden bod, v némz nastiva rovnost.
Bud tedy vznikne jedna vlastni hodnota ve spektralni mezefe, anebo rovnost nastane na
hranici spektralniho pasu bez vzniku vlastni hodnoty.
Prozkoumejme jesté zapornou ¢ast spektra. Pro v E = ix (k > 0) ziskava rovnost (13)
podobu
1.2
cosh k) = — cosh kT — sinhy w1 : (14)
1 sinh K &+ \/(cosh KT + £~ sinh /<a7r)2 —1

kde opét horni znaménko odpovidé cosh km + - sinh k7 > 1, dolni znaménko odpovida
cosh k + = sinh kr < —1.
K . , ’ ~ — o v . - cs s
Oznac¢ime-li vyraz na pravé strané symbolem f~(k), muzeme vyslovit nasledujici po-
mocné tvrzeni, které okamzité implikuje chovani spektra operatoru H™:

Tvrzeni 5. o Je-liaw> 0, pak f~ (k) < — cosh(kf) pro vSechna k>0 a 0 € (0, 7).
o Je-li v <0, pak plati:

— pro coshkm + sinhkm < —1 je f~(k) < —coshkd) pro viechna k > 0 a
v e (0,m),

— pro cosh K+ = sinh km > 1 a zdroven k- tghkm < —a /2 je funkce f~ (k) ostre
rostouci a probihd interval (1, +00),
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— pro k- tghrkm > —a/2 je f~(k) < —cosh k¥ pro vsechna k >0 a ¥ € (0, 7).
Diisledek 6. o Je-li o >0, pak HT nemd zdporné vlastni hodnoty.

o Je-li v <0, pak HT mad prdvé jednu vlastni hodnotu, kterd lezi nalevo od zdporného
spektrdalniho pdsu a zdroven napravo od zdporné vzaté druhé mocniny FeSent rovnice
K- tghrkm = —a/2.

3.2 Spektrum H~

Postup pii vySetfovani spektra operatoru H~ odpovidajiciho sudé slozce vinové funkce
je zcela analogicky postupu, jaky byl pouzit u operatoru H'. Jedinym rozdilem jsou
okrajové podminky na nultém krouzku, které jsou dany:

™ — T+ v
=0, =0.
Yo < 5 ) %0 < 5 )
Jak 1ze snadno ukazat, spektralni podminka je vyjadiena rovnosti
sin? \/E?T
2 )
ﬁsin\/ﬁﬂi \/<COS\/E7T+ ﬁﬁsin\/ﬁﬂ) —1

—cosVEY = —cos VET +

tedy rozdil oproti odpovidajici podmince u operatoru H* spo¢iva v opa¢ném znaménku
u kosinu na levé strané. Chovéani vyrazu napravo uz zname (viz Tvrzeni 4), rovnou tedy
miuzeme popsat kladnou ¢ast bodového spektra H™:

Tvrzeni 7. V kaZdé spektrdlni mezefe operdtoru H— existuje bud prdvé jedna vlastni hod-
nota, anebo Zddnd, pricemz druhd moznost nastdvd v pripade, kdy zdroven plati
| cos VET + ﬁsin\/ﬁﬂ =1.

Zaporna ¢ast bodového spektra H~ je urcena podminkou
12
sinh® Kk
—cosh k) = — cosh kT — ,
2
(] : (0% :
i-sinh k7 & \/(cosh KT + 4-sinh mr) -1

kde vVE = ix? pro k € R*. Nyni staci jen vyuZit u7 vyslovené tvrzeni 4. 7 ngj okam7ité
plyne, 7e v poslednim vztahu nikdy nenastavi rovnost, tedy operator H~ nemé zadné
zaporné vlastni hodnoty.

3.3 Shrnuti: spektrum H = H* ¢ H~

V predchozich kapitolach jsme ukazali, 7e uvazovana perturbace ma za nasledek vznik
vlastnich hodnot uvniti¥ spektralnich mezer neperturbovaného systému. Uvedli jsme, 7e
kazdé komponenté, tj. jak operatoru H*, tak i H~, muze v kazdé mezefe patiit jedna
nebo zadné vlastni hodnota. Taktéz jsme vysvétlili, Ze situace, kdy operator H' nebo
H~ nema uvniti spektralni mezery vlastni hodnotu, odpovida pravé tomu, ze poloha
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prislusného bodu padne do hranice spektralniho pasu. Na druhou stranu, vzhledem k
rychlosti rustu resp. poklesu funkce cos(x/Ez?), ktera je bez ohledu na volbu 9 vzdy nizsi
nez rychlost rustu a poklesu funkce oznacené symbolem f(\/E), je snadno ziejmé, 7e
nemiuze dojit k tomu, aby v jedné spektralni mezere takto vymizely obé vlastni hodnoty.

Dale je tfeba podotknout, Ze neni vylouc¢en piipad, kdy operatorim H™ a H~ v
dané spektralni mezeie prislusi tataz vlastni hodnota. V takovém piipadé dochézi ke
zdvojnasobeni jeji nasobnosti. Pimym vypoctem lze mimochodem ukazat, ze vlastnimi
hodnotami tohoto typu mohou byt jen feSeni rovnice

\/E-tg\/EW:%.

Shriime tedy vysledek vypoc¢tu do véty.

Véta 8. e Body spektra neperturbovaného systému i jejich charakter se zachovdvaji i
v perturbovaném systému.

e Perturbovany systém md navic vlastni hodnoty ve spektralnich mezerdch, pricemz:

— na kladné poloose je v kazdé spektrdlni mezere bud jedna vlastni hodnota o nd-
sobnosti 1, nebo dve vlastni hodnoty o ndsobnosti 1, nebo jedna vlastni hodnota
0 ndasobnosti 2,

— je-li parametr 0-vazby zdporny, pak se navic na zdporné poloose vlevo od po-
sledniho spektrdlniho pdsu nachdzi jedna vlastni hodnota o ndsobnosti 1.
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Abstract. The curvature effect on a quantum dot with impurity is investigated. The model is
considered on the Lobachevsky plane. The confinement and impurity potentials are chosen so
that the model is explicitly solvable. The Green function as well as the Krein @-function are
computed.

Abstrakt. Cléanek pojednava o vlivu kiivosti na kvantovou tecku s ne¢istotou. Konkrétné uvazu-
jeme kvantovou tecku v Lobachevského roviné. Vazebny potencidl a potencial pro necistotu
volime tak, ze vysledny model je Fesitelny. Ziskdme tak explicitni vyjadfeni pro Greenovu a
Kreinovu @-funkeci.

1 Introduction

Physically, quantum dots are nanostructures with a charge carriers confinement in all
space directions. They have an atom-like energy spectrum which can be modified by
adjusting geometric parameters of the dots as well as by the presence of an impurity.
Thus the study of these dependencies may be of interest from the point of view of the
nanoscopic physics.

A detailed analysis of three-dimensional quantum dots with a short-range impurity in
the Euclidean space can be found in [|4|. Therein, the harmonic oscillator potential was
used to introduce the confinement, and the impurity was modeled by a point interaction
(0-potential). The starting point of the analysis was derivation of a formula for the Green
function of the unperturbed Hamiltonian (i.e., in the impurity free case), and application
of the Krein resolvent formula jointly with the notion of the Krein ()-function.

In the present paper, we make use of the same method to investigate quantum dots
with impurity in the Lobachevsky plane. We will introduce an appropriate Hamiltonian
in a manner quite analogous to that of [4] and derive an explicit formula for the corre-
sponding Green function. In this sense, our model is solvable, and so its properties may
be of interest also from the mathematical point of view.

During the computations to follow, the spheroidal functions appear naturally. Unfor-
tunately, the notation in the literature concerned with this type of special functions is not
yet uniform (see, e.g., [2| and [8]). This is why we supply, for the reader’s convenience,

*in co-operation with V. Geyler from Mordovian State University, Saransk, Russia
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a short appendix comprising basic definitions and results related to spheroidal functions
which are necessary for our approach.

2 A quantum dot with impurity in the Lobachevsky plane

2.1 The model

Denote by (0,¢), 0 < 0 < 00, 0 < ¢ < 2w, the geodesic polar coordinates on the
Lobachevsky plane. Then the metric tensor is diagonal and reads

(gi5) = diag(l, a® sinh? Q)
a

where a, 0 < a < oo, denotes the so called curvature radius which is related to the
scalar curvature by the formula R = —2/a?. Furthermore, the volume form equals
dV = asinh(p/a)dp A d¢. The Hamiltonian for a free particle of mass m = 1/2 takes the
form

1 1
HO — (ALB+4 2) = \/_axzx/_gzy@_@
where Ay p is the Laplace-Beltrami operator and g = det g;;. We have set i = 1.

The choice of a potential modeling the confinement is ambiguous. We naturally
require that the potential takes the standard form of the quantum dot potential in the
flat limit (¢ — o00). This is to say that, in the limiting case, it becomes the potential of
the isotropic harmonic oscillator V' = —w p?. However, this condition clearly does not
specify the potential uniquely. Having the freedom of choice let us discuss the following
two possibilities:

a) Vi(p) =% a’w?tanh® 2, (1)
b) Ua.(p) = 1 a’w?sinh” £. (2)

Potential V, is the same as that proposed in [9] for the classical harmonic oscillator on
the Lobachevsky plane. With this choice, it has been demonstrated in [9] that the model
is superintegrable, i.e., there exist three functionally independent constants of motion.
Let us remark that this potential is bounded, and so it represents a bounded perturbation
to the free Hamiltonian. On the other hand, the potential U, is unbounded. Moreover,
as shown below, the stationary Schrodinger equation for this potential leads, after the
partial wave decomposition, to the differential equation of spheroidal functions. The
current paper concentrates exclusively on case b).

The impurity is modeled by a J-potential which is introduced with the aid of self-
adjoint extensions and is determined by boundary conditions at the base point. We
restrict ourselves to the case when the impurity is located in the centre of the dot (p = 0).
Thus we start from the following symmetric operator:

H= - (80_; +%coth<g> gg+ ? sinh™ <§> % + 4—22) + %a%ﬂsinh%%) ,

(3)
Dom(H) = C2((0, 00) x SY) C L2 ((o ) x SL,a smh< ) do d¢> 3
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2.2 Partial wave decomposition

Substituting £ = cosh(p/a) we obtain

1 0* 0 o g 0 dw? 1=
Helu-erf -2 1= S - | R

Dom(H) = Cg°((1,00) x S*) € L* ((1,00) x S*, a*d¢ d¢) .

Using the rotational symmetry which amounts to a Fourier transform in the variable ¢,
H may be decomposed into a direct sum as follows

- - ;O m2 a4w2 1
mz—a—g(f—l ) o171 (52—1)—1,
Dom(H,,) = C(1,00) C LQ((l,oo),df).

Note that H,, is a Sturm-Liouville operator.
Proposition 1. H,, is essentially self-adjoint for m #0, Hy has defect indices (1,1).

Proof. The operator H,, is symmetric and semibounded, and so the defect indices are
equal. If we set

atw? 1
= 460 = — A=—2——
/’L ‘m|7 4 Y z 4 Y
then the eigenvalue equation .
Hptp = 29 (5)
takes the standard form of the differential equation of spheroidal functions:
0% O -
(1—5)(%2 25—5+[/\+40( &) =1 =&)Y =0. (6)

According to chapter 3.12, Satz 5 in [8|, for 4 = m € Ny a fundamental system
{yr, yn} of solutions to equation (5) exists such that

yi(€) = (1 =™ Pi(1-¢), P(0)=1
yin(€) = (1= &)™ 2Po(1 = &) + A yi(€) log (1 — &),

where, for | — 1| < 2, Py, Py are analytic functions in &, A, 6; and A,, is a polynomial
in A and 0 of total order m with respect to A and v/0; Ay = —1/2.

Suppose that z € C\ R. For m = 0, every solutions to (5) is square integrable near
1; while for m # 0, y; is the only one solution, up to a factor, which is square integrable
in a neighbourhood of 1. On the other hand, by a classical analysis due to Weyl, there
exists exactly one linearly independent solution to (5) which is square integrable in a
neighbourhood of oo, see Theorem XII1.6.14 in |7]. In the case of m = 0 this obviously
implies that the defect indices are (1,1). If m # 0 then, by Theorem XIII.2.30 in |7|, the
operator H,, is essentially self-adjoint. O
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Define the maximal operator associated to the formal differential expression

L- 5((s ~1) i)ﬂij’?(s?—l)—i

as follows

Dom(Hypa) — {f € [X(1,00).d€) : f,f' € AC((1,00)).

T o ((5 - )g—g) (5 —1)f € L*((1,0), dg)}

Hmaa:f - Lf
According to Theorem 8.22 in [10|, Hue = Hg

Proposition 2. Let r € (—00,00]. The operator Hy(k) defined by the formulae

Dom(ﬁO(K/)) - {f € DOHI( max) fl - K’fO} HO( ) Hmaxf;

where

fo := —4ma® lim f(§) , f1:= lim f(§)+

1
St m o1+ Ara folog (£ —1),

is a self-adjoint extension of Hy. There are no other self-adjoint extensions of Hy.

Proof. The methods to treat § like potentials are now well established [1|. Here we follow
an approach described in 5], and we refer to this source also for the terminology and
notations. Near the point £ = 1, each f € Dom(H,,4,) has the asymptotic behaviour

FEO=HFED+ fi+o(l) asé— 1+

where fo, f1 € Cand F(,&') is the divergent part of the Green function for the Friedrichs
extension of Hy. By formula (13) which is derived below, F(¢,1) = —1/(4ma?) log(& — 1).
Proposition 1.37 in [5] states that (C, 'y, T's), with I'y f = fy and I'sf = f1, is a boundary
triple for H,,4..

According to theorem 1.12 in [5], there is a one-to-one correspondence between all self-
adjoint linear relations  in C and all self-adjoint extensions of Hy given by & «— Ho(k)
where Hy(k) is the restriction of H,nq, to the domain of vectors f € Dom(H,yq,) satisfying

(I f, Tof) € k. (7)

Every self-adjoint relation in C is of the form x = Cv C C? for some v € R?, v # 0. If
(with some abuse of notation) v = (1, k), K € R, then relation (7) means that f; = xfy. If

= (0,1) then (7) means that fy = 0 which may be identified with the case of Kk = oo, and
then the corresponding self-adjoint extension is nothing but the Friedrichs extension. [
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2.3 The Green function

Let us consider the Friedrichs extension of the operator H in L? ((1,00) x S, d¢ d¢) which
was introduced in (4). The resulting self-adjoint operator is in fact the Hamiltonian for
the impurity free case. The corresponding Green function G, is the generalised kernel of
the Hamiltonian, and it should obey the equation

(H = 2)G:(8, ¢3¢, ¢) =8 = €)3(0 = ¢) = Z Jeim(@=0),

m=—0Q

If we suppose G, to be of the form

G.(6, ;6. ¢) = ngffmw 8)
then, for all m € Z, )
(Hpn — 2)G"(€,€) = 6(§ =€) (9)
Let us consider an arbitrary fixed &', and set
4, ,2
1
w=m, 49:—a: , )\:—Z—Z.

Then for all £ # £ equation (9) takes the standard form of the differential equation of
spheroidal functions (6). As one can see from the following asymptotic formulae

SO (E,0) = 5 07121 4 O ),

(10)
for —7 < arg(Ql/Qf) < 2m,
S,u,(4 (5 0) 2 1/25—1 —i(20Y/2¢—vm/2— 7r/2)[ +O(|§| 1)]
for —2m < arg(6Y/2¢) <,
the solution which is square integrable near infinity equals S/ (¢, —a%w?/16). Further-

more, the solution which is square integrable near £ = 1 equals Ps' (¢, —a'w?/16) as
one may verify with the aid of the asymptotic formula

Fv+m+1)
2m2mI T (v —m+1)

We conclude that the mth partial Green function equals

Gr(e,€) =~ : Psprl( ¢ s (e, ~ <)
o (e — 1w (psi sh®y T vt 16 716 )

where the symbol W(Ps|m| Siml®) ) denotes the wronskian, and &, {. are respectively
the smaller and the greater of £ and &'. By the general Sturm-Liouville theory, the
factor (£2 — 1)7/(P3,‘,m‘, S,‘,m‘(:g)) is constant. Since GI* = G;™ decomposition (8) may be
simplified,

P(&) ~ (€ —1)™? as € — 1+, for m € Ny.

G.(6,0:€', /) = 5= GUEE) + = 3 G(E.€) cos m(6 — )] (12)
m=1
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2.4 The Krein ()-function

The Krein Q-function plays a crucial role in the spectral analysis of impurities. It is
defined at a point of the configuration space as the regularised Green function evaluated
at this point. Here we deal with the impurity located in the centre of the dot (£ = 1, ¢
arbitrary), and so, by definition,

Q(z) == G:¥(1,0; 1,0).
Due to the rotational symmetry,
1
G:(§) 1= G:(£,¢11,0) = G:(€, 611, 0) = Ga(€,0:1,0) = o~ G2(&, 1),

and hence )
(HO - Z)gz(g) = 07 for 5 < (17 OO)

Let us note that from the explicit formula (11), one can deduce that the coefficients
G7(&,1) in the series in (12) vanish for m = 1,2,3,.... The solution to this equation is

)

16

The constant of proportionality can be determined with the aid the following theorem
which we reproduce from [6].

Theorem 3. Let d(z,y) denote the geodesic distance between points x,y of a two-dimensional
manifold X of bounded geometry. Let

UePX)= {U . U, = max(U,0) € L (X), U_ :=max(~U,0) € i Lpi(X)}

loc
=1

for an arbitrary n € N and 2 < p; < oo. Then the Green function Gy of the Schréodinger
operator Hy = —Apg + U has the same on-diagonal singularity as that for the Laplace-
Beltrami operator itself, i.e.,

1 1
gU(Cany) - %1Og d(ZE y) + g(?‘}eg(gx,y)

where Gif? is continuous on X x X.

Let us denote by GI' and Q" (z) the Green function and the Krein Q-function for the

Friedrichs extension of H, respectively. Since H = a?H and (H — 2)G, = §, we have
gf(ga ¢7 6/7 ¢/> = a29a22(67 ¢a 6/7 ¢/)7 QH(Z) = QZQ(&ZZ)'

One may verify that

log d(p,0;0) = log p = log(a arg cosh &) = %log(f — 1) +log(V2a) + O(£ — 1)
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as p — 04 or, equivalently, £ — 14. Finally, for the divergent part F'(§,¢’) of the Green
function G, we obtain the expression

F(fvl):_

log(§€ —1). (13)

dra?

From the above discussion, it follows that the Krein ()-function depends on the coefficients
«, [ in the asymptotic expansion

S03) (5, _“izﬂ) =alog(é— 1)+ B+o(l) as&— 1+, (14)
and equals
B
Qz) = CAna2a 15)

To determine «, 8 we need relation

50(3) — # <SO(1) + Z'efim/So(l)) )
v icos(vm) \ V! g

for the radial spheroidal function of the third kind. Formulae

SED(E,0) = 7 sin[(v — p)wle TV RE(0)Qs" 1 (€, 0),
Sr(E,0) = KJ'(0)Psy(€,0),

imply that
SI(¢,0) = sin(vm) e IV RS(0)Qs%, (€, 0),
sin(vm)
S%)1(6.6) = % ™KL, 1 (0)Qs,(&.0), (16)

SYV(E,0) = KD (0)Ps(&,6),
SYV L (6,0) = K°,_(0)Ps°,_,(¢.0).

Here v € C\ Z, n € Z.
Applying the symmetry relation for the expansion coefficients of the spheroidal func-
tions (for those expansions see |2])

(V — M + 1)27" aH
(V+p+1)

aﬁ,r(g) - aﬁufl,fr(e) - (0)7

we derive that

e}

Qs%, 1(£,0)= D (=), 1, (0)Q", 1 5(S)

r=—00
[ee)

= > (), (0)Q%, 15 (&)

r=—00
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Using the asymptotic formulae (see |2])

QUE) = —3lor 5L (1) — W+ 1)+ O (€~ 1) log(€ — 1)),

PA=14+0((¢—-1)), asf— 1+,

the series expansions

PSﬁ(f,@) = Z (—)TGZT(Q)PIZ_%,(S)’
Q& 0) = > (=)l (0)Ql 5, (8)

and formulae (16), we deduce that, as £ — 1+,

sin(v)
~— 70

SIV(E,0) e UKD (0)

« {33(9)—1 (% log S50 (1) + ﬂcot(mr)) + xpsy(e)] ,

sin(v)
~— N

S (€,0) ™K, (0)

X {52(0)—1 (% log S ; L \11(1)) + \I/sl,(Q)] :
SO (€, 0) ~ K5(0)s0(6)7",
SO (€,0) ~ KO, _1(0)s%,_,(0)7 = K°,_,(0)s2(6)7",

where the coefficients s(6) stand for s(0) = [>°7°__(=1)"a’,.(0)]

r=—00

o0

Us,(0) = > (=)al, (0)¥(v+1+2r),

r=—00

and where we have made use of the following relation for the digamma function: ¥(—z) =
U(z + 1) + mcot(nz).
We conclude that

SI(E,0) ~ alog(é — 1)+ B+ O ((€—1)log(§ — 1)) as & — 1+,

where

itan(vm) o o, —im(2043/2) 770
a= 5o KL 0) —eT T ERE) .

0=« (— log2 —2W(1) + 2\1/3,,(6)53(9)) +e ™00 KY(0).

For the integer values v =n € Z it holds

SpP(€.0) ~ s (0) 7" (K(0) —i(=)"K2, 1(0)) as€—1+.



A Quantum Dot with Impurity in the Lobachevsky Plane 229

The substitution for «, # into (15) yields

1 a*w? a*w?
= —log2 —2U (1) +2WUs, [ ——— | s —
Q) == o (o2 200 + 2, (-1 ) (-2 )

2 -1 (17)
+ 1 eiﬂ'(3ll+3/2) Kgu—l(_T) -1
2a? tan(vm) KO(—2e2)

v 16
a*w? 1
A0 — -y _. 18
”( 16) S (18)

2.5 The spectrum of a quantum dot with impurity

where v is chosen so that

The Green function of the Hamiltonian describing a quantum dot with impurity is given
by the Krein resolvent formula

GL0)(6. 6561, ) = G (€. 036" 0) = G G¥1(€.051.0)G11(1,05€1,0),

Q"(2)

The parameter x := a’x € (—00, 00 ] determines the corresponding self-adjoint extension
H(x) of H. In the physical interpretation, this parameter is related to the strength of
the ¢ interaction. Recall that the value x = oo corresponds to the Friedrichs extension
of H representing the case with no impurity. This fact is also apparent from the Krein
resolvent formula.

As is well known (see, for example, |3]), for the confinement potential tends to infinity
as p — o0, the resolvent of H(co) is compact and the spectrum of H(oo) is discrete.
The same is also true for H(x) for any x € R since, by the Krein resolvent formula, the
resolvents for H(y) and H(oo) differ by a rank one operator. Moreover, the multiplicities
of eigenvalues of H(x) and H(oco) may differ at most by £1 (see [10, Section 8.3]).

A more detailed analysis given in [4] can be carried over to our case almost literally.
Denote by o the set of poles of the function Q(z) depending on the spectral parameter
z. Note that o is a subset of spec(H (cc)). Consider the equation

Q"(2) = x. (19)

Theorem 4. The spectrum of H(x) is discrete and consists of four nonintersecting parts

S1, S, S3, Sy described as follows:

1. Sy is the set of all solutions to equation (19) which do not belong to the spectrum of
H(oo). The multiplicity of all these eigenvalues in the spectrum of H(x) equals 1.

2. Sy is the set of all X € o that are multiple eigenvalues of H(oo). If the multiplicity
of such an eigenvalue X in spec(H (00)) equals k then its multiplicity in the spectrum
of H(x) equals k — 1.

3. Ss consists of all X € spec(H(00)) \ o that are not solutions to equation (19). the
multiplicities of such an eigenvalue X in spec(H (00)) and spec(H(x)) are equal.
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4. Sy consists of all X € spec(H(00)) \ o that are solutions to equation (19). If the
multiplicity of such an eigenvalue X in spec(H (00)) equals k then its multiplicity in
the spectrum of H(x) equals k + 1.

Hence the eigenvalues of H(x), x € R, different from those of the unperturbed Hamil-
tonian H (oo) are solutions to (19). As far as we see it, this equation can be solved only
numerically. We have postponed a systematic numerical analysis of equation (19) to a
subsequent work. Note that the Krein Q-function (17) is in fact a function of v, and
hence dependence (18) of the spectral parameter z on v is fundamental.

3 Conclusion

We have proposed a Hamiltonian describing a quantum dot in the Lobachevsky plane to
which we added an impurity modeled by a ¢ potential. Formulae for the corresponding
- and Green functions have been derived. Further analysis of the energy spectrum may
be accomplished for some concrete values of the involved parameters (by which we mean
the curvature a and the oscillator frequency w) with the aid of numerical methods.
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